

Intel® Technology Journal | 1

Intel® Technology Journal | Volume 13, Issue 4, 2009

Intel Technology Journal

Publisher
Richard Bowles

Program Manager
Stuart Douglas

Managing Editor
David King

Technical Editor
Marian Lacey

Content Architect
Jim Held

Technical Illustrators
InfoPros

Terry A. Smith
Jim Hurley
Ali-Reza Adl-Tabatabai
Jesse Fang
Sridhar Iyengar
Joe Schutz
Shekhar Borkar
Greg Taylor

Technical and Strategic Reviewers

Intel Technology Journal

Intel® Technology Journal | Volume 13, Issue 4, 2009

2 | Foreword

Copyright © 2009 Intel Corporation. All rights reserved.
ISBN 978-1-934053-23-2, ISSN 1535-864X

Intel Technology Journal
Volume 13, Issue 4

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the
Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR 97124-5961. E mail: intelpress@intel.com.
This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding
that the publisher is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Intel may make changes to specifications, product descriptions, and plans at any time, without notice.
Third-party vendors, devices, and/or software are listed by Intel as a convenience to Intel’s general customer base, but Intel does not make any
representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of these devices. This list and/or these devices may be
subject to change without notice.
Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company,
product, or event.
Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel, the Intel logo, Celeron, Intel Centrino, Intel Core Duo, Intel NetBurst, Intel Xeon, Itanium, Pentium, Pentium D, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
†Other names and brands may be claimed as the property of others.

This book is printed on acid-free paper.

Publisher: Richard Bowles
Managing Editor: David King

Library of Congress Cataloging in Publication Data:

Printed in United States of America

10 9 8 7 6 5 4 3 2 1

First printing: December, 2009

Articles

Table of Contents | 3

Intel® Technology Journal | Volume 13, Issue 4, 2009

Foreword .. 4

A Design Pattern Language for Engineering (Parallel) Software ... 6

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs............ 20

A Programming Model for Heterogeneous Intel® x86 Platforms ... 42

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures .. 62

Tera-scale Memory Challenges and Solutions ... 80

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators 102

Lessons Learned from the 80-core Tera-scale Research Processor ..118

INTEL® TECHNOLOGY JOURNAL
ADDRESSING THE CHALLENGES OF TERA-SCALE COMPUTING

4 | Foreword

Intel® Technology Journal | Volume 13, Issue 4, 2009

Jim Held PhD.
Intel Fellow
Director, Tera-scale Computing
Research
Intel Labs
Intel Corporation The Intel® Tera-scale Computing Research Program is Intel’s overarching effort

to shape the future of Intel processors and platforms, in order to accelerate
the shift from frequency to parallelism for performance improvement. Intel
researchers worldwide are already working on R&D projects to address the
hardware and software challenges of building and programming systems with
teraFLOPS of parallel performance that can process tera-bytes of data. This
level of performance will enable exciting new and emerging applications, but
will also require addressing challenges in everything from program architecture
to circuit technologies. This issue of the Intel Technology Journal includes
results from a range of research that walks down the ‘stack’ from application
design to circuits.

Emerging visual-computing applications require tera-scale performance in
order to simulate worlds based on complex physical models. They use rich
user interfaces with video recognition and 3D graphics synthesis, and they
are highly parallel. How can we build them? Architecting designs for such
applications that fully exploit their inherent parallelism is a major software
engineering challenge. As with most kinds of architecture, new programs
will be based on a combination of preexisting patterns and an exploitation of
application frameworks that support them. Tim Mattson and Kurt Koetzer
describe their work to find the parallel patterns that are needed for concurrent
software in their article entitled “A Design Pattern Language for Engineering
(Parallel) Software.”

The non-deterministic nature of concurrent execution has made debugging
one of the toughest parts of delivering a parallel program. Gilles Pokam and his
colleagues, in their article “Hardware/Software Approaches for Deterministic
Multi-processor Replay of Concurrent Programs” describe their work on
hardware and software to support debugging by recording and replaying
execution in order to allow analysis and discovery of the subtle timing errors
that come with the many possible executions of parallelism.

Future tera-scale platforms may be heterogeneous with a mixture of types of
compute elements. Our August 2007 issue of the Intel Technology Journal
included articles that described support for mixed-ISA co-processing. In
“Programming Model for Heterogeneous Intel® x86 Platforms” in this issue,
Bratin Saha’s and his colleagues describe work in IA-ISA to provide support for
shared memory with a mixture of cache coherence models.

“Systems with teraFLOPS of parallel

performance that can process tera-bytes

of data.”

“Visual-computing applications

require tera-scale performance in order

to simulate worlds based on complex

physical models.”

FOREwORD

Foreword | 5

Intel® Technology Journal | Volume 13, Issue 4, 2009

Mani Azimi and his colleagues’ article “Flexible and Adaptive On-Chip
Interconnect for Tera-scale Architectures,” describes research into on-die
network fabric, and they show our evolution from an analysis of the challenges
and alternatives to the development of the protocols to exploit the potential of
a network on chip. Effective use of a mesh network will require sophisticated
support to provide the routing and configuration management for fairness,
load balancing, and congestion management.

Perhaps the largest platform hardware challenge for tera-scale computing is
the longstanding one of access to memory to match the tremendous compute
density of many cores on a die. Moreover, an effective solution must also meet
the declining cost and power consumption targets of the mainstream market
segments. Dave Dunning and his colleagues, in the article “Tera-scale Memory
Challenges and Solutions” outline the problems and our research agenda in this
critical area.

The continuing challenge for the core of tera-scale platforms is how to
continue to increase energy efficiency. As process technology advances continue
to give us more transistors, we can add more cores, but unless we improve their
efficiency, we won’t be able to use them. Ram Krishnamurthy’s team continues
to make progress in improving the energy efficiency of computations with
designs for ALUs that exploit near-threshold voltage circuits and extremely
fine-grained power management. Their work is described in an article “Ultra-
low Voltage Technologies for Energy-efficient Special-purpose Hardware
Accelerators.”

Finally, for some research questions there is no substitute for a silicon
implementation: therefore, we built the Tera-scale Research Processor
to explore a tile-based design methodology as well as to understand the
performance and power efficiency that is possible with intensive floating-point
engines and an on-die network. In our final article “Lessons Learned from
the 80-core Tera-scale Research Processor,” Saurabh Dighe and his colleagues
review these results and discuss what conclusions we draw from them. They
summarize what we learned from many experiments with this chip. We
recently announced our second-generation many-core research prototype, the
Single-chip Cloud Computer, which builds on this work.

I hope you find these articles informative, and the future they are part of
creating, as exciting as we do at Intel Labs. We look forward to continuing
work with academia and the industry to meet the challenges of mainstream
parallel computing.

“Effective use of a mesh network

will require sophisticated support to

provide the routing and configuration

management for fairness, load

balancing, and congestion

management.”

“For some research questions

there is no substitute for a silicon

implementation.”

6 | A Design Pattern Language for Engineering (Parallel) Software

Contributors

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
The key to writing high-quality parallel software is to develop a robust software
design. This applies not only to the overall architecture of the program, but
also to the lower layers in the software system where the concurrency and
how it is expressed in the final program is defined. Developing technology to
systematically describe such designs and reuse them between software projects
is the fundamental problem facing the development of software for tera-scale
processors. The development of this technology is far more important than
programming models and their supporting environments, since with a good
design in hand, most any programming system can be used to actually generate
the program’s source code.

In this article, we develop our thesis about the central role played by the
software architecture. We show how design patterns provide a technology to
define the reusable design elements in software engineering. This leads us to the
ongoing project centered at UC Berkeley’s Parallel Computing Laboratory (Par
Lab) to pull the essential set of design patterns for parallel software design into
a Design Pattern Language. After describing our pattern language, we present
a case study from the field of machine learning as a concrete example of how
patterns are used in practice.

The Software Engineering Crisis
The trend has been well established [1]: parallel processors will dominate
most, if not every, niche of computing. Ideally, this transition would be driven
by the needs of software. Scalable software would demand scalable hardware
and that would drive CPUs to add cores. But software demands are not
driving parallelism. The motivation for parallelism comes from the inability
of integrated circuit designers to deliver steadily increasing frequency gains
without pushing power dissipation to unsustainable levels. Thus, we have a
dangerous mismatch: the semiconductor industry is banking its future on
parallel microprocessors, while the software industry is still searching for an
effective solution to the parallel programming problem.

The parallel programming problem is not new. It has been an active area of
research for the last three decades, and we can learn a great deal from what has
not worked in the past.

Kurt Keutzer
UC Berkeley

Tim Mattson
Intel Corporation

Design Pattern Language
Software Architecture
Parallel Algorithm Design
Application Frameworks

A DESIGN PATTERN LANGUAGE FOR ENGINEERING (PARALLEL)
SOFTwARE

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 7

 • Automatic parallelism. Compilers can speculate, prefetch data, and reorder
instructions to balance the load among the components of a system.
However, they cannot look at a serial algorithm and create a different
algorithm better suited for parallel execution.

 • New languages. Hundreds of new parallel languages and programming
environments have been created over the last few decades. Many of them
are excellent and provide high-level abstractions that simplify the expression
of parallel algorithms. However, these languages have not dramatically
grown the pool of parallel programmers. The fact is, in the one community
with a long tradition of parallel computing (high-performance computing),
the old standards of MPI [2] and OpenMP [3] continue to dominate.
There is no reason to believe new languages will be any more successful as
we move to more general-purpose programmers; i.e., it is not the quality
of our programming models that is inhibiting the adoption of parallel
programming.

The central cause of the parallel programming problem is fundamental to the
enterprise of programming itself. In other words, we believe that our challenges
in programming parallel processors point to deeper challenges in programming
software in general. We believe the only way to solve the programming
problem in general is to first understand how to architect software. Thus,
we feel that the way to solve the parallel programming problem is to first
understand how to architect parallel software. Given a good software design
grounded in solid architectural principles, a software engineer can produce
high-quality and scalable software. Starting with an ill-suited sense of the
architecture for a software system, however, almost always leads to failure.
Therefore, it follows that the first step in addressing the parallel programming
problem is to focus on software architecture. From that vantage point, we
have a hope of choosing the right programming models and building the right
software frameworks that will allow the general population of programmers to
produce parallel software.

In this article, we describe our work on software architecture. We use the
device of a pattern language to write our ideas down and put them into a
systematic form that can be used by others. After we present our pattern
language [4], we present a case study to show how these patterns can be used to
understand software architecture.

Software Architecture and Design Patterns
Productive, efficient software follows from good software architecture. Hence,
we need to better formalize how software is architected, and in order to do
this we need a way to write down architectural ideas in a form that groups of
programmers can study, debate, and come to consensus on. This systematic
process has at its core the peer review process that has been instrumental in
advancing scientific and engineering disciplines.

“It is not the quality of our

programming models that is

inhibiting the adoption of parallel

programming.”

“Given a good software design

grounded in solid architectural

principles, a software engineer can

produce high-quality and scalable

software.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

8 | A Design Pattern Language for Engineering (Parallel) Software

The prerequisite to this process is a systematic way to write down the design
elements from which an architecture is defined. Fortunately, the software
community has already reached consensus on how to write these elements
down in the important work Design Patterns [5]. Our aim is to arrive at a
set of patterns whose scope encompasses the entire enterprise of software
development from architectural description to detailed implementation.

Design Patterns
Design patterns give names to solutions to recurring problems that experts in
a problem-domain gradually learn and take for granted. It is the possession of
this tool-bag of solutions, and the ability to easily apply these solutions, that
precisely defines what it means to be an expert in a domain.

For example, consider the Dense-Linear-Algebra pattern. Experts in fields that
make heavy use of linear algebra have worked out a family of solutions to these
problems. These solutions have a common set of design elements that can be
captured in a Dense-Linear-Algebra design pattern. We summarize the pattern
in the sidebar, but it is important to know that in the full text to the pattern
[4] there would be sample code, examples, references, invariants, and other
information needed to guide a software developer interested in dense linear
algebra problems.

The Dense-Linear-Algebra pattern is just one of the many patterns a software
architect might use when designing an algorithm. A full design includes high-
level patterns that describe how an application is organized, mid-level patterns
about specific classes of computations, and low-level patterns describing specific
execution strategies. We can take this full range of patterns and organize them
into a single integrated pattern language — a web of interlocking patterns
that guide a designer from the beginning of a design problem to its successful
realization [6, 7].

To represent the domain of software engineering in terms of a single pattern
language is a daunting undertaking. Fortunately, based on our studies of
successful application software, we believe software architectures can be built
up from a manageable number of design patterns. These patterns define the
building blocks of all software engineering and are fundamental to the practice
of architecting parallel software. Hence, an effort to propose, argue about, and
finally agree on what constitutes this set of patterns is the seminal intellectual
challenge of our field.

“Design patterns give names to

solutions to recurring problems

that experts in a problem-domain

gradually learn and take for granted.”

Computational Pattern: Dense-Linear-Algebra
Solution: A computation is organized as a
sequence of arithmetic expressions acting on
dense arrays of data. The operations and data
access patterns are well defined mathematically
so data can be pre-fetched and CPUs can
execute close to their theoretically allowed
peak performance. Applications of this pattern
typically use standard building blocks defined
in terms of the dimensions of the dense arrays
with vectors (BLAS level 1), matrix-vector
(BLAS level 2), and matrix-matrix (BLAS level
3) operations.

“A full design includes high-level

patterns that describe how an

application is organized, mid-level

patterns about specific classes of

computations, and low-level patterns

describing specific execution strategies.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 9

Our Pattern Language
Software architecture defines the components that make up a software system,
the roles played by those components, and how they interact. Good software
architecture makes design choices explicit, and the critical issues addressed by
a solution clear. A software architecture is hierarchical rather than monolithic.
It lets the designer localize problems and define design elements that can be
reused in other architectures.

The goal of Our Pattern Language (OPL) is to encompass the complete
architecture of an application from the structural patterns (also known as
architectural styles) that define the overall organization of an application [8,
9] to the basic computational patterns (also known as computational motifs)
for each stage of the problem [10, 1], to the low-level details of the parallel
algorithm [7]. With such a broad scope, organizing our design patterns into a
coherent pattern language was extremely challenging.

Our approach is to use a layered hierarchy of patterns. Each level in the
hierarchy addresses a portion of the design problem. While a designer may in
some cases work through the layers of our hierarchy in order, it is important to
appreciate that many design problems do not lend themselves to a top-down
or bottom-up analysis. In many cases, the pathway through our patterns will
be to bounce around between layers with the designer working at whichever
layer is most productive at a given time (so called, opportunistic refinement).
In other words, while we use a fixed layered approach to organize our patterns
into OPL, we expect designers will work though the pattern language in many
different ways. This flexibility is an essential feature of design pattern languages.

As shown in Figure 1, we organize OPL into five major categories of patterns.
Categories 1 and 2 sit at the same level of the hierarchy and cooperate to create
one layer of the software architecture.

1. Structural patterns: Structural patterns describe the overall organization of
the application and the way the computational elements that make up the
application interact. These patterns are closely related to the architectural
styles discussed in [8]. Informally, these patterns correspond to the “boxes
and arrows” an architect draws to describe the overall organization of an
application. An example of a structural pattern is Pipe-and-Filter, described
in the sidebar.

2. Computational patterns: These patterns describe the classes of
computations that make up the application. They are essentially the
thirteen motifs made famous in [10] but described more precisely as
patterns rather than simply computational families. These patterns can be
viewed as defining the “computations occurring in the boxes” defined by
the structural patterns. A good example is the Dense-Linear-Algebra pattern
described in an earlier sidebar. Note that some of these patterns (such as
Graph-Algorithms or N-Body-Methods) define complicated design problems
in their own right and serve as entry points into smaller design pattern
languages focused on a specific class of computations. This is yet another
example of the hierarchical nature of the software design problem.

“It is important to appreciate that

many design problems do not lend

themselves to a top-down or bottom-

up analysis.”

Structural Pattern: Pipe-and-Filter
Solution: Structure an application as a fixed
sequence of filters that take input data from
preceding filters, carry out computations on that
data, and then pass the output to the next filter.
The filters are side-effect free; i.e., the result of
their action is only to transform input data into
output data. Concurrency emerges as multiple
blocks of data move through the Pipe-and-Filter
system so that multiple filters are active at one
time.

Intel® Technology Journal | Volume 13, Issue 4, 2009

10 | A Design Pattern Language for Engineering (Parallel) Software

In OPL, the top two categories, the structural and computational patterns,
are placed side by side with connecting arrows. This shows the tight coupling
between these patterns and the iterative nature of how a designer works with
them. In other words, a designer thinks about his or her problem, chooses a
structural pattern, and then considers the computational patterns required
to solve the problem. The selection of computational patterns may suggest a
different overall structure for the architecture and may force a reconsideration
of the appropriate structural patterns. This process, moving between structural
and computational patterns, continues until the designer settles on a high-level
design for the problem.

Structural and computational patterns are used in both serial and parallel
programs. Ideally, the designer working at this level, even for a parallel
program, will not need to focus on parallel computing issues. For the
remaining layers of the pattern language, parallel programming is a primary
concern.

Parallel programming is the art of using concurrency in a problem to make the
problem run to completion in less time. We divide the parallel design process
into the following three layers.

3. Concurrent algorithm strategies: These patterns define high-level strategies
to exploit concurrency in a computation for execution on a parallel
computer. They address the different ways concurrency is naturally
expressed within a problem by providing well-known techniques to exploit
that concurrency. A good example of an algorithm strategy pattern is the
Data-Parallelism pattern.

4. Implementation strategies: These are the structures that are realized in
source code to support (a) how the program itself is organized and (b)
common data structures specific to parallel programming. The Loop-Parallel
pattern is a well-known example of an implementation strategy pattern.

5. Parallel execution patterns: These are the approaches used to support the
execution of a parallel algorithm. This includes (a) strategies that advance a
program counter and (b) basic building blocks to support the coordination
of concurrent tasks. The single instruction multiple data (SIMD) pattern is
a good example of a parallel execution pattern.

Patterns in these three lower layers are tightly coupled. For example, software
designs using the Recursive-Splitting algorithm strategy often utilize a Fork/Join
implementation strategy pattern which is typically supported at the execution
level with the thread-pool pattern. These connections between patterns are a key
point in the text of the patterns.

Concurrent Algorithm Strategy Pattern:
Data-Parallelism
Solution: An algorithm is organized as
operations applied concurrently to the elements
of a set of data structures. The concurrency is
in the data. This pattern can be generalized by
defining an index space. The data structures
within a problem are aligned to this index space
and concurrency is introduced by applying a
stream of operations for each point in the index
space.

Implementation Strategy Pattern:
Loop-Parallel
Solution: An algorithm is implemented as
loops (or nested loops) that execute in parallel.
The challenge is to transform the loops so that
iterations can safely execute concurrently and in
any order. Ideally, this leads to a single source
code tree that generates a serial program (by
using a serial compiler) or a parallel program
(by using compilers that understand the parallel
loop constructs).

Parallel Execution Pattern: SIMD
Solution: An implementation of a strictly data
parallel algorithm is mapped onto a platform
that executes a single sequence of operations
applied uniformly to a collection of data
elements. The instructions execute in lockstep
by a set of processing elements but on their own
streams of data. SIMD programs use specialized
data structure, data alignment operations, and
collective operations to extend this pattern to a
wider range of data parallel problems.

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 11

OPL draws from a long history of research on software design. The structural
patterns of Category 1 are largely taken from the work of Garlan and Shaw on
architectural styles [8, 9]. That these architectural styles could also be viewed
as design patterns was quickly recognized by Buschmann [11]. We added
two structural patterns that have their roots in parallel computing to Garlan
and Shaw’s architectural styles: Map-Reduce, influenced by [12] and Iterative-
Refinement, influenced by Valiant’s bulk-synchronous-processing pattern [13].
The computation patterns of Category 2 were first presented as “dwarfs” in
[10] and their role as computational patterns was only identified later [1].
The identification of these computational patterns in turn owes a debt to Phil
Colella’s unpublished work on the “Seven Dwarfs of Parallel Computing.”
The lower three categories within OPL build on earlier and more traditional
patterns for parallel algorithms by Mattson, Sanders, and Massingill [7]. This
work was somewhat inspired by Gamma’s success in using design patterns for
object-oriented programming [5]. Of course all work on design patterns has its
roots in Alexander’s ground-breaking work identifying design patterns in civil
architecture [6].

Applications

Structural Patterns

Pipe-and-filter

Agent and Repository

Process Control

Event Based,
Implicit Incovation

Puppeteer

Model-view Controller

Iterative Refinement

Map Reduce

Layered Systems

Arbitrary Static
Task Graph

Computational Patterns

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Spare Linear Algebra

Unstructured Grids

Structured Grids

Graphical Models

Finite State Machines

N-Body Methods

Circuits

Spectral Methods

Monte Carlo

Parallel Execution Patterns
MIMD
SIMD

Thread Pool
Speculation

Task Graph
Data Flow
Digital Circuits

Msg. Pass
Collective Comm.
Mutual Exclusion

Pt-2-pt Sync.
Coll Sync.
Trans. Mem.

CoordinationAdvancing “Program Counters”

Implementation Strategy Patterns
SPMD
Strict Data Par

Fork/Join
Actors
Master/Worker
Graph Partitioning

Loop Par.
BSP
Task Queue

Shared Queue
Shared Hash Table

Distributed Array
Shared Data

Data StructureProgram Structure

Algorithm Strategy Patterns
Task Parallelism
Recursive Splitting

Data Parallelism
Pipeline

Discrete Event
Geometric Decomposition

Speculation

Backtrack Branch
and Bound

Figure 1: The Structure of OPL and the Five Categories of Design Patterns.
Details About Each of the Patterns can be Found in [4].
Source: UC Berkeley ParLab, 2009

“All work on design patterns has its

roots in Alexander’s ground-breaking

work identifying design patterns in

civil architecture.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

12 | A Design Pattern Language for Engineering (Parallel) Software

Case Study: Content-based Image Retrieval
Experience has shown that an easy way to understand patterns and how they
are used is to follow an example. In this section we describe a problem and its
parallelization by using patterns from OPL. In doing so we describe a subset of
the patterns and give some indication of the way we make transitions between
layers in the pattern language.

In particular, to understand how OPL can help software architecture, we
use a content-based image retrieval (CBIR) application as an example. From
this example (drawn from [14]), we show how structural and computational
patterns can be used to describe the CBIR application and how the lower-
layer patterns can be used to parallelize an exemplar component of the CBIR
application.

In Figure 2 we see the major elements of our CBIR application as well as the
data flow. The key elements of the application are the feature extractor, the
trainer, and the classifier components. Given a set of new images the feature
extractor will collect features of the images. Given the features of the new
images, chosen examples, and some classified new images from user feedback,
the trainer will train the parameters necessary for the classifier. Given the
parameters from the trainer, the classifier will classify the new images based on
their features. The user can classify some of the resulting images and give
feedback to the trainer repeatedly in order to increase the accuracy of the
classifier. This top-level organization of CBIR is best represented by the
Pipe-and-Filter structural pattern. The feature-extractor, trainer, and classifier
are filters or computational elements that are connected by pipes (data
communication channels). Data flows through the succession of filters that do
not share state and only take input from their input pipe(s). The filters perform
the appropriate computation on those data and pass the output to the next
filter(s) via its output pipe. The choice of Pipe-and-Filter pattern to describe the
top-level structure of CBIR is not unusual. Many applications are naturally
described by Pipe-and-Filter at the top level.

In our approach we architect software by using patterns in a hierarchical
fashion. Each filter within the CBIR application contains a complex set
of computations. We can parallelize these filters using patterns from OPL.
Consider, for example, the classifier filter. There are many approaches to
classification, but in our CBIR application we use a support-vector machine
(SVM) classifier. SVM is widely used for classification in image recognition,
bioinformatics, and text processing. The SVM classifier evaluates the function:

z = sgn b + ∑ yi αi Φ (xi , z)
l

i=lˆ { {
 where xi is the ith support vector, z is the query vector, Φ is the kernel function,
αi is the weight, yi in {-1, 1} is the label attached to support vector xi, b is a
parameter, and sgn is the sign function. In order to evaluate the function
quickly, we identified that the kernel functions are operating on the products
and norms of xi and z. We can compute the products between a set of query

Results

Choose Examples

User Feedback

New Images

Classifier

Trainer

Feature Extractor

Figure 2: The CBIR Application Framework
Source: UC Berkeley ParLab, 2009

“Many applications are naturally

described by Pipe-and-Filter at the

top level.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 13

vectors and the support vectors by a BLAS level-3 operation with higher
throughput. Therefore, we compute the products and norms first, use the
results for computing the kernel values, and sum up the weighted kernel
values. We architect the SVM classifier as shown in Figure 3. The basic
structure of the classifier filter is itself a simple Pipe-and-Filter structure with
two filters: the first filter takes the test data and the support vectors needed to
calculate the dot products between the test data and each support vector. This
dot product computation is naturally performed by using the Dense-Linear-
Algebra computational pattern. The second filter takes the resulting dot
products, and the following steps are to compute the kernel values, sum up all
the kernel values, and scale the final results if necessary. The structural pattern
associated with these computations is Map-Reduce (see the Map-Reduce
sidebar).

In a similar way the feature-extractor and trainer filters of the CBIR application
can be decomposed. With that elaboration we would consider the “high-
level” architecture of the CBIR application complete. In general, to construct
a high-level architecture of an application, we decompose the application
hierarchically by using the structural and computational patterns of OPL.

Constructing the high-level architecture of an application is essential, and this
effort improves not just the software viability but also eases communication
regarding the organization of the software. However, there is still much work to
be done before we have a working software application. To perform this work
we move from the top layers of OPL (structural and computational patterns)
down into lower layers (concurrent algorithmic strategy patterns etc.). To
illustrate this process we provide additional detail on the SVM classifier filter.

Concurrent Algorithmic Strategy Patterns
After identifying the structural patterns and the computational patterns in
the SVM classifier, we need to find appropriate strategies to parallelize the
computation. In the Map-Reduce pattern the same computation is mapped
to different non-overlapping partitions of the state set. The results of these
computations are then gathered, or reduced. If we are interested in arriving
at a parallel implementation of this computation, then we define the Map-
Reduce structure in terms of a Concurrent Algorithmic Strategy. The natural
choices for Algorithmic Strategies are the Data-Parallelism and Geometric-
Decomposition patterns. By using the Data-Parallelism pattern we can compute
the kernel value of each dot product in parallel (see the Data-Parallelism
sidebar). Alternatively, by using the Geometric-Decomposition pattern (see the
Geometric-Decomposition sidebar) we can divide the dot products into regular
chunks of data, apply the dot products locally on each chunk, and then apply
a global reduce to compute the summation over all chunks for the final results.
We are interested in designs that can utilize large numbers of cores. Since the
solution based on the Data-Parallelism pattern exposes more concurrent tasks
(due to the large numbers of dot products) compared to the more coarse-
grained geometric decomposition solution, we choose the Data-Parallelism
pattern for implementing the map reduce computation.

Test Data

SV

Output

Dense Linear
Algebra

MapReduce

Compute
dot

products

Compute
Kernel values,
sum, & scale

Figure 3: The Major Computations of the SVM
Classifier
Source: UC Berkeley ParLab, 2009

Structural Pattern: Map-Reduce
Solution: A solution is structured in two phases:
(1) a map phase where items from an “input
data set” are mapped onto a “generated data set”
and (2) a reduction phase where the generated
data set is reduced or otherwise summarized
to generate the final result. It is easy to exploit
concurrency in the map phase, since the map
functions are applied independently for each
item in the input data set. The reduction phase,
however, requires synchronization to safely
combine partial solutions into the final result.

Intel® Technology Journal | Volume 13, Issue 4, 2009

14 | A Design Pattern Language for Engineering (Parallel) Software

The use of the Data-Parallelism algorithmic strategy pattern to parallelize the
Map-Reduce computation is shown in the pseudo code of the kernel value
calculation and the summation. These computations can be summarized as
shown in Figure 4. Line 1 to line 4 is the computation of the kernel value on
each dot product, which is the map phase. Line 5 to line 13 is the summation
over all kernel values, which is the reduce phase. Function NeedReduce checks
whether element “i” is a candidate for the reduction operation. If so, the
ComputeOffset function calculates the offset between element “i” and another
element. Finally, the Reduce function conducts the reduction operation on
element “i” and “i+offset”.

Implementation Strategy Patterns
To implement the data parallelism strategy from the Map-Reduce pseudo-
code, we need to find the best Implementation Strategy Pattern. Looking at the
patterns in OPL, both the Strict-Data-Parallel and Loop-Parallel patterns are
applicable.

Whether we choose the Strict-data-parallel or Loop-parallel patterns in the
implementation layer, we can use the SIMD pattern for realizing the execution.
For example, we can apply SIMD on line 2 in Code Listing 1 for calculating
the kernel value of each dot product in parallel. The same concept can be used
on line 7 in Code Listing 1 for conducting the checking procedure in parallel.
Moreover, in order to synchronize the computations on different processing
elements on line 4 and line 12 in Code Listing 1, we can use the barrier
construct described within the Collective-Synchronization pattern for achieving
this goal.

function ComputeMapReduce(DotProdAndNorm, Result) {

1 for i ← 1 to n {

2 LocalValue[i] ←

 ComputeKernelValue(DotProdAndNorm[i]);

3 }

4 Barrier();

5 for reduceLevel ← 1 to MaxReduceLevel {

6 for i ← 1 to n {

7 if (NeedReduce(i, reduceLevel)) {

8 offset ← ComputeOffset(i, reduceLevel);

9 LocalValue[i] ← Reduce(LocalValue[i],

 LocalValue[i+offset]);

10 }

11 }

12 Barrier();

13 }

14}
Code Listing 1: Pseudo Code of the Map Reduce Computation
Source: Intel Corporation, 2009

Algorithm Strategy Pattern:
Geometric-Decomposition
Solution: An algorithm is organized by
(1) dividing the key data structures within
a problem into regular chunks, and (2)
updating each chunk in parallel. Typically,
communication occurs at chunk boundaries
so an algorithm breaks down into three
components: (1) exchange boundary data, (2)
update the interiors or each chunk, and (3)
update boundary regions. The size of the chunks
is dictated by the properties of the memory
hierarchy to maximize reuse of data from local
memory/cache.

Implementation Strategy Pattern:
Strict-Data-Parallel
Solution: Implement a data parallel algorithm
as a single stream of instructions applied
concurrently to the elements of a data set.
Updates to each element are either independent,
or they involve well-defined collective operations
such as reductions or prefix scans.

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 15

In summary, the computation of the SVM classifier can be viewed as a
composition of the Pipe-and-Filter, Dense-Linear-Algebra, and Map-Reduce
patterns. To parallelize the Map-Reduce computation, we used the Data-
Parallelism pattern. To implement the Data-Parallelism Algorithmic Strategy,
both the Strict-Data-Parallel and Loop-Parallel patterns are applicable. We
choose the Strict-Data-Parallel pattern, since it seemed a more natural choice
given the fact we wanted to expose large amounts of concurrency for use on
many-core chips with large numbers of cores. It is important to appreciate,
however, that this is a matter of style, and a quality design could have been
produced by using the Loop-Parallel pattern as well. To map the Strict-Data-
Parallel pattern onto a platform for execution, we chose a SIMD pattern. While
we did not show the details of all the patterns used, along the way we used the
Shared-Data pattern to define the synchronization protocols for the reduction
and the Collective-Synchronization pattern to describe the barrier construct. It
is common that these functions (reduction and barrier) are provided as part of
a parallel programming environment; hence, while a programmer needs to be
aware of these constructs and what they provide, it is rare that they will need to
explore their implementation in any detail.

Other Patterns
OPL is not complete. Currently OPL is restricted to those parts of the
design process associated with architecting and implementing applications
that target parallel processors. There are countless additional patterns that
software development teams utilize. Probably the best known example is the
set of design patterns used in object-oriented design [8]. We made no attempt
to include these in OPL. An interesting framework that supports common
patterns in parallel object-oriented design is Thread Building Blocks (TBB)
[15].

OPL focuses on patterns that are ultimately expressed in software. These
patterns do not, however, address methodological patterns that experienced
parallel programmers use when designing or optimizing parallel software. The
following are some examples of important classes of methodological patterns.

 • Finding Concurrency patterns [7]. These patterns capture the process that
experienced parallel programmers use when exploiting the concurrency
available in a problem. While these patterns were developed before our set
of Computational patterns was identified, they appear to be useful when
moving from the Computational patterns category of our hierarchy to
the Parallel Algorithmic Strategy category. For example, applying these
patterns would help to indicate when geometric decomposition is chosen
over data parallelism as a dense linear algebra problem moves toward
implementation.

“We choose the Strict-Data-Parallel

pattern …. however, that is a matter

of style … a quality design could

have been produced using the Loop-

Parallelism pattern as well.”

“OPL focuses on patterns that are

ultimately expressed in software.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

16 | A Design Pattern Language for Engineering (Parallel) Software

 • Parallel Programming “Best Practices” patterns. This describes a broad range of
patterns we are actively mining as we examine the detailed work in creating
highly-efficient parallel implementations. Thus, these patterns appear to
be useful when moving from the Implementation Strategy patterns to the
Concurrent Execution patterns. For example, we are finding common
patterns associated with optimizing software to maximize data locality.

There is a growing community of programmers and researchers involved in
the creation of OPL. The current status of OPL, including the most recent
updates of patterns, can be found at: http://parlab.eecs.berkeley.edu/wiki/
patterns/patterns. This website also has links to details on our shorter monthly
patterns workshop as well as our longer, two-day, formal patterns workshop.
We welcome your participation.

Summary, Conclusions, and Future Work
We believe that the key to addressing the challenge of writing software is to
architect the software. In particular, we believe that the key to addressing
the new challenge of programming multi-core and many-core processors
is to carefully architect the parallel software. We can define a systematic
methodology for software architecture in terms of design patterns and a pattern
language. Toward this end we have taken on the ambitious project of creating
a comprehensive pattern language that stretches all the way from the initial
software architecture of an application down to the lowest-level details of
software implementation.

OPL is a work in progress. We have defined the layers in OPL, listed the
patterns at each layer, and written text for many of the patterns. Details are
available online [4]. On the one hand, much work remains to be done. On the
other hand, we feel confident that our structural patterns capture the critical
ways of composing software, and our computational patterns capture the key
underlying computations. Similarly, as we move down through the pattern
language, we feel that the patterns at each layer do a good job of addressing
most of the key problems for which they are intended. The current state of
the textual descriptions of the patterns in OPL is somewhat nascent. We need
to finish writing the text for some of the patterns and have them carefully
reviewed by experts in parallel applications programming. We also need to
continue mining patterns from existing parallel software to identify patterns
that may be missing from our language. Nevertheless, last year’s effort spent
in mining five applications netted (only) three new patterns for OPL. This
shows that while OPL is not fully complete, it is not, with the caveats described
earlier, dramatically deficient.

Complementing the efforts to mine existing parallel applications for patterns
is the process of architecting new applications by using OPL. We are currently
using OPL to architect and implement a number of applications in areas such
as machine learning, computer vision, computational finance, health, physical
modeling, and games. During this process we are watching carefully to identify

“We can define a systematic

methodology for software architecture

in terms of design patterns and a

pattern language.”

“We also need to continue mining

patterns from existing parallel software

to identify patterns that may be

missing from our language.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Design Pattern Language for Engineering (Parallel) Software | 17

where OPL helps us and where OPL does not offer patterns to guide the
kind of design decisions we must make. For example, mapping a number of
computer-vision applications to new generations of many-core architectures
helped identify the importance of a family of data layout patterns.

The scope of the OPL project is ambitious. It stretches across the full range of
activities in architecting a complex application. It has been suggested that we
have taken on too large of a task; that it is not possible to define the complete
software design process in terms of a single design pattern language. However,
after many years of hard work, nobody has been able to solve the parallel
programming problem with specialized parallel programming languages or
tools that automate the parallel programming process. We believe a different
approach is required, one that emphasizes how people think about algorithms
and design software. This is precisely the approach supported by design
patterns, and based on our results so far, we believe that patterns and a pattern
language may indeed be the key to finally resolving the parallel programming
problem.

While this claim may seem grandiose, we have an even greater aim for our
work. We believe that our efforts to identify the core computational and
structural patterns for parallel programming has led us to begin to identify the
core computational elements (computational patterns, analogous to atoms)
and means of assembling them (structural patterns, analogous to molecular
bonding) of all electronic systems. If this is true, then these patterns not
only serve as a means to assist software design but can be used to architect a
curriculum for a true discipline of computer science.

References
[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.

Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D.
Wessel, and K. Yelick. “A View of the Parallel Computing Landscape.”
Communications of the ACM, volume 51, pages 56-67, 2009.

[2] B. Chapman, G. Jost, and R van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming. MIT press, Cambridge,
Massachusetts, 2008.

[3] W. Gropp, E. Lusk, A. Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. 2nd edition, MIT Press,
Cambridge, Massachusetts, 1999.

[4] http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1994.

“Mapping a number of computer-

vision applications to new generations

of many-core architectures helped

identify the importance of a family of

data layout patterns.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

18 | A Design Pattern Language for Engineering (Parallel) Software

[6] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, New York, New York,
1977.

[7] T. G. Mattson, B. A. Sanders, B. L. Massingill. Patterns for Parallel
Programming. Addison Wesley, Boston, Massachusetts, 2004.

[8] D. Garlan and M. Shaw. “An introduction to software architecture.”
Carnegie Mellon University Software Engineering Institute Report CMU
SEI-94-TR-21, Pittsburg, Pennsylvania, 1994.

[9] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, New Jersey,
1995.

[10] K. Asanovic, et al. “The landscape of parallel computing research:
A view from Berkeley.” EECS Department, University of California,
Berkeley, Technical Report UCB/EECS-2006-183, 2006.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture - A System of Patterns. Wiley,
Hoboken, New Jersey, 1996.

[12] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters.” In Proceedings of OSDI ’04: 6th Symposium on Operating
System Design and Implementation. San Francisco, CA, December 2004.

[13] L. G. Valiant, “A Bridging Model for Parallel Computation.”
Communication of the ACM, volume 33, pages 103-111, 1990.

[14] Catanzaro, B., B. Su, N. Sundaram, Y. Lee, M. Murphy, and K. Keutzer.
“Efficient, High-Quality Image Contour Detection.” IEEE International
Conference on Computer Vision (ICCV09), pages 2381-2388, Kyoto
Japan, 2009.

[15] J. Reinders. Intel Threaded Building Blocks. O’Reilly Press, Sebastopol,
California, 2007.

Acknowledgments
The evolution of OPL has been strongly influenced by the collaborative
environment provided by Berkeley’s Par Lab. The development of the language
has been positively impacted by students and visitors in two years of graduate
seminars focused on OPL: Hugo Andrade, Chris Batten, Eric Battenberg,
Hovig Bayandorian, Dai Bui, Bryan Catanzaro, Jike Chong, Enylton Coelho,
Katya Gonina, Yunsup Lee, Mark Murphy, Heidi Pan, Kaushik Ravindran,
Sayak Ray, Erich Strohmaier, Bor-yiing Su, Narayanan Sundaram, Guogiang
Wang, and Youngmin Yi. The development of OPL has also received a boost
from Par Lab faculty — particularly Krste Asanovic, Jim Demmel, and David
Patterson. Monthly pattern workshops in 2009 also helped to shape the
language. Special thanks to veteran workshop moderator Ralph Johnson as well
as to Jeff Anderson-Lee, Joel Jones, Terry Ligocki, Sam Williams, and members
of the Silicon Valley Patterns Group.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.

A Design Pattern Language for Engineering (Parallel) Software | 19

Authors’ Biographies
Kurt Keutzer. After receiving his Ph.D. degree in Computer Science from
Indiana University in 1984, Kurt joined AT&T Bell Laboratories where he
was a Member of Technical Staff in the last of the golden era of Bell Labs
Research. In 1991 he joined Synopsys, Inc. where he served in a number of
roles culminating in his position as a Chief Technical Officer and Senior Vice-
President of Research. Kurt left Synopsys in January 1998 to become Professor
of Electrical Engineering and Computer Science at the University of California
at Berkeley. At Berkeley he worked with Richard Newton to initiate the
MARCO-funded Gigascale Silicon Research Center and was Associate Director
of the Center from 1998 until 2002. He is currently a principal investigator in
Berkeley’s Universal Parallel Computing Research Center.

