1. Agilex™ 7 FPGA M-Series Clocking and PLL Overview
2. M-Series Clocking and PLL Architecture and Features
3. M-Series Clocking and PLL Design Considerations
4. Clock Control Intel® FPGA IP Core
5. IOPLL Intel® FPGA IP Core
6. I/O PLL Reconfiguration Using EMIF Calibration IP
7. Agilex™ 7 Clocking and PLL User Guide: M-Series Archives
8. Document Revision History for the Agilex™ 7 Clocking and PLL User Guide: M-Series
2.2.1. PLL Features
2.2.2. PLL Usage
2.2.3. PLL Locations
2.2.4. PLL Architecture
2.2.5. PLL Control Signals
2.2.6. PLL Feedback Modes
2.2.7. Clock Multiplication and Division
2.2.8. Programmable Phase Shift
2.2.9. Programmable Duty Cycle
2.2.10. PLL Cascading
2.2.11. PLL Input Clock Switchover
2.2.12. PLL Reconfiguration and Dynamic Phase Shift
2.2.13. PLL Calibration
3.1. Guidelines: Clock Switchover
3.2. Guidelines: Timing Closure
3.3. Guidelines: Resetting the PLL
3.4. Guidelines: Configuration Constraints
3.5. Clocking Constraints
3.6. IP Core Constraints
3.7. Guideline: Achieving 5% Duty Cycle for fOUT_EXT ≥ 300 MHz Using tx_outclk Port from LVDS SERDES Intel® FPGA IP
2.1.3.2. Clock Divider
There is one clock divider per I/O bank and transceiver bank. The clock divider is a part of the periphery DCM block and is located close to the root clock gate. The outputs of the clock divider cannot be gated by the root clock gate in the same periphery DCM block. However, this limitation does not apply to the SCLK gate. The clock divider output in the periphery DCM block can drive a SCLK gate after going through the programmable clock routing.
The clock divider has three outputs as follows:
- First output—passes through the input clock.
- Second output—divides the input clock by two.
- Third output—divides the input clock by four.
These three clock outputs are edge-aligned at the output of the clock divider.
Figure 7. Clock Divider Timing Diagram
Related Information