Performance Data for Intel® AI Data Center Products
Find the latest AI benchmark performance data for Intel Data Center products, including detailed hardware and software configurations.
Pretrained models, sample scripts, best practices, and tutorials
- Intel® Developer Cloud
- Intel® AI Reference Models and Jupyter Notebooks*
- AI-Optimized CPU Containers from Intel
- AI-Optimized GPU Containers from Intel
- Open Model Zoo for OpenVINO™ toolkit
- Jupyter Notebook tutorials for OpenVINO™
- AI Performance Debugging on Intel® CPUs
Measurements were taken using:
- PyTorch* Optimizations from Intel
- TensorFlow* Optimizations from Intel
- Intel® Distribution of OpenVINO™ Toolkit
3rd Generation Intel® Xeon® Scalable Processors
Intel® Xeon® Platinum 8380 Processor (40 Cores)
Deep Learning Inference
Framework Version | Model/Dataset | Usage | Precision | Throughput | Perf/Watt | Accuracy | Latency | Batch size |
---|---|---|---|---|---|---|---|---|
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | fp32 | 965.26 img/s | 1.27 | 76.13(%) | 64 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | int8 | 3428.21 img/s | 4.59 | 75.99(%) | 116 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | int8 | 3899.15 img/s | 5.17 | 76.02(%) | 68 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | fp32 | 961.96 img/s | 1.26 | 76.48(%) | 64 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | fp32 | 938.09 img/s | 1.27 | 21.31992 | 1 | |
Intel PyTorch 1.13 | ResNet50 v1.5 | Image Recognition | int8 | 3121.72 img/s | 4.26 | 6.406724 | 1 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | int8 | 3527.74 img/s | 4.87 | 5.669352 | 1 | |
Intel TensorFlow 2.11 | ResNet50 v1.5 | Image Recognition | fp32 | 908.29 img/s | 1.32 | 22.0194 | 1 | |
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | fp32 | 932.07 img/s | 1.27 | 76.46(%) | 1 | |
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | int8 | 3675.76 img/s | 5.03 | 76.47(%) | 1 | |
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | fp32 | 891.9 img/s | 1.17 | 64 | ||
OpenVINO 2022.3 | ResNet50 v1.5 | Image Recognition | int8 | 3749.98 img/s | 5.01 | 116 | ||
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | fp32 | 27.6 sent/s | 0.035 | 93.15 (F1) | 56 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | int8 | 80.26 sent/s | 0.105 | 92.92 (F1) | 56 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | fp32 | 24.7 sent/s | 0.03 | 809.7166 | 1 | |
Intel PyTorch 1.13 | BERTLarge SQuAD1.1 seq_len=384 | Natural Language Processing | int8 | 98.3 sent/s | 0.129 | 203.4588 | 1 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | int8 | 69.56 sent/s | 0.089 | 92.47 (F1) | 16 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | fp32 | 27.75 sent/s | 0.036 | 92.98(F1) | 32 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | int8 | 78.35 sent/s | 0.1 | 255.2648 | 1 | |
Intel TensorFlow 2.11 | BERTLarge seq_len=384 | Natural Language Processing | fp32 | 26.94 sent/s | 0.036 | 742.3905 | 1 | |
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | fp32 | 30.42 sent/s | 0.04 | 93.25(F1) | 1 | |
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | int8 | 95.91 sent/s | 0.13 | 92.65(F1) | 1 | |
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | fp32 | 27.15 sent/s | 0.036 | 16 | ||
OpenVINO 2022.3 | BERTLarge | Natural Language Processing | int8 | 95.42 sent/s | 0.13 | 16 | ||
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | fp32 | 21.37 img/s | 0.03 | 20.003(mAP) | 112 | |
Intel PyTorch 1.13 | SSD-ResNet34 COCO 2017 (1200 x1200) | Object Detection | int8 | 86 img/s | 0.137 | 19.9(mAP) | 112 | |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | int8 | 86.98 img/s | 0.116 | 229.9379 | 1 | |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | fp32 | 21.71 img/s | 0.029 | 921.2345 | 1 | |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | int8 | 84.78 img/s | 0.11 | 56 | ||
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | fp32 | 21.4 img/s | 0.028 | 56 | ||
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | int8 | 84.78 img/s | 0.11 | 21.4 (mAP) | 235.9047 | 1 |