Kurt has researched a wide number of areas related to both the design and
programming of integrated circuits, and his research efforts have led to four
best-paper awards. He has published over 100 refereed publications and co-
authored six books, his latest being Closing the Power Gap Between ASIC and
Custom. Kurt was made a Fellow of the IEEE in 1996.

Tim Mattson. Tim received a Ph.D. degree for his work on quantum
molecular scattering theory from UC Santa Cruz in 1985. Since then he
has held a number of commercial and academic positions working on the
application of parallel computers to mathematics libraries, exploration
geophysics, computational chemistry, molecular biology, and bioinformatics.

Dr. Mattson joined Intel in 1993. Among his many roles he was applications
manager for the ASCI Red Computer (the world’s first TeraFLOP computer),
helped create OpenMP, founded the Open Cluster Group, led the applications
team for the first TeraFLOP CPU (the 80-core tera-scale processor), launched
Intel’s programs in computing for the Life Sciences, and helped create
OpenCL.

Currently, Dr. Mattson is a Principal Engineer in Intel’s Visual Applications
Research Laboratory. He conducts research on performance modeling and
how different programming models map onto many-core processors. Design
patterns play a key role in this work and help keep the focus on technologies
that help the general programmer solve real parallel programming problems.

20 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Contributors

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
As multi-processors become mainstream, software developers must harness
the parallelism available in programs to keep up with multi-core performance.
Writing parallel programs, however, is notoriously difficult, even for the
most advanced programmers. The main reason for this lies in the non-
deterministic nature of concurrent programs, which makes it very difficult
to reproduce a program execution. As a result, reasoning about program
behavior is challenging. For instance, debugging concurrent programs is
known to be difficult because of the non-determinism of multi-threaded
programs. Malicious code can hide behind non-determinism, making software
vulnerabilities much more difficult to detect on multi-threaded programs.

In this article, we explore hardware and software avenues for improving the
programmability of Intel® multi-processors. In particular, we investigate
techniques for reproducing a non-deterministic program execution that can
efficiently deal with the issues just mentioned. We identify the main challenges
associated with these techniques, examine opportunities to overcome some
of these challenges, and explore potential usage models of program execution
reproducibility for debugging and fault tolerance of concurrent programs.

Introduction
A common assumption of many application developers is that software behaves
deterministically: given program A, running A on the same machine several
times should produce the same outcome. This assumption is important for
application performance, as it allows one to reason about program behavior.
Most single-threaded programs executing on uni-processor systems exhibit this
property because they are inherently sequential. However, when executed on
multi-core processors, these programs need to be re-written to take advantage
of all available computing resources to improve performance. Writing parallel
programs, however, is a very difficult task because parallel programs tend to be
non-deterministic by nature: running the same parallel program A on the same
multi-core machine several times can potentially lead to different outcomes
for each run. This makes both improving performance and reasoning about
program behavior very challenging.

Gilles Pokam
Intel Corporation

Cristiano Pereira
Intel Corporation

Klaus Danne
Intel Corporation

Lynda Yang
University of Illinois at
Urbana-Champaign

Sam King
University of Illinois at
Urbana-Champaign

Josep Torrellas
University of Illinois at
Urbana-Champaign

Concurrent Programs
Deterministic Replay Debugging
Fault Tolerance
Non-determinism
Memory Race Recording
Chunks

HARDwARE AND SOFTwARE APPROACHES FOR DETERMINISTIC
MULTI-PROCESSOR REPLAY OF CONCURRENT PROGRAMS

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 21

Deterministic multi-processor replay (DMR) can efficiently deal with the
non-deterministic nature of parallel programs. The main idea behind DMR is
reproducibility of program execution. Reproducing a multi-threaded program
execution requires recording all sources of non-determinism, so that during
replay, these threads can be re-synchronized in the same way as in the original
execution. On modern chip multi-processor (CMP) systems, the sources of
non-determinism can be either input non-determinism (data inputs, keyboard,
interrupts, I/O, etc.) or memory non-determinism (access interleavings among
threads). These sources of non-determinism can be recorded by using either
software or hardware, or a combination of both.

Software-only implementations of DMR can run on legacy machines without
hardware changes, but they suffer from performance slowdowns that can
restrict the applicability of DMR. To achieve performance levels comparable
to hardware schemes, software approaches can be backed up with hardware
support. In this article, we describe what the software-only approaches for
DMR may look like, and what types of hardware support may be required to
mitigate their performance. Our discussion starts with the details of DMR:
we focus on the usage models and on the main challenges associated with
recording and replaying concurrent programs. We then describe several ways
in which DMR schemes can be implemented in software, and we elaborate
on the various tradeoffs associated with these approaches. Finally, we describe
hardware extensions to software-only implementations that can help mitigate
performance and improve the applicability of DMR.

Why Record-and-Replay Matters
Recording and deterministically replaying a program execution gives computer
users the ability to travel backward in time, recreating past states and events
in the computer. Time travel is achieved by recording key events when the
software runs, and then restoring to a previous checkpoint and replaying the
recorded log to force the software down the same execution path.

This mechanism enables a wide range of applications in modern systems,
especially in multi-processor systems in which concurrent programs are subject
to non-deterministic execution: such execution makes it very hard to reason
about or reproduce a program behavior.

 • Debugging. Programmers can use time travel to help debug programs
[36, 39, 15, 4, 1] including programs with non-determinism [20, 33],
since time travel can provide the illusion of reverse execution and reverse
debugging.

 • Security. System builders can use time travel to replay the past execution of
applications looking for exploits of newly discovered vulnerabilities [19], to
inspect the actions of an attacker [12], or to run expensive security checks
in parallel with the primary computation [9].

 • Fault tolerance. System designers can use replay as an efficient mechanism
for recreating the state of a system after a crash [5].

“Deterministic multi-processor replay

(DMR) can efficiently deal with the

non-deterministic nature of parallel

programs.”

“Recording and deterministically

replaying a program execution gives

computer users the ability to travel

backward in time.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

22 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Non-determinism of Concurrent Programs
The goal of deterministic replay is to be able to reproduce the execution of a
program in the way it was observed during recording. In order to reproduce
an execution, each instruction should see the same input operands as in the
original run. This should guarantee the same execution paths for each thread.
During an execution, a program reads data from either memory or register
values. Some of the input is not deterministic across different runs of the
program, even if the program’s command line arguments are the same. Hence,
in order to guarantee determinism these inputs need to be recorded in a
log and injected at replay. In this section, we describe these sources of non-
determinism.

Deterministic replay can be done at different levels of the software stack. At
the top level, one can replay only the user-level instructions that are executed.
These include application code and system library code. This is the approach
taken by BugNet [26], Capo [25], iDNA [3], and PinPlay [29]. At the lowest
level, a system can record and replay all instructions executed in the machine,
including both system-level and user-level instructions. Regardless of the level
one is looking at, the sources of non-determinism can be divided into two sets:
input read by the program and memory interleavings across different threads of
execution. We now describe each source in more detail.

Input Non-determinism
Input non-determinism differs, depending on which layer of the system is
being recorded for replay. User-level replay has different requirements from
those of system-level replay. Conceptually, the non-deterministic inputs are
all the inputs that are consumed by the system layer being recorded that are
not produced by the same layer. For instance, for user-level replay, all inputs
coming from the operating system are non-deterministic, because there is
no guarantee of repeatability across two runs. A UNIX* system call, such as
gettimeofday, is inherently non-deterministic across two runs, for instance.
For a system-level record, all inputs that are external to the system are non-
deterministic inputs. External inputs are inputs coming from external devices
(I/O, interrupts, DMAs). We now discuss the source of non-determinism at
each level.

For user-level replay, the sources of non-determinism are listed as follows:

 • System calls. Many system calls are non-deterministic. An obvious example is
a timing-dependent call, such as the UNIX call gettimeofday. Other system
calls can also be non-deterministic. A system call reading information from
a network card may return different results, or a system-call reading from a
disk may return different results.

 • Signals. Programs can receive asynchronous signals that can be delivered at
different times across two runs, making the control flow non-deterministic.

“Some of the input is not deterministic

across different runs of the program,

even if the program’s command line

arguments are the same.”

“User-level replay has different

requirements from those of system-level

replay.”

“For a system-level record, all inputs

that are external to the system are

non-deterministic inputs.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 23

 • Special architectural instructions. On x86 architecture, some instructions
are non-deterministic, such as RDTSC (read timestamp) and RDPMC
(read performance counters). Across processor generations of the same
architecture, CPUID will also return different values, if the replay happens
in a processor other than the one in which the recording happened.

In addition to the non-deterministic inputs just mentioned, other sources of
non-determinism at the user-level are the location of the program stack that
can change from run to run and the locations where dynamic libraries are
loaded during execution. Although these are not inputs to the program, they
also change program behavior and need to be taken care of for deterministic
replay.

At the system-level, the major sources of non-determinism are the following:

 • I/O. It is common for most architectures to allow memory mapped
I/O: loads and stores effectively read from and write to devices. If one is
replaying the operating system code, the reads from I/O devices are not
guaranteed to be repeatable. As a result, the values read by those load
instructions need to be recorded.

 • Hardware interrupts. Hardware interrupts trigger the execution of an
interrupt service routine, which changes the control flow of the execution.
Interrupts are used to notify the processor that some data (e.g., disk read)
are available to be consumed. An interrupt is delivered at any point in time
during the execution of the operating system code. A recorder needs to log
the point at which the interrupt arrived and the content of the interrupt
(what its source is: e.g., disk I/O, network I/O, timer interrupt, etc.).

 • Direct Memory Access (DMA). Direct memory accesses perform writes
directly to memory without the intervention of the processor. The values
written by DMA as well as the timestamp at which those values were
written need to be recorded to be reproducible during replay.

In addition, the results of processor-specific instructions, such as x86 RDTSC,
also need to be recorded as is the case with user-level code, in order to ensure
repeatability.

“Other sources of non-determinism at

the user-level are the location of the

program stack that can change from

run to run and the locations where

dynamic libraries are loaded during

execution.”

“A recorder needs to log the point at

which the interrupt arrived and the

content of the interrupt.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

24 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Memory Interleaving
Input non-determinism is present on single-core and multi-core machines.
However, in multi-core machines, an additional source of non-determinism is
present and that is the order in which all threads in the system access shared
memory. This is typically known as memory races, where different runs of
a program may result in different threads winning the race when trying to
access a piece of shared memory. Memory races occur between synchronization
operations (synchronization races) or between data accesses (data races). At the
user-level, threads access memory in a different order, because the operating
system may schedule them in a different order. This is due to interrupts being
delivered at different times, because of differences in the architectural state
(cache line misses, memory latencies, etc.) and also because of the load in the
system. As a result, the shared memory values seen by each thread in different
runs can change, resulting in different behavior for each thread across runs.
This is the major source of non-determinism in multi-threaded programs.
Races also occur among threads within the operating system, and the behavior
across two runs is also not guaranteed to be the same. Hence the order in
which races occur within the operating system code also needs to be recorded
to guarantee deterministic replay.

Software Approaches for Deterministic Replay
Software-only approaches to record-and-replay (R&R) can be deployed on
current commodity hardware at no cost. As described in the previous section,
an R&R solution needs to tackle two issues: logging and replaying non-
deterministic inputs and enforcing memory access interleavings. We describe
software-only solutions to both of these challenges next, and we provide details
on the techniques used in recent deterministic replay approaches extant in
literature. Because there are more software-only R&R-like systems than can
possibly be discussed in this article, we choose to mention those that best
characterize our focus. Once we’ve surveyed the literature, we discuss the
remaining open challenges in software-only solutions.

Reproducing Input Non-determinism
Systems and programs execute non-deterministically due to the external
resources they are exposed to and the timing of these resources. Thus, these
external resources can be all viewed as inputs, whether they are user inputs,
interrupts, system call effects, etc. Given the same inputs and the same initial
state, the behavior of the system or application is deterministic. The approach to
R&R, therefore, is to log these inputs during the logging phase and inject them
back during replay.

“In multi-core machines, an

additional source of non-determinism

is present and that is the order in

which all threads in the system access

shared memory.”

“The order in which races occur

within the operating system code also

needs to be recorded to guarantee

deterministic replay.”

“An R&R solution needs to tackle two

issues: logging and replaying non-

deterministic inputs and enforcing

memory access interleavings.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 25

Table 1 summarizes the replay systems under discussion in terms of the level of
replay (user-level or system-level), usage model, and how they are implemented
for replaying inputs.

Replay System Level of Replay Usage Model Implementation

Bressoud and Schneider [5] System Fault-tolerance Virtual machine
CapoOne [25] User General notion of “time travel”

for multiple purposes
Kernel modifications, ptrace

Flashback [36] User Debugging Kernel modifications
iDNA [3] User Debugging, profiling Dynamic instrumentation
Jockey [34] User Debugging Library-based, rewrites system calls
Liblog [16] User Debugging Library-based, intercepts calls to libc
ODR [2] User Debugging Kernel modifications, ptrace
PinPlay [29] User Debugging, profiling Dynamic instrumentation
R2 [17] User Debugging Library-based, stubs for replayed function calls
ReVirt [13] System Security Virtual machine
TTVM [20] System Debugging Virtual machine
VMWare [38] System General replay Virtual machine

Table 1: Summary of Approaches to Replaying Input Non-determinism
Source: Intel Corporation, 2009

User-level Input Non-determinism
First, let us consider user application replay. For the most part, we discuss
how several approaches handle system calls and signals, since together they
represent a large part of the non-deterministic external resources exposed to the
application. They also represent resources that have inherently deterministic
timing and non-deterministic timing, respectively.

System Calls
An application’s interaction with the external system state is generally confined
to its system calls. We discuss in detail how two recent replay systems —
Flashback [36] and CapoOne [25] — handle these system calls. Flashback can
roll back the memory state of a process to user-defined checkpoints, and it
supports replay by logging the process’s interaction with the system. Flashback’s
usage model is for debugging software. CapoOne can log and replay multiple
threads and processes in a given replay group, cohesively, while concurrently
supporting multiple independent replay groups. It re-executes the entire
application during replay. CapoOne requires additional hardware to support
multi-processor replay; however, its technique for enforcing an application’s
external inputs is completely software-based.

“Flashback can roll back the memory

state of a process to user-defined

checkpoints.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

26 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Both Flashback and CapoOne interpose on system call routines: they log the
inputs, results, and side-effects (copy_to_user) of each system call, and they
inject the data back in during re-execution of system call entry and exit points.
If the effect of a given system call is isolated to only the user application (e.g.,
getpid()), the actual call is bypassed during replay, and its effects are emulated
by injecting the values retrieved from the log. On the other hand, if a system
call modifies a system state that is outside of the replayed application (e.g.,
fork()), the system call is re-executed during replay in a manner such that its
effect on the application is the same as during the logging phase. CapoOne
interposes on system calls in user space via the ptrace mechanism, while
Flashback does so with kernel modifications. Another replay scheme called
ODR [2] describes similar techniques to handle system calls, by using both
ptrace and kernel modules. Jockey [34], a replay debugger, is slightly different
from Flashback and CapoOne in that Jockey links its own shared-object file to
the replayed application and then rewrites the system calls of interest.

While all of these approaches automatically define the interface at which
logging and replay occur, namely the system call boundary, R2 [17] is a library-
based replay debugger tool that allows the user to choose this demarcation.
Functions above the user-defined interface are re-executed during replay, while
those below it are emulated by using data from log files. Implementation-
wise, R2 generates, and later calls, the stub associated with each function that
needs to be logged or replayed. The authors of R2 also address the issue of
preserving order between function calls that are executed by different threads.
R2 uses a Lamport clock [21] to either serialize all calls or allow them to occur
concurrently, as long as causal-order is maintained.

Signals
With system calls, we are only interested in recording their effects, since they
always execute at the same point in a given application. This is, however,
untrue for signals. The purpose of a signal is to notify an application of a given
event, and since signals are asynchronous and can occur at any point during
the application’s execution, they are a good example of a non-deterministic
input that is time-related. Although Flashback does not support signal replay,
Flashback’s developers suggest using the approach described in [35]: i.e., use the
processor’s instruction counter to log exactly when the signal occurred. During
replay, the signal would be re-delivered when the instruction counter reaches
the logged value. Jockey, on the other hand, delays all signals encountered
during the logging phase until the end of the next system call, which it logs
with that system call. Thus, during replay, the signal is re-delivered at the end
of the same system call. CapoOne and liblog [16], another replay debugger, use
a similar technique.

“Functions above the user-defined

interface are re-executed during

replay.”

“Since signals are asynchronous and

can occur at any point during the

application’s execution, they are a good

example of a non-deterministic input

that is time-related.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 27

Dynamic Instrumentation
PinPlay [29] and iDNA [3] are replay systems that focus on the application
debugging usage model: they are based on the dynamic binary instrumentation
of a captured program trace. Non-deterministic input is logged and replayed,
by tracking and restoring changes to registers and main memory. PinPlay
replays asynchronous signals by logging the instruction count of where signals
occur.

Full-system Input Non-determinism
We move on to consider approaches for software-based, full-system replay,
which include ReVirt [13], TTVM [20], the system described by [5], and
VMWare [38]. The first three were designed for the usage models of security,
debugging, and fault tolerance. Perhaps, unsurprisingly, all of these methods
take advantage of virtual machines.

ReVirt uses UMLinux [6], a virtual machine that runs as a process on the
host. Hardware components and events of the guest are emulated by software
analogues. For example, the guest hard disk is a host file, the guest CD-ROM
is a host device, and guest hardware interrupt events are simulated by the host
delivering a signal to the guest kernel. With these abstractions, ReVirt is able to
provide deterministic replay by checkpointing the virtual disk and then logging
and replaying the inputs that are external to the virtual machine. Similar to
user-application replay, each external input may require that only the data
associated with it need be logged, or additionally, it may require that a timing-
factor for those that are asynchronous be logged as well. ReVirt logs the input
from external devices such as the keyboard and CD-ROM, non-deterministic
results returned by system calls from the guest kernel to the host kernel, and
non-deterministic hardware instructions such as RDTSC. Guest hardware
interrupts, emulated by signals, are asynchronous, and thus ReVirt has to
ensure that these are delivered at the same point in the execution path. The
authors chose to use the program counter and the hardware retired branches
counter to uniquely identify the point to deliver the signal.

TTVM uses ReVirt for its logging and replaying functionality, but makes
changes that make it more suitable for its debugging usage model; for example,
TTVM provides support for greater and more frequent checkpoints.

Reproducing Memory Access Non-determinism
The techniques we just described guarantee determinism for replaying single-
threaded applications or multi-threaded applications where the threads are
independent from one another. Deterministic replay of multi-threaded
applications, with threads communicating via synchronization or through
shared memory, require additional support.

“Non-deterministic input is logged

and replayed, by tracking and

restoring changes to registers and main

memory.”

“ReVirt is able to provide

deterministic replay by checkpointing

the virtual disk and then logging and

replaying the inputs that are external

to the virtual machine.”

“Deterministic replay of multi-

threaded applications, with threads

communicating via synchronization

or through shared memory, require

additional support.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

28 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Table 2 summarizes the replay systems we describe next in terms of usage
model, multi-processor support, support for replaying data-races without
additional analysis, and support for immediate replay without a state-
exploration stage.

Replay System Usage Model Multiprocessor
Support?

Data Race Support? Immediate Replay
(no offline state-
exploration stage)?

DejaVu [8] Debugging No Yes Yes

iDNA [3] Debugging, profiling Yes No Yes

Instant Replay [23] Debugging Yes No Yes

Kendo [27] Debugging, fault-tolerance Yes No Yes

Liblog [16] Debugging No Yes Yes

ODR [2] Debugging Yes Yes No

PinPlay [29] Debugging Yes Yes Yes

PRES [28] Debugging Yes Yes No

RecPlay [32] Debugging Yes No Yes

Russinovich and Cogswell [33] Debugging No Yes Yes

SMP-ReVirt [11] General replay Yes Yes Yes

Table 2: Summary of Approaches to Replaying Memory Access Non-
determinism
Source: Intel Corporation, 2009

Replay in Uniprocessors
In a uni-processor system, it was observed that since only one thread can run at
any given time, recording the order of how the threads were scheduled on the
processor is sufficient for later replaying of the memory access interleaving [16,
8, 33]. These solutions have been implemented at the operating-system level
[33], virtual-machine level [8], and user level [16].

Replay of Synchronized Accesses
On a multi-processor, thread-scheduling information is not sufficient for
deterministic replay, since different threads can be running on different
processors or cores concurrently. Earlier proposals, such as Instant Replay [23]
and RecPlay [32], recorded the order of operations at a coarse granularity;
that is, at the level of user-annotated shared objects and synchronization
operations, respectively. Therefore, these schemes were only able to guarantee
deterministic replay for data-race free programs. Both proposals were designed
with debugging in mind. As an illustrative example, Instant Replay used the
concurrent-read-exclusive-write (CREW) [10] protocol when different threads
wanted access to a shared object. CREW guarantees that when a thread has
permission to write to a shared object, no other threads are allowed to write to
or read from that object. On the other hand, multiple threads can read from
the object concurrently. Instant Replay uses the recorded sequence of write
operations and the “version” number of the object for each read operation
during replay.

“On a multi-processor, thread-

scheduling information is not

sufficient for deterministic replay,

since different threads can be running

on different processors or cores

concurrently.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 29

Some recent proposals also do not support deterministic replay of programs
with data races. iDNA [3] schedules a thread’s execution trace according to
instruction sequences that are ordered via synchronization operations. Kendo
[27] offers deterministic multi-threading in software by assuring the same
sequence of lock acquisition for a given input. While not technically a replay
system, Kendo also requires that programs be correctly synchronized. Kendo’s
usage models include debugging and support for fault-tolerant replicas.

Replay with State-exploration
ODR [2] and PRES [28] are two novel approaches that facilitate replay
debugging, but are not able to immediately replay an application, given the
log data during the logging phase. Instead, they intelligently explore the
space of possible program execution paths until the original output or bug is
reproduced. Such analysis must be done off-line, but ODR and PRES gain in
having smaller logging phase overtimes (since they log less data) compared to
software schemes that provide for immediate replay.

PinPlay and SMP-ReVirt
PinPlay [29] and SMP-ReVirt [11, 14] provide for immediate replay, and they
order shared memory operations rather than coarse-grained objects.

PinPlay’s approach is to implement a software version of the flight data
recorder (FDR) [37]. FDR exploits cache coherence messages to find memory
access dependencies and to order pairs of instructions.

SMP-ReVirt is a generalization of the CREW protocol for shared objects in
Instant Replay [23] to shared pages of memory. A given page in memory can
only be in a state that is concurrently read or exclusively written during the
logging phase. These access controls are implemented by changing a thread’s
page permissions — read-access, write-access, or no-access for a given page
— during the system’s execution. For example, if a thread wants to write to a
page and thus needs to elevate its permission to write-access, all other threads
must have their permissions reduced to no-access first. Each thread has its
own log. When a thread has its page permission elevated during logging, it
logs the point at which it received the elevated permission and the points
where the other threads reduced their page permissions. Additionally, the
threads that had their permissions reduced log the same points where their
permissions were reduced. SMP-ReVirt specifies these “points” in the execution
of the system by means of instruction counts. The instructions count of each
processor is also updated in a globally visible vector. Thus, during replay, when
a thread encounters a page permission elevation entry, it waits until the other
permission-reducing threads reach the instruction count value indicated in the
log. On the other hand, when a thread encounters a page permission reduction
entry, it updates the global vector with its instruction count.

“iDNA [3] schedules a thread’s

execution trace according to

instruction sequences that are ordered

via synchronization operations.”

“FDR exploits cache coherence

messages to find memory access

dependencies and to order pairs of

instructions.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

30 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Challenges in Software-only Deterministic Replay
It has been shown that designing a software-only solution for recording and
replaying input non-determinism is reasonable in terms of execution speed,
and it can be done with an overhead of less than ten percent [20, 28, 36]. It is
difficult to compare and summarize input log size growth rates for the different
approaches discussed here, since different approaches log different events, may
compress the log differently, and use different applications as their benchmarks.
However, it can be noted that Flashback’s [36] log size is linear to the number
of system call invocations. Other similar input logging techniques may likely
exhibit similar behavior. In short, enforcing input determinism in software
seems to be a reasonable approach, considering the low overhead.

Conversely, the overhead incurred in enforcing memory access interleaving in
software is a different story. SMP-ReVirt [11, 14] and PinPlay [29] allow for
the most flexible and immediate replay, but they incur a huge overhead. Since
SMP-ReVirt instruments and protects shared memory at the page level of
granularity, it has issues with false sharing and page contention [28], especially
as the number of processors increases [14]. With four CPUs, the logging phase
runtime of an application in SMP-ReVirt can be up to 9 times that of a native
run [14]. PinPlay, like iDNA, which uses dynamic instrumentation and has a
12 to 17 times slowdown [3], cannot be turned on all the time.

The rest of the schemes previously described for replaying multi-threaded
applications are either less flexible (uniprocessor only [8, 16, 33], data-race free
programs only [3, 23, 27, 32]), or they trade off short on-line recording times
with potentially long off-line state exploration times for replay [2, 28].

Another challenge with software-based schemes is their ability to pinpoint
asynchronous events during replay. This issue was exemplified earlier in
reference to asynchronous signals and interrupts. While some replay schemes
choose to use hardware performance counters in their implementation [36, 35,
13], others choose to delay the event until a later synchronous event occurs [25,
34, 16]. The latter solution, though simpler, can theoretically affect program
correctness, while the former solution requires the use of performance counters
that are often inaccurate and non-deterministic [11, 27].

In the end, the selection of an appropriate replay system depends on the usage
model. If we are to assume a debugging model where a programmer may
not mind waiting a while for a bug to be reproduced, large replay overheads,
though not desirable, may be reasonable. In fact, for most of the methods
described here, the developers assumed a debugging usage model. Alternatively,
a fault-tolerance replay model would require that backup replicas be able to
keep up with the production replica, and thus good performance would be
much more important. Note that performance is not the only factor that
should be considered when determining which replay system works best with
a usage model. For example, if the usage model is to replay system intrusions,
it would be more suitable to use a full-system replay scheme rather than a user-
application replay scheme.

“Enforcing input determinism in

software seems to be a reasonable

approach, considering the low

overhead.”

“Another challenge with software-

based schemes is their ability to

pinpoint asynchronous events during

replay.”

“In the end, the selection of an

appropriate replay system depends on

the usage model.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 31

Hardware Support for Recording Memory Non-
determinism
Deterministically replaying a program execution is a very difficult problem,
as we just described. In addition to logging input non-determinism, existing
software approaches have to record the interleavings of shared memory
accesses. This can be done at various levels of granularity (e.g., page level or
individual memory operations), but as discussed previously, the overhead
incurred can be prohibitive and therefore detrimental to applications of R&R,
such as fault-tolerance. For this reason, there has been a lot of emphasis on
providing hardware support for logging the interleavings of shared memory
accesses more efficiently. We call the proposed mechanisms for logging the
order in which memory operations interleave memory race recorders (MRR).

Prior work on hardware support for MRR piggybacks on timestamps located
on cache coherence messages and logs the outcome of memory races by using
either a point-to-point or a chunk-based approach. In this section we describe
these two approaches and suggest directions for making them practical in
modern multi-processor systems.

Point-to-point Approach
In point-to-point approaches [26, 37], memory dependencies are tracked at
the granularity level of individual shared memory operations. In this approach,
each memory block has a timestamp, and each memory operation updates the
timestamp of the accessed block. In general, a block can be anything ranging
from a memory word to multiple memory words [37, 31]. We now describe
the FDR [37], a state-of-the-art implementation of a point-to-point MRR
approach.

FDR augments each core in a multi-processor system with an instruction
counter (IC) that counts retired instructions. FDR further augments each
cache line with a cache instruction count (CIC) that stores the IC of the last
store or load instruction that accessed the cache line (see Figure 1). When a
core receives a remote coherence request to a cache line, it includes the
corresponding CIC and its core ID in the response message. The requesting
core can then log a dependency by storing the ID and CIC of the responding
core and the current IC of the requesting core. To reduce the amount of
information logged by the requesting core, a dependency is logged only if it
cannot be inferred by a previous one. This optimization is called transitive
reduction. For example, in Figure 1, only the dependency from T1:W(b) to
T2:R(b) is logged, as T1:R(a) to T2:W(a) is consequentially implied by
T1:W(b) to T2:R(b). Transitive reduction is implemented by augmenting each
core with a vector instruction count that keeps track of the latest CIC received
by each core.

“There has been a lot of emphasis

on providing hardware support for

logging the interleavings of shared

memory accesses more efficiently.”

Rb

Ra

Wa

Wb

response CIC=5

response CIC=6

CIC(a)=5

CIC(b)=6

$line

a

b

. . .

CIC

5

6

. . .

T1 T2

Figure 1: Point-to-point Approach
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

32 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Chunk-based Approach
A chunk defines a block of memory instructions that executes in isolation, i.e.,
without a remote coherence request intervening and causing a conflict. Chunks
are represented by using signatures, which are hardware implementations
of Bloom Filters. Signatures are used to compactly represent sets of locally
accessed read or write memory addresses and to disambiguate a remote shared
memory reference against them. A conflict with the signatures ends a chunk
and clears the signatures.

Similar to point-to-point approaches, chunk-based approaches can also take
advantage of transitive reduction to reduce the amount of logged information.
As shown in Figure 2, the remote read T2:R(b) conflicts with the write
signature of T1 and causes T1 to end its chunk and to clear its signatures.
Consequently, the request T2:W(a) does not conflict and the dependency
T1:R(a) to T2:W(a) is implied. In contrast to point-to-point approaches in
which a timestamp is stored with each memory block, chunk-based approaches
only need to store a timestamp per core to order chunks between threads.

We now describe two similar implementations of chunk-based approaches.

Rerun
In Rerun [18], episodes are like chunks. Rerun records a memory dependency
by logging the length of an episode along with a timestamp. To identify the
episodes that need to be logged, Rerun augments each core with a read and
a write signature that keep track of the cache lines read and written by that
core during the current episode, respectively. When a cache receives a remote
coherence request, it checks its signatures to detect a conflict. If a conflict is
detected, the core ends its current episode, which involves clearing the read and
write signatures, creating a log entry containing the length of the terminating
episode along with its timestamp, and updating the timestamp value. The
timestamp represents a scalar clock maintained by each core to provide a
total order among the episodes. The cores keep their timestamp up to date by
piggybacking them on each cache coherence reply.

Deterministic replay is achieved by sequentially executing the episodes in order
of increasing timestamps. To do so, a replayer typically examines the logs to
identify which thread should be dispatched next and how many instructions it
is allowed to execute until an episode of a different thread needs to be replayed.

DeLorean
Similar to Rerun, DeLorean [24] also logs chunks by using signatures, but does
so in a different multi-processor execution environment. In this environment,
cores continuously execute chunks that are separated by register checkpoints.
A chunk execution in this environment is speculative, i.e., its side effects are
visible to other cores only until after commit. Before a chunk can commit,
however, its signatures are compared against the signatures of other chunks
to detect conflicts. If a conflict is detected with a chunk, its signatures are
cleared and the chunk is squashed and re-executed. While such an execution
environment is not standard in today’s multi-processors, it has been shown to
perform well [7]. The required hardware extensions are similar to hardware-
supported transactional memory systems [22].

Rb

Ra

Wa

Wb

T1 T2

b a

WS RS

read request hits WS;
signatures are cleared

Invalidation request:
no hit in WS or RS

Figure 2: Chunk-based Approach
Source: Intel Corporation, 2009

“If a conflict is detected with a chunk,

its signatures are cleared and the

chunk is squashed and re-executed.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 33

To enable deterministic replay, DeLorean logs the total order of chunk
commits. Because in this execution environment chunks have a fixed size, e.g.,
1000 dynamic instructions, no additional information needs to be logged,
except in the rare cases where chunks need to end early because of events such
as interrupts. Consequently, the log size of DeLorean is about one order of
magnitude smaller than in Rerun. DeLorean can even reduce the log size by
another order of magnitude when operating in PicoLog mode. In this execution
mode, the architecture commits chunks in a deterministic order, e.g., round
robin. Although this execution mode sacrifices performance, DeLorean only
needs to log the chunks that end due to non-deterministic events, such as
interrupts.

Making Memory Race Recorders Practical for Modern CMPs
MRR approaches discussed so far are effective in logging the events required
for deterministic replay, but they also impose some non-negligible amount of
complexity and performance cost that can preclude hardware vendors from
deploying similar solutions in real products. In this section, we pinpoint some
of these issues and discuss possible ways to remedy them.

Implementation Complexity
Showstoppers with previous MRR approaches are the implementation
complexity of proposed techniques and their associated hardware cost.

With point-to-point approaches, for instance, a hardware estate for storing
the timestamp of each accessed memory block is required. If the granularity
of a memory block is a cache line, then each cache line must be augmented
with storage for the timestamp. Because a cache line eviction throws away the
information stored into it, the timestamp must also be stored at the next cache
level to reduce logging frequency. FDR estimates this cost to be ~6 percent of
the capacity of a 32KB L1 cache.

The main hardware cost associated with chunk-based approaches lies in the
storage required for signatures. In Rerun, for instance, the authors suggest
using 1024-bit signatures to store read memory addresses and 256-bit
signatures to store written memory addresses. In contrast to point-to-point
approaches, these changes do not require modifications to the cache sub-system
and are therefore less invasive. However, there is some complexity involved
in implementing signatures. The authors in [30] show that implementing
signatures in modern CMPs involves subtle interactions with the hierarchy
and policy decisions of on-chip caches. The authors show that the signature
placement in a multi-level cache hierarchy can degrade performance by
increasing the traffic to the caches. They propose hybrid L1/L2 signature
placement strategies to mitigate this performance degradation.

“The log size of DeLorean is about one

order of magnitude smaller than in

Rerun.”

“Showstoppers with previous MRR

approaches are the implementation

complexity of proposed techniques and

their associated hardware cost.”

“The main hardware cost associated

with chunk-based approaches lies in

the storage required for signatures.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

34 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Performance Overhead
With the exception of DeLorean, all MRR approaches discussed in this
section must piggyback on cache coherence messages to maintain ordering
among events in the system. For instance, in FDR, the core ID and the CIC
are piggybacked on each coherence reply to log a point-to-point dependency
between two instructions from different threads, whereas in Rerun a timestamp
is piggybacked on each coherence reply to maintain causal ordering between
chunks. This overhead can hurt performance by putting a lot of pressure on the
bandwidth. FDR and Rerun, for instance, report a performance cost of ~10
percent, an estimation based on functional simulation. Ideally, we want this
coherence traffic overhead to be nonexistent in real implementations of MRR.
One way to attain this objective with a chunk-based approach has recently
been proposed in [30]. The authors make the observation that maintaining
causality at the chunk boundary is all that is needed to order chunks. Doing
so eliminates the requirement to piggyback a timestamp on each coherence
message. Using this approach, they show that the coherence traffic overhead
can be reduced by several orders of magnitude compared to Rerun or FDR.

Replay Performance
As discussed previously, there are plenty of applications that can benefit from
deterministic replay. Each of these applications places different replay speed
requirements on the system. For instance, while an application developer can
easily accommodate slow replay during debugging, this is not the case for
high-availability applications in which the downtime window during recovery
must be shortened. Slow replay in this case can have devastating effects on the
system. Instead, we would like a second machine to continuously replay the
execution of the primary machine at a similar speed, and to be able to take
over instantly if the primary fails. Ideally, we do not want a R&R system to be
constrained by speed, because such a constraint would limit the system’s scope
and restrict its applicability. Therefore, techniques are needed to improve the
replay speed of MRR approaches.

DeLorean and FDR can replay a program at production run speed. In
DeLorean, this is achieved by replaying chunks in parallel and re-synchronizing
them according to the same commit order as recorded during their original
execution. With FDR, threads are replayed in parallel and are only re-
synchronized at the locations corresponding to the point-to-point dependencies
recorded during their original execution. Neither FDR nor DeLorean, however,
is a likely choice for a practical MRR implementation today. As discussed
previously, the complexity of FDR is a major showstopper in modern CMPs.
For DeLorean, the execution environment it assumes is not standard in today’s
multi-processors.

“The authors make the observation

that maintaining causality at the

chunk boundary is all that is needed

to order chunks.”

“DeLorean and FDR can replay a

program at production run speed.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 35

Replaying episodes in Rerun is done sequentially, following increasing
timestamp order. As such, Rerun cannot therefore meet the replay speed
requirement of DMR usage models, such as fault-tolerance. As an alternative
to Rerun, the authors in [30] have proposed a chunk-based replay scheme
called a concurrent chunk region. A concurrent chunk region defines a set of
chunks that can be replayed in parallel, because each chunk in such a region
features the same timestamp as the chunk in other regions. To build such
concurrent chunk regions, whenever a chunk must terminate due to a conflict,
for instance, all chunks with similar timestamps must also be terminated
simultaneously. Therefore, concurrent chunk regions trade off replay speed
for log size. The authors in [30] have shown that, by using concurrent chunk
regions, replay speed can be improved by several orders of magnitude at the
cost of moderate log size increases.

Conclusions
In this article we presented a comprehensive survey of DMR techniques to deal
with multi-threaded program execution on CMP machines. We showed that
software-only implementations of DMR are quite effective in recording and
replaying concurrent programs, but they suffer from performance limitations
that can restrict their applicability. To improve on performance, the memory
non-determinism of multi-threaded programs must be recorded more
efficiently. We described the hardware support needed to deal with fine-grained
logging of memory interleavings more efficiently, using either point-to-point
approaches or chunk-based approaches. Combined with software approaches,
these hardware techniques can provide better performance and address a wider
range of usage models. However, there are still several remaining challenges
that need to be met before a complete solution can be deployed on real
hardware. One such challenge involves recording memory non-determinism
with non-sequentially consistent memory models. We hope that the discussions
presented here help foster the research on DMR and that they stimulate a
broader interest in DMR usage models.

“A concurrent chunk region defines a

set of chunks that can be replayed in

parallel.”

“To improve on performance, the

memory non-determinism of multi-

threaded programs must be recorded

more efficiently..”

Intel® Technology Journal | Volume 13, Issue 4, 2009

36 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

References
[1] H. Agrawal. “Towards automatic debugging of computer programs.”

PhD thesis, Department of Computer Sciences, Purdue University, West
Lafayette, Indiana, 1991.

[2] G. Altekar and I. Stoica. “ODR: Output-deterministic replay for
multicore debugging.” In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, pages 193-206, 2009.

[3] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drinic,
D. Mihocka, and J. Chau. “Framework for instruction-level tracing and
analysis of program executions.” In Proceedings of the 2nd International
Conference on Virtual Execution Environments, pages 154-163, 2006.

[4] B. Boothe. “A fully capable bidirectional debugger.” ACM SIGSOFT
Software Engineering Notes, 25(1), pages 36-37, 2000.

[5] T. C. Bressoud and F. B. Schneider. “Hypervisor-based fault tolerance.”
In Proceedings of the 15th ACM Symposium on Operating Systems
Principles, pages 1-11, 2009.

[6] K. Buchacker and V. Sieh. “Framework for testing the fault-tolerance
of systems including OS and network aspects.” In Proceedings of the 6th
IEEE International Symposium on High-Assurance Systems Engineering:
Special Topic: Impact of Networking, pages 95-105, 2001.

[7] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. “BulkSC: Bulk
enforcement of sequential consistency.” ACM SIGARCH Computer
Architecture News, 35(2), pages 278-289, 2007.

[8] J. Choi and H. Srinivasan. “Deterministic replay of Java multithreaded
applications.” In Proceedings of the SIGMETRICS Symposium on Parallel
and Distributed Tools, pages 48-59, 1998.

[9] J. Chow, T. Garfinkel, and P. M. Chen. “Decoupling dynamic program
analysis from execution in virtual environments.” In Proceedings of the
USENIX Annual Technical Conference, pages 1–14, 2008.

[10] P. Courtois, F. Heymans, and D. Parnas. “Concurrent control with
readers and writers.” Communications of the ACM, 14(10), pages 667-
668, 1971.

