Hyperflex® Architecture High-Performance Design Handbook
ID
683353
Date
7/07/2025
Public
Answers to Top FAQs
1. Hyperflex® FPGA Architecture Introduction
2. Hyperflex® Architecture RTL Design Guidelines
3. Compiling Hyperflex® Architecture Designs
4. Design Example Walk-Through
5. Retiming Restrictions and Workarounds
6. Optimization Example
7. Hyperflex® Architecture Porting Guidelines
8. Appendices
9. Hyperflex® Architecture High-Performance Design Handbook Archive
10. Hyperflex® Architecture High-Performance Design Handbook Revision History
2.4.2.1. High-Speed Clock Domains
2.4.2.2. Restructuring Loops
2.4.2.3. Control Signal Backpressure
2.4.2.4. Flow Control with FIFO Status Signals
2.4.2.5. Flow Control with Skid Buffers
2.4.2.6. Read-Modify-Write Memory
2.4.2.7. Counters and Accumulators
2.4.2.8. State Machines
2.4.2.9. Memory
2.4.2.10. DSP Blocks
2.4.2.11. General Logic
2.4.2.12. Modulus and Division
2.4.2.13. Resets
2.4.2.14. Hardware Re-use
2.4.2.15. Algorithmic Requirements
2.4.2.16. FIFOs
2.4.2.17. Ternary Adders
5.2.1. Insufficient Registers
5.2.2. Short Path/Long Path
5.2.3. Fast Forward Limit
5.2.4. Loops
5.2.5. One Critical Chain per Clock Domain
5.2.6. Critical Chains in Related Clock Groups
5.2.7. Complex Critical Chains
5.2.8. Extend to locatable node
5.2.9. Domain Boundary Entry and Domain Boundary Exit
5.2.10. Critical Chains with Dual Clock Memories
5.2.11. Critical Chain Bits and Buses
5.2.12. Delay Lines
2.1.1.1. Speed and Timing Closure
Failure to close timing occurs when actual circuit performance is lower than the fMAX requirement of your design. If the target FPGA device has many available resources for logic placement, timing closure is easier and requires less processing time.
Timing closure of a slow circuit is not inherently easier than timing closure of a faster circuit, because slow circuits typically include more combinational logic between registers. When a path includes many nodes, the Fitter must place nodes away from each other, resulting in significant routing delay. In contrast, a heavily pipelined circuit is much less dependent on placement, which simplifies timing closure.
Use realistic timing margins when creating your design. Consider that portions of the design can make contact an distort one another as you add logic to the system. Adding stress to the system is typically detrimental to speed. Allowing more timing margin at the start of the design process helps mitigate this problem.