Intel® Distribution for Python* Release Notes and New Features

Published: 08/11/2016  

Last Updated: 09/27/2022

Overview

This page provides the current Release Notes for the Intel® Distribution for Python*. The notes are categorized by year, from newest to oldest, with individual releases listed within each year.

Click a version to expand it into a summary of new features and changes in that version since the last release, and access the download buttons for the detailed release notes, which include important information, such as pre-requisites, software compatibility, installation instructions, and known issues.

You can copy a link to a specific version's section by clicking the chain icon next to its name.

All files are in PDF format - Adobe Reader* (or compatible) required.

For information on known issues, see Intel® Distribution for Python* Known Issues
For questions or technical support, visit Intel® Distribution for Python* Support Forum.

2022

Release Notes

  • Take advantage of new performance optimizations of element-wise operations and Windows OS support in the Dpnp package 
  • Gain explicit control of device memory allocation and kernel execution with the Dpnp and numba-dppy packages  
  • This release is immediately available through the Intel® Developer Zone. It will be available through repositories at a later date.

Release Notes

  • Addressed critical CVE -2018-25032

Please note:

As announced previously, Windows driver support of integrated graphics processors included with 6th - 10th Gen Intel Core Processor and related Intel Atom®, Pentium®, and Celeron® processors is deprecated and has moved to maintenance mode. Only security and critical bug fixes will be updated.

 

oneAPI tools using existing integrated graphics processor functionality in the aforementioned processors may continue to work, but will no longer be supported. Note that CPU functionality for these processors remains fully supported and unaffected.

 

Intel® oneAPI 2022.3 is validated on Windows and Linux.

  • Windows Intel® Graphics Driver, see this article for instructions to download and install.
  • Linux General Purpose Intel GPUs (GPGPU) Driver, see this article. Click the one labeled 20220830 for instructions to download and install.​​​​

Release Notes

  • Updated packages to latest versions with CVE fixes
  • dpnp updates
    • Implemented the "compute follows data" programming model for the dpnp library
    • dpnp package on Windows become available
    • performance improvement of element-wise functions in dpnp in case of input data with strides
  • numba-dppy updates
    • Implemented the "compute follows data" programming model for the kernel API in numba-dppy
    • Device private memory support in numba-dppy
    • numba-dppy support for any array that supports the `__sycl_usm_array_interface__` protocol for the kernel API
    • Provided support for Numba 0.55 and new debugging features in numba-dppy
    • Enable DPNP support in numba-dppy on Windows

2021

Release Notes

  • Numba-dppy works as an extension to off-the-shelf Numba 0.54.0.
  • Pandas.MultiIndex support added in SDC.
  • Numba-dppy’s @dppy.kernel now support __sycl_usm_array_interface through dpctl’s usm_ndarray.
  • Updated all LLVM packages to LLVM 11
  • Enabled @vectorize for target dppy in Numba-dppy
  • Dpctl now has the ability to get command status and get profiling information from events.
  • Dpctl has added queue.submit_barrier method to provide advanced synchronization mechanism to users.
  • Expanded the Python C-API for working with dpctl Python objects in native extensions written in C/C++, example added for Pybind11.
  • Implemented multi-versioning of DPCTLSyclInterface library on Linux.
  • Dpctl can now be built using Open Source LLVM Sycl compiler.

Release Notes

  • Providing initial DPC++ compiler conda packages
  • SDC with extended Pandas API support and reduced compilation time
  • Numba-dppy improvements to documentation, code quality, Python 3.8 support, profiling support
  • dpctl improvements to API usability, filter selector support, explicit SYCL context and queue creation, and Level Zero program creation support for Windows
     

Release Notes

  • Machine Learning
    • New accelerated Scikit-learn functionality: Random Forest Classification/Regression, kNN Search/Classification/Regression, tSNE, SVC, LASSO, ElasticNet, train_test_split, assert_all_finite, sparse K-means.
    • Scikit-learn and daal4py additional optimizations for DBSCAN, SVM, ElasticNet/LASSO, K-Means, train_test_split, Support Vector Classification (SVC), Random Forest, Logistic Regression, F-contiguous inputs.
    • Conversion of trained XGBoost and LightGBM models into daal4py Gradient Boosted Trees model for fast prediction.
    • XGBoost 1.2 with additional CPU optimizations with ‘hist’-tree method.
  • Initial GPU support
    • dpnp – GPU-enabled Data Parallel NumPy, a collection of many NumPy algorithms accelerated for GPUs
    • dpctl – new Python package for device, queue, and USM data management with initial support in dpnp, scikit-learn, daal4py, and numba 
    • daal4py optimizations for GPU: KNN Classification, batch and streaming Covariance, DBSCAN, GBT Regression, K-Means, Linear & Logistic Regression, batch and streaming Low Order Moments, PCA, and binary SVM Classification
    • GPU support in scikit-learn for DBSCAN, K-Means, Linear Regression and Logistic Regression algorithms
    • numba – initial support for automatic GPU offload and GPU kernel semantics
  • Numerical computing and image processing
    • New mkl_sparse package for Intel® MKL-powered sparse matrix computations in NumPy.
    • New mkl_umath package for acceleration of NumPy universal functions.
  • Releasing scikit-ipp 1.2.0 for Intel® IPP-accelerated image warping , image filtering, and morphological operations
  • Intel® Scalable Dataframe Compiler (Intel® SDC) Beta – Numba extension for accelerating Pandas* 