[11] G. Dunlap. “Execution replay for intrusion analysis.” PhD thesis, EECS
Department, University of Michigan, Ann Arbor, Michigan, 2006.
Available at http://www.eecs.umich.edu/~pmchen/papers/dunlap06.pdf

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 37

[12] S. King, G. Dunlap, and P. Chen. “Operating system support for virtual
machines.” In Proceedings of the 2003 USENIX Technical Conference,
pages 71-84, 2003.

[13] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. “ReVirt:
Enabling intrusion analysis through virtual-machine logging and
replay.” ACM SIGOPS Operating Systems Review, 36(SI), pages 211-224,
2002.

[14] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. “Execution
replay of multiprocessor virtual machines.” In Proceedings of the Fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, pages 121-130, 2008.

[15] S. Feldman and C. Brown. “IGOR: a system for program debugging via
reversible execution.” In Proceedings of the 1988 ACM SIGPLAN and
SIGOPS Workshop on Parallel and Distributed Debugging, pages 112-
123, 1988.

[16] D. Geels, G. Altekar, S. Shenker, and I. Stoica. “Replay debugging for
distributed applications.” In Proceedings of the USENIX ‘06 Annual
Technical Conference, 27, 2006.

[17] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, F. Kaashoek, and
Z. Zhang. “R2: An application-level kernel for record and replay.” In
Proceedings of the 8th USENIX Symposium on Operating System Design
and Implementation, pages 193-208, 2008.

[18] D. Hower and M. Hill. “Rerun: Exploiting episodes for lightweight
memory race recording.” ACM SIGARCH Computer Architecture News,
36(3), pages 265-276, 2008.

[19] A. Joshi, S. King, G. Dunlap, and P. Chen. “Detecting past and present
intrusions through vulnerability-specific predicates.” In Proceedings of
the Twentieth ACM Symposium on Operating Systems Principles, pages
91-104, 2005.

[20] S. King, G. W. Dunlap, and P. M. Chen. “Debugging operating systems
with time-traveling virtual machines.” In Proceedings of the USENIX
Annual Technical Conference, 1, 2005.

[21] L. Lamport. “Time, clocks and the ordering of events in a distributed
system.” CACM, 21(7):558–565, 1978.

[22] J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool,
2006.

Intel® Technology Journal | Volume 13, Issue 4, 2009

38 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

[23] T. LeBlanc and J. Mellor-Crummey. “Debugging parallel programs with
instant replay.” IEEE Transactions on Computers, 36(4), pages 471-482,
1987.

[24] P. Montesinos, L. Ceze, and J. Torrellas. “DeLorean: Recording and
deterministically replaying shared-memory multiprocessor execution
efficiently.” In Proceedings of the 35th International Symposium on
Computer Architecture, pages 289-300, 2008.

[25] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. “Capo:
Abstractions and software-hardware interface for hardware-assisted
deterministic multiprocessor replay.” In Proceedings of the 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 73-84, 2009.

[26] S. Narayanasamy, G. Pokam, and B. Calder. “Bugnet: Continuously
recording program execution for deterministic replay debugging.” In
Proceedings of the 32nd Annual International Symposium on Computer
Architecture, pages 284-295, 2005.

[27] M. Olszewski, J. Ansel, and S. Amarasinghe. “Kendo: Efficient
deterministic multithreading in software.” In Proceedings of the 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 97-108, 2009.

[28] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. Lee, and
S. Lu. “PRES: Probabilistic replay with execution sketching on
multiprocessors.” In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, pages 177-192, 2009.

[29] C. Pereira. “Reproducible user-level simulation of multi-threaded
workloads.” PhD thesis, Department of Computer Science and
Engineering, University of California – San Diego, San Diego,
California, 2007. Available at http://cseweb.ucsd.edu/~calder/papers/
thesis-cristiano.pdf.

[30] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A. Adl-Tabatabai.
“Architecting a chunk-based memory race recorder in modern CMPs.”
In Proceedings of the 42nd International Symposium on Microarchitecture,
2009.

[31] M. Prvulovic. “CORD: Cost-effective (and nearly overhead-free)
order-recording and data race detection.” In Proceedings of the Twelfth
International Symposium on High-Performance Computer Architecture,
2006.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 39

[32] M. Ronsse and K. De Bosschere. “RecPlay: a fully integrated practical
record/replay system.” ACM Transactions on Computer Systems, 17(2),
pages 133–152, 1999.

[33] M. Russinovich and B. Cogswell. “Replay for concurrent non-
deterministic shared-memory applications.” In Proceedings of the ACM
SIGPLAN 1996 Conference on Programming language Design and
Implementation, pages 258-266, 1996.

[34] Y. Saito. “Jockey: A user-space library for record-replay debugging.” In
Proceedings of the Sixth International Symposium on Automated Analysis-
Driven Debugging, pages 69-76, 2005.

[35] J. Slye and E. Elnozahy. “Supporting nondeterministic execution
in fault-tolerant systems.” In Proceedings of the Twenty-Sixth Annual
International Symposium on Fault-Tolerant Computing, pages 250, 1996.

[36] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. “Flashback: A
lightweight extension for rollback and deterministic replay for software
debugging.” In Proceedings of the USENIX Annual Technical Conference,
3, 2004.

[37] M. Xu, R. Bodik, and M. Hill. “A flight data recorder for enabling
full-system multiprocessor deterministic replay.” In Proceedings of the
30th Annual International Symposium on Computer Architecture, pages
122-135, 2003.

[38] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, B. Weissman, and
VMWare Inc. “Retrace: Collecting execution trace with virtual machine
deterministic replay.” In Proceedings of the 3rd Annual Workshop on
Modeling, Benchmarking and Simulation, 2007.

[39] M. Zelkowitz. “Reversible execution.” Communications of the ACM,
16(9):566, 1973.

Intel® Technology Journal | Volume 13, Issue 4, 2009

40 | Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs

Authors’ Biographies
Gilles Pokam is a Senior Research Scientist in the Microprocessor &
Programming Research at Intel Labs. His research interests are in multi-core
architectures and software, with a current focus on concurrent programming
and programmer productivity. Before joining Intel Labs, he was a researcher at
IBM T.J. Watson Research Center in NY, and a postdoctoral research scientist
at the University of California, San Diego. He received a PhD degree from
INRIA Lab and the University of Rennes I, in France. He is the recipient of
the IEEE MICRO Top Picks Award 2006 that recognizes the most significant
papers in computer architecture. Gilles is a member of IEEE and ACM. His
e-mail is gilles.a.pokam at intel.com.

Cristiano Pereira is an Engineer in the Technology Pathfinding and
Innovation team, at Intel’s Software and Services Group. His research interests
are in the areas of hardware support for better programmability of multi-core
architectures and software tools to improve programmer’s productivity. He
received a PhD degree from the University of California, San Diego, in 2007
and a Masters degree from the Federal University of Minas Gerais, Brazil, in
2000. Prior to that, Cristiano worked for a number of small companies in
Brazil. He is a member of IEEE. His e-mail is cristiano.l.pereira at intel.com.

Klaus Danne is an Engineer in the Microprocessor & Programming Research
Group at Intel Labs. His research interests are in multi-core architectures,
deterministic replay, design emulation, and reconfigurable computing
systems. He received a PhD degree and Masters degree from the University of
Paderborn Germany in 2006 and 2002, respectively. His e-mail is klaus.danne
at intel.com.

Lynda Yang is a graduate student in Computer Science at the University of
Illinois at Urbana-Champaign. Her research interests are in multi-processor
architectures and operating systems. She received a BS degree in Computer
Science in 2008 from the University of North Carolina at Chapel Hill. Her
e-mail is yang61 at illinois.edu.

Samuel T. King is an Assistant Professor in the Computer Science Department
at the University of Illinois. His research interests include security, experimental
software systems, operating systems, and computer architecture. His current
research focuses on defending against malicious hardware, deterministic replay,
designing and implementing secure web browsers, and applying machine
learning to systems problems. Sam received his PhD degree in Computer
Science and Engineering from the University of Michigan in 2006.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs | 41

Josep Torrellas is a Professor of Computer Science and Willett Faculty
Scholar at the University of Illinois, Urbana-Champaign. He received a PhD
degree from Stanford University in 1992. His research area is multi-processor
computer architecture. He has participated in the Stanford DASH and the
Illinois Cedar experimental multi-processor projects, and in several DARPA
initiatives in novel computer architectures. Currently, he leads the Bulk Multi-
core Architecture project for programmability in collaboration with Intel. He
has published over 150 papers in computer architecture and received several
best-paper awards. He has graduated 27 PhD students, many of whom are now
leaders in academia and industry. He is an IEEE Fellow.

42 | A Programming Model for Heterogeneous Intel® x86 Platforms

Contributors

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
The client computing platform is moving towards a heterogeneous architecture
that consists of a combination of cores focused on scalar performance, and
of a set of throughput-oriented cores. The throughput-oriented cores (such
as those in the Intel® microarchitecture codename Larrabee processor) may
be connected over both coherent and non-coherent interconnects, and they
may have different instruction set architectures (ISAs). This article describes
a programming model for such heterogeneous platforms. We discuss the
language constructs, runtime implementation, and the memory model for
such a programming environment. We implemented this programming
environment in an Intel® x86 heterogeneous platform simulator and we ported
a number of workloads to our programming environment. We present the
performance of our programming environment on these workloads.

Introduction
Client computing platforms are moving towards a heterogeneous architecture
with some processing cores focused on scalar performance and other cores
focused on throughput performance. For example, desktop and notebook
platforms may ship with one or more central processing units (CPUs),
primarily focused on scalar performance, along with a graphics processing unit
(GPU) that can be used for accelerating highly-parallel data kernels. These
heterogeneous platforms can be used to provide a significant performance
boost on highly-parallel non-graphics workloads in image processing, medical
imaging, data mining [6], and other domains [10]. Several vendors have also
come out with programming environments for such platforms, such as CUDA
[11], CTM [2], and OpenCL [12].

Heterogeneous platforms have a number of unique architectural constraints:

 • The throughput-oriented cores (e.g., GPU) may be connected in
both integrated and discrete forms. A system may also have a hybrid
configuration where a low-power, lower-performance GPU is integrated
with the chipset, and a higher-performance GPU is attached as a discrete
device. Finally, a platform may also have multiple discrete GPU cards. The
platform configuration determines many parameters, such as bandwidth
and latency between the different kinds of processors, the cache coherency
support, etc.

Bratin Saha
Intel Corporation

Xiaocheng Zhou
Intel Corporation

Hu Chen
Intel Corporation

Ying Gao
Intel Corporation

Shoumeng Yan
Intel Corporation

Sai Luo
Intel Corporation

Heterogeneous Platforms
Programming Model
Larrabee
Shared Virtual Memory
Runtime
GPGPU

A PROGRAMMING MODEL FOR HETEROGENEOUS INTEL® x86
PLATFORMS

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 43

 • The scalar and throughput-oriented cores may have different operating
systems. For example, Intel’s upcoming processor, codename Larrabee [16],
can have its own kernel. (The Larrabee processor is a general-throughput
computing device that includes a software stack for high-performance
graphics rendering.) This means that the virtual memory translation
schemes (virtual to physical address translation) can be different between
the different kinds of cores. The same virtual address can be simultaneously
mapped to two different physical addresses — one residing in CPU
memory and the other residing in the Larrabee processor memory. This also
means that the system environment (loaders, linkers, etc.) can be different
between the two cores. For example, the loader may load the application at
different base addresses on different cores.

 • The scalar and throughput-oriented cores may have different ISAs, and
hence the same code cannot be run on both kinds of cores.

A programming model for heterogeneous platforms must address all of the
aforementioned architectural constraints. Unfortunately, existing programming
models such as Nvidia Compute Unified Device Architecture (CUDA)
and ATI Close To the Metal (CTM) address only the ISA heterogeneity, by
providing language annotations to mark code that must run on GPUs; they
do not take other constraints into account. For example, CUDA does not
address the memory management issues between CPU and GPU. It assumes
that the CPU and GPU are separate address spaces and that the programmer
uses separate memory allocation functions for the CPU and the GPU. Further,
the programmer must explicitly serialize data structures, decide on the sharing
protocol, and transfer the data back and forth.

In this article, we propose a new programming model for heterogeneous Intel®
x86 platforms that addresses all the issues just mentioned. First, we propose a
uniform programming model for different platform configurations. Second, we
propose using a shared memory model for all the cores in the platform (e.g.,
between the CPU and the Larrabee cores). Instead of sharing the entire virtual
address space, we propose that only a part of the virtual address space be shared
to enable an efficient implementation. Finally, like conventional programming
models, we use language annotations to demarcate code that must run on the
different cores, but we improve upon conventional models by extending our
language support to include features such as function pointers.

We break from existing CPU-GPU programming models and propose a shared
memory model, since a shared memory model opens up a completely new
programming paradigm that improves overall platform performance. A shared
memory model allows pointers and data structures to be seamlessly shared
between the different cores (e.g., CPU and Larrabee cores) without requiring
any marshalling. For example, consider a game engine that includes physics,
artificial intelligence (AI), and rendering. A shared memory model allows the
physics, AI, and game logic to be run on the scalar cores (e.g., CPU), while

“The Larrabee processor is a general-

throughput computing device that

includes a software stack for high-

performance graphics rendering.”

“CUDA does not address the

memory management issues between

CPU and GPU.”

“We break from existing CPU-GPU

programming models and propose a

shared memory model.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

44 | A Programming Model for Heterogeneous Intel® x86 Platforms

the rendering runs on the throughput cores (e.g., Larrabee core), with both the
scalar and throughput cores sharing the scene graph. Such an execution model
is not possible in current programming environments, since the scene graph
would have to be serialized back and forth.

We implemented our full programming environment, including the language
and runtime support, and ported a number of highly parallel non-graphics
workloads to this environment. In addition, we ported a full gaming
application to our system. By using existing models, we spent one and a half
weeks coding this application for data management for each new game feature:
the game itself included about a dozen features. The serialization arises since
the rendering is performed on the Larrabee processor, while the physics and
game logic are executed on the CPU. All of this coding (and the associated
debugging, etc.) is unnecessary in our system, since the scene graph and
associated structures are placed in shared memory and used concurrently by all
the cores in the platform. Our implementation works with different operating
system kernels running on the scalar and throughput-oriented cores.

We ported our programming environment to a heterogeneous Intel x86
platform simulator that simulates a set of Larrabee, throughput-oriented cores
attached as a discrete PCI-Express device to the CPU. We used such a platform
for two reasons. First, we believe the Larrabee core is more representative of
how GPUs are going to evolve into throughput-oriented cores. Second, the
platform poses greater challenges, due to the heterogeneity in the system
software stack, as opposed to simply ISA heterogeneity. Later in this article, we
present performance results on a variety of workloads.

To summarize, in this article, we discuss the design and implementation of a
new programming model for heterogeneous Intel x86 platforms. We make the
following contributions:

 • Provide shared memory semantics between the CPU and the Larrabee
processor by allowing pointers and data structures to be shared seamlessly.
This extends previous work in the areas of distributed shared memory
(DSM) and partitioned global address space (PGAS) languages by providing
shared memory semantics in a platform with heterogeneous ISA, operating
system kernels, etc. We also improve application performance by allowing
user-level communication between the CPU and the Larrabee core.

 • Provide a uniform programming model for different platform
configurations.

In the remainder of this article, we first provide a brief overview of the Larrabee
architecture: then we discuss the proposed memory model, and we describe
the language constructs for programming this platform. We then describe our
prototype implementation, and finally we present performance numbers.

“The scene graph and associated

structures are placed in shared

memory and used concurrently by

all the cores in the platform.”

“We also improve application

performance by allowing user-level

communication between the CPU

and the Larrabee core.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 45

Larrabee Architecture
The Larrabee architecture is a many-core x86 visual computing architecture
that is based on in-order cores that run an extended version of the x86
instruction set, including wide-vector processing instructions and some
specialized scalar instructions. Each of the cores contains a 32 KB instruction
cache and a 32 KB L1 data cache, and each core accesses its own subset of a
coherent L2 cache to provide high-bandwidth L2 cache access. The L2 cache
subset is 256 KB, and the subsets are connected by a high-bandwidth, on-die
ring interconnect. Data written by a CPU core are stored in their own L2
cache subset and are flushed from other subsets, if necessary. Each ring data
path is 512 bits wide in each direction. The fixed function units and memory
controller are spread across the ring to reduce congestion.

Each core has four hardware threads with separate register sets for each
thread. Instruction issue alternates between the threads and it covers cases
where the compiler is unable to schedule code without stalls. The core uses
a dual-issue decoder, and the pairing rules for the primary and secondary
instruction pipes are deterministic. All instructions can issue on the primary
pipe, while the secondary pipe supports a large subset of the scalar x86
instruction set, including loads, stores, simple ALU operations, vector stores,
etc. The core supports 64-bit extensions and the full Intel Pentium® processor
x86 instruction set. The Larrabee architecture consists of a 16-wide vector
processing unit that executes integer, single precision float, and double
precision float instructions. The vector unit supports gather-scatter and masked
instructions, and it supports instructions with up to three source operands.

Memory Model
The memory model for our system provides a window of shared addresses
between the CPU and Larrabee cores, such as in PGAS [17] languages,
but enhances it with additional ownership annotations. Any data structure
that is shared between the CPU and Larrabee core must be allocated by the
programmer in this space. The system provides a special malloc function
that allocates data in this space. Static variables can be annotated with a type
qualifier so that they are allocated in the shared window. However, unlike
PGAS languages, there is no notion of affinity in the shared window. This is
because data in the shared space must migrate between the CPU and Larrabee
caches as they get used by each processor. Also, the representation of pointers
does not change between the shared and private spaces.

The remaining virtual address space is private to the CPU and Larrabee
processor. By default, data get allocated in this space, and they are not visible to
the other side. We choose this partitioned address space approach since it cuts
down on the amount of memory that needs to be kept coherent, and it enables
a more efficient implementation for discrete devices.

“Each core has four hardware

threads with separate register sets for

each thread.”

“The memory model for our system

provides a window of shared

addresses between the CPU and

Larrabee cores.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

46 | A Programming Model for Heterogeneous Intel® x86 Platforms

The proposed memory model can be extended in a straightforward way to
multiple Larrabee processor configurations. The window of shared virtual
addresses extends across all the devices. Any data structures allocated in this
shared address window are visible to all agents, and pointers in this space can
be freely exchanged between the devices. In addition, every agent has its own
private memory as shown in Figure 1.

We propose using release consistency in the shared address space for several
reasons. First, the system only needs to remember all the writes between
successive release points, not the sequence of individual writes. This makes it
easier to do bulk transfers at release points (e.g., several pages at a time). This
is especially important in the discrete configuration, since it is more efficient
to transfer bulk data over PCI-Express. Second, release consistency allows
memory updates to be kept completely local until a release point, which is
again important in a discrete configuration. In general, the release consistency
model is a good match for the programming patterns in CPU-GPU platforms,
since there are natural release and acquisition points in such programs. For
example, a call from the CPU into the GPU is one such point. Making any of
the CPU updates visible to the GPU before the call does not serve any purpose,
and neither does it serve any purpose to enforce any order on how the CPU
updates become visible, as long as all of them are visible before the GPU starts
executing. Finally, the proposed C/C++ memory model [5] can be mapped
easily to our shared memory space.

We augment our shared memory model with ownership rights to enable
further coherence optimizations. Within the shared virtual address window,
the CPU or Larrabee processor can specify at a particular point in time that it
owns a specific chunk of addresses. If an address range in the shared window is
owned by the CPU, then the CPU knows that the Larrabee processor cannot
access those addresses and hence does not need to maintain coherence of those
addresses with the Larrabee processor: for example, it can avoid sending any
snoops or other coherence information to the Larrabee processor. The same is
true of addresses owned by the Larrabee processor. If a CPU-owned address is
accessed by the Larrabee processor, then the address becomes un-owned (with
symmetrical behavior for those addresses owned by the Larrabee processor).
We provide these ownership rights to leverage common usage models. For
example, the CPU first accesses some data (e.g., initializing a data structure),
and then hands them over to the Larrabee processor (e.g., computing on the
data structure in a data parallel manner), and then the CPU analyzes the results
of the computation and so on. The ownership rights allow an application to
inform the system of this temporal locality and to optimize the coherence
implementation. Note that these ownership rights are optimization hints only,
and it is legal for the system to ignore these hints.

“The proposed memory model can

be extended in a straightforward

way to multiple Larrabee processor

configurations.”

Shared Space

CPU SpaceLRB Space

Figure 1: CPU-larrabee Processor Memory
Model
Source: Intel Corporation, 2009

“The ownership rights allow

an application to inform the

system of this temporal locality

and to optimize the coherence

implementation.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 47

Language Constructs
To deal with platform heterogeneity, we add constructs to C that allow the
programmer to specify whether a particular data item should be shared or
private, and to specify whether a particular code chunk should be run on the
CPU or on the Larrabee processor.

The first construct is the shared type qualifier, similar to UPC [17], which
specifies a variable that is shared between the CPU and Larrabee processor. The
qualifier can also be associated with pointer types to imply that the target of
the pointer is in shared space. For example, one can write:

shared int var1; // int is in shared space

int var2; // int is not in shared space

shared int* ptr1; // ptr1 points to a shared location

int* ptr2; // ptr2 points to private space

shared int *shared ptr1; // ptr1 points to shared and is shared

The compiler allocates globally shared variables in the shared memory space,
while the system provides a special malloc function to allocate data in the
shared memory. The actual virtual address range in each space is decided by the
system and is transparent to the user.

It is legal for a language implementation to allocate all data in the shared space
— that is, map all malloc calls to the sharedMalloc and allocate all globals
in the shared space. A programmer then deals only with shared data. The
key point is that our system provides the hooks needed for programmers to
demarcate private and shared data, should they want to do that.

We use an attribute, __attribute(Larrabee), to mark functions that should be
executed on the Larrabee processor. For such functions, the compiler generates
code that is specific to the Larrabee processor. When a non-annotated function
calls a Larrabee annotated function, it implies a call from the CPU to the
Larrabee processor. The compiler checks that all pointer arguments have shared
type and invokes a runtime API for the remote call. Function pointer types
are also annotated with the attribute notation, implying that they point to
functions that are executed on the Larrabee processor. Non-annotated function
pointer types point to functions that execute on the CPU. The compiler checks
type equivalence during an assignment; for example, a function pointer with
the Larrabee attribute must always be assigned the address of a function that is
annotated for the Larrabee processor.

“The actual virtual address range in

each space is decided by the system

and is transparent to the user.”

“We use an attribute, __

attribute(Larrabee), to mark

functions that should be executed on

the Larrabee processor.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

48 | A Programming Model for Heterogeneous Intel® x86 Platforms

Our third construct denotes functions that execute on the CPU but can be
called from the Larrabee processor. These functions are denoted by using
__attribute(wrapper). We used this function in two ways. First, many programs
link with precompiled libraries that can execute on the CPU. The functions
in these libraries are marked as wrapper calls so that they execute on the CPU
if called from Larrabee code. Second, while porting large programs from a
CPU-only execution mode to a CPU plus Larrabee processor mode, it is very
helpful to incrementally port the program. The wrapper attribute allows the
programmer to stop the porting effort at any point in the call tree by calling
back into the CPU. When a Larrabee function calls a wrapper function, the
compiler invokes a runtime API for the remote call from the Larrabee processor
to the CPU. Making Larrabee-to-CPU calls explicit allows the compiler to
check that any pointer arguments have the shared type.

We also provide a construct and the corresponding runtime support for making
asynchronous calls from the CPU to the Larrabee processor. This allows the
CPU to avoid waiting for Larrabee computation to finish. Instead, the runtime
system returns a handle that the CPU can query for completion. Since this
does not introduce any new design issues, we focus mostly on synchronous calls
in the remainder of this article.

Data Annotation Rules
These rules apply to data that can be allocated in the shared virtual space:

 • Shared can be used to qualify the type of variables with global storage.
Shared cannot be used to qualify a variable with automatic storage unless it
qualifies a pointer’s referenced type.

 • A pointer in private space can point to any space. A pointer in shared space
can only point to shared space but not to private space.

 • A structure or union type can have the shared qualifier which then requires
all fields to have the shared qualifier as well.

The following rules are applied to pointer manipulations:

 • Binary operator (+,-,,==,......) is only allowed between two pointers pointing
to the same space. The system provides API functions that perform dynamic
checks. When an integer expression is added to or subtracted from a
pointer, the result has the same type as the pointer.

 • Assignment/casting from pointer-to-shared to pointer-to-private is allowed.
If a type is not annotated, we assume that it denotes a private object. This
makes it difficult to pass shared objects to legacy functions, since their
signature requires private objects. The cast allows us to avoid copying
between private and shared spaces when passing shared data to a legacy
function.

 • Assignment/casting from pointer-to-private to pointer-to-shared is allowed
only through a dynamic_cast. The dynamic_cast checks at runtime that the
pointer-to-shared actually points to shared space. If the check fails, an error
is thrown and the user has to explicitly copy the data from private space to
shared space. This cast allows legacy code to efficiently return values.

“The wrapper attribute allows the

programmer to stop the porting

effort at any point in the call tree by

calling back into the CPU.”

“We also provide a construct and the

corresponding runtime support for

making asynchronous calls from the

CPU to the Larrabee processor.”

“The cast allows us to avoid copying

between private and shared spaces

when passing shared data to a legacy

function.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 49

Our language can allow casting between the two spaces (with possibly a
dynamic check) since our data representation remains the same regardless
of whether the data are in shared or private space. Even pointers have the
same representation regardless of whether they are pointing to private or
shared space. Given any virtual address V in the shared address window,
both the CPU and Larrabee processor have their own local physical address
corresponding to this virtual address. Pointers on the CPU and Larrabee
processor read from this local copy of the address, and the local copies get
synced up as required by the memory model.

Code Annotation Rules
These rules apply to the code or function, where they execute.

 • A __attribute(Larrabee) function is not allowed to call a non-annotated
function. This is to ensure that the compiler knows about all the CPU
functions that can be called from the Larrabee processor.

 • A __attribute(wrapper) function is not allowed to call into a __
attribute(Larrabee) function. This is primarily an implementation
restriction in our system.

 • Any pointer parameter of a Larrabee- or wrapper-annotated function must
point to shared space.

The calling rules for functions also apply to function pointers. For example,
a __attribute(Larrabee) function pointer called from a non-annotated function
results in a CPU-to-Larrabee processor call. Similarly, un-annotated function
pointers cannot be called from Larrabee functions.

The runtime also provides APIs for mutexes and barriers to allow the
application to perform explicit synchronization. These constructs are always
allocated in the shared area.

Acquire and release points follow naturally from the language semantics. For
example, a call from the CPU to the Larrabee processor is a release point on
the CPU followed by an acquire point on the Larrabee processor. Similarly, a
return from the Larrabee processor is a release point on the Larrabee and an
acquire point on the CPU. Taking ownership of a mutex and releasing a mutex
are acquire and release points, respectively, for the processor doing the mutex
operation, while hitting a barrier and getting past a barrier are release and
acquire points as well.

“Even pointers have the same

representation regardless of whether

they are pointing to private or

shared space.”

“Acquire and release points follow

naturally from the language

semantics.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

50 | A Programming Model for Heterogeneous Intel® x86 Platforms

Ownership Constructs
We also provide an API that allows the user to allocate chunks of memory
(hereafter called arenas) inside the shared virtual region. The programmer can
dynamically set the ownership attributes of an arena. Acquiring ownership of
an arena also acts as an acquire operation on the arena, and releasing ownership
of an arena acts as the release operation on the arena. The programmer can
allocate space within an arena by passing the arena as an argument to a special
malloc function. The runtime grows the arena as needed. The runtime API is
shown here:

// Owned by the caller or shared
Arena *allocateArena(OwnershipType type);
//Allocate and free within arena
shared void *arenaMalloc (Arena*, size_t);
void arenaFree(Arena *, shared void *);
// Ownership for arena. If null changes ownership of entire shared area
OwnershipType acquireOwnership(Arena*);
OwnershipType releaseOwnership(Arena*);
//Consistency for arena
void arenaAcquire(Arena *);
void arenaRelease(Arena *);

The programmer can optimize the coherence implementation by using the
ownership API. For example, in a gaming application, while the CPU is
generating a frame, the Larrabee processor may be rendering the previous
frame. To leverage this pattern, the programmer can allocate two arenas, with
the CPU acquiring ownership of one arena and generating the frame into that
arena, while the Larrabee processor acquires ownership of the other arena and
renders the frame in that arena. This prevents coherence messages from being
exchanged between the CPU and Larrabee processor while the frames are
being processed. When the CPU and Larrabee processor are finished with their
current frames, they exchange ownership of their arenas, so that they continue
to work without incurring coherence overhead.

Implementation
The compiler generates two binaries – one for execution on the Larrabee
processor and another for CPU execution. We generate two different
executables since the two operating systems can have different executable
formats. The Larrabee binary contains the code that will execute on the
Larrabee processor (annotated with the Larrabee attribute), while the CPU
binary contains the CPU functions which include all un-annotated and
wrapper-annotated functions. Our runtime library has a CPU and Larrabee
component that are linked with the CPU and Larrabee application binaries
to create the CPU and Larrabee executables. When the CPU binary starts
executing, it calls a runtime function that loads the Larrabee executable. Both
the CPU and Larrabee binaries create a daemon thread that is used for the
communication.

“We also provide an API that

allows the user to allocate chunks

of memory (hereafter called arenas)

inside the shared virtual region.”

“This prevents coherence messages

from being exchanged between the

CPU and Larrabee processor while

the frames are being processed.”

“The compiler generates two binaries

– one for execution on the Larrabee

processor and another for CPU

execution.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 51

Implementing Shared Memory between the CPU and Larrabee
Processor
Our implementation reuses some ideas from software distributed shared
memory [9, 4] schemes, but there are some significant differences as well.
Unlike DSMs, our implementation is complicated by the fact that the CPU
and Larrabee processor can have different page tables and different virtual-to-
physical memory translations. Thus, when we want to sync up the contents of
virtual address V between the CPU and Larrabee processor (e.g., at a release
point), we may need to sync up the contents of different physical addresses,
such as P1 on CPU and P2 on the Larrabee processor. Unfortunately, the CPU
does not have access to the Larrabee processor’s page tables (hence the CPU has
no knowledge of P2), and the Larrabee processor cannot access the CPU’s page
tables and has no knowledge of P1.

We solve the aforementioned problem by leveraging the PCI aperture in a
novel way. During initialization we map a portion of the PCI aperture space
into the user space of the application and instantiate it with a task queue, a
message queue, and copy buffers. When we need to copy pages, for example,
from the CPU to the Larrabee processor, the runtime copies the pages into
the PCI aperture copy buffers and tags the buffers with the virtual address
and the process identifier. On the Larrabee side, the daemon thread copies
the contents of the buffers into its address space by using the virtual address
tag. Thus, we perform the copy in a two-step process—the CPU copies from
its address space into a common buffer (PCI aperture) that both the CPU
and Larrabee processor can access, while the Larrabee processor picks up
the pages from the common buffer into its address space. Copies from the
Larrabee processor to the CPU are done in a similar way. Note that since the
aperture is pinned memory, the contents of the aperture are not lost if the
CPU or Larrabee processor gets the context switched out. This allows the two
processors to execute asynchronously, which is critical, since the two processors
can have different operating systems and hence the context switches cannot be
synchronized. Finally, note that we map the aperture space into the user space
of the application, thus enabling user-level communication between the CPU
and Larrabee processor. This makes the application stack vastly more efficient
than going through the operating system driver stack. To ensure security,
the aperture space is partitioned among the CPU processes that want to use
Larrabee processor. At present, a maximum of eight processes can use the
aperture space.

“During initialization we map a

portion of the PCI aperture space

into the user space of the application

and instantiate it with a task queue,

a message queue, and copy buffers.”

“This allows the two processors to

execute asynchronously.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

52 | A Programming Model for Heterogeneous Intel® x86 Platforms

We exploit one other difference between traditional software DSMs and CPU
plus Larrabee processor platforms. Traditional DSMs were designed to scale on
medium-to-large clusters. In contrast, CPU plus Larrabee processor systems are
very small-scale clusters. We expect that no more than a handful of Larrabee
cards and CPU sockets will be used well into the future. Moreover, the PCI
aperture provides a convenient shared physical memory space between the
different processors. Thus, we are able to centralize many data structures and
make the implementation more efficient. For example, we put a directory in
the PCI aperture that contains metadata about the pages in the shared address
region. The metadata states whether the CPU or Larrabee processor holds the
golden copy of a page (home for the page), contains a version number that
tracks the number of updates to the page, mutexes that are acquired before
updating the page, and other miscellaneous metadata. The directory is indexed
by the virtual address of a page. Both the CPU and the Larrabee runtime
systems maintain a private structure that contains local access permissions for
the pages and the local version numbers of the pages.

When the Larrabee processor performs an acquire operation, the corresponding
pages are set to no-access on the Larrabee processor. At a subsequent read
operation, the page fault handler on the Larrabee processor copies the page
from the home location, if the page has been updated and released since the
last Larrabee acquire. The directory and private version numbers are used
to determine this. The page is then set to read-only. At a subsequent write
operation, the page fault handler creates the backup copy of the page, marks
the page as read-write, and increments the local version number of the page.
At a release point, we perform a diff with the backup copy of the page and
transmit the changes to the home location, while incrementing the directory
version number. The CPU operations are symmetrical. Thus, between acquire
and release points, the Larrabee processor and CPU operate out of their local
memory and communicate with each other only at the explicit synchronization
points.

At startup the implementation decides the address range that will be shared
between the CPU and Larrabee processor, and it ensures that this address range
always remains mapped. This address range can grow dynamically and does not
have to be contiguous; although in a 64-bit address space, the runtime system
can reserve a continuous chunk upfront.

Implementing Shared Memory Ownership
Every arena has associated metadata that identify the pages that belong to the
arena. Suppose the Larrabee processor acquires ownership of an arena, we then
make the corresponding pages non-accessible on the CPU. We copy from the
home location any arena pages that have been updated and released since the
last time the Larrabee processor performed an acquire operation. We set the
pages to read-only so that subsequent Larrabee writes will trigger a fault, and
the system can record which Larrabee pages are being updated. In the directory,
we note that the Larrabee processor is the home node for the arena pages. On a
release operation, we simply make the pages accessible again on the other side
and update the directory version number of the pages. The CPU ownership
operations are symmetrical.

“We put a directory in the PCI

aperture that contains metadata

about the pages in the shared address

region.”

“Between acquire and release points,

the Larrabee processor and CPU

operate out of their local memory

and communicate with each other

only at the explicit synchronization

points.”

“Every arena has associated

metadata that identify the pages that

belong to the arena.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 53

Note the performance advantages of acquiring ownership. At a release point
we no longer need to perform diff operations, and we do not need to create a
backup copy at a write fault, since we know that the other side is not updating
the page. Second, since the user provides specific arenas to be handed over
from one side to the other, the implementation can perform a bulk copy of
the required pages at an acquire point. This leads to a more efficient copy
operation, since the setup cost is incurred only once and gets amortized over a
larger copy.

Implementing Remote Calls
A remote call between CPU and Larrabee cores is complicated by the fact
that the two processors can have different system environments: for example,
they can have different loaders. Larrabee and CPU binary code is also loaded
separately and asynchronously. Suppose that the CPU code makes some
calls into the Larrabee processor when the CPU binary code is loaded, the
Larrabee binary code has still not been loaded and hence the addresses for
Larrabee functions are still not known. Therefore, the operating system loader
cannot patch up the references to Larrabee functions in the CPU binary code.
Similarly, when the Larrabee binary code is being loaded, the Larrabee loader
does not know the addresses of any CPU functions being called from Larrabee
code and hence cannot patch those addresses.

We implement remote calls by using a combination of compiler and runtime
techniques. Our language rules ensure that any function involved in remote
calls (Larrabee or wrapper attribute functions) is annotated by the user. When
compiling such functions, the compiler adds a call to a runtime API that
registers function addresses dynamically. The compiler creates an initialization
function for each file that invokes all the different registration calls. When
the binary code gets loaded, the initialization function in each file gets called.
The shared address space contains a jump table that is populated dynamically
by the registration function. The table contains one slot for every annotated
function. The format of every slot is <funcName, funcAddr> where funcName
is a literal string of the function name, and funcAddr is the runtime address of
the function.

The translation scheme works as follows.

 • If a Larrabee (CPU) function is being called within a Larrabee (CPU)
function, the generated code will do the call as is.

 • If a Larrabee function is being called within a CPU function, the compiler-
generated code will do a remote call to the Larrabee processor:

 ▪ The compiler-generated code will look up the jump table with the
function name and obtain the function address.

 ▪ The generated code will pack the arguments into an argument buffer
in shared space. It will then call a dispatch routine on the Larrabee side
passing in the function address and the argument buffer address.

“Note the performance advantages of

acquiring ownership.”

“A remote call between CPU and

Larrabee cores is complicated by the

fact that the two processors can have

different system environments.”

“We implement remote calls by using

a combination of compiler and

runtime techniques.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

54 | A Programming Model for Heterogeneous Intel® x86 Platforms

There is a similar process for a wrapper function: if a wrapper function is called
in a Larrabee code, a remote call is made to the CPU.

For function pointer invocations, the translation scheme works as follows.
When a function pointer with Larrabee annotation is assigned, the compiler-
generated code will look up the jump table with the function name and assign
the function pointer with obtained function address. Although the lookup can
be optimized when a Larrabee-annotated function pointer is assigned within
Larrabee code, we forsake such optimization to use a single strategy for all
function pointer assignments. If a Larrabee function pointer is being called
within a Larrabee function, the compiler-generated code will do the call as
is. If a Larrabee function pointer is being called within a CPU function, the
compiler-generated code will do a remote call to the Larrabee side. The process
is similar for a wrapper function pointer: if a wrapper function pointer is called
in a Larrabee function, a remote call is made to the CPU side.

The signaling between CPU and Larrabee processor happens with task queues
in the PCI aperture space. The daemon threads on both sides poll their
respective task queues and when they find an entry in the task queue, they
spawn a new thread to invoke the corresponding function. The API for remote
invocations is described in this code:

// Synchronous and asynchronous remote calls
RPCHandler callRemote (FunctionType, RPCArgType);
int resultReady (RPCHandler);
Type getResult (RPCHandler);

Finally, the CPU and Larrabee processor cooperate while allocating memory in
the shared area. Each processor allocates memory from either side of the shared
address window. When one processor consumes half of the space, the two
processors repartition the available space.

Experimental Evaluation
We used a heterogeneous platform simulator for measuring the performance of
different workloads on our programming environment. This platform simulates
a modern out-of-order CPU and a Larrabee system. The CPU simulation uses
a memory and architecture configuration similar to that of the Intel® Core™2
Duo processor. The Larrabee system was simulated as a discrete PCI-Express
device with an interconnect latency and bandwidth similar to those of PCI-
Express 2.0, and the instruction set was modeled on the Intel Pentium®
processor. It did not simulate the new Larrabee instructions and parts of the
Larrabee memory hierarchy, such as the ring interconnect. The simulator
ran a production-quality software stack on the two processors. The CPU ran
Windows* Vista*, while Larrabee processor ran a lightweight operating-system
kernel.

“If a Larrabee function pointer is

being called within a CPU function,

the compiler-generated code will do

a remote call to the Larrabee side.”

“The signaling between CPU and

Larrabee processor happens with

task queues in the PCI aperture

space.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 55

We used a number of well-known parallel non-graphics workloads [6] to
measure the performance of our system. These include the Black Scholes*
financial workload that does option pricing by using the Black Scholes
method; the fast fourier transform (FFT) workload that does a radix-2 FFT
algorithm used in many domains, such as signal processing; the Equake*
workload, part of SpecOMP*, that performs earthquake modeling, and that
is representative of high-performance computer (HPC) applications; and Art,
also part of SpecOMP, that performs image recognition. The reported numbers
are based on using the standard input sets for each of the applications. All
these workloads were rewritten by using our programming constructs and were
compiled with our tool chain.

Figure 2 shows the fraction that total memory accesses were to shared data in
the aforementioned workloads. The vast majority of the accesses were to private
data. Note that read-only data accessed by multiple threads were privatized
manually. This manual privatization helped in certain benchmarks like Black
Scholes. It is not surprising that most of the accesses are to private data, since
the computation threads in the workloads privatize the data that they operate
on to get better memory locality. We expect workloads that scale to a large
number of cores to behave similarly, since the programmer must be conscious
of data locality and avoid false sharing in order to get good performance. The
partial virtual address sharing memory model lets us leverage this access pattern
by cutting down on the amount of data that need to be kept coherent.

