Intel® oneAPI Deep Neural Network Developer Guide and Reference
A newer version of this document is available. Customers should click here to go to the newest version.
enum dnnl::algorithm
Overview
Kinds of algorithms. More…
#include <dnnl.hpp>
enum algorithm
{
    undef                            = dnnl_alg_kind_undef,
    convolution_auto                 = dnnl_convolution_auto,
    convolution_direct               = dnnl_convolution_direct,
    convolution_winograd             = dnnl_convolution_winograd,
    deconvolution_direct             = dnnl_deconvolution_direct,
    deconvolution_winograd           = dnnl_deconvolution_winograd,
    eltwise_relu                     = dnnl_eltwise_relu,
    eltwise_tanh                     = dnnl_eltwise_tanh,
    eltwise_elu                      = dnnl_eltwise_elu,
    eltwise_square                   = dnnl_eltwise_square,
    eltwise_abs                      = dnnl_eltwise_abs,
    eltwise_sqrt                     = dnnl_eltwise_sqrt,
    eltwise_swish                    = dnnl_eltwise_swish,
    eltwise_linear                   = dnnl_eltwise_linear,
    eltwise_soft_relu                = dnnl_eltwise_soft_relu,
    eltwise_mish                     = dnnl_eltwise_mish,
    eltwise_logistic                 = dnnl_eltwise_logistic,
    eltwise_exp                      = dnnl_eltwise_exp,
    eltwise_gelu_tanh                = dnnl_eltwise_gelu_tanh,
    eltwise_gelu_erf                 = dnnl_eltwise_gelu_erf,
    eltwise_log                      = dnnl_eltwise_log,
    eltwise_clip                     = dnnl_eltwise_clip,
    eltwise_clip_v2                  = dnnl_eltwise_clip_v2,
    eltwise_pow                      = dnnl_eltwise_pow,
    eltwise_round                    = dnnl_eltwise_round,
    eltwise_hardswish                = dnnl_eltwise_hardswish,
    eltwise_hardsigmoid              = dnnl_eltwise_hardsigmoid,
    eltwise_relu_use_dst_for_bwd     = dnnl_eltwise_relu_use_dst_for_bwd,
    eltwise_tanh_use_dst_for_bwd     = dnnl_eltwise_tanh_use_dst_for_bwd,
    eltwise_elu_use_dst_for_bwd      = dnnl_eltwise_elu_use_dst_for_bwd,
    eltwise_sqrt_use_dst_for_bwd     = dnnl_eltwise_sqrt_use_dst_for_bwd,
    eltwise_logistic_use_dst_for_bwd = dnnl_eltwise_logistic_use_dst_for_bwd,
    eltwise_exp_use_dst_for_bwd      = dnnl_eltwise_exp_use_dst_for_bwd,
    eltwise_clip_v2_use_dst_for_bwd  = dnnl_eltwise_clip_v2_use_dst_for_bwd,
    lrn_across_channels              = dnnl_lrn_across_channels,
    lrn_within_channel               = dnnl_lrn_within_channel,
    pooling_max                      = dnnl_pooling_max,
    pooling_avg_include_padding      = dnnl_pooling_avg_include_padding,
    pooling_avg_exclude_padding      = dnnl_pooling_avg_exclude_padding,
    vanilla_rnn                      = dnnl_vanilla_rnn,
    vanilla_lstm                     = dnnl_vanilla_lstm,
    vanilla_gru                      = dnnl_vanilla_gru,
    lbr_gru                          = dnnl_lbr_gru,
    vanilla_augru                    = dnnl_vanilla_augru,
    lbr_augru                        = dnnl_lbr_augru,
    binary_add                       = dnnl_binary_add,
    binary_mul                       = dnnl_binary_mul,
    binary_max                       = dnnl_binary_max,
    binary_min                       = dnnl_binary_min,
    binary_div                       = dnnl_binary_div,
    binary_sub                       = dnnl_binary_sub,
    binary_ge                        = dnnl_binary_ge,
    binary_gt                        = dnnl_binary_gt,
    binary_le                        = dnnl_binary_le,
    binary_lt                        = dnnl_binary_lt,
    binary_eq                        = dnnl_binary_eq,
    binary_ne                        = dnnl_binary_ne,
    resampling_nearest               = dnnl_resampling_nearest,
    resampling_linear                = dnnl_resampling_linear,
    reduction_max                    = dnnl_reduction_max,
    reduction_min                    = dnnl_reduction_min,
    reduction_sum                    = dnnl_reduction_sum,
    reduction_mul                    = dnnl_reduction_mul,
    reduction_mean                   = dnnl_reduction_mean,
    reduction_norm_lp_max            = dnnl_reduction_norm_lp_max,
    reduction_norm_lp_sum            = dnnl_reduction_norm_lp_sum,
    reduction_norm_lp_power_p_max    = dnnl_reduction_norm_lp_power_p_max,
    reduction_norm_lp_power_p_sum    = dnnl_reduction_norm_lp_power_p_sum,
    softmax_accurate                 = dnnl_softmax_accurate,
    softmax_log                      = dnnl_softmax_log,
}; 
  Detailed Documentation
Kinds of algorithms.
