Legal Information
About This Document
About Summary Statistics
Algorithms and Interfaces in Summary Statistics
Common Usage Model of Summary Statistics Algorithms
Processing Data in Blocks
Detecting Outliers in Datasets
Dealing with Missing Observations
Computing Quantiles for Streaming Data
Bibliography
Estimating Raw and Central Moments and Sums, Skewness, Excess Kurtosis, Variation, and Variance-Covariance/Correlation/Cross-Product Matrix
Computing Median Absolute Deviation
Computing Mean Absolute Deviation
Computing Minimum/Maximum Values
Calculating Order Statistics
Estimating Quantiles
Estimating a Pooled/Group Variance-Covariance Matrices/Means
Estimating a Partial Variance-Covariance Matrix
Performing Robust Estimation of a Variance-Covariance Matrix
Detecting Multivariate Outliers
Handling Missing Values in Matrices of Observations
Parameterizing a Correlation Matrix
Sorting an Observation Matrix
About Summary Statistics
The Summary Statistics is a subcomponent of the Vector Statistics (VS) included into the Intel® oneAPI Math Kernel Library (oneMKL). The Summary Statistics component offers a solution for parallel statistical processing of multi-dimensional datasets. It contains functions for initial statistical analysis of raw data. You can use these functions to investigate the structure and understand the basic characteristics and internal dependencies of the analyzed datasets.
Product and Performance Information |
---|
= = = = = = = = = = Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. Notice revision #20201201 = = = = = = = = = = |