We next show the performance of our system on the set of workloads. We ran
the workloads on a simulated system with 1 CPU core and varied the number
of Larrabee cores from 6 to 24. The workload computation was split between
the CPU and Larrabee cores, with the compute-intensive portions executed on
Larrabee cores. For example, all the option pricing in Black Scholes and the
earthquake simulation in Equake is offloaded to Larrabee cores. We present
the performance improvement relative to a single CPU and Larrabee core.
Figure 3 compares the performance of our system, when the application does
not use any ownership calls, to the performance when the user optimizes
the application further by using ownership calls. The bars labeled “Mine/
Yours” represent the performance with ownership calls: (Mine implies pages
were owned by CPU and Yours implies pages were owned by the Larrabee
processor). The bars labeled “Ours” represent the performance without any
ownership calls.

“We used a number of well-known

parallel non-graphics workloads [6]

to measure the performance of our

system.”

0%

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

fftbs art equake

Private Shared

Figure 2: Percent of Shared Data in Memory
Accesses
Source: Intel Corporation, 2009

“We expect workloads that scale to

a large number of cores to behave

similarly.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

56 | A Programming Model for Heterogeneous Intel® x86 Platforms

BlackScholes Speedup

S
pe

ed
up

7

0
1
2
3
4
5
6

24126 1 CPU+
xx LRBs

Mine/Yours Ours

Equake Speedup

S
pe

ed
up

5

0

1

2

3

4

24126 1 CPU+
xx LRBs

Mine/Yours Ours

FFT Speedup

S
pe

ed
up

2.5

0

0.5

1.0

1.5

2.0

24126 1 CPU+
xx LRBs

Mine/Yours Ours

Art Speedup

S
pe

ed
up

3.5

0
0.5
1.0
1.5

2.5
3.0

2.0

24126 1 CPU+
xx LRBs

Mine/Yours Ours

Figure 3: Ownership Performance Comparison
Source: Intel Corporation, 2009

As expected, the applications perform better with ownership calls than without.
To understand the reason for this, we broke down the overhead of the system
when the application was not using any ownership calls. Figure 4 shows the
breakdown for Black Scholes. We show the breakdown for only one
benchmark, but the ratios of the different overheads are very similar in all the
benchmarks.

We break up the overhead into four categories. The first one relates to handling
the page faults, since we use a virtual memory-based shared memory
implementation, and reads/writes to a page after an acquire point triggers a
fault. The second relates to the diff operation performed at release points to
sync up the CPU and Larrabee copies of a page. The third is the amount of
time spent in copying data from one side to the other. The copy operation is
triggered from the page fault handler when either processor needs the latest
copy of a page. We do not include the copy overhead as part of the page fault
overhead, but present it separately, since we believe different optimizations can
be applied to optimize it.

Finally, the fourth one shows the overhead spent in synchronizing messages.
Note that in a discrete setting, the Larrabee processor is connected to the CPU
over the PCI-Express. The PCI-Express protocol does not include atomic read-
modify-write operations. Therefore we have to perform some synchronization
and hand shaking between the CPU and Larrabee processor by passing
messages.

When the application uses ownership of arenas, the diff overhead is completely
eliminated. The page fault handling is reduced, since the write page-fault
handler does not have to create a backup copy of the page. Moreover, since we
copy all the pages in one step when we acquire ownership of an arena, we do
not incur read page faults.

BlackScholes

Page Protect

Diff

Wait for Copy

Send Request

Figure 4: Overhead Breakdown without
Ownership
Source: Intel Corporation, 2009

BlackScholes

Page Fault Handling

Diff

% No Messages

Copy

Figure 5: Overhead Breakdown with Ownership
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 57

As expected, the applications perform better with ownership calls than without.
To understand the reason for this, we broke down the overhead of the system
when the application was not using any ownership calls. Figure 4 shows the
breakdown for Black Scholes. We show the breakdown for only one
benchmark, but the ratios of the different overheads are very similar in all the
benchmarks.

We break up the overhead into four categories. The first one relates to handling
the page faults, since we use a virtual memory-based shared memory
implementation, and reads/writes to a page after an acquire point triggers a
fault. The second relates to the diff operation performed at release points to
sync up the CPU and Larrabee copies of a page. The third is the amount of
time spent in copying data from one side to the other. The copy operation is
triggered from the page fault handler when either processor needs the latest
copy of a page. We do not include the copy overhead as part of the page fault
overhead, but present it separately, since we believe different optimizations can
be applied to optimize it.

Finally, the fourth one shows the overhead spent in synchronizing messages.
Note that in a discrete setting, the Larrabee processor is connected to the CPU
over the PCI-Express. The PCI-Express protocol does not include atomic read-
modify-write operations. Therefore we have to perform some synchronization
and hand shaking between the CPU and Larrabee processor by passing
messages.

When the application uses ownership of arenas, the diff overhead is completely
eliminated. The page fault handling is reduced, since the write page-fault
handler does not have to create a backup copy of the page. Moreover, since we
copy all the pages in one step when we acquire ownership of an arena, we do
not incur read page faults.

“The page fault handling is reduced,

since the write page-fault handler does

not have to create a backup copy of the

page.”

BlackScholes Speedup

S
pe

ed
up

7
8

0
1
2
3
4
5
6

24126 1 CPU+
xx LRBs

Ideal Discrete

Equake Speedup

S
pe

ed
up

24126 1 CPU+
xx LRBs

Ideal Discrete

2.5
3.0
3.5
4.0
4.5
5.0

0
0.5
1.0
1.5
2.0

Art Speedup

S
pe

ed
up

3.5
4.0

0
0.5
1.0
1.5

2.5
3.0

2.0

24126 1 CPU+
xx LRBs

Ideal Discrete

FFT Speedup

S
pe

ed
up

24

3.0

2.5

0

0.5

1.0

1.5

2.0

126 1 CPU+
xx LRBs

Ideal Discrete

Figure 6: Overall performance comparison
Source: Intel Corporation, 2009

This also significantly reduces the synchronization message overhead since the
CPU and Larrabee processor perform the handshaking at only ownership
acquisition points rather than at many intermediate points (e.g., whenever
pages are transferred from one side to the other). Figure 5 shows the overhead
breakdown with ownership calls.

Finally, Figure 6 shows the overall performance of our system. All the
workloads used the ownership APIs. The “ideal” bar represents hardware-
supported cache coherence between the CPU and Larrabee cores—in other
words, this is the best performance that our shared memory implementation
can provide. For Equake, since the amount of data transferred is very small
compared to the computation involved, we notice that “ideal” and “discrete”
times are almost identical.

In all cases our shared memory implementation has low overhead and performs
almost as well as the ideal case. Black Scholes shows the highest comparable
overhead, since it has the lowest compute density: i.e., the amount of data
transferred per unit computation time was the highest. Using Black Scholes
we transfer about 13MB of data per second of computation time, while we
transfer about 0.42MB of data per second of computation time when using
Equake. Hence, the memory coherence overhead is negligible in Equake. The
difference between the ideal scenario and our shared memory implementation
increases with the number of cores, mainly due to synchronization overhead.
In our implementation, synchronization penalties increase non-linearly with
the number of cores.

“In all cases our shared memory

implementation has low overhead

and performs almost as well as the

ideal case.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

58 | A Programming Model for Heterogeneous Intel® x86 Platforms

Related Work
There exists other research that is closely related to the work explicated in this
article. Most closely related are the CUDA [11], OpenCL [12] and CTM
[2] programming environments. Just as our technology does, OpenCL uses
a weakly consistent shared memory model, but it is restricted to the GPU.
Our work differs from CUDA, OpenCL, and CTM in several ways: unlike
these environments we define a model for communication between the CPU
and Larrabee processor; we provide direct user-level communication between
the CPU and Larrabee processor, and we consider a bigger set of C language
features, such as function pointers. Implementing a similar memory model is
challenging on current GPUs due to their inherent limitations.

The Cell processor [8] is another heterogeneous platform. While the power
processor unit (PPU) is akin to a CPU, the synergistic processing units (SPUs)
are much simpler than the Larrabee cores. For example, they do not run an
operating system kernel. Unlike the SPU-PPU pair, the Larrabee processor and
CPU pair is much more loosely coupled, since the Larrabee processor can be
paired as a discrete GPU with any CPU running any operating system. Unlike
our model, Cell programming involves explicit direct memory access (DMA)
between the PPU and SPU. Our memory model is similar to that of PGAS
languages [14, 17], and hence our language constructs are similar to those of
Unified Parallel C (UPC) language [17]. However, UPC does not consider ISA
or operating system heterogeneity. Higher-level PGAS languages such as X10
[14] do not support the ownership mechanism that is crucial for a scalable,
coherent implementation in a discrete scenario. Our implementation has
similarities to software-distributed shared memory [9, 4] which also leverages
virtual memory. Many of these S-DSM systems also use release consistency
and they copy pages lazily on demand. The main differences with S-DSM
systems is the level of heterogeneity. Unlike S-DSM systems, our system needs
to consider a computing system where the processors have different ISAs and
system environments. In particular, we need to support different processors
with different virtual-to-physical page mappings. Finally, the performance
tradeoffs between S-DSMs and CPU with Larrabee processor systems are
different: S-DSMs were meant to scale on large clusters, while CPU with
Larrabee processor systems should remain small scale clusters for some time in
the future. The CUBA* [7] architecture proposes hardware support for faster
communication between the CPU and GPU. However, the programming
model assumes that the CPU and GPU are separate address spaces. The EXO*
[18] model provides shared memory between a CPU and accelerators, but it
requires the page tables to be kept in sync, which isn’t feasible in a discrete
accelerator.

“Just as our technology does, OpenCL

uses a weakly consistent shared

memory model, but it is restricted to

the GPU.”

“Unlike the SPU-PPU pair, the

Larrabee processor and CPU pair is

much more loosely coupled, since the

Larrabee processor can be paired as a

discrete GPU with any CPU running

any operating system.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

A Programming Model for Heterogeneous Intel® x86 Platforms | 59

Conclusions
Heterogeneous computing platforms composed of a general-purpose scalar
oriented CPU and throughput-oriented cores (e.g., a GPU) are increasingly
being used in client computing systems. These platforms can be used for
accelerating highly parallel workloads. There have been several programming
model proposals for such platforms, but none of them address the CPU-GPU
memory model. In this article we propose a new programming model for a
heterogeneous Intel x86 system with the following key features:

 • A shared memory model for all the cores in the platform.

 • A uniform programming model for different configurations.

 • User annotations to demarcate code for CPU and Larrabee execution.

We implemented the full software stack for our programming model including
compiler and runtime support. We ported a number of parallel workloads to
our programming model and evaluated the performance on a heterogeneous
Intel x86 platform simulator. We show that our model can be implemented
efficiently so that programmers are able to benefit from shared memory
programming without paying a performance penalty.

References
[1] Adve S, Adve V, Hill M.D. and Vernon M.K. “Comparison of

Hardware and Software Cache Coherence Schemes.” International
Symposium on Computer Architecture (ISCA), 1991.

[2] AMD CTM Guide. “Technical Reference Manual.” 2006 Version 1.01.
Available at http://www.amd.com

[3] AMD Stream SDK. Available at ati.amd.com/technology/
streamcomputing.

[4] Amza C., Cox A.L., Dwarkadas S., Keleher P., Lu H., Rajamony R.,
Yu W., Zwaenepoel W. “TreadMarks: Shared Memory Computing
on Networks of Workstations.” IEEE Computer, 29(2): pages 18-28,
February 1996.

[5] Boehm H., Adve S. “Foundations of the C++ memory model.”
Programming Language Design and Implementation (PLDI), 2008.

[6] Dubey P. “Recognition, Mining, and Synthesis moves computers to the
era of tera.” Available at Technology@Intel, February 2005.

[7] Gelado I., Kelm J.H., Ryoo S., Navarro N., Lumetta S.S., Hwu
W.W. “CUBA: An Architecture for Efficient CPU/Co-processor Data
Communication.” ICS, June 2008.

[8] Gschwind M., Hofstee H.P., Flachs B., Hopkins M., Watanabe Y.,
Yamakazi T. “Synergistic Processing in Cell’s Multicore Architecture.”
IEEE Micro, April 2006.

“Heterogeneous computing platforms

composed of a general-purpose scalar

oriented CPU and throughput-

oriented cores (e.g., a GPU) are

increasingly being used in client

computing systems.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

60 | A Programming Model for Heterogeneous Intel® x86 Platforms

[9] Kontothanasis L., Stets R., Hunt G., Rencuzogullari U., Altekar G.,
Dwarkadas S., Scott M.L. “Shared Memory Computing on Clusters
with Symmetric Multiprocessors and System Area Networks.” ACM
Transactions on Computer Systems, August 2005.

[10] Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N., Buck,
I., Woolley, C., and Lefohn, A. “GPGPU: general purpose computation
on graphics hardware.” SIGGRAPH, 2004.

[11] Nvidia Corporation. “CUDA Programming Environment.” Available at
www.nvidia.com/

[12] OpenCL 1.0. Available at http://www.khronos.org/opencl/

[13] Ryoo S., Rodrigues C.I., Baghsorki S.S., Stone S.S., Kirk D.B., Hwu
W.W. “Optimization Principles and Application Performance Evaluation
of a Multithreaded Larrabee using CUDA.” Principles and Practice of
Parallel Programming (PPoPP), 2008.

[14] Saraswat, V. A., Sarkar, V., and von Praun, C. “X10: concurrent
programming for modern architectures.” PPoPP, 2007.

[15] Saha, B., Adl-Tabatabai, A., Ghuloum, A., Rajagopalan, M., Hudson,
R. L., Petersen, L., Menon, V., Murphy, B., Shpeisman, T., Sprangle,
E., Rohillah, A., Carmean, D., and Fang, J. ”Enabling scalability and
performance in a large scale CMP environment.” Eurosys, 2007.

[16] Seiler L., Carmean D., Sprangle E., Forsyth T., Abrash M., Dubey P.,
Junkins S., Lake A., Sugerman J., Cavin R., Espasa R., Grochowski E.,
Juan T., Hanrahan P. “Larrabee: A Many-Core x86 Architecture for
Visual Computing.” ACM Transactions on Graphics, August 2008.

[17] “UPC Consortium, UPC language specifications.” Lawrence Berkeley
National Lab Tech Report LBNL-59208, 2005.

[18] Wang P., Collins J.D., Chinya G. N., Jiang H., Tian X., Girkar M.,
Yang N. Y., Lueh G., Wang H. “Exochi: Architecture and programming
environment for a heterogeneous multi-core multithreaded system.”
Programming Language Design and Implementation (PLDI), 2007.

Acknowledgments
We thank the following people who provided us with much support in this
work: Jesse Fang, Ian Lewis, Antony Arciuolo, Kevin Myers, Robert Geva,
Ravi Narayanaswamy, Milind Girkar, Rajiv Deodhar, Stephen Junkins, David
Putzolu, Allen Hux, Peinan Zhang, Patrick Xi, Dean Macri, Nikhil Rao, Rob
Kyanko, Madan Venugopal, Srinivas Chennupaty, Stephen Van Doren, Allen
Baum, Martin Dixon, Ronny Ronen, Stephen Hunt, Larry Seiler, and Mike
Upton.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.

A Programming Model for Heterogeneous Intel® x86 Platforms | 61

Authors’ Biographies
Bratin Saha is a Principal Engineer in Intel Labs and leads a team developing
a new programming model for heterogeneous platforms. Prior to this he was
a key architect and implementer for a scalable many-core runtime, the x86
memory model, transactional memory, and Nehalem synchronization. He
holds a PhD degree in Computer Science from Yale University and a BS degree
in Computer Science from the Indian Institute of Technology, Kharagpur. His
e-mail is bratin.saha at intel.com.

Xiaocheng Zhou is a Researcher at Intel Labs, China. His current research
mainly focuses on advanced programming language and runtime techniques
for Intel many-core and heterogeneous platforms. Xiaocheng joined Intel in
2007. He received his PhD degree in Computer Science from the Institute of
Computing Technology, Chinese Academy Sciences, in 2007 and his BS degree
in Computer Science from Xiangtan University of China in 2001. His e-mail is
xiaocheng.zhou at intel.com.

Hu Chen is a Research Scientist in Intel Labs, China. His current research
focuses on system runtime, memory, and execution models in many-core
architectures, and GPGPU. Hu joined Intel in 2004 where he has worked in
the field of high-performance computing. He received MS and BS degrees
from the University of Science and Technology of China. His e-mail is hu.tiger.
chen at intel.com.

Ying Gao is a Research Scientist in Intel Labs, China. His current research
areas are programming modes, system software, and runtime implementation.
Ying received a BS degree in Mathematics in 2002 and a PhD degree in
Computer Science from the University of Science and Technology of China in
2007. His e-mail is ying.gao at intel.com.

Shoumeng Yan is a Researcher in Intel Labs, China and works on language
design, compiler implementation, and system optimization. His research
interests include programming model design, language/compiler/runtime
implementation, and many-core architectures. He received his PhD degree
from Northwestern Polytechnical University in late 2005, and then joined Intel
in early 2006. His e-mail is shoumeng.yan at intel.com.

Sai Luo is a Research Scientist in Intel Labs, China. His current research
focuses on system runtime, memory models, and hardware design. Sai joined
Intel in 2006 where he has worked on many-core runtimes. He received PhD,
MS, and BS degrees from the University of Science and Technology of China.
His e-mail is sai.luo at intel.com.

62 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

Contributors

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
Tera-scale architectures represent a set of designs that enable high levels of
parallelism to address the demands of existing and mostly emerging workloads.
The on-chip interconnect element of such space is an essential ingredient
with the desired flexibility and adaptivity to entertain the requirements of
various designs. Highly integrated heterogeneous designs depend on a flexible
interconnect topology to satisfy many different constraints. Demanding
workloads create hot-spots and congestion in the network; thus, they desire
an adaptive interconnect to respond gracefully to such transients. Other
challenges, such as manufacturing defects, on-chip variation, and dynamic
power management can also be better served through a flexible and adaptive
interconnect.

In this article we present the design of an on-chip interconnect with aggressive
latency, bandwidth, and energy characteristics that is also flexible and adaptive.
We present the design choices and policies within the constraints of an on-chip
interconnect and demonstrate the effectiveness of these choices for different
usage scenarios.

Introduction
Tera-scale architecture provides the foundation that can be used across a wide
array of application domains taking advantage of increasing device densities
offered by Moore’s law. A high degree of system integration, along with an
architecture that can exploit different types of parallelism, characterizes this
evolution. A typical implementation of such an architecture may include tens
to hundreds of general-purpose compute elements, suitable for different types
of parallelism, multiple levels of memory hierarchy to mitigate memory latency
and bandwidth bottlenecks, and interfaces to off-chip memory and I/O
devices.

One tractable implementation for such an architecture is a modular design
where the building blocks are implemented with well-defined physical and
logical interfaces and are connected through an on-chip interconnect to realize
a specific product. The definition of specific products is determined by cost,
power, and performance goals. A large set of products targeting the needs of
a variety of applications can be derived from different combinations of a few
building blocks. A flexible and powerful on-chip interconnect is an essential
building block to realize this vision.

Mani Azimi
Intel Corporation

Donglai Dai
Intel Corporation

Akhilesh Kumar
Intel Corporation

Andres Mejia
Intel Corporation

Dongkook Park
Intel Corporation

Roy Saharoy
Intel Corporation

Aniruddha S. Vaidya
Intel Corporation

Tera-scale Architecture
On-chip Interconnect
Flexible Topology
Adaptive Routing

FLExIBLE AND ADAPTIVE ON-CHIP INTERCONNECT FOR TERA-SCALE
ARCHITECTURES

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 63

There are a few possible interconnect design options for the implementation
space just suggested. One could partition the overall design into smaller sub-
systems, design interconnects suitable for each sub-system, and use a more
suitable interconnect for interconnecting the sub-systems in their entirety.
Such a methodology requires the design, analysis, and composition of multiple
interconnects fitting well together to provide a cohesive overall connectivity.
This approach takes a static design time view of interconnects, which may
be acceptable in some contexts, but is specific to the need and not general-
purpose.

An alternative approach is to use a parameterized single interconnect design
and apply it across all the sub-systems with specific parameters tuned for
each sub-system. The design of such an interconnect is substantially more
challenging. On the other hand, a flexible and adaptive general-purpose
interconnect has the potential to meet the needs of such systems in a more
systematic and tractable manner. We outline such an interconnect in this
article.

In this context, we first discuss a few example usage scenarios and show how
these favor the use of such a general-purpose interconnect.

Usage Scenarios
As indicated earlier, the on-chip interconnect architecture discussed here
is targeted towards a general-purpose design that can meet the needs of
different sub-systems in a highly integrated and highly parallel architecture.
The challenge of the underlying architecture is to be competitive with the
application-specific designs in the specific context of the applications. Here
we discuss a few example scenarios that are potential targets for tera-scale
architecture.

Cloud Computing or a Virtualized Data Center
The aggregation of compute capacity in tera-scale architectures can be
partitioned and virtualized to provide cloud computing services to multiple
applications sharing the infrastructure. Such an environment should allow
dynamic allocation and management of compute, memory, and IO resources
with as much isolation between different partitions as possible. A large set of
allocation and de-allocation of resources can create fragmentation that may not
provide a clean and regular boundary between resources allocated for different
purposes. The bridging interconnect housing these resources should be flexible
enough to allow such cases without degrading service levels and without
causing undue interference between different partitions.

“Use a parameterized single

interconnect design and apply it

across all the sub-systems with specific

parameters tuned for each sub-system.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

64 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

Scientific Computing
Scientific computing applications cover the space from molecular dynamics
to cosmic simulations, fluid dynamics, signal and image processing, data
visualization, and other data and compute-intensive applications. These
demanding applications are typically executed over large clusters of systems.
The compute density per chip and energy per operation provided by tera-
scale architecture can greatly enhance the capability of systems targeting this
application domain. A typical design for this domain would be dominated by a
large number of processing elements on chip with either hardware- or software-
managed memory structures and provision for very high off-chip memory
and system bandwidth. An interconnect designed for such applications should
provide high bandwidth across all traffic patterns, even patterns that may be
adversarial to a given topology.

Visual Computing
Visual computing applications are similar to scientific computing applications
in some aspects. However, these applications may additionally have real-time
requirements including bounded-time and/or bandwidth guarantees. Also,
different portions of an application (e.g., AI, physical simulation, rendering,
etc.) have distinct requirements. This heterogeneity, reflected architecturally,
would create topological irregularities and traffic hot-spots that must be
handled to provide predictable performance for visual workloads.

Irregular Configurations
Cost and yield constraints for products with large numbers of cores may create
a requirement for masking manufacturing failures or in-field failures of on-die
components that in turn may result in configurations that deviate from the
ideal topology of the on-chip interconnect. Another usage scenario that can
create configurations that are less than ideal is an aggressive power-management
strategy where certain segments of a chip are powered-down at low utilization.
Such scenarios can be enabled only when the interconnect is capable of
handling irregular topologies in a graceful manner.

Attributes of On-chip Interconnect
The on-chip interconnect for tera-scale architecture has to be designed keeping
the usage scenarios just outlined in mind. Apart from the typical low-latency
and high-bandwidth design goals, topology flexibility and predictable
performance under a variety of loads are essential to enable the usage scenarios
just described. We describe in this article the mechanisms to provide these
features within the constraints of an on-chip interconnect for tera-scale
architecture.

“Cost and yield constraints for

products with large numbers of cores

may create a requirement for masking

manufacturing failures or in-field

failures of on-die components.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 65

One of the main drivers for tera-scale architecture is the power and thermal
constraints on a chip that have necessitated the shift from optimizing for scalar
performance to optimizing for parallel performance. This shift has resulted in
the integration of a higher number of relatively simpler cores on a chip instead
of driving towards higher frequency and higher micro-architectural complexity.
This trend also has implications for the on-chip interconnect. Because of the
weak correlation of frequency with process technology generation, logic delay
is becoming a diminishing component of the critical path, and wire delay is
becoming the dominant component in the interconnect design. This implies
that topologies that optimize for the reduction of wire delay will become
preferred topologies for tera-scale architectures. Given the two-dimensional
orientation of a chip, two-dimensional network topologies are obvious choices.

Another desirable attribute of an on-die interconnect is the ability to scale-
up or scale-down by the addition or reduction of processor cores and other
blocks in a cost-performance optimal and simple manner, thereby enabling
the design to span several product segments. Based on the usage scenarios
described at the beginning of this article, a latency optimized interconnect is
critical for minimizing memory latency and ensuring good performance in
a cache-coherent chip multi-processor (CMP). In addition, partitioning and
isolation, as well as fault-tolerance require support, based on the envisaged
usage scenarios. Because of all of these considerations, two-dimensional mesh,
torus, and its variants are good contenders for tera-scale designs. (Figure 1) The
design discussed in this article assumes mesh and torus as primary topologies
and allows variations to enable implementation flexibility.

Even though on-chip wiring channels are abundant, shrinking core and
memory structure dimensions and increasing numbers of agents on a die will
put pressure on global wiring channels on the chip. This implies that wiring
efficiency, i.e., the ability to effectively utilize a given number of global wires,
will be an important characteristic of on-chip interconnect.

In order to support good overall throughput and latency characteristics with
a modest buffering cost, our design assumes a buffered interconnect, based
on wormhole switching [1] and virtual channel flow control [2]. It supports
multiple virtual channels to allow different types of traffic to share the physical
wires. The details of this design are discussed in the following section.

The organization of the rest of this article is as follows. In the next section
we present the details of the on-chip interconnect design, primarily focusing
on the micro-architecture of the router and highlighting the choices made to
optimize for latency and energy efficiency. We then focus on the support for
flexibility and adaptivity, discussing the options and our preferred direction.
The performance results are then presented for different usage scenarios,
indicating the benefit derived from the various features in the interconnect.
Next we discuss some of the related work and conclude our article with a
summary of our work and next steps.

“Because of the weak correlation of

frequency with process technology

generation, logic delay is becoming a

diminishing component of the critical

path, and wire delay is becoming

the dominant component in the

interconnect design.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

66 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

On-chip Interconnect Design
Before getting into the specifics of the micro-architecture of this design, let us
look at the topological aspects.

Supported Interconnect Topologies
The two dimensional on-die interconnect architecture we present is optimized
for a CMP that is based on a tiled design supporting the mesh and torus
topologies and a few variants. Some representative topologies are shown in
Figure 1. Each processor tile may have a router that is connected to the local
tile as well as to four other routers. Agents on the periphery can be connected
to the local port of the router or directly to an unused router port of a
neighboring tile. Other variations include two or more cores sharing a router,
resulting in a concentrated topology that uses fewer routers for interconnecting
the same number of cores. Another configuration is a torus with links that fold
back along one or both of the horizontal and vertical directions. To balance
wire delays in the torus topologies, links connect routers in alternate rows and/
or columns.

SysInt SysInt SysIO

Mem I/P Mem I/P

(a) 2D Mesh

SysInt SysInt SysIO

Mem I/P Mem I/P

(b) Mesh-Torus

HA HA

SysInt SysInt SysIO

HA HA

(c) Concentrated Mesh-Torus

Mem I/P Mem I/PHA HA

SysInt SysInt SysIO

(d) 2D Torus

Figure 1: Examples of 2D Mesh and Torus Variants
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 67

Router Micro-architecture
The principal component of the 2D interconnect fabric is a pipelined, low-
latency router with programmable routing algorithms that include support for
performance isolation, fault-tolerance, and dynamic adaptive routing based on
network conditions.

Figure 2 shows the stages of the router pipeline as well as the key functions
performed in each stage. The functionality in our adaptive router includes most
of the standard functionality that one can expect to see in a wormhole switched
router [3].

Route Compute
This includes route computation for the header flit to determine the route, i.e.,
the output port of the router, which a packet must take towards its destination
tile. In an adaptive routing scheme, this can imply that the packet may have a
choice of more than one output port towards its destination (we support up to
two output port choices). Our router architecture uses route pre-computation
[4] for the route decision of neighboring routers, thereby removing route-
computation from the critical path of the router pipeline.(Route pre-compute
options and design tradeoffs are discussed in “Flexible and Adaptive On-chip
Interconnect.”).

Route
Pre-dec

VC Alloc

Payload
Read

Switch
Arbiter

M:M

Store VC
Context

VC PreQ

?
? ?

?

Payload
Write

Local
Arbiter

N:1

Upstream
Credit

Switch
Traversal

Link
Traversal

LA SA ST

Figure 2: Adaptive Router Pipeline
Source: Intel Corporation, 2009

“The principal component of the 2D

interconnect fabric is a pipelined,

low-latency router with programmable

routing algorithms.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

68 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

Virtual Channels and Buffer Management
Our router architecture uses virtual channel flow control [21] both to improve
performance and to enable support for deadlock-free routing in various flavors
of deterministic, fault-tolerant and adaptive routing. The set of virtual channels
(VCs) can be flexibly partitioned into two logical sets: routing VCs and
performance VCs. Routing VCs are also logically grouped into virtual networks
(VNs). VCs belonging to the same VN are used for message-class separation,
but they use the same routing discipline. Routing VCs are used for satisfying
deadlock-freedom requirements of a particular routing algorithm employed.
Performance VCs belong to a common shared pool of VCs used for
performance improvement (both for adaptive or deterministic routing
schemes). Figure 3 shows an example of potential mappings of VCs to routing
VCs belonging to specific message-classes and VNs, as well as the pool of
performance VCs for 2D mesh and 2D torus topologies with minimal
deadlock free XY routing algorithms for each network. The configuration is
assumed to support 12 VCs and 4 message classes; the mesh requires a single
VN (VN0) for deadlock freedom, whereas the torus requires 2VNs (VN0,
VN1).

To support flexibility and optimal usage of packet buffering resources, our
router supports a shared buffer at the input port that is used by all VNs in that
port. The space in the buffer is dynamically managed by using a set of linked
lists that track flits belonging to a given packet in a VC, as well as a list of
free buffer slots for incoming flits. The operation of the flit-buffer is shown in
Figure 4.

Depending on the size of the buffer, a banked implementation is used where
each bank can be individually put into low-leakage states to save power at low
levels of buffer utilization. Active power-management strategies to trade off
performance and power can also be implemented.

Flow Control
The router supports credit-based flow control to manage the downstream
buffering resources optimally. The flow control protocol is a typical scheme,
except for the fact that it needs to handle the shared flit buffer resources and
ensure reservation of at least 1-buffer slot resource for all routing VCs and
also for each active performance VC. This is required to guarantee resource
deadlock freedom with wormhole switching.

Router Pipeline and Arbitration Mechanisms
Our adaptive router pipeline is a high-performance pipeline with the bypass
capability of one pipeline stage based on network conditions.

A flit belonging to a packet enters the router at the input port. For a new
packet, a message context is created to track relevant status information. The
key functionality in the local arbitration stage is to determine a single packet at
a given input that can contend for a router’s output port with other potential
candidates from other input ports.

VC11

VC10

VC9

VC8

VC7

VC6

VC5

VC4

VC3

VC2

VC1

VC0

Perf

Perf

Perf

Perf

Perf

Perf

Perf

Perf

Mc3, VN0

Mc2, VN0

Mc1, VN0

Mc0, VN0

VC11

VC10

VC9

VC8

VC7

VC6

VC5

VC4

VC3

VC2

VC1

VC0

Perf

Perf

Perf

Perf

Mc3, VN1

Mc2, VN1

Mc1, VN1

Mc0, VN1

Mc3, VN0

Mc2, VN0

Mc1, VN0

Mc0, VN0

(a) (b)

Figure 3: Mapping of Virtual Networks to Virtual
Channels for a 2D Mesh and 2D Torus Topology
Source: Intel Corporation, 2009

“Our adaptive router pipeline is a

high-performance pipeline with the

bypass capability of one pipeline stage

based on network conditions.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 69

VC
Context

R
o

u
ti

n
g

 V
C

s
D

yn
am

ic
 /

P
er

fo
rm

an
ce

 V
C

s

VC Status
Buffer Occupancy

B 5 V1

F 0 V2

B 2 V3

B 1 V4

B 1 V5

B 2 V0

Buffer
Freelist

9

H M T

Head, Mid, Tail
Flits

HT

Single Flit
Msg

1

X

X

11

8

X

X

X

X

3

4

5

11

10

9

8

7

6

5

4

3

2

1

0

Ptr

M

HT

FREE

M

H

HT

M

T

M

H

M

M

Buffer

B
F

- Busy
- Free

Figure 4: Shared Flit Buffer Management Across a Set of Virtual Channels
Source: Intel Corporation, 2009

Our router applies a filter on less viable packets to improve the performance
of the local and global arbitration stages. Each packet may have up to two
output-port candidates that may be used to route the packet to its desired
destination. Both input and output side-arbiters make arbitration decisions,
based on a round-robin priority.

Each output port selects a single winning input port from amongst one or
more candidates from all input ports for the following cycle by using a rotating
priority. A multi-flit packet may make a “hold” request, and the arbiter grants
the output port to such an input port for an additional cycle.

VC allocation, and allocation of a downstream buffer slot for the granted flit,
also occurs after switch arbitration. Route pre-computation or route table
lookup for the next router downstream occurs concurrently with arbitration.
The final stage of the router pipeline is switch traversal from inputs to outputs.
Appropriate sideband information for credit management (and setup of
information based on look-ahead routing for header flits) is done at this stage,
and the flit flows out of the router over the interconnect links to the input port
of a downstream router.

Intel® Technology Journal | Volume 13, Issue 4, 2009

70 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

Flexible and Adaptive On-chip Interconnect
In this section we describe the support for various routing algorithms to enable
a flexible, configurable, and adaptive interconnect, and we discuss the design
implications.

Support for Multiple Routing Algorithms
The router architecture supports distributed routing wherein the subsets of
the routing decisions are made at each router along the path taken by a given
packet.

In two-dimensional networks like mesh and torus, given a source node, the set
of shortest paths to the destination fall into nine possible regions, as shown in
Figure 5. The regions are labeled in terms of the minimal X and Y offset of
shortest paths.

The baseline routing strategies supported by our router use this underlying
classification of the destination for narrowing the set of paths to the destination
[4, 5]. For minimal adaptive routing, up to two distinct directions may be
permitted based on the region a destination node falls into. The routing
decision (i.e., output ports and VN choices permitted) at each router is based
on the current input port and VN a packet belongs to, as well as on the desired
destination. For each VN, we can support the flexible algorithms with a small
9-entry table [4, 5] or with an even more economical storage of only a few bits
per port [6].

With the baseline routing support alone, minimal path deterministic routing
in mesh and torus and partially and fully adaptive minimal path routing
algorithms, such as those based on the turn model [7], are supported by our
implementation. Our adaptive router architecture also supports the Duato
protocol [8] which reduces the VC resource requirements while providing
full adaptivity. Table 1 shows a comparison of the minimum number of VCs
required to implement a deadlock-free turn-model that is based on fully-
adaptive routing versus that for a Duato-protocol-based implementation.

Topology 2 Msg Classes 4 Msg Classes

Turn Model Duato Protocol Turn Model Duato Protocol

2D Mesh 4 3 8 5
2D Torus 6 5 12 9

Table 1: Minimum Virtual Channels Required for Fully-adaptive Routing
(Turn Model v/s Duato Protocol)
Source: Intel Corporation, 2009

Baseline routing support also enables a deterministic fault-tolerant routing
algorithm based on fault-region marking and fault-avoidance, such as in [9], as
well as adaptive fault-tolerant routing algorithms [10]. Incomplete or irregular
topologies caused by partial shutdown of the interconnect because of power-
performance tradeoffs can be treated in a manner similar to a network with
faults for routing re-configuration purposes.

+ , -- , -

+ , +- , +

+ , 0

0 , +

0 , -

- , 0 0 , 0

Figure 5: The Nine Regions a Destination Node
can Belong to Relative to a Given Router
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 71

Our router architecture also supports a novel two-phase routing protocol
where a packet is routed to an intermediate destination and then to the final
destination. This can be used to implement load-balancing and fault-tolerant
routing algorithms, including non-minimal routing algorithms.

Finally, we also implement support for performance isolation amongst
partitions on a mesh which may or may not have rectangular geometries.
This is implemented through a hierarchical routing protocol that helps isolate
communication of each partition including for non-rectangular partitions. This
is purely a routing-based approach to providing isolation, and no additional
resource management mechanisms, such as bandwidth reservation, are required
with this approach.

Design Implications
Our flexible design had to have a minimal cost overhead in the definition
phase. We outline next the various impacts of our design choices.

We maintain a high-performance router design by using a shared pool of
VCs, as well as a shared buffer pool. The shared buffer pool reduces the
overall buffer size and power requirements. Support for up to two output port
choices with adaptive routing has little impact on the router performance.
With the decoupled local and switch arbitration stages in the router pipeline
(as described earlier), each packet arbitrates for a single output port candidate
after applying the arbitration filter and path selection. The criteria used could
be based on several congestion prediction heuristics that use locally available
information, such as resource availability and/or resource usage history (see [4]
for examples of such criteria). Path selection can be implemented without a
significant impact on the arbitration stages.

Support for the adaptivity and flexible routing configuration requires the use
of configurable route tables. While table storage requirements are small for the
9-entry table (approximately 3-4 percent per VN, when compared to the flit
buffer storage requirement), these can be reduced by an order of magnitude
by using the approaches in [6]. These table storage optimizations, that are
independent of the network size, considerably reduce the area and power
requirements for supporting flexibility features in the on-chip interconnect.

In the next section we describe some representative performance results for
flexible interconnection network architecture.

Performance Results
We present the performance results for different configurations and traffic
patterns to demonstrate the effectiveness of the adaptive routing scheme
just described. However, before presenting the results on adaptive routing,
we present the results to establish the optimal design parameters for typical
operation.

“Our router architecture also supports

a novel two-phase routing protocol

where a packet is routed to an

intermediate destination and then to

the final destination.”

“Table storage optimizations, that

are independent of the network size,

considerably reduce the area and

power requirements.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

72 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

Figure 6 shows the effect of buffer size and number of VNs on each input
port on the network capacity for a uniform random traffic pattern on a 6x6,
two-dimensional mesh network. This traffic pattern uses a mix of single flit and
five-flit packets divided between two message classes, based on an expected
distribution for cache coherency traffic. The target of each packet is randomly
selected with equal probability, and the injection rate is increased until the
network is close to saturation. For different buffer depths and VC settings, the
network saturates at different points. Each plot in Figure 6 represents different
buffer depths and shows the delivered throughput in terms of flits accepted per
cycle per node for different numbers of VCs on the X-axis. The plots indicate
that a larger number of buffers and VCs result in increased throughput;
however, the improvement tapers off beyond sixteen buffers and ten virtual
channels. These results were obtained by using a deterministic dimension-order
routing scheme, since adaptive schemes are not beneficial for uniform random
traffic patterns. We use sixteen buffers and twelve virtual channels as the
baseline to evaluate the effectiveness of an adaptive routing scheme against that
of a deterministic scheme.

To illustrate the effectiveness of an adaptive routing scheme, we use a traffic
pattern that is adversarial to two-dimensional mesh topology. Adversarial
traffic for a given topology and routing scheme illustrates a worst-case scenario,
which shows the extent of degradation in network performance for some
traffic patterns. A matrix transpose is a perfect example for a mesh with X-Y
deterministic routing, since it results in an uneven traffic load across the links
along the diagonal.

B=8 B=12 B=16 B=20 B=24

Number of Virtual Channels (including 2 reserved VCs)

F
ra

ct
io

n
 o

f
B

is
ec

ti
o

n
 B

an
d

w
id

th

T
h

ro
u

g
h

p
u

t
(f

lit
s/

n
o

d
es

/c
yc

le
)

0.6

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.7

0.8

0.9

1.0

0.5

0.4

0.3

0.2

0.1

0.0
2VCs 4VCs 6VCs 8VCs 10VCs 12VCs 14VCs 16VCs

Figure 6: Effect of Number of Buffers and Virtual Channels on Delivered
Throughput for a 6x6 Mesh
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 73

Figure 7 illustrates the source-destination relationship for a transpose
operation. For this traffic pattern, a node labeled (i,j) communicates with node
(j,i) and vice-versa. This results in nodes in the upper triangle (highlighted in
orange) communicating with nodes in the lower triangle (highlighted in pink).
The nodes on the diagonal (highlighted in blue) do not generate any traffic.
Figure 7 also illustrates the route taken when a deterministic XY routing
scheme and some possible alternatives allowed by an adaptive routing scheme
are used. Paths highlighted with thick lines do not follow the XY routing
scheme. There are many other paths possible between these source and
destination nodes that are not shown in the figure. A deterministic routing
scheme tends to concentrate load on a few links in the network for this traffic
pattern, and not utilize other alternative paths between source-destination
pairs. An adaptive routing scheme that allows more flexibility in path selection
among multiple alternatives avoids congested routes and improves the overall
capacity of the network.

