Visible to Intel only — GUID: GUID-5050F734-0228-4915-AE31-4AA6042F91FB
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-5050F734-0228-4915-AE31-4AA6042F91FB
cnn_training_bf16 cpp
This C++ API example demonstrates how to build an AlexNet model training using the bfloat16 data type. Annotated version: CNN bf16 training example
This C++ API example demonstrates how to build an AlexNet model training using the bfloat16 data type. Annotated version: CNN bf16 training example
/*******************************************************************************
* Copyright 2019-2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cassert>
#include <cmath>
#include <iostream>
#include <stdexcept>
#include "oneapi/dnnl/dnnl.hpp"
#include "example_utils.hpp"
using namespace dnnl;
void simple_net(engine::kind engine_kind) {
using tag = memory::format_tag;
using dt = memory::data_type;
auto eng = engine(engine_kind, 0);
stream s(eng);
// Vector of primitives and their execute arguments
std::vector<primitive> net_fwd, net_bwd;
std::vector<std::unordered_map<int, memory>> net_fwd_args, net_bwd_args;
const int batch = 32;
// float data type is used for user data
std::vector<float> net_src(batch * 3 * 227 * 227);
// initializing non-zero values for src
for (size_t i = 0; i < net_src.size(); ++i)
net_src[i] = sinf((float)i);
// AlexNet: conv
// {batch, 3, 227, 227} (x) {96, 3, 11, 11} -> {batch, 96, 55, 55}
// strides: {4, 4}
memory::dims conv_src_tz = {batch, 3, 227, 227};
memory::dims conv_weights_tz = {96, 3, 11, 11};
memory::dims conv_bias_tz = {96};
memory::dims conv_dst_tz = {batch, 96, 55, 55};
memory::dims conv_strides = {4, 4};
memory::dims conv_padding = {0, 0};
// float data type is used for user data
std::vector<float> conv_weights(product(conv_weights_tz));
std::vector<float> conv_bias(product(conv_bias_tz));
// initializing non-zero values for weights and bias
for (size_t i = 0; i < conv_weights.size(); ++i)
conv_weights[i] = sinf((float)i);
for (size_t i = 0; i < conv_bias.size(); ++i)
conv_bias[i] = sinf((float)i);
// create memory for user data
auto conv_user_src_memory
= memory({{conv_src_tz}, dt::f32, tag::nchw}, eng);
write_to_dnnl_memory(net_src.data(), conv_user_src_memory);
auto conv_user_weights_memory
= memory({{conv_weights_tz}, dt::f32, tag::oihw}, eng);
write_to_dnnl_memory(conv_weights.data(), conv_user_weights_memory);
auto conv_user_bias_memory = memory({{conv_bias_tz}, dt::f32, tag::x}, eng);
write_to_dnnl_memory(conv_bias.data(), conv_user_bias_memory);
// create memory descriptors for bfloat16 convolution data w/ no specified
// format tag(`any`)
// tag `any` lets a primitive(convolution in this case)
// chose the memory format preferred for best performance.
auto conv_src_md = memory::desc({conv_src_tz}, dt::bf16, tag::any);
auto conv_weights_md = memory::desc({conv_weights_tz}, dt::bf16, tag::any);
auto conv_dst_md = memory::desc({conv_dst_tz}, dt::bf16, tag::any);
// here bias data type is set to bf16.
// additionally, f32 data type is supported for bf16 convolution.
