The Intel® VROC configuration tools: Pre-OS HII, Intel® VROC Graphical User Interface (GUI) and Intel® VROC Command Line Interface (CLI), will automatically select the strip size to help maximize the NVMe* Solid-State Drives (SSDs) wear leveling when creating RAID 5 volumes.
Intel® VROC (VMD NVMe* RAID) Features | The Intel® VROC optimized wear leveling for RAID 5 volumes is one of the key features of the Intel® VROC (VMD NVMe* RAID) sub-product. To learn about other key features of this Intel® VROC sub-product, refer to Key Features of Intel® Virtual RAID on CPU (Intel® VROC) VMD NVMe* RAID for Windows*. |
When creating a RAID 5 volume, Intel® VROC will select by default the strip size value that maximizes the NVMe* SSDs wear leveling. The following table shows the default values that will be used by the Intel® VROC configuration tools when creating an Intel® VROC RAID 5 volume.
Drives | Default Strip Size Value (kiB) |
3 | 64 |
4 | 32 |
5 | 128 |
6 | 64 |
7 | 128 |
8 | 16 |
9 | 128 |
10 | 64 |
11 | 128 |
12 | 32 |
13 | 128 |
14 | 64 |
15 | 128 |
16 | 8 |
17 | 128 |
18 | 64 |
19 | 128 |
20 | 32 |
21 | 128 |
22 | 64 |
23 | 128 |
24 | 16 |
NVMe* drive wear leveling refers to techniques used to prolong the service life of NVMe* drives. The information below outlines the recommended configurations (number of drives vs strip size) to maximize the wear leveling on Intel NVMe* drives when configured as part of a RAID 5 volume. When creating an Intel® VROC (VMD NVMe* RAID) RAID 5 volume, several configuration parameters can be selected, and the number of drives used along with the strip size chosen can have an impact on the wear leveling. The following table outlines the different options for number of drives vs strip size to achieve the optimal wear leveling on Intel NVMe* drives. For default settings, see Intel® Virtual RAID on CPU (Intel® VROC) Various Strip Sizes Support.
When checking the table below, keep the following considerations in mind:
Drives vs Strip Size | 4 | 8 | 16 | 32 | 64 | 128 |
3 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
4 | Optimal | Optimal | Optimal | Optimal | Suboptimal | Suboptimal |
5 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
6 | Optimal | Optimal | Optimal | Optimal | Optimal | Suboptimal |
7 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
8 | Optimal | Optimal | Optimal | Suboptimal | Suboptimal | Suboptimal |
9 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
10 | Optimal | Optimal | Optimal | Optimal | Optimal | Suboptimal |
11 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
12 | Optimal | Optimal | Optimal | Optimal | Suboptimal | Suboptimal |
13 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
14 | Optimal | Optimal | Optimal | Optimal | Optimal | Suboptimal |
15 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
16 | Optimal | Optimal | Suboptimal | Suboptimal | Suboptimal | Suboptimal |
17 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
18 | Optimal | Optimal | Optimal | Optimal | Optimal | Suboptimal |
19 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
20 | Optimal | Optimal | Optimal | Optimal | Suboptimal | Suboptimal |
21 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
22 | Optimal | Optimal | Optimal | Optimal | Optimal | Suboptimal |
23 | Optimal | Optimal | Optimal | Optimal | Optimal | Optimal |
24 | Optimal | Optimal | Optimal | Suboptimal | Suboptimal | Suboptimal |