The effect of path diversity in increasing the overall network capacity is
illustrated through the load-throughput plot in Figure 8 for transpose traffic by
using different routing schemes. XY represents a deterministic routing scheme,
whereas Adaptive is an implementation of a minimal fully-adaptive routing
scheme using the Duato protocol. As shown in the plot, the network capacity
is severely restricted for this pattern when a deterministic routing scheme is
used. The adaptive routing scheme delivers much higher throughput for this
traffic pattern.

XY Adaptive

0.06 0.14 0.22 0.30 0.38 0.46 0.54 0.62 0.70 0.78 0.86 0.94

Load (flits/cycle/node)

T
h

ro
u

g
h

p
u

t
(f

lit
s/

cy
cl

e/
n

o
d

e)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 8: NetworkThroughput with a Deterministic and Adaptive Routing
Scheme for Transpose Traffic on a 6x6 Mesh
Source: Intel Corporation, 2009

(0,4)

(0,3)

(0,2)

(0,1)

(0,0)

(1,4)

(1,3)

(1,2)

(1,1)

(1,0)

(2,4)

(2,3)

(2,2)

(2,1)

(2,0)

(3,4)

(3,3)

(3,2)

(3,1)

(3,0)

(4,4)

(4,3)

(4,2)

(4,1)

(4,0)

(5,4)

(5,3)

(5,2)

(5,1)

(5,0)

(5,5)(4,5)(3,5)(2,5)(1,5)(0,5)

Transpose with XY routing

(0,4)

(0,3)

(0,2)

(0,1)

(0,0)

(1,4)

(1,3)

(1,2)

(1,1)

(1,0)

(2,4)

(2,3)

(2,2)

(2,1)

(2,0)

(3,4)

(3,3)

(3,2)

(3,1)

(3,0)

(4,4)

(4,3)

(4,2)

(4,1)

(4,0)

(5,4)

(5,3)

(5,2)

(5,1)

(5,0)

(5,5)(4,5)(3,5)(2,5)(1,5)(0,5)

Transpose with Adaptive Routing

Transpose with XY Routing

Figure 7: Traffic Pattern for a Transpose
Operation with Deterministic and Adaptive
Routing
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

74 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

When all the agents on the on-chip network are not of the same type, non-
homogeneous traffic patterns can be created with the potential for transient
hot-spots. One example of this is the traffic going to and generated from
memory controllers, I/O interfaces, and system interconnect. Depending on
the phases of execution or type of workload, some of these agents may be more
heavily used than others and may become bottlenecks on the interconnect,
thereby affecting other traffic that shares the path with congested traffic. Such
scenarios can be crudely approximated with a mix of traffic patterns between
different sets of agents. To illustrate this scenario, we set up an experiment with
a 6x6 mesh network where six agents at the periphery (three in the top row and
three in the bottom row) are considered hot-spots with 30 percent of the traffic
targeting these nodes with equal probability and the rest of the traffic targeting
the remaining nodes with equal probability. Throughput delivered to each node
in terms of flits per cycle was measured for all nodes combined, for hot-spot
nodes, and for nodes excluding hot-spot nodes. The result is illustrated in
Figure 9, which shows that overall throughput as well as the throughput
delivered to hot-spot nodes and other nodes excluding the hot-spot nodes have
improved.

The interconnection network can be reconfigured in the presence of faults
through adoption of fault-tolerant routing algorithms. In the absence of
fault-tolerant routing, the network can become virtually unusable in the
presence of high levels of identified and isolated faulty components. It may be
possible to operate the network at a significantly diminished capacity by
avoiding complete rows and/or columns of nodes containing a faulty node; i.e.,
use the nodes in that column or row as pass-through nodes. Here, we do not
address a comparative performance benefit of fault-tolerant routing. However,
in Figure 10 we show the fraction of usable nodes in the network and the
resulting impact to the network latency as a sensitivity study to the number of
faults in the network. The data are derived from an implementation of a
fault-tolerant XY routing [9] which restricts the faulty regions to being
rectangular in shape. The node failures in this context can be the result of core
or router failure. Figure 10 (a) shows that when the number of randomly
located faulty nodes is small, little or no additional nodes may be needed to be
turned off to satisfy the rectangular shape constraint of faulty regions and to
safely support the use of the rest of the network. As the number of faults
increases, additional nodes, that are unsafe and prevent deadlock-free routing,
need to be turned off. Figure 10 (b) shows that the increase in the average
number of hops in the network is also small for a small number of faults. As
the number of faults increases, the average number of unsafe nodes increases
and then begins to drop off as the overall working cluster size (actual remaining
functional system) diminishes, compared to the size of the full network. The
actual region of interest is for a single to a small number of node failures for
which fault-tolerant routing provides graceful degradation in performance.

T
h

ro
u

g
h

p
u

t
(f

lit
s/

cy
cl

e/
n

o
d

es
)

0.45

XY Adaptive

Routing Scheme

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

All Hot-spot Others

Figure 9: Network Capacity with and without
Adaptive Routing in a Heterogeneous
Environment
Source: Intel Corporation, 2009

40.0

35.0

30.0

20.0

25.0

15.0

10.0

5.0

0.0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Failed

N

o
d

es

Failed
Unsafe
Safe Router

Fraction Failed, Unsafe, and Safe Nodes
(6x6 Mesh, XYFT4 Routing Algorithm)

7.0

6.0

5.0

3.0

4.0

2.0

1.0

0.0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Failed

H

o
p

s
(X

Y
F

T
4

fa
u

lt
 t

o
le

ra
n

t
ro

u
ti

n
g

)

Average Hops
(6x6 Mesh, Uniform Traffic, XYFT4 Routing Algorithm)

(b)

(a)

Figure 10. Fault-tolerant xY Routing: (a) Usable
Nodes vs. Faults and (b) Average Hops vs. Faults
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 75

Related Work
With increasing interest in CMP and system-on-chip (SoC) designs, on-chip
networks are a very active area of research. The current generation of CMP
and SoC designs have taken very different approaches: CMP designs favor
customized, implementation-specific, on-chip networks that change from
generation to generation, whereas SoC designs use standardized networks that
allow quick integration of different design blocks. As the complexity and level
of integration increases with CMPs, it is likely that CMP designs will also
move towards standardized networks. Some of the research prototypes, such
as Intel’s tera-FLOP processor [11] and other recent designs from different
vendors, have indicated a move towards this trend. The design presented in
this article is a leap forward from the design used in [11]: it addresses some
of the performance bottlenecks, such as the limited number of VCs, a more
optimized design with lower latency, area and power, and advanced capabilities,
such as flexible and adaptive routing.

Research into flexible and adaptive networks has been ongoing for a long
time, and the techniques developed have been applied in various networks
in operation. The closest interconnect type to on-chip networks, where
similar requirements and tradeoffs are at play, is in the area of multi-processor
networks. However, on-chip networks have to be further optimized for latency
and storage overheads, a factor that drove the decisions for the design presented
in this article. For example, off-chip multi-processor networks have typically
used virtual cut-through techniques [12, 13, 14], but these designs could result
in larger buffering overheads, as the number of VCs increases. The design
presented in this article uses wormhole switching [1], which does not require
buffers to be allocated for the entire packet.

The route specification mechanism used in this work relies on either a
compressed table or on a LBDR [4, 5, 6] mechanism for look-ahead routing
[4] such that route determination does not add to the pipeline delay at each
router. Off-chip networks, such as the IBM Blue Gene/L* torus network
[12] avoid using any table, and it relies on X, Y, and Z offsets to destination
to make routing decisions. However, the Blue Gene/L network does not
allow any topological irregularities and cannot tolerate link or router failures.
Routing schemes used in the Cray T3E* [13] system allows more flexibility
and can tolerate link and router failures, but adaptive routing is disabled when
minimal paths from source to destination contain broken links. Cray T3E
implementation requires a table as large as the system size (up to 544 entries)
to determine the routing tags. As the number of agents grows on a chip, large
table sizes result in area and power overheads.

Note that Cray T3E also uses an adaptive routing scheme by using escape
VCs [8] similar to the scheme used in our implementation. However, the
Cray T3E implementation has only one VC for adaptive routing usage, and it
uses a virtual cut-through in the adaptive channels that require space for the
entire packet. Such an implementation limits the benefit of adaptivity. Our
implementation uses wormhole switching, even in the adaptive channels, and
it allows multiple VCs to be used for packets, with the use of adaptive routing.

“With increasing interest in CMP and

system-on-chip (SoC) designs, on-chip

networks are a very active area of

research.”

“The design presented in this article

uses wormhole switching [1], which

does not require buffers to be allocated

for the entire packet.”

“As the number of agents grows on a

chip, large table sizes result in area

and power overheads.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

76 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

Conclusions
We have presented the details of an on-die fabric with an adaptive router that
supports various 2D interconnect topologies for tera-scale architectures. 2D
mesh and torus topologies provide good latency and bandwidth scaling for tens
to more than a hundred processor cores, as well as the additional connectivity
that enables multiple paths between source-destination pairs that can be
exploited by adaptive routing algorithms.

The architecture presented has an aggressive low-latency router pipeline. It
can also provide high throughput in the presence of adversarial traffic patterns
and hot-spots through the use of adaptive routing. The adaptive routing
is supported without impacting the router pipeline performance, and it is
supported through very economical and configurable routing table storage
requirements. This router also supports very efficient use of resources by
making use of shared (performance) VC and buffer pools.

The propsed fabric architecture and routing algorithms also support the ability
to provide partitioning with performance isolation and the ability to tolerate
several faults or irregularities in the topology, such as those caused by partial
shutdown of processing cores and other components for power management.

References
[1] Dally, W. J. and Seitz, C. L. 1987. “Deadlock Free Message Routing

in Multiprocessor Interconnection Networks.” IEEE Trans. Computers,
pages 547-553.

[2] Dally, W. J. 1992. “Virtual channel flow control.” IEEE Trans. Parallel
and Distributed Systems, pages 194-205.

[3] Dally, W. J. and Towles, B. 2004. Principles and Practices of
Interconnection Networks. Morgan Kaufmann.

[4] Vaidya, A., Sivasubramaniam A. and Das, C. R. 1999. “LAPSES: A
recipe for high performance adaptive router design.” In Proceedings
International Symposium on High Performance Computer Architecture
(HPCA-5), pages 236-243.

[5] Flich, J., Mejia, A., Lopez, P. and Duato, J. “Region-Based Routing:
An Efficient Routing Mechanism to Tackle Unreliable Hardware in
Network on Chips.” International Symposium on Networks on Chip,
2007.

[6] Flich, J., Rodrigo, S. and Duato, J. “An Efficient Implementation of
Distributed Routing Algorithms for NoCs.” International Symposium on
Networks on Chip, 2008.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 77

[7] Glass, C. J and Ni, L. M. “The Turn Model for Adaptive Routing.”
Journal of the ACM, pages 874-902, 1994.

[8] Duato, J. “A Necessary and Sufficient Condition for Deadlock-Free
Adaptive Routing in Wormhole Networks.” IEEE Transactions on
Parallel and Distributed Systems, 1055-1067, 1995.

[9] Bopanna, R.V. and Chalasani, S. “Fault-Tolerant Wormhole Routing
Algorithms for Mesh Networks.” IEEE Transactions on Computers, pages
848–864, 1995.

[10] Duato, J. “A theory of fault-tolerant routing in wormhole networks.”
IEEE Transactions on Parallel and Distributed Systems, pages 600-607,
1994.

[11] Vangal, S., et al. “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS.” IEEE International Solid-State Circuits Conference, 2007.

[12] Adiga, N. R., et. al. “Blue Gene/L torus interconnection network.” IBM
Journal on Research and Development, 2005.

[13] Scott, S. and Thorson, G. “The Cray T3E Network: Adaptive Routing
in a High Performance 3D Torus.” In Proceedings on Hot Interconnects
IV, 147-156, 1996.

[14] Maddox, R. A., Singh, G., and Safranek, R. J. Weaving High
Performance Multiprocessor Fabric. Intel Press, Beaverton, OR, 2009.

Acknowledgments
The work presented here has benefited from the contributions and insight of
our colleagues Partha Kundu and Gaspar Mora Porta as well as our former
colleagues Jay Jayasimha and the late David James.

We are also deeply thankful to our senior leaders Joe Schutz, Jim Held, Justin
Rattner, and Andrew Chien for their continued support and encouragement
for our work on scalable on-die interconnect fabrics through the tera-scale
initiative.

Intel® Technology Journal | Volume 13, Issue 4, 2009

78 | Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures

Author Biographies
Mani Azimi is a Senior Principal Engineer and Director of the Platform
Architecture Research team in the Microprocessor and Programming Research
(MPR) group in Intel Labs. He received his PhD degree from Purdue
University. He joined Intel in 1990 and has worked on a wide range of
platform architecture topics including system protocol, processor interface,
MP cache controller architecture, and performance modeling/analysis. He is
currently focusing on tera-scale computer architecture challenges. His e-mail is
mani.azimi at intel.com.

Donglai Dai is a Senior Research Scientist at Intel Labs. He joined Intel in
2007 and has worked on on-chip interconnect architecture and design for
Intel’s tera-scale computing initiative. Previously, he worked as an architect
and lead designer of the threaded vector coprocessor, memory sub-system
and coherence protocol, and interconnection network of high-performance
computing (HPC) systems in Cray Inc. and Silicon Graphics Inc. He received
a Ph.D. degree in Computer Science from Ohio State University. His e-mail is
donglai.dai at intel.com.

Akhilesh Kumar is a Principal Engineer in Intel Labs. His research interests
include cache organization, on–chip and off–chip interconnects, and interface
protocols. He received his PhD degree in Computer Science from Texas A&M
University. He joined Intel in 1996 and has contributed to the architecture and
definition of system interfaces and cache hierarchies. His e-mail is akhilesh.
kumar at intel.com.

Andres Mejia is a Senior Research Scientist at Intel Labs. His research interests
include high-speed interconnects, cache organization, and performance
modeling/analysis. He received his PhD degree in Computer Science from the
Technical University of Valencia. His e-mail is andres.mejia at intel.com.

Dongkook Park is a Research Scientist in Intel Labs in Santa Clara, California.
He received his PhD degree in Computer Science and Engineering from the
Pennsylvania State University and he joined Intel in 2007. His current research
interests include on-chip interconnects and the microarchitecture of on-chip
routers for future many-core processors. His e-mail is dongkook.park at intel.
com.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others..

Flexible and Adaptive On-chip Interconnect for Tera-scale Architectures | 79

Roy Saharoy is a Research Scientist at Intel Labs in Santa Clara, California.
His contributions at Intel include the development of micro-architecture
performance models, performance analysis of interconnects, pre-silicon
validation of platform architecture, performance projection, and performance
tuning of workloads. His current focus is on performance modeling,
simulation methodology, and workload-based characterization of scalable on-
die interconnects. Roy has many years of work experience in diverse areas of
software development. He holds an M.Tech degree from the Indian Institute of
Technology (Kharagpur) India and conducts industry-sponsored research at the
Electrical and Computer Engineering Department of the University of Illinois,
Urbana-Champaign. His e-mail is roy.saharoy at intel.com.

Aniruddha S. Vaidya is a Research Scientist at Intel Labs in Santa Clara,
California. His contributions at Intel include workload characterization,
performance analysis, and architecture of server platforms. His current focus
is on router and interconnection network architecture for Intel’s tera-scale
computing initiative. Ani has B.Tech and M.Sc. (Engg.) degrees from Banaras
Hindu University and the Indian Institute of Science, and a PhD degree in
Computer Science and Engineering from Pennsylvania State University. His
e-mail is aniruddha.vaidya at intel.com.

80 | Tera-scale Memory Challenges and Solutions

Contributors

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
Integrated circuit processing technology and computer architectures continue
to mature. Single chip CPUs have been demonstrated to exceed one TeraFLOP
[1]. This high level of computation, concentrated in a small area, creates many
system design challenges. One of these major challenges is designing and
building a memory sub-system that allows these CPUs to perform well while
staying within reasonable system cost, volume, and power constraints.

This article describes the challenges that tera-scale computing presents to
the memory sub-system, such as performance metrics including memory
bandwidth capacity and latency, as well as the physical challenges of packaging
and memory channel design. New technologies that need to be developed and
matured for tera-scale memory sub-systems are also discussed.

Introduction
The architecture and construction of computers have gone through many
changes. The first electronic digital computer was invented in 1939, and it
is usually credited to John V. Atanasaff and Clifford Berry from Iowa State
University. It consisted of vacuum tubes, capacitors, and a rotating drum
memory. In 1945, the ENIAC was built: it weighed over 20 tons and filled
a large room. In 1948, a team of engineers at Manchester University built a
machine nicknamed “the baby.” This was the first computer that was able to
store its own programs, and it is usually considered to be the forerunner to the
computers we use today. A type of altered cathode ray tube was used to store
data.

The design constraints of these early electronic computers were the required
computer room volume and the power consumed, primarily due to the use of
thousands of vacuum tubes. In 1959, Jack Kilby, then at Texas Instruments,
and Robert Noyce, then at Fairchild Semiconductor, invented the monolithic
integrated circuit. The transition to integrated circuits was the start of
an impressive treadmill for the computer industry where more and more
transistors could be built and connected within a monolithic “chip.” There
have been varying different architectures, often categorized as mainframes
and microprocessors (microcomputers). The level of integration for these
computers has increased over time, but the basic architecture comprising a
central processing unit (CPU) and memory has remained.

Dave Dunning
Intel Corporation

Randy Mooney
Intel Corporation

Pat Stolt
Intel Corporation

Bryan Casper
Intel Corporation

DRAM
DDR
I/O Channels
Bandwidth
Power Efficiency

TERA-SCALE MEMORY CHALLENGES AND SOLUTIONS

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 81

Abstract
Integrated circuit processing technology and computer architectures continue
to mature. Single chip CPUs have been demonstrated to exceed one TeraFLOP
[1]. This high level of computation, concentrated in a small area, creates many
system design challenges. One of these major challenges is designing and
building a memory sub-system that allows these CPUs to perform well while
staying within reasonable system cost, volume, and power constraints.

This article describes the challenges that tera-scale computing presents to
the memory sub-system, such as performance metrics including memory
bandwidth capacity and latency, as well as the physical challenges of packaging
and memory channel design. New technologies that need to be developed and
matured for tera-scale memory sub-systems are also discussed.

Introduction
The architecture and construction of computers have gone through many
changes. The first electronic digital computer was invented in 1939, and it
is usually credited to John V. Atanasaff and Clifford Berry from Iowa State
University. It consisted of vacuum tubes, capacitors, and a rotating drum
memory. In 1945, the ENIAC was built: it weighed over 20 tons and filled
a large room. In 1948, a team of engineers at Manchester University built a
machine nicknamed “the baby.” This was the first computer that was able to
store its own programs, and it is usually considered to be the forerunner to the
computers we use today. A type of altered cathode ray tube was used to store
data.

The design constraints of these early electronic computers were the required
computer room volume and the power consumed, primarily due to the use of
thousands of vacuum tubes. In 1959, Jack Kilby, then at Texas Instruments,
and Robert Noyce, then at Fairchild Semiconductor, invented the monolithic
integrated circuit. The transition to integrated circuits was the start of
an impressive treadmill for the computer industry where more and more
transistors could be built and connected within a monolithic “chip.” There
have been varying different architectures, often categorized as mainframes
and microprocessors (microcomputers). The level of integration for these
computers has increased over time, but the basic architecture comprising a
central processing unit (CPU) and memory has remained.

“The level of integration for computers

has increased over time, but the basic

architecture comprising a central

processing unit (CPU) and memory

has remained.”

In the early years of electronic computers, drum memory was often used.
This consisted of a rotating drum coated with ferromagnetic material and
containing a row of read and write heads. Drum memory was followed by
core memory that used magnetic rings to store information in the orientation
of the magnetic field. As transistors matured, core memory was replaced with
microchips, by using configurations of transistors and, often, capacitors to store
digital information.

CPUs and memory have evolved to use high transistor count integrated
circuits; they both use complementary metal oxide semiconductor (CMOS)
technology. Although the components of CPUs and memory are built basically
in the same way, memory and CPU continue to be partitioned into different
sub-systems within a computer. Such a method has worked well up to this
point: the transistor density (transistors per area of silicon substrate) for CPUs
and the density of those used to create memory chips continue to follow
Moore’s Law [1]. These increases in integration have allowed for increased
functionality and increased clock frequency, both leading to impressive
improvements in system performance and reductions in system costs.

In the last decade, however, double data rate (DDR) memory has emerged as
the dominant memory technology (in terms of number of units sold). Some of
the key features that have made DDR memory appealing are the low cost per
bit, sufficient bandwidth to supply instructions and data to the CPUs, and the
shared bus aspect of the interfaces to the memory chips: more memory can be
added to a memory channel interface if more capacity is needed, a form of “pay
as you go” method of memory acquisition.

Recently, however, we are starting to see some strain in the ability of DDR-
based memory to meet the needs of higher- and higher-performing tera-
scale CPUs. The two constraints being felt most are the increasing power
consumption that comes with the increased power density, as well as the
electro-mechanical challenges (signal integrity) associated with exchanging data
between two chips: i.e., not allowing bit rates per pin or trace to increase at a
fast enough rate.

“Double data rate (DDR) memory

has emerged as the dominant memory

technology (in terms of number of

units sold).”

Intel® Technology Journal | Volume 13, Issue 4, 2009

82 | Tera-scale Memory Challenges and Solutions

Memory Fundamentals
In this article we focus on the memory in microprocessor-based systems. More
precisely, we focus on memory that is outside of the CPU, that is, we do not
focus on on-die caches, or on non-volatile storage. This memory outside of the
CPU is circled in the simple drawing in Figure 1.

I/O
Cores

C
ach

e(s)

M
em

o
ry

C
o

n
tro

ller

Memory

Cooling

Power
Delivery

Storage

PCle

Figure 1: System Block Diagram
Source: Intel Corporation, 2009

Key Metrics
The key metrics for memory sub-systems are bandwidth, capacity, latency,
power, system volume, and cost. We examine these next.

Bandwidth. Bandwidth is defined as bytes moved between the memory and
the CPU’s memory controller. Bandwidth is usually the most talked-about
performance parameter. The bandwidth required for a system is usually market
segment and application (working set size, code arrangement, and structure)
dependent. Amdahl’s rule of Thumb [3] suggests there should be one Bps for
each instruction per second executed. This ratio is sometimes converted to one
Bps, per floating point operation, per second. Designing and implementing
that high a ratio of memory bandwidth to CPU performance has not been met
for most general-purpose computer systems today.

Capacity. The capacity is the total number of bytes stored. A weak correlation
exists between the capacity of memory to performance. There is a large range
for memory capacity compared to bandwidth to memory. When comparing
capacity (bytes) to bandwidth (Bps) in a ratio, the range goes from very small
(0.10 to large (10).

Latency. This is the time it takes to read a word from memory. The focus is
usually on read latency. Write latency can be posted (put in a queue) and is
therefore considered less important. The latencies to DRAM devices have been
reduced slowly over the last decade.

Power (energy per time). Power equals the energy consumed divided by the time
in which that energy is consumed. Sometimes power is a more useful metric
than energy per bit moved. In effect, to be accurate in assessing the power and
energy efficiency of memory, both metrics are useful. Although the majority of
the power consumed is often dependent on how much data are moved, power
is also consumed that is not directly dependent on the data read and written.
Lastly, the power and energy per bit moved for memory are also dependent on
how the DRAM devices are physically connected to the memory controller.

System volume. This is the space taken up by the DRAM chips (often called
DRAM devices). It is common for DRAM devices to be mounted on a
small printed circuit board, called dual inline memory modules (DIMMs).
Therefore, system volume is sometimes measured in mm3. Board area (mm2)
is often considered, and although technically not a volume, board area is often
lumped into the “volume” category. Volume reductions must be accompanied
with commensurate power reduction so that power densities are not increased.

Cost. The cost refers to the money it costs to implement the memory sub-
system of choice.

Memory Sub-system Scaling
Most DRAM processes are very efficient at implementing small-sized trench
capacitors in their substrate, as well as low leakage transistors. These processes
tend to favor fast n-channel transistors used as charge switches. DRAMs
often implement the p-channel transistors to be slow (longer switching time)
relative to the n-channel transistors. Therefore, a DRAM process is not good
for general logic functions when compared to the processes used to implement
CPUs. Because of these choices, the evolution of DRAM has seen a high
percentage of logic functions managed in the DRAM controller, not the
DRAM itself. These choices, coupled with process shrinks, have resulted in an
impressive reduction in per-memory bit cost.

As CPU performance has increased, the bit rate per pin or bit rate per bump
(depending on the CPU and packaging technology) has also increased.
Unfortunately for system designers, the ability to increase performance within
a chip has increased much faster than the ability to increase the bit rate per
pin, bit rate per bump, and bit rate per trace. The result has been a reduction
in the number of DIMMs that can be attached to a memory channel while still
maintaining good signal integrity. Although these challenges and limitations
may be well understood, they have proven to be difficult to solve within the
current cost constraints of most systems.

“The focus is usually on read latency.

Write latency can be posted (put in a

queue) and is therefore considered less

important.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 83

Latency. This is the time it takes to read a word from memory. The focus is
usually on read latency. Write latency can be posted (put in a queue) and is
therefore considered less important. The latencies to DRAM devices have been
reduced slowly over the last decade.

Power (energy per time). Power equals the energy consumed divided by the time
in which that energy is consumed. Sometimes power is a more useful metric
than energy per bit moved. In effect, to be accurate in assessing the power and
energy efficiency of memory, both metrics are useful. Although the majority of
the power consumed is often dependent on how much data are moved, power
is also consumed that is not directly dependent on the data read and written.
Lastly, the power and energy per bit moved for memory are also dependent on
how the DRAM devices are physically connected to the memory controller.

System volume. This is the space taken up by the DRAM chips (often called
DRAM devices). It is common for DRAM devices to be mounted on a
small printed circuit board, called dual inline memory modules (DIMMs).
Therefore, system volume is sometimes measured in mm3. Board area (mm2)
is often considered, and although technically not a volume, board area is often
lumped into the “volume” category. Volume reductions must be accompanied
with commensurate power reduction so that power densities are not increased.

Cost. The cost refers to the money it costs to implement the memory sub-
system of choice.

Memory Sub-system Scaling
Most DRAM processes are very efficient at implementing small-sized trench
capacitors in their substrate, as well as low leakage transistors. These processes
tend to favor fast n-channel transistors used as charge switches. DRAMs
often implement the p-channel transistors to be slow (longer switching time)
relative to the n-channel transistors. Therefore, a DRAM process is not good
for general logic functions when compared to the processes used to implement
CPUs. Because of these choices, the evolution of DRAM has seen a high
percentage of logic functions managed in the DRAM controller, not the
DRAM itself. These choices, coupled with process shrinks, have resulted in an
impressive reduction in per-memory bit cost.

As CPU performance has increased, the bit rate per pin or bit rate per bump
(depending on the CPU and packaging technology) has also increased.
Unfortunately for system designers, the ability to increase performance within
a chip has increased much faster than the ability to increase the bit rate per
pin, bit rate per bump, and bit rate per trace. The result has been a reduction
in the number of DIMMs that can be attached to a memory channel while still
maintaining good signal integrity. Although these challenges and limitations
may be well understood, they have proven to be difficult to solve within the
current cost constraints of most systems.

“Volume reductions must be

accompanied with commensurate

power reduction so that power

densities are not increased.”

“The evolution of DRAM has seen

a high percentage of logic functions

managed in the DRAM controller, not

the DRAM itself.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

84 | Tera-scale Memory Challenges and Solutions

To summarize, memory sub-systems are mostly constrained by four main
factors: bandwidth, power, capacity, and cost. System main memory is
typically implemented with commodity DRAM. The bandwidth per pin is
not increasing as quickly as the compute capability of CPUs: this imbalance
causes an increase in CPU pin count, and it either adds cost, or reduces the
bandwidth per compute operation, and decreases the system performance.
The capacity-dependent power for DRAM, and the energy per bit which is
read and written for DRAM, are not decreasing as quickly as the compute
capability of the CPUs is increasing. Tera-scale CPUs increase performance by
allowing many threads to run simultaneously. Concurrently running threads
are expected to maintain or increase the demand for bandwidth beyond the
traditional twice-every-two-year curve [4].

Evolutionary Memory Scaling
The interface to dual inline memory modules and the architecture of double
data rate memory do not scale well for future tera-scale CPUs. The following
sections address the areas where scaling to the future is problematic.

Bandwidth
Traditionally, volume microprocessor-based systems have demanded an
increase of two times per two years in off-chip bandwidth. This trend of
increased bandwidth demand is based on the bandwidth demand of a single
microprocessor core. As we add cores to the microprocessor, and increase
the parallel applications running on those cores, the bandwidth demand will
increase beyond this traditional trend. The increased demand has historically
been met by using commodity DRAM (DDRx) technology, and in some
high-end applications, by using specialized memory such as graphics DRAM
(GDDRx). The bandwidth supplied by these devices is limited by the width of
the external interface, the pin speed of that interface, and the cycle time and
banking of the DRAM itself.

The cycle time of the DRAM is limited by both the DRAM process technology
and by the architecture of the chip, i.e., the size of the physical arrays and the
parasitics associated with them. DRAM technology has been optimized for
capacity, not for bandwidth. The transistors are designed for low-leakage power,
and the metal stack is composed of two to three layers that are optimized
for density. The cycle time for large arrays is thus limited by metal parasitics
and by the transistors (optimized for DRAM) that are used for control logic
and the datapath. Decreasing the sub array size to reduce these parasitics, as
is typically done for GDDRx, means replicating peripheral circuits, such as
decoders and sense amps, and increasing the wiring required to get the data
from the increased number of sub-arrays off of the chip. These factors decrease
the memory density, thereby increasing the cost per bit, while also increasing
power consumption.

“Volume microprocessor-based

systems have demanded an increase

of two times per two years in off-chip

bandwidth.”

“DRAM technology has been

optimized for capacity, not for

bandwidth.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 85

Figure 2: DDR2 Four-DIMM Topology
Source: Intel Corporation, 2009

The pin speed of the external interface is limited by the performance of the
low-leakage transistors available as well as by the configuration of the physical
components in the path between the memory controller and memory
packages, connectors, sockets, wires, etc. The width of the interface is limited
by package size and cost, as well as by the interconnect components, such as
module connectors. A major limitation in pin speed for DDRx solutions is the
physical configuration. Packaged DRAM devices are placed on DIMMs.
Multiple DIMMs are then connected to a common set of wires going to a
memory controller. This common set of wires forms a DRAM “channel.”
DIMMs are connected to this channel by inserting the DIMMs into edge
connectors on a motherboard. This “multi-drop” style of connection creates an
electrical discontinuity, or impedance change, at each DIMM connector on the
common motherboard wires. Such a design limits the overall speed of the
wires. An electrical illustration of this type of connection is shown for a DDR2
four-DIMM topology in Figure 2.

Figure 3 shows a “pulse response,” or representation, of the distortion
introduced by propagating a voltage pulse representing one bit of data across
this interconnect.

TX Pulse

Multi-drop

4Gb/s Pulse Response

Time (ns)
0.0 1.0 2.0 3.0 4.0 5.0

A
m

pl
itu

de
 (

V
)

0.0

0.4

0.8

Figure 3: Pulse Response
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

86 | Tera-scale Memory Challenges and Solutions

In order to increase the pin speed, the number of DIMMs connected to the
channel must decrease in each generation. DDR2 has four DIMMs while
DDR3 data rates often allow just two: a future DDR4 will likely be limited to
one DIMM per channel, and eventually only have a single “rank” of memory
on that DIMM, meaning there will be a DRAM device on only one side of
the DIMM. Once we move to one DIMM per channel in DDR4, the pin
speed will be capped at 2.5-3.5 Gigabits per second (Gbps) per pin, due to the
signaling scheme used and the physical channel components. At that point,
DDRx bandwidth scaling via pin speed will cease. This will correspond to a
bandwidth of 24 Gigabytes per second (GBps) at a 3 Gbps pin speed for a
64-bit-wide interface. Adding more bandwidth then means adding memory
pins and channels to the system that will be limited by component package
sizes, pin counts, and DIMM connector pin counts.

In order to get more bandwidth without adding channels, we then must
move to GDDRx-type topologies. In this technology design, the memory
device is soldered to the motherboard, and there is one chip or set of chips
per channel, thus removing the DIMM-related discontinuity. However, this
severely limits capacity, since the multiple DIMM, multiple ranks per DIMM
scheme, is now gone. To improve the cycle time of the memory, the sub-array
size is decreased, again trading reduced capacity for increased bandwidth. This
design will provide a solution for a pin speed increase of up to 5 – 6 Gbps,
at which time DRAM process technology and package parasitics will prevent
further increases. Exotic solutions such as the so-called XDR scheme proposed
by RAMBUS Corporation would involve a two-pin per signal, or differential
scheme, to increase the pin speed further. To justify the extra pins, pins whose
speed is twice that of GDDRx would be necessary. Such a design will severely
push the capability of DRAM process technology and result in unacceptable
increases in power and perhaps cost.

Power
DRAM power is composed of three main components: power consumed
by the storage array, power consumed by the peripheral circuits, and power
consumed by the datapath from the array to the I/O pins. Approximately 50
percent of the power is in the datapath, with the other 50 percent split between
peripheral circuits and the array. Historical power trends for DDRx-based
systems show overall power to be between 40 – 200 milliwatts (mW) per
Gbps. This number is dependent on both the particular type of memory used,
DDRx or GDDRx, for example; the power supply; process technology nodes;
the physical interconnect channel configuration; and the memory usage model.
Smaller sub-arrays are more power efficient at the expense of capacity. This
makes GDDRx, for example, two to three times more power efficient than
DDRx, but with a substantial density penalty.

As mentioned previously, DRAM process technology is not amenable to
high-speed functions. In order to keep the datapath relatively narrow and save
external pins, the datapath becomes the highest speed portion of the design,
thus consuming 50 percent of the device power.

“DDR2 has four DIMMs while

DDR3 data rates often allow just two:

a future DDR4 will likely be limited

to one DIMM per channel.”

“To keep the datapath relatively

narrow and save external pins, the

datapath becomes the highest speed

portion of the design, thus consuming

50 percent of the device power.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 87

The physical channel for GDDRx, which connects to one device per channel,
is different than the channel for fully buffered DIMMS, which have added
active devices on the DIMM to form connections to other DIMMs in a
“point-to-point” fashion. This design configuration is the least power efficient
of all configurations, due to the added power of the added active device.

Usage policies such as “page open” or “page closed” have a large impact on
power efficiency, depending on the “activation efficiency” of the device, or
on the amount of data actually used when a row of the memory array is
“activated,” or read to the sense amplifiers in preparation for making the data
available to send to the external memory pins.

As a quick case study, assume that a future high-end system needs a terabyte
per second (TBps) of external bandwidth. This corresponds to 8 terabits per
second (Tbps) of bandwidth. At 40 mW per Gbps this memory sub-system
then consumes 320 Watts. At 200 mW per Gbps, it consumes 1600 Watts.
These efficiencies will scale somewhat with further decreases in DRAM power
supply, but beyond 1.2 Volts (currently at 1.5 Volts), this will become very
difficult to reduce further, due to process technology and circuit constraints.
Clearly, an evolutionary solution to providing high bandwidth will become a
show-stopper due to power.

Capacity
We have already discussed the tradeoff for bandwidth versus capacity in
traditional memory sub-systems. One solution is fully buffered DIMMs,
which, as previously discussed, will be limited by power. Interim solutions,
such as a “buffer on board,” will help in the short term by placing a single
buffering component on the motherboard rather than on the DIMMS, but
will still be limited, due to both expandability and power constraints.

Latency
Latency is trending down somewhat in absolute terms with process technology
improvements, but when measured in number of processor cycles, the latency
has been increasing. Latency improvements (reductions) would come from
reducing the size of the memory sub-array to limit on-chip wire parasitics,
and from moving the memory as close to the memory controller as possible to
limit external wire length. Both of these solutions are limited in effectiveness
and/or trade capacity for latency. The memory controller, due to its complex
association with rows, columns, pages, and ranks of DDR devices has the
largest impact on latency in the system. If the architecture of DRAM devices
does not change, it will be very difficult to reduce the complexity of the
memory controllers. Therefore, it will be very difficult to reduce the latency to
read from and write to memory while maintaining the existing cost per bit and
existing bandwidths.

“When measured in number of

processor cycles, the latency has been

increasing.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

88 | Tera-scale Memory Challenges and Solutions

Evolutionary Summary
In summary, the key trends for evolutionary memory sub-system scaling are
these:

 • Bandwidth scaling for traditional DDRx-based systems will end at about
24 GBps for a single channel.

 • To get this bandwidth, capacity per channel will be limited to one DIMM
without extra components, such as buffer on board (motherboard).

 • GDDRx gives increased bandwidth but at the cost of capacity. Pin speed
will be limited to 5 – 6 Gbps for GDDR channels being constructed today.

 • Power in the memory sub-system varies from 40 – 200 mW per Gbps,
translating to hundreds of Watts for a TBps of bandwidth.

 • Adding capacity to evolutionary memory sub-systems is limited to adding
channels, fully buffered DIMMs, or putting a buffer on the motherboard.
All of these add cost and power to the system. Fully buffered DIMM
memory is the least power efficient of all DRAM memory technologies.

 • Latency improvements for evolutionary systems will be minimal.

Tera-scale Memory Challenges
Tera-scale CPUs put additional stress on the memory sub-system and the
technologies used to implement them. In the following section, we describe
some of those challenges.

Memory Technology
As we look forward to the era of tera-scale computing, the first question we
need to ask is which memory technology(s) will fill the needs of these systems.
DRAM technology has long dominated the market for off-chip memory
bandwidth solutions in computing systems. While non-volatile memory
technologies such as NAND Flash and Phase Change Memory are vying for
a share of this market, they are at a disadvantage with respect to bandwidth,
latency, and power. Given this, DRAM technology will continue to be
the solution of choice in these applications for the foreseeable future. We,
therefore, discuss future DRAM memories.

We discussed basic DRAM technology earlier in this article. Since the
technology is fundamentally dependent on a fixed amount of energy storage on
a capacitor, density scaling will become problematic in DRAM technology. At
that point, 3-D technology will become a viable path for further scaling.

“DRAM technology will continue

to be the solution of choice in these

applications for the foreseeable future.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 89

Key Metric Equals Bytes per FLOP
The key metric for the performance of memory sub-systems is bandwidth (Bps)
per computational performance. Performance is usually measured as floating
point operations per second (FLOPs per second), sometimes instructions
executed per second, and [rarely] clock frequency (cycles per second). Typically,
the seconds unit in both the denominator and the numerator are removed,
and the metric is expressed as bytes per FLOP. Available bandwidth within
a platform has increased twice every two years for many years. Multi-core
technology continues to increase the bandwidth demand of CPUs, while at the
same time, the available bandwidth as well as the capability of external memory
sub-systems are increasing at a lower rate, due to increased DRAM limitations
described earlier.

Future Memory Sub-systems
Changing or fixing one of the problems with bandwidth will not alter the
fundamental challenges we face with memory sub-systems. We need a holistic
approach to achieve the required results. The main factors that will need to
be addressed to achieve the optimal solution for increased bandwidth and
lower energy per bit of future tera-scale memory sub-systems are the channel
materials, the IO density, the memory density, and the memory device
architecture. We examine the changes required in each of these areas.

Channel Materials
First we look at the materials that could be used to construct channels between
CPUs and memory modules.