auto conv_bias_md = memory::desc({conv_bias_tz}, dt::bf16, tag::any);
// create a convolution primitive descriptor
// check if bf16 convolution is supported
try {
convolution_forward::primitive_desc(eng, prop_kind::forward,
algorithm::convolution_direct, conv_src_md, conv_weights_md,
conv_bias_md, conv_dst_md, conv_strides, conv_padding,
conv_padding);
} catch (error &e) {
if (e.status == dnnl_unimplemented)
throw example_allows_unimplemented {
"No bf16 convolution implementation is available for this "
"platform.\n"
"Please refer to the developer guide for details."};
// on any other error just re-throw
throw;
}
auto conv_pd = convolution_forward::primitive_desc(eng, prop_kind::forward,
algorithm::convolution_direct, conv_src_md, conv_weights_md,
conv_bias_md, conv_dst_md, conv_strides, conv_padding,
conv_padding);
// create reorder primitives between user input and conv src if needed
auto conv_src_memory = conv_user_src_memory;
if (conv_pd.src_desc() != conv_user_src_memory.get_desc()) {
conv_src_memory = memory(conv_pd.src_desc(), eng);
net_fwd.push_back(reorder(conv_user_src_memory, conv_src_memory));
net_fwd_args.push_back({{DNNL_ARG_FROM, conv_user_src_memory},
{DNNL_ARG_TO, conv_src_memory}});
}
auto conv_weights_memory = conv_user_weights_memory;
if (conv_pd.weights_desc() != conv_user_weights_memory.get_desc()) {
conv_weights_memory = memory(conv_pd.weights_desc(), eng);
net_fwd.push_back(
reorder(conv_user_weights_memory, conv_weights_memory));
net_fwd_args.push_back({{DNNL_ARG_FROM, conv_user_weights_memory},
{DNNL_ARG_TO, conv_weights_memory}});
}
// convert bias from f32 to bf16 as convolution descriptor is created with
// bias data type as bf16.
auto conv_bias_memory = conv_user_bias_memory;
if (conv_pd.bias_desc() != conv_user_bias_memory.get_desc()) {
conv_bias_memory = memory(conv_pd.bias_desc(), eng);
net_fwd.push_back(reorder(conv_user_bias_memory, conv_bias_memory));
net_fwd_args.push_back({{DNNL_ARG_FROM, conv_user_bias_memory},
{DNNL_ARG_TO, conv_bias_memory}});
}
// create memory for conv dst
auto conv_dst_memory = memory(conv_pd.dst_desc(), eng);
// finally create a convolution primitive
net_fwd.push_back(convolution_forward(conv_pd));
net_fwd_args.push_back({{DNNL_ARG_SRC, conv_src_memory},
{DNNL_ARG_WEIGHTS, conv_weights_memory},
{DNNL_ARG_BIAS, conv_bias_memory},
{DNNL_ARG_DST, conv_dst_memory}});
// AlexNet: relu
// {batch, 96, 55, 55} -> {batch, 96, 55, 55}
memory::dims relu_data_tz = {batch, 96, 55, 55};
const float negative_slope = 0.0f;
// create relu primitive desc
// keep memory format tag of source same as the format tag of convolution
// output in order to avoid reorder
auto relu_pd = eltwise_forward::primitive_desc(eng, prop_kind::forward,
algorithm::eltwise_relu, conv_pd.dst_desc(), conv_pd.dst_desc(),
negative_slope);
// create relu dst memory
auto relu_dst_memory = memory(relu_pd.dst_desc(), eng);
// finally create a relu primitive
net_fwd.push_back(eltwise_forward(relu_pd));
net_fwd_args.push_back(
{{DNNL_ARG_SRC, conv_dst_memory}, {DNNL_ARG_DST, relu_dst_memory}});
// AlexNet: lrn
// {batch, 96, 55, 55} -> {batch, 96, 55, 55}
// local size: 5
// alpha: 0.0001
// beta: 0.75
// k: 1.0
memory::dims lrn_data_tz = {batch, 96, 55, 55};
const uint32_t local_size = 5;
const float alpha = 0.0001f;
const float beta = 0.75f;
const float k = 1.0f;
// create a lrn primitive descriptor
auto lrn_pd = lrn_forward::primitive_desc(eng, prop_kind::forward,
algorithm::lrn_across_channels, relu_pd.dst_desc(),
relu_pd.dst_desc(), local_size, alpha, beta, k);
// create lrn dst memory
