Visible to Intel only — GUID: ahd1504718313058
Ixiasoft
Product Discontinuance Notification
1. Introduction to Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide
2. Reviewing Your Kernel's report.html File
3. OpenCL Kernel Design Concepts
4. OpenCL Kernel Design Best Practices
5. Profiling Your Kernel to Identify Performance Bottlenecks
6. Strategies for Improving Single Work-Item Kernel Performance
7. Strategies for Improving NDRange Kernel Data Processing Efficiency
8. Strategies for Improving Memory Access Efficiency
9. Strategies for Optimizing FPGA Area Usage
10. Strategies for Optimizing Intel® Stratix® 10 OpenCL Designs
11. Strategies for Improving Performance in Your Host Application
12. Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide Archives
A. Document Revision History for the Intel® FPGA SDK for OpenCL™ Pro Edition Best Practices Guide
2.1. High-Level Design Report Layout
2.2. Reviewing the Summary Report
2.3. Viewing Throughput Bottlenecks in the Design
2.4. Using Views
2.5. Analyzing Throughput
2.6. Reviewing Area Information
2.7. Optimizing an OpenCL Design Example Based on Information in the HTML Report
2.8. Accessing HLD FPGA Reports in JSON Format
4.1. Transferring Data Via Intel® FPGA SDK for OpenCL™ Channels or OpenCL Pipes
4.2. Unrolling Loops
4.3. Optimizing Floating-Point Operations
4.4. Allocating Aligned Memory
4.5. Aligning a Struct with or without Padding
4.6. Maintaining Similar Structures for Vector Type Elements
4.7. Avoiding Pointer Aliasing
4.8. Avoid Expensive Functions
4.9. Avoiding Work-Item ID-Dependent Backward Branching
5.1. Best Practices for Profiling Your Kernel
5.2. Instrumenting the Kernel Pipeline with Performance Counters (-profile)
5.3. Obtaining Profiling Data During Runtime
5.4. Reducing Area Resource Use While Profiling
5.5. Temporal Performance Collection
5.6. Performance Data Types
5.7. Interpreting the Profiling Information
5.8. Profiler Analyses of Example OpenCL Design Scenarios
5.9. Intel® FPGA Dynamic Profiler for OpenCL™ Limitations
8.1. General Guidelines on Optimizing Memory Accesses
8.2. Optimize Global Memory Accesses
8.3. Performing Kernel Computations Using Constant, Local or Private Memory
8.4. Improving Kernel Performance by Banking the Local Memory
8.5. Optimizing Accesses to Local Memory by Controlling the Memory Replication Factor
8.6. Minimizing the Memory Dependencies for Loop Pipelining
8.7. Static Memory Coalescing
Visible to Intel only — GUID: ahd1504718313058
Ixiasoft
3.3.1. Changing the Memory Access Pattern Example
The following is an example code of a simple OpenCL kernel:
kernel void big_lmem_4r_4w_nosplit (global int* restrict in,
global int* restrict out) {
local int lmem[4][1024];
int gi = get_global_id(0);
int gs = get_global_size(0);
int li = get_local_id(0);
int ls = get_local_size(0);
int res = in[gi];
#pragma unroll
for (int i = 0; i < 4; i++) {
lmem[i][(li*i) % ls] = res;
res >>= 1; }
// Global memory barrier
barrier(CLK_GLOBAL_MEM_FENCE);
res = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
res ^= lmem[i][((ls-li)*i) % ls]; }
out[gi] = res;
}
In the System Viewer report, the system view of this example highlights the stallable loads and stores.
Figure 46. System View of the Example
Figure 47. Area Report of the Example
Figure 48. Kernel Memory Viewer of the Example
Observe that only two memory banks are created, with high arbitration on the first bank between load and store operations. Now, switch the banking indices to the second dimension, as shown in the following example code, :
kernel void big_lmem_4r_4w_nosplit (global int* restrict in,
global int* restrict out) {
local int lmem[1024][4];
int gi = get_global_id(0);
int gs = get_global_size(0);
int li = get_local_id(0);
int ls = get_local_size(0);
int res = in[gi];
#pragma unroll
for (int i = 0; i < 4; i++) {
lmem[(li*i) % ls][i] = res;
res >>= 1;
}
// Global memory barrier
barrier(CLK_GLOBAL_MEM_FENCE);
res = 0;
#pragma unroll
for (int i = 0; i < 4; i++) {
res ^= lmem[((ls-li)*i) % ls][i];
}
out[gi] = res;
}
In the kernel memory viewer, you can observe that now four memory banks are created, with separate load store units. All load store instructions are stall-free.
Figure 49. Kernel Memory Viewer of the Example After Changing the Banking Indices
Figure 50. Area Report of the Example After Changing the Banking Indices