Visible to Intel only — GUID: GUID-B632EF53-B15D-4897-854E-1BE820B541A9
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-B632EF53-B15D-4897-854E-1BE820B541A9
cpu_rnn_inference_f32 cpp
This C++ API example demonstrates how to build GNMT model inference. Annotated version: RNN f32 inference example
This C++ API example demonstrates how to build GNMT model inference. Annotated version: RNN f32 inference example
/*******************************************************************************
* Copyright 2018-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include <cstring>
#include <iostream>
#include <math.h>
#include <numeric>
#include <string>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
using dim_t = dnnl::memory::dim;
const dim_t batch = 32;
const dim_t src_seq_length_max = 10;
const dim_t tgt_seq_length_max = 10;
const dim_t feature_size = 256;
const dim_t enc_bidir_n_layers = 1;
const dim_t enc_unidir_n_layers = 3;
const dim_t dec_n_layers = 4;
const int lstm_n_gates = 4;
std::vector<float> weighted_src_layer(batch *feature_size, 1.0f);
std::vector<float> alignment_model(
src_seq_length_max *batch *feature_size, 1.0f);
std::vector<float> alignments(src_seq_length_max *batch, 1.0f);
std::vector<float> exp_sums(batch, 1.0f);
void compute_weighted_annotations(float *weighted_annotations,
dim_t src_seq_length_max, dim_t batch, dim_t feature_size,
float *weights_annot, float *annotations) {
// annotations(aka enc_dst_layer) is (t, n, 2c)
// weights_annot is (2c, c)
// annotation[i] = GEMM(weights_annot, enc_dst_layer[i]);
dim_t num_weighted_annotations = src_seq_length_max * batch;
dnnl_sgemm('N', 'N', num_weighted_annotations, feature_size, feature_size,
1.f, annotations, feature_size, weights_annot, feature_size, 0.f,
weighted_annotations, feature_size);
}
void compute_attention(float *context_vectors, dim_t src_seq_length_max,
dim_t batch, dim_t feature_size, float *weights_src_layer,
float *dec_src_layer, float *annotations, float *weighted_annotations,
float *weights_alignments) {
// dst_iter : (n, c) matrix
// src_layer: (n, c) matrix
// weighted_annotations (t, n, c)
// weights_yi is (c, c)
// weights_ai is (c, 1)
// tmp[i] is (n, c)
// a[i] is (n, 1)
// p is (n, 1)
// first we precompute the weighted_dec_src_layer
dnnl_sgemm('N', 'N', batch, feature_size, feature_size, 1.f, dec_src_layer,
feature_size, weights_src_layer, feature_size, 0.f,
weighted_src_layer.data(), feature_size);
// then we compute the alignment model
float *alignment_model_ptr = alignment_model.data();
PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
for (dim_t i = 0; i < src_seq_length_max; i++) {
for (dim_t j = 0; j < batch * feature_size; j++)
alignment_model_ptr[i * batch * feature_size + j] = tanhf(
weighted_src_layer[j]
+ weighted_annotations[i * batch * feature_size + j]);
}
// gemv with alignments weights. the resulting alignments are in alignments
dim_t num_weighted_annotations = src_seq_length_max * batch;
dnnl_sgemm('N', 'N', num_weighted_annotations, 1, feature_size, 1.f,
alignment_model_ptr, feature_size, weights_alignments, 1, 0.f,
alignments.data(), 1);
// softmax on alignments. the resulting context weights are in alignments
PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(1)
for (dim_t i = 0; i < batch; i++)
exp_sums[i] = 0.0f;
PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(1)
for (dim_t j = 0; j < batch; j++) {
for (dim_t i = 0; i < src_seq_length_max; i++) {
alignments[i * batch + j] = expf(alignments[i * batch + j]);
exp_sums[j] += alignments[i * batch + j];
}
}
PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
for (dim_t i = 0; i < src_seq_length_max; i++)
for (dim_t j = 0; j < batch; j++)
alignments[i * batch + j] /= exp_sums[j];
// then we compute the context vectors
PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
for (dim_t i = 0; i < batch; i++)
for (dim_t j = 0; j < feature_size; j++)
context_vectors[i * (feature_size + feature_size) + feature_size
+ j]
= 0.0f;
PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
for (dim_t i = 0; i < batch; i++)
for (dim_t j = 0; j < feature_size; j++)
for (dim_t k = 0; k < src_seq_length_max; k++)
context_vectors[i * (feature_size + feature_size) + feature_size
+ j]
+= alignments[k * batch + i]
* annotations[j + feature_size * (i + batch * k)];
}
void copy_context(
float *src_iter, dim_t n_layers, dim_t batch, dim_t feature_size) {
// we copy the context from the first layer to all other layers
PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(3)
for (dim_t k = 1; k < n_layers; k++)
for (dim_t j = 0; j < batch; j++)
for (dim_t i = 0; i < feature_size; i++)
src_iter[(k * batch + j) * (feature_size + feature_size)
+ feature_size + i]
= src_iter[j * (feature_size + feature_size)
+ feature_size + i];
}
void simple_net() {
//[Initialize engine and stream]
auto cpu_engine = engine(engine::kind::cpu, 0);
stream s(cpu_engine);
//[Initialize engine and stream]
//[declare net]
std::vector<primitive> encoder_net, decoder_net;
std::vector<std::unordered_map<int, memory>> encoder_net_args,
decoder_net_args;
std::vector<float> net_src(batch * src_seq_length_max * feature_size, 1.0f);
std::vector<float> net_dst(batch * tgt_seq_length_max * feature_size, 1.0f);
//[declare net]
//[Initialize encoder memory]
memory::dims enc_bidir_src_layer_tz
= {src_seq_length_max, batch, feature_size};
memory::dims enc_bidir_weights_layer_tz
= {enc_bidir_n_layers, 2, feature_size, lstm_n_gates, feature_size};
memory::dims enc_bidir_weights_iter_tz
= {enc_bidir_n_layers, 2, feature_size, lstm_n_gates, feature_size};
memory::dims enc_bidir_bias_tz
= {enc_bidir_n_layers, 2, lstm_n_gates, feature_size};
memory::dims enc_bidir_dst_layer_tz
= {src_seq_length_max, batch, 2 * feature_size};
//[Initialize encoder memory]
std::vector<float> user_enc_bidir_wei_layer(
enc_bidir_n_layers * 2 * feature_size * lstm_n_gates * feature_size,
1.0f);
std::vector<float> user_enc_bidir_wei_iter(
enc_bidir_n_layers * 2 * feature_size * lstm_n_gates * feature_size,
1.0f);
std::vector<float> user_enc_bidir_bias(
enc_bidir_n_layers * 2 * lstm_n_gates * feature_size, 1.0f);
//[data memory creation]
auto user_enc_bidir_src_layer_md = dnnl::memory::desc(
{enc_bidir_src_layer_tz}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::tnc);
auto user_enc_bidir_wei_layer_md = dnnl::memory::desc(
{enc_bidir_weights_layer_tz}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::ldigo);
auto user_enc_bidir_wei_iter_md = dnnl::memory::desc(
{enc_bidir_weights_iter_tz}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::ldigo);
auto user_enc_bidir_bias_md = dnnl::memory::desc({enc_bidir_bias_tz},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::ldgo);
auto user_enc_bidir_src_layer_memory = dnnl::memory(
user_enc_bidir_src_layer_md, cpu_engine, net_src.data());
auto user_enc_bidir_wei_layer_memory
= dnnl::memory(user_enc_bidir_wei_layer_md, cpu_engine,
user_enc_bidir_wei_layer.data());
auto user_enc_bidir_wei_iter_memory
= dnnl::memory(user_enc_bidir_wei_iter_md, cpu_engine,
user_enc_bidir_wei_iter.data());
auto user_enc_bidir_bias_memory = dnnl::memory(
user_enc_bidir_bias_md, cpu_engine, user_enc_bidir_bias.data());
//[data memory creation]
//[memory desc for RNN data]
auto enc_bidir_wei_layer_md = memory::desc({enc_bidir_weights_layer_tz},
memory::data_type::f32, memory::format_tag::any);
auto enc_bidir_wei_iter_md = memory::desc({enc_bidir_weights_iter_tz},
memory::data_type::f32, memory::format_tag::any);
auto enc_bidir_dst_layer_md = memory::desc({enc_bidir_dst_layer_tz},
