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Jim Held PhD.
Intel Fellow 
Director, Tera-scale Computing 
Research 
Intel Labs 
Intel Corporation The Intel® Tera-scale Computing Research Program is Intel’s overarching effort 

to shape the future of Intel processors and platforms, in order to accelerate 
the shift from frequency to parallelism for performance improvement. Intel 
researchers worldwide are already working on R&D projects to address the 
hardware and software challenges of building and programming systems with 
teraFLOPS of parallel performance that can process tera-bytes of data. This 
level of performance will enable exciting new and emerging applications, but 
will also require addressing challenges in everything from program architecture 
to circuit technologies. This issue of the Intel Technology Journal includes 
results from a range of research that walks down the ‘stack’ from application 
design to circuits. 

Emerging visual-computing applications require tera-scale performance in 
order to simulate worlds based on complex physical models. They use rich 
user interfaces with video recognition and 3D graphics synthesis, and they 
are highly parallel.  How can we build them? Architecting designs for such 
applications that fully exploit their inherent parallelism is a major software 
engineering challenge. As with most kinds of architecture, new programs 
will be based on a combination of preexisting patterns and an exploitation of 
application frameworks that support them. Tim Mattson and Kurt Koetzer 
describe their work to find the parallel patterns that are needed for concurrent 
software in their article entitled “A Design Pattern Language for Engineering 
(Parallel) Software.”

The non-deterministic nature of concurrent execution has made debugging 
one of the toughest parts of delivering a parallel program. Gilles Pokam and his 
colleagues, in their article “Hardware/Software Approaches for Deterministic 
Multi-processor Replay of Concurrent Programs” describe their work on 
hardware and software to support debugging by recording and replaying 
execution in order to allow analysis and discovery of the subtle timing errors 
that come with the many possible executions of parallelism.

Future tera-scale platforms may be heterogeneous with a mixture of types of 
compute elements. Our August 2007 issue of the Intel Technology Journal 
included articles that described support for mixed-ISA co-processing. In 
“Programming Model for Heterogeneous Intel® x86 Platforms” in this issue, 
Bratin Saha’s and his colleagues describe work in IA-ISA to provide support for 
shared memory with a mixture of cache coherence models.

“Systems with teraFLOPS of parallel 

performance that can process tera-bytes 

of data.”

“Visual-computing applications 

require tera-scale performance in order 

to simulate worlds based on complex 

physical models.”

FOREwORD
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Mani Azimi and his colleagues’ article “Flexible and Adaptive On-Chip 
Interconnect for Tera-scale Architectures,” describes research into on-die 
network fabric, and they show our evolution from an analysis of the challenges 
and alternatives to the development of the protocols to exploit the potential of 
a network on chip. Effective use of a mesh network will require sophisticated 
support to provide the routing and configuration management for fairness, 
load balancing, and congestion management.

Perhaps the largest platform hardware challenge for tera-scale computing is 
the longstanding one of access to memory to match the tremendous compute 
density of many cores on a die. Moreover, an effective solution must also meet 
the declining cost and power consumption targets of the mainstream market 
segments. Dave Dunning and his colleagues, in the article “Tera-scale Memory 
Challenges and Solutions” outline the problems and our research agenda in this 
critical area.

The continuing challenge for the core of tera-scale platforms is how to 
continue to increase energy efficiency. As process technology advances continue 
to give us more transistors, we can add more cores, but unless we improve their 
efficiency, we won’t be able to use them. Ram Krishnamurthy’s team continues 
to make progress in improving the energy efficiency of computations with 
designs for ALUs that exploit near-threshold voltage circuits and extremely 
fine-grained power management. Their work is described in an article “Ultra-
low Voltage Technologies for Energy-efficient Special-purpose Hardware 
Accelerators.”

Finally, for some research questions there is no substitute for a silicon 
implementation: therefore, we built the Tera-scale Research Processor 
to explore a tile-based design methodology as well as to understand the 
performance and power efficiency that is possible with intensive floating-point 
engines and an on-die network. In our final article “Lessons Learned from 
the 80-core Tera-scale Research Processor,” Saurabh Dighe and his colleagues 
review these results and discuss what conclusions we draw from them. They 
summarize what we learned from many experiments with this chip. We 
recently announced our second-generation many-core research prototype, the 
Single-chip Cloud Computer, which builds on this work. 

I hope you find these articles informative, and the future they are part of 
creating, as exciting as we do at Intel Labs. We look forward to continuing 
work with academia and the industry to meet the challenges of mainstream 
parallel computing.

“Effective use of a mesh network 

will require sophisticated support to 

provide the routing and configuration 

management for fairness, load 

balancing, and congestion 

management.”

“For some research questions 

there is no substitute for a silicon 

implementation.”
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Abstract
The key to writing high-quality parallel software is to develop a robust software 
design. This applies not only to the overall architecture of the program, but 
also to the lower layers in the software system where the concurrency and 
how it is expressed in the final program is defined. Developing technology to 
systematically describe such designs and reuse them between software projects 
is the fundamental problem facing the development of software for tera-scale 
processors. The development of this technology is far more important than 
programming models and their supporting environments, since with a good 
design in hand, most any programming system can be used to actually generate 
the program’s source code.

In this article, we develop our thesis about the central role played by the 
software architecture. We show how design patterns provide a technology to 
define the reusable design elements in software engineering. This leads us to the 
ongoing project centered at UC Berkeley’s Parallel Computing Laboratory (Par 
Lab) to pull the essential set of design patterns for parallel software design into 
a Design Pattern Language. After describing our pattern language, we present 
a case study from the field of machine learning as a concrete example of how 
patterns are used in practice.

The Software Engineering Crisis 
The trend has been well established [1]: parallel processors will dominate 
most, if not every, niche of computing. Ideally, this transition would be driven 
by the needs of software. Scalable software would demand scalable hardware 
and that would drive CPUs to add cores. But software demands are not 
driving parallelism. The motivation for parallelism comes from the inability 
of integrated circuit designers to deliver steadily increasing frequency gains 
without pushing power dissipation to unsustainable levels. Thus, we have a 
dangerous mismatch: the semiconductor industry is banking its future on 
parallel microprocessors, while the software industry is still searching for an 
effective solution to the parallel programming problem. 

The parallel programming problem is not new. It has been an active area of 
research for the last three decades, and we can learn a great deal from what has 
not worked in the past.

Kurt Keutzer 
UC Berkeley

Tim Mattson 
Intel Corporation

Design Pattern Language 
Software Architecture 
Parallel Algorithm Design 
Application Frameworks

A DESIGN PATTERN LANGUAGE FOR ENGINEERING (PARALLEL) 
SOFTwARE
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 • Automatic parallelism. Compilers can speculate, prefetch data, and reorder 
instructions to balance the load among the components of a system. 
However, they cannot look at a serial algorithm and create a different 
algorithm better suited for parallel execution. 

 • New languages. Hundreds of new parallel languages and programming 
environments have been created over the last few decades. Many of them 
are excellent and provide high-level abstractions that simplify the expression 
of parallel algorithms. However, these languages have not dramatically 
grown the pool of parallel programmers. The fact is, in the one community 
with a long tradition of parallel computing (high-performance computing), 
the old standards of MPI [2] and OpenMP [3] continue to dominate. 
There is no reason to believe new languages will be any more successful as 
we move to more general-purpose programmers; i.e., it is not the quality 
of our programming models that is inhibiting the adoption of parallel 
programming.