Enum Values
undef
Undefined algorithm.
convolution_auto
Convolution algorithm that is chosen to be either direct or Winograd automatically.
convolution_direct
Direct convolution.
convolution_winograd
Winograd convolution.
deconvolution_direct
Direct deconvolution.
deconvolution_winograd
Winograd deconvolution.
eltwise_relu
Elementwise: rectified linear unit (ReLU)
eltwise_tanh
Elementwise: hyperbolic tangent non-linearity (tanh)
eltwise_elu
Elementwise: exponential linear unit (ELU)
eltwise_square
Elementwise: square.
eltwise_abs
Elementwise: abs.
eltwise_sqrt
Elementwise: square root.
eltwise_swish
Elementwise: swish (
)
eltwise_linear
Elementwise: linear.
eltwise_soft_relu
Elementwise: soft_relu.
eltwise_mish
Elementwise: mish.
eltwise_logistic
Elementwise: logistic.
eltwise_exp
Elementwise: exponent.
eltwise_gelu_tanh
Elementwise: tanh-based gelu.
eltwise_gelu_erf
Elementwise: erf-based gelu.
eltwise_log
Elementwise: natural logarithm.
eltwise_clip
Elementwise: clip.
eltwise_clip_v2
Eltwise: clip version 2.
eltwise_pow
Elementwise: pow.
eltwise_round
Elementwise: round.
eltwise_hardswish
Elementwise: hardswish.
eltwise_hardsigmoid
Elementwise: hardsigmoid.
eltwise_relu_use_dst_for_bwd
Elementwise: rectified linar unit (ReLU) (dst for backward)
eltwise_tanh_use_dst_for_bwd
Elementwise: hyperbolic tangent non-linearity (tanh) (dst for backward)
eltwise_elu_use_dst_for_bwd
Elementwise: exponential linear unit (ELU) (dst for backward)
eltwise_sqrt_use_dst_for_bwd
Elementwise: square root (dst for backward)
eltwise_logistic_use_dst_for_bwd
Elementwise: logistic (dst for backward)
eltwise_exp_use_dst_for_bwd
Elementwise: exponent (dst for backward)
eltwise_clip_v2_use_dst_for_bwd
Elementwise: clip version 2 (dst for backward)
lrn_across_channels
Local response normalization (LRN) across multiple channels.
lrn_within_channel
LRN within a single channel.
pooling_max
Max pooling.
pooling_avg_include_padding
Average pooling include padding.
pooling_avg_exclude_padding
Average pooling exclude padding.
vanilla_rnn
RNN cell.
vanilla_lstm
LSTM cell.
vanilla_gru
GRU cell.
lbr_gru
GRU cell with linear before reset.
Differs from the vanilla GRU in how the new memory gate is calculated: 
 LRB GRU expects 4 bias tensors on input: 
vanilla_augru
AUGRU cell.
lbr_augru
AUGRU cell with linear before reset.
binary_add
Binary add.
binary_mul
Binary mul.
binary_max
Binary max.
binary_min
Binary min.
binary_div
Binary div.
binary_sub
Binary sub.
binary_ge
Binary greater than or equal.
binary_gt
Binary greater than.
binary_le
Binary less than or equal.
binary_lt
Binary less than.
binary_eq
Binary equal.
binary_ne
Binary not equal.
resampling_nearest
Nearest Neighbor resampling method.
resampling_linear
Linear (Bilinear, Trilinear) resampling method.
reduction_max
Reduction using max operation.
reduction_min
Reduction using min operation.
reduction_sum
Reduction using sum operation.
reduction_mul
Reduction using mul operation.
reduction_mean
Reduction using mean operation.
reduction_norm_lp_max
Reduction using norm_lp_max operation.
reduction_norm_lp_sum
Reduction using norm_lp_sum operation.
reduction_norm_lp_power_p_max
Reduction using norm_lp_power_p_max operation.
reduction_norm_lp_power_p_sum
Reduction using norm_lp_power_p_sum operation.
softmax_accurate
Softmax, numerically stable.
softmax_log
LogSoftmax, numerically stable.