memory::data_type::f32, memory::format_tag::any);
//[memory desc for RNN data]
//[create rnn]
auto enc_bidir_prim_desc = lstm_forward::primitive_desc(cpu_engine,
prop_kind::forward_inference, rnn_direction::bidirectional_concat,
user_enc_bidir_src_layer_md, memory::desc(), memory::desc(),
enc_bidir_wei_layer_md, enc_bidir_wei_iter_md,
user_enc_bidir_bias_md, enc_bidir_dst_layer_md, memory::desc(),
memory::desc());
//[create rnn]
//[reorder input data]
auto enc_bidir_wei_layer_memory
= memory(enc_bidir_prim_desc.weights_layer_desc(), cpu_engine);
auto enc_bidir_wei_layer_reorder_pd = reorder::primitive_desc(
user_enc_bidir_wei_layer_memory, enc_bidir_wei_layer_memory);
reorder(enc_bidir_wei_layer_reorder_pd)
.execute(s, user_enc_bidir_wei_layer_memory,
enc_bidir_wei_layer_memory);
//[reorder input data]
auto enc_bidir_wei_iter_memory
= memory(enc_bidir_prim_desc.weights_iter_desc(), cpu_engine);
auto enc_bidir_wei_iter_reorder_pd = reorder::primitive_desc(
user_enc_bidir_wei_iter_memory, enc_bidir_wei_iter_memory);
reorder(enc_bidir_wei_iter_reorder_pd)
.execute(s, user_enc_bidir_wei_iter_memory,
enc_bidir_wei_iter_memory);
auto enc_bidir_dst_layer_memory
= dnnl::memory(enc_bidir_prim_desc.dst_layer_desc(), cpu_engine);
//[push bi rnn to encoder net]
encoder_net.push_back(lstm_forward(enc_bidir_prim_desc));
encoder_net_args.push_back(
{{DNNL_ARG_SRC_LAYER, user_enc_bidir_src_layer_memory},
{DNNL_ARG_WEIGHTS_LAYER, enc_bidir_wei_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, enc_bidir_wei_iter_memory},
{DNNL_ARG_BIAS, user_enc_bidir_bias_memory},
{DNNL_ARG_DST_LAYER, enc_bidir_dst_layer_memory}});
//[push bi rnn to encoder net]
//[first uni layer]
std::vector<float> user_enc_uni_first_wei_layer(
1 * 1 * 2 * feature_size * lstm_n_gates * feature_size, 1.0f);
std::vector<float> user_enc_uni_first_wei_iter(
1 * 1 * feature_size * lstm_n_gates * feature_size, 1.0f);
std::vector<float> user_enc_uni_first_bias(
1 * 1 * lstm_n_gates * feature_size, 1.0f);
//[first uni layer]
memory::dims user_enc_uni_first_wei_layer_dims
= {1, 1, 2 * feature_size, lstm_n_gates, feature_size};
memory::dims user_enc_uni_first_wei_iter_dims
= {1, 1, feature_size, lstm_n_gates, feature_size};
memory::dims user_enc_uni_first_bias_dims
= {1, 1, lstm_n_gates, feature_size};
memory::dims enc_uni_first_dst_layer_dims
= {src_seq_length_max, batch, feature_size};
auto user_enc_uni_first_wei_layer_md = dnnl::memory::desc(
{user_enc_uni_first_wei_layer_dims}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::ldigo);
auto user_enc_uni_first_wei_iter_md = dnnl::memory::desc(
{user_enc_uni_first_wei_iter_dims}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::ldigo);
auto user_enc_uni_first_bias_md = dnnl::memory::desc(
{user_enc_uni_first_bias_dims}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::ldgo);
auto user_enc_uni_first_wei_layer_memory
= dnnl::memory(user_enc_uni_first_wei_layer_md, cpu_engine,
user_enc_uni_first_wei_layer.data());
auto user_enc_uni_first_wei_iter_memory
= dnnl::memory(user_enc_uni_first_wei_iter_md, cpu_engine,
user_enc_uni_first_wei_iter.data());
auto user_enc_uni_first_bias_memory
= dnnl::memory(user_enc_uni_first_bias_md, cpu_engine,
user_enc_uni_first_bias.data());
auto enc_uni_first_wei_layer_md
= memory::desc({user_enc_uni_first_wei_layer_dims},
memory::data_type::f32, memory::format_tag::any);
auto enc_uni_first_wei_iter_md
= memory::desc({user_enc_uni_first_wei_iter_dims},
memory::data_type::f32, memory::format_tag::any);
auto enc_uni_first_dst_layer_md
= memory::desc({enc_uni_first_dst_layer_dims},
memory::data_type::f32, memory::format_tag::any);
// TODO: add support for residual connections
// should it be a set residual in pd or a field to set manually?