Typically, in order to increase rates as much as possible at the longer lengths,
complexity is added to the I/O solution in the form of additional equalization,
more complex clocking circuits, and possibly, data coding. These added
features increase the power consumed by the I/O solution. More complex
interconnects, such as flex cabling, improved board materials, such as Rogers
or high-density interconnect (HDI), and eventually, optical solutions, must
be considered. These features can increase the cost of the I/O solution. To
reduce the impact of the increased cost of the channel, the size of the channel
should be reduced, and this has additional electrical signaling benefits. In order
to minimize both power and cost, locality in the data movement should be
exploited to the greatest possible extent. Exploiting locality of data movement
leads to the next desired characteristic in our future memory solutions: I/O
density.

“Available bandwidth within a

platform has increased twice every two

years for many years.”

10-12 BER using
32-bit LFSR

Trace Length (in)

0 10 20 30 40
14

16

18

20

D
at

a
R

at
e

(G
b/

s)

16.5

14.8 14.2

18.2

16.8

17.6

19.819.8

18.0

20.2

17.9

Flex w/ 2 Connectors

Rogers Backplane

FR4 Backplane

FR4 Single Board

Figure 4: Data Rate vs. Trace Length for
Different Materials
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

90 | Tera-scale Memory Challenges and Solutions

I/O Density
In looking at the desired characteristics for future memory sub-systems
that require very high bandwidth, it is instructive to divide the challenge
of building a high I/O density solution into two parts: I/O and memory
core components. We first look at the I/O solution. In Figure 5, we plot the
power efficiency in mW per Gbps of various I/O options, including DDR3,
GDDR5, on-package I/O, two experimental Intel interfaces, and an interface
that may be enabled through short, dense interconnects.

0.1

10

1

0 10 205 15

Proposed
(target)

1.0

I/O
 P

o
w

er
 E

ff
ic

ie
n

cy
 (

m
W

/G
b

/s
)

~15

DDR3
GDDR5

~25

On-pkg I/O
~8

2.7

3.6
5.0

Date Rate (Gb/s)

11.7

Intel ISSCC 06

Intel VLSI 07

Figure 5: Power Efficiency of Various I/O Options Plotted in mW per Gbps
Source: Intel Corporation, 2009

Note that the traditional memory interfaces achieve power efficiencies that vary
from 15 mW/Gbps to 20mW/Gbps. These numbers are dependent on the
physical channel between the CPU’s memory controller and the memory, the
style of the I/O, and the rate at which the I/O is running. Typically, the faster
the I/O, the less power efficient it will be, as the process technology is pushed
harder and features are added to the I/O solution to increase speed. The Intel
research presented at the International Solid State Circuits Conference in 2006
[5] is an interface built to achieve 20 Gbps on 90 nm CMOS. The interface
labeled “Intel VLSI 07” [6] in Figure 5, on the other hand, was built to operate
across a wide performance range with optimum power efficiency at all
performance points. Note that, for that interface, the power efficiency does
indeed improve at lower data rates, 2.7 mW per Gbps at 5 Gbps, versus 15
mW per Gbps at 15 Gbps. This improvement is achieved by optimizing both
the I/O circuits and the power supply for each data rate to achieve the desired
bit error rate on the interface, given the non-linear characteristic of reduced
power efficiency as the bit rate increases. By utilizing shorter, more optimized
interconnects, we can potentially further improve this style of interface to
achieve approximately 1 mW per Gbps at 10 Gbps. Note that this is
approximately an order of magnitude better than the I/O solution on
traditional memory technologies.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 91

From the data given, we can draw the conclusion that, in order to minimize
the power consumed, any data movement should be across as wide of an
interface as possible. For a given aggregate desired bandwidth, this means that
we can operate each I/O line at the lowest possible rate, thereby improving
the power efficiency. In order to improve power efficiency without increasing
the size or form factor of the system or the associated distances that data must
move, we need to increase the density of the interconnect of the channel
between the memory controller and the memory.

The density of traditional chip-to-chip interconnects is limited by several
factors, chief of which, is, of course, the cost of the selected interconnect.
Traditional printed circuit board technology is, for example, much less dense
than microprocessor package interconnect density as measured by the number
of wires per cross-sectional area. Given this knowledge, one obvious way to
increase the interconnect density is to mount the memory on the
microprocessor package as shown in Figure 6.

Using this configuration, no connections between the CPU and the memory
go to the motherboard, and the improved channel material yields the density
increase. This configuration helps to solve the problem of moving bits from
the microprocessor to the edge of the memory die; however, we also need to
explore more efficient methods of moving those bits in and out of the memory
array.

Memory Density
Earlier in this article, we discussed the limitations that DRAM technology
imposes on high bandwidth solutions, as well as the fact that density scaling
may become an issue at some point in the future. We need a technology that
will solve both of these issues. 3-D technology, based on through silicon vias
(TSVs), offers one such possible solution [7, 8, 9]. 3-D stacked memory will
provide an increase in memory density through stacking, and it will enable
a wide datapath from the memory to the external pins, relaxing the per-pin
bandwidth requirement in the memory array as shown in Figure 7.

Die-to-Die
Vias

Through
Silicon Vias

(TSV)

Thermal Through
Silicon Vias

(TTSV)

Stacked DiesSignal Layers

C4 Bumps

Figure 7: 3-D Stacked Memory Module [7]
Source: Intel Corporation, 2009

“To minimize the power consumed,

any data movement should be across as

wide of an interface as possible.”

M
e
m

M
e
m

µP

Package

Figure 6: Memory Mounted on Microprocessor
Package
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

92 | Tera-scale Memory Challenges and Solutions

This design achieves six objectives:

 • We provide a method for further scaling of DRAM density.

 • We enable a relatively wide datapath from the memory array to the memory
pins, relaxing the speed constraints on the DRAM technology.

 • We maintain a high density connection from the memory module to the
memory controller, which makes for more efficient use of power. We never
connect to low-density motherboards, sockets, or connectors.

 • We eliminate many of the traditional interconnect components from the
electrical path, including memory controller package vertical path, socket,
and memory edge connectors.

 • We can separate the high bandwidth I/O solution from the microprocessor
and memory controller power delivery path, since we are using the top of
the package rather than the bottom to deliver bandwidth.

 • The increased density eliminates the need for the electrically-challenged and
energy-inefficient, multi-drop DIMM bus. The new stacked memory will
be seen as a single load device.

Finally, we need a way to move the data from the wide datapath from the
memory array to the memory device pins. There are several possible ways to
move the data: the general characteristics necessary for an optimal solution are
the ability to efficiently multiplex the data at a rate that matches the data rate
of the increased device pins (Gbps), rather than a rate that matches the slower,
wider memory datapath, at an efficient energy level (picojoules per bit) that
closely matches the characteristics of the CPU generating the memory requests.

Now that we have an efficient method of moving the bits, and a means to
scale device capacity, we look at what we can do with the memory device
architecture.

Memory Device Architecture
DDR-based DRAM devices use an architecture of rows of bits that are
activated via a row address strobe (RAS). This causes small charges stored
on rows of capacitors to pull up or down a bit bus that is attached to sense
amplifiers. These sense amplifiers amplify the small voltage from the memory
bit storage capacitor into an externally readable voltage and they buffer them in
temporary storage. The relatively few bits that are being read or written within
that row are then selected via a column address strobe (CAS). This architecture
provides a good set of choices when low-cost per DRAM bit is the highest
priority. This architecture also allows for low pin-count devices and minimizes
the area required for logic and data paths within the die. A simplified drawing
of this architecture is shown in Figure 8.

“RAS/CAS provides a good set of

choices when low-cost per DRAM bit

is the highest priority.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 93

Banks

RAS/CAS

Data In/Out

Sense Amps,
Drivers

VREF VCC/2

Figure 8: Simplified DRAM Architecture
Source: Intel Corporation, 2009

Unfortunately, this architecture is not conducive to low energy per bit read or
written, since energy is used to amplify all of the bits in the entire row even
though only a few are read. Therefore energy is wasted on the unused bits. Row
access sizes, called pages, are generally in the 1-Kilobyte to 2-Kilobyte range,
while the memory requests that activated the page are commonly only 8 bytes,
a 128:1 or 256:1 ratio, respectively. Although operating systems and memory
controllers try to optimize data placement and access patterns to maximize the
reuse of an activated page, most of the data in an activated page are not used.
To make matters worse, as the number of cores in CPUs increases and more
threads are executing concurrently, the address locality of data accesses, and
therefore the ability to maximize activated page reuse, is decreasing. This will
lead to further wasted energy in the memory sub-system.

As DRAM technology has advanced and capacity per device has increased
over the last 15 years, the page size and therefore activation energy has not
been reduced as quickly as the number of bits has increased. Adding banks
enables multiple rows to be activated and held open while other banks are
being accessed. This feature has an additional benefit of reducing the need for
consecutive spatial locality of accesses to reuse an activated page, but it does
little to address the overall ratio of activated energy to request size. “As the number of cores.. increases..

and more threads are executing

concurrently, the address locality… is

decreasing.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

94 | Tera-scale Memory Challenges and Solutions

Reducing the energy of the memory device architecture will require a reduction
in the size of the pages to reduce the activation energy per request. Various
page sizes must be investigated against many workloads. To further mitigate the
impact of the loss of spatial locality, due to advanced multi-threaded, multi-
core, tera-scale CPUs, the number of banks can be greatly increased, which
should also simplify the routing of the bit lines and sense amplifiers in the
memory device [8].

TSVs, as discussed previously, can be used to route many pages from a
large number of banks within the DRAM memory array to the device pins
and connect them to the improved channel between the DRAM memory
module and the tera-scale CPU. A discussion of how proposed memory
array architecture is implemented and routed with TSVs to the device pins is
beyond the scope of this article, and, moreover, is dependent on the individual
technology developed by the memory array manufacturers; however, the
individual technologies discussed in this article can be combined to achieve an
overall improved memory device architecture.

Memory Hierarchy
Given a memory of the type we describe, we must also examine the entire
memory hierarchy. For example, it may be advantageous to add a level of
memory to the hierarchy. We may have some amount of high-bandwidth
memory, while the rest of the memory capacity has a low-bandwidth
requirement. There will be cost, performance, and power tradeoffs when
deciding how the high-bandwidth memory is connected to the CPU. The same
is true for the lower bandwidth, higher capacity of the slower “bulk” memory.
Since the majority of the memory is low bandwidth, we have several options
for connecting it to the CPU, such as connecting the memory to the printed
circuit board and using copper traces.

The reasons for inserting an additional level in the memory hierarchy are the
same as those for looking into new memory technologies: performance, power,
and cost. More precisely, a new memory hierarchy could provide increased
performance, low power, or both increased performance and lower power,
within a set cost constraint. Equally appealing is reducing cost but maintaining
the same performance and power consumption levels, something that may also
be possible with the addition of another level of memory hierarchy.

Analyzing different memory hierarchies is a huge challenge. All the metrics
mentioned previously need to be evaluated in the context of the applications of
interest (see “Key Metrics”). Adding to the challenge is anticipating the effect
tera-scale CPUs will have on the memory traffic to and from memory.

“A new memory hierarchy could

provide increased performance, low

power, or both increased performance

and lower power, within a set cost

constraint.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 95

The techniques to estimate the performance of memory are often broken into
cache management and memory management. For comparison purposes, we
choose the following starting point.

 • Caches are on the same CPU die as the processing cores.

 • The capacity of the caches is in the range of 1 – 4 Megabytes per core for
the last level of cache (if there is more than one level of cache present).

 • The unloaded latency to read from a cache is in the range of 10–30
nanoseconds (ns).

 • The replacement policy of the cache is managed by an algorithm managed
by hardware in the CPU. Cache lines are the unit of transfer (size of
data that is placed and replaced). The cache line size (number of bytes)
is dependent on the architecture of the core. Most current CPUs usually
have two or more levels of cache as well as a (very low-latency) register file
per core. In a thorough analysis of memory sub-system performance, these
features would have to be considered.

 • The main memory is DRAM, and it is on separate chips from the CPU.

 • The range of the capacity of main memory varied greatly from system to
system, with the average range within an order of magnitude of 1 Gigabyte
per core.

 • The unloaded latency to read from main memory is on the order of
magnitude of 50 ns.

 • The “replacement” policy is pages, managed by the operating system (OS).
The size of pages varies; it is commonly 4 Kilobytes or larger.

When considering additional levels of the memory hierarchy, the key decisions
are where to add a level or levels in the memory hierarchy and how the levels of
memory are managed.

Memory Hierarchy — Where to Add Memory
When designing a memory hierarchy, we use the following guidelines. Looking
out from a CPU, the closer (lower) level of memory must have the lowest
latency and the highest bandwidth, and it can have the lowest capacity. As the
levels of memory increase, the latency increases; the bandwidth decreases while
the capacity increases. Hidden within these guidelines is the fact that the lower
the latency to the memory, the higher the cost per bit. Also, the lower the
latency to the memory, the higher the energy per bit read and written.

Earlier, we concluded that to meet the needs of tera-scale systems, designers
should investigate new architectures and manufacturing techniques for
DRAM, with an emphasis on 3-D stacking with TSVs. We are confident that
these techniques will lead to improved DRAM products, while maintaining
a low cost per bit stored. We also realize that when the new technologies are
introduced, it will take time for the price per bit to drop. Therefore, early use
of 3-D stacked memory as near memory, backed up by DDR-based DRAM or
other low cost per bit memory technologies, may be an appealing and cost-
effective choice for designers.

“The lower the latency to memory, the

higher the energy per bit read and

written.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

96 | Tera-scale Memory Challenges and Solutions

Memory Hierarchy — How Layers are Managed
Usage and management policies for near memory and where these policies are
implemented are difficult research questions to answer. We chose to separate
these questions into two procedures: manage the near memory as a cache
or present the memory to the OS as two regions of memory with different
performance and energy characteristics.

Using policies implemented in hardware to manage the near memory
as a cache is appealing, because this kind of management will cause the
minimum disruption to application and OS software. The effectiveness of this
management scheme will depend on how well the replacement policy leads
to a high hit rate into the near memory. A high hit rate is essential to make
this memory hierarchy meet the performance-to-cost goal. Target application
data set size and memory access patterns, and how those interact with the
replacement policy, will have a large impact on the hit rate. Other factors that
will come into play are how the near memory is arranged: associatively and
number of ways (if more than one way in the cache). Adding to the challenge
is that the size of the unit of data that is replaced also affects the performance
and complexity (a form of cost) of the memory sub-system. As the associativity
increases, the size of the tags increase. As the size of the replacement unit
decreases, the hit rate should increase, but the number of tags also increases.

The other extreme for a near and far memory management choice is to provide
mechanisms in hardware to move data to and from either range of memory,
and to leave the replacement policy to software. Due to the design complexity,
we expect that the majority of people writing application code and OS code
will not have enough incentive to tackle this problem for many years. Tera-
scale computing will provide an increasing number of threads that are available
for running applications. Effectively using and coordinating those threads will
require that applications and the OS’s that those application run on evolve
further. Code that is specialized for a lightweight OS and written to specific
hardware will be the only code that can take advantage of two-level memory
sub-systems managed by software.

Power and Energy Considerations
As the hierarchy of the memory sub-system is examined, more emphasis must
be placed on the power (energy used per time) that is consumed to run the
applications. The simple statement that data movement must be minimized
will take on additional importance as tera-scale CPUs are built. For example,
if a memory sub-system is built with near and far memory, the near memory
will consume a low amount of energy to read and write bits, as well as lower
latency, higher bandwidth, and less capacity than those required by far
memory. The bandwidth to and from the near memory must be considerably
higher than the bandwidth to and from the far memory, but the cost per bit of
the far memory must be lower than the cost per bit of the near memory. This
creates an additional incentive for designers to choose replacement policies for
the near memory, such that the hit rate is high and the eviction rate is low.

“Using policies implemented in

hardware to manage the near memory

as a cache is appealing, because this

kind of management will cause the

minimum disruption to application

and OS software.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 97

Summary and Conclusions
Tera-scale CPUs will demand a large amount of bandwidth from their memory
sub-systems. Their demand for memory bandwidth will exceed one TBps.
Current DRAM architectures and the DDR-based interfaces to those chips
will not meet the needs of tera-scale CPUs. There is no simple solution to the
challenges associated with bandwidth to memory; many aspects of the memory
sub-system will require further research. Three key metrics have been identified
that need improvement: bandwidth, power, and cost. There are strong
dependencies between these metrics.

Increasing the bit rate per pin conflicts with lowering the power of the memory
sub-system. I/O circuits have demonstrated impressively high bit rates.
However, I/O circuits achieve higher power efficiency (lower mW per Gbps)
at slower data rates. Therefore, to achieve high-bandwidth interfaces that are
power efficient, wide slow interfaces need to be developed. To support those
interfaces, new packaging and new materials will need to be used. In order to
keep costs down, the use of these new technologies needs to be localized to
small areas.

The use of TSVs as a third dimension of connection between DRAM chips is a
promising technology to increase the capacity of DRAM products and reduce
power consumption. TSVs effectively provide many more I/O connection
points into and out of the DRAM chips. These connection points allow for
different ways to access and manage the bit storage arrays that can lead to
more accesses in parallel, thereby improving performance. TSVs also allow for
different access groupings within the DRAM chips that can reduce the power
consumed.

The introduction of different architectures of DRAM chips creates questions of
what memory sub-systems will look like in the future. As new types of memory
are built, the memory sub-systems will evolve to use the new memory products
in ways that best meet the market segment’s performance, power, and cost
requirements. Not all memory sub-systems will look the same.

“Tera-scale CPUs will demand a large

amount of bandwidth from their

memory sub-systems. Their demand for

memory bandwidth will exceed one

TBps. Current DRAM architectures

and the DDR-based interfaces to those

chips will not meet the needs of tera-

scale CPUs.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

98 | Tera-scale Memory Challenges and Solutions

References
[1] Vangal, Sriram et al. “An 80-Tile 1.28 TFLOPs Network-on-Chip

in 65nm CMOS.” In IEEE International Solid-State Circuits Digital
Technology Papers, February 2007, page 98.

[2] Moore, G. “Cramming more components onto integrated circuits.”
Electronics Magazine, 19 April 1965.

[3] Gene Amdahl. “Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities.” In Proceedings of AFIPS
Conference, (30), pages 483-485, 1967.

[4] Brian Rogers, Anil Krishna, Gordon Bell, Ken Vu, Xiaowei Jiangy, Yan
Solihin. “Scaling the Bandwidth Wall: Challenges in and Avenues for
CMP Scaling,” ISCA’09, June 20–24, 2009.

[5] B. Casper, et al. “A 20Gb/s forwarded clock transceiver in 90nm
CMOS.” ISSCC 2006 Digest of Technology Papers, pages 90-91,
February 2006.

[6] G. Balamurugan, J. Kennedy , G. Banerjee, J. Jaussi, M. Mansuri, F.
O’Mahony, B. Casper and R. Mooney. “A scalable 5–15 Gbps, 14–75
mW low power I/O transceiver in 65 nm CMOS.” Symposium VLSI
Circuits Digital Technology Papers, 2007, page 270. Also published
in IEEE Journal of Solid-State Circuits, vol. 43, pages 1010-1019,
April 2008.

[7] Deshpande, A., Natarajan, V. and Methani, J. “Pareto-Optimal
Orientations for 3-D Stacking of Identical Dies.” 10th Electronics
Packaging Technology Conference, IEEE, 2008, pages 193–199.

[8] Loh, G. “3D-Stacked Memory Architectures for Multi-core Processors.”
35th ACM International Symposium on Computer Architecture (ISCA),
pages 453-464. June 21-25, 2008. Beijing, China.

[9] Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L.,
Loh, G., McCauley, D., Morrow, P., Nelson, D., Pantuso, D., Reed,
P., Rupley, J., Shankar, S., Shen, J. and Webb, C. “Die Stacking (3D)
Microarchitecture.” In 39th IEEE/ACM International Symposium On
Microarchitecture, (Micro). pages 469-479.

[10] D. Burger, J. R. Goodman, and A. Kagi. “Memory bandwidth
limitations of future microprocessors.” In ISCA ‘96: 23rd Annual
International Symposium on Computer Architecture, pages 78-89, New
York, NY, USA, 1996. ACM.

[11] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan. “Heterogeneous
chip multiprocessors.” Computer, 38(11):32(38), 2005.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Tera-scale Memory Challenges and Solutions | 99

[12] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,
B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden.
“IBM POWER6 microarchitecture.” IBM Journal of Research and
Development.51(6):639-662, 2007.

[13] M. K. Qureshi, M. A. Suleman, and Y. N. Patt. “Line Distillation:
Increasing Cache Capacity by Filtering Unused Words in Cache Lines.”
In HPCA ‘07: 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, pages 250-259, Washington, DC,
USA, 2007. IEEE Computer Society.

[14] Y. Solihin, F. Guo, T. R. Puzak, and P. G. Emma. “Practical Cache
Performance Modeling for Computer Architects.” In Tutorial with
HPCA-13, 2007.

[15] J. Tseng, H. Yu, S. Nagar, N. Dubey, H. Franke, and P. Pattnaik.
“Performance Studies of Commercial Workloads on a Multi-
core System.” IEEE 10th International Symposium on Workload
Characterization, 2007. IISWC 2007, pages 57-65.

[16] Polka, L., Kalyanam, H., Hu, G. and Krishnamoorthy, S. “Package
Technology to Address the Memory Bandwidth Challenge for Tera-
Scale Computing.” Intel Technology Journal, Vol. 11, no.3, 2007, pages
196-205.

[17] P. G. Emma and E. Kursun. “Is 3D Chip Technology the Next Growth
Engine for Performance Improvement?” IBM Journal of Research &
Development. 52(6):541-552, 2008.

[18] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma. “On the Nature
of Cache Miss Behavior: Is It p2?” In The Journal of Instruction-Level
Parallelism, volume 10, 2008.

[19] M. D. Hill and M. R. Marty. “Amdahl’s law in the multicore era.” IEEE
Computer, 41(7):33-38, 2008.

Intel® Technology Journal | Volume 13, Issue 4, 2009

100 | Tera-scale Memory Challenges and Solutions

Acknowledgement
We thank James Jaussi for his contributions to the data provided in this paper.

Authors’ Biographies
Dave Dunning is a Senior Principal Engineer within the Systems and Circuits
Research Lab within Intel Labs. Dave’s career has ranged from parallel
supercomputer system architecture to design of full custom CMOS circuits
and chips. Dave has participated in high-speed, serial-based, inter-chip designs
and high-speed clocking structures. Dave is currently concentrating on energy-
efficient memory and memory controllers. He holds a BA degree in Physics
from Grinnell College, Grinnell, Iowa, a BS degree in Electrical Engineering
from Washington University, St, Louis, Mo. and an MS degree in Electrical
Engineering from Portland State University, Portland, Or. Dave joined Intel in
1988. His e-mail is dave.dunning at intel.com.

Randy Mooney is an Intel Fellow and director of I/O research in Intel’s
Circuits and Systems Research Lab, part of Intel Labs. He joined Intel in
1992 and is responsible for circuit and interconnect research, focusing on
solutions for multi-Gbps, chip-to-chip connections on microprocessor
platforms. Another current research focus is memory bandwidth solutions for
these platforms. He has authored several technical papers and is listed as an
inventor or co-inventor on more than 60 patents. Randy previously worked
in Intel’s former Supercomputer Systems Division, developing interconnect
components for parallel processor communications, as well as a method of
bidirectional signaling that was used for the interconnect in Intel’s teraFLOPs
supercomputer. Prior to joining Intel, Randy developed products in bipolar,
CMOS, and BiCMOS technologies for Signetics Corporation. He received an
MSEE degree from Brigham Young University. His e-mail is randy.mooney at
intel.com.

Patrick Stolt joined Intel in 1991. He is a Senior Technology Strategist in
Intel Labs focused on Memory, IO, System On a Chip (SOC) and emulation
technologies. Over the last 18 years, he has worked as a board and chip design
engineer, silicon and system architect, and technology and product strategist
in many areas, including in-circuit emulators, server memory chip sets, server
memory architectures, front-side bus architecture, small business network
Application Specific Standard Part (ASSP) SOC chips, Internet tablets, video
processing, and SOC for digital TV and video analytics, cognitive radios and
tera-scale memories. Prior to Intel Patrick worked in the Aerospace and Test &
Measurement industries. Patrick has five patents issued and several pending.
He holds a BSEE degree from the University of Wisconsin-Madison. His
e-mail is patrick.stolt at intel.com.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.

Tera-scale Memory Challenges and Solutions | 101

Bryan Casper received his MS degree in Electrical Engineering from Brigham
Young University, Provo, UT. He is currently leading the high-speed signaling
team of Intel’s Circuit Research Lab, based in Hillsboro, Oregon. In 1998,
he joined the Performance Microprocessor Division of Intel Corporation and
contributed to the development of the Intel® Pentium® 4 and Xeon® processors.
Since 2000, he has been a circuit researcher at the Intel Circuit Research Lab,
responsible for the research, design, validation, and characterization of high-
speed mixed signal circuits and I/O systems. During his time in the Circuit
Research Lab he has developed analytical signaling analysis methods, high-
speed I/O circuits and architectures, and on-die oscilloscope technology. His
e-mail is bryan.k.casper at intel.com.

102 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

Contributors

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
Key enablers to achieving tera-scale processor performance under a constant
power envelope will be the addition of special-purpose hardware accelerators
and their ability to operate at ultra-low supply voltages. Special-purpose
hardware accelerators can improve energy efficiency by an order of magnitude,
compared to general-purpose cores, for key compute-intensive applications.
Performance per Watt increases as the supply voltage is reduced, but the
degraded transistor on/off current ratios at the lower supply voltages can
limit the minimum operational supply voltage. Circuit solutions for robust
operation at ultra-low supply voltages will also need to minimize any
performance impact on the nominal supply operation for a highly scalable
design.

This article describes ultra-low voltage design techniques and learnings from a
video motion estimation engine fabricated in 65 nm CMOS technology. This
chip is targeted for special-purpose, on-die acceleration of SAD computation
in real-time video encoding workloads on power-constrained mobile
microprocessors. Various datapath circuit innovations within the accelerator
improve energy efficiency for SAD calculations at nominal supplies, while
ultra-low voltage optimizations enable robust circuit operation for further
efficiency gains at ultra-low supply voltages, with minimal impact on nominal
supply performance. Silicon measurements of the accelerator demonstrate
performance of 2.055 GHz at the nominal supply voltage of 1.2 V, with
scalable performance of up to 2.4 GHz at 1.4 V, 50° C. Robust, ultra-low
voltage, optimized circuits enable operation measured down to 230 mV (sub-
threshold). Across this wide range of operational supplies, maximum energy
efficiency of 411 GOPS/W or 12.8 macro-block SADs/nJ is achieved by
operating the accelerator at a near-threshold voltage of 320 mV, for 23 MHz
frequency and 56 μW power consumption. This represents a 9.6X higher
efficiency than at the nominal 1.2 V operation.

Introduction
As transistor integration density continues to increase, the number of cores
in a microprocessor will also increase to handle higher performance demands.
Improvements in future microprocessor energy efficiency will necessitate
that not all the additional cores be targeted for general-purpose processing.
For specific applications, such as video processing, graphics, encryption, and
communication, dedicated hardware accelerators can provide 10 – 100x higher
energy efficiency or performance per Watt. Future multi-core processors will

Ram K. Krishnamurthy
Intel Corporation

Himanshu Kaul
Intel Corporation

Motion Estimation
Sum of Absolute Difference (SAD)
Ultra-low Voltage
Variation Compensation
Video Encoding

ULTRA-LOw VOLTAGE TECHNOLOGIES FOR ENERGY-EFFICIENT
SPECIAL-PURPOSE HARDwARE ACCELERATORS

Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 103

need to be heterogeneous so that key applications, that are computationally
intensive or inefficiently handled by general-purpose cores, can be processed
by the dedicated accelerators to improve the overall energy efficiency of
the processor. The range of applications that can be mapped to a particular
accelerator is determined by the degree of flexibility or reconfigurability of
the accelerator, which also provides a design tradeoff against the achievable
energy efficiency. Figure 1 shows the conceptual organization of such a future
microprocessor to achieve tera-scale performance within a constant power
envelope.

The increasing number of video-capture applications in mobile devices
motivates the need for energy-efficient compression of raw video data to
meet the storage and transmission constraints of mobile platforms. Motion
estimation (ME) is the most performance- and power-critical operation
in video encoding, and it can benefit from accelerator circuits to increase
throughput in a power-efficient manner. Furthermore, encoder specifications
have a wide range of requirements for throughput and power to handle a
variety of video resolution, frame rate, and application specifications [1-6],
resulting in the need for tunable power and performance capabilities for such
accelerators. ME algorithms remove inter-frame redundancies to achieve
video compression. Similarities between consecutive frames are used to locate
movement of pixel blocks in the current frame with respect to the reference
frames. Motion vectors for block translations are used to encode the frames,
which can be reconstructed by the decoder from the reference frames. The
error metric, used for the purposes of block matching by the algorithms, is the
SAD between the respective pixel blocks of the two frames.

IA Cores SP HW Accelerators

Encryption
Accelerators

Graphics/Video
Accelerators

Search/Speech
Accelerators

Vdd

Freq = 1
Throughput = 1
Power = 1
Area = 1
Pwr Den = 1

Logic Core

0.67 · Vdd

Freq = 0.5
Throughput = 1
Power = 0.45
Area = 2
Pwr Den = 0.225

Logic Core

Logic Core

Figure 1: Conceptual Organization of a Tera-scale Processor and Supply Voltage Scaling Impact
Source: Intel Corporation, 2009

“The degree of flexibility or

reconfigurability of the accelerator

provides a design tradeoff against the

achievable energy efficiency.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

104 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

Further improvements in energy efficiency can be achieved by lowering the
supply voltage of a special-purpose accelerator or core, as power consumption
decreases by a greater percentage than the corresponding decrease in
performance. Various signal-processing and compute-intensive applications
have a high degree of parallelism. Increased hardware-level parallelism for these
applications can enable the same throughput at the lower supply voltage, while
taking advantage of the increased energy efficiency for lowering overall power
consumption. This effect is illustrated in Figure 1: the supply voltage is reduced
for a processing core by one-third, for a 50 percent reduction in the normalized
frequency. Two cores at the lower supply voltage operate at half the frequency,
but they maintain the same throughput as that of a single core at the nominal
supply, while consuming less than half the total power. The power-density,
which determines thermal hot-spots on the die, is also reduced in this example
by more than 75 percent. Further gains in energy efficiency can be obtained by
operating at aggressively lower supply voltages.

Processors operating at ultra-low and sub-threshold voltages have been
demonstrated for niche applications with low throughput requirements
[7-10]. However, the robustness of circuit operation decreases at lower supply
voltages, and design optimizations that enable robust functionality at ultra-low
supply voltage can severely degrade performance at the nominal voltage. ME
accelerators, targeted for integration in high-performance microprocessors,
require both high performance at the nominal supply voltages and energy-
efficient robust performance in the presence of increased variations at ultra-low
supply voltages. Though body biasing and circuit sizing have been used to
address variations at sub-threshold supplies [8-10], these techniques can incur
considerable area and power penalties. Circuit operation at ultra-low supply
voltages also requires level-shifting circuits for interfacing with other processing
or memory units that operate at higher supply voltages. These level shifters
add power and performance overhead that must be reduced to maximize the
energy-efficiency gains from low-voltage operation.

A ME engine, targeted for special-purpose, on-die acceleration of SAD
computation [11] in real-time video encoding workloads on power-constrained
microprocessors, is fabricated in 65 nm CMOS [12]. Intensive SAD
computations required for ME block searches benefit from SAD datapath
optimizations that improve energy efficiency. The accelerator increases
ME energy efficiency with circuit techniques: among these are speculative
difference computation with parallel sign generation for SADs, optimal reuse
of sum XOR min-terms in static 4:2 compressor carry gates, and distributed
accumulation of input carries for efficient negation. Robust ultra-low voltage
optimized circuits result in a wide operational range of supply voltages (1.4 V
– 230 mV) with minimal performance and power overhead at nominal
operation, enabling the accelerator to achieve an optimal energy-delay tradeoff,
by dynamically varying operating conditions based on target performance
demands and power budgets. Nominal performance (measured at 1.2 V,
50° C) for the accelerator is 2.055 GHz, with 48 mW of power consumption.
Performance is scalable up to 2.4 GHz, 82 mW (measured at 1.4 V, 50° C),
while the lowest power consumption of 14.4 μW (4.3 MHz performance)
is achieved in deep-sub-threshold operations at 230 mV. Ultra-low supply
operation enables increased energy efficiency, with maximum energy efficiency

“Power consumption decreases

by a greater percentage than

the corresponding decrease in

performance.”

“Design optimizations that enable

robust functionality at ultra-low

supply voltage can severely degrade

performance at the nominal voltage.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 105

Further improvements in energy efficiency can be achieved by lowering the
supply voltage of a special-purpose accelerator or core, as power consumption
decreases by a greater percentage than the corresponding decrease in
performance. Various signal-processing and compute-intensive applications
have a high degree of parallelism. Increased hardware-level parallelism for these
applications can enable the same throughput at the lower supply voltage, while
taking advantage of the increased energy efficiency for lowering overall power
consumption. This effect is illustrated in Figure 1: the supply voltage is reduced
for a processing core by one-third, for a 50 percent reduction in the normalized
frequency. Two cores at the lower supply voltage operate at half the frequency,
but they maintain the same throughput as that of a single core at the nominal
supply, while consuming less than half the total power. The power-density,
which determines thermal hot-spots on the die, is also reduced in this example
by more than 75 percent. Further gains in energy efficiency can be obtained by
operating at aggressively lower supply voltages.

Processors operating at ultra-low and sub-threshold voltages have been
demonstrated for niche applications with low throughput requirements
[7-10]. However, the robustness of circuit operation decreases at lower supply
voltages, and design optimizations that enable robust functionality at ultra-low
supply voltage can severely degrade performance at the nominal voltage. ME
accelerators, targeted for integration in high-performance microprocessors,
require both high performance at the nominal supply voltages and energy-
efficient robust performance in the presence of increased variations at ultra-low
supply voltages. Though body biasing and circuit sizing have been used to
address variations at sub-threshold supplies [8-10], these techniques can incur
considerable area and power penalties. Circuit operation at ultra-low supply
voltages also requires level-shifting circuits for interfacing with other processing
or memory units that operate at higher supply voltages. These level shifters
add power and performance overhead that must be reduced to maximize the
energy-efficiency gains from low-voltage operation.

A ME engine, targeted for special-purpose, on-die acceleration of SAD
computation [11] in real-time video encoding workloads on power-constrained
microprocessors, is fabricated in 65 nm CMOS [12]. Intensive SAD
computations required for ME block searches benefit from SAD datapath
optimizations that improve energy efficiency. The accelerator increases
ME energy efficiency with circuit techniques: among these are speculative
difference computation with parallel sign generation for SADs, optimal reuse
of sum XOR min-terms in static 4:2 compressor carry gates, and distributed
accumulation of input carries for efficient negation. Robust ultra-low voltage
optimized circuits result in a wide operational range of supply voltages (1.4 V
– 230 mV) with minimal performance and power overhead at nominal
operation, enabling the accelerator to achieve an optimal energy-delay tradeoff,
by dynamically varying operating conditions based on target performance
demands and power budgets. Nominal performance (measured at 1.2 V,
50° C) for the accelerator is 2.055 GHz, with 48 mW of power consumption.
Performance is scalable up to 2.4 GHz, 82 mW (measured at 1.4 V, 50° C),
while the lowest power consumption of 14.4 μW (4.3 MHz performance)
is achieved in deep-sub-threshold operations at 230 mV. Ultra-low supply
operation enables increased energy efficiency, with maximum energy efficiency

“The accelerator can achieve an

optimal energy-delay tradeoff, by

dynamically varying operating

conditions based on target

performance demands and power

budgets.”

of 411 GOPS per Watt (measured at 320 mV, 50° C), for 23 MHz of
performance and 56 μW of power consumption. Two-stage cascaded, split-
output-level shifter circuits provide energy and area-optimized up-conversion
of ultra-low voltage signals to the nominal supply. The accelerator can tolerate
up to ±2x process and temperature-induced performance variations at ultra-low
supplies by using supply voltage compensation of ±50 mV.

For the remainder of this article, we first describe the accelerator organization
and SAD8 circuits; we then describe the circuit designs and optimizations that
enable ultra-low voltage operation for achieving higher energy efficiency. We
detail the cascaded split-output-level shifter circuit next, and then we provide
power, performance, and energy-efficiency measurements on silicon. We end
our discussion with measurement results that demonstrate the use of supply
compensation to counter large performance variations at ultra-low voltages.

Motion Estimation Accelerator Organization
The motion estimation accelerator (Figure 2) uses SAD calculations to locate
a block in the current frame that is minimally different from a block in a
reference frame. Pixels from the reference and current frames, stored in local
memory, are provided as inputs to the SAD8 unit, which computes the SAD
for eight pairs of 8b pixels in a single cycle. The SAD8 unit operates at a lower
supply voltage to improve the energy efficiency of the critical computation.
This operation is highly parallel for motion estimation, and the SAD8 unit can
be scaled accordingly for iterative inter-frame SAD calculations. The output of
the SAD8 unit is up-converted to the higher supply by a level shifter circuit.
Supply compensation is used to maintain constant performance for the SAD8
unit under increased temperature and process-induced variations at low supply
voltages.

Σ2|ai-bi|

4:1

4:24:2

8b
SAD2

Σ2|ai-bi|

4:1

4:24:2

8b
SAD2

Σ2|ai-bi|

4:1

4:24:2

8b
SAD2

Σ2|ai-bi|

4:1

4:24:2

8b
SAD2

9999

1010

1111

99

10 10

99

9b
4:2 Compressor

9b
4:2 Compressor

10b
4:2 Compressor

Σ8|ai-bi|

SAD8
Tile

88

a7-a0[7:0] b7-b0[7:0]

Reference Frame Current Frame

11 Σ8|ai-bi|

SAD8
Tile

a b

8 pixels x 8b 8 pixels x 8b

Lo
ca

l M
em

or
y

Level
Shifter

S
u

p
p

ly
 V

o
lt

ag
e

C
o

m
p

en
sa

ti
o

n

Low
Supply
Voltage

Figure 2: Motion Estimation Accelerator Organization
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

106 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

Σ8|ai-bi|

Σ4|ai-bi| 2x20b

Σ2|ai-bi| 4x18b

±(a0-b0)+ ±(a1-b1)

a1 b1 a0 b0

ai+2bi+2

Pi+1,Gi+1

ai+1bi+1

Pi Gi

Sumi+2 Sumi+1 Sumi

Pi Gi
ai bi

4X
SAD2

2X

2X

PG

Carry
Merge

Carry
Merge

Conditional
Sum

Generator

Carry Merge (CM1)

Cout

CM0

CM1

CM2

CM0

CM1

CM2

PG

PG

3b 2b 2b 2b 2b

Pi Pi

Pi Pi-1

Gi

Pi

Gi GPi

Gi GGi

Gi-1

Gi-1

ai bi

S
ig

n

S
ig

n

C
in

=
18b

4:2
C S

8b
4:2
C S

8 8 8 8

4:1

4:1

9b
4:2
C S

Cin=1

Cin=1
CM1 CM1

1 0 1 0 1 0

Cin=1

10b
4:2
C S

11

2x11b

C
ar

ry

2b

3b
Conditional Sum Generator

50
%

 R
ed

uc
tio

n
in

M
ul

tip
le

xe
rs

 a
nd

 W
ire

s

Figure 3: SAD8 Organization and Circuits
Source: Intel Corporation, 2009

Within the SAD8, absolute differences between pixel pairs are computed and
summed. Each pixel pair contains one pixel from the reference frame and one
pixel from the current frame. The SAD2 unit computes the SAD for two pixel
pairs, followed by two stages of compressor units, to provide SAD computation
for eight pixel pairs in carry-save format. Absolute difference calculations, as
well as summations, are accomplished with 4:2 compressors to increase energy
efficiency. A carry propagation adder converts the carry-save SAD output to a
normal 11b unsigned binary number, providing the metric for block matching,
required by the ME algorithms. The accelerator architecture can also be
extended to handle wider SAD computations, e.g., SAD16, SAD32, etc., by
increasing the number of compressor stages before the final carry propagating
adder.

