Quartus® Prime Pro Edition User Guide: Power Analysis and Optimization
ID
683174
Date
5/28/2025
Public
1.3.2.1. Using Simulation Signal Activity Data in Power Analysis
1.3.2.2. Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
1.3.2.3. Signal Activities from Vectorless Estimation and User-Supplied Input Pin Activities
1.3.2.4. Signal Activities from User Defaults Only
1.5.1. Complete Design Simulation Power Analysis Flow
1.5.2. Modular Design Simulation Power Analysis Flow
1.5.3. Multiple Simulation Power Analysis Flow
1.5.4. Overlapping Simulation Power Analysis Flow
1.5.5. Partial Design Simulation Power Analysis Flow
1.5.6. Vectorless Estimation Power Analysis Flow
2.4.1. Clock Power Management
2.4.2. Pipelining and Retiming
2.4.3. Architectural Optimization
2.4.4. I/O Power Guidelines
2.4.5. Dynamically Controlled On-Chip Terminations (OCT)
2.4.6. Memory Optimization (M20K/MLAB)
2.4.7. DDR Memory Controller Settings
2.4.8. DSP Implementation
2.4.9. Reducing High-Speed Tile (HST) Usage
2.4.10. Unused Transceiver Channels
2.4.11. Periphery Power reduction XCVR Settings
2.2. Design Space Explorer II for Power-Driven Optimization
The Design Space Explorer II (DSE II) tool allows you to find and implement the project settings that result in best power behavior.
The DSE II offers two options in Exploration mode that target power optimization: Power (High Effort) and Power (Aggressive). In both cases, the target is an overall improvement in the design's power; specifically, reducing the total thermal power in the design.
When the optimization targets power, the DSE II runs the Quartus® Prime Power Analyzer for every group of settings. The resultant reports help you debug the design and determine trade-offs between power requirements and performance optimization.