Developer Reference for Intel® oneAPI Math Kernel Library for Fortran
A newer version of this document is available. Customers should click here to go to the newest version.
?dgmm_batch
Computes groups of matrix-vector product using general matrices.
Syntax
call sdgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array, incx_array, c_array, ldc_array, group_count, group_size)
call ddgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array, incx_array, c_array, ldc_array, group_count, group_size)
call cdgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array, incx_array, c_array, ldc_array, group_count, group_size)
call zdgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array, incx_array, c_array, ldc_array, group_count, group_size)
Include Files
- mkl.fi
 
Description
The ?dgmm_batch routines perform a series of diagonal matrix-matrix product. The diagonal matrices are stored as dense vectors and the operations are performed with group of matrices and vectors. .
Each group contains matrices and vectors with the same parameters (size, increments). The operation is defined as:
idx = 0
For i = 0 … group_count – 1
    left_right, m, n, lda, incx, ldc and group_size at position i in left_right_array, m_array, n_array, lda_array, incx_array, ldc_array and group_size_array
    for j = 0 … group_size – 1
        a and c are matrices of size mxn at position idx in a_array and c_array
        x is a vector of size m or n depending on left_right, at position idx in x_array
        if (left_right == oneapi::mkl::side::left) c := diag(x) * a
        else c := a * diag(x)
        idx := idx + 1
    end for
end for
 
   The number of entries in a_array, x_array, and c_array is total_batch_count = the sum of all of the group_size entries.
Input Parameters
- left_right_array
 -  
     
CHARACTER*1.
Array of size group_count. For the group i, left_righti = left_right_array[i] specifies the position of the diagonal matrix in the matrix product.
if left_righti = 'L' or 'l' , then C = diag(X) * A.
if left_righti = 'R' or 'r' , then C = A * diag(X).
 - m_array
 -  
     
INTEGER. Array of size group_count. For the group i, mi = m_array[i] is the number of rows of the matrix A and C.
 - n_array
 -  
     
INTEGER. Array of size group_count. For the group i, ni = n_array[i] is the number of columns in the matrix A and C.
 - a_array
 -  
     
INTEGER*8 for Intel® 64 architecture
INTEGER*4 for IA32 architecture
Array of size total_batch_count of pointers used to store A matrices. The array allocated for the A matrices of the group i must be of size at least ldai * ni .
 - lda_array
 -  
     
INTEGER. Array of size group_count. For the group i, ldai = lda_array[i] is the leading dimension of the matrix A. It must be positive and at least mi .
 - x_array
 -  
     
INTEGER*8 for Intel® 64 architecture
INTEGER*4 for IA32 architecture
Array of size total_batch_count of pointers used to store x vectors. The array allocated for the x vectors of the group i must be of size at least (1 + leni – 1)*abs(incxi)) where leni is ni if the diagonal matrix is on the right of the product or mi otherwise.
 - incx_array
 -  
     
INTEGER. Array of size group_count. For the group i, incxi = incx_array[i] is the stride of vector x.
 - c_array
 -  
     
INTEGER*8 for Intel® 64 architecture
INTEGER*4 for IA32 architecture
Array of size total_batch_count of pointers used to store C matrices. The array allocated for the C matrices of the group i must be of size at least ldci * ni,
 - ldc_array
 -  
     
INTEGER.
Array of size group_count. For the group i, ldci = ldc_array[i] is the leading dimension of the matrix C. It must be positive and at least mi .
 - group_count
 -  
     
INTEGER.
Number of groups. Must be at least 0.
 - group_size
 -  
     
INTEGER.
Array of size group_count. The element group_count[i] is the number of operations in the group i. Each element in group_size must be at least 0.
 
Output Parameters
- c_array
 - Array of pointers holding the total_batch_count updated matrix C.