Embedded Peripherals IP User Guide

ID 683130
Date 3/28/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents
1. Introduction 2. Avalon® -ST Multi-Channel Shared Memory FIFO Core 3. Avalon® -ST Single-Clock and Dual-Clock FIFO Cores 4. Avalon® -ST Serial Peripheral Interface Core 5. SPI Core 6. SPI Agent/JTAG to Avalon® Host Bridge Cores 7. Intel eSPI Agent Core 8. eSPI to LPC Bridge Core 9. Ethernet MDIO Core 10. Intel FPGA 16550 Compatible UART Core 11. UART Core 12. JTAG UART Core 13. Intel FPGA Avalon® Mailbox Core 14. Intel FPGA Avalon® Mutex Core 15. Intel FPGA Avalon® I2C (Host) Core 16. Intel FPGA I2C Agent to Avalon® -MM Host Bridge Core 17. Intel FPGA Avalon® Compact Flash Core 18. EPCS/EPCQA Serial Flash Controller Core 19. Intel FPGA Serial Flash Controller Core 20. Intel FPGA Serial Flash Controller II Core 21. Intel FPGA Generic QUAD SPI Controller Core 22. Intel FPGA Generic QUAD SPI Controller II Core 23. Interval Timer Core 24. Intel FPGA Avalon FIFO Memory Core 25. On-Chip Memory (RAM and ROM) Intel FPGA IP 26. On-Chip Memory II (RAM or ROM) Intel FPGA IP 27. Optrex 16207 LCD Controller Core 28. PIO Core 29. PLL Cores 30. DMA Controller Core 31. Modular Scatter-Gather DMA Core 32. Scatter-Gather DMA Controller Core 33. SDRAM Controller Core 34. Tri-State SDRAM Core 35. Video Sync Generator and Pixel Converter Cores 36. Intel FPGA Interrupt Latency Counter Core 37. Performance Counter Unit Core 38. Vectored Interrupt Controller Core 39. Avalon® -ST Data Pattern Generator and Checker Cores 40. Avalon® -ST Test Pattern Generator and Checker Cores 41. System ID Peripheral Core 42. Avalon® Packets to Transactions Converter Core 43. Avalon® -ST Multiplexer and Demultiplexer Cores 44. Avalon® -ST Bytes to Packets and Packets to Bytes Converter Cores 45. Avalon® -ST Delay Core 46. Avalon® -ST Round Robin Scheduler Core 47. Avalon® -ST Splitter Core 48. Avalon® -MM DDR Memory Half Rate Bridge Core 49. Intel FPGA GMII to RGMII Converter Core 50. Intel FPGA MII to RMII Converter Core 51. Intel FPGA HPS GMII to TSE 1000BASE-X/SGMII PCS Bridge Core 52. Intel FPGA HPS EMAC to Multi-rate PHY GMII Adapter Core 53. Intel FPGA MSI to GIC Generator Core 54. Cache Coherency Translator Intel® FPGA IP

12.4.5. Interrupt Behavior

The JTAG UART core generates an interrupt when either of the individual interrupt conditions is pending and enabled.

Interrupt behavior is of interest to device driver programmers concerned with the bandwidth performance to the host PC. Example designs and the JTAG terminal program provided with Nios® II Embedded Design Suite (EDS) are pre-configured with optimal interrupt behavior.

The JTAG UART core has two kinds of interrupts: write interrupts and read interrupts. The WE and RE bits in the control register enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly empty. The nearly empty threshold, write_threshold, is specified at system generation time and cannot be changed by embedded software. The write interrupt condition is set whenever there are write_threshold or fewer characters in the write FIFO. It is cleared by writing characters to fill the write FIFO beyond the write_threshold. Embedded software should only enable write interrupts after filling the write FIFO. If it has no characters remaining to send, embedded software should disable the write interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full. The nearly full threshold value, read_threshold, is specified at system generation time and cannot be changed by embedded software. The read interrupt condition is set whenever the read FIFO has read_threshold or fewer spaces remaining. The read interrupt condition is also set if there is at least one character in the read FIFO and no more characters are expected. The read interrupt is cleared by reading characters from the read FIFO.

For optimum performance, the interrupt thresholds should match the interrupt response time of the embedded software. For example, with a 10-MHz JTAG clock, a new character is provided (or consumed) by the host PC every 1 µs. With a threshold of 8, the interrupt response time must be less than 8 µs. If the interrupt response time is too long, performance suffers. If it is too short, interrupts occurs too often.

For Nios® II and Nios® V processors systems, read and write thresholds of 8 are an appropriate default.