Device Configuration User Guide: Agilex™ 5 FPGAs and SoCs
ID
813773
Date
3/31/2025
Public
1. Device Configuration User Guide: Agilex™ 5 FPGAs and SoCs
2. Agilex™ 5 Configuration Details
3. Agilex™ 5 Configuration Schemes
4. Including the Reset Release IP in Your Design
5. Remote System Update (RSU)
6. Agilex™ 5 Configuration Features
7. Agilex™ 5 Debugging Guide
8. Document Revision History for the Device Configuration User Guide: Agilex™ 5 FPGAs and SoCs
2.1. Agilex™ 5 Configuration Timing Diagram
2.2. Configuration Flow Diagram
2.3. Device Response to Configuration and Reset Events
2.4. Additional Clock Requirements for HPS
2.5. Agilex™ 5 Configuration Pins
2.6. Configuration Clocks
2.7. Agilex™ 5 Configuration Time Estimation
2.8. Generating Compressed .sof File
3.1.1. Avalon® -ST Configuration Scheme Hardware Components and File Types
3.1.2. Enabling Avalon-ST Device Configuration
3.1.3. The AVST_READY Signal
3.1.4. RBF Configuration File Format
3.1.5. Avalon-ST Single-Device Configuration
3.1.6. Debugging Guidelines for the Avalon® -ST Configuration Scheme
3.1.7. IP for Use with the Avalon® -ST Configuration Scheme: Parallel Flash Loader II IP (PFL II)
3.1.7.1. Functional Description
3.1.7.2. Designing with the Parallel Flash Loader II IP for Avalon-ST Single Device Configuration
3.1.7.3. Generating the Parallel Flash Loader II IP
3.1.7.4. Constraining the Parallel Flash Loader II IP
3.1.7.5. Using the Parallel Flash Loader II IP
3.1.7.6. Supported Flash Memory Devices
3.1.7.3.1. Controlling Avalon-ST Configuration with Parallel Flash Loader II IP
3.1.7.3.2. Mapping Parallel Flash Loader II IP and Flash Address
3.1.7.3.3. Creating a Single Parallel Flash Loader II IP for Programming and Configuration
3.1.7.3.4. Creating Separate Parallel Flash Loader II IP Functions
3.1.7.4.1. Parallel Flash Loader II IP Recommended Design Constraints to FPGA Avalon-ST Pins
3.1.7.4.2. Parallel Flash Loader II IP Recommended Design Constraints for Using QSPI Flash
3.1.7.4.3. Parallel Flash Loader II IP Recommended Design Constraints for Using CFI Flash
3.1.7.4.4. Parallel Flash Loader II IP Recommended Constraints for Other Input Pins
3.1.7.4.5. Parallel Flash Loader II IP Recommended Constraints for Other Output Pins
3.2.1. AS Configuration Scheme Hardware Components and File Types
3.2.2. AS Single-Device Configuration
3.2.3. AS Using Multiple Serial Flash Devices
3.2.4. AS Configuration Timing Parameters
3.2.5. Skew Tolerance Guidelines
3.2.6. Programming Serial Flash Devices
3.2.7. Serial Flash Memory Layout
3.2.8. AS_CLK
3.2.9. Active Serial Configuration Software Settings
3.2.10. Quartus® Prime Programming Steps
3.2.11. Debugging Guidelines for the AS Configuration Scheme
5.1. Remote System Update Functional Description
5.2. Guidelines for Performing Remote System Update Functions for Non-HPS
5.3. Commands and Responses
5.4. Quad SPI Flash Layout
5.5. Generating Remote System Update Image Files Using the Programming File Generator
5.6. Remote System Update from FPGA Core Example
5.6.1. Prerequisites
5.6.2. Creating Initial Flash Image Containing Bitstreams for Factory Image and One Application Image
5.6.3. Programming Flash Memory with the Initial Remote System Update Image
5.6.4. Reconfiguring the Device with an Application or Factory Image
5.6.5. Adding an Application Image
5.6.6. Removing an Application Image
7.1. Configuration Debugging Checklist
7.2. Agilex™ 5 Configuration Architecture Overview
7.3. Understanding Configuration Status Using quartus_pgm command
7.4. Configuration File Format Differences
7.5. Understanding SEUs
7.6. Reading the Unique 64-Bit CHIP ID
7.7. Understanding and Troubleshooting Configuration Pin Behavior
7.8. Configuration Debugger Tool
7.9. CRAM Integrity Check Feature
4. Including the Reset Release IP in Your Design
Altera requires that you either use the Reset Release IP to hold your design in reset until configuration is complete.
The Reset Release IP is available in the Quartus® Prime software. This IP consists of a single output signal, nINIT_DONE. The nINIT_DONE signal is the core version of the INIT_DONE pin and has the same function in both FPGA First and HPS First configuration modes. Altera recommends that you hold your design in reset while the nINIT_DONE signal is high or while the INIT_DONE pin is low. When you instantiate the Reset Release IP in your design, the SDM drives the nINIT_DONE signal. Consequently, the IP does not consume any FPGA fabric resources, but does require routing resources.
Figure 61. Reset Release IP nINIT_DONE Internal Connection
View the video guide below for a quick walk-through to understand the importance of using Reset Release IP and how to include it in your design.
Note: The Reset Release IP for Agilex™ 5 uses the component name intel_user_rst_clkgate.