Quartus® Prime Pro Edition User Guide: Design Optimization
ID
683641
Date
9/30/2024
Public
A newer version of this document is available. Customers should click here to go to the newest version.
Answers to Top FAQs
1. Design Optimization Overview
2. Optimizing the Design Netlist
3. Netlist Optimizations and Physical Synthesis
4. Area Optimization
5. Timing Closure and Optimization
6. Analyzing and Optimizing the Design Floorplan
7. Using the ECO Compilation Flow
8. Quartus® Prime Pro Edition Design Optimization User Guide Archives
A. Quartus® Prime Pro Edition User Guides
2.1. When to Use the Netlist Viewers: Analyzing Design Problems
2.2. Quartus® Prime Design Flow with the Netlist Viewers
2.3. RTL Viewer Overview
2.4. Technology Map Viewer Overview
2.5. Netlist Viewer User Interface
2.6. Schematic View
2.7. Cross-Probing to a Source Design File and Other Quartus® Prime Windows
2.8. Cross-Probing to the Netlist Viewers from Other Quartus® Prime Windows
2.9. Viewing a Timing Path
2.10. Optimizing the Design Netlist Revision History
2.6.1. Display Schematics in Multiple Tabbed View
2.6.2. Schematic Symbols
2.6.3. Select Items in the Schematic View
2.6.4. Shortcut Menu Commands in the Schematic View
2.6.5. Filtering in the Schematic View
2.6.6. View Contents of Nodes in the Schematic View
2.6.7. Moving Nodes in the Schematic View
2.6.8. View LUT Representations in the Technology Map Viewer
2.6.9. Zoom Controls
2.6.10. Navigating with the Bird's Eye View
2.6.11. Partition the Schematic into Pages
2.6.12. Follow Nets Across Schematic Pages
4.2.3.1. Guideline: Optimize Source Code
4.2.3.2. Guideline: Optimize Synthesis for Area, Not Speed
4.2.3.3. Guideline: Restructure Multiplexers
4.2.3.4. Guideline: Perform WYSIWYG Primitive Resynthesis with Balanced or Area Setting
4.2.3.5. Guideline: Use Register Packing
4.2.3.6. Guideline: Remove Fitter Constraints
4.2.3.7. Guideline: Flatten the Hierarchy During Synthesis
4.2.3.8. Guideline: Re-target Memory Blocks
4.2.3.9. Guideline: Use Physical Synthesis Options to Reduce Area
4.2.3.10. Guideline: Retarget or Balance DSP Blocks
4.2.3.11. Guideline: Use a Larger Device
4.2.3.12. Guideline: Reduce Global Signal Congestion
4.2.3.13. Guideline: Report Pipelining Information
4.2.4.1. Guideline: Set Auto Packed Registers to Sparse or Sparse Auto
4.2.4.2. Guideline: Set Fitter Aggressive Routability Optimizations to Always
4.2.4.3. Guideline: Increase Router Effort Multiplier
4.2.4.4. Guideline: Remove Fitter Constraints
4.2.4.5. Guideline: Optimize Synthesis for Routability
4.2.4.6. Guideline: Optimize Source Code
4.2.4.7. Guideline: Use a Larger Device
5.1. Optimize Multi Corner Timing
5.2. Optimize Critical Paths
5.3. Optimize Critical Chains
5.4. Design Evaluation for Timing Closure
5.5. Timing Optimization
5.6. Periphery to Core Register Placement and Routing Optimization
5.7. Scripting Support
5.8. Timing Closure and Optimization Revision History
5.5.1. Correct Design Assistant Rule Violations
5.5.2. Implement Fast Forward Timing Closure Recommendations
5.5.3. Review Timing Path Details
5.5.4. Try Optional Fitter Settings
5.5.5. Back-Annotating Optimized Assignments
5.5.6. Optimize Settings with Design Space Explorer II
5.5.7. Aggregating and Comparing Compilation Results with Exploration Dashboard
5.5.8. I/O Timing Optimization Techniques
5.5.9. Register-to-Register Timing Optimization Techniques
5.5.10. Metastability Analysis and Optimization Techniques
5.5.3.1. Report Timing
5.5.3.2. Report Logic Depth
5.5.3.3. Report Neighbor Paths
5.5.3.4. Report Register Spread
5.5.3.5. Report Route Net of Interest
5.5.3.6. Report Retiming Restrictions
5.5.3.7. Report Pipelining Information
5.5.3.8. Report CDC Viewer
5.5.3.9. Timing Closure Recommendations
5.5.3.10. Global Network Buffers
5.5.3.11. Resets and Global Networks
5.5.3.12. Suspicious Setup
5.5.3.13. Auto Shift Register Replacement
5.5.3.14. Clocking Architecture
5.5.8.1. I/O Timing Constraints
5.5.8.2. Optimize IOC Register Placement for Timing Logic Option
5.5.8.3. Fast Input, Output, and Output Enable Registers
5.5.8.4. Programmable Delays
5.5.8.5. Use PLLs to Shift Clock Edges
5.5.8.6. Use Fast Regional Clock Networks and Regional Clocks Networks
5.5.8.7. Spine Clock Limitations
5.5.9.1. Optimize Source Code
5.5.9.2. Improving Register-to-Register Timing
5.5.9.3. Physical Synthesis Optimizations
5.5.9.4. Set Power Optimization During Synthesis to Normal Compilation
5.5.9.5. Optimize Synthesis for Performance, Not Area
5.5.9.6. Flatten the Hierarchy During Synthesis
5.5.9.7. Set the Synthesis Effort to High
5.5.9.8. Change Adder Tree Styles
5.5.9.9. Duplicate Registers for Fan-Out Control
5.5.9.10. Prevent Shift Register Inference
5.5.9.11. Use Other Synthesis Options Available in Your Synthesis Tool
5.5.9.12. Fitter Seed
5.5.9.13. Set Maximum Router Timing Optimization Level
5.5.9.14. Register-to-Register Timing Analysis
5.5.9.14.1. Tips for Analyzing Failing Paths
5.5.9.14.2. Tips for Analyzing Failing Clock Paths that Cross Clock Domains
5.5.9.14.3. Tips for Critical Path Analysis
