Developer Guide
Intel® oneAPI DPC++/C++ Compiler Handbook for FPGAs
ID
785441
Date
5/05/2025
Public
Intel oneAPI DPC++/C++ Compiler Handbook for FPGAs Overview
Introduction To FPGA Design Concepts
Intel oneAPI FPGA Development
Getting Started with the Intel oneAPI DPC++/C++ Compiler for Intel FPGA Development
Defining a Kernel for FPGAs
Debugging and Verifying Your Design
Analyzing Your Design
Optimizing Your Kernel
Optimizing Your Host Application
Integrating Your Kernel into DSP Builder for Intel FPGAs
Integrating Your RTL IP Core Into a System
RTL IP Core Kernel Interfaces
Loops
Pipes
Data Types and Arithmetic Operations
Parallelism
Memories and Memory Operations
Libraries
Additional FPGA Acceleration Flow Considerations
FPGA Optimization Flags, Attributes, Pragmas, and Extensions
Quick Reference
Additional Information
Document Revision History for the Intel oneAPI DPC++/C++ Compiler Handbook for Intel FPGAs
Notices and Disclaimers
Throughput
Resource Use
System-level Profiling Using the Intercept Layer for OpenCL™ Applications
Multithreaded Host Application
Utilizing Hardware Kernel Invocation Queue
Double Buffering Host Utilizing Kernel Invocation Queue
N-Way Buffering to Overlap Kernel Execution
Prepinning Memory
Simple Host-Device Streaming
Buffered Host-Device Streaming
Refactor the Loop-Carried Data Dependency
Relax Loop-Carried Dependency
Transfer Loop-Carried Dependency to Local Memory
Minimize the Memory Dependencies for Loop Pipelining
Unroll Loops
Fuse Loops to Reduce Overhead and Improve Performance
Optimize Loops With Loop Speculation
Remove Loop Bottlenecks
Improve fMAX/II with Shannonization
Optimize Inner Loop Throughput
Improve Loop Performance by Caching Data in On-Chip Memory
Global Memory Bandwidth Use Calculation
Manual Partition of Global Memory
Partitioning Buffers Across Different Memory Types (Heterogeneous Memory)
Partitioning Buffers Across Memory Channels of the Same Memory Type
Ignoring Dependencies Between Accessor Arguments
Contiguous Memory Accesses
Static Memory Coalescing
Specify Schedule fMAX Target for Kernels (-Xsclock=<clock target>)
Create a 2xclock Interface (-Xsuse-2xclock)
Disable Burst-Interleaving of Global Memory (-Xsno-interleaving)
Force Ring Interconnect for Global Memory (-Xsglobal-ring)
Force a Single Store Ring to Reduce Area (-Xsforce-single-store-ring)
Force Fewer Read Data Reorder Units to Reduce Area (-Xsnum-reorder)
Disable Hardware Kernel Invocation Queue (-Xsno-hardware-kernel-invocation-queue)
Modify the Handshaking Protocol Between Clusters (-Xshyper-optimized-handshaking)
Disable Automatic Fusion of Loops (-Xsdisable-auto-loop-fusion)
Fuse Adjacent Loops With Unequal Trip Counts (-Xsenable-unequal-tc-fusion)
Pipeline Loops in Non-task Kernels (-Xsauto-pipeline)
Control Semantics of Floating-Point Operations (-fp-model=<value>)
Modify the Rounding Mode of Floating-point Operations (-Xsrounding=<rounding_type>)
Global Control of Exit FIFO Latency of Stall-free Clusters (-Xssfc-exit-fifo-type=<value>)
Enable the Read-Only Cache for Read-Only Accessors (-Xsread-only-cache-size=<N>)
Control Hardware Implementation of the Supported Data Types and Math Operations (-Xsdsp-mode=<option>)
Generate Register Map Wrapper (-Xsregister-map-wrapper-type)
Allow Wide Memory Initialization (-Xsallow-wide-device-globals)
Specify Schedule fMAX Target for Kernels (scheduler_target_fmax_mhz)
Specify a Workgroup Size (max_work_group_size/reqd_work_group_size)
Specify Number of SIMD Work Items (num_simd_work_items)
Omit Hardware that Generates and Dispatches Kernel IDs (max_global_work_dim)
Omit Hardware that Supports Global Work Offsets (no_global_work_offset)
Reduce Kernel Area and Latency (use_stall_enable_clusters)
Targeting Multiple Platforms
To compile a design that targets multiple target device types (using different device selectors), you can run the following commands:
Emulation Compile
For compiling your SYCL* code for the FPGA emulator target, execute the following commands:
- Linux
-
icpx jit_kernel.cpp -c -o jit_kernel.o
icpx -fintelfpga -fsycl-link=image fpga_kernel.cpp -o fpga_kernel.a
icpx -fintelfpga main.cpp jit_kernel.o fpga_kernel.a
- Windows
-
icx-cl jit_kernel.cpp -c -o jit_kernel.o
icx-cl -fintelfpga -fsycl-link=image fpga_kernel.cpp -o fpga_kernel.lib
icx-cl -fintelfpga main.cpp jit_kernel.o fpga_kernel.lib
The design uses libraries and includes an FPGA kernel (AOT flow) and a CPU kernel (JIT flow).
Specifically, there should be a main function residing in the main.cpp file and two kernels for both CPU (jit_kernel.cpp) and FPGA (fpga_kernel.cpp).
Sample jit_kernel.cpp file:
sycl::cpu_selector device_selector;
queue deviceQueue(device_selector);
deviceQueue.submit([&](handler &cgh) {
// CPU Kernel function
});
Sample fpga_kernel.cpp file:
#if FPGA_SIMULATOR
auto selector = sycl::ext::intel::fpga_simulator_selector_v;
#elif FPGA_HARDWARE
auto selector = sycl::ext::intel::fpga_selector_v;
#else // #if FPGA_EMULATOR
auto selector = sycl::ext::intel::fpga_emulator_selector_v;
#endif
queue deviceQueue(device_selector);
deviceQueue.submit([&](handler &cgh) {
// FPGA Kernel Function
});
FPGA Hardware Compile
To compile for the FPGA hardware target, add the -Xshardware flag and remove the -DFPGA_EMULATOR flag, as follows:
# For Linux:
icpx jit_kernel.cpp -c -o jit_kernel.o
//Hardware compilation command. Takes a long time to complete.
icpx -fintelfpga -fsycl-link=image -Xshardware fpga_kernel.cpp -o fpga_kernel.a
icpx -fintelfpga main.cpp jit_kernel.o fpga_kernel.a
# For Windows:
icx-cl jit_kernel.cpp -c -o jit_kernel.o
//Hardware compilation command. Takes a long time to complete.
icx-cl -fintelfpga -fsycl-link=image -Xshardware fpga_kernel.cpp -o fpga_kernel.lib
icx-cl -fintelfpga main.cpp jit_kernel.o fpga_kernel.lib