The central cause of the parallel programming problem is fundamental to the 
enterprise of programming itself. In other words, we believe that our challenges 
in programming parallel processors point to deeper challenges in programming 
software in general. We believe the only way to solve the programming 
problem in general is to first understand how to architect software. Thus, 
we feel that the way to solve the parallel programming problem is to first 
understand how to architect parallel software. Given a good software design 
grounded in solid architectural principles, a software engineer can produce 
high-quality and scalable software. Starting with an ill-suited sense of the 
architecture for a software system, however, almost always leads to failure. 
Therefore, it follows that the first step in addressing the parallel programming 
problem is to focus on software architecture. From that vantage point, we 
have a hope of choosing the right programming models and building the right 
software frameworks that will allow the general population of programmers to 
produce parallel software. 

In this article, we describe our work on software architecture. We use the 
device of a pattern language to write our ideas down and put them into a 
systematic form that can be used by others. After we present our pattern 
language [4], we present a case study to show how these patterns can be used to 
understand software architecture. 

Software Architecture and Design Patterns
Productive, efficient software follows from good software architecture. Hence, 
we need to better formalize how software is architected, and in order to do 
this we need a way to write down architectural ideas in a form that groups of 
programmers can study, debate, and come to consensus on. This systematic 
process has at its core the peer review process that has been instrumental in 
advancing scientific and engineering disciplines. 

“It is not the quality of our 

programming models that is 

inhibiting the adoption of parallel 

programming.”

“Given a good software design 

grounded in solid architectural 

principles, a software engineer can 

produce high-quality and scalable 

software.”
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The prerequisite to this process is a systematic way to write down the design 
elements from which an architecture is defined. Fortunately, the software 
community has already reached consensus on how to write these elements 
down in the important work Design Patterns [5]. Our aim is to arrive at a 
set of patterns whose scope encompasses the entire enterprise of software 
development from architectural description to detailed implementation.

Design Patterns 
Design patterns give names to solutions to recurring problems that experts in 
a problem-domain gradually learn and take for granted. It is the possession of 
this tool-bag of solutions, and the ability to easily apply these solutions, that 
precisely defines what it means to be an expert in a domain.  

For example, consider the Dense-Linear-Algebra pattern. Experts in fields that 
make heavy use of linear algebra have worked out a family of solutions to these 
problems. These solutions have a common set of design elements that can be 
captured in a Dense-Linear-Algebra design pattern. We summarize the pattern 
in the sidebar, but it is important to know that in the full text to the pattern 
[4] there would be sample code, examples, references, invariants, and other 
information needed to guide a software developer interested in dense linear 
algebra problems. 

The Dense-Linear-Algebra pattern is just one of the many patterns a software 
architect might use when designing an algorithm. A full design includes high-
level patterns that describe how an application is organized, mid-level patterns 
about specific classes of computations, and low-level patterns describing specific 
execution strategies. We can take this full range of patterns and organize them 
into a single integrated pattern language — a web of interlocking patterns 
that guide a designer from the beginning of a design problem to its successful 
realization [6, 7].

To represent the domain of software engineering in terms of a single pattern 
language is a daunting undertaking. Fortunately, based on our studies of 
successful application software, we believe software architectures can be built 
up from a manageable number of design patterns. These patterns define the 
building blocks of all software engineering and are fundamental to the practice 
of architecting parallel software. Hence, an effort to propose, argue about, and 
finally agree on what constitutes this set of patterns is the seminal intellectual 
challenge of our field.

“Design patterns give names to 

solutions to recurring problems 

that experts in a problem-domain 

gradually learn and take for granted.”

Computational Pattern: Dense-Linear-Algebra
Solution: A computation is organized as a 
sequence of arithmetic expressions acting on 
dense arrays of data. The operations and data 
access patterns are well defined mathematically 
so data can be pre-fetched and CPUs can 
execute close to their theoretically allowed 
peak performance. Applications of this pattern 
typically use standard building blocks defined 
in terms of the dimensions of the dense arrays 
with vectors (BLAS level 1), matrix-vector 
(BLAS level 2), and matrix-matrix (BLAS level 
3) operations.

“A full design includes high-level 

patterns that describe how an 

application is organized, mid-level 

patterns about specific classes of 

computations, and low-level patterns 

describing specific execution strategies.”
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Our Pattern Language 
Software architecture defines the components that make up a software system, 
the roles played by those components, and how they interact. Good software 
architecture makes design choices explicit, and the critical issues addressed by 
a solution clear. A software architecture is hierarchical rather than monolithic. 
It lets the designer localize problems and define design elements that can be 
reused in other architectures.

The goal of Our Pattern Language (OPL) is to encompass the complete 
architecture of an application from the structural patterns (also known as 
architectural styles) that define the overall organization of an application [8, 
9] to the basic computational patterns (also known as computational motifs) 
for each stage of the problem [10, 1], to the low-level details of the parallel 
algorithm [7]. With such a broad scope, organizing our design patterns into a 
coherent pattern language was extremely challenging. 

Our approach is to use a layered hierarchy of patterns. Each level in the 
hierarchy addresses a portion of the design problem. While a designer may in 
some cases work through the layers of our hierarchy in order, it is important to 
appreciate that many design problems do not lend themselves to a top-down 
or bottom-up analysis. In many cases, the pathway through our patterns will 
be to bounce around between layers with the designer working at whichever 
layer is most productive at a given time (so called, opportunistic refinement). 
In other words, while we use a fixed layered approach to organize our patterns 
into OPL, we expect designers will work though the pattern language in many 
different ways. This flexibility is an essential feature of design pattern languages. 

As shown in Figure 1, we organize OPL into five major categories of patterns. 
Categories 1 and 2 sit at the same level of the hierarchy and cooperate to create 
one layer of the software architecture.

1. Structural patterns: Structural patterns describe the overall organization of 
the application and the way the computational elements that make up the 
application interact. These patterns are closely related to the architectural 
styles discussed in [8]. Informally, these patterns correspond to the “boxes 
and arrows” an architect draws to describe the overall organization of an 
application. An example of a structural pattern is Pipe-and-Filter, described 
in the sidebar.

2. Computational patterns: These patterns describe the classes of 
computations that make up the application. They are essentially the 
thirteen motifs made famous in [10] but described more precisely as 
patterns rather than simply computational families. These patterns can be 
viewed as defining the “computations occurring in the boxes” defined by 
the structural patterns. A good example is the Dense-Linear-Algebra pattern 
described in an earlier sidebar. Note that some of these patterns (such as 
Graph-Algorithms or N-Body-Methods) define complicated design problems 
in their own right and serve as entry points into smaller design pattern 
languages focused on a specific class of computations. This is yet another 
example of the hierarchical nature of the software design problem. 

“It is important to appreciate that 

many design problems do not lend 

themselves to a top-down or bottom-

up analysis.”

Structural Pattern: Pipe-and-Filter
Solution: Structure an application as a fixed 
sequence of filters that take input data from 
preceding filters, carry out computations on that 
data, and then pass the output to the next filter. 
The filters are side-effect free; i.e., the result of 
their action is only to transform input data into 
output data. Concurrency emerges as multiple 
blocks of data move through the Pipe-and-Filter 
system so that multiple filters are active at one 
time.
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In OPL, the top two categories, the structural and computational patterns, 
are placed side by side with connecting arrows. This shows the tight coupling 
between these patterns and the iterative nature of how a designer works with 
them. In other words, a designer thinks about his or her problem, chooses a 
structural pattern, and then considers the computational patterns required 
to solve the problem. The selection of computational patterns may suggest a 
different overall structure for the architecture and may force a reconsideration 
of the appropriate structural patterns. This process, moving between structural 
and computational patterns, continues until the designer settles on a high-level 
design for the problem. 

Structural and computational patterns are used in both serial and parallel 
programs. Ideally, the designer working at this level, even for a parallel 
program, will not need to focus on parallel computing issues. For the 
remaining layers of the pattern language, parallel programming is a primary 
concern.

Parallel programming is the art of using concurrency in a problem to make the 
problem run to completion in less time. We divide the parallel design process 
into the following three layers.