// should be an integer to specify at which layer to start
//[create uni first]
auto enc_uni_first_prim_desc = lstm_forward::primitive_desc(cpu_engine,
prop_kind::forward_inference,
rnn_direction::unidirectional_left2right, enc_bidir_dst_layer_md,
memory::desc(), memory::desc(), enc_uni_first_wei_layer_md,
enc_uni_first_wei_iter_md, user_enc_uni_first_bias_md,
enc_uni_first_dst_layer_md, memory::desc(), memory::desc());
//[create uni first]
auto enc_uni_first_wei_layer_memory
= memory(enc_uni_first_prim_desc.weights_layer_desc(), cpu_engine);
auto enc_uni_first_wei_layer_reorder_pd
= reorder::primitive_desc(user_enc_uni_first_wei_layer_memory,
enc_uni_first_wei_layer_memory);
reorder(enc_uni_first_wei_layer_reorder_pd)
.execute(s, user_enc_uni_first_wei_layer_memory,
enc_uni_first_wei_layer_memory);
auto enc_uni_first_wei_iter_memory
= memory(enc_uni_first_prim_desc.weights_iter_desc(), cpu_engine);
auto enc_uni_first_wei_iter_reorder_pd = reorder::primitive_desc(
user_enc_uni_first_wei_iter_memory, enc_uni_first_wei_iter_memory);
reorder(enc_uni_first_wei_iter_reorder_pd)
.execute(s, user_enc_uni_first_wei_iter_memory,
enc_uni_first_wei_iter_memory);
auto enc_uni_first_dst_layer_memory = dnnl::memory(
enc_uni_first_prim_desc.dst_layer_desc(), cpu_engine);
//[push first uni rnn to encoder net]
// TODO: add a reorder when they will be available
encoder_net.push_back(lstm_forward(enc_uni_first_prim_desc));
encoder_net_args.push_back(
{{DNNL_ARG_SRC_LAYER, enc_bidir_dst_layer_memory},
{DNNL_ARG_WEIGHTS_LAYER, enc_uni_first_wei_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, enc_uni_first_wei_iter_memory},
{DNNL_ARG_BIAS, user_enc_uni_first_bias_memory},
{DNNL_ARG_DST_LAYER, enc_uni_first_dst_layer_memory}});
//[push first uni rnn to encoder net]
//[remaining uni layers]
std::vector<float> user_enc_uni_wei_layer((enc_unidir_n_layers - 1) * 1
* feature_size * lstm_n_gates * feature_size,
1.0f);
std::vector<float> user_enc_uni_wei_iter((enc_unidir_n_layers - 1) * 1
* feature_size * lstm_n_gates * feature_size,
1.0f);
std::vector<float> user_enc_uni_bias(
(enc_unidir_n_layers - 1) * 1 * lstm_n_gates * feature_size, 1.0f);
//[remaining uni layers]
memory::dims user_enc_uni_wei_layer_dims = {(enc_unidir_n_layers - 1), 1,
feature_size, lstm_n_gates, feature_size};
memory::dims user_enc_uni_wei_iter_dims = {(enc_unidir_n_layers - 1), 1,
feature_size, lstm_n_gates, feature_size};
memory::dims user_enc_uni_bias_dims
= {(enc_unidir_n_layers - 1), 1, lstm_n_gates, feature_size};
memory::dims enc_dst_layer_dims = {src_seq_length_max, batch, feature_size};
auto user_enc_uni_wei_layer_md = dnnl::memory::desc(
{user_enc_uni_wei_layer_dims}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::ldigo);
auto user_enc_uni_wei_iter_md = dnnl::memory::desc(
{user_enc_uni_wei_iter_dims}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::ldigo);
auto user_enc_uni_bias_md = dnnl::memory::desc({user_enc_uni_bias_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::ldgo);
auto user_enc_uni_wei_layer_memory = dnnl::memory(user_enc_uni_wei_layer_md,
cpu_engine, user_enc_uni_wei_layer.data());
auto user_enc_uni_wei_iter_memory = dnnl::memory(
user_enc_uni_wei_iter_md, cpu_engine, user_enc_uni_wei_iter.data());
auto user_enc_uni_bias_memory = dnnl::memory(
user_enc_uni_bias_md, cpu_engine, user_enc_uni_bias.data());
auto enc_uni_wei_layer_md = memory::desc({user_enc_uni_wei_layer_dims},
memory::data_type::f32, memory::format_tag::any);
auto enc_uni_wei_iter_md = memory::desc({user_enc_uni_wei_iter_dims},
memory::data_type::f32, memory::format_tag::any);
auto enc_dst_layer_md = memory::desc({enc_dst_layer_dims},
memory::data_type::f32, memory::format_tag::any);
// TODO: add support for residual connections
// should it be a set residual in pd or a field to set manually?
