Performance Data for Intel® AI Data Center Products
Find the latest performance data for 4th gen Intel® Xeon® Scalable processors and 3rd gen Intel® Xeon® processors, including detailed hardware and software configurations.
For pretrained models, sample scripts, best practices, and tutorials used, see:
Measurements were taken using:
- Intel® Extension for PyTorch*
- Intel® Extension for TensorFlow*
- Intel® Distribution of OpenVINO™ Toolkit
4th Gen Intel® Xeon® Scalable Processors for Deep Learning Inference
Framework Version | Model/Dataset | Usage | Part | Precision | Throughput | Wall Power(Watt) | Perf/Watt | Accuracy | Latency(ms) | Batch size |
---|---|---|---|---|---|---|---|---|---|---|
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | fp32 | 1338.80 img/s | 1067.19 | 1.25 | 76.13(%) | 64 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | int8 | 13012.99 img/s | 1018.38 | 12.78 | 75.99(%) | 116 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf16 | 7002.92 img/s | 1028.97 | 6.81 | 76.14(%) | 68 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf32 | 2068.72 img/s | 76.13 (%) | 64 | |||
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | fp32 | 1293.33 img/s | 1028.96 | 1.25 | 21.65 | 1 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | int8 | 9680.59 img/s | 1023.13 | 9.46 | 2.89 | 1 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf16 | 5805.89 img/s | 1030.95 | 5.63 | 4.82 | 1 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | fp32 | 1294.17 img/s | 1034.87 | 1.25 | 76.48(%) | 64 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | int8 | 12390.26 img/s | 1055.36 | 11.74 | 76.02(%) | 116 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf16 | 6299.25 img/s | 1051.71 | 5.99 | 76.75(%) | 80 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf32 | 1984.48 img/s | 76.47(%) | 64 | |||
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | fp32 | 1238.55 img/s | 1031.19 | 1.2 | 22.61 | 1 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | int8 | 8221.7 img/s | 964.19 | 8.52 | 3.41 | 1 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf16 | 5451.4 img/s | 1003.79 | 5.43 | 5.14 | 1 | |
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | fp32 | 1252.31 img/s | 1017.9 | 1.23 | 76.46(%) | 1 | |
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | int8 | 8982.73 img/s | 1006.58 | 8.92 | 76.36(%) | 1 | |
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf16 | 5719.37 img/s | 1011.18 | 5.66 | 76.47(%) | 1 | |
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | fp32 | 1248.72 img/s | 1034.33 | 1.21 | 64 | ||
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | int8 | 11951.34 img/s | 1030.59 | 11.6 | 64 | ||
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf16 | 6087.33 img/s | 1027.35 | 5.93 | 116 | ||
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | 56 core 350 Watt | fp32 | 40.15 sent/s | 1097.96 | 0.04 | 93.15(%) | 56 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | 56 core 350 Watt | int8 | 212.71 sent/s | 1089.53 | 0.2 | 92.78(%) | 56 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | 56 core 350 Watt | bf16 | 162.24 sent/s | 1009.88 | 0.16 | 93.2(%) | 16 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | 56 core 350 Watt | fp32 | 65.41 sent/s | 93.15(%) | 16 | |||
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | 56 core 350 Watt | fp32 | 34.68 sent/s | 1074.68 | 0.03 | 807.38 | 1 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | 56 core 350 Watt | int8 | 254.06 sent/s | 976.32 | 0.26 | 110.21 | 1 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | 56 core 350 Watt | bf16 | 154.28 sent/s | 1036.73 | 0.14 | 181.49 | 1 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | 56 core 350 Watt | fp32 | 37.00 sent/s | 989.91 | 0.04 | 92.98(%) | 16 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | 56 core 350 Watt | int8 | 232.61 sent/s | 989.57 | 0.24 | 92.32(%) | 32 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | 56 core 350 Watt | bf16 | 160.27 sent/s | 1078.51 | 0.15 | 93.01(%) | 16 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | 56 core 350 Watt | bf32 | 65.78 sent/s | 93.0(%) | 16 | |||
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | 56 core 350 Watt | fp32 | 37.23 sent/s | 1069.21 | 0.03 | 752.08 | 1 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | 56 core 350 Watt | int8 | 246.85 sent/s | 1027.49 | 0.24 | 113.43 | 1 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | 56 core 350 Watt | bf16 | 157.65 sent/s | 999.12 | 0.15 | 177.61 | 1 | |