SAD8 Circuits
Several circuit optimizations improve the performance and energy efficiency of
the SAD8 unit (Figure 3). We discuss some of these here.

Speculative SAD2
The SAD is composed of the operations of computing the difference, the
absolute value, and the summation of the absolute values, in sequential order.
In a conventional SAD2 circuit, the difference between each pixel pair is
computed and, based on the sign of this difference, either the true or negated
output is selected to obtain the non-negative (absolute) difference. Following
this, a summation stage adds the two absolute differences. The requirement
that the sign of the difference must be resolved prior to summation results in
a dependency that prevents further computation from being completed before
the 2:1 multiplexer selects between the positive or negative difference values.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 107

The speculative SAD2 circuit (Figure 3) enables more computation ahead
of the sign and before the multiplexer stage. The difference and sum stages
are combined to produce the sums of differences, by using 4:2 compressors.
Speculation on the signs of differences requires all four possible sums of
differences, ±(a0 - b0) + ±(a1 - b1), to be computed before the late-arriving
signs, by negating the appropriate inputs. Two of these sums are computed
by using a pair of 4:2 compressors, while compressor symmetry is used to
obtain the other two sums of differences by inverting the outputs of these 4:2
compressors. The late-arriving signs of the differences select the correct SAD
with the 4:1 multiplexer. Summation of differences prior to sign computation
and four-way speculation, using only two 4:2 compressors, provides a
performance advantage that can be translated to a 30 percent energy reduction
compared to a conventional non-speculative design for the same delay; thus,
energy efficiency is improved for SAD2 computation.

Efficient Carry Insertion for 2’s Complement
The SAD operation negates one input in each pixel pair for the difference
computation. Negating a number in 2’s complement arithmetic requires
a bit-wise inversion of the input, followed by the addition of 1 at the least
significant bit (LSB). Irrespective of whether the true or negative output of the
difference is selected to obtain the absolute difference, the addition of a 1 is
required for every pixel pair, as exactly one input is negated. In conventional
designs, this is implemented by setting the carry-in (Cin) for the difference
to 1 and selecting the true output of the difference. Selection of the inverted
output is the equivalent of inverting all the inputs with Cin=0. In this case, a 1
is added after the multiplexer. Conditional negation to obtain the non-negative
difference requires the use of a half adder stage after the multiplexer to insert a
conditional carry for every pair, adding to the critical path of the conventional
design.

The speculative SAD circuit removes the half adder stage from the critical path.
Selection of the inverted output of any of the 4:2 compressors to obtain the
SAD in the SAD2 circuit is equivalent to inverting all the inputs and setting
the LSB Cin of the compressor to 0. A carry is conditionally inserted in the
LSB, after the 4:1 multiplexer, by setting the output carry c[0] to 1 with the
use of a parallel 2:1 multiplexer. In a conventional compressor tree this is
an unused signal, set to 0. This speculative SAD2 circuit accommodates the
addition of a single 1 for every two pixel-pairs and only half the negation
carries required for all eight pairs. Carry insertion for the other four pixel-pairs
is accomplished by adding a constant 4 in the compressor tree in a distributed
manner: this is done by setting the LSB Cin of the three 4:2 compressor units
and the final adder to 1. Optimized distribution of all the carries required for
negation results in a zero-delay penalty; consequently, the critical path of the
SAD8 unit is reduced.

“Optimized distribution of all the

carries required for negation results in

a zero-delay penalty.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

108 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

Sign Generation
The computation to determine the sign of the difference is part of the critical
path in the SAD2 circuit. The sign-generation circuit uses a propagate-generate
(PG) stage followed by a 3-stage, radix-2, logarithmic carry tree for delay
reduction. Since the most significant bit (MSB) carry provides the sign, the
carry tree is optimized to compute only the carry-out of the 8b difference. The
signs of differences are decoded and buffered to provide the 4:1 multiplexer
selects within the SAD2. Sign computation of the difference is carried out
in parallel with the 4:2 summation, with the path from SAD2 inputs to
multiplexer selects being more critical than the 4:2 compressor, by one gate
stage.

Compressor
An energy-efficient 4:2 compressor circuit (Figure 4) is a key building block
for the SAD8 design, as it is used throughout the datapath for difference
calculations and summations. The first stage of sum XORs in the compressor
is expanded to two stages of NAND gates, by using differential inputs, to
enable reuse of XOR min-terms in the carry logic. The remaining XORs
and multiplexer are implemented without buffering or series connected
transmission gates, and they provide differential outputs. The differential
outputs are directly compatible with next-stage compressor inputs and also
provide inverted outputs without any delay penalty. This property enables
generation of both true and inverted outputs of the 4:2 compressor pair in
the SAD2 circuit, without affecting the critical path. Sharing of min-terms
by using the first stage of NAND gates, between the XOR and carry logic,
allows the 4:2 compressor design to be optimized further within the SAD8, by
relocating these NAND gates in front of the inter-compressor wires. This not
only results in improved drive strength for the long wires, as they are driven
by NAND gates rather than the transmission gates of the compressor, but
also eliminates long differential interconnects, thereby reducing wiring and
associated energy by 50 percent. Without this optimization, extra inverters
would be required in the critical path to achieve the same result. Also, the first
stage of NAND gates of each 4:2 compressor in the second summation stage
of the SAD8 is moved behind the multiplexers in each pair of SAD2 circuits
(Figure 3). This provides a 50 percent reduction in the number of multiplexers,
in addition to the wire reduction benefit.

Cout

Cin

Cin

Logic

Circuit

a0
b0

a1
b1

C

S

1
0

a0
b0

a1
b1

S

S

C

C

Cout Cout

Cin Cin

a0
b0

a1
b1

Figure 4: 4:2 Compressor Logic and Circuit Design
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 109

Final Adder
Following the compressor tree in the SAD8 circuit, a final 11b adder (Figure 3)
converts the SAD from carry-save format to a normal binary number. The
adder design uses a radix-2 sparse carry-merge tree that generates carries at
alternate bit positions only. The sums are pre-computed by the conditional 2b
and 3b sum generators, with the correct sum being selected by the late-arriving
carry from the carry-merge tree. This design results in a 50 percent wiring
reduction within the carry tree compared to that of a conventional Kogge-
Stone adder, while maintaining the same number of gate stages in the critical
path.

The combined result of the circuit optimizations just described translates
into a 20 percent reduction in delay for the SAD8 unit compared to a
conventional non-speculative carry-propagating, adder-based implementation.
This performance advantage translates to a 24 percent energy-reduction at iso
performance.

Ultra-Low Voltage Circuit Optimizations
Though the performance-per-Watt can be significantly improved for
parallelizable workloads, such as ME, by lowering the supply voltage, transistor
on/off current ratios degrade considerably at ultra-low supply voltages. As a
result, DC node voltages drift away from full-rail values, thereby affecting noise
margins and reliability across process skews. Circuits such as flip-flops, wide
multiplexers, deep-stack logic, and series connected transmission gates have
nodes with weak on-current paths and large off-current paths that are more
vulnerable to this effect, unless optimized for reliable low-supply operation [7].

The storage nodes in flip-flops have weak keepers and large transmission gates.
When the transmission gate for the slave stage of a conventional master-slave
flip-flop circuit (Figure 5) is turned off (Φ=0), the weak on-current from the
slave-keeper contends with the large off-current through the transmission gate.
This causes the node voltage to droop, affecting the stability of the storage
node. Ultra-low voltage reliability of the flip-flops can be improved by the use
of non-minimum channel length devices in the transmission gates to reduce
off-currents exponentially. Furthermore, upsized keepers improve on-currents
that restore the charge that is lost due to leakage at this node. The write
operation remains unaffected since the keepers can be interrupted. At reduced
supply voltages, the worst-case static droop (Figure 5) for the conventional
flip-flop increases considerably to more than 40 percent of the supply voltage
at 200 mV, severely affecting functionality. The circuit modifications just
described reduce the worst-case droop by 4X in the ultra-low voltage optimized
design.

“This design results in a 50 percent

wiring reduction within the carry tree

compared to that of a conventional

Kogge-Stone adder.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

110 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

Φ

Φ

Φ
Φ

Φ

Φ

Φ
Φ

D

Q

“1”“0”

On Current Off Current

Upsized

Non-minimum Channel Length

“1”

“0”

“0”

“0”

“1”
“1”

“0”

“0”

“0”

“1”

“0”

Flip-Flop Circuit

One-hot 4:1 Encoded 4:1

4:1 Multiplexer Circuits

0
5

10
15
20
25
30

200 300 400 500
Supply Voltage (mV)

W
or

st
-c

as
e

D
ro

op
 (%

 o
f S

up
pl

y
Vo

lta
ge

)

0

10

20

30

40

50

200 300 400 500
Supply Voltage (mV)

W
or

st
-c

as
e

D
ro

op
(%

 o
f S

up
pl

y
Vo

lta
ge

)

Optimized Flip-Flop

Conventional Flip-Flop

Encoded 4:1

One-hot 4:1

65nm CMOS, 50°C

65nm CMOS, 50°C

Φ

Φ

Φ
Φ

Φ

Φ

Φ
Φ

D

Q

“1”“0”

On Current Off Current

Upsized

Non-minimum Channel Length

“1”

“0”

“0”

“0”

“1”
“1”

“0”

“0”

“0”

“1”

“0”

Flip-Flop Circuit

One-hot 4:1 Encoded 4:1

4:1 Multiplexer Circuits

0
5

10
15
20
25
30

200 300 400 500
Supply Voltage (mV)

W
or

st
-c

as
e

D
ro

op
 (%

 o
f S

up
pl

y
Vo

lta
ge

)

0

10

20

30

40

50

200 300 400 500
Supply Voltage (mV)

W
or

st
-c

as
e

D
ro

op
(%

 o
f S

up
pl

y
Vo

lta
ge

)

Optimized Flip-Flop

Conventional Flip-Flop

Encoded 4:1

One-hot 4:1

65nm CMOS, 50°C

65nm CMOS, 50°C

0
5

10
15
20
25
30

200 300 400 500
Supply Voltage (mV)

W
or

st
-c

as
e

D
ro

op
 (%

 o
f S

up
pl

y
Vo

lta
ge

)

0

10

20

30

40

50

200 300 400 500
Supply Voltage (mV)

W
or

st
-c

as
e

D
ro

op
(%

 o
f S

up
pl

y
Vo

lta
ge

)

Optimized Flip-Flop

Conventional Flip-Flop

Encoded 4:1

One-hot 4:1

65nm CMOS, 50°C

65nm CMOS, 50°C

Figure 5: Flip-flop and Multiplexer Optimizations for Ultra-low Voltage
Operation
Source: Intel Corporation, 2009

Wide multiplexers are also prone to static droops on nodes shared by
transmission gates at ultra-low supplies. Such structures are typical for one-hot
multiplexers, where the on-current of one of the selected inputs contends with
the off-current of the remaining unselected inputs. To avoid this situation,
wide multiplexers have been remapped in the datapath by the use of 2:1
multiplexers, thereby reducing worst-case, off-current contention. Remapping
a one-hot 4:1 multiplexer to an encoded 4:1 multiplexer composed of 2:1
multiplexers results in up to a 3X reduction in worst-case static droop
(Figure 5).

Other optimizations in the datapath include remapping deep stacked
combinational logic and series connected transmission gates to a maximum of
three transistor stacks. All the circuit optimizations to enable reliable ultra-
low voltage operation result in a 1 percent area, a 1 percent power, and a
2 percent performance penalty for the accelerator at the nominal 1.2 V supply,
representing a favorable tradeoff for enabling ultra-low voltage operation.

“Optimizations in the datapath

include remapping deep stacked

combinational logic and series

connected transmission gates to a

maximum of three transistor stacks.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 111

Level Shifter Circuits
The use of multiple supply voltage domains results in the need for level shifter
circuits at the low-to-high voltage domain boundaries. Conventional level
shifters use a cascode voltage switch logic (CVSL) stage to provide the up-
conversion functionality, with the associated contention currents contributing
to a significant portion of power of the level shifter. Driving the output load
directly with the CVSL stage increases its size, while use of additional gain
stages at the output of the level shifter, to reduce CVSL stage loading, results in
increased delay. The low-voltage output of the ME accelerator is up-converted
to the nominal voltage level by using a two-stage cascaded split-output level
shifter (Figure 6). An intermediate supply voltage for up-conversion over such
a large voltage range limits the maximum current ratio between the higher-
supply PMOS pull-up and lower-supply NMOS pull-down devices for correct
CVSL stage functionality. Energy-efficient, up-conversion from sub-threshold
voltage levels to nominal supply outputs is achieved by decoupling the CVSL
stage of this level shifter from the output, thereby enabling a downsized CVSL
stage for the same load without the need for extra gates in the critical path.
Reduced contention currents in a downsized CVSL stage enable the split-
output design to achieve up to a 20 percent energy reduction for equal fan-out
and delay (Figure 6). Furthermore, simultaneous reductions of 11 percent in
level shifter area and 14 percent fan-in loading (Table below) are achieved with
the split-output design.

N
o

rm
al

iz
ed

 E
n

er
g

y

Normalized Delay

0.68 0.76 0.84 0.92 1.00
1.0

1.5

2.0

2.5

3.0

3.5

Conventional

65nm CMOS, 50°C
20%

Split-Output

MID

VCCMID VCCHIGH

VCCLOW VCCMID
OUT

VCCHIGH

0
VCCLOW

0

Normalized
Comparison

Conventional
CVSL

Split-Output
CVSL

Fan-in Capacitance 1.0 0.86

Total Area 1.0 0.89

CVSL-stage
Contention Energy

1.0 0.46

IN

Figure 6: Two-stage Cascaded Split-output Level Shifter and Comparisons
to Conventional CVSL Level Shifter
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

112 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

ClockControl Motion Estimation
Accelerator

Level Shifters

I/O

Figure 7: ME Accelerator Die Photograph
Source: Intel Corporation, 2009

Measurement Results
The accelerator operates at a nominal supply voltage of 1.2 V and is
implemented in a 65 nm CMOS technology, with one poly and eight layer
copper interconnects [12]. Figure 7 shows the die micrograph of the chip, with
the ME accelerator occupying an area of 0.089 mm2 (Table 1). The total die
area is 0.96 mm2, with a pad count of 50. The total number of transistors in
the ME accelerator and test circuits is 70,000.

Process 65 nm CMOS
Nominal Supply 1.2 V
Interconnect 1 poly, 8 metal Cu
Accelerator Area 0.089 mm2

Die Area 0.960 mm2

Number of Transistors 70 K

Pad Count 50
Table 1: Implementation Details
Source: Intel Corporation, 2009
Frequency and power measurements (Figure 8) of the ME accelerator were
obtained by sweeping the supply voltage in a temperature-stabilized
environment of 50° C. The accelerator is fully functional over a wide operating
range of 1.4 V to 230 mV (sub-threshold region). At the nominal supply of
1.2 V, the ME accelerator operates at a maximum frequency of 2.055 GHz,
consuming a total power of 48 mW. This represents an energy-efficiency metric
of 43 GOPS/Watt, where one operation is a complete SAD of eight pixel pairs.
Performance can be scaled up to 2.4 GHz at 1.4 V, with a total power
consumption of 82 mW, for purposes such as accelerating high-resolution
video streams.

1

101

103

104

102

10-2

10-1

1

101

102

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

M
ax

im
um

 F
re

qu
en

cy
 (M

H
z)

To
ta

l P
ow

er
 (m

W
)

320mV

65nm CMOS, 50°C

320mV

Su
bt

hr
es

ho
ld

R
eg

io
n

9.6X

65nm CMOS, 50°C

10-2

10-1

1

101

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

En
er

gy
 E

ffi
ci

en
cy

 (G
O

PS
/W

at
t)

A
ct

iv
e

Le
ak

ag
e

Po
w

er
 (m

W
)

320mV

Su
bt

hr
es

ho
ld

R
eg

io
n

9.6X

65nm CMOS, 50°C

10-2

10-1

1

101

0

50

100

150

200

250

300

350

400

450

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

En
er

gy
 E

ffi
ci

en
cy

 (G
O

PS
/W

at
t)

A
ct

iv
e

Le
ak

ag
e

Po
w

er
 (m

W
)

Figure 8: Maximum Frequency, Total Power,
Energy Efficiency and Active Leakage Power
Measurements Versus Supply Voltage
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 113

Measurement Results
The accelerator operates at a nominal supply voltage of 1.2 V and is
implemented in a 65 nm CMOS technology, with one poly and eight layer
copper interconnects [12]. Figure 7 shows the die micrograph of the chip, with
the ME accelerator occupying an area of 0.089 mm2 (Table 1). The total die
area is 0.96 mm2, with a pad count of 50. The total number of transistors in
the ME accelerator and test circuits is 70,000.

Process 65 nm CMOS
Nominal Supply 1.2 V
Interconnect 1 poly, 8 metal Cu
Accelerator Area 0.089 mm2

Die Area 0.960 mm2

Number of Transistors 70 K

Pad Count 50
Table 1: Implementation Details
Source: Intel Corporation, 2009
Frequency and power measurements (Figure 8) of the ME accelerator were
obtained by sweeping the supply voltage in a temperature-stabilized
environment of 50° C. The accelerator is fully functional over a wide operating
range of 1.4 V to 230 mV (sub-threshold region). At the nominal supply of
1.2 V, the ME accelerator operates at a maximum frequency of 2.055 GHz,
consuming a total power of 48 mW. This represents an energy-efficiency metric
of 43 GOPS/Watt, where one operation is a complete SAD of eight pixel pairs.
Performance can be scaled up to 2.4 GHz at 1.4 V, with a total power
consumption of 82 mW, for purposes such as accelerating high-resolution
video streams.

0.5 1.0 1.5 2.0

N
or

m
al

iz
ed

 D
is

tr
ib

ut
io

n

65nm CMOS, 50°C

1.2V

320mV

0

1

Frequency variation
across fast – slow dies

±18%

±2X

Normalized Frequency

1

101

103

104

102

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

65nm CMOS
Typical Die Measurements

M
ax

im
um

 F
re

qu
en

cy
 (M

H
z)

±2X

±5%

0°
C

11
0°

C

50°C

320mV

Frequency variation
across 0-110°C

Figure 9: Frequency Variations Across 0 – 110° C
Temperature and Fast-slow Process Skews
Source: Intel Corporation, 2009

Figure 8 also shows the energy-efficiency and leakage-power measurements over
the same range of supply voltages at a temperature of 50° C. The total active
leakage power component is 1.6 mW (3 percent of total power) at the nominal
1.2 V supply, increasing to 3.4 mW at 1.4 V. As the supply voltage is reduced,
the power consumption drops at a faster rate than the maximum frequency,
resulting in improved energy efficiency. The ME algorithms have a high degree
of parallelism, as well as a wide range of performance requirements, to take
advantage of the increased SAD unit energy efficiency at the ultra-low voltage
supplies. Ultra-low voltage circuit optimizations enable reliable operation at
deep sub-threshold supply voltages as low as 230 mV, with a frequency of
4.3 MHz and a total power consumption of 14.4 μW. However, accelerator
performance in the deep sub-threshold region degrades at a higher rate than
total power, resulting in sub-optimal energy efficiency. Peak energy efficiency
of 411 GOPS/Watt is measured at a near-threshold supply voltage of 320 mV,
with a maximum frequency of 23 MHz and total power of 56 μW (9.6X
higher energy efficiency compared to nominal voltage operation at 1.2 V).
Processing a 16x16-pixel macro-block requires 32 SAD8 operations, resulting
in a peak SAD efficiency of 12.8 macro-block SADs/nJ. Although absolute
leakage power scales with supply voltage (Figure 8), the leakage component of
total power increases to 44 percent at the energy-optimal 320 mV supply. ME
accelerator performance and energy-efficiency measurements are summarized
in Table 2.

Worst-case Power 48 mW at 2.055 GHz, 1.2 V, 50˚ C (nominal)
Active leakage power 1.6 mW at 1.2 V, 50˚ C (3% of total power)
Nominal performance 2.055 GHz, 43 GOPS/Watt at 1.2 V, 50˚ C
Peak performance 2.4 GHz, 82 mW at 1.4 V, 50˚ C
Ultra-low voltage mode
total power

56 mW at 23 MHz, 320 mV, 50˚C

Ultra-low voltage
energy-efficiency

411 GOPS/Watt at 320 mV, 50˚ C
(9.6X higher than nominal)

Minimum supply
voltage operation

4.3 MHz, 14.4 mW at 230 mV, 50˚ C

Table 2: Measured Performance and Power Summary
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

114 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

Supply Compensation
On-currents are exponentially related to process parameters and temperature
at the ultra-low supply voltages, which increases the process and temperature-
induced performance variations. Frequency measurements of the accelerator
(typical die) over a supply voltage range of 1.4 V to 0.25 V for constant
temperatures of 0, 50, and 110°C (Figure 9), show a temperature-based
frequency variation of ±5 percent around the 50° C temperature point, at the
1.2 V nominal supply. This variation increases to ±2x at the peak efficiency
supply voltage of 320 mV. Figure 9 also shows the normalized performance
distributions due to process variations for the accelerator at the 1.2 V and
320 mV supplies. These distribution curves are obtained from Monte-Carlo-
based variation analysis and simulations, with the performance for the two
supplies normalized to their respective medians. Frequency spread between
fast and slow skews increases from ±18 percent at 1.2 V, to ±2x at the 320 mV
supply. While circuit monitoring and compensation techniques have been
demonstrated for nominal operation [13, 14], ultra-low voltage operation
requires compensation solutions to address a much larger performance spread.

1500

1800

2100

2400

2700

Slow Typical Fast

Process Skew

F
re

qu
en

cy
 (

M
H

z)

1500

1800

2100

2400

2700

0 50 110

Temperature (°C)

F
re

qu
en

cy
 (

M
H

z)

0

14

28

42

56

70

Slow Typical Fast

Process Skew
F

re
qu

en
cy

 (
M

H
z)

0

14

28

42

56

70

0 50 110

Temperature (°C)

F
re

qu
en

cy
 (

M
H

z)

23MHz

65nm CMOS, 320mV, Typical Die

23MHz

2055MHz +60mV-20mV 2055MHz+135mV

-200mV

+50mV

-50mV

+40mV

-50mV

Iso-frequency operation measured at 23MHz

Iso-frequency operation measured at 2055MHz

65nm CMOS, 320mV, 50 °C

65nm CMOS, 1.2V, Typical Die 65nm CMOS, 1.2V, 50°C

Figure 10. Supply Voltage Compensation Measurements for Temperature
and Process Variation at 320 mV and 1.2 V Operation
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 115

The exponential relationship between on-currents and supply voltage in the
ultra-low voltage region enables the use of supply voltage as a powerful knob
to compensate for the increased process and temperature-induced variations.
Compensation for the ±2x performance difference across the extreme
temperature range of 0-110°C, for a typical die operating at 320 mV, is
provided by increasing the supply voltage at the lower temperature by 50 mV
and decreasing the supply voltage at the higher temperature by 50 mV to
maintain the nominal performance of 23 MHz (Figure 10). Compensation
across process skews at 320 mV, at a constant 50°C temperature, requires a
supply voltage increase of 40 mV at the slow process skew, and a decrease
of 50 mV for the fast process skew is required to maintain the nominal
performance. Thus, a measured range of ±50 mV above/below 320 mV is
adequate to compensate for the larger performance variations across a wide
range of process or temperature corners. In comparison, at the nominal supply
of 1.2 V, supply voltage adjustments of -20 mV and +60 mV at 0 and 110°
C, respectively, are required to address the ±5 percent performance variation
below/above 50° C to maintain the nominal 2.055 GHz performance
(Figure 10). To address the ±18 percent performance variations due to process
skew at 1.2 V, the accelerator at the slow/fast process skews requires supply
compensation of +135/-200 mV to maintain iso-frequency. The larger range
of supply voltage compensation for process skews at nominal supplies is due to
the lower sensitivity of performance to supply voltage in this region.

Summary and Conclusions

Special-purpose hardware accelerators and robust ultra-low voltage operation
are key enablers for improved energy efficiency in multi-core processors with
tera-scale performance. We demonstrate these two technologies in this article
by describing the design, challenges, solutions, and silicon measurements for
an ultra-low voltage ME accelerator, fabricated in 65 nm CMOS. Energy-
efficient circuits enable computation of eight pixel-pair SADs with an energy
efficiency of 411 GOPS/Watt at 320 mV, consuming 56 μW of power for
23 MHz operation. Ultra-low voltage circuit optimizations enable robust
operation over a wide range of supply voltages from 1.4 V down to a sub-
threshold operation at 230 mV. At the nominal supply of 1.2 V, the accelerator
operates at 2.055 GHz consuming 48 mW at 50° C, and it scales to 2.4 GHz
operation at 1.4 V. Supply adjustments of ±50 mV compensate for ±2x process
and temperature-induced variations at the ultra-low supply voltage of 320 mV,
enabling the accelerator to achieve high energy efficiency at the ultra-low
supplies with constant performance.

“Special-purpose hardware accelerators

and robust ultra-low voltage operation

are key enablers for improved energy

efficiency in multi-core processors with

tera-scale performance.”

“Energy-efficient circuits enable

computation of eight pixel-pair

SADs with an energy efficiency

of 411 GOPS/Watt at 320 mV,

consuming 56 μW of power for

23 MHz operation.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

116 | Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators

References
[1] H.-C. Chang et al. “A 7mW-to-183mW Dynamic Quality-Scalable

H.264 Video Encoder Chip.” ISSCC Digest of Technical Papers, pages
280-281, Feb. 2007.

[2] C.-P. Lin et al. “A 5mW MPEG4 SP Encoder with 2D Bandwidth-
Sharing Motion Estimation for Mobile Applications.” ISSCC Digest of
Technical Papers, pages 412-413, Feb. 2006.

[3] Y.-K. Lin et al. ”A 242mW 10mm2 1080p H.264/AVC High-Profile
Encoder Chip.” ISSCC Digest of Technical Papers, pages 314-315, Feb.
2008.

[4] H. Yamauchi et al. “An 81MHz, 1280 x 720pixels x 30frames/s MPEG-
4 Video/Audio Codec Processor.” ISSCC Digest of Technical Papers,
pages 130-131, Feb. 2005.

[5] Y.-W. Huang et al. “A 1.3TOPS H.264/AVC Single-Chip Encoder for
HDTV Applications.” ISSCC Digest of Technical Papers, pages 128-129,
Feb. 2005.

[6] T. Fujiyoshi et al. “An H.264/MPEG-4 Audio/Visual Codec LSI with
Module-Wise Dynamic Voltage/Frequency Scaling.” ISSCC Digest of
Technical Papers, pages 132-133, Feb. 2005.

[7] A. Wang and A. Chandrakasan. “A 180-mV Subthreshold FFT
Processor Using a Minimum Energy Design Methodology.” IEEE
Journal Solid-State Circuits, pages 310-319, Jan. 2005.

[8] J. Kwong et al. “A 65nm Sub-Vt Microcontroller with Integrated
SRAM and Switched-Capacitor DC-DC Converter.” ISSCC Digest of
Technical Papers, pages 318-319, Feb. 2008.

[9] S. Hanson et al. “Exploring Variability and Performance in a
Sub-200-mV Processor.” IEEE Journal Solid-State Circuits, pages
881-891, April 2008.

[10] M.-E. Hwang et al. ”A 85mV 40nW Process-Tolerant Subthreshold 8x8
FIR Filter in 130nm Technology.” Symposium on VLSI Circuits, pages
154-155, June 2007.

[11] H. Kaul et al. “A 320mV 56μW 411GOPS/Watt Ultra-Low Voltage
Motion Estimation Accelerator in 65nm CMOS.” IEEE Journal Solid-
State Circuits, pages 107-114, Jan. 2009.

[12] P. Bai et al. “A 65nm Logic Technology Featuring 35nm Gate Lengths,
Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and
0.57μm2 SRAM Cell.” IEDM Technical Digest, pages 657-660, Dec.
2004.

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators | 117

[13] R. McGowen et al. “Power and Temperature Control on a 90-nm
Itanium Family Processor.” IEEE Journal Solid-State Circuits, pages 229-
237, Jan. 2006.

[14] C. Kim et al. “An On-Die CMOS Leakage Current Sensor for
Measuring Process Variation in Sub-90nm Generations.” Symposium on
VLSI Circuits, pages 250-251, June 2004.

Acknowledgments
We thank the Pyramid Probe Card Division of Cascade Microtech Inc. for
high bandwidth membrane probe solutions; and M. Haycock, J. Schutz, S.
Borkar, G. Taylor, S. Pawlowski, A. Chien, C. Riley, E. Hannah, Prof. V.
Oklobdzija, Prof. K. Roy, and Prof. A. Chandrakasan for encouragement and
discussions.

Authors’ Biographies
Ram K. Krishnamurthy received a BE degree in Electrical Engineering from
the Regional Engineering College, Trichy, India, in 1993, and a PhD degree
in Electrical and Computer Engineering from Carnegie Mellon University,
Pittsburgh, PA, in 1998. Since 1998, he has been with Intel Corporation’s
Circuits Research Labs in Hillsboro, Oregon, where he is currently a Senior
Principal Engineer and heads the high-performance and low-voltage circuits
research group. He holds 80 issued patents and has published over 75
conference/journal papers. He served as the Technical Program Chair/General
Chair for the 2005/2006 IEEE International Systems-on-Chip Conference.
He has received two Intel Achievement Awards, in 2004 and 2008, for the
development of novel arithmetic circuit technologies and hardware encryption
accelerators. His email is ram.krishnamurthy at intel.com.

Himanshu Kaul received a B.Eng. (Hons.) degree in Electrical and Electronics
Engineering from the Birla Institute of Technology and Science, Pilani,
India, in 2000, and an MS and PhD degree in Electrical Engineering from
the University of Michigan, Ann Arbor, in 2002 and 2005, respectively.
Since 2004, he has been with Intel Corporation’s Circuits Research Labs
in Hillsboro, OR, where he is currently a Research Engineer in the High-
Performance and Low Voltage Circuits Research Group. His research interests
include on-chip signaling techniques and low-power and high-performance
circuit design. His e-mail is himanshu.kaul at intel.com.

118 | Lessons Learned from the 80-core Tera-scale Research Processor

Contributors

Index Words

Intel® Technology Journal | Volume 13, Issue 4, 2009

Abstract
Sustained tera-scale-level performance within an aff ordable power envelope Sustained tera-scale-level performance within an aff ordable power envelope
is made possible by an energy-effi cient, power-managed simple core, and is made possible by an energy-effi cient, power-managed simple core, and
by a packet-switched, two-dimensional mesh network on a chip. From our by a packet-switched, two-dimensional mesh network on a chip. From our
research, we learned that (1) the network consumes almost a third of the total research, we learned that (1) the network consumes almost a third of the total
power, clearly indicating the need for a new approach, (2) fi ne-grained power power, clearly indicating the need for a new approach, (2) fi ne-grained power
management and low-power design techniques enable peak energy effi ciency management and low-power design techniques enable peak energy effi ciency
of 19.4 GFLOPS/Watt and a 2X reduction in standby leakage power, and of 19.4 GFLOPS/Watt and a 2X reduction in standby leakage power, and
(3) the tiled design methodology quadruples design productivity without (3) the tiled design methodology quadruples design productivity without
compromising design quality.compromising design quality.

Introduction
Intel’s Tera-scale Research Computing Program [1] lays out a vision for future Intel’s Tera-scale Research Computing Program [1] lays out a vision for future
computing platforms and underscores the need for tera-scale performance. We computing platforms and underscores the need for tera-scale performance. We
envision hundreds of networked cores running complex parallel applications envision hundreds of networked cores running complex parallel applications
under a highly constrained energy budget. Consequently, one of the important under a highly constrained energy budget. Consequently, one of the important
research areas in this initiative is to develop a scalable tera-scale processor research areas in this initiative is to develop a scalable tera-scale processor
architecture that can address the needs of our future platforms. Th e Terafl ops architecture that can address the needs of our future platforms. Th e Terafl ops
Research Processor is a key fi rst step in this direction. Focusing on some of the Research Processor is a key fi rst step in this direction. Focusing on some of the
vital ingredients of a tera-scale architecture: a power optimized core, a scalable vital ingredients of a tera-scale architecture: a power optimized core, a scalable
on-chip interconnect, and a modular global clocking solution, we established on-chip interconnect, and a modular global clocking solution, we established
the following research goals for our project:the following research goals for our project:

 • Achieve teraFLOPS performance under 100 W.

 • Prototype a high-performance and scalable on-chip interconnect.

 • Demonstrate an energy-effi cient architecture with fi ne-grained power
management.

 • Develop design methodologies for network-on-chip architectures (NoC).

Our intent in this article is to focus on key lessons we learned from the Our intent in this article is to focus on key lessons we learned from the
research prototype. We present our fi ndings in a structured format. We fi rst research prototype. We present our fi ndings in a structured format. We fi rst
provide an overview of the chip and briefl y describe key building blocks. provide an overview of the chip and briefl y describe key building blocks.
We then highlight the novel design techniques implemented on the chip We then highlight the novel design techniques implemented on the chip
and the tiled design approach. Next, we summarize measured silicon results. and the tiled design approach. Next, we summarize measured silicon results.
Finally, we discuss the pros and cons of certain design decisions, including our Finally, we discuss the pros and cons of certain design decisions, including our
recommendations for future tera-scale platforms.recommendations for future tera-scale platforms.

Saurabh Dighe
Intel Corporation

Sriram VangalSriram Vangal
Intel CorporationIntel Corporation

Nitin BorkarNitin Borkar
Intel CorporationIntel Corporation

Shekhar BorkarShekhar Borkar
Intel CorporationIntel Corporation

TeraFLOPSTeraFLOPS
Many-coreMany-core
80-tile80-tile
Network-on-chipNetwork-on-chip
2D Mesh Network2D Mesh Network

LESSONS LEARNED FROM THE 80-CORE TERA-SCALE RESEARCH
PROCESSOR

Intel® Technology Journal | Volume 13, Issue 4, 2009

Lessons Learned from the 80-core Tera-scale Research Processor | 119

Architecture Overview
Rapid advancement in semiconductor process technology and a quest for Rapid advancement in semiconductor process technology and a quest for
increased energy effi ciency have fueled the popularity of multi-core and NoC increased energy effi ciency have fueled the popularity of multi-core and NoC
architectures [2]. Th e teraFLOPS research processor contains 80 tiles arranged architectures [2]. Th e teraFLOPS research processor contains 80 tiles arranged
as an 8 x 10, 2-D mesh network, shown in Figure 1. Each tile consists of as an 8 x 10, 2-D mesh network, shown in Figure 1. Each tile consists of
a processing engine (PE) connected to a 5-port router with mesochronous a processing engine (PE) connected to a 5-port router with mesochronous
interfaces (MSINT), which forwards packets between the tiles. More detailed interfaces (MSINT), which forwards packets between the tiles. More detailed
information on the chip architecture and interconnect can be found in [3, 4].information on the chip architecture and interconnect can be found in [3, 4].

6-read, 4-write 32 entry RF

I/O

PLL JTAG

FPMAC0

Normalize

32

FPMAC1

Normalize

32

Processing Engine (PE)

32 32

3K
B

 In
st

. M
em

or
y

(I
M

E
M

)

2KB Data Memory (DMEM)

32
64

64

32
64

R
IB

96

96

M
S

IN
T

MSINT

MSINT

M
S

IN
T

Crossbar
Router

}40GB/s Links

Mesochronous
Interface

39

39

Figure 1: 80-core Processor Tile Architecture
Source: Intel Corporation, 2009

Processing Engine
Th e PE contains two independent fully-pipelined, single-precision, fl oating-Th e PE contains two independent fully-pipelined, single-precision, fl oating-
point multiply-accumulator (FPMAC) units capable of providing an aggregate point multiply-accumulator (FPMAC) units capable of providing an aggregate
performance of 20 GFLOPS. Th e key to achieving this high performance is performance of 20 GFLOPS. Th e key to achieving this high performance is
a fast, single cycle, accumulation algorithm [5], developed by analyzing each a fast, single cycle, accumulation algorithm [5], developed by analyzing each
of the critical operations involved in conventional fl oating point units (FPUs) of the critical operations involved in conventional fl oating point units (FPUs)
with the intent of eliminating, reducing, or deferring the amount of logic with the intent of eliminating, reducing, or deferring the amount of logic
operations inside the accumulate loop. operations inside the accumulate loop.

We came up with the following three optimizations. First, the accumulator We came up with the following three optimizations. First, the accumulator
retains the multiplier output in carry-save format and uses an array of 4-2 retains the multiplier output in carry-save format and uses an array of 4-2
carry-save adders to accumulate the results in an intermediate format. Th is carry-save adders to accumulate the results in an intermediate format. Th is
removes the need for a carry-propagate adder in the critical path. Second, removes the need for a carry-propagate adder in the critical path. Second,
accumulation is performed in base 32, converting expensive variable shifters accumulation is performed in base 32, converting expensive variable shifters
in the accumulate loop to constant shifters. Th ird, we moved the costly in the accumulate loop to constant shifters. Th ird, we moved the costly
normalization step outside the accumulate loop, where the accumulation normalization step outside the accumulate loop, where the accumulation
result in carry-save is added, and the sum is normalized and converted back result in carry-save is added, and the sum is normalized and converted back
to base 2. Th ese optimizations allow accumulation to be implemented in to base 2. Th ese optimizations allow accumulation to be implemented in
just fi fteen FO4 stages. Th is approach also reduces the latency of dependent just fi fteen FO4 stages. Th is approach also reduces the latency of dependent
FPMAC instructions and enables a sustained multiply-add result (2FLOPS) FPMAC instructions and enables a sustained multiply-add result (2FLOPS)
every cycle. Moving to 64-bit arithmetic results in wider mantissa for increased every cycle. Moving to 64-bit arithmetic results in wider mantissa for increased
throughput. throughput.

“Th e PE contains two independent “Th e PE contains two independent

fully-pipelined, single-precision units fully-pipelined, single-precision units

capable of providing an aggregate capable of providing an aggregate

performance of 20 GFLOPS.”performance of 20 GFLOPS.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

120 | Lessons Learned from the 80-core Tera-scale Research Processor

Th e PE includes a 3-KB, single-cycle, instruction memory (IMEM) and 2KB Th e PE includes a 3-KB, single-cycle, instruction memory (IMEM) and 2KB
of data memory (DMEM). Th is amounts to a total distributed on-die memory of data memory (DMEM). Th is amounts to a total distributed on-die memory
of 400 KB. Th e capacity of the local memory was enough to support blocked of 400 KB. Th e capacity of the local memory was enough to support blocked
execution of a select few LAPACK kernels. With a 10-port (6-read, 4-write) execution of a select few LAPACK kernels. With a 10-port (6-read, 4-write)
register fi le, we allow scheduling to both FPMACs, simultaneous DMEM register fi le, we allow scheduling to both FPMACs, simultaneous DMEM
load/store, and packet send/receive from the mesh network. A router interface load/store, and packet send/receive from the mesh network. A router interface
block (RIB) handles packet encapsulation between the PE and router. block (RIB) handles packet encapsulation between the PE and router.

On-chip Interconnect
Th e 80-tile, on-chip network is a 2D mesh that provides a bisection bandwidth Th e 80-tile, on-chip network is a 2D mesh that provides a bisection bandwidth
of 2 Terabits/s. Th e key communication block for the NoC is a 5-port, of 2 Terabits/s. Th e key communication block for the NoC is a 5-port,
pipelined, packet-switched router with two virtual lanes (see Figure 2) capable pipelined, packet-switched router with two virtual lanes (see Figure 2) capable
of operating at 5 GHz [6] at a nominal supply of 1.2 V. It has a 6-cycle latency of operating at 5 GHz [6] at a nominal supply of 1.2 V. It has a 6-cycle latency
or 1.2 ns/hop at 5 GHz. It connects to each of its neighbors and the PE by or 1.2 ns/hop at 5 GHz. It connects to each of its neighbors and the PE by
using phase-tolerant mesochronous links that can deliver data at 20 GBytes/using phase-tolerant mesochronous links that can deliver data at 20 GBytes/
sec. Th e network uses a source-directed routing scheme, based on wormhole sec. Th e network uses a source-directed routing scheme, based on wormhole
switching, that has two virtual lanes for dead-lock free routing and an on-off switching, that has two virtual lanes for dead-lock free routing and an on-off
scheme, by using almost-full signals for fl ow control. Th e width of the links scheme, by using almost-full signals for fl ow control. Th e width of the links
and router frequency were chosen to transfer a single precision FPU operand at and router frequency were chosen to transfer a single precision FPU operand at
high speed and approximately 1 ns/hop latency.high speed and approximately 1 ns/hop latency.

