Intel® oneAPI Deep Neural Network Developer Guide and Reference
enum dnnl_alg_kind_t
Overview
Kinds of algorithms. More…
#include <dnnl_types.h>
enum dnnl_alg_kind_t
{
    dnnl_alg_kind_undef,
    dnnl_convolution_direct               = 0x1,
    dnnl_convolution_winograd             = 0x2,
    dnnl_convolution_auto                 = 0x3,
    dnnl_deconvolution_direct             = 0xa,
    dnnl_deconvolution_winograd           = 0xb,
    dnnl_eltwise_relu                     = 0x20,
    dnnl_eltwise_tanh,
    dnnl_eltwise_elu,
    dnnl_eltwise_square,
    dnnl_eltwise_abs,
    dnnl_eltwise_sqrt,
    dnnl_eltwise_linear,
    dnnl_eltwise_soft_relu,
    dnnl_eltwise_hardsigmoid,
    dnnl_eltwise_logistic,
    dnnl_eltwise_exp,
    dnnl_eltwise_gelu_tanh,
    dnnl_eltwise_swish,
    dnnl_eltwise_log,
    dnnl_eltwise_clip,
    dnnl_eltwise_clip_v2,
    dnnl_eltwise_pow,
    dnnl_eltwise_gelu_erf,
    dnnl_eltwise_round,
    dnnl_eltwise_mish,
    dnnl_eltwise_hardswish,
    dnnl_eltwise_relu_use_dst_for_bwd     = 0x100,
    dnnl_eltwise_tanh_use_dst_for_bwd,
    dnnl_eltwise_elu_use_dst_for_bwd,
    dnnl_eltwise_sqrt_use_dst_for_bwd,
    dnnl_eltwise_logistic_use_dst_for_bwd,
    dnnl_eltwise_exp_use_dst_for_bwd,
    dnnl_eltwise_clip_v2_use_dst_for_bwd,
    dnnl_pooling_max                      = 0x1ff,
    dnnl_pooling_avg_include_padding      = 0x2ff,
    dnnl_pooling_avg_exclude_padding      = 0x3ff,
    dnnl_lrn_across_channels              = 0xaff,
    dnnl_lrn_within_channel               = 0xbff,
    dnnl_vanilla_rnn                      = 0x1fff,
    dnnl_vanilla_lstm                     = 0x2fff,
    dnnl_vanilla_gru                      = 0x3fff,
    dnnl_lbr_gru                          = 0x4fff,
    dnnl_vanilla_augru                    = 0x5fff,
    dnnl_lbr_augru                        = 0x6fff,
    dnnl_binary_add                       = 0x1fff0,
    dnnl_binary_mul                       = 0x1fff1,
    dnnl_binary_max                       = 0x1fff2,
    dnnl_binary_min                       = 0x1fff3,
    dnnl_binary_div                       = 0x1fff4,
    dnnl_binary_sub                       = 0x1fff5,
    dnnl_binary_ge                        = 0x1fff6,
    dnnl_binary_gt                        = 0x1fff7,
    dnnl_binary_le                        = 0x1fff8,
    dnnl_binary_lt                        = 0x1fff9,
    dnnl_binary_eq                        = 0x1fffa,
    dnnl_binary_ne                        = 0x1fffb,
    dnnl_binary_select                    = 0x1fffc,
    dnnl_resampling_nearest               = 0x2fff0,
    dnnl_resampling_linear                = 0x2fff1,
    dnnl_reduction_max,
    dnnl_reduction_min,
    dnnl_reduction_sum,
    dnnl_reduction_mul,
    dnnl_reduction_mean,
    dnnl_reduction_norm_lp_max,
    dnnl_reduction_norm_lp_sum,
    dnnl_reduction_norm_lp_power_p_max,
    dnnl_reduction_norm_lp_power_p_sum,
    dnnl_softmax_accurate                 = 0x30000,
    dnnl_softmax_log,
}; 
  Detailed Documentation
Kinds of algorithms.
