A newer version of this document is available. Customers should click here to go to the newest version.
gels_batch_scratchpad_size (Strided Version)
Computes size of scratchpad memory required for gels_batch (Strided Version) function. This routine belongs to the oneapi::mkl::lapack namespace.
Description
Computes the number of elements of type T the scratchpad memory to be passed to the gels_batch (Strided Version) function must be able to hold.
API
Syntax
 namespace oneapi::mkl::lapack {
   int64_t gels_batch_scratchpad_size(sycl::queue &queue,
   mkl::transpose trans,
   int64_t m,
   int64_t n,
   int64_t nrhs,
   int64_t lda,
   int64_t stride_a,
   int64_t ldb,
   int64_t stride_b,
   int64_t batch_size)
} 
    
   Input Parameters
- queue
 -  
     
Device queue where calculations will be performed.
 - trans
 -  
     
Operation assumed to be done on input matrices Ai. Only trans = mkl::transpose::nontrans case is currently supported.
 - m
 -  
     
The number of rows of the matrices Ai and Bi (m ≥ 0).
 - n
 -  
     
The number of columns of the matrices Ai (n ≥ 0).
 - nrhs
 -  
     
The number of right-hand sides: the number of columns in Bi (nrhs ≥ 0).
 - lda
 -  
     
The leading dimension of Ai (lda ≥ max(1,m)).
 - stride_a
 -  
     
The stride between the beginnings of matrices Ai inside the batch array a (stride_a ≥ max(1, lda * n)).
 - ldb
 -  
     
The leading dimensions of Bi (ldb ≥ max(1,max(m,n))).
 - stride_b
 -  
     
The stride between the beginnings of matrices Bi inside the batch array b (stride_b ≥ max(1, ldb * nrhs)).
 - batch_size
 -  
     
The number of problems in a batch (batch_size ≥ 0).
 
Exceptions
Exception  |  
        Description  |  
       
|---|---|
mkl::lapack::exception  |  
        This exception is thrown when an incorrect argument value is supplied. You can determine the position of the incorrect argument by the info() method of the exception object.  |  
       
Return Values
The number of elements of type T the scratchpad memory to be passed to the gels_batch (Strided Version) function must be able to hold.