Intel TensorFlow 2.11 | SSD-ResNet34 | Object Detection | fp32 | 21.4 img/s | 0.028 | 22.4(mAP) | 934.5794 | 1 |
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | fp32 | 21.58 | 0.029 | 20(mAP) | 1 | |
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | int8 | 88.82 | 0.12 | 19.9(mAP) | 1 | |
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | fp32 | 20.96 | 0.028 | 64 | ||
OpenVINO 2022.3 | SSD-ResNet34 | Object Detection | int8 | 85.95 | 0.115 | 64 | ||
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | fp32 | 269.44 fps | 0.37 | 7.31 (WER) | 64 | |
Intel PyTorch 1.13 | RNNT LibriSpeech | Speech Recognition | fp32 | 35.56 fps | 0.0449 | 562.4297 | 1 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 110.13 fps | 0.14 | 84.18(%) | 64 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 410.65 fps | 0.54 | 84.05(%) | 116 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 111.55 fps | 0.148 | 179.2918 | 1 | |
Intel PyTorch 1.13 | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 385.95 fps | 0.52 | 51.82018 | 1 | |
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 110.66 | 0.15 | 84.17(%) | 1 | |
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 1220.23 | 1.21 | 84.12(%) | 1 | |
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | fp32 | 109.59 | 0.14 | 64 | ||
OpenVINO 2022.3 | ResNeXt101 32x16d ImageNet | Image Classification | int8 | 1732.23 | 1.68 | 64 | ||
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | fp32 | 17.58 img/s | 0.024 | 37.8234.23 (bbox/segm) | 112 | |
Intel PyTorch 1.13 | MaskR-CNN COCO 2017 | Object Detection | fp32 | 20.7 img/s | 0.027 | 966.1836 | 1 | |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | fp32 | 1546948 rec/s | 2080 | 80.27(AUC) | 128 | |
Intel PyTorch 1.13 | DLRM Criteo Terabyte | Recommender | int8 | 5413627 rec/s | 7351 | 80.24(AUC) | 128 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | int8 | 98.1 sent/s | 0.126 | 26.96(%) | 448 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | fp32 | 79.34 sent/s | 0.104 | 27.16(%) | 448 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | int8 | 21.35 sent/s | 0.028 | 936.7681 | 1 | |
Intel TensorFlow 2.11 | Transformer MLPerf | Language Translation | fp32 | 13.51 sent/s | 0.018 | 1480.385 | 1 | |
Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | fp32 | 83852 rec/s | 135 | 0.238515 | 1 | |
Intel TensorFlow 2.11 | DIEN Amazon Books Data | Recommender | fp32 | 309138 rec/s | 461 | 75.39(%) | 128 | |
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | int8 | 5.12 samp/s | 0.006 | 85.09 (mean) | 3906.25 | 1 |
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | fp32 | 2.06 samp/s | 0.002 | 5.30 (mean) | 9708.738 | 1 |
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | int8 | 4.43 samp/s | 0.005 | 85.09 (mean) | 6 | |
Intel TensorFlow 2.11 | 3D-UNet | Image Segmentation | fp32 | 1.84 samp/s | 0.002 | 85.3 (mean) | 6 | |
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | fp32 | 2 samp/s | 0.003 | 0.85 (mean) | 1 | |
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | int8 | 6.99 samp/s | 0.01 | 0.85 (mean) | 1 | |
OpenVINO 2022.3 | 3D-UNet | Image Classification | fp32 | 1.83 samp/s | 0.002 | 6 | ||
OpenVINO 2022.3 | 3D-UNet | Image Segmentation | int8 | 19.64 samp/s | 0.018 | 6 |
Hardware and software configuration (measured October 24, 2022):
- Hardware configuration for Intel® Xeon® Platinum 8380 processor (formerly code named Ice Lake): 2 sockets, 40 cores, 270 watts, 16 x 64 GB DDR5 3200 memory, BIOS version SE5C620.86B.01.01.0005.2202160810, operating system: Ubuntu 22.04.1 LTS, int8 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6.0 optimized kernels integrated into Intel® Extension for PyTorch* v1.12, Intel® Extension for TensorFlow* v2.10, and Intel® oneAPI Data Analytics Library (oneDAL) 2021.2 optimized kernels integrated into Intel® Extension for Scikit-learn* v2021.2. XGBoost v1.6.2, Intel® Distribution of Modin* v0.16.2, Intel oneAPI Math Kernel Library (oneMKL) v2022.2, and Intel® Distribution of OpenVINO™ toolkit v2022.3. Measurements may vary.
- If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.