// should be an integer to specify at which layer to start
//[create uni rnn]
auto enc_uni_prim_desc = lstm_forward::primitive_desc(cpu_engine,
prop_kind::forward_inference,
rnn_direction::unidirectional_left2right,
enc_uni_first_dst_layer_md, memory::desc(), memory::desc(),
enc_uni_wei_layer_md, enc_uni_wei_iter_md, user_enc_uni_bias_md,
enc_dst_layer_md, memory::desc(), memory::desc());
//[create uni rnn]
auto enc_uni_wei_layer_memory
= memory(enc_uni_prim_desc.weights_layer_desc(), cpu_engine);
auto enc_uni_wei_layer_reorder_pd = reorder::primitive_desc(
user_enc_uni_wei_layer_memory, enc_uni_wei_layer_memory);
reorder(enc_uni_wei_layer_reorder_pd)
.execute(
s, user_enc_uni_wei_layer_memory, enc_uni_wei_layer_memory);
auto enc_uni_wei_iter_memory
= memory(enc_uni_prim_desc.weights_iter_desc(), cpu_engine);
auto enc_uni_wei_iter_reorder_pd = reorder::primitive_desc(
user_enc_uni_wei_iter_memory, enc_uni_wei_iter_memory);
reorder(enc_uni_wei_iter_reorder_pd)
.execute(s, user_enc_uni_wei_iter_memory, enc_uni_wei_iter_memory);
auto enc_dst_layer_memory
= dnnl::memory(enc_uni_prim_desc.dst_layer_desc(), cpu_engine);
// TODO: add a reorder when they will be available
//[push uni rnn to encoder net]
encoder_net.push_back(lstm_forward(enc_uni_prim_desc));
encoder_net_args.push_back(
{{DNNL_ARG_SRC_LAYER, enc_uni_first_dst_layer_memory},
{DNNL_ARG_WEIGHTS_LAYER, enc_uni_wei_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, enc_uni_wei_iter_memory},
{DNNL_ARG_BIAS, user_enc_uni_bias_memory},
{DNNL_ARG_DST_LAYER, enc_dst_layer_memory}});
//[push uni rnn to encoder net]
//[dec mem dim]
std::vector<float> user_dec_wei_layer(
dec_n_layers * 1 * feature_size * lstm_n_gates * feature_size,
1.0f);
std::vector<float> user_dec_wei_iter(dec_n_layers * 1
* (feature_size + feature_size) * lstm_n_gates
* feature_size,
1.0f);
std::vector<float> user_dec_bias(
dec_n_layers * 1 * lstm_n_gates * feature_size, 1.0f);
std::vector<float> user_dec_dst(
tgt_seq_length_max * batch * feature_size, 1.0f);
std::vector<float> user_weights_attention_src_layer(
feature_size * feature_size, 1.0f);
std::vector<float> user_weights_annotation(
feature_size * feature_size, 1.0f);
std::vector<float> user_weights_alignments(feature_size, 1.0f);
memory::dims user_dec_wei_layer_dims
= {dec_n_layers, 1, feature_size, lstm_n_gates, feature_size};
memory::dims user_dec_wei_iter_dims = {dec_n_layers, 1,
feature_size + feature_size, lstm_n_gates, feature_size};
memory::dims user_dec_bias_dims
= {dec_n_layers, 1, lstm_n_gates, feature_size};