auto lrn_dst_memory = memory(lrn_pd.dst_desc(), eng);
// create workspace only in training and only for forward primitive
// query lrn_pd for workspace, this memory will be shared with forward lrn
auto lrn_workspace_memory = memory(lrn_pd.workspace_desc(), eng);
// finally create a lrn primitive
net_fwd.push_back(lrn_forward(lrn_pd));
net_fwd_args.push_back(
{{DNNL_ARG_SRC, relu_dst_memory}, {DNNL_ARG_DST, lrn_dst_memory},
{DNNL_ARG_WORKSPACE, lrn_workspace_memory}});
// AlexNet: pool
// {batch, 96, 55, 55} -> {batch, 96, 27, 27}
// kernel: {3, 3}
// strides: {2, 2}
memory::dims pool_dst_tz = {batch, 96, 27, 27};
memory::dims pool_kernel = {3, 3};
memory::dims pool_strides = {2, 2};
memory::dims pool_dilation = {0, 0};
memory::dims pool_padding = {0, 0};
// create memory for pool dst data in user format
auto pool_user_dst_memory
= memory({{pool_dst_tz}, dt::f32, tag::nchw}, eng);
// create pool dst memory descriptor in format any for bfloat16 data type
auto pool_dst_md = memory::desc({pool_dst_tz}, dt::bf16, tag::any);
// create a pooling primitive descriptor
auto pool_pd = pooling_forward::primitive_desc(eng, prop_kind::forward,
algorithm::pooling_max, lrn_dst_memory.get_desc(), pool_dst_md,
pool_strides, pool_kernel, pool_dilation, pool_padding,
pool_padding);
// create pooling workspace memory if training
auto pool_workspace_memory = memory(pool_pd.workspace_desc(), eng);
// create a pooling primitive
net_fwd.push_back(pooling_forward(pool_pd));
// leave DST unknown for now (see the next reorder)
net_fwd_args.push_back({{DNNL_ARG_SRC, lrn_dst_memory},
// delay putting DST until reorder (if needed)
{DNNL_ARG_WORKSPACE, pool_workspace_memory}});
// create reorder primitive between pool dst and user dst format
// if needed
auto pool_dst_memory = pool_user_dst_memory;
if (pool_pd.dst_desc() != pool_user_dst_memory.get_desc()) {
pool_dst_memory = memory(pool_pd.dst_desc(), eng);
net_fwd_args.back().insert({DNNL_ARG_DST, pool_dst_memory});
net_fwd.push_back(reorder(pool_dst_memory, pool_user_dst_memory));
net_fwd_args.push_back({{DNNL_ARG_FROM, pool_dst_memory},
{DNNL_ARG_TO, pool_user_dst_memory}});
} else {
net_fwd_args.back().insert({DNNL_ARG_DST, pool_dst_memory});
}
//-----------------------------------------------------------------------
//----------------- Backward Stream -------------------------------------
// ... user diff_data in float data type ...
std::vector<float> net_diff_dst(batch * 96 * 27 * 27);
for (size_t i = 0; i < net_diff_dst.size(); ++i)
net_diff_dst[i] = sinf((float)i);
// create memory for user diff dst data stored in float data type
auto pool_user_diff_dst_memory
= memory({{pool_dst_tz}, dt::f32, tag::nchw}, eng);
write_to_dnnl_memory(net_diff_dst.data(), pool_user_diff_dst_memory);
// Backward pooling
// create memory descriptors for pooling
auto pool_diff_src_md = memory::desc({lrn_data_tz}, dt::bf16, tag::any);
auto pool_diff_dst_md = memory::desc({pool_dst_tz}, dt::bf16, tag::any);
// backward primitive descriptor needs to hint forward descriptor
auto pool_bwd_pd = pooling_backward::primitive_desc(eng,
algorithm::pooling_max, pool_diff_src_md, pool_diff_dst_md,
pool_strides, pool_kernel, pool_dilation, pool_padding,
pool_padding, pool_pd);
// create reorder primitive between user diff dst and pool diff dst
// if required
auto pool_diff_dst_memory = pool_user_diff_dst_memory;
if (pool_dst_memory.get_desc() != pool_user_diff_dst_memory.get_desc()) {
pool_diff_dst_memory = memory(pool_dst_memory.get_desc(), eng);
net_bwd.push_back(
reorder(pool_user_diff_dst_memory, pool_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, pool_user_diff_dst_memory},