2020

Release Notes

  • Releasing scikit-ipp 1.2.0 for image warping, image filtering and morphological operations with scikit-image like API. Support for multi-threading for transform functions and partial multi-threading for filters using OpenMP. 
  • Releasing mkl_umath Python package for Intel® technologies-powered NumPy universal function.
  • Added new features for accelerated KNeighborsClassifier, RandomForestClassifier and RandomForestRegressor estimators, Sparse input support for KMeans and SVC, Probabilities prediction for SVC, Support of ‘normalize’ parameter for Lasso and ElasticNet in scikit-learn.
  • Optimizations of train_test_split and Support Vector Classification (SVC) fit and prediction in scikit-learn.
  • Conversion of trained XGBoost* and LightGBM* models into daal4py Gradient Boosted Trees model for fast prediction.
  • Added new features for Brute Force method for k-Nearest Neighbors classification, new parameters support for k-Nearest Neighbors and Decision Forest in daal4py.
  • Optimizations of Support Vector Machine training and prediction, Decision Forest classification training in daal4py.
  • Latest CVE patches have been applied.

Release Notes

  • Implemented Scikit-Learn compatible Gradient Boosted Tree classifier, Decision Tree Classifier and tree-based Adaboost classifier in daal4py.
  • Implemented computation of prediction probabilities in Scikit-Learn compatible RandomForest and Gradient Boosted Trees classifiers in daal4py.
  • numpy package is updated to v1.18.5
  • Scikit-learn package is updated to v 0.23.1
  • Support of thunder SVM method for IDP sklearn in daal4py
  • Performance optimizations for SVC fit and prediction, Elastic Net and LASSO fit, K-Means fit and prediction, PCA fit and transform, train_test_split

Release Notes

  • DBSCAN is accelerated in sklearn.
  • Performance improvement for F-contiguous inputs in daal4py.
  • Patches updated for compatibility with sklearn 0.22.

Release Notes

  • Update to conda 4.7.12.
  • Added support for Brownboost, Logistboost as well as Stump regression and Stump classification algorithms to daal4py.
  • Added support for Adaboost classification algorithm, including support for method="SAMME" or "SAMMER" for multi-class data in daal4py.
  • "Variable Importance" feature has been added to Gradient Boosting Trees in daal4py.
  • Ability to compute class prediction probabilities has been added to appropriate classifiers, including logistic regression, tree-based classifiers, etc., in daal4py.

2019

Release Notes

  • Single node support for DBSCAN, LASSO, Coordinate Descent (CD) solver algorithms through daal4py package
  • Distributed model support for SVD, QR, K-means init++ and parallel++ algorithms through daal4py package
  • Additional Scikit-Learn algorithms optimized using Intel® DAAL: Linear, Ridge, Logistic, PCA, KMeans, pairwise_distances and SVC

Release Notes

  • New distributed model support for "Moments of low order" and "Covariance" algorithms through daal4py package
  • Updated python package versions and their supported platforms

Release Notes

  • Extended availability of Intel® DAAL algorithms through daal4py package.
  • Daal4py distributed mode support for scale-out to clusters & support for streaming mode for efficient memory handling.
  • Updated python packages and their supported platforms.

Release Notes

  • Intel® Distribution for Python 2019 Update 2 includes functional and security updates. Users should update to the latest version.

Release Notes

  • Scikit-learn optimizations for Logistic Regression, Random Forest Regressor & Classifier.
  • New machine learning package (daal4py) with an easy to use API and performance accelerated by Intel® DAAL.
  • Introducing Numba* threading layer abstraction that allows to switch between Intel® TBB (default) and OpenMP* threading layer.
  • Access to MKL runtime settings available through easy-to-use Python control package (mkl-service)

Release Notes

  • Intel® Distribution for Python now integrated into Intel® Parallel Studio XE 2019 installer. Also available as easy command line standalone install.
  • Faster Machine learning with Scikit-learn: Support Vector Machine (SVM) and K-means prediction, accelerated with Intel® DAAL.
  • XGBoost package included in Intel® Distribution for Python (Linux only).
  • Note: The deep learning packages and computer vision packages along with their dependencies will not be included in Intel Distribution for Python, henceforth. However, the packages continue to be available in anaconda/Intel conda channel. Click on the Complete List of Packages for the Intel® Distribution for Python* to learn more.

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Product and Performance Information

1

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.