memory::dims dec_src_layer_dims = {1, batch, feature_size};
memory::dims dec_dst_layer_dims = {1, batch, feature_size};
memory::dims dec_dst_iter_c_dims = {dec_n_layers, 1, batch, feature_size};
//[dec mem dim]
//[noctx mem dim]
memory::dims dec_dst_iter_dims
= {dec_n_layers, 1, batch, feature_size + feature_size};
memory::dims dec_dst_iter_noctx_dims
= {dec_n_layers, 1, batch, feature_size};
//[noctx mem dim]
//[dec mem desc]
auto user_dec_wei_layer_md = dnnl::memory::desc({user_dec_wei_layer_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::ldigo);
auto user_dec_wei_iter_md = dnnl::memory::desc({user_dec_wei_iter_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::ldigo);
auto user_dec_bias_md = dnnl::memory::desc({user_dec_bias_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::ldgo);
auto dec_dst_layer_md = dnnl::memory::desc({dec_dst_layer_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::tnc);
auto dec_src_layer_md = dnnl::memory::desc({dec_src_layer_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::tnc);
auto dec_dst_iter_md = dnnl::memory::desc({dec_dst_iter_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::ldnc);
auto dec_dst_iter_c_md = dnnl::memory::desc({dec_dst_iter_c_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::ldnc);
//[dec mem desc]
//[create dec memory]
auto user_dec_wei_layer_memory = dnnl::memory(
user_dec_wei_layer_md, cpu_engine, user_dec_wei_layer.data());
auto user_dec_wei_iter_memory = dnnl::memory(
user_dec_wei_iter_md, cpu_engine, user_dec_wei_iter.data());
auto user_dec_bias_memory
= dnnl::memory(user_dec_bias_md, cpu_engine, user_dec_bias.data());
auto user_dec_dst_layer_memory
= dnnl::memory(dec_dst_layer_md, cpu_engine, user_dec_dst.data());
auto dec_src_layer_memory = dnnl::memory(dec_src_layer_md, cpu_engine);
auto dec_dst_iter_c_memory = dnnl::memory(dec_dst_iter_c_md, cpu_engine);
//[create dec memory]
auto dec_wei_layer_md = dnnl::memory::desc({user_dec_wei_layer_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::any);
auto dec_wei_iter_md = dnnl::memory::desc({user_dec_wei_iter_dims},
dnnl::memory::data_type::f32, dnnl::memory::format_tag::any);
// As mentioned above, we create a view without context out of the
// memory with context.
//[create noctx mem]
auto dec_dst_iter_memory = dnnl::memory(dec_dst_iter_md, cpu_engine);
auto dec_dst_iter_noctx_md = dec_dst_iter_md.submemory_desc(
dec_dst_iter_noctx_dims, {0, 0, 0, 0, 0});
//[create noctx mem]
// TODO: add support for residual connections
// should it be a set residual in pd or a field to set manually?