Crossbar Switch

Synchronize
In-coming

Packet

Buffer
Write

Buffer
Read

Route
Compute

Port & Lane
Arbitration

Switch
Traversal

Link
Traversal

Stg 5

M
S

IN
T

M
S

IN
T

M
S

IN
T

M
S

IN
T

Lane 1

Lane 0

39

39
Stg 4

Stg 1

39

39

To PE
From PE

To N
From N

To E
From E

To S
From S

To W
From W

Figure 2: 5-port Two-lane Shared Crossbar Router Architecture
Source: Intel Corporation, 2009

“Th e 80-tile, on-chip network is a “Th e 80-tile, on-chip network is a

2D mesh that provides a bisection 2D mesh that provides a bisection

bandwidth of 2 Terabits/s.”bandwidth of 2 Terabits/s.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Lessons Learned from the 80-core Tera-scale Research Processor | 121

Instruction Set and Programming Model
We defi ne a 96-bit Very Long Instruction Word (VLIW) that allows a We defi ne a 96-bit Very Long Instruction Word (VLIW) that allows a
maximum of up to eight operations to be issued every cycle. Th e instructions maximum of up to eight operations to be issued every cycle. Th e instructions
fall into one of fi ve categories: instruction issue to both fl oating-point units, fall into one of fi ve categories: instruction issue to both fl oating-point units,
simultaneous data memory load and stores, packet send/receive via the on-die simultaneous data memory load and stores, packet send/receive via the on-die
mesh network, program control that uses jump and branch instructions, and mesh network, program control that uses jump and branch instructions, and
synchronization primitives for data transfer between PEs. synchronization primitives for data transfer between PEs. With the exception With the exception
of FPU instructions, which have a pipeline latency of nine cycles, most other of FPU instructions, which have a pipeline latency of nine cycles, most other
instructions execute in one to two cycles.instructions execute in one to two cycles.

To aid with power management, the instruction set includes support for To aid with power management, the instruction set includes support for
dynamic sleep and wakeup of each fl oating-point unit. Th e architecture allows dynamic sleep and wakeup of each fl oating-point unit. Th e architecture allows
any PE to issue sleep packets to any other tile or to wake it up for processing any PE to issue sleep packets to any other tile or to wake it up for processing
tasks.tasks.

Th e architecture supports a message-passing programming model by providing Th e architecture supports a message-passing programming model by providing
special instructions to exchange messages to coordinate execution and share special instructions to exchange messages to coordinate execution and share
data [7]. Th e fully symmetric architecture allows any PE to send or receive data [7]. Th e fully symmetric architecture allows any PE to send or receive
instructions and data packets to or from any other tile.instructions and data packets to or from any other tile.

Novel Circuit and Design Techniques
We used several circuit techniques to achieve high performance, low power, We used several circuit techniques to achieve high performance, low power,
and a short design cycle. Th e fi fteen FO4 design uses a balanced core and and a short design cycle. Th e fi fteen FO4 design uses a balanced core and
router pipeline, with critical stages employing performance-setting, semi-router pipeline, with critical stages employing performance-setting, semi-
dynamic fl ip-fl ops. In addition, a robust scalable mesochronous clock dynamic fl ip-fl ops. In addition, a robust scalable mesochronous clock
distribution is employed in a 65-nanometer, 8-metal CMOS process that distribution is employed in a 65-nanometer, 8-metal CMOS process that
enables high integration and single-chip realization of the teraFLOP processor.enables high integration and single-chip realization of the teraFLOP processor.

Circuit Design Style
To enable a 5-GHz operation, we designed the entire core by using hand-To enable a 5-GHz operation, we designed the entire core by using hand-
optimized datapath macros. For quick turnaround we used CMOS static gates optimized datapath macros. For quick turnaround we used CMOS static gates
to implement most of the logic. However, critical registers in the FPMAC and to implement most of the logic. However, critical registers in the FPMAC and
at the router crossbar output utilize implicit-pulsed, semi-dynamic fl ip-fl ops at the router crossbar output utilize implicit-pulsed, semi-dynamic fl ip-fl ops
(SDFF) [8, 9], which have a dynamic master stage coupled with a pseudostatic (SDFF) [8, 9], which have a dynamic master stage coupled with a pseudostatic
slave stage. When compared to a conventional static, master-slave fl ip-fl op, slave stage. When compared to a conventional static, master-slave fl ip-fl op,
SDFF provides both shorter latency and the capability of incorporating logic SDFF provides both shorter latency and the capability of incorporating logic
functions, with minimum delay penalty, each of which are desirable properties functions, with minimum delay penalty, each of which are desirable properties
in high-performance digital designs. However, pulsed fl ip-fl ops have several in high-performance digital designs. However, pulsed fl ip-fl ops have several
important disadvantages. Th e worst-case hold time of this fl ip-fl op can exceed important disadvantages. Th e worst-case hold time of this fl ip-fl op can exceed
clock-to-output delay because of pulse width variations across process, voltage, clock-to-output delay because of pulse width variations across process, voltage,
and temperature conditions. Th erefore, pulsed fl ip fl ops must be carefully and temperature conditions. Th erefore, pulsed fl ip fl ops must be carefully
designed to avoid failures due to min-delay violations.designed to avoid failures due to min-delay violations.

“We defi ne a 96-bit Very Long “We defi ne a 96-bit Very Long

Instruction Word (VLIW) that allows Instruction Word (VLIW) that allows

a maximum of up to eight operations a maximum of up to eight operations

to be issued every cycle.”to be issued every cycle.”

“With the exception of FPU “With the exception of FPU

instructions, which have a pipeline instructions, which have a pipeline

latency of nine cycles, most other latency of nine cycles, most other

instructions execute in one to two instructions execute in one to two

cycles.”cycles.”

“To enable a 5-GHz operation, we “To enable a 5-GHz operation, we

designed the entire core by using hand-designed the entire core by using hand-

optimized datapath macros.”optimized datapath macros.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

122 | Lessons Learned from the 80-core Tera-scale Research Processor

Fine grain Power Management
To achieve the goal of demonstrating teraFLOPS performance below 100 watts To achieve the goal of demonstrating teraFLOPS performance below 100 watts
of power, we had to adopt and combine various power-saving features and of power, we had to adopt and combine various power-saving features and
use innovative power-management technologies. To this end, use innovative power-management technologies. To this end, we used fi ne-we used fi ne-
grained clock gating and sleep transistor circuits [10] to reduce active and grained clock gating and sleep transistor circuits [10] to reduce active and
standby leakage power, which are controlled at full-chip, tile-slice, and standby leakage power, which are controlled at full-chip, tile-slice, and
individual tile levels, based on workload. Figure 3 shows clock and power individual tile levels, based on workload. Figure 3 shows clock and power
gating in the FPMAC, router, and instruction/data memories. Approximately gating in the FPMAC, router, and instruction/data memories. Approximately
90 percent of FPU logic and 74 percent of each PE is sleep enabled. Each tile 90 percent of FPU logic and 74 percent of each PE is sleep enabled. Each tile
is partitioned into twenty-one smaller sleep regions, and dynamic control of is partitioned into twenty-one smaller sleep regions, and dynamic control of
individual blocks is based on instruction type. Each FPMAC can be controlled individual blocks is based on instruction type. Each FPMAC can be controlled
through NAP/WAKE instructions. Th e router is partitioned into ten smaller through NAP/WAKE instructions. Th e router is partitioned into ten smaller
sleep regions, and control of individual router ports depends on network sleep regions, and control of individual router ports depends on network
traffi c patterns. We inserted sleep transistors in the register fi le cells without traffi c patterns. We inserted sleep transistors in the register fi le cells without
impacting area too much. An additional track had to be used to route the sleep impacting area too much. An additional track had to be used to route the sleep
signal. Special attention was paid to sleep-non-sleep interfaces, and intelligent signal. Special attention was paid to sleep-non-sleep interfaces, and intelligent
data gating at fl ip-fl op boundaries ensured additional fi rewall circuits were not data gating at fl ip-fl op boundaries ensured additional fi rewall circuits were not
required.required.

W
Logic

nap1

2W
nap2

clk

fast-wake

Multiplier

W
Logic

nap3

2W
nap4

clk

fast-wake

Accumulator

W
Logic

nap5

2W
nap6

clk

fast-wake

Normalization

sleep

VREF=VCC-VMIN
+

-
Wake

VSSV

S
ta

nd
by

 V
M

IN

Memory Array

VCC

Body
Bias

Control

Ports 1-4

Queue Array
(Register File)

Sleep
Transistor

S
ta

ge
s

2-
5

M
S

IN
T

Router Port 0

Lanes 0 &1

gated_clk

5
1

Port_en

Gclk

Global Clock Buffer

Figure 3: Fine-grain Power Management in the Tile
Source: Intel Corporation, 2009

“We used fi ne-grained clock gating “We used fi ne-grained clock gating

and sleep transistor circuits to reduce and sleep transistor circuits to reduce

active and standby leakage power, active and standby leakage power,

which are controlled at full-chip, tile-which are controlled at full-chip, tile-

slice, and individual tile levels, based slice, and individual tile levels, based

on workload.”on workload.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Lessons Learned from the 80-core Tera-scale Research Processor | 123

0 2

1

3

Write Pointer

Read Pointer

Low Latency
Synchronizer

Circuit

Sync Sync

Scan Register

Write
State
Machine

Read
State
Machine

Tx_clkd

Tx_clkd

Delay Line

Tx_clk

Tx_clk

Rx_clk

La
tc

h
La

tc
h

La
tc

h
La

tc
h

d q Rx_data

Rx_clk

38
Stage 1

Rxd

4:1

4-deep FIFO
38

Tx_data

Tx_data
[37:0]

Rxd [37:0]

delay

D1 D2 D3

D1 D2
t
MSINT

(1-2 cycles)

Figure 4: Phase-tolerant Mesochronous Interface
Source: Intel Corporation, 2009

Mesochronous Clocking
Th e chip uses a scalable global mesochronous clocking technique, that allows Th e chip uses a scalable global mesochronous clocking technique, that allows
for clock-phase-insensitive communication across tiles and for synchronous for clock-phase-insensitive communication across tiles and for synchronous
operation within each tile. Th e on-chip PLL output is routed by using operation within each tile. Th e on-chip PLL output is routed by using
horizontal (Metal-8) and vertical (Metal-7) spines. Each spine consists of horizontal (Metal-8) and vertical (Metal-7) spines. Each spine consists of
diff erential clocks for low duty-cycle variation along the worst-case clock route diff erential clocks for low duty-cycle variation along the worst-case clock route
of 26 mm. An op-amp at each tile converts the diff erential clock inputs to of 26 mm. An op-amp at each tile converts the diff erential clock inputs to
a single-ended clock with a 50 percent duty cycle, prior to distribution, by a single-ended clock with a 50 percent duty cycle, prior to distribution, by
using an H-tree. Th e 2-mm long point-to-point, unidirectional router links using an H-tree. Th e 2-mm long point-to-point, unidirectional router links
implement a phase-tolerant, mesochronous interface as shown in Figure 4. implement a phase-tolerant, mesochronous interface as shown in Figure 4.
Th is allows clock-phase-insensitive communication across tiles and enables a Th is allows clock-phase-insensitive communication across tiles and enables a
scalable, on-die communication fabric that simplifi es global clock distribution. scalable, on-die communication fabric that simplifi es global clock distribution.

Double-pumped Crossbar
Th e crossbar switch area increases as a square function O(nTh e crossbar switch area increases as a square function O(n2) of the total) of the total
number of I/O ports and the number of bits per port. Consequently, the number of I/O ports and the number of bits per port. Consequently, the
crossbar can dominate a large percentage of the area. To alleviate this problem, crossbar can dominate a large percentage of the area. To alleviate this problem,
we double pump the crossbar data buses by interleaving alternate data bits as we double pump the crossbar data buses by interleaving alternate data bits as
shown in Figure 5. We use dual-edge triggered fl ip-fl ops to do this; thereby, shown in Figure 5. We use dual-edge triggered fl ip-fl ops to do this; thereby,
eff ectively reducing by half the crossbar hardware cost. eff ectively reducing by half the crossbar hardware cost.

crossbar
interconnect

50%

L
at

ch

S
D

F
F q0

Stg 5
Stg 4 2:1 Mux

S0

5:1

Td < 100ps

S1

clk

clk

clkb

clkb

cl
kb

i1

M0

clkb

clk

clk

clk
i0

clkbclk

cl
k

cl
k

S
D

F
F q1

cl
k

Figure 5: Double-pumped Crossbar
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

124 | Lessons Learned from the 80-core Tera-scale Research Processor

Tiled-design Methodology
While implementing the teraFLOPS processor, we followed a “tiled design While implementing the teraFLOPS processor, we followed a “tiled design
methodology” methodology” where each tile is completely self-contained, including power where each tile is completely self-contained, including power
bumps, power tracks, and global clock routing. Th is design enabled us to bumps, power tracks, and global clock routing. Th is design enabled us to
seamlessly array all tiles at the top level, by simply using abutment. Th is seamlessly array all tiles at the top level, by simply using abutment. Th is
methodology enabled rapid completion of a fully custom design with less than methodology enabled rapid completion of a fully custom design with less than
400 person-months of eff ort.400 person-months of eff ort.

Results

2.0mm

1.5mm

Single Tile

I/O Area

TAPPLL

12.64mm

I/O Area

21
.7

2m
m

Technology 65nm, 1 poly, 8 metal (Cu)

Transistors 100 Million (full-chip)
 1.2 Million (tile)

Die Area 275mm² (full-chip)
 3mm² (tile)

C4 Bumps # 8390

1.5mm

2.
0m

m

FPMAC1

DMEM

FPMAC0RF

IMEM

MSINT

MSINT
MSINT

Router

RIB

G
lo

b
al

 c
lk

 s
p

in
e

+
cl

k
bu

ff
er

s

Figure 6: Full-chip and Tile Micrograph and Characteristics
Source: Intel Corporation, 2009

We fabricated the teraFLOPS processor in 65-nm process technology. Th e die We fabricated the teraFLOPS processor in 65-nm process technology. Th e die
photographs in Figure 6 identify the chip’s functional blocks and individual photographs in Figure 6 identify the chip’s functional blocks and individual
tiles. Th e 275-mmtiles. Th e 275-mm2, fully custom design contains 100 million transistors. Th e , fully custom design contains 100 million transistors. Th e
chip supports a wide dynamic range of operation; namely, 1 GHz at 670 mV chip supports a wide dynamic range of operation; namely, 1 GHz at 670 mV
up to 5.67 GHz at 1.35 V, as shown in Figure 7. Increased performance with up to 5.67 GHz at 1.35 V, as shown in Figure 7. Increased performance with
higher voltage and frequency can be achieved at the cost of power. As we scale higher voltage and frequency can be achieved at the cost of power. As we scale
Vcc/frequency, power consumption ranges from 15.6 W to 230 W as shown in Vcc/frequency, power consumption ranges from 15.6 W to 230 W as shown in
Figure 8. Fine-grain sleep transistors limit the leakage power from 9.6 percent Figure 8. Fine-grain sleep transistors limit the leakage power from 9.6 percent
to 15.6 percent of the total power. With all 80 tiles actively performing to 15.6 percent of the total power. With all 80 tiles actively performing
single-precision, block-matrix operations, the chip achieves a peak performance single-precision, block-matrix operations, the chip achieves a peak performance
of 1.0 TFLOPS at 3.16 GHz while dissipating 97 W. By reducing voltage, and of 1.0 TFLOPS at 3.16 GHz while dissipating 97 W. By reducing voltage, and
by operating close to the threshold voltage of the transistor, energy effi ciency by operating close to the threshold voltage of the transistor, energy effi ciency
for the stencil application can be improved from 5.8 GFLOPS per Watt to a for the stencil application can be improved from 5.8 GFLOPS per Watt to a
maximum of 19.4 GFLOPS per Watt as shown in Figure 9.maximum of 19.4 GFLOPS per Watt as shown in Figure 9.

“Each tile is completely self-contained, “Each tile is completely self-contained,

including power bumps, power tracks, including power bumps, power tracks,

and global clock routing.”and global clock routing.”

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0

1

4

5

3

2

6

N=80

VCC (V)

F
re

q
u

en
cy

 (
G

H
z)

(1 TFLOP)
3.16GHz

(0.32 TFLOP)
1GHz

(1.63 TFLOP)
5.1GHz

(1.81 TFLOP)
5.67GHz

80°C

Figure 7: Measured Chip Fmax and Peak
Performance
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

Lessons Learned from the 80-core Tera-scale Research Processor | 125

Th e measured global clock distribution power is 2 W at 1.2 V and 5.1 GHz Th e measured global clock distribution power is 2 W at 1.2 V and 5.1 GHz
operation, and it accounts for just 1.3 percent of the total chip power. At the operation, and it accounts for just 1.3 percent of the total chip power. At the
tile level, power breakdown shows that the dual FPMACs account for tile level, power breakdown shows that the dual FPMACs account for
36 percent of total power, the router and links account for 28 percent, the 36 percent of total power, the router and links account for 28 percent, the
IMEM and DMEM account for 21 percent, the tile-level synchronous clock IMEM and DMEM account for 21 percent, the tile-level synchronous clock
distribution accounts for 11 percent, and the multi-ported register fi le accounts distribution accounts for 11 percent, and the multi-ported register fi le accounts
for 4 percent. In sleep mode, the nMOS sleep transistors are turned off , for 4 percent. In sleep mode, the nMOS sleep transistors are turned off ,
reducing chip leakage by 2X, while preserving the logic state in all memory reducing chip leakage by 2X, while preserving the logic state in all memory
arrays. Total network power per tile can be lowered from a maximum of arrays. Total network power per tile can be lowered from a maximum of
924 mW with all router ports active to 126 mW, resulting in a 7.3X reduction. 924 mW with all router ports active to 126 mW, resulting in a 7.3X reduction.
Th e network leakage power per tile when all ports and global clock buff ers to Th e network leakage power per tile when all ports and global clock buff ers to
the router are disabled is 126 mW. Th is number includes power dissipated in the router are disabled is 126 mW. Th is number includes power dissipated in
the router, MSINT, and in the links.the router, MSINT, and in the links.

Discussion and Tradeoffs
Th e goal of achieving teraFLOPS performance under 100 W entails studying Th e goal of achieving teraFLOPS performance under 100 W entails studying
the traditional tradeoff s between performance, power, and die size, but equally the traditional tradeoff s between performance, power, and die size, but equally
important are looking at issues such as multi-generation scalability, modular important are looking at issues such as multi-generation scalability, modular
design/validation, and support for parallel programming models.design/validation, and support for parallel programming models.

Today’s general-purpose cores are capable of performance in the order of tens Today’s general-purpose cores are capable of performance in the order of tens
of GFLOPS. However, achieving teraFLOPS performance with these cores of GFLOPS. However, achieving teraFLOPS performance with these cores
on the current process technology is prohibitive, from an area and power on the current process technology is prohibitive, from an area and power
perspective. Our work corroborates that a computational fabric built by using perspective. Our work corroborates that a computational fabric built by using
programmable, special-purpose cores provides high levels of performance in an programmable, special-purpose cores provides high levels of performance in an
energy-effi cient manner. Power-optimized fast computation hardware, simple energy-effi cient manner. Power-optimized fast computation hardware, simple
decoded VLIW instruction words, and low-power memories ensure that a decoded VLIW instruction words, and low-power memories ensure that a
large percentage of the energy consumed goes towards computing FLOPS. large percentage of the energy consumed goes towards computing FLOPS.
While architecting the core we were aware of the importance of balancing While architecting the core we were aware of the importance of balancing
data memory bandwidth with compute/communication bandwidth, which data memory bandwidth with compute/communication bandwidth, which
entailed adding a single cycle, 6-read, 4-write register fi le. As data transfer on entailed adding a single cycle, 6-read, 4-write register fi le. As data transfer on
chip costs signifi cant energy, larger caches will be required to keep the data chip costs signifi cant energy, larger caches will be required to keep the data
local. Maintaining coherency across many cores is a signifi cant challenge as local. Maintaining coherency across many cores is a signifi cant challenge as
well. Hardware costs and increased coherency traffi c on the mesh will pose well. Hardware costs and increased coherency traffi c on the mesh will pose
hurdles for completely hardware-based coherent systems. Instead, future hurdles for completely hardware-based coherent systems. Instead, future
tera-scale processors will explore message-passing architectures. Special on-die, tera-scale processors will explore message-passing architectures. Special on-die,
message-passing hardware is very effi cient for core-to-core communication, message-passing hardware is very effi cient for core-to-core communication,
making software-based coherency with hardware assists a viable solution for making software-based coherency with hardware assists a viable solution for
the future. In addition to support for message passing, another enhancement the future. In addition to support for message passing, another enhancement
that proved important is the ability to overlap compute and communication. that proved important is the ability to overlap compute and communication.
A core can directly transfer instructions/data into the local memory of another A core can directly transfer instructions/data into the local memory of another
core without interrupting the other core. Th is resulted in improved FPMAC core without interrupting the other core. Th is resulted in improved FPMAC
utilization with fewer idle cycles and enabled performance numbers that were utilization with fewer idle cycles and enabled performance numbers that were
close to the maximum achievable.close to the maximum achievable.

15.6 26

78

152

1.33TFLOP @ 230W

1TFLOP @ 97W

Active Power

Leakage Power

0.67 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.151.101.05 1.251.20 1.351.30

80°C, N=80
250

225

200

175

150

125

100

75

50

25

0

Vcc (V)

P
ow

er
 (

W
)

Figure 8: Measured Power Versus Vcc for
Stencil Application
Source: Intel Corporation, 2009

20

15

10

5

0
200 400 600 800 1000 1200 1400

GFLOPS

G
F

L
O

P
S

/W

N=80
80°C

19.4

10.5

5.8394 GFLOPS

Figure 9: Measured Chip Energy Effi ciency for
Stencil Application
Source: Intel Corporation, 2009

Intel® Technology Journal | Volume 13, Issue 4, 2009

126 | Lessons Learned from the 80-core Tera-scale Research Processor

With increasing demand for interconnect bandwidth, on-chip networks are With increasing demand for interconnect bandwidth, on-chip networks are
taking up a substantial portion of the system’s power budget. taking up a substantial portion of the system’s power budget. Th e router on Th e router on
our teraFLOPS processor consumes 28 percent of tile power. Our goal for a our teraFLOPS processor consumes 28 percent of tile power. Our goal for a
compelling solution is to use compact low-power routers that consume less compelling solution is to use compact low-power routers that consume less
than 10 percent of the chip power and die budget. At the same time they than 10 percent of the chip power and die budget. At the same time they
must deliver high, on-die bisection bandwidth and low latency. Techniques, must deliver high, on-die bisection bandwidth and low latency. Techniques,
such as speculation and bypass, are well known, but they add to the power such as speculation and bypass, are well known, but they add to the power
consumption and are therefore undesirable. Future routers would also need to consumption and are therefore undesirable. Future routers would also need to
incorporate extensive fi ne-grained, power-management techniques to enable incorporate extensive fi ne-grained, power-management techniques to enable
dynamic operation that adapts to diff ering traffi c patterns. Heterogeneous dynamic operation that adapts to diff ering traffi c patterns. Heterogeneous
NoCs [11], that allocate resources as needed, and circuit-switched networks NoCs [11], that allocate resources as needed, and circuit-switched networks
[12, 13] are promising approaches. Traffi c patterns and bandwidth [12, 13] are promising approaches. Traffi c patterns and bandwidth
requirements are going to dictate on-die network architectures for the future. requirements are going to dictate on-die network architectures for the future.
Hybrid approaches to on-die networks can save communication power by Hybrid approaches to on-die networks can save communication power by
utilizing fewer fully-connected crossbar routers at the expense of reduced utilizing fewer fully-connected crossbar routers at the expense of reduced
bandwidth. Instead of one router per core in each tile, we could amortize bandwidth. Instead of one router per core in each tile, we could amortize
the power/area of the router by having two or more cores on a shared bus the power/area of the router by having two or more cores on a shared bus
connected to the local port of the router in each tile.connected to the local port of the router in each tile.

Th e two popular clocking techniques for on-die networks are 1) a completely Th e two popular clocking techniques for on-die networks are 1) a completely
synchronous system with closely matched skews, and 2) a globally synchronous system with closely matched skews, and 2) a globally
asynchronous, locally synchronous system with handshaking signals for data asynchronous, locally synchronous system with handshaking signals for data
transfer (GALS). Synchronous systems are the simplest to implement and are transfer (GALS). Synchronous systems are the simplest to implement and are
well understood, but they can consume signifi cant power for high-frequency well understood, but they can consume signifi cant power for high-frequency
clock distribution. With increased with-in die variation, matching skews across clock distribution. With increased with-in die variation, matching skews across
large dies is becoming diffi cult, which also results in excessive timing guard large dies is becoming diffi cult, which also results in excessive timing guard
bands. GALS suff ers from area overhead, due to additional hand-shaking bands. GALS suff ers from area overhead, due to additional hand-shaking
circuits, lack of mature design tools, and increased design complexity. Th e circuits, lack of mature design tools, and increased design complexity. Th e
mesochronous clocking scheme tries to address these problems by distributing mesochronous clocking scheme tries to address these problems by distributing
a single frequency clock without the overhead of matching clock skews. Th is a single frequency clock without the overhead of matching clock skews. Th is
causes phase diff erences between clocks, distributed to individual routers that causes phase diff erences between clocks, distributed to individual routers that
need to be accounted for by synchronization circuitry in the data paths. Th is need to be accounted for by synchronization circuitry in the data paths. Th is
technique scales well as tiles are added or removed. Multiple cycles are required technique scales well as tiles are added or removed. Multiple cycles are required
for the global clock to propagate to all 80 tiles; this systematic skew inherent for the global clock to propagate to all 80 tiles; this systematic skew inherent
in the distribution helps spread peak currents because of simultaneous clock in the distribution helps spread peak currents because of simultaneous clock
switching. To support mesochronous or phase-tolerant communication across switching. To support mesochronous or phase-tolerant communication across
tiles, we pay a synchronization latency penalty for the benefi t of a lightweight tiles, we pay a synchronization latency penalty for the benefi t of a lightweight
global clock distribution. Th e area and power overhead of the synchronizers global clock distribution. Th e area and power overhead of the synchronizers
can be signifi cant for wide links. It is important to understand these tradeoff s can be signifi cant for wide links. It is important to understand these tradeoff s
before abandoning a synchronous implementation in favor of mesochronous before abandoning a synchronous implementation in favor of mesochronous
clocking.clocking.

“Th e router on our teraFLOPS “Th e router on our teraFLOPS

processor consumes 28 percent of tile processor consumes 28 percent of tile

power. Our goal for a compelling power. Our goal for a compelling

solution is to use compact low-power solution is to use compact low-power

routers that consume less than 10 routers that consume less than 10

percent of the chip power.”percent of the chip power.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Lessons Learned from the 80-core Tera-scale Research Processor | 127

Tera-scale computing platforms need to be effi cient to meet the energy Tera-scale computing platforms need to be effi cient to meet the energy
constraints of future data centers. We employed per-tile, fi ne-grained power constraints of future data centers. We employed per-tile, fi ne-grained power
management with clock and power gating. By exposing WAKE/NAP management with clock and power gating. By exposing WAKE/NAP
instructions to software, we could put FPMACs to sleep during idle windows. instructions to software, we could put FPMACs to sleep during idle windows.
Th is enabled us to reach Th is enabled us to reach an energy effi ciency of 19.4 GFLOPS/Watt. In an energy effi ciency of 19.4 GFLOPS/Watt. In
stark contrast, a 3-GHz, general-purpose CPU provides an energy effi ciency stark contrast, a 3-GHz, general-purpose CPU provides an energy effi ciency
of 0.07 GFLOPS/Watt. As diff erent applications with diff erent compute/of 0.07 GFLOPS/Watt. As diff erent applications with diff erent compute/
communication profi les and performance requirements are invoked over communication profi les and performance requirements are invoked over
time, the optimal number of cores and Vcc/frequency to achieve maximum time, the optimal number of cores and Vcc/frequency to achieve maximum
energy effi ciency varies. Hence, to further improve workload effi ciency, we energy effi ciency varies. Hence, to further improve workload effi ciency, we
recommend dynamic voltage frequency scaling with independent voltage and recommend dynamic voltage frequency scaling with independent voltage and
frequency islands for future tera-scale processors.frequency islands for future tera-scale processors.

To operate across a wide dynamic voltage range it is important to implement To operate across a wide dynamic voltage range it is important to implement
circuits with robust static CMOS logic that operate at low voltages. Operating circuits with robust static CMOS logic that operate at low voltages. Operating
close to threshold voltage of the transistor increases energy effi ciency; however, close to threshold voltage of the transistor increases energy effi ciency; however,
contention circuits in register fi les and small signal arrays typically limit the contention circuits in register fi les and small signal arrays typically limit the
lowest operating voltage (Vccmin) of a processor. It is critical for tera-scale lowest operating voltage (Vccmin) of a processor. It is critical for tera-scale
processors to operate at the lowest energy point, and this makes research in processors to operate at the lowest energy point, and this makes research in
Vccmin-lowering techniques a vital part of the tera-scale research agenda. Vccmin-lowering techniques a vital part of the tera-scale research agenda.
Designs should also be optimized for power with extensive usage of low-leakage Designs should also be optimized for power with extensive usage of low-leakage
transistors and selective usage of nominal transistors in critical paths. It is transistors and selective usage of nominal transistors in critical paths. It is
important to strike a balance between delay penalty and leakage savings during important to strike a balance between delay penalty and leakage savings during
device-type selection for sleep transistors. We chose to utilize nominal devices device-type selection for sleep transistors. We chose to utilize nominal devices
for 5-GHz operation with a 2X leakage savings.for 5-GHz operation with a 2X leakage savings.

As we integrate more cores on a single die, adopting a scalable design As we integrate more cores on a single die, adopting a scalable design
methodology is critical for design convergence, validation, product methodology is critical for design convergence, validation, product
segmentation, and time-to-market. Th e proposed tiled design methodology segmentation, and time-to-market. Th e proposed tiled design methodology
enabled faster convergence in timing verifi cation and physical design. enabled faster convergence in timing verifi cation and physical design.
Global wires that do not scale well with technology could be avoided. Global wires that do not scale well with technology could be avoided.
We ensured We ensured the tiles were small, completely self-contained, and could be the tiles were small, completely self-contained, and could be
assembled by abutment. Th is also ensures uniform metal/via density that assembled by abutment. Th is also ensures uniform metal/via density that
helps in manufacturability and yield. Consequently, we achieved high levels helps in manufacturability and yield. Consequently, we achieved high levels
of integration with a small design team and low overhead. Pre/post-silicon of integration with a small design team and low overhead. Pre/post-silicon
debug eff ort was greatly reduced with fi rst silicon stepping fully functional. debug eff ort was greatly reduced with fi rst silicon stepping fully functional.
In addition, a standardized communication fabric with a predefi ned interface In addition, a standardized communication fabric with a predefi ned interface
combined with a tiled design approach provides the fl exibility of integrating combined with a tiled design approach provides the fl exibility of integrating
any number of homogenous or heterogeneous cores and facilitates product any number of homogenous or heterogeneous cores and facilitates product
segmentation.segmentation.

“We reached an energy effi ciency “We reached an energy effi ciency

of 19.4 GFLOPS/Watt. In stark of 19.4 GFLOPS/Watt. In stark

contrast, a 3-GHz, general-purpose contrast, a 3-GHz, general-purpose

CPU provides an energy effi ciency of CPU provides an energy effi ciency of

0.07 GFLOPS/Watt.”0.07 GFLOPS/Watt.”

“Th e tiles were small, completely self-“Th e tiles were small, completely self-

contained, and could be assembled by contained, and could be assembled by

abutment.”abutment.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

128 | Lessons Learned from the 80-core Tera-scale Research Processor

Conclusion
Tera-fl op performance is possible within a mainstream power envelope. Tera-fl op performance is possible within a mainstream power envelope.
Careful co-design at architecture, logic, circuit, and physical design levels Careful co-design at architecture, logic, circuit, and physical design levels
pays off , with silicon achieving an average performance of 1 TFLOP at 97 W pays off , with silicon achieving an average performance of 1 TFLOP at 97 W
and a peak power effi ciency of 19.4 GFLOPS/Watt. Tile-based methodology and a peak power effi ciency of 19.4 GFLOPS/Watt. Tile-based methodology
fulfi lled its promise, and the design was done with half the team in half the fulfi lled its promise, and the design was done with half the team in half the
time. Communication power accounts for almost one-third of the total power, time. Communication power accounts for almost one-third of the total power,
highlighting the need for further research in low-power, scalable networks that highlighting the need for further research in low-power, scalable networks that
can satisfy the requirements of a tera-scale platform. On a fi nal note, to be can satisfy the requirements of a tera-scale platform. On a fi nal note, to be
able to successfully exploit the computing capability of a tera-scale processor, able to successfully exploit the computing capability of a tera-scale processor,
research into parallel programming is vital.research into parallel programming is vital.

References
[1] J. Held, J. Bautista, and S. Koehl. “From a few core to many: A tera-

scale computing research overview.” 2006. Available at http://www.intel.
com

[2] [2] W.J. Dally and B. Towles. “Route Packets, Not Wires: On-Chip W.J. Dally and B. Towles. “Route Packets, Not Wires: On-Chip
Interconnection Net-works.” In Interconnection Net-works.” In Proceedings 38Proceedings 38thth Design Automation Design Automation
ConferenceConference (DAC 01), ACM Press, 2001, pages 681-689. (DAC 01), ACM Press, 2001, pages 681-689.

[3] [3] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, C. Roberts, V. Erraguntla, Y. D. Finan, A. Singh, T. Jacob, S. Jain, C. Roberts, V. Erraguntla, Y.
Hoskote, N. Borkar, and S. Borkar. “An 80-Tile Sub-100W TeraFLOPS Hoskote, N. Borkar, and S. Borkar. “An 80-Tile Sub-100W TeraFLOPS
Processor in 65-nm CMOS.” Processor in 65-nm CMOS.” IEEE Journal of Solid-State Circuits,IEEE Journal of Solid-State Circuits, vol. vol.
43, pages 29–41, January 2008.43, pages 29–41, January 2008.

[4] [4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. “A 5GHz Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. “A 5GHz
Mesh Interconnect for a Terafl ops Processor.” Mesh Interconnect for a Terafl ops Processor.” IEEE Micro,IEEE Micro, Vol. 27, Vol. 27,
pages 51-61, 2007.pages 51-61, 2007.

[5] [5] S. Vangal, Y. Hoskote, N. Borkar and A. Alvandpour. “A 6.2-GFlops S. Vangal, Y. Hoskote, N. Borkar and A. Alvandpour. “A 6.2-GFlops
Floating-Point Multiply-Accumulator with Conditional Normalization.” Floating-Point Multiply-Accumulator with Conditional Normalization.”
IEEE Journal of Solid-State Circuits,IEEE Journal of Solid-State Circuits, pages 2314–2323, Oct., 2006. pages 2314–2323, Oct., 2006.

[6] [6] S. Vangal, A. Singh, J. Howard, S. Dighe, N. Borkar, A. Alvandpour. “A S. Vangal, A. Singh, J. Howard, S. Dighe, N. Borkar, A. Alvandpour. “A
5.1GHz 0.34mm5.1GHz 0.34mm2 Router for Network-on-Chip Applications.” Router for Network-on-Chip Applications.” IEEE IEEE
Symposium on VLSI Circuits,Symposium on VLSI Circuits, 2007. 14-16, June 2007. 2007. 14-16, June 2007.

[7] [7] T. Mattson, R. Van der Wijngaart, M. Frumkin. “Programming the T. Mattson, R. Van der Wijngaart, M. Frumkin. “Programming the
Intel 80-core network-on-a-chip terascale processor.” In Intel 80-core network-on-a-chip terascale processor.” In Proceedings of Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing,the 2008 ACM/IEEE Conference on Supercomputing, November 15-21, November 15-21,
2008, Austin, Texas.2008, Austin, Texas.

[8] [8] F. Klass. “Semi-Dynamic and Dynamic Flip-Flops with Embedded F. Klass. “Semi-Dynamic and Dynamic Flip-Flops with Embedded
Logic.” Logic.” 1998 Symposium on VLSI Circuits, Digest of Technical Papers,1998 Symposium on VLSI Circuits, Digest of Technical Papers,
pages 108–109, 1998.pages 108–109, 1998.

“Tera-fl op performance is possible “Tera-fl op performance is possible

within a mainstream power envelope.”within a mainstream power envelope.”

Intel® Technology Journal | Volume 13, Issue 4, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other
countries.
*Other names and brands may be claimed as the property of others.

Lessons Learned from the 80-core Tera-scale Research Processor | 129

[9] [9] J. Tschanz, S. Narendra, Z. Chen, S. Borkar, M. Sachdev, V. De. J. Tschanz, S. Narendra, Z. Chen, S. Borkar, M. Sachdev, V. De.
“Comparative Delay and Energy of Single Edge-Triggered & “Comparative Delay and Energy of Single Edge-Triggered &
Dual Edge-Triggered Pulsed Flip-Flops for High-Performance Dual Edge-Triggered Pulsed Flip-Flops for High-Performance
Microprocessors.” Microprocessors.” ISLPED,ISLPED, pages 147-151, 2001. pages 147-151, 2001.

[10] [10] J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar and V. De. J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar and V. De.
“Dynamic sleep transistor and body bias for active leakage power “Dynamic sleep transistor and body bias for active leakage power
control of microprocessors.” control of microprocessors.” IEEE Journal of Solid-State Circuits,IEEE Journal of Solid-State Circuits, pages pages
1838–1845, Nov. 2003.1838–1845, Nov. 2003.

[11] [11] K. Rijpkema et al. “Trade-Off s in the Design of a Router with Both K. Rijpkema et al. “Trade-Off s in the Design of a Router with Both
Guaranteed and Best-Eff ort Services for Networks on Chip.” In Guaranteed and Best-Eff ort Services for Networks on Chip.” In IEEE IEEE
Proceedings On Computers and Digital Techniques,Proceedings On Computers and Digital Techniques, vol. 150, no. 5, 2003, vol. 150, no. 5, 2003,
pages 294-302.pages 294-302.

[12] [12] P. Wolkette et al. “ An Energy-Effi cient Reconfi gurable Circuit-Switched P. Wolkette et al. “ An Energy-Effi cient Reconfi gurable Circuit-Switched
Network-on-Chip.” In Network-on-Chip.” In Proceedings IEEE International Parallel and Proceedings IEEE International Parallel and
Distributed Symposium, (IPDS 05), IEEE CS Press,Distributed Symposium, (IPDS 05), IEEE CS Press, 2005, pages 155a. 2005, pages 155a.

[13] [13] M. Anders, H. Kaul, M. Hansson, R. Krishnamurthy, S. Borkar. M. Anders, H. Kaul, M. Hansson, R. Krishnamurthy, S. Borkar.
“A 2.9Tb/s 8W 64-core circuit-switched network-on-chip in 45nm “A 2.9Tb/s 8W 64-core circuit-switched network-on-chip in 45nm
CMOS.” CMOS.” 3434thth European Solid-State Circuits Conference, European Solid-State Circuits Conference, 2008. 2008. ESSCIRC,ESSCIRC,
pages 182-185, 15-19 Sept. 2008.pages 182-185, 15-19 Sept. 2008.

Acknowledgements
We thank the entire Advanced Microprocessor Research team at Intel for We thank the entire Advanced Microprocessor Research team at Intel for
fl awless execution of the chip, we thank Tim Mattson and Rob Van Der fl awless execution of the chip, we thank Tim Mattson and Rob Van Der
Wijngaart for workloads, and Joe Schutz, Greg Taylor, Matt Haycock, and Wijngaart for workloads, and Joe Schutz, Greg Taylor, Matt Haycock, and
Justin Rattner for guidance and encouragement.Justin Rattner for guidance and encouragement.

