Developer Reference for Intel® oneAPI Math Kernel Library for C
Extended Eigensolver Input Parameters
The input parameters for Extended Eigensolver routines are contained in an MKL_INT array named fpm. To call the Extended Eigensolver interfaces, this array should be initialized using the routine feastinit.
Parameter  |  
       Default  |  
       Description  |  
      
|---|---|---|
fpm[0]  |  
       0  |  
       Specifies whether Extended Eigensolver routines print runtime status. 
  |  
      
fpm[1]  |  
       8  |  
       The number of contour points Ne = 8 (see the description of FEAST algorithm). Must be one of {3,4,5,6,8,10,12,16,20,24,32,40,48}.  |  
      
fpm[2]  |  
       12  |  
       Error trace double precision stopping criteria ε (ε = 10-fpm[2]) .  |  
      
fpm[3]  |  
       20  |  
       Maximum number of Extended Eigensolver refinement loops allowed. If no convergence is reached within fpm[3] refinement loops, Extended Eigensolver routines return info=2.  |  
      
fpm[4]  |  
       0  |  
       User initial subspace. If fpm[4]=0 then Extended Eigensolver routines generate initial subspace, if fpm[4]=1 the user supplied initial subspace is used.  |  
      
fpm[5]  |  
       0  |  
       Extended Eigensolver stopping test. 
  |  
      
fpm[6]  |  
       5  |  
       Error trace single precision stopping criteria (10-fpm[6]) .  |  
      
fpm[13]  |  
       0  |  
        
        
  |  
      
fpm[26]  |  
       0  |  
       Specifies whether Extended Eigensolver routines check input matrices (applies to CSR format only). 
  |  
      
fpm[27]  |  
       0  |  
       Check if matrix B is positive definite. Set fpm[27] = 1 to check if B is positive definite.  |  
      
fpm[29] to fpm[62]  |  
       -  |  
       Reserved for future use.  |  
      
fpm[63]  |  
       0  |  
       Use the Intel® oneAPI Math Kernel Library (oneMKL) PARDISO solver with the user-defined PARDISOiparm array settings. 
           NOTE: 
           
         This option can only be used by Extended Eigensolver Predefined Interfaces for Sparse Matrices. 
  |  
      


, 
.