{DNNL_ARG_TO, pool_diff_dst_memory}});
}
// create memory for pool diff src
auto pool_diff_src_memory = memory(pool_bwd_pd.diff_src_desc(), eng);
// finally create backward pooling primitive
net_bwd.push_back(pooling_backward(pool_bwd_pd));
net_bwd_args.push_back({{DNNL_ARG_DIFF_DST, pool_diff_dst_memory},
{DNNL_ARG_DIFF_SRC, pool_diff_src_memory},
{DNNL_ARG_WORKSPACE, pool_workspace_memory}});
// Backward lrn
auto lrn_diff_dst_md = memory::desc({lrn_data_tz}, dt::bf16, tag::any);
const auto &lrn_diff_src_md = lrn_diff_dst_md;
// create backward lrn primitive descriptor
auto lrn_bwd_pd = lrn_backward::primitive_desc(eng,
algorithm::lrn_across_channels, lrn_diff_src_md, lrn_diff_dst_md,
lrn_pd.src_desc(), local_size, alpha, beta, k, lrn_pd);
// create reorder primitive between pool diff src and lrn diff dst
// if required
auto lrn_diff_dst_memory = pool_diff_src_memory;
if (lrn_diff_dst_memory.get_desc() != lrn_bwd_pd.diff_dst_desc()) {
lrn_diff_dst_memory = memory(lrn_bwd_pd.diff_dst_desc(), eng);
net_bwd.push_back(reorder(pool_diff_src_memory, lrn_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, pool_diff_src_memory},
{DNNL_ARG_TO, lrn_diff_dst_memory}});
}
// create memory for lrn diff src
auto lrn_diff_src_memory = memory(lrn_bwd_pd.diff_src_desc(), eng);
// finally create a lrn backward primitive
// backward lrn needs src: relu dst in this topology
net_bwd.push_back(lrn_backward(lrn_bwd_pd));
net_bwd_args.push_back({{DNNL_ARG_SRC, relu_dst_memory},
{DNNL_ARG_DIFF_DST, lrn_diff_dst_memory},
{DNNL_ARG_DIFF_SRC, lrn_diff_src_memory},
{DNNL_ARG_WORKSPACE, lrn_workspace_memory}});
// Backward relu
auto relu_diff_src_md = memory::desc({relu_data_tz}, dt::bf16, tag::any);
auto relu_diff_dst_md = memory::desc({relu_data_tz}, dt::bf16, tag::any);
auto relu_src_md = conv_pd.dst_desc();
// create backward relu primitive_descriptor
auto relu_bwd_pd = eltwise_backward::primitive_desc(eng,
algorithm::eltwise_relu, relu_diff_src_md, relu_diff_dst_md,
relu_src_md, negative_slope, relu_pd);
// create reorder primitive between lrn diff src and relu diff dst
// if required
auto relu_diff_dst_memory = lrn_diff_src_memory;
if (relu_diff_dst_memory.get_desc() != relu_bwd_pd.diff_dst_desc()) {
relu_diff_dst_memory = memory(relu_bwd_pd.diff_dst_desc(), eng);
net_bwd.push_back(reorder(lrn_diff_src_memory, relu_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, lrn_diff_src_memory},
{DNNL_ARG_TO, relu_diff_dst_memory}});
}
// create memory for relu diff src
auto relu_diff_src_memory = memory(relu_bwd_pd.diff_src_desc(), eng);
// finally create a backward relu primitive
net_bwd.push_back(eltwise_backward(relu_bwd_pd));
net_bwd_args.push_back({{DNNL_ARG_SRC, conv_dst_memory},
{DNNL_ARG_DIFF_DST, relu_diff_dst_memory},
{DNNL_ARG_DIFF_SRC, relu_diff_src_memory}});
// Backward convolution with respect to weights
// create user format diff weights and diff bias memory for float data type
auto conv_user_diff_weights_memory
= memory({{conv_weights_tz}, dt::f32, tag::nchw}, eng);
auto conv_diff_bias_memory = memory({{conv_bias_tz}, dt::f32, tag::x}, eng);
// create memory descriptors for bfloat16 convolution data
auto conv_bwd_src_md = memory::desc({conv_src_tz}, dt::bf16, tag::any);
auto conv_diff_weights_md
= memory::desc({conv_weights_tz}, dt::bf16, tag::any);
auto conv_diff_dst_md = memory::desc({conv_dst_tz}, dt::bf16, tag::any);
// use diff bias provided by the user
auto conv_diff_bias_md = conv_diff_bias_memory.get_desc();
// create backward convolution primitive descriptor