3. Concurrent algorithm strategies: These patterns define high-level strategies 
to exploit concurrency in a computation for execution on a parallel 
computer. They address the different ways concurrency is naturally 
expressed within a problem by providing well-known techniques to exploit 
that concurrency. A good example of an algorithm strategy pattern is the 
Data-Parallelism pattern.

4. Implementation strategies: These are the structures that are realized in 
source code to support (a) how the program itself is organized and (b) 
common data structures specific to parallel programming. The Loop-Parallel 
pattern is a well-known example of an implementation strategy pattern.

5. Parallel execution patterns: These are the approaches used to support the 
execution of a parallel algorithm. This includes (a) strategies that advance a 
program counter and (b) basic building blocks to support the coordination 
of concurrent tasks. The single instruction multiple data (SIMD) pattern is 
a good example of a parallel execution pattern.

Patterns in these three lower layers are tightly coupled. For example, software 
designs using the Recursive-Splitting algorithm strategy often utilize a Fork/Join 
implementation strategy pattern which is typically supported at the execution 
level with the thread-pool pattern. These connections between patterns are a key 
point in the text of the patterns. 

Concurrent Algorithm Strategy Pattern: 
Data-Parallelism 
Solution: An algorithm is organized as 
operations applied concurrently to the elements 
of a set of data structures. The concurrency is 
in the data. This pattern can be generalized by 
defining an index space. The data structures 
within a problem are aligned to this index space 
and concurrency is introduced by applying a 
stream of operations for each point in the index 
space.  

Implementation Strategy Pattern: 
Loop-Parallel 
Solution: An algorithm is implemented as 
loops (or nested loops) that execute in parallel. 
The challenge is to transform the loops so that 
iterations can safely execute concurrently and in 
any order. Ideally, this leads to a single source 
code tree that generates a serial program (by 
using a serial compiler) or a parallel program 
(by using compilers that understand the parallel 
loop constructs). 

Parallel Execution Pattern: SIMD
Solution: An implementation of a strictly data 
parallel algorithm is mapped onto a platform 
that executes a single sequence of operations 
applied uniformly to a collection of data 
elements. The instructions execute in lockstep 
by a set of processing elements but on their own 
streams of data. SIMD programs use specialized 
data structure, data alignment operations, and 
collective operations to extend this pattern to a 
wider range of data parallel problems.   
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OPL draws from a long history of research on software design. The structural 
patterns of Category 1 are largely taken from the work of Garlan and Shaw on 
architectural styles [8, 9]. That these architectural styles could also be viewed 
as design patterns was quickly recognized by Buschmann [11]. We added 
two structural patterns that have their roots in parallel computing to Garlan 
and Shaw’s architectural styles: Map-Reduce, influenced by [12] and Iterative-
Refinement, influenced by Valiant’s bulk-synchronous-processing pattern [13]. 
The computation patterns of Category 2 were first presented as “dwarfs” in 
[10] and their role as computational patterns was only identified later [1]. 
The identification of these computational patterns in turn owes a debt to Phil 
Colella’s unpublished work on the “Seven Dwarfs of Parallel Computing.” 
The lower three categories within OPL build on earlier and more traditional 
patterns for parallel algorithms by Mattson, Sanders, and Massingill [7]. This 
work was somewhat inspired by Gamma’s success in using design patterns for 
object-oriented programming [5]. Of course all work on design patterns has its 
roots in Alexander’s ground-breaking work identifying design patterns in civil 
architecture [6].

Applications

Structural Patterns

Pipe-and-filter

Agent and Repository

Process Control

Event Based,
Implicit Incovation

Puppeteer

Model-view Controller

Iterative Refinement

Map Reduce

Layered Systems

Arbitrary Static
Task Graph

Computational Patterns

Graph Algorithms

Dynamic Programming

Dense Linear Algebra

Spare Linear Algebra

Unstructured Grids

Structured Grids

Graphical Models

Finite State Machines

N-Body Methods

Circuits

Spectral Methods

Monte Carlo

Parallel Execution Patterns
MIMD
SIMD

Thread Pool
Speculation

Task Graph
Data Flow
Digital Circuits

Msg. Pass
Collective Comm.
Mutual Exclusion

Pt-2-pt Sync.
Coll Sync.
Trans. Mem.

CoordinationAdvancing “Program Counters”

Implementation Strategy Patterns
SPMD
Strict Data Par

Fork/Join
Actors
Master/Worker
Graph Partitioning

Loop Par.
BSP
Task Queue

Shared Queue
Shared Hash Table

Distributed Array
Shared Data

Data StructureProgram Structure

Algorithm Strategy Patterns
Task Parallelism
Recursive Splitting

Data Parallelism
Pipeline

Discrete Event
Geometric Decomposition

Speculation

Backtrack  Branch 
and Bound

Figure 1: The Structure of OPL and the Five Categories of Design Patterns. 
Details About Each of the Patterns can be Found in [4]. 
Source: UC Berkeley ParLab, 2009

“All work on design patterns has its 

roots in Alexander’s ground-breaking 

work identifying design patterns in 

civil architecture.”
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Case Study: Content-based Image Retrieval
Experience has shown that an easy way to understand patterns and how they 
are used is to follow an example. In this section we describe a problem and its 
parallelization by using patterns from OPL. In doing so we describe a subset of 
the patterns and give some indication of the way we make transitions between 
layers in the pattern language.

In particular, to understand how OPL can help software architecture, we 
use a content-based image retrieval (CBIR) application as an example. From 
this example (drawn from [14]), we show how structural and computational 
patterns can be used to describe the CBIR application and how the lower-
layer patterns can be used to parallelize an exemplar component of the CBIR 
application.

In Figure 2 we see the major elements of our CBIR application as well as the 
data flow. The key elements of the application are the feature extractor, the 
trainer, and the classifier components. Given a set of new images the feature 
extractor will collect features of the images. Given the features of the new 
images, chosen examples, and some classified new images from user feedback, 
the trainer will train the parameters necessary for the classifier. Given the 
parameters from the trainer, the classifier will classify the new images based on 
their features. The user can classify some of the resulting images and give 
feedback to the trainer repeatedly in order to increase the accuracy of the 
classifier. This top-level organization of CBIR is best represented by the 
Pipe-and-Filter structural pattern. The feature-extractor, trainer, and classifier 
are filters or computational elements that are connected by pipes (data 
communication channels). Data flows through the succession of filters that do 
not share state and only take input from their input pipe(s). The filters perform 
the appropriate computation on those data and pass the output to the next 
filter(s) via its output pipe. The choice of Pipe-and-Filter pattern to describe the 
top-level structure of CBIR is not unusual. Many applications are naturally 
described by Pipe-and-Filter at the top level.

In our approach we architect software by using patterns in a hierarchical 
fashion. Each filter within the CBIR application contains a complex set 
of computations. We can parallelize these filters using patterns from OPL. 
Consider, for example, the classifier filter. There are many approaches to 
classification, but in our CBIR application we use a support-vector machine 
(SVM) classifier. SVM is widely used for classification in image recognition, 
bioinformatics, and text processing. The SVM classifier evaluates the function: 

z  = sgn  b + ∑ yi αi Φ (xi , z)
l 

i=lˆ { {
 where xi is the ith support vector, z is the query vector, Φ is the kernel function, 
αi is the weight, yi in {-1, 1} is the label attached to support vector xi, b is a 
parameter, and sgn is the sign function. In order to evaluate the function 
quickly, we identified that the kernel functions are operating on the products 
and norms of xi and z. We can compute the products between a set of query 

Results

Choose Examples

User Feedback

New Images

Classifier

Trainer

Feature Extractor

Figure 2: The CBIR Application Framework
Source: UC Berkeley ParLab, 2009

“Many applications are naturally 

described by Pipe-and-Filter at the 

top level.”
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vectors and the support vectors by a BLAS level-3 operation with higher 
throughput. Therefore, we compute the products and norms first, use the 
results for computing the kernel values, and sum up the weighted kernel 
values. We architect the SVM classifier as shown in Figure 3. The basic 
structure of the classifier filter is itself a simple Pipe-and-Filter structure with 
two filters: the first filter takes the test data and the support vectors needed to 
calculate the dot products between the test data and each support vector. This 
dot product computation is naturally performed by using the Dense-Linear-
Algebra computational pattern. The second filter takes the resulting dot 
products, and the following steps are to compute the kernel values, sum up all 
the kernel values, and scale the final results if necessary. The structural pattern 
associated with these computations is Map-Reduce (see the Map-Reduce 
sidebar). 