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | 56 core 350 Watt | fp32 | 44.4 sent/s | 1042.17 | 0.04 | 93.25(F1) | 1 | |
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | 56 core 350 Watt | int8 | 286.24 sent/s | 1003.52 | 0.29 | 92.65(F1) | 1 | |
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | 56 core 350 Watt | bf16 | 168.36 sent/s | 1007.01 | 0.17 | 93.29(F1) | 1 | |
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | 56 core 350 Watt | fp32 | 41.81 sent/s | 1030.75 | 0.04 | 16 | ||
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | 56 core 350 Watt | int8 | 288.34 sent/s | 1005.31 | 0.29 | 16 | ||
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | 56 core 350 Watt | bf16 | 177.3 sent/s | 1005.46 | 0.18 | 16 | ||
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | fp32 | 31.27 img/s | 999.88 | 0.03 | 20 mAP | 112 | |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | int8 | 377.12 img/s | 782.1 | 0.48 | 19.9 mAP | 112 | |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | bf16 | 206.27 img/s | 864.55 | 0.24 | 19.98 mAP | 112 | |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | bf32 | 32.53 img/s | 20 mAP | 112 | |||
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | fp32 | 31.17 img/s | 1071.73 | 0.02 | 898.3 | 1 | |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | int8 | 425.89 img/s | 1035.36 | 0.41 | 65.74 | 1 | |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | bf16 | 215.52 img/s | 1073.23 | 0.2 | 129.92 | 1 | |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | fp32 | 30.31 img/s | 1039.8 | 0.03 | 22.40 mAP | 923.79 | 1 |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | int8 | 412.59 img/s | 1036.38 | 0.4 | 21.40 mAP | 67.86 | 1 |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | bf16 | 209.05 img/s | 1091.37 | 0.19 | 22.50 mAP | 133.94 | 1 |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | bf32 | 31.85 img/s | 22.40 mAP | 879.12 | 1 | ||
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | fp32 | 30.64 img/s | 1033.36 | 0.03 | 20 mAP | 1 | |
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | int8 | 466.78 img/s | 1053.6 | 0.44 | 19.9 mAP | 1 | |
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | bf16 | 213.92 img/s | 1067.98 | 0.2 | 20 mAP | 1 | |
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | fp32 | 30.54 img/s | 1039.82 | 0.03 | 64 | ||
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | int8 | 413.69 img/s | 1075.36 | 0.38 | 64 | ||
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | 56 core 350 Watt | bf16 | 198.93 img/s | 1076.76 | 0.18 | 64 | ||
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | fp32 | 410.58 fps | 953 | 0.43 | 7.31 WER | 64 | |
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | bf16 | 1663.41 fps | 978.13 | 1.7 | 7.30 WER | 64 | |
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | bf32 | 1103.73 fps | 7.32 WER | 64 | |||
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | fp32 | 57.66 fps | 1063 | 0.05 | 485.61 | 1 | |
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | bf16 | 306.31 fps | 1055.75 | 0.29 | 91.41 | 1 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | fp32 | 158.28 fps | 1051.99 | 0.15 | 84.18(%) | 64 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | int8 | 1870.01 fps | 1064.08 | 1.76 | 84.05(%) | 116 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | bf16 | 865.86 fps | 1053.21 | 0.82 | 84.18(%) | 64 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | bf32 | 241.77 fps | 84.18(%) | 64 | |||
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | fp32 | 148.2 fps | 1063.83 | 0.13 | 188.93 | 1 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | int8 | 1206.45 fps | 989.23 | 1.21 | 23.21 | 1 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | bf16 | 636.1 fps | 1010.28 | 0.62 | 44.02 | 1 | |
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | fp32 | 145.76 fps | 1023.5 | 0.14 | 84.17(%) | 1 | |
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | int8 | 1220.23 fps | 1009.7 | 1.21 | 84.2(%) | 1 | |
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | bf16 | 644.92 fps | 1013.11 | 0.64 | 84.16(%) | 1 | |