auto conv_bwd_weights_pd = convolution_backward_weights::primitive_desc(eng,
algorithm::convolution_direct, conv_bwd_src_md,
conv_diff_weights_md, conv_diff_bias_md, conv_diff_dst_md,
conv_strides, conv_padding, conv_padding, conv_pd);
// for best performance convolution backward might chose
// different memory format for src and diff_dst
// than the memory formats preferred by forward convolution
// for src and dst respectively
// create reorder primitives for src from forward convolution to the
// format chosen by backward convolution
auto conv_bwd_src_memory = conv_src_memory;
if (conv_bwd_weights_pd.src_desc() != conv_src_memory.get_desc()) {
conv_bwd_src_memory = memory(conv_bwd_weights_pd.src_desc(), eng);
net_bwd.push_back(reorder(conv_src_memory, conv_bwd_src_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, conv_src_memory},
{DNNL_ARG_TO, conv_bwd_src_memory}});
}
// create reorder primitives for diff_dst between diff_src from relu_bwd
// and format preferred by conv_diff_weights
auto conv_diff_dst_memory = relu_diff_src_memory;
if (conv_bwd_weights_pd.diff_dst_desc()
!= relu_diff_src_memory.get_desc()) {
conv_diff_dst_memory = memory(conv_bwd_weights_pd.diff_dst_desc(), eng);
net_bwd.push_back(reorder(relu_diff_src_memory, conv_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, relu_diff_src_memory},
{DNNL_ARG_TO, conv_diff_dst_memory}});
}
// create backward convolution primitive
net_bwd.push_back(convolution_backward_weights(conv_bwd_weights_pd));
net_bwd_args.push_back({{DNNL_ARG_SRC, conv_bwd_src_memory},
{DNNL_ARG_DIFF_DST, conv_diff_dst_memory},
// delay putting DIFF_WEIGHTS until reorder (if needed)
{DNNL_ARG_DIFF_BIAS, conv_diff_bias_memory}});
// create reorder primitives between conv diff weights and user diff weights
// if needed
auto conv_diff_weights_memory = conv_user_diff_weights_memory;
if (conv_bwd_weights_pd.diff_weights_desc()
!= conv_user_diff_weights_memory.get_desc()) {
conv_diff_weights_memory
= memory(conv_bwd_weights_pd.diff_weights_desc(), eng);
net_bwd_args.back().insert(
{DNNL_ARG_DIFF_WEIGHTS, conv_diff_weights_memory});
net_bwd.push_back(reorder(
conv_diff_weights_memory, conv_user_diff_weights_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, conv_diff_weights_memory},
{DNNL_ARG_TO, conv_user_diff_weights_memory}});
} else {
net_bwd_args.back().insert(
{DNNL_ARG_DIFF_WEIGHTS, conv_diff_weights_memory});
}
// didn't we forget anything?
assert(net_fwd.size() == net_fwd_args.size() && "something is missing");
assert(net_bwd.size() == net_bwd_args.size() && "something is missing");
int n_iter = 1; // number of iterations for training
// execute
while (n_iter) {
// forward
for (size_t i = 0; i < net_fwd.size(); ++i)
net_fwd.at(i).execute(s, net_fwd_args.at(i));
// update net_diff_dst
// auto net_output = pool_user_dst_memory.get_data_handle();
// ..user updates net_diff_dst using net_output...
// some user defined func update_diff_dst(net_diff_dst.data(),
// net_output)
for (size_t i = 0; i < net_bwd.size(); ++i)
net_bwd.at(i).execute(s, net_bwd_args.at(i));
// update weights and bias using diff weights and bias
//
// auto net_diff_weights
// = conv_user_diff_weights_memory.get_data_handle();
// auto net_diff_bias = conv_diff_bias_memory.get_data_handle();
//
// ...user updates weights and bias using diff weights and bias...
//
// some user defined func update_weights(conv_weights.data(),
// conv_bias.data(), net_diff_weights, net_diff_bias);
--n_iter;
}
s.wait();
}
int main(int argc, char **argv) {
return handle_example_errors(simple_net, parse_engine_kind(argc, argv));
}