In a similar way the feature-extractor and trainer filters of the CBIR application 
can be decomposed. With that elaboration we would consider the “high-
level” architecture of the CBIR application complete. In general, to construct 
a high-level architecture of an application, we decompose the application 
hierarchically by using the structural and computational patterns of OPL.

Constructing the high-level architecture of an application is essential, and this 
effort improves not just the software viability but also eases communication 
regarding the organization of the software. However, there is still much work to 
be done before we have a working software application. To perform this work 
we move from the top layers of OPL (structural and computational patterns) 
down into lower layers (concurrent algorithmic strategy patterns etc.). To 
illustrate this process we provide additional detail on the SVM classifier filter.

Concurrent Algorithmic Strategy Patterns
After identifying the structural patterns and the computational patterns in 
the SVM classifier, we need to find appropriate strategies to parallelize the 
computation. In the Map-Reduce pattern the same computation is mapped 
to different non-overlapping partitions of the state set. The results of these 
computations are then gathered, or reduced. If we are interested in arriving 
at a parallel implementation of this computation, then we define the Map-
Reduce structure in terms of a Concurrent Algorithmic Strategy. The natural 
choices for Algorithmic Strategies are the Data-Parallelism and Geometric-
Decomposition patterns. By using the Data-Parallelism pattern we can compute 
the kernel value of each dot product in parallel (see the Data-Parallelism 
sidebar). Alternatively, by using the Geometric-Decomposition pattern (see the 
Geometric-Decomposition sidebar) we can divide the dot products into regular 
chunks of data, apply the dot products locally on each chunk, and then apply 
a global reduce to compute the summation over all chunks for the final results. 
We are interested in designs that can utilize large numbers of cores. Since the 
solution based on the Data-Parallelism pattern exposes more concurrent tasks 
(due to the large numbers of dot products) compared to the more coarse-
grained geometric decomposition solution, we choose the Data-Parallelism 
pattern for implementing the map reduce computation.

Test Data
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Dense Linear
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MapReduce
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dot
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Compute
Kernel values,
sum, & scale

Figure 3: The Major Computations of the SVM 
Classifier 
Source: UC Berkeley ParLab, 2009

Structural Pattern: Map-Reduce
Solution: A solution is structured in two phases: 
(1) a map phase where items from an “input 
data set” are mapped onto a “generated data set” 
and (2) a reduction phase where the generated 
data set is reduced or otherwise summarized 
to generate the final result. It is easy to exploit 
concurrency in the map phase, since the map 
functions are applied independently for each 
item in the input data set. The reduction phase, 
however, requires synchronization to safely 
combine partial solutions into the final result.
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The use of the Data-Parallelism algorithmic strategy pattern to parallelize the 
Map-Reduce computation is shown in the pseudo code of the kernel value 
calculation and the summation. These computations can be summarized as 
shown in Figure 4. Line 1 to line 4 is the computation of the kernel value on 
each dot product, which is the map phase. Line 5 to line 13 is the summation 
over all kernel values, which is the reduce phase. Function NeedReduce checks 
whether element “i” is a candidate for the reduction operation. If so, the 
ComputeOffset function calculates the offset between element “i” and another 
element. Finally, the Reduce function conducts the reduction operation on 
element “i” and “i+offset”. 

Implementation Strategy Patterns
To implement the data parallelism strategy from the Map-Reduce pseudo-
code, we need to find the best Implementation Strategy Pattern. Looking at the 
patterns in OPL, both the Strict-Data-Parallel and Loop-Parallel patterns are 
applicable. 

Whether we choose the Strict-data-parallel or Loop-parallel patterns in the 
implementation layer, we can use the SIMD pattern for realizing the execution. 
For example, we can apply SIMD on line 2 in Code Listing 1 for calculating 
the kernel value of each dot product in parallel. The same concept can be used 
on line 7 in Code Listing 1 for conducting the checking procedure in parallel. 
Moreover, in order to synchronize the computations on different processing 
elements on line 4 and line 12 in Code Listing 1, we can use the barrier 
construct described within the Collective-Synchronization pattern for achieving 
this goal. 

function ComputeMapReduce( DotProdAndNorm, Result) {

1  for i ← 1 to n {

2    LocalValue[i] ← 

  ComputeKernelValue(DotProdAndNorm[i]);

3 }

4 Barrier();

5 for reduceLevel ← 1 to MaxReduceLevel {

6 for i ← 1 to n {

7     if (NeedReduce(i, reduceLevel) ) {

8      offset ← ComputeOffset(i, reduceLevel);

9      LocalValue[i] ← Reduce(LocalValue[i], 

            LocalValue[i+offset]);

10    }

11   }

12   Barrier();

13  }

14}
Code Listing 1: Pseudo Code of the Map Reduce Computation
Source: Intel Corporation, 2009

Algorithm Strategy Pattern: 
Geometric-Decomposition
Solution: An algorithm is organized by 
(1) dividing the key data structures within 
a problem into regular chunks, and (2) 
updating each chunk in parallel. Typically, 
communication occurs at chunk boundaries 
so an algorithm breaks down into three 
components: (1) exchange boundary data, (2) 
update the interiors or each chunk, and (3) 
update boundary regions. The size of the chunks 
is dictated by the properties of the memory 
hierarchy to maximize reuse of data from local 
memory/cache. 

Implementation Strategy Pattern: 
Strict-Data-Parallel 
Solution: Implement a data parallel algorithm 
as a single stream of instructions applied 
concurrently to the elements of a data set. 
Updates to each element are either independent, 
or they involve well-defined collective operations 
such as reductions or prefix scans.
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In summary, the computation of the SVM classifier can be viewed as a 
composition of the Pipe-and-Filter, Dense-Linear-Algebra, and Map-Reduce 
patterns. To parallelize the Map-Reduce computation, we used the Data-
Parallelism pattern. To implement the Data-Parallelism Algorithmic Strategy, 
both the Strict-Data-Parallel and Loop-Parallel patterns are applicable. We 
choose the Strict-Data-Parallel pattern, since it seemed a more natural choice 
given the fact we wanted to expose large amounts of concurrency for use on 
many-core chips with large numbers of cores. It is important to appreciate, 
however, that this is a matter of style, and a quality design could have been 
produced by using the Loop-Parallel pattern as well. To map the Strict-Data-
Parallel pattern onto a platform for execution, we chose a SIMD pattern. While 
we did not show the details of all the patterns used, along the way we used the 
Shared-Data pattern to define the synchronization protocols for the reduction 
and the Collective-Synchronization pattern to describe the barrier construct. It 
is common that these functions (reduction and barrier) are provided as part of 
a parallel programming environment; hence, while a programmer needs to be 
aware of these constructs and what they provide, it is rare that they will need to 
explore their implementation in any detail.   