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | fp32 | 152.25 fps | 1043.98 | 0.15 | 64 | ||
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | int8 | 1732.23 fps | 1029.84 | 1.68 | 64 | ||
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | 56 core 350 Watt | bf16 | 826.85 fps | 1050.67 | 0.79 | 64 | ||
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | fp32 | 25.71 img/s | 1051.27 | 0.02 | 37.82/34.23 bbox/segm | 112 | |
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | bf16 | 112.54 img/s | 967.22 | 0.11 | 37.75/34.33 bbox/segm | 112 | |
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | bf32 | 34.19 img/s | 37.78/34.22 bbox/segm | 112 | |||
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | fp32 | 28.43 img/s | 1081.51 | 0.02 | 984.88 | 1 | |
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | bf16 | 129.14 img/s | 1081.93 | 0.11 | 216.82 | 1 | |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | 56 core 350 Watt | fp32 | 2321626 rec/s | 1000.02 | 2321 | 80.27 AUC | 128 | |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | 56 core 350 Watt | int8 | 19404011 rec/s | 947.08 | 20488 | 80.24 AUC | 128 | |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | 56 core 350 Watt | bf16 | 9818003 rec/s | 1037.83 | 9460 | 80.27 AUC | 128 | |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | 56 core 350 Watt | bf32 | 3875003 rec/s | 80.27 AUC | 128 | |||
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | fp32 | 20.34 sent/s | 1098.8 | 0.01 | 1376 | 1 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | fp32 | 101.58 sent/s | 1054.17 | 0.1 | 27.60 BLEU | 448 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | int8 | 265.23 sent/s | 1067.9 | 0.25 | 27.11 BLEU | 448 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | bf16 | 237.23 sent/s | 1026.85 | 0.23 | 27.13 BLEU | 448 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | bf32 | 110.66 sent/s | 27.14 BLEU | 448 | |||
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | int8 | 64.61 sent/s | 1094.1 | 0.05 | 433.37 | 1 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | bf16 | 40.69 sent/s | 1139.17 | 0.03 | 688.13 | 1 | |
Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | 56 core 350 Watt | fp32 | 423825 rec/s | 957.92 | 442.44 | 77.18(%) | 65536 | |
Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | 56 core 350 Watt | bf16 | 572868 rec/s | 871.09 | 657.65 | 77.12(%) | 65536 | |
Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | 56 core 350 Watt | bf32 | 436195 rec/s | 77.19(%) | 65536 | |||
Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | 56 core 350 Watt | fp32 | 129846 rec/s | 1000.84 | 129.73 | 16 | ||
Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | 56 core 350 Watt | bf16 | 156727 rec/s | 977.44 | 160.34 | 16 | ||
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | 56 core 350 Watt | fp32 | 2.61 samp/s | 1055.99 | 85.30 mean | 6 | ||
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | 56 core 350 Watt | int8 | 11.05 samp/s | 1103.99 | 0.01 | 85.09 mean | 1 | |
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | 56 core 350 Watt | bf16 | 11.60 samp/s | 1038.03 | 0.01 | 85.31 mean | 6 | |
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | 56 core 350 Watt | bf32 | 3.73 samp/s | 85.30 mean | 1 | |||
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | 56 core 350 Watt | fp32 | 2.88 samp/s | 1083.78 | 0.0026 | 9722 | 1 | |
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | 56 core 350 Watt | bf16 | 11.01 samp/s | 1176.66 | 0.009 | 2543 | 1 | |
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | 56 core 350 Watt | fp32 | 2.81 samp/s | 1073.97 | 0.003 | 0.85 mean | 1 | |
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | 56 core 350 Watt | int8 | 21.28 samp/s | 1097.65 | 0.019 | 0.85 mean | 1 | |
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | 56 core 350 Watt | bf16 | 13.11 samp/s | 1122.76 | 0.012 | 0.85 mean | 1 | |
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | 56 core 350 Watt | fp32 | 2.58 samp/s | 1065.65 | 0.002 | 6 | ||
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | 56 core 350 Watt | int8 | 19.64 samp/s | 1091.12 | 0.018 | 6 | ||
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | 56 core 350 Watt | bf16 | 12.18 samp/s | 1112.3 | 0.011 | 6 |
4th Gen Intel® Xeon® Processors for Deep Learning Training
