Intel® oneAPI Deep Neural Network Developer Guide and Reference
A newer version of this document is available. Customers should click here to go to the newest version.
enum dnnl::algorithm
Overview
Kinds of algorithms. More…
#include <dnnl.hpp>
enum algorithm
{
    undef                            = dnnl_alg_kind_undef,
    convolution_auto                 = dnnl_convolution_auto,
    convolution_direct               = dnnl_convolution_direct,
    convolution_winograd             = dnnl_convolution_winograd,
    deconvolution_direct             = dnnl_deconvolution_direct,
    deconvolution_winograd           = dnnl_deconvolution_winograd,
    eltwise_relu                     = dnnl_eltwise_relu,
    eltwise_tanh                     = dnnl_eltwise_tanh,
    eltwise_elu                      = dnnl_eltwise_elu,
    eltwise_square                   = dnnl_eltwise_square,
    eltwise_abs                      = dnnl_eltwise_abs,
    eltwise_sqrt                     = dnnl_eltwise_sqrt,
    eltwise_swish                    = dnnl_eltwise_swish,
    eltwise_linear                   = dnnl_eltwise_linear,
    eltwise_soft_relu                = dnnl_eltwise_soft_relu,
    eltwise_mish                     = dnnl_eltwise_mish,
    eltwise_logistic                 = dnnl_eltwise_logistic,
    eltwise_exp                      = dnnl_eltwise_exp,
    eltwise_gelu_tanh                = dnnl_eltwise_gelu_tanh,
    eltwise_gelu_erf                 = dnnl_eltwise_gelu_erf,
    eltwise_log                      = dnnl_eltwise_log,
    eltwise_clip                     = dnnl_eltwise_clip,
    eltwise_clip_v2                  = dnnl_eltwise_clip_v2,
    eltwise_pow                      = dnnl_eltwise_pow,
    eltwise_round                    = dnnl_eltwise_round,
    eltwise_hardswish                = dnnl_eltwise_hardswish,
    eltwise_hardsigmoid              = dnnl_eltwise_hardsigmoid,
    eltwise_relu_use_dst_for_bwd     = dnnl_eltwise_relu_use_dst_for_bwd,
    eltwise_tanh_use_dst_for_bwd     = dnnl_eltwise_tanh_use_dst_for_bwd,
    eltwise_elu_use_dst_for_bwd      = dnnl_eltwise_elu_use_dst_for_bwd,
    eltwise_sqrt_use_dst_for_bwd     = dnnl_eltwise_sqrt_use_dst_for_bwd,
    eltwise_logistic_use_dst_for_bwd = dnnl_eltwise_logistic_use_dst_for_bwd,
    eltwise_exp_use_dst_for_bwd      = dnnl_eltwise_exp_use_dst_for_bwd,
    eltwise_clip_v2_use_dst_for_bwd  = dnnl_eltwise_clip_v2_use_dst_for_bwd,
    lrn_across_channels              = dnnl_lrn_across_channels,
    lrn_within_channel               = dnnl_lrn_within_channel,
    pooling_max                      = dnnl_pooling_max,
    pooling_avg_include_padding      = dnnl_pooling_avg_include_padding,
    pooling_avg_exclude_padding      = dnnl_pooling_avg_exclude_padding,
    vanilla_rnn                      = dnnl_vanilla_rnn,
    vanilla_lstm                     = dnnl_vanilla_lstm,
    vanilla_gru                      = dnnl_vanilla_gru,
    lbr_gru                          = dnnl_lbr_gru,
    vanilla_augru                    = dnnl_vanilla_augru,
    lbr_augru                        = dnnl_lbr_augru,
    binary_add                       = dnnl_binary_add,
    binary_mul                       = dnnl_binary_mul,
    binary_max                       = dnnl_binary_max,
    binary_min                       = dnnl_binary_min,
    binary_div                       = dnnl_binary_div,
    binary_sub                       = dnnl_binary_sub,
    binary_ge                        = dnnl_binary_ge,
    binary_gt                        = dnnl_binary_gt,
    binary_le                        = dnnl_binary_le,
    binary_lt                        = dnnl_binary_lt,
    binary_eq                        = dnnl_binary_eq,
    binary_ne                        = dnnl_binary_ne,
    binary_select                    = dnnl_binary_select,
    resampling_nearest               = dnnl_resampling_nearest,
    resampling_linear                = dnnl_resampling_linear,
    reduction_max                    = dnnl_reduction_max,
    reduction_min                    = dnnl_reduction_min,
    reduction_sum                    = dnnl_reduction_sum,
    reduction_mul                    = dnnl_reduction_mul,
    reduction_mean                   = dnnl_reduction_mean,
    reduction_norm_lp_max            = dnnl_reduction_norm_lp_max,
    reduction_norm_lp_sum            = dnnl_reduction_norm_lp_sum,
    reduction_norm_lp_power_p_max    = dnnl_reduction_norm_lp_power_p_max,
    reduction_norm_lp_power_p_sum    = dnnl_reduction_norm_lp_power_p_sum,
    softmax_accurate                 = dnnl_softmax_accurate,
    softmax_log                      = dnnl_softmax_log,
}; 
  Detailed Documentation
Kinds of algorithms.
