2.1. FPGA Simulation Essential Elements
2.2. Overview of Simulation Tool Flow
2.3. Simulation Tool Flow
2.4. Supported Hardware Description Languages
2.5. Supported Simulation Types
2.6. Supported Simulators
2.7. Automating Simulation with the Run Simulation Feature
2.8. Using Precompiled Simulation Libraries
2.7.3.1. Specifying Required Simulation Settings for Run Simulation (Batch Mode)
2.7.3.2. Optional Simulation Settings for Run Simulation (Batch Mode)
2.7.3.3. Launching Simulation with the Run Simulation Feature
2.7.3.4. Running RTL Simulation using Run Simulation
2.7.3.5. Output Directories and Files for Run Simulation
3.1. Types of Questa*-Intel® FPGA Edition Commands
3.2. Commands to Invoke Questa*-Intel® FPGA Edition
3.3. Commands to Compile, Elaborate, and Simulate
3.4. Why You Should Only Use Precompiled Questa Intel FPGA Edition Libraries
3.5. Generating a msim_setup.tcl Simulation Script for RTL Simulation
3.6. Using the Qrun Flow
3.7. Performing RTL Simulation with Questa*-Intel® FPGA Edition
3.8. Performing Gate-Level Simulation with Questa*-Intel® FPGA Edition
3.3.1.1. Compilation Example 1: Compile File foo.sv into a Logical Library
3.3.1.2. Compilation Example 2: Compile File design1.sv to Default Library (work)
3.3.1.3. Compilation Example 3: Compile All .sv Files into Logical Library foo
3.3.1.4. Compilation Example 4: Compile File foo.sv into Work with Verilog Macro FAST Set to 1
3.3.1.5. Compilation Example 5: File my_pkg.sv Defines SystemVerilog Package my_pkg and File foo.sv Imports my_pkg
3.3.1.6. Compilation Example 6: File my_pkg.sv Defines Systemverilog Package my_pkg and File foo.sv Imports my_pkg
3.3.4.1. Simulation Example 1: Run Simulation Until the End, while Capturing Waveforms of All Top-Level Signals in the Testbench
3.3.4.2. Simulation Example 2: Run Simulation for 30 Milliseconds, while Capturing Waveforms of All Top-Level Signals in the Hierarchy
3.3.4.3. Simulation Example 3: Run Simulation Until the End, while Capturing Waveforms of Top-Level Design Instance
3.8.1. Post-Synthesis and Post-Fit Netlists for Simulation
3.8.2. Files Required for Gate-Level Simulation
3.8.3. Step 1: Generate Gate-Level Netlists for Simulation
3.8.4. Step 2: Identify Simulation Files and Compilation Options for Gate-Level Simulation
3.8.5. Step 3: Determine Elaboration Options for Gate-Level Simulation
3.8.6. Step 4: Assemble and Run the Gate-Level Simulation Script
3.3.1.6. Compilation Example 6: File my_pkg.sv Defines Systemverilog Package my_pkg and File foo.sv Imports my_pkg
After you compile all source files into libraries, the next step is to elaborate the top-level testbench module. Therefore, if you create a single Tcl script for both compilation and elaboration, you place the elaboration command after the compilation commands. The elaboration command accepts as input the top-level testbench module name, and the list of library directories that you create in the compilation step.
vlog -sv my_pkg.sv -work lib_sv vlog -L lib_sv -sv foo.sv -work lib1
In this example, the second vlog command must specify -L lib_sv to refer to the SystemVerilog package. This is a partial example, as it does not include the commands to create logical libraries lib_sv and lib1, and also excludes the quit command.