Framework Version | Model/Dataset | Usage | Part | Precision | Throughput | Power(Watts) | Perf/Watt | Batch size |
---|---|---|---|---|---|---|---|---|
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | fp32 | 128.33 img/s | 764.02 | 0.16 | 128 |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf16 | 302.66 img/s | 721.43 | 0.41 | 128 |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | 56 core 350 Watt | bf32 | 145.73 img/s | 128 | ||
Intel TensorFlow 2.11 | ResNet50 v1.5 ImageNet (224 x224) | Image Recognition | 56 core 350 Watt | fp32 | 131.54 img/s | 816.62 | 0.16 | 1024 |
Intel TensorFlow 2.11 | ResNet50 v1.5 ImageNet (224 x224) | Image Recognition | 56 core 350 Watt | bf16 | 292.48 img/s | 818.16 | 0.35 | 1024 |
Intel TensorFlow 2.11 | ResNet50 v1.5 ImageNet (224 x224) | Image Recognition | 56 core 350 Watt | bf32 | 148.07 img/s | 1024 | ||
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | 56 core 350 Watt | fp32 | 262891 rec/s | 807.22 | 325.67 | 32768 |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | 56 core 350 Watt | bf16 | 789677 rec/s | 797.31 | 32768 | |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | 56 core 350 Watt | bf32 | 349616 rec/s | 32768 | ||
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | fp32 | 55.89 img/s | 729.24 | 0.07 | 224 |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | bf16 | 206.45 img/s | 681.54 | 224 | |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | bf32 | 74.12 img/s | 224 | ||
Intel TensorFlow 2.11 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | fp32 | 47.75 img/s | 776.25 | 0.06 | 896 |
Intel TensorFlow 2.11 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | bf16 | 183.35 img/s | 698.98 | 0.26 | 896 |
Intel TensorFlow 2.11 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | 56 core 350 Watt | bf32 | 62.17 img/s | 896 | ||
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | fp32 | 3.35 fps | 781.65 | 0.004 | 64 |
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | bf16 | 26.43 fps | 546.77 | 0.048 | 64 |
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | 56 core 350 Watt | bf32 | 10.48 fps | 64 | ||
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | fp32 | 3.71 img/s | 799.53 | 0.0046 | 112 |
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | bf16 | 11.63 img/s | 792.74 | 0.0146 | 112 |
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | 56 core 350 Watt | bf32 | 4.30 img/s | 112 | ||
Intel PyTorch 1.13 | BERTLarge Wikipedia 2020/01/01 seq len=512 | Natural Language Processing | 56 core 350 Watt | fp32 | 3.72 sent/s | 817.6 | 0.0045 | 28 |
Intel PyTorch 1.13 | BERTLarge Wikipedia 2020/01/01 seq len=512 | Natural Language Processing | 56 core 350 Watt | bf16 | 10.01 sent/s | 823.3 | 0.0121 | 56 |
Intel PyTorch 1.13 | BERTLarge Wikipedia 2020/01/01 seq len=512 | Natural Language Processing | 56 core 350 Watt | bf32 | 4.39 sent/s | 28 | ||
Intel TensorFlow 2.11 | BERTLarge Wikipedia 2020/01/01 seq len=512 | Natural Language Processing | 56 core 350 Watt | fp32 | 3.38 sent/s | 801.63 | 0.004 | 128 |
Intel TensorFlow 2.11 | BERTLarge Wikipedia 2020/01/01 seq len=512 | Natural Language Processing | 56 core 350 Watt | bf16 | 10.02 sent/s | 810.56 | 0.012 | 128 |
Intel TensorFlow 2.11 | BERTLarge Wikipedia 2020/01/01 seq len=512 | Natural Language Processing | 56 core 350 Watt | bf32 | 3.82 sent/s | 128 | ||
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | fp32 | 7055.54 sent/s | 770.18 | 9.16 | 12K |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | bf16 | 15184.80 sent/s | 754.74 | 12K | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | 56 core 350 Watt | bf32 | 7190.51 sent/s | 12K |
Hardware and software configuration (measured October 24, 2022):
- Hardware configuration for Intel® Xeon® Platinum 8480+ processor (formerly code named Sapphire Rapids): 2 sockets, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDCRB1.SYS.8901.P01.2209200243, operating system: CentOS* Stream 8, using Intel® Advanced Matrix Extensions (Intel® AMX) int8 and bf16 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.7 optimized kernels integrated into Intel® Extension for PyTorch* v1.13, Intel® Extension for TensorFlow* v2.12, and Intel® Distribution of OpenVINO™ toolkit v2022.3. Measurements may vary.
- Wall power refers to platform power consumption.
- If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.