Other Patterns
OPL is not complete. Currently OPL is restricted to those parts of the 
design process associated with architecting and implementing applications 
that target parallel processors. There are countless additional patterns that 
software development teams utilize. Probably the best known example is the 
set of design patterns used in object-oriented design [8]. We made no attempt 
to include these in OPL. An interesting framework that supports common 
patterns in parallel object-oriented design is Thread Building Blocks (TBB) 
[15]. 

OPL focuses on patterns that are ultimately expressed in software. These 
patterns do not, however, address methodological patterns that experienced 
parallel programmers use when designing or optimizing parallel software. The 
following are some examples of important classes of methodological patterns.

 • Finding Concurrency patterns [7]. These patterns capture the process that 
experienced parallel programmers use when exploiting the concurrency 
available in a problem. While these patterns were developed before our set 
of Computational patterns was identified, they appear to be useful when 
moving from the Computational patterns category of our hierarchy to 
the Parallel Algorithmic Strategy category. For example, applying these 
patterns would help to indicate when geometric decomposition is chosen 
over data parallelism as a dense linear algebra problem moves toward 
implementation. 

“We choose the Strict-Data-Parallel 
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 • Parallel Programming “Best Practices” patterns. This describes a broad range of 
patterns we are actively mining as we examine the detailed work in creating 
highly-efficient parallel implementations. Thus, these patterns appear to 
be useful when moving from the Implementation Strategy patterns to the 
Concurrent Execution patterns. For example, we are finding common 
patterns associated with optimizing software to maximize data locality.

There is a growing community of programmers and researchers involved in 
the creation of OPL. The current status of OPL, including the most recent 
updates of patterns, can be found at: http://parlab.eecs.berkeley.edu/wiki/
patterns/patterns. This website also has links to details on our shorter monthly 
patterns workshop as well as our longer, two-day, formal patterns workshop. 
We welcome your participation. 

Summary, Conclusions, and Future Work
We believe that the key to addressing the challenge of writing software is to 
architect the software. In particular, we believe that the key to addressing 
the new challenge of programming multi-core and many-core processors 
is to carefully architect the parallel software. We can define a systematic 
methodology for software architecture in terms of design patterns and a pattern 
language. Toward this end we have taken on the ambitious project of creating 
a comprehensive pattern language that stretches all the way from the initial 
software architecture of an application down to the lowest-level details of 
software implementation. 

OPL is a work in progress. We have defined the layers in OPL, listed the 
patterns at each layer, and written text for many of the patterns. Details are 
available online [4]. On the one hand, much work remains to be done. On the 
other hand, we feel confident that our structural patterns capture the critical 
ways of composing software, and our computational patterns capture the key 
underlying computations. Similarly, as we move down through the pattern 
language, we feel that the patterns at each layer do a good job of addressing 
most of the key problems for which they are intended. The current state of 
the textual descriptions of the patterns in OPL is somewhat nascent. We need 
to finish writing the text for some of the patterns and have them carefully 
reviewed by experts in parallel applications programming. We also need to 
continue mining patterns from existing parallel software to identify patterns 
that may be missing from our language. Nevertheless, last year’s effort spent 
in mining five applications netted (only) three new patterns for OPL. This 
shows that while OPL is not fully complete, it is not, with the caveats described 
earlier, dramatically deficient. 

Complementing the efforts to mine existing parallel applications for patterns 
is the process of architecting new applications by using OPL. We are currently 
using OPL to architect and implement a number of applications in areas such 
as machine learning, computer vision, computational finance, health, physical 
modeling, and games. During this process we are watching carefully to identify 
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where OPL helps us and where OPL does not offer patterns to guide the 
kind of design decisions we must make. For example, mapping a number of 
computer-vision applications to new generations of many-core architectures 
helped identify the importance of a family of data layout patterns. 

The scope of the OPL project is ambitious. It stretches across the full range of 
activities in architecting a complex application. It has been suggested that we 
have taken on too large of a task; that it is not possible to define the complete 
software design process in terms of a single design pattern language. However, 
after many years of hard work, nobody has been able to solve the parallel 
programming problem with specialized parallel programming languages or 
tools that automate the parallel programming process. We believe a different 
approach is required, one that emphasizes how people think about algorithms 
and design software. This is precisely the approach supported by design 
patterns, and based on our results so far, we believe that patterns and a pattern 
language may indeed be the key to finally resolving the parallel programming 
problem.

While this claim may seem grandiose, we have an even greater aim for our 
work. We believe that our efforts to identify the core computational and 
structural patterns for parallel programming has led us to begin to identify the 
core computational elements (computational patterns, analogous to atoms) 
and means of assembling them (structural patterns, analogous to molecular 
bonding) of all electronic systems. If this is true, then these patterns not 
only serve as a means to assist software design but can be used to architect a 
curriculum for a true discipline of computer science. 
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Abstract
As multi-processors become mainstream, software developers must harness 
the parallelism available in programs to keep up with multi-core performance. 
Writing parallel programs, however, is notoriously difficult, even for the 
most advanced programmers. The main reason for this lies in the non-
deterministic nature of concurrent programs, which makes it very difficult 
to reproduce a program execution. As a result, reasoning about program 
behavior is challenging. For instance, debugging concurrent programs is 
known to be difficult because of the non-determinism of multi-threaded 
programs. Malicious code can hide behind non-determinism, making software 
vulnerabilities much more difficult to detect on multi-threaded programs.

In this article, we explore hardware and software avenues for improving the 
programmability of Intel® multi-processors. In particular, we investigate 
techniques for reproducing a non-deterministic program execution that can 
efficiently deal with the issues just mentioned. We identify the main challenges 
associated with these techniques, examine opportunities to overcome some 
of these challenges, and explore potential usage models of program execution 
reproducibility for debugging and fault tolerance of concurrent programs.

Introduction
A common assumption of many application developers is that software behaves 
deterministically: given program A, running A on the same machine several 
times should produce the same outcome. This assumption is important for 
application performance, as it allows one to reason about program behavior. 
Most single-threaded programs executing on uni-processor systems exhibit this 
property because they are inherently sequential. However, when executed on 
multi-core processors, these programs need to be re-written to take advantage 
of all available computing resources to improve performance. Writing parallel 
programs, however, is a very difficult task because parallel programs tend to be 
non-deterministic by nature: running the same parallel program A on the same 
multi-core machine several times can potentially lead to different outcomes 
for each run. This makes both improving performance and reasoning about 
program behavior very challenging.
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Deterministic multi-processor replay (DMR) can efficiently deal with the 
non-deterministic nature of parallel programs. The main idea behind DMR is 
reproducibility of program execution. Reproducing a multi-threaded program 
execution requires recording all sources of non-determinism, so that during 
replay, these threads can be re-synchronized in the same way as in the original 
execution. On modern chip multi-processor (CMP) systems, the sources of 
non-determinism can be either input non-determinism (data inputs, keyboard, 
interrupts, I/O, etc.) or memory non-determinism (access interleavings among 
threads). These sources of non-determinism can be recorded by using either 
software or hardware, or a combination of both.

Software-only implementations of DMR can run on legacy machines without 
hardware changes, but they suffer from performance slowdowns that can 
restrict the applicability of DMR. To achieve performance levels comparable 
to hardware schemes, software approaches can be backed up with hardware 
support. In this article, we describe what the software-only approaches for 
DMR may look like, and what types of hardware support may be required to 
mitigate their performance. Our discussion starts with the details of DMR: 
we focus on the usage models and on the main challenges associated with 
recording and replaying concurrent programs. We then describe several ways 
in which DMR schemes can be implemented in software, and we elaborate 
on the various tradeoffs associated with these approaches. Finally, we describe 
hardware extensions to software-only implementations that can help mitigate 
performance and improve the applicability of DMR. 

Why Record-and-Replay Matters
Recording and deterministically replaying a program execution gives computer 
users the ability to travel backward in time, recreating past states and events 
in the computer. Time travel is achieved by recording key events when the 
software runs, and then restoring to a previous checkpoint and replaying the 
recorded log to force the software down the same execution path.  

