Triple-Speed Ethernet IP User Guide: Agilex™ 3 and Agilex™ 5 FPGAs and SoCs
ID
813669
Date
8/04/2025
Public
1. About Triple-Speed Ethernet IP for Agilex™ 3 and Agilex™ 5 devices
2. Getting Started
3. Parameter Settings
4. Functional Description
5. Configuration Register Space
6. Interface Signals
7. Design Considerations
8. Timing Constraints
9. Testbench
10. Triple-Speed Ethernet Debug Checklist
11. Software Programming Interface
12. Triple-Speed Ethernet IP User Guide: Agilex™ 3 and Agilex™ 5 FPGAs and SoCs Archives
13. Document Revision History for the Triple-Speed Ethernet IP User Guide: Agilex™ 3 and Agilex™ 5 FPGAs and SoCs
A. Ethernet Frame Format
B. Simulation Parameters
4.1.1. MAC Architecture
4.1.2. MAC Interfaces
4.1.3. MAC Transmit Datapath
4.1.4. MAC Receive Datapath
4.1.5. MAC Transmit and Receive Latencies
4.1.6. FIFO Buffer Thresholds
4.1.7. Congestion and Flow Control
4.1.8. Magic Packets
4.1.9. MAC Local Loopback
4.1.10. MAC Reset
4.1.11. PHY Management (MDIO)
4.1.12. Connecting MAC to External PHYs
5.1.1. Base Configuration Registers (Dword Offset 0x00 – 0x17)
5.1.2. Statistics Counters (Dword Offset 0x18 – 0x38)
5.1.3. Transmit and Receive Command Registers (Dword Offset 0x3A – 0x3B)
5.1.4. Supplementary Address (Dword Offset 0xC0 – 0xC7)
5.1.5. IEEE 1588v2 Feature (Dword Offset 0xD0 – 0xD6)
5.1.6. Deterministic Latency (Dword Offset 0xE1– 0xE3)
5.1.7. IEEE 1588v2 Feature PMA Delay
6.1.1. 10/100/1000 Ethernet MAC Signals
6.1.2. 10/100/1000 Multiport Ethernet MAC Signals
6.1.3. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.4. 10/100/1000 Ethernet MAC with Internal FIFO Buffers, and 1000BASE-X/SGMII 2XTBI PCS with Embedded PMA (GTS) Signals
6.1.5. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS Signals
6.1.6. 1000BASE-X/SGMII PCS Signals
6.1.7. 1000BASE-X/SGMII PCS and PMA (LVDS) Signals
6.1.8. 1000BASE-X/SGMII 2XTBI PCS Signals
6.1.9. 10/100/1000 Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA (LVDS) Signals
6.1.10. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA (LVDS) Signals
6.1.11. 10/100/1000 Ethernet MAC without Internal FIFO Buffers with 1000BASE-X/SGMII 2XTBI PCS and Embedded PMA Signals (GTS) with IEEE 1588v2
6.1.12. 10/100/1000 Multiport Ethernet MAC with 1000BASE-X/SGMII PCS and Embedded PMA Signals (LVDS) with IEEE 1588v2
6.1.1.1. Clock and Reset Signals
6.1.1.2. Clock Enabler Signals
6.1.1.3. MAC Control Interface Signals
6.1.1.4. MAC Status Signals
6.1.1.5. MAC Receive Interface Signals
6.1.1.6. MAC Transmit Interface Signals
6.1.1.7. Pause and Magic Packet Signals
6.1.1.8. MII/GMII/RGMII Signals
6.1.1.9. PHY Management Signals
6.1.11.1. Deterministic Latency Clock Signals
6.1.11.2. IEEE 1588v2 RX Timestamp Signals
6.1.11.3. IEEE 1588v2 TX Timestamp Signals
6.1.11.4. IEEE 1588v2 TX Timestamp Request Signals
6.1.11.5. IEEE 1588v2 TX Insert Control Timestamp Signals
6.1.11.6. IEEE 1588v2 Time-of-Day (TOD) Clock Interface Signals
6.2.6. RGMII Receive
On receive all signals are sampled on both edges of rgmii_rx_clk. The RGMII control signal rx_control is asserted by the PHY to indicate the start of a new frame and remains asserted until the last upper nibble of the frame is present on rgmii_in[3:0] bus. Between frames, rx_control remains deasserted.
Figure 67. RGMII Receive in 10/100 Mbps
Figure 68. RGMII Receive in 1000 Mbps
A frame received on the RGMII interface with a PHY error indication is subsequently transferred on the Avalon® streaming interface with the error signal rx_err[0] asserted.
Figure 69. RGMII Receive with Error in Gigabit Mode
The current implementation of the RGMII receive interface expects a positive-delay rgmii_rx_clk relative to the receive data (the clock comes after the data).