1.1.1. Timing Path and Clock Analysis
1.1.2. Clock Setup Analysis
1.1.3. Clock Hold Analysis
1.1.4. Recovery and Removal Analysis
1.1.5. Multicycle Path Analysis
1.1.6. Metastability Analysis
1.1.7. Timing Pessimism
1.1.8. Clock-As-Data Analysis
1.1.9. Multicorner Timing Analysis
1.1.10. Time Borrowing
2.1. Using Timing Constraints throughout the Design Flow
2.2. Timing Analysis Flow
2.3. Applying Timing Constraints
2.4. Timing Constraint Descriptions
2.5. Timing Report Descriptions
2.6. Scripting Timing Analysis
2.7. Using the Quartus® Prime Timing Analyzer Document Revision History
2.8. Quartus® Prime Pro Edition User Guide: Timing Analyzer Archive
2.4.4.5.1. Default Multicycle Analysis
2.4.4.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0
2.4.4.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1
2.4.4.5.4. Same Frequency Clocks with Destination Clock Offset
2.4.4.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency
2.4.4.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
2.4.4.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency
2.4.4.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset
2.5.1. Report Fmax Summary
2.5.2. Report Timing
2.5.3. Report Timing By Source Files
2.5.4. Report Data Delay
2.5.5. Report Net Delay
2.5.6. Report Clocks and Clock Network
2.5.7. Report Clock Transfers
2.5.8. Report Metastability
2.5.9. Report CDC Viewer
2.5.10. Report Asynchronous CDC
2.5.11. Report Logic Depth
2.5.12. Report Neighbor Paths
2.5.13. Report Register Spread
2.5.14. Report Route Net of Interest
2.5.15. Report Retiming Restrictions
2.5.16. Report Register Statistics
2.5.17. Report Pipelining Information
2.5.18. Report Time Borrowing Data
2.5.19. Report Exceptions and Exceptions Reachability
2.5.20. Report Bottlenecks
2.5.21. Check Timing
2.5.22. Report SDC
2.5.23. Design Closure Summary
3.1.1. CDC Timing Overview
3.1.2. Identifying CDC Timing Issues Using Design Assistant
3.1.3. Identifying CDC Timing Issues Using Timing Reports
3.1.4. Debug CDC Example 1—Incorrect SDC Definition
3.1.5. Debug CDC Example 2—Additional Logic in the Crossing
3.1.6. Debug CDC Example 3—CDC Depending on Two Simultaneous Clock Domains
3.1.2. Identifying CDC Timing Issues Using Design Assistant
The Quartus Prime software includes various tools to help you identify and resolve potential CDC timing issues. For example, the Design Assistant automatically identify violations against predefined design guidelines during compilation stages. With respect to CDC, each single-bit asynchronous data transfer unfollowed by a synchronizer chain violates the CDC-50001 rule. Design Assistant provides a description of the rule, a summary of each bit crossing between multiple clock domains, and a recommendation to solve the issue in your design.
For the Single CDC without Synchronizers example, the Design Assistant reports the asynchronous transfer between reg_clk1 and reg_clk2 because a synchronizer chain does not follow the respective CDC.
Figure 194. Design Assistant Reporting CDC-50001 Violation
Depending on the number of reports, following all the paths reported in the Design Assistant window may be complicated, especially since there is a predefined limit on how many paths are reported in the Design Assistant window. To investigate CDC violations further, you can review specific timing reports, as the next section describes.
Related Information