This mechanism enables a wide range of applications in modern systems, 
especially in multi-processor systems in which concurrent programs are subject 
to non-deterministic execution: such execution makes it very hard to reason 
about or reproduce a program behavior.

 • Debugging. Programmers can use time travel to help debug programs 
[36, 39, 15, 4, 1] including programs with non-determinism [20, 33], 
since time travel can provide the illusion of reverse execution and reverse 
debugging. 

 • Security. System builders can use time travel to replay the past execution of 
applications looking for exploits of newly discovered vulnerabilities [19], to 
inspect the actions of an attacker [12], or to run expensive security checks 
in parallel with the primary computation [9].  

 • Fault tolerance. System designers can use replay as an efficient mechanism 
for recreating the state of a system after a crash [5].
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Non-determinism of Concurrent Programs
The goal of deterministic replay is to be able to reproduce the execution of a 
program in the way it was observed during recording. In order to reproduce 
an execution, each instruction should see the same input operands as in the 
original run. This should guarantee the same execution paths for each thread. 
During an execution, a program reads data from either memory or register 
values. Some of the input is not deterministic across different runs of the 
program, even if the program’s command line arguments are the same. Hence, 
in order to guarantee determinism these inputs need to be recorded in a 
log and injected at replay. In this section, we describe these sources of non-
determinism. 

Deterministic replay can be done at different levels of the software stack. At 
the top level, one can replay only the user-level instructions that are executed. 
These include application code and system library code. This is the approach 
taken by BugNet [26], Capo [25], iDNA [3], and PinPlay [29]. At the lowest 
level, a system can record and replay all instructions executed in the machine, 
including both system-level and user-level instructions. Regardless of the level 
one is looking at, the sources of non-determinism can be divided into two sets: 
input read by the program and memory interleavings across different threads of 
execution. We now describe each source in more detail. 

Input Non-determinism
Input non-determinism differs, depending on which layer of the system is 
being recorded for replay. User-level replay has different requirements from 
those of system-level replay. Conceptually, the non-deterministic inputs are 
all the inputs that are consumed by the system layer being recorded that are 
not produced by the same layer. For instance, for user-level replay, all inputs 
coming from the operating system are non-deterministic, because there is 
no guarantee of repeatability across two runs. A UNIX* system call, such as 
gettimeofday, is inherently non-deterministic across two runs, for instance. 
For a system-level record, all inputs that are external to the system are non-
deterministic inputs. External inputs are inputs coming from external devices 
(I/O, interrupts, DMAs). We now discuss the source of non-determinism at 
each level.

For user-level replay, the sources of non-determinism are listed as follows:

 • System calls. Many system calls are non-deterministic. An obvious example is 
a timing-dependent call, such as the UNIX call gettimeofday. Other system 
calls can also be non-deterministic. A system call reading information from 
a network card may return different results, or a system-call reading from a 
disk may return different results.

 • Signals. Programs can receive asynchronous signals that can be delivered at 
different times across two runs, making the control flow non-deterministic.

“Some of the input is not deterministic 

across different runs of the program, 

even if the program’s command line 

arguments are the same.”

“User-level replay has different 

requirements from those of system-level 

replay.”

“For a system-level record, all inputs 

that are external to the system are 

non-deterministic inputs.”



Intel® Technology Journal | Volume 13, Issue 4, 2009

Hardware and Software Approaches for Deterministic Multi-processor Replay of Concurrent Programs   |   23

 • Special architectural instructions. On x86 architecture, some instructions 
are non-deterministic, such as RDTSC (read timestamp) and RDPMC 
(read performance counters). Across processor generations of the same 
architecture, CPUID will also return different values, if the replay happens 
in a processor other than the one in which the recording happened.

In addition to the non-deterministic inputs just mentioned, other sources of 
non-determinism at the user-level are the location of the program stack that 
can change from run to run and the locations where dynamic libraries are 
loaded during execution. Although these are not inputs to the program, they 
also change program behavior and need to be taken care of for deterministic 
replay.

At the system-level, the major sources of non-determinism are the following:

 • I/O. It is common for most architectures to allow memory mapped 
I/O: loads and stores effectively read from and write to devices. If one is 
replaying the operating system code, the reads from I/O devices are not 
guaranteed to be repeatable. As a result, the values read by those load 
instructions need to be recorded. 

 • Hardware interrupts. Hardware interrupts trigger the execution of an 
interrupt service routine, which changes the control flow of the execution. 
Interrupts are used to notify the processor that some data (e.g., disk read) 
are available to be consumed. An interrupt is delivered at any point in time 
during the execution of the operating system code. A recorder needs to log 
the point at which the interrupt arrived and the content of the interrupt 
(what its source is: e.g., disk I/O, network I/O, timer interrupt, etc.).

 • Direct Memory Access (DMA). Direct memory accesses perform writes 
directly to memory without the intervention of the processor. The values 
written by DMA as well as the timestamp at which those values were 
written need to be recorded to be reproducible during replay.

In addition, the results of processor-specific instructions, such as x86 RDTSC, 
also need to be recorded as is the case with user-level code, in order to ensure 
repeatability.

“Other sources of non-determinism at 

the user-level are the location of the 

program stack that can change from 

run to run and the locations where 

dynamic libraries are loaded during 

execution.”
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which the interrupt arrived and the 

content of the interrupt.”
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Memory Interleaving
Input non-determinism is present on single-core and multi-core machines. 
However, in multi-core machines, an additional source of non-determinism is 
present and that is the order in which all threads in the system access shared 
memory. This is typically known as memory races, where different runs of 
a program may result in different threads winning the race when trying to 
access a piece of shared memory. Memory races occur between synchronization 
operations (synchronization races) or between data accesses (data races). At the 
user-level, threads access memory in a different order, because the operating 
system may schedule them in a different order. This is due to interrupts being 
delivered at different times, because of differences in the architectural state 
(cache line misses, memory latencies, etc.) and also because of the load in the 
system. As a result, the shared memory values seen by each thread in different 
runs can change, resulting in different behavior for each thread across runs. 
This is the major source of non-determinism in multi-threaded programs. 
Races also occur among threads within the operating system, and the behavior 
across two runs is also not guaranteed to be the same. Hence the order in 
which races occur within the operating system code also needs to be recorded 
to guarantee deterministic replay.

Software Approaches for Deterministic Replay
Software-only approaches to record-and-replay (R&R) can be deployed on 
current commodity hardware at no cost. As described in the previous section, 
an R&R solution needs to tackle two issues: logging and replaying non-
deterministic inputs and enforcing memory access interleavings. We describe 
software-only solutions to both of these challenges next, and we provide details 
on the techniques used in recent deterministic replay approaches extant in 
literature. Because there are more software-only R&R-like systems than can 
possibly be discussed in this article, we choose to mention those that best 
characterize our focus. Once we’ve surveyed the literature, we discuss the 
remaining open challenges in software-only solutions.

Reproducing Input Non-determinism
Systems and programs execute non-deterministically due to the external 
resources they are exposed to and the timing of these resources. Thus, these 
external resources can be all viewed as inputs, whether they are user inputs, 
interrupts, system call effects, etc. Given the same inputs and the same initial 
state, the behavior of the system or application is deterministic. The approach to 
R&R, therefore, is to log these inputs during the logging phase and inject them 
back during replay. 
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Table 1 summarizes the replay systems under discussion in terms of the level of 
replay (user-level or system-level), usage model, and how they are implemented 
for replaying inputs.

