1. Agilex™ 5 Clocking and PLL Overview
2. Agilex™ 5 Clocking and PLL Architecture and Features
3. Agilex™ 5 Clocking and PLL Design Considerations
4. Clock Control Altera™ FPGA IP Core
5. IOPLL FPGA IP
6. I/O PLL Reconfiguration
7. Document Revision History for the Clocking and PLL User Guide: Agilex™ 5 FPGAs and SoCs
2.2.1. PLL Features
2.2.2. PLL Usage
2.2.3. PLL Locations
2.2.4. PLL Architecture
2.2.5. PLL Control Signals
2.2.6. PLL Feedback Modes
2.2.7. Clock Multiplication and Division
2.2.8. Programmable Phase Shift
2.2.9. Programmable Duty Cycle
2.2.10. PLL Cascading
2.2.11. PLL Input Clock Switchover
2.2.12. PLL Reconfiguration and Dynamic Phase Shift
2.2.13. PLL Calibration
6.1.1. Release Information for EMIF Calibration IP
6.1.2. Setting Up the IOPLL FPGA IP
6.1.3. Setting Up the EMIF Calibration IP
6.1.4. Connectivity Between IOPLL FPGA IP and EMIF Calibration IP
6.1.5. Axilite Interface Ports in the EMIF Calibration IP
6.1.6. Reconfiguration Guideline for HSIO I/O PLLs
6.1.7. Design Example for HSIO I/O PLL Reconfiguration
6.2.2.1. Read and Write Operations via Avalon® Memory-Mapped Interface
6.2.2.2. Enabling Reconfiguration for The Desired I/O PLL
6.2.2.3. Clearing off Calibration Statuses
6.2.2.4. Reconfiguring The I/O PLL
6.2.2.5. Enabling Recalibration for HVIO PLLs
6.2.2.6. Requesting Recalibration of I/O PLL
6.2.2.7. Clock Gating (Optional)
2.1.3.1.1. Root Clock Gate
There is one root clock gate per I/O bank and transceiver bank. This gate is a part of the periphery DCM.
The Agilex™ 5 root clock gate is intended for limited clock gating scenarios where high insertion delay can be tolerated. When you use a root clock gate, set multicycle of several clock cycles between the generation of the clock gating signal in the core and the gated clock in the periphery to meet the timing requirement. For high frequency clocks that require single-cycle gating, use sector clock gates.