Agilex™ 7 Hard Processor System Technical Reference Manual
ID
683567
Date
1/31/2025
Public
1. Agilex™ 7 Hard Processor System Technical Reference Manual Revision History
2. Introduction to the Hard Processor System
3. Cortex-A53 MPCore Processor
4. Cache Coherency Unit
5. System Memory Management Unit
6. System Interconnect
7. Bridges
8. DMA Controller
9. On-Chip RAM
10. Error Checking and Correction Controller
11. Clock Manager
12. System Manager
13. Reset Manager
14. Hard Processor System I/O Pin Multiplexing
15. NAND Flash Controller
16. SD/MMC Controller
17. Ethernet Media Access Controller
18. USB 2.0 OTG Controller
19. SPI Controller
20. I2C Controller
21. UART Controller
22. General-Purpose I/O Interface
23. Timers
24. Watchdog Timers
25. CoreSight Debug and Trace
A. Booting and Configuration
B. Accessing the Secure Device Manager Quad SPI Flash Controller through HPS
C. Operational Status of the HPS to the FPGA Logic
2.2.1. HPS Block Diagram
2.2.2. Cortex-A53 MPCore Processor
2.2.3. Cache Coherency Unit
2.2.4. System Memory Management Unit
2.2.5. HPS Interfaces
2.2.6. System Interconnect
2.2.7. On-Chip RAM
2.2.8. Flash Memory Controllers
2.2.9. System Modules
2.2.10. Interface Peripherals
2.2.11. CoreSight* Debug and Trace
2.2.12. Hard Processor System I/O Pin Multiplexing
3.5.1. Exception Levels
3.5.2. Virtualization
3.5.3. Memory Management Unit
3.5.4. Level 1 Caches
3.5.5. Level 2 Memory System
3.5.6. Snoop Control Unit
3.5.7. Cryptographic Extensions
3.5.8. NEON Multimedia Processing Engine
3.5.9. Floating Point Unit
3.5.10. ACE Bus Interface
3.5.11. Abort Handling
3.5.12. Cache Protection
3.5.13. Generic Interrupt Controller
3.5.14. Generic Timers
3.5.15. Debug Modules
3.5.16. Cache Coherency Unit
3.5.17. Clock Sources
5.4.1. Translation Stages
5.4.2. Exception Levels
5.4.3. Translation Regimes
5.4.4. Translation Buffer Unit
5.4.5. Translation Control Unit
5.4.6. Security State Determination
5.4.7. Stream ID
5.4.8. Quality of Service Arbitration
5.4.9. System Memory Management Unit Interrupts
5.4.10. System Memory Management Unit Reset
5.4.11. System Memory Management Unit Clocks
15.1. NAND Flash Controller Features
15.2. NAND Flash Controller Block Diagram and System Integration
15.3. NAND Flash Controller Signal Descriptions
15.4. Functional Description of the NAND Flash Controller
15.5. NAND Flash Controller Programming Model
15.6. NAND Flash Controller Address Map and Register Definitions
15.5.1.1. NAND Flash Controller Optimization Sequence
15.5.1.2. Device Initialization Sequence
15.5.1.3. Device Operation Control
15.5.1.4. ECC Enabling
15.5.1.5. NAND Flash Controller Performance Registers
15.5.1.6. Interrupt and DMA Enabling
15.5.1.7. Timing Registers
15.5.1.8. Registers to Ignore
16.4.2.5.1. Internal DMA Controller Descriptors
16.4.2.5.2. Internal DMA Controller Descriptor Address
16.4.2.5.3. Internal DMA Controller Descriptor Fields
16.4.2.5.4. Host Bus Burst Access
16.4.2.5.5. Host Data Buffer Alignment
16.4.2.5.6. Buffer Size Calculations
16.4.2.5.7. Internal DMA Controller Interrupts
16.4.2.5.8. Internal DMA Controller Functional State Machine†
16.4.3.1.1. Load Command Parameters
16.4.3.1.2. Send Command and Receive Response
16.4.3.1.3. Send Response to BIU
16.4.3.1.4. Driving P-bit to the CMD Pin
16.4.3.1.5. Polling the CCS
16.4.3.1.6. CCS Detection and Interrupt to Host Processor
16.4.3.1.7. CCS Timeout
16.4.3.1.8. Send CCSD Command
16.4.3.1.9. I/O transmission delay (NACIO Timeout)
16.5.1. Software and Hardware Restrictions†
16.5.2. Initialization
16.5.3. Controller/DMA/FIFO Buffer Reset Usage
16.5.4. Non-Data Transfer Commands
16.5.5. Data Transfer Commands
16.5.6. Transfer Stop and Abort Commands
16.5.7. Internal DMA Controller Operations
16.5.8. Commands for SDIO Card Devices
16.5.9. CE-ATA Data Transfer Commands
16.5.10. Card Read Threshold
16.5.11. Interrupt and Error Handling
16.5.12. Booting Operation for eMMC and MMC
16.5.12.1. Boot Operation by Holding Down the CMD Line
16.5.12.2. Boot Operation for eMMC Card Device
16.5.12.3. Boot Operation for Removable MMC4.3, MMC4.4 and MMC4.41 Cards
16.5.12.4. Alternative Boot Operation
16.5.12.5. Alternative Boot Operation for eMMC Card Devices
16.5.12.6. Alternative Boot Operation for MMC4.3 Cards
17.1. Features of the Ethernet MAC
17.2. EMAC Block Diagram and System Integration
17.3. Distributed Virtual Memory Support
17.4. EMAC Controller Signal Description
17.5. EMAC Internal Interfaces
17.6. Functional Description of the EMAC
17.7. Ethernet MAC Programming Model
17.8. Ethernet MAC Address Map and Register Definitions
17.6.1. Transmit and Receive Data FIFO Buffers
17.6.2. DMA Controller
17.6.3. Descriptor Overview
17.6.4. IEEE 1588-2002 Timestamps
17.6.5. IEEE 1588-2008 Advanced Timestamps
17.6.6. IEEE 802.3az Energy Efficient Ethernet
17.6.7. Checksum Offload
17.6.8. Frame Filtering
17.6.9. Clocks and Resets
17.6.10. Interrupts
17.6.8.1.1. Unicast Destination Address Filter
17.6.8.1.2. Multicast Destination Address Filter
17.6.8.1.3. Hash or Perfect Address Filter
17.6.8.1.4. Broadcast Address Filter
17.6.8.1.5. Unicast Source Address Filter
17.6.8.1.6. Inverse Filtering Operation (Invert the Filter Match Result at Final Output)
17.6.8.1.7. Destination and Source Address Filtering Summary
17.7.1. System Level EMAC Configuration Registers
17.7.2. EMAC FPGA Interface Initialization
17.7.3. EMAC HPS Interface Initialization
17.7.4. DMA Initialization
17.7.5. EMAC Initialization and Configuration
17.7.6. Performing Normal Receive and Transmit Operation
17.7.7. Stopping and Starting Transmission
17.7.8. Programming Guidelines for Energy Efficient Ethernet
17.7.9. Programming Guidelines for Flexible Pulse-Per-Second (PPS) Output
18.1. Features of the USB OTG Controller
18.2. Block Diagram and System Integration
18.3. Distributed Virtual Memory Support
18.4. USB 2.0 ULPI PHY Signal Description
18.5. Functional Description of the USB OTG Controller
18.6. USB OTG Controller Programming Model
18.7. USB 2.0 OTG Controller Address Map and Register Definitions
24.4.1. Setting the Timeout Period Values
24.4.2. Selecting the Output Response Mode
24.4.3. Enabling and Initially Starting a Watchdog Timers
24.4.4. Reloading a Watchdog Counter
24.4.5. Pausing a Watchdog Timers
24.4.6. Disabling and Stopping a Watchdog Timers
24.4.7. Watchdog Timers State Machine
25.1. Features of CoreSight Debug and Trace
25.2. Arm* CoreSight Documentation
25.3. CoreSight Debug and Trace Block Diagram
25.4. Functional Description of CoreSight Debug and Trace
25.5. CoreSight Debug and Trace Programming Model
25.6. CoreSight Debug and Trace Address Map and Register Definitions
25.4.1. Debug Access Port
25.4.2. CoreSight SoC-400 Timestamp Generator
25.4.3. System Trace Macrocell
25.4.4. Trace Funnel
25.4.5. CoreSight Trace Memory Controller
25.4.6. AMBA Trace Bus Replicator
25.4.7. Trace Port Interface Unit
25.4.8. NoC Trace Ports
25.4.9. Embedded Cross Trigger System
25.4.10. Embedded Trace Macrocell
25.4.11. HPS Debug APB Interface
25.4.12. FPGA Interface
25.4.13. Debug Clocks
25.4.14. Debug Resets
B.1. Features of the Quad SPI Flash Controller
B.2. Taking Ownership of Quad SPI Controller
B.3. Quad SPI Flash Controller Block Diagram and System Integration
B.4. Quad SPI Flash Controller Signal Description
B.5. Functional Description of the Quad SPI Flash Controller
B.6. Quad SPI Flash Controller Programming Model
B.7. Accessing the SDM Quad SPI Flash Controller Through HPS Address Map and Register Definitions
B.5.1. Overview
B.5.2. Data Slave Interface
B.5.3. SPI Legacy Mode
B.5.4. Register Slave Interface
B.5.5. Local Memory Buffer
B.5.6. Arbitration between Direct/Indirect Access Controller and STIG
B.5.7. Configuring the Flash Device
B.5.8. XIP Mode
B.5.9. Write Protection
B.5.10. Data Slave Sequential Access Detection
B.5.11. Clocks
B.5.12. Resets
B.5.13. Interrupts
13.1. Functional Description
The reset manager performs the following functions:
- Accepts reset requests from the SDM, and software.
- Generates reset signals to modules in the HPS and to the FPGA fabric. The following actions generate reset signals:
- Using software to write the MPUMODRST, PER0MODRST, PER1MODRST, BRGMODRST, COLDMODRST, or DBGMODRST module reset control registers.
- Asserting the HPS_COLD_nRESET signal triggers the reset controller and s2f_cold_rst signal.
- Provides reset handshaking signals to support system reset behavior.
Figure 34. Reset Manager Block Diagram
Multiple reset requests can be driven to the reset manager at the same time. Higher priority reset requests can preempt lower priority requests if the lower priority request has not been committed, that is if the reset acknowledgment process is incomplete. If a lower priority request is committed, then a higher priority request is delayed until the lower priority reset completes. There is no priority difference among reset requests within the same domain.
Ongoing Reset | Start of New Reset | Action Taken by Reset Manager |
---|---|---|
Cold reset | Cold reset | The reset manager extends the reset period for all the module reset outputs until all cold reset requests are removed. If a cold reset request is issued while the reset manager is removing other modules out of the reset state, the reset manager returns those modules back to the reset state. |
Warm reset | Watchdog reset | If warm reset is not committed:
|
Warm reset | Cold reset | If warm reset is not committed:
|
Warm reset | Any other reset initiated by software | Continue warm reset regardless of whether warm reset is committed or not. |
Watchdog reset | Cold reset | If watchdog reset is not committed:
|
Watchdog reset | Warm reset | Continue watchdog reset. |
Software initiated CPU warm reset | Warm reset | First, complete software initiated reset and then execute warm reset. |
Software initiated POR reset / L2 reset | Warm reset | First, complete software initiated reset and then execute warm reset. |
Software initiated CPU warm reset | Watchdog reset | Stop software initiated reset, and execute watchdog reset. |
Software initiated POR reset | Watchdog reset | Stop software initiated reset, and execute watchdog reset. |
Software initiated CPU warm reset | Cold reset | Stop software initiated reset, and execute cold reset. |
Software initiated L2 reset | Cold reset | Stop software initiated reset, and execute cold reset. |
The reset manager contains the stat register that indicates which reset source caused a reset. After a cold reset completes, the reset manager clears all bits except for the bit(s) that indicate the source of the cold reset. If multiple cold reset requests overlap with each other, the bit corresponding to the source that de-asserts its request last is set.
After a warm reset is complete, the bit(s) that indicate the source of the warm reset are set to 1. A warm reset does not clear any bits in the stat register, therefore you may want clear them after determining the reset source. Any bit can be manually cleared by writing a 1 to it.