Replay System Level of Replay Usage Model Implementation

Bressoud and Schneider [5] System Fault-tolerance Virtual machine
CapoOne [25] User General notion of “time travel” 

for multiple purposes
Kernel modifications, ptrace

Flashback [36] User Debugging Kernel modifications
iDNA [3] User Debugging, profiling Dynamic instrumentation
Jockey [34] User Debugging Library-based, rewrites system calls
Liblog [16] User Debugging Library-based, intercepts calls to libc
ODR [2] User Debugging Kernel modifications, ptrace
PinPlay [29] User Debugging, profiling Dynamic instrumentation
R2 [17] User Debugging Library-based, stubs for replayed function calls
ReVirt [13] System Security Virtual machine
TTVM [20] System Debugging Virtual machine
VMWare [38] System General replay Virtual machine

Table 1:  Summary of Approaches to Replaying Input Non-determinism
Source:  Intel Corporation, 2009

User-level Input Non-determinism
First, let us consider user application replay. For the most part, we discuss 
how several approaches handle system calls and signals, since together they 
represent a large part of the non-deterministic external resources exposed to the 
application. They also represent resources that have inherently deterministic 
timing and non-deterministic timing, respectively. 

System Calls
An application’s interaction with the external system state is generally confined 
to its system calls. We discuss in detail how two recent replay systems — 
Flashback [36] and CapoOne [25] — handle these system calls. Flashback can 
roll back the memory state of a process to user-defined checkpoints, and it 
supports replay by logging the process’s interaction with the system. Flashback’s 
usage model is for debugging software. CapoOne can log and replay multiple 
threads and processes in a given replay group, cohesively, while concurrently 
supporting multiple independent replay groups. It re-executes the entire 
application during replay. CapoOne requires additional hardware to support 
multi-processor replay; however, its technique for enforcing an application’s 
external inputs is completely software-based.

“Flashback can roll back the memory 

state of a process to user-defined 

checkpoints.”
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Both Flashback and CapoOne interpose on system call routines: they log the 
inputs, results, and side-effects (copy_to_user) of each system call, and they 
inject the data back in during re-execution of system call entry and exit points. 
If the effect of a given system call is isolated to only the user application (e.g., 
getpid()), the actual call is bypassed during replay, and its effects are emulated 
by injecting the values retrieved from the log. On the other hand, if a system 
call modifies a system state that is outside of the replayed application (e.g., 
fork()), the system call is re-executed during replay in a manner such that its 
effect on the application is the same as during the logging phase. CapoOne 
interposes on system calls in user space via the ptrace mechanism, while 
Flashback does so with kernel modifications. Another replay scheme called 
ODR [2] describes similar techniques to handle system calls, by using both 
ptrace and kernel modules. Jockey [34], a replay debugger, is slightly different 
from Flashback and CapoOne in that Jockey links its own shared-object file to 
the replayed application and then rewrites the system calls of interest.

While all of these approaches automatically define the interface at which 
logging and replay occur, namely the system call boundary, R2 [17] is a library-
based replay debugger tool that allows the user to choose this demarcation. 
Functions above the user-defined interface are re-executed during replay, while 
those below it are emulated by using data from log files. Implementation-
wise, R2 generates, and later calls, the stub associated with each function that 
needs to be logged or replayed. The authors of R2 also address the issue of 
preserving order between function calls that are executed by different threads. 
R2 uses a Lamport clock [21] to either serialize all calls or allow them to occur 
concurrently, as long as causal-order is maintained.

Signals
With system calls, we are only interested in recording their effects, since they 
always execute at the same point in a given application. This is, however, 
untrue for signals. The purpose of a signal is to notify an application of a given 
event, and since signals are asynchronous and can occur at any point during 
the application’s execution, they are a good example of a non-deterministic 
input that is time-related. Although Flashback does not support signal replay, 
Flashback’s developers suggest using the approach described in [35]: i.e., use the 
processor’s instruction counter to log exactly when the signal occurred. During 
replay, the signal would be re-delivered when the instruction counter reaches 
the logged value. Jockey, on the other hand, delays all signals encountered 
during the logging phase until the end of the next system call, which it logs 
with that system call. Thus, during replay, the signal is re-delivered at the end 
of the same system call. CapoOne and liblog [16], another replay debugger, use 
a similar technique. 
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Dynamic Instrumentation
PinPlay [29] and iDNA [3] are replay systems that focus on the application 
debugging usage model: they are based on the dynamic binary instrumentation 
of a captured program trace. Non-deterministic input is logged and replayed, 
by tracking and restoring changes to registers and main memory. PinPlay 
replays asynchronous signals by logging the instruction count of where signals 
occur. 

Full-system Input Non-determinism
We move on to consider approaches for software-based, full-system replay, 
which include ReVirt [13], TTVM [20], the system described by [5], and 
VMWare [38]. The first three were designed for the usage models of security, 
debugging, and fault tolerance. Perhaps, unsurprisingly, all of these methods 
take advantage of virtual machines. 

ReVirt uses UMLinux [6], a virtual machine that runs as a process on the 
host. Hardware components and events of the guest are emulated by software 
analogues. For example, the guest hard disk is a host file, the guest CD-ROM 
is a host device, and guest hardware interrupt events are simulated by the host 
delivering a signal to the guest kernel. With these abstractions, ReVirt is able to 
provide deterministic replay by checkpointing the virtual disk and then logging 
and replaying the inputs that are external to the virtual machine. Similar to 
user-application replay, each external input may require that only the data 
associated with it need be logged, or additionally, it may require that a timing-
factor for those that are asynchronous be logged as well. ReVirt logs the input 
from external devices such as the keyboard and CD-ROM, non-deterministic 
results returned by system calls from the guest kernel to the host kernel, and 
non-deterministic hardware instructions such as RDTSC. Guest hardware 
interrupts, emulated by signals, are asynchronous, and thus ReVirt has to 
ensure that these are delivered at the same point in the execution path. The 
authors chose to use the program counter and the hardware retired branches 
counter to uniquely identify the point to deliver the signal.

TTVM uses ReVirt for its logging and replaying functionality, but makes 
changes that make it more suitable for its debugging usage model; for example, 
TTVM provides support for greater and more frequent checkpoints.

Reproducing Memory Access Non-determinism
The techniques we just described guarantee determinism for replaying single-
threaded applications or multi-threaded applications where the threads are 
independent from one another. Deterministic replay of multi-threaded 
applications, with threads communicating via synchronization or through 
shared memory, require additional support.

“Non-deterministic input is logged 
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Table 2 summarizes the replay systems we describe next in terms of usage 
model, multi-processor support, support for replaying data-races without 
additional analysis, and support for immediate replay without a state-
exploration stage.

Replay System Usage Model Multiprocessor 
Support?

Data Race Support? Immediate Replay 
(no offline state-
exploration stage)?

DejaVu [8] Debugging No Yes Yes

iDNA [3] Debugging, profiling Yes No Yes

Instant Replay [23] Debugging Yes No Yes

Kendo [27] Debugging, fault-tolerance Yes No Yes

Liblog [16] Debugging No Yes Yes

ODR [2] Debugging Yes Yes No

PinPlay [29] Debugging Yes Yes Yes

PRES [28] Debugging Yes Yes No

RecPlay [32] Debugging Yes No Yes

Russinovich and Cogswell [33] Debugging No Yes Yes

SMP-ReVirt [11] General replay Yes Yes Yes

Table 2: Summary of Approaches to Replaying Memory Access Non-
determinism 
Source:  Intel Corporation, 2009

Replay in Uniprocessors
In a uni-processor system, it was observed that since only one thread can run at 
any given time, recording the order of how the threads were scheduled on the 
processor is sufficient for later replaying of the memory access interleaving [16, 
8, 33]. These solutions have been implemented at the operating-system level 
[33], virtual-machine level [8], and user level [16].

