Visible to Intel only — GUID: GUID-887D57DA-932F-4976-9423-C308E8771AE3
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-887D57DA-932F-4976-9423-C308E8771AE3
cross_engine_reorder cpp
This C++ API example demonstrates programming flow when reordering memory between CPU and GPU engines. Annotated version: Reorder between CPU and GPU engines
This C++ API example demonstrates programming flow when reordering memory between CPU and GPU engines. Annotated version: Reorder between CPU and GPU engines
/*******************************************************************************
* Copyright 2019-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <iostream>
#include <stdexcept>
#include <vector>
// [Prologue]
#include "example_utils.hpp"
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
using namespace std;
// [Prologue]
void fill(memory &mem, const memory::dims &adims) {
std::vector<float> array(product(adims));
for (size_t e = 0; e < array.size(); ++e) {
array[e] = e % 7 ? 1.0f : -1.0f;
}
write_to_dnnl_memory(array.data(), mem);
}
int find_negative(memory &mem, const memory::dims &adims) {
int negs = 0;
size_t nelems = product(adims);
std::vector<float> array(nelems);
read_from_dnnl_memory(array.data(), mem);
for (size_t e = 0; e < nelems; ++e)
negs += array[e] < 0.0f;
return negs;
}
void cross_engine_reorder_tutorial() {
// [Initialize engine]
auto cpu_engine = engine(validate_engine_kind(engine::kind::cpu), 0);
auto gpu_engine = engine(validate_engine_kind(engine::kind::gpu), 0);
// [Initialize engine]
// [Initialize stream]
auto stream_gpu = stream(gpu_engine, stream::flags::in_order);
// [Initialize stream]
// [reorder cpu2gpu]
const auto tz = memory::dims {2, 16, 1, 1};
auto m_cpu
= memory({{tz}, memory::data_type::f32, memory::format_tag::nchw},
cpu_engine);
auto m_gpu
= memory({{tz}, memory::data_type::f32, memory::format_tag::nchw},
gpu_engine);
fill(m_cpu, tz);
auto r1 = reorder(m_cpu, m_gpu);
// [reorder cpu2gpu]
// [Create a ReLU primitive]
// ReLU primitive descriptor, which corresponds to a particular
// implementation in the library. Specify engine type for the ReLU
// primitive. Use a GPU engine here.
auto relu_pd = eltwise_forward::primitive_desc(gpu_engine,
prop_kind::forward, algorithm::eltwise_relu, m_gpu.get_desc(),
m_gpu.get_desc(), 0.0f);
// ReLU primitive
auto relu = eltwise_forward(relu_pd);
// [Create a ReLU primitive]
// [reorder gpu2cpu]
auto r2 = reorder(m_gpu, m_cpu);
// [reorder gpu2cpu]
// [Execute primitives]
// wrap source data from CPU to GPU
r1.execute(stream_gpu, m_cpu, m_gpu);
// Execute ReLU on a GPU stream
relu.execute(stream_gpu, {{DNNL_ARG_SRC, m_gpu}, {DNNL_ARG_DST, m_gpu}});
// Get result data from GPU to CPU
r2.execute(stream_gpu, m_gpu, m_cpu);
stream_gpu.wait();
// [Execute primitives]
// [Check the results]
if (find_negative(m_cpu, tz) != 0)
throw std::logic_error(
"Unexpected output, find a negative value after the ReLU "
"execution.");
// [Check the results]
}
int main(int argc, char **argv) {
return handle_example_errors({engine::kind::cpu, engine::kind::gpu},
cross_engine_reorder_tutorial);
}