Enum Values
undef 
   Undefined algorithm.
convolution_auto 
   Convolution algorithm that is chosen to be either direct or Winograd automatically.
convolution_direct 
   Direct convolution.
convolution_winograd 
   Winograd convolution.
deconvolution_direct 
   Direct deconvolution.
deconvolution_winograd 
   Winograd deconvolution.
eltwise_relu 
   Elementwise: rectified linear unit (ReLU)
eltwise_tanh 
   Elementwise: hyperbolic tangent non-linearity (tanh)
eltwise_elu 
   Elementwise: exponential linear unit (ELU)
eltwise_square 
   Elementwise: square.
eltwise_abs 
   Elementwise: abs.
eltwise_sqrt 
   Elementwise: square root.
eltwise_swish 
   Elementwise: swish (
)
eltwise_linear 
   Elementwise: linear.
eltwise_soft_relu 
   Elementwise: soft_relu.
eltwise_mish 
   Elementwise: mish.
eltwise_logistic 
   Elementwise: logistic.
eltwise_exp 
   Elementwise: exponent.
eltwise_gelu_tanh 
   Elementwise: tanh-based gelu.
eltwise_gelu_erf 
   Elementwise: erf-based gelu.
eltwise_log 
   Elementwise: natural logarithm.
eltwise_clip 
   Elementwise: clip.
eltwise_clip_v2 
   Eltwise: clip version 2.
eltwise_pow 
   Elementwise: pow.
eltwise_round 
   Elementwise: round.
eltwise_hardswish 
   Elementwise: hardswish.
eltwise_hardsigmoid 
   Elementwise: hardsigmoid.
eltwise_relu_use_dst_for_bwd 
   Elementwise: rectified linar unit (ReLU) (dst for backward)
eltwise_tanh_use_dst_for_bwd 
   Elementwise: hyperbolic tangent non-linearity (tanh) (dst for backward)
eltwise_elu_use_dst_for_bwd 
   Elementwise: exponential linear unit (ELU) (dst for backward)
eltwise_sqrt_use_dst_for_bwd 
   Elementwise: square root (dst for backward)
eltwise_logistic_use_dst_for_bwd 
   Elementwise: logistic (dst for backward)
eltwise_exp_use_dst_for_bwd 
   Elementwise: exponent (dst for backward)
eltwise_clip_v2_use_dst_for_bwd 
   Elementwise: clip version 2 (dst for backward)
lrn_across_channels 
   Local response normalization (LRN) across multiple channels.
lrn_within_channel 
   LRN within a single channel.
pooling_max 
   Max pooling.
pooling_avg_include_padding 
   Average pooling include padding.
pooling_avg_exclude_padding 
   Average pooling exclude padding.
vanilla_rnn 
   RNN cell.
vanilla_lstm 
   LSTM cell.
vanilla_gru 
   GRU cell.
lbr_gru 
   GRU cell with linear before reset.
Differs from the vanilla GRU in how the new memory gate is calculated: 
 LRB GRU expects 4 bias tensors on input: 
vanilla_augru 
   AUGRU cell.
lbr_augru 
   AUGRU cell with linear before reset.
binary_add 
   Binary add.
binary_mul 
   Binary mul.
binary_max 
   Binary max.
binary_min 
   Binary min.
binary_div 
   Binary div.
binary_sub 
   Binary sub.
binary_ge 
   Binary greater than or equal.
binary_gt 
   Binary greater than.
binary_le 
   Binary less than or equal.
binary_lt 
   Binary less than.
binary_eq 
   Binary equal.
binary_ne 
   Binary not equal.
binary_select 
   Binary select.
resampling_nearest 
   Nearest Neighbor resampling method.
resampling_linear 
   Linear (Bilinear, Trilinear) resampling method.
reduction_max 
   Reduction using max operation.
reduction_min 
   Reduction using min operation.
reduction_sum 
   Reduction using sum operation.
reduction_mul 
   Reduction using mul operation.
reduction_mean 
   Reduction using mean operation.
reduction_norm_lp_max 
   Reduction using norm_lp_max operation.
reduction_norm_lp_sum 
   Reduction using norm_lp_sum operation.
reduction_norm_lp_power_p_max 
   Reduction using norm_lp_power_p_max operation.
reduction_norm_lp_power_p_sum 
   Reduction using norm_lp_power_p_sum operation.
softmax_accurate 
   Softmax, numerically stable.
softmax_log 
   LogSoftmax, numerically stable.