A newer version of this document is available. Customers should click here to go to the newest version.
rot
Performs rotation of points in the plane.
Description
Given two vectors x and y of n elements, the rot routines compute four scalar-vector products and update the input vectors with the sum of two of these scalar-vector products. The operation is defined as:
 
   If s is a complex type, the operation is defined as:
 
   rot supports the following precisions:
T  |  
        Tc  |  
        Ts  |  
       
|---|---|---|
sycl::half  |  
        sycl::half  |  
        sycl::half  |  
       
oneapi::mkl::bfloat16  |  
        oneapi::mkl::bfloat16  |  
        oneapi::mkl::bfloat16  |  
       
float  |  
        float  |  
        float  |  
       
double  |  
        double  |  
        double  |  
       
std::complex<float>  |  
        float  |  
        std::complex<float>  |  
       
std::complex<double>  |  
        double  |  
        std::complex<double>  |  
       
std::complex<float>  |  
        float  |  
        float  |  
       
std::complex<double>  |  
        double  |  
        double  |  
       
rot (Buffer Version)
Syntax
namespace oneapi::mkl::blas::column_major {
    void rot(sycl::queue &queue,
             std::int64_t n,
             sycl::buffer<T,1> &x,
             std::int64_t incx,
             sycl::buffer<T,1> &y,
             std::int64_t incy,
             Tc c,
             Ts s)
} 
   namespace oneapi::mkl::blas::row_major {
    void rot(sycl::queue &queue,
             std::int64_t n,
             sycl::buffer<T,1> &x,
             std::int64_t incx,
             sycl::buffer<T,1> &y,
             std::int64_t incy,
             Tc c,
             Ts s)
} 
    
   Input Parameters
- queue
 -  
     
The queue where the routine should be executed.
 - n
 -  
     
Number of elements in vector x.
 - x
 -  
     
Buffer holding input vector x. Size of the buffer must be at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.
 - incx
 -  
     
Stride of vector x.
 - y
 -  
     
Buffer holding input vector y. Size of the buffer must be at least (1 + (n - 1)*abs(incy)). See Matrix Storage for more details.
 - incy
 -  
     
Stride of vector y.
 - c
 -  
     
Scaling factor.
 - s
 -  
     
Scaling factor.
 
Output Parameters
- x
 -  
     
Buffer holding updated buffer x.
 - y
 -  
     
Buffer holding updated buffer y.
 
rot (USM Version)
Syntax
namespace oneapi::mkl::blas::column_major {
    sycl::event rot(sycl::queue &queue,
                    std::int64_t n,
                    T *x,
                    std::int64_t incx,
                    T *y,
                    std::int64_t incy,
                    Tc c,
                    Ts s,
                    const std::vector<sycl::event> &dependencies = {})
} 
   namespace oneapi::mkl::blas::row_major {
    sycl::event rot(sycl::queue &queue,
                    std::int64_t n,
                    T *x,
                    std::int64_t incx,
                    T *y,
                    std::int64_t incy,
                    Tc c,
                    Ts s,
                    const std::vector<sycl::event> &dependencies = {})
} 
    
   Input Parameters
- queue
 -  
     
The queue where the routine should be executed.
 - n
 -  
     
Number of elements in vector x.
 - x
 -  
     
Pointer to input vector x. Size of the array holding input vector x must be at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.
 - incx
 -  
     
Stride of vector x.
 - y
 -  
     
Pointer to input vector y. Size of the array holding input vector y must be at least (1 + (n - 1)*abs(incy)). See Matrix Storage for more details.
 - incy
 -  
     
Stride of vector y.
 - c
 -  
     
Scaling factor.
 - s
 -  
     
Scaling factor.
 - dependencies
 -  
     
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
 
Output Parameters
- x
 -  
     
Pointer to updated vector x.
 - y
 -  
     
Pointer to updated vector y.
 
Return Values
Output event to wait on to ensure computation is complete.