Enum Values
dnnl_convolution_direct 
   Direct convolution.
dnnl_convolution_winograd 
   Winograd convolution.
dnnl_convolution_auto 
   Convolution algorithm(either direct or Winograd) is chosen just in time.
dnnl_deconvolution_direct 
   Direct deconvolution.
dnnl_deconvolution_winograd 
   Winograd deconvolution.
dnnl_eltwise_relu 
   Eltwise: ReLU.
dnnl_eltwise_tanh 
   Eltwise: hyperbolic tangent non-linearity (tanh)
dnnl_eltwise_elu 
   Eltwise: exponential linear unit (elu)
dnnl_eltwise_square 
   Eltwise: square.
dnnl_eltwise_abs 
   Eltwise: abs.
dnnl_eltwise_sqrt 
   Eltwise: square root.
dnnl_eltwise_linear 
   Eltwise: linear.
dnnl_eltwise_soft_relu 
   Eltwise: soft_relu.
dnnl_eltwise_hardsigmoid 
   Eltwise: hardsigmoid.
dnnl_eltwise_logistic 
   Eltwise: logistic.
dnnl_eltwise_exp 
   Eltwise: exponent.
dnnl_eltwise_gelu_tanh 
   Eltwise: gelu.
dnnl_eltwise_swish 
   Eltwise: swish.
dnnl_eltwise_log 
   Eltwise: natural logarithm.
dnnl_eltwise_clip 
   Eltwise: clip.
dnnl_eltwise_clip_v2 
   Eltwise: clip version 2.
dnnl_eltwise_pow 
   Eltwise: pow.
dnnl_eltwise_gelu_erf 
   Eltwise: erf-based gelu.
dnnl_eltwise_round 
   Eltwise: round.
dnnl_eltwise_mish 
   Eltwise: mish.
dnnl_eltwise_hardswish 
   Eltwise: hardswish.
dnnl_eltwise_relu_use_dst_for_bwd 
   Eltwise: ReLU (dst for backward)
dnnl_eltwise_tanh_use_dst_for_bwd 
   Eltwise: hyperbolic tangent non-linearity (tanh) (dst for backward)
dnnl_eltwise_elu_use_dst_for_bwd 
   Eltwise: exponential linear unit (elu) (dst for backward)
dnnl_eltwise_sqrt_use_dst_for_bwd 
   Eltwise: square root (dst for backward)
dnnl_eltwise_logistic_use_dst_for_bwd 
   Eltwise: logistic (dst for backward)
dnnl_eltwise_exp_use_dst_for_bwd 
   Eltwise: exp (dst for backward)
dnnl_eltwise_clip_v2_use_dst_for_bwd 
   Eltwise: clip version 2 (dst for backward)
dnnl_pooling_max 
   Max pooling.
dnnl_pooling_avg_include_padding 
   Average pooling include padding.
dnnl_pooling_avg_exclude_padding 
   Average pooling exclude padding.
dnnl_lrn_across_channels 
   Local response normalization (LRN) across multiple channels.
dnnl_lrn_within_channel 
   LRN within a single channel.
dnnl_vanilla_rnn 
   RNN cell.
dnnl_vanilla_lstm 
   LSTM cell.
dnnl_vanilla_gru 
   GRU cell.
dnnl_lbr_gru 
   GRU cell with linear before reset.
Modification of original GRU cell. Differs from dnnl_vanilla_gru in how the new memory gate is calculated:
 
   Primitive expects 4 biases on input: 
dnnl_vanilla_augru 
   AUGRU cell.
dnnl_lbr_augru 
   AUGRU cell with linear before reset.
dnnl_binary_add 
   Binary add.
dnnl_binary_mul 
   Binary mul.
dnnl_binary_max 
   Binary max.
dnnl_binary_min 
   Binary min.
dnnl_binary_div 
   Binary div.
dnnl_binary_sub 
   Binary sub.
dnnl_binary_ge 
   Binary greater or equal.
dnnl_binary_gt 
   Binary greater than.
dnnl_binary_le 
   Binary less or equal.
dnnl_binary_lt 
   Binary less than.
dnnl_binary_eq 
   Binary equal.
dnnl_binary_ne 
   Binary not equal.
dnnl_binary_select 
   Binary select.
dnnl_resampling_nearest 
   Nearest Neighbor Resampling Method.
dnnl_resampling_linear 
   Linear Resampling Method.
dnnl_reduction_max 
   Reduction using max.
dnnl_reduction_min 
   Reduction using min.
dnnl_reduction_sum 
   Reduction using sum.
dnnl_reduction_mul 
   Reduction using mul.
dnnl_reduction_mean 
   Reduction using mean.
dnnl_reduction_norm_lp_max 
   Reduction using lp norm.
dnnl_reduction_norm_lp_sum 
   Reduction using lp norm.
dnnl_reduction_norm_lp_power_p_max 
   Reduction using lp norm without final pth-root.
dnnl_reduction_norm_lp_power_p_sum 
   Reduction using lp norm without final pth-root.
dnnl_softmax_accurate 
   Softmax.
dnnl_softmax_log 
   Logsoftmax.