5.5.9.14.4. Tips for Creating a .tcl Script to Monitor Critical Paths Across Compiles
5.5.9.14.5. Global Routing Resources
5.5.9.14.6. Register RAMS and DSPs
6.1. Location Assignment Optimization Guidelines
6.2. Design Floorplan Analysis in Chip Planner
6.3. Defining Logic Lock Placement Constraints
6.4. Defining Virtual Pins
6.5. Using Logic Lock Regions in Combination with Design Partitions
6.6. Creating Clock Region Assignments in Chip Planner
6.7. Scripting Support
6.8. Analyzing and Optimizing the Design Floorplan Revision History
6.2.1. Starting the Chip Planner
6.2.2. Chip Planner GUI
6.2.3. Viewing Design Elements in Chip Planner
6.2.4. Finding Design Elements in the Chip Planner
6.2.5. Exploring Paths in the Chip Planner
6.2.6. Viewing Assignments in the Chip Planner
6.2.7. Viewing High-Speed and Low-Power Tiles in the Chip Planner
6.2.8. Viewing Design Partition Placement
6.2.3.1. Viewing Architecture-Specific Design Information in Chip Planner
6.2.3.2. Viewing Available Clock Networks in Chip Planner
6.2.3.3. Viewing Clock Sector Utilization in Chip Planner
6.2.3.4. Viewing Routing Congestion in Chip Planner
6.2.3.5. Viewing I/O Banks in Chip Planner
6.2.3.6. Viewing High-Speed Serial Interfaces (HSSI) in Chip Planner
6.2.3.7. Viewing Source and Destination Nodes in Chip Planner
6.2.3.8. Viewing Fan-In and Fan-Out in Chip Planner
6.2.3.9. Viewing Immediate Fan-In and Fan-Out in Chip Planner
6.2.3.10. Viewing the Selected Contents in Chip Planner
6.2.3.11. Viewing the Location and Utilization of Device Resources in Chip Planner
6.2.3.12. Viewing Module Placement by Cross-Probing to Chip Planner
6.3.1. The Logic Lock Regions Window
6.3.2. Defining Logic Lock Regions
6.3.3. Customizing the Shape of Logic Lock Regions
6.3.4. Assigning Device Pins to Logic Lock Regions
6.3.5. Viewing Connections Between Logic Lock Regions in Chip Planner
6.3.6. Example: Placement Best Practices for Arria® 10 FPGAs
6.3.7. Migrating Assignments between Quartus® Prime Standard Edition and Quartus® Prime Pro Edition
7.4.1. ECO Command Quick Reference
7.4.2. make_connection
7.4.3. remove_connection
7.4.4. modify_lutmask
7.4.5. adjust_pll_refclk
7.4.6. modify_io_slew_rate
7.4.7. modify_io_current_strength
7.4.8. modify_io_delay_chain
7.4.9. create_new_node
7.4.10. remove_node
7.4.11. place_node
7.4.12. unplace_node
7.4.13. create_wirelut
6.5. Using Logic Lock Regions in Combination with Design Partitions
You can optimize timing in a design by placing entities that share significant logical connectivity close to each other on the device.
By default, the Fitter attempts to place closely connected entities in the same area of the device. However, without constraint, this same placement is not assured for each compilation. You can use Logic Lock regions, together with design partitions, to ensure that logically connected entities retain optimal placement from one compilation to the next.
Using Logic Lock regions in combination with design partitions allows you to preserve the location and performance of a block, so that the Fitter focuses time and effort on other portions of the design.
Note: For more details about these techniques, refer to Quartus Prime Pro Edition User Guide: Block-Based Design
To use the Design Partition Planner in conjunction with the Chip Planner to readily create partitions and define Logic Lock regions, follow these steps:
- On the Compilation Dashboard, double-click Plan to compile through that Fitter stage, or run a full compilation.
- Open the Chip Planner and the Design Partition Planner:
- Click Tools > Chip Planner
- Click Tools > Design Partition Planner
- In the Chip Planner, double-click Report Design Partitions in the Tasks pane. The Chip Planner displays the physical locations of design partitions using the same colors as the entities in the Design Partition Planner.
Figure 128. Design Partition Planner Overlaying Chip Planner
- In the Chip Planner, click View > Bird's Eye View
- In the Design Partition Planner, drag all the larger entities out from their parents. Alternatively, you can right-click the entity and click Extract from Parent.
The Chip Planner displays the physical placement of the entities shown in the Design Partition Planner, with consistent colors between the two tools. You can view physical placement in the Chip Planner and connectivity in the Design Partition Planner.
- Identify entities that are unsuitable to place in Logic Lock regions:
- The Chip Planner shows an entity to be physically dispersed over noncontiguous areas of the device.
- The Design Partition Planner shows an entity to have a large number of connections to other entities.
- Drag the entities that are unsuitable for placement in Logic Lock regions back to the parent entities. Alternatively, right-click the entity and click Collapse to Parent.
- Create a partition for each remaining entity by right-clicking the entity, and then clicking Create Design Partition.
- Create a Logic Lock region for each partition by right-clicking the partition, and then clicking Create Logic Lock Region.