Pull Command
docker pull intel/image-recognition:pytorch-1.5.0-rc3-resnet50-fp32-inference
Description
This document has instructions for running ResNet50* FP32 inference using Intel® Extension for PyTorch*.
Datasets
The ImageNet validation dataset is used when testing accuracy. The inference scripts use synthetic data, so no dataset is needed.
Download and extract the ImageNet2012 dataset from http://www.image-net.org/, then move validation images to labeled subfolders, using the valprep.sh shell script
The accuracy script looks for a folder named val
, so after running the data prep script, your folder structure should look something like this:
imagenet
└── val
├── ILSVRC2012_img_val.tar
├── n01440764
│ ├── ILSVRC2012_val_00000293.JPEG
│ ├── ILSVRC2012_val_00002138.JPEG
│ ├── ILSVRC2012_val_00003014.JPEG
│ ├── ILSVRC2012_val_00006697.JPEG
│ └── ...
└── ...
The folder that contains the val
directory should be set as the DATASET_DIR
when running accuracy (for example: export DATASET_DIR=/home//imagenet
).
Quick Start Scripts
Script name | Description |
---|---|
fp32_online_inference |
Runs online inference using synthetic data (batch_size=1). |
fp32_batch_inference |
Runs batch inference using synthetic data (batch_size=128). |
fp32_accuracy |
Measures the model accuracy (batch_size=128). |
Docker*
The model container includes the scripts and libraries needed to run ResNet50 FP32 inference.
To run the accuracy test, you will need mount a volume and set the DATASET_DIR
environment variable to point to the prepped ImageNet validation dataset. The accuracy script also downloads the pretrained model at runtime, so provide proxy environment variables, if necessary.
DATASET_DIR=<path to the dataset folder>
docker run \
--env DATASET_DIR=${DATASET_DIR} \
--env http_proxy=${http_proxy} \
--env https_proxy=${https_proxy} \
--volume ${DATASET_DIR}:${DATASET_DIR} \
--privileged --init -t \
intel/image-recognition:pytorch-1.5.0-rc3-resnet50-fp32-inference \
/bin/bash quickstart/fp32_accuracy.sh
Synthetic data is used when running batch or online inference, so no dataset mount is needed.
docker run \
--privileged --init -t \
intel/image-recognition:pytorch-1.5.0-rc3-resnet50-fp32-inference \
/bin/bash quickstart/<script name>.sh
Documentation and Sources
Get Started
Docker* Repository
Main GitHub*
Readme
Release Notes
Get Started Guide
Code Sources
Dockerfile
Report Issue
License Agreement
LEGAL NOTICE: By accessing, downloading or using this software and any required dependent software (the “Software Package”), you agree to the terms and conditions of the software license agreements for the Software Package, which may also include notices, disclaimers, or license terms for third party software included with the Software Package. Please refer to the license file for additional details.