// should be an integer to specify at which layer to start
//[create dec rnn]
auto dec_ctx_prim_desc = lstm_forward::primitive_desc(cpu_engine,
prop_kind::forward_inference,
rnn_direction::unidirectional_left2right, dec_src_layer_md,
dec_dst_iter_md, dec_dst_iter_c_md, dec_wei_layer_md,
dec_wei_iter_md, user_dec_bias_md, dec_dst_layer_md,
dec_dst_iter_noctx_md, dec_dst_iter_c_md);
//[create dec rnn]
//[reorder weight memory]
auto dec_wei_layer_memory
= memory(dec_ctx_prim_desc.weights_layer_desc(), cpu_engine);
auto dec_wei_layer_reorder_pd = reorder::primitive_desc(
user_dec_wei_layer_memory, dec_wei_layer_memory);
reorder(dec_wei_layer_reorder_pd)
.execute(s, user_dec_wei_layer_memory, dec_wei_layer_memory);
auto dec_wei_iter_memory
= memory(dec_ctx_prim_desc.weights_iter_desc(), cpu_engine);
auto dec_wei_iter_reorder_pd = reorder::primitive_desc(
user_dec_wei_iter_memory, dec_wei_iter_memory);
reorder(dec_wei_iter_reorder_pd)
.execute(s, user_dec_wei_iter_memory, dec_wei_iter_memory);
//[reorder weight memory]
//[push rnn to decoder net]
// TODO: add a reorder when they will be available
decoder_net.push_back(lstm_forward(dec_ctx_prim_desc));
decoder_net_args.push_back({{DNNL_ARG_SRC_LAYER, dec_src_layer_memory},
{DNNL_ARG_SRC_ITER, dec_dst_iter_memory},
{DNNL_ARG_SRC_ITER_C, dec_dst_iter_c_memory},
{DNNL_ARG_WEIGHTS_LAYER, dec_wei_layer_memory},
{DNNL_ARG_WEIGHTS_ITER, dec_wei_iter_memory},
{DNNL_ARG_BIAS, user_dec_bias_memory},
{DNNL_ARG_DST_LAYER, user_dec_dst_layer_memory},
{DNNL_ARG_DST_ITER, dec_dst_iter_memory},
{DNNL_ARG_DST_ITER_C, dec_dst_iter_c_memory}});
//[push rnn to decoder net]
// allocating temporary buffer for attention mechanism
std::vector<float> weighted_annotations(
src_seq_length_max * batch * feature_size, 1.0f);
auto execute = [&]() {
assert(encoder_net.size() == encoder_net_args.size()
&& "something is missing");
//[run enc]
for (size_t p = 0; p < encoder_net.size(); ++p)
encoder_net.at(p).execute(s, encoder_net_args.at(p));
//[run enc]
//[weight ano]
compute_weighted_annotations(weighted_annotations.data(),
src_seq_length_max, batch, feature_size,
user_weights_annotation.data(),
(float *)enc_dst_layer_memory.get_data_handle());
//[weight ano]
//[init src_layer]
memset(dec_src_layer_memory.get_data_handle(), 0,
dec_src_layer_memory.get_desc().get_size());
//[init src_layer]
for (dim_t i = 0; i < tgt_seq_length_max; i++) {
float *src_att_layer_handle
= (float *)dec_src_layer_memory.get_data_handle();
float *src_att_iter_handle
= (float *)dec_dst_iter_memory.get_data_handle();
//[att ctx]
compute_attention(src_att_iter_handle, src_seq_length_max, batch,
feature_size, user_weights_attention_src_layer.data(),
src_att_layer_handle,
(float *)enc_bidir_dst_layer_memory.get_data_handle(),
weighted_annotations.data(),
user_weights_alignments.data());
//[att ctx]
//[cp ctx]
copy_context(
src_att_iter_handle, dec_n_layers, batch, feature_size);
//[cp ctx]
assert(decoder_net.size() == decoder_net_args.size()
&& "something is missing");
//[run dec iter]
for (size_t p = 0; p < decoder_net.size(); ++p)
decoder_net.at(p).execute(s, decoder_net_args.at(p));
//[run dec iter]
//[set handle]
auto dst_layer_handle
= (float *)user_dec_dst_layer_memory.get_data_handle();
dec_src_layer_memory.set_data_handle(dst_layer_handle);
user_dec_dst_layer_memory.set_data_handle(
dst_layer_handle + batch * feature_size);
//[set handle]
}
};
std::cout << "Parameters:" << std::endl
<< " batch = " << batch << std::endl
<< " feature size = " << feature_size << std::endl
<< " maximum source sequence length = " << src_seq_length_max
<< std::endl
<< " maximum target sequence length = " << tgt_seq_length_max
<< std::endl
<< " number of layers of the bidirectional encoder = "
<< enc_bidir_n_layers << std::endl
<< " number of layers of the unidirectional encoder = "
<< enc_unidir_n_layers << std::endl
<< " number of layers of the decoder = " << dec_n_layers
<< std::endl;
execute();
s.wait();
}
int main(int argc, char **argv) {
return handle_example_errors({engine::kind::cpu}, simple_net);
}