For the latest installation commands, please check out the official documentation.
Recommended installation using conda (all backends) |
conda install -c conda-forge modin-all |
Recommended installation using conda (Ray* backend) |
conda install -c conda-forge modin-ray |
Recommended installation using conda (Dask* backend) |
conda install -c conda-forge modin-dask |
Installation using PyPI* (all backends) |
pip install modin[all] |
Installation using PyPI (Ray backend) |
pip install modin[ray] |
Installation using PyPI (Dask backend) |
pip install modin[dask] |
Installation using PyPI (MPI backend) |
pip install modin[mpi] |
Switch to a Ray backend with a command prompt (if not enabled): for versions after 0.12 |
export MODIN_ENGINE=ray |
Switch to a Ray Framework backend in the code (if not enabled): for versions after 0.12 |
import modin.config as cfg cfg.StorageFormat.put(‘ray’) import modin.pandas as pd |
Switch to a Dask backend with a command prompt (if not enabled): for versions after 0.12 |
export MODIN_ENGINE=dask |
Switch to a Dask backend in the code (if not enabled): for versions after 0.12 |
import modin.config as cfg cfg.StorageFormat.put(‘dask’) import modin.pandas as pd |
Convert a Modin object to a Pandas object (example in bold) |
import modin.pandas as pd df_log=pd.concat([self.df_log])
import pandas as pd occ_dict = dict(df_log['EventTemplate']._to_pandas().value_counts()) df_event = pd.DataFrame() df_event['EventTemplate'] = df_log['EventTemplate'].unique() |
Set number of cores Modin uses (Modin uses all available resources by default) |
# set to Modin to only utilize 4 cores export MODIN_CPUS=4 |
For additional installation and tuning methods, see the Getting Started Guide and Performance and Tuning Guide.
For more information and support, or to report any issues, see:
Sign up and try this distribution for free using Intel® Tiber™ Developer Cloud for oneAPI.