Latest Intel® AI Reference Model Optimizations for Intel® Xeon Scalable Processors

ID 793414
Updated 11/13/2023
Version Latest
Public

author-image

By

Description 

This document provides links to step-by-step instructions on how to leverage the latest reference model docker containers to run optimized open-source Deep Learning Training and Inference workloads using PyTorch* and TensorFlow* frameworks on Intel® Xeon® Scalable processors.

Note: The containers below are finely tuned to demonstrate best performance on Intel® Extension for PyTorch* and Intel® Optimized TensorFlow*  and are not intended for use in production. 

Use cases

The tables below link to documentation on how to run each use case using docker containers. These containers were validated on a host running Linux. 

Generative AI

 

Framework Model Precisions Mode Dataset
PyTorch GPT-J FP32,BF32,BF16,FP16,INT8-FP32 Inference LAMBADA
PyTorch Llama 2 7B,13B FP32,BF32,BF16,FP16,INT8-FP32 Inference LAMBADA
PyTorch ChatGLM FP32,BF32,BF16,FP16,INT8-FP32 Inference LAMBADA
PyTorch LCM FP32,BF32,BF16,FP16,INT8-FP32,INT8-BF16 Inference COCO 2017
PyTorch Stable Diffusion FP32,BF32,BF16,FP16,INT8-FP32,INT8-BF16 Inference COCO 2017

Image Recognition

 

Framework Model Precisions Mode Dataset
PyTorch ResNet 50 FP32,BF32,BF16 Training ImageNet 2012
PyTorch ResNet 50 FP32,BF32,BF16,INT8 Inference ImageNet 2012
PyTorch Vision Transformer FP32,BF32,BF16,INT8-FP32,INT8-BF16 Inference ImageNet 2012

Object Detection

 

Framework Model Precisions Mode Dataset
PyTorch Mask R-CNN FP32,BF32,BF16 Training COCO 2017
PyTorch Mask R-CNN FP32,BF32,BF16 Inference COCO 2017
PyTorch SSD-ResNet34 FP32,BF32,BF16 Training COCO 2017
PyTorch SSD-ResNet34 FP32,BF32,BF16,INT8 Inference COCO 2017
PyTorch YOLO v7 FP32,BF32,BF16,FP16,INT8 Inference COCO 2017

Language Modeling

 

Framework Model Precisions Mode Dataset
PyTorch BERT large FP32,BF32,BF16,INT8 Inference SQuAD1.0
PyTorch RNN-T FP32,BF32,BF16,INT8 Inference LibriSpeech
PyTorch RNN-T FP32,BF32,FP16 Training LibriSpeech
PyTorch DistilBERT base FP32,BF32,BF16,INT8-BF16,INT8-BF32 Inference SST-2
TensorFlow BERT large FP32,BF16 Training SQuAD and MRPC
TensorFlow BERT large FP32,BF32,BF16,INT8 Inference SQuAD

Recommendation

 

Framework Model Precisions Mode Dataset
PyTorch DLRM FP32,BF32,BF16 Training Criteo Terabyte
PyTorch DLRM FP32,BF32,BF16,INT8 Inference Criteo Terabyte
PyTorch DLRM v2 FP32,BF16,FP16,INT8 Inference Criteo Terabyte

Documentation and Sources 

Get Started                                     Code Sources                                              

Main GitHub*                                                         PyTorch Dockerfiles

Release Notes                                                       TensorFlow Dockerfiles

Report Issue                                                                         

License Agreement

LEGAL NOTICE: By accessing, downloading or using this software and any required dependent software (the “Software Package”), you agree to the terms and conditions of the software license agreements for the Software Package, which may also include notices, disclaimers, or license terms for third party software included with the Software Package. Please refer to the license file for additional details.

View All Containers and Solutions 🡢