Replay of Synchronized Accesses
On a multi-processor, thread-scheduling information is not sufficient for 
deterministic replay, since different threads can be running on different 
processors or cores concurrently. Earlier proposals, such as Instant Replay [23] 
and RecPlay [32], recorded the order of operations at a coarse granularity; 
that is, at the level of user-annotated shared objects and synchronization 
operations, respectively. Therefore, these schemes were only able to guarantee 
deterministic replay for data-race free programs. Both proposals were designed 
with debugging in mind. As an illustrative example, Instant Replay used the 
concurrent-read-exclusive-write (CREW) [10] protocol when different threads 
wanted access to a shared object. CREW guarantees that when a thread has 
permission to write to a shared object, no other threads are allowed to write to 
or read from that object. On the other hand, multiple threads can read from 
the object concurrently. Instant Replay uses the recorded sequence of write 
operations and the “version” number of the object for each read operation 
during replay.

“On a multi-processor, thread-
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Some recent proposals also do not support deterministic replay of programs 
with data races. iDNA [3] schedules a thread’s execution trace according to 
instruction sequences that are ordered via synchronization operations. Kendo 
[27] offers deterministic multi-threading in software by assuring the same 
sequence of lock acquisition for a given input. While not technically a replay 
system, Kendo also requires that programs be correctly synchronized. Kendo’s 
usage models include debugging and support for fault-tolerant replicas.

Replay with State-exploration
ODR [2] and PRES [28] are two novel approaches that facilitate replay 
debugging, but are not able to immediately replay an application, given the 
log data during the logging phase. Instead, they intelligently explore the 
space of possible program execution paths until the original output or bug is 
reproduced. Such analysis must be done off-line, but ODR and PRES gain in 
having smaller logging phase overtimes (since they log less data) compared to 
software schemes that provide for immediate replay. 

PinPlay and SMP-ReVirt
PinPlay [29] and SMP-ReVirt [11, 14] provide for immediate replay, and they 
order shared memory operations rather than coarse-grained objects. 

PinPlay’s approach is to implement a software version of the flight data 
recorder (FDR) [37]. FDR exploits cache coherence messages to find memory 
access dependencies and to order pairs of instructions. 

SMP-ReVirt is a generalization of the CREW protocol for shared objects in 
Instant Replay [23] to shared pages of memory. A given page in memory can 
only be in a state that is concurrently read or exclusively written during the 
logging phase. These access controls are implemented by changing a thread’s 
page permissions — read-access, write-access, or no-access for a given page 
— during the system’s execution. For example, if a thread wants to write to a 
page and thus needs to elevate its permission to write-access, all other threads 
must have their permissions reduced to no-access first. Each thread has its 
own log. When a thread has its page permission elevated during logging, it 
logs the point at which it received the elevated permission and the points 
where the other threads reduced their page permissions. Additionally, the 
threads that had their permissions reduced log the same points where their 
permissions were reduced. SMP-ReVirt specifies these “points” in the execution 
of the system by means of instruction counts. The instructions count of each 
processor is also updated in a globally visible vector. Thus, during replay, when 
a thread encounters a page permission elevation entry, it waits until the other 
permission-reducing threads reach the instruction count value indicated in the 
log. On the other hand, when a thread encounters a page permission reduction 
entry, it updates the global vector with its instruction count.

“iDNA [3] schedules a thread’s 
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Challenges in Software-only Deterministic Replay
It has been shown that designing a software-only solution for recording and 
replaying input non-determinism is reasonable in terms of execution speed, 
and it can be done with an overhead of less than ten percent [20, 28, 36]. It is 
difficult to compare and summarize input log size growth rates for the different 
approaches discussed here, since different approaches log different events, may 
compress the log differently, and use different applications as their benchmarks. 
However, it can be noted that Flashback’s [36] log size is linear to the number 
of system call invocations. Other similar input logging techniques may likely 
exhibit similar behavior. In short, enforcing input determinism in software 
seems to be a reasonable approach, considering the low overhead.

Conversely, the overhead incurred in enforcing memory access interleaving in 
software is a different story. SMP-ReVirt [11, 14] and PinPlay [29] allow for 
the most flexible and immediate replay, but they incur a huge overhead. Since 
SMP-ReVirt instruments and protects shared memory at the page level of 
granularity, it has issues with false sharing and page contention [28], especially 
as the number of processors increases [14]. With four CPUs, the logging phase 
runtime of an application in SMP-ReVirt can be up to 9 times that of a native 
run [14]. PinPlay, like iDNA, which uses dynamic instrumentation and has a 
12 to 17 times slowdown [3], cannot be turned on all the time.

The rest of the schemes previously described for replaying multi-threaded 
applications are either less flexible (uniprocessor only [8, 16, 33], data-race free 
programs only [3, 23, 27, 32]), or they trade off short on-line recording times 
with potentially long off-line state exploration times for replay [2, 28].

Another challenge with software-based schemes is their ability to pinpoint 
asynchronous events during replay. This issue was exemplified earlier in 
reference to asynchronous signals and interrupts. While some replay schemes 
choose to use hardware performance counters in their implementation [36, 35, 
13], others choose to delay the event until a later synchronous event occurs [25, 
34, 16]. The latter solution, though simpler, can theoretically affect program 
correctness, while the former solution requires the use of performance counters 
that are often inaccurate and non-deterministic [11, 27].

In the end, the selection of an appropriate replay system depends on the usage 
model. If we are to assume a debugging model where a programmer may 
not mind waiting a while for a bug to be reproduced, large replay overheads, 
though not desirable, may be reasonable. In fact, for most of the methods 
described here, the developers assumed a debugging usage model. Alternatively, 
a fault-tolerance replay model would require that backup replicas be able to 
keep up with the production replica, and thus good performance would be 
much more important. Note that performance is not the only factor that 
should be considered when determining which replay system works best with 
a usage model. For example, if the usage model is to replay system intrusions, 
it would be more suitable to use a full-system replay scheme rather than a user-
application replay scheme.
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Hardware Support for Recording Memory Non-
determinism
Deterministically replaying a program execution is a very difficult problem, 
as we just described. In addition to logging input non-determinism, existing 
software approaches have to record the interleavings of shared memory 
accesses. This can be done at various levels of granularity (e.g., page level or 
individual memory operations), but as discussed previously, the overhead 
incurred can be prohibitive and therefore detrimental to applications of R&R, 
such as fault-tolerance. For this reason, there has been a lot of emphasis on 
providing hardware support for logging the interleavings of shared memory 
accesses more efficiently. We call the proposed mechanisms for logging the 
order in which memory operations interleave memory race recorders (MRR). 

Prior work on hardware support for MRR piggybacks on timestamps located 
on cache coherence messages and logs the outcome of memory races by using 
either a point-to-point or a chunk-based approach. In this section we describe 
these two approaches and suggest directions for making them practical in 
modern multi-processor systems.

Point-to-point Approach
In point-to-point approaches [26, 37], memory dependencies are tracked at 
the granularity level of individual shared memory operations. In this approach, 
each memory block has a timestamp, and each memory operation updates the 
timestamp of the accessed block. In general, a block can be anything ranging 
from a memory word to multiple memory words [37, 31]. We now describe 
the FDR [37], a state-of-the-art implementation of a point-to-point MRR 
approach.

FDR augments each core in a multi-processor system with an instruction 
counter (IC) that counts retired instructions. FDR further augments each 
cache line with a cache instruction count (CIC) that stores the IC of the last 
store or load instruction that accessed the cache line (see Figure 1). When a 
core receives a remote coherence request to a cache line, it includes the 
corresponding CIC and its core ID in the response message. The requesting 
core can then log a dependency by storing the ID and CIC of the responding 
core and the current IC of the requesting core. To reduce the amount of 
information logged by the requesting core, a dependency is logged only if it 
cannot be inferred by a