Visible to Intel only — GUID: vqn1712214317594
Ixiasoft
1. About the Nios® V Embedded Processor
2. Nios® V Processor Hardware System Design with Quartus® Prime Software and Platform Designer
3. Nios® V Processor Software System Design
4. Nios® V Processor Configuration and Booting Solutions
5. Nios® V Processor - Using the MicroC/TCP-IP Stack
6. Nios® V Processor Debugging, Verifying, and Simulating
7. Nios® V Processor — Remote System Update
8. Nios® V Processor — Using Custom Instruction
9. Nios® V Embedded Processor Design Handbook Archives
10. Document Revision History for the Nios® V Embedded Processor Design Handbook
2.1. Creating Nios® V Processor System Design with Platform Designer
2.2. Integrating Platform Designer System into the Quartus® Prime Project
2.3. Designing a Nios® V Processor Memory System
2.4. Clocks and Resets Best Practices
2.5. Assigning a Default Agent
2.6. Assigning a UART Agent for Printing
2.7. JTAG Signals
4.1. Introduction
4.2. Linking Applications
4.3. Nios® V Processor Booting Methods
4.4. Introduction to Nios® V Processor Booting Methods
4.5. Nios® V Processor Booting from Configuration QSPI Flash
4.6. Nios® V Processor Booting from On-Chip Memory (OCRAM)
4.7. Nios® V Processor Booting from Tightly Coupled Memory (TCM)
4.8. Summary of Nios® V Processor Vector Configuration and BSP Settings
6.2.3.2.1. Enabling Signal Tap Logic Analyzer
6.2.3.2.2. Adding Signals for Monitoring and Debugging
6.2.3.2.3. Specifying Trigger Conditions
6.2.3.2.4. Assigning the Acquisition Clock, Sample Depth, and Memory Type, and Buffer Acquisition Mode
6.2.3.2.5. Compiling the Design and Programming the Target Device
6.6.1. Prerequisites
6.6.2. Setting Up and Generating Your Simulation Environment in Platform Designer
6.6.3. Creating Nios V Processor Software
6.6.4. Generating Memory Initialization File
6.6.5. Generating System Simulation Files
6.6.6. Running Simulation in the QuestaSim Simulator Using Command Line
Visible to Intel only — GUID: vqn1712214317594
Ixiasoft
2.6. Assigning a UART Agent for Printing
Printing is useful for debugging the software application, as well as for monitoring the status of your system. Altera recommends printing basic information such as a start-up message, error message, and execution progress of the software application.
Avoid using the printf() library function under the following circumstances:
- The printf() library causes the application to stall if no host is reading output. This is applicable to the JTAG UART only.
- The printf() library consumes large amounts of program memory.