Developer Reference for Intel® oneAPI Math Kernel Library for C
v?Abs
Computes absolute value of vector elements.
Syntax
vhAbs( n, a, y );
vhAbsI(n, a, inca, y, incy);
vmhAbs( n, a, y, mode );
vmhAbsI(n, a, inca, y, incy, mode);
vsAbs( n, a, y );
vsAbsI(n, a, inca, y, incy);
vmsAbs( n, a, y, mode );
vmsAbsI(n, a, inca, y, incy, mode);
vdAbs( n, a, y );
vdAbsI(n, a, inca, y, incy);
vmdAbs( n, a, y, mode );
vmdAbsI(n, a, inca, y, incy, mode);
vcAbs( n, a, y );
vcAbsI(n, a, inca, y, incy);
vmcAbs( n, a, y, mode );
vmcAbsI(n, a, inca, y, incy, mode);
vzAbs( n, a, y );
vzAbsI(n, a, inca, y, incy);
vmzAbs( n, a, y, mode );
vmzAbsI(n, a, inca, y, incy, mode);
Include Files
- mkl.h
 
Input Parameters
Name  |  
      Type  |  
      Description  |  
     
|---|---|---|
n  |  
      const MKL_INT  |  
      Specifies the number of elements to be calculated.  |  
     
a  |  
      const _Float16* for vhAbs, vmhAbs const float* for vsAbs, vmsAbs const double* for vdAbs, vmdAbs const MKL_Complex8* for vcAbs, vmcAbs const MKL_Complex16* for vzAbs, vmzAbs  |  
      Pointer to an array that contains the input vector a.  |  
     
inca, incy  |  
      const MKL_INT  |  
      Specifies increments for the elements of a and y.  |  
     
mode  |  
      const MKL_INT64  |  
      Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.  |  
     
Output Parameters
Name  |  
      Type  |  
      Description  |  
     
|---|---|---|
y  |  
      _Float16* for vhAbs, vmhAbs, vcAbs, vmcAbs float* for vsAbs, vmsAbs, vcAbs, vmcAbs double* for vdAbs, vmdAbs, vzAbs, vmzAbs  |  
      Pointer to an array that contains the output vector y.  |  
     
Description
The v?Abs function computes an absolute value of vector elements.
| Argument | Result | Exception | 
|---|---|---|
| +0 | +0 | |
| -0 | +0 | |
| +∞ | +∞ | |
| -∞ | +∞ | |
| QNAN | QNAN | |
| SNAN | QNAN | INVALID | 
Specifications for special values of the complex functions are defined according to the following formula
Abs(z) = Hypot(RE(z),IM(z)).