Developer Reference for Intel® oneAPI Math Kernel Library for C
A newer version of this document is available. Customers should click here to go to the newest version.
v?Asinh
Computes inverse hyperbolic sine of vector elements.
Syntax
vsAsinh( n, a, y );
vsAsinhI(n, a, inca, y, incy);
vmsAsinh( n, a, y, mode );
vmsAsinhI(n, a, inca, y, incy, mode);
vdAsinh( n, a, y );
vdAsinhI(n, a, inca, y, incy);
vmdAsinh( n, a, y, mode );
vmdAsinhI(n, a, inca, y, incy, mode);
vcAsinh( n, a, y );
vcAsinhI(n, a, inca, y, incy);
vmcAsinh( n, a, y, mode );
vmcAsinhI(n, a, inca, y, incy, mode);
vzAsinh( n, a, y );
vzAsinhI(n, a, inca, y, incy);
vmzAsinh( n, a, y, mode );
vmzAsinhI(n, a, inca, y, incy, mode);
Include Files
- mkl.h
 
Input Parameters
Name  |  
      Type  |  
      Description  |  
     
|---|---|---|
n  |  
      const MKL_INT  |  
      Specifies the number of elements to be calculated.  |  
     
a  |  
      const float* for vsAsinh, vmsAsinh const double* for vdAsinh, vmdAsinh const MKL_Complex8* for vcAsinh, vmcAsinh const MKL_Complex16* for vzAsinh, vmzAsinh  |  
      Pointer to an array that contains the input vector a.  |  
     
inca, incy  |  
      const MKL_INT  |  
      Specifies increments for the elements of a and y.  |  
     
mode  |  
      const MKL_INT64  |  
      Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.  |  
     
Output Parameters
Name  |  
      Type  |  
      Description  |  
     
|---|---|---|
y  |  
      float* for vsAsinh, vmsAsinh double* for vdAsinh, vmdAsinh MKL_Complex8* for vcAsinh, vmcAsinh MKL_Complex16* for vzAsinh, vmzAsinh  |  
      Pointer to an array that contains the output vector y.  |  
     
Description
The v?Asinh function computes inverse hyperbolic sine of vector elements.
| Argument | Result | Exception | 
|---|---|---|
| +0 | +0 | |
| -0 | -0 | |
| +∞ | +∞ | |
| -∞ | -∞ | |
| QNAN | QNAN | |
| SNAN | QNAN | INVALID | 
See Special Value Notations for the conventions used in the table below.
RE(z) i·IM(z)  |  
        -∞ 
  |  
        -X 
  |  
        -0 
  |  
        +0 
  |  
        +X 
  |  
        +∞ 
  |  
        NAN 
  |  
       
|---|---|---|---|---|---|---|---|
| +i·∞ | -∞+i·π/4 | -∞+i·π/2 | +∞+i·π/2 | +∞+i·π/2 | +∞+i·π/2 | +∞+i·π/4 | +∞+i·QNAN | 
| +i·Y | -∞+i·0 | +∞+i·0 | QNAN+i·QNAN  |  
       ||||
| +i·0 | +∞+i·0 | +0+i·0 | +0+i·0 | +∞+i·0 | QNAN+i·QNAN  |  
       ||
| -i·0 | -∞-i·0 | -0-i·0 | +0-i·0 | +∞-i·0 | QNAN-i·QNAN  |  
       ||
| -i·Y | -∞-i·0 | +∞-i·0 | QNAN+i·QNAN  |  
       ||||
| -i·∞ | -∞-i·π/4 | -∞-i·π/2 | -∞-i·π/2 | +∞-i·π/2 | +∞-i·π/2 | +∞-i·π/4 | +∞+i·QNAN | 
| +i·NAN | -∞+i·QNAN | QNAN+i·QNAN  |  
        QNAN+i·QNAN  |  
        QNAN+i·QNAN  |  
        QNAN+i·QNAN  |  
        +∞+i·QNAN | QNAN+i·QNAN  |  
       
Notes:
raises INVALID exception when real or imaginary part of the argument is SNAN
Asinh(CONJ(z))=CONJ(Asinh(z))
Asinh(-z)=-Asinh(z).