Low Latency Ethernet 10G MAC IP User Guide: Agilex™ 3 and Agilex™ 5 FPGAs and SoCs
ID
813663
Date
9/01/2025
Public
1. Low Latency Ethernet 10G MAC IP Overview
2. Getting Started
3. Functional Description
4. Parameter Settings for the Low Latency Ethernet 10G MAC IP Core
5. Interface Signals
6. Configuration Registers
7. Debug Checklist
8. Low Latency Ethernet 10G MAC IP User Guide: Agilex™ 3 and Agilex™ 5 FPGAs and SoCs Archives
9. Document Revision History for the Low Latency Ethernet 10G MAC IP User Guide: Agilex™ 3 and Agilex™ 5 FPGAs and SoCs
2.1. Introduction to Altera IP Cores
2.2. Installing and Licensing IP Cores
2.3. Specifying the IP Parameters and Options ( Quartus® Prime Pro Edition)
2.4. Generated File Structure
2.5. Simulating IP Cores
2.6. Upgrading the Low Latency Ethernet 10G MAC IP Core
2.7. Low Latency Ethernet 10G MAC IP Design Examples
5.1. Clock and Reset Signals
5.2. Speed Selection Signal
5.3. Error Correction Signals
5.4. Unidirectional Signals
5.5. Avalon® Memory-Mapped Interface Programming Signals
5.6. Avalon® Streaming Data Interfaces
5.7. Avalon® Streaming Flow Control Signals
5.8. Avalon® Streaming Status Interface
5.9. PHY-side Interfaces
5.10. IEEE 1588v2 Interfaces
6.1. Register Map
6.2. Register Access Definition
6.3. Primary MAC Address
6.4. MAC Reset Control Register
6.5. TX Configuration and Status Registers
6.6. Flow Control Registers
6.7. Unidirectional Control Registers
6.8. RX Configuration and Status Registers
6.9. ECC Registers
6.10. Statistics Registers
6.11. Timestamp Registers
3.6.2. Priority-Based Flow Control
Follow these steps to use the priority-based flow control (PFC):
- Turn on the Priority-based flow control (PFC) parameter and specify the number of priority levels using the Number of PFC priorities parameter. You can specify between 2 to 8 PFC priority levels.
- Set the following registers.
- On the TX datapath:
- Set tx_pauseframe_enable to 0 to disable the IEEE 802.3 flow control.
- Set tx_pfc_priority_enable[n] to 1 to enable the PFC for priority queue n.
- On the RX datapath:
- Set the IGNORE_PAUSE bit in the rx_frame_control register to 1 to disable the IEEE 802.3 flow control.
- Set the rx_pfc_control[7:0] register bits to 0 to enable the PFC. Most of the rest of the bits are unused.
- On the TX datapath:
- Connect the avalon_st_tx_pfc_gen_data signal to the corresponding RX client logic and the avalon_st_rx_pfc_pause_data signal to the corresponding TX client logic.
- You have the option to configure the MAC RX to forward the PFC frame to the client by setting the rx_pfc_control[16] register to 1. By default, the MAC RX drops the PFC frame after processing it.
You must handle the XON/XOFF requests in the following manner:
- Assert the XOFF, which runs at the clock frequency of 312.5 MHz, for at least 1 clock cycle, which runs at the clock frequency of 312.5 MHz to ensure that the PFC frame can transfer successfully.
- Assert the XON, which runs at the clock frequency of 312.5 MHz, for at least 25 clock cycle to ensure that the PFC frame can transfer successfully.