Intel® Integrated Performance Primitives (Intel® IPP) Developer Guide and Reference
A newer version of this document is available. Customers should click here to go to the newest version.
ErfcInv
Computes the inverse complementary error function value of vector element.
Syntax
IppStatus ippsErfcInv_32f_A11 (const Ipp32f* pSrc, Ipp32f* pDst, Ipp32s len);
IppStatus ippsErfcInv_32f_A21 (const Ipp32f* pSrc, Ipp32f* pDst, Ipp32s len);
IppStatus ippsErfcInv_32f_A24 (const Ipp32f* pSrc, Ipp32f* pDst, Ipp32s len);
IppStatus ippsErfcInv_64f_A26 (const Ipp64f* pSrc, Ipp64f* pDst, Ipp32s len);
IppStatus ippsErfcInv_64f_A50 (const Ipp64f* pSrc, Ipp64f* pDst, Ipp32s len);
IppStatus ippsErfcInv_64f_A53 (const Ipp64f* pSrc, Ipp64f* pDst, Ipp32s len);
Include Files
ippvm.h
Domain Dependencies
Headers: ippcore.h
Libraries: ippcore.lib
Parameters
pSrc |
Pointer to the source vector. |
pDst |
Pointer to the destination vector. |
len |
Number of elements in the vectors. |
Description
This function computes the inverse complementary error function value of each pSrc vector element and stores the result in the corresponding element of pDst.
For single precision data:
function flavor ippsErfcInv_32f_A11 guarantees 11 correctly rounded bits of significand, or at least 3 exact decimal digits;
function flavor ippsErfcInv_32f_A21 guarantees 21 correctly rounded bits of significand, or 4 ulps, or about 6 exact decimal digits;
function flavor ippsErfcInv_32f_A24 guarantees 24 correctly rounded bits of significand, including the implied bit, with the maximum guaranteed error within 1 ulp.
For double precision data:
function flavor ippsErfcInv_64f_A26 guarantees 26 correctly rounded bits of significand, or 6.7E+7 ulps, or approximately 8 exact decimal digits;
function flavor ippsErfcInv_64f_A50 guarantees 50 correctly rounded bits of significand, or 4 ulps, or approximately 15 exact decimal digits;
function flavor ippsErfcInv_64f_A53 guarantees 53 correctly rounded bits of significand, including the implied bit, with the maximum guaranteed error within 1 ulp.
The computation is performed as follows:
pDst[n] = erfcinv(pSrc[n]), 0 ≤ n < len, where erfcinv(x) = erfinv(1 - x, and erfinv(x) denotes the error function defined as given by:

Return Values
ippStsNoErr |
Indicates no error. |
ippStsNullPtrErr |
Indicates an error when pSrc or pDst pointer is NULL. |
ippStsSizeErr |
Indicates an error when len is less than or equal to 0. |
ippStsDomain |
Indicates a warning that the argument is out of the function domain, that is, at least one of pSrc elements is outside the function domain [0; 2]. |
ippStsSingularity |
Indicates a warning that the argument is a singularity point, that is, at least one of the elements of pSrc is equal to 0 or 2. |
Example
The example below shows how to use the function ippsErfcInv.
IppStatus ippsErfcInv_32f_A24_sample(void) { const Ipp32f x[4] = {+0.885, +0.543, +1.809, +0.953}; Ipp32f y[4]; IppStatus st = ippsErfcInv_32f_A24( x, y, 4 ); printf(" ippsErfcInv_32f_A24:\n"); printf(" x = %+.3f %+.3f %+.3f %+.3f \n", x[0], x[1], x[2], x[3]); printf(" y = %+.3f %+.3f %+.3f %+.3f \n", y[0], y[1], y[2], y[3]); return st; }
Output:
ippsErfcInv_32f_A24: x = +0.885 +0.543 +1.809 +0.953 y = +0.102 +0.430 -0.925 +0.042