Quartus® Prime Pro Edition User Guide: Third-party Synthesis
ID
683122
Date
5/23/2025
Public
1.1. About Precision RTL Synthesis Support
1.2. Precision RTL Integration Flow
1.3. Altera Device Family Support
1.4. Precision RTL Generated Files
1.5. Creating and Compiling a Project in the Precision Synthesis Software
1.6. Mapping the Design with Precision RTL
1.7. Synthesizing the Design and Evaluating the Results
1.8. Guidelines for Altera IP Cores and Architecture-Specific Features
1.9. Siemens EDA Precision* RTL Synthesis Support Revision History
1.8.1. Instantiating IP Cores With IP Catalog-Generated Verilog HDL Files
1.8.2. Instantiating IP Cores With IP Catalog-Generated VHDL Files
1.8.3. Instantiating Intellectual Property With the IP Catalog and Parameter Editor
1.8.4. Instantiating Black Box IP Functions With Generated Verilog HDL Files
1.8.5. Instantiating Black Box IP Functions With Generated VHDL Files
1.8.6. Inferring Altera IP Cores from HDL Code
2.1. About Synplify Support
2.2. Synplify Software Integration Flow
2.3. Hardware Description Language Support
2.4. Altera Device Family Support
2.5. Tool Setup
2.6. Synplify Software Generated Files
2.7. Design Constraints Support
2.8. Simulation and Formal Verification
2.9. Synplify Optimization Strategies
2.10. Guidelines for Altera IP Cores and Architecture-Specific Features
2.11. Synopsys Synplify* Support Revision History
2.12. Quartus Prime Pro Edition User Guide: Third-Party Synthesis Archives
2.10.1.1. Instantiating Altera IP Cores with IP Catalog Generated Verilog HDL Files
2.10.1.2. Instantiating Altera IP Cores with IP Catalog Generated VHDL Files
2.10.1.3. Changing Synplify’s Default Behavior for Instantiated Altera IP Cores
2.10.1.4. Instantiating Intellectual Property with the IP Catalog and Parameter Editor
2.10.1.5. Instantiating Black Box IP Cores with Generated Verilog HDL Files
2.10.1.6. Instantiating Black Box IP Cores with Generated VHDL Files
2.10.1.7. Other Synplify Software Attributes for Creating Black Boxes
2.9.3.5. False Paths
False paths are paths that should be ignored during timing analysis, or should be assigned low (or no) priority during optimization. Some examples of false paths include slow asynchronous resets, and test logic that has been added to the design. Set these paths in the False Paths tab of the SCOPE window, or use the define_false_path attribute.