A newer version of this document is available. Customers should click here to go to the newest version.
syrk
Performs a symmetric rank-k update.
Description
The syrk routines perform a rank-k update of a symmetric matrix C by a general matrix A. The operation is defined as:
 
   where:
op(X) is one of op(X) = X or op(X) = XT
alpha and beta are scalars
C is n x n symmetric matrix,
op(A) is n x k general matrix
syrk supports the following precisions:
T  |  
       
|---|
float  |  
       
double  |  
       
std::complex<float>  |  
       
std::complex<double>  |  
       
syrk (Buffer Version)
Syntax
namespace oneapi::mkl::blas::column_major {
    void syrk(sycl::queue &queue,
              oneapi::mkl::uplo upper_lower,
              oneapi::mkl::transpose trans,
              std::int64_t n,
              std::int64_t k,
              T alpha,
              sycl::buffer<T,1> &a,
              std::int64_t lda,
              T beta,
              sycl::buffer<T,1> &c,
              std::int64_t ldc,
              compute_mode mode = compute_mode::unset)
} 
   namespace oneapi::mkl::blas::row_major {
    void syrk(sycl::queue &queue,
              oneapi::mkl::uplo upper_lower,
              oneapi::mkl::transpose trans,
              std::int64_t n,
              std::int64_t k,
              T alpha,
              sycl::buffer<T,1> &a,
              std::int64_t lda,
              T beta,
              sycl::buffer<T,1> &c,
              std::int64_t ldc,
              compute_mode mode = compute_mode::unset)
} 
    
   Input Parameters
- queue
 -  
     
The queue where the routine should be executed.
 - upper_lower
 -  
     
Specifies whether matrix C is upper or lower triangular. See Data Types for more details.
 - trans
 -  
     
Specifies op(A), the transposition operation applied to matrix A. Conjugation is never performed even if trans = transpose::conjtrans. See Data Types for more details.
 - n
 -  
     
Number of rows and columns of matrix C. Must be at least zero.
 - k
 -  
     
Number of columns of matrix op(A). Must be at least zero.
 - alpha
 -  
     
Scaling factor for the rank-k update.
 - a
 -  
     
Buffer holding input matrix A. See Matrix Storage for more details.
trans = transpose::nontrans
trans = transpose::trans or trans = transpose::conjtrans
Column major
A is n x k matrix. Size of array a must be at least lda * k
A is k x n matrix. Size of array a must be at least lda * n
Row major
A is n x k matrix. Size of array a must be at least lda * n
A is k x n matrix. Size of array a must be at least lda * k
 - lda
 -  
     
Leading dimension of matrix A. Must be positive.
trans = transpose::nontrans
trans = transpose::trans or trans = transpose::conjtrans
Column major
Must be at least n
Must be at least k
Row major
Must be at least k
Must be at least n
 - beta
 -  
     
Scaling factor for matrix C.
 - c
 -  
     
Buffer holding input/output matrix C. Size of the buffer must be at least ldc * n. See Matrix Storage for more details.
 - ldc
 -  
     
Leading dimension of matrix C. Must be positive and at least n.
 - mode
 -  
     
Optional. Compute mode settings. See Compute Modes for more details.
 
Output Parameters
- c
 -  
     
Output buffer overwritten by alpha * op(A) * op(A)T + beta * C.
 
syrk (USM Version)
Syntax
namespace oneapi::mkl::blas::column_major {
    sycl::event syrk(sycl::queue &queue,
                     oneapi::mkl::uplo upper_lower,
                     oneapi::mkl::transpose trans,
                     std::int64_t n,
                     std::int64_t k,
                     T alpha,
                     const T *a,
                     std::int64_t lda,
                     T beta,
                     T *c,
                     std::int64_t ldc,
                     compute_mode mode = compute_mode::unset,
                     const std::vector<sycl::event> &dependencies = {})
} 
   namespace oneapi::mkl::blas::row_major {
    sycl::event syrk(sycl::queue &queue,
                     oneapi::mkl::uplo upper_lower,
                     oneapi::mkl::transpose trans,
                     std::int64_t n,
                     std::int64_t k,
                     T alpha,
                     const T *a,
                     std::int64_t lda,
                     T beta,
                     T *c,
                     std::int64_t ldc,
                     compute_mode mode = compute_mode::unset,
                     const std::vector<sycl::event> &dependencies = {})
} 
    
   Input Parameters
- queue
 -  
     
The queue where the routine should be executed.
 - upper_lower
 -  
     
Specifies whether matrix C is upper or lower triangular. See Data Types for more details.
 - trans
 -  
     
Specifies op(A), the transposition operation applied to matrix A. Conjugation is never performed even if trans = transpose::conjtrans. See Data Types for more details.
 - n
 -  
     
Number of rows and columns of matrix C. Must be at least zero.
 - k
 -  
     
Number of columns of matrix op(A). Must be at least zero.
 - alpha
 -  
     
Scaling factor for the rank-k update.
 - a
 -  
     
Pointer to input matrix A. See Matrix Storage for more details.
trans = transpose::nontrans
trans = transpose::trans or trans = transpose::conjtrans
Column major
A is n x k matrix. Size of array a must be at least lda * k
A is k x n matrix. Size of array a must be at least lda * n
Row major
A is n x k matrix. Size of array a must be at least lda * n
A is k x n matrix. Size of array a must be at least lda * k
 - lda
 -  
     
Leading dimension of matrix A. Must be positive.
trans = transpose::nontrans
trans = transpose::trans or trans = transpose::conjtrans
Column major
Must be at least n
Must be at least k
Row major
Must be at least k
Must be at least n
 - beta
 -  
     
Scaling factor for matrix C.
 - c
 -  
     
Pointer to input/output matrix C. Size of the array must be at least ldc * n. See Matrix Storage for more details.
 - ldc
 -  
     
Leading dimension of matrix C. Must be positive and at least n.
 - mode
 -  
     
Optional. Compute mode settings. See Compute Modes for more details.
 - dependencies
 -  
     
Optional. List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
mode and dependencies may be omitted independently; it is not necessary to specify mode in order to provide dependencies.
 
Output Parameters
- c
 -  
     
Pointer to output matrix, overwritten by alpha * op(A) * op(A)T + beta * C.
 
Return Values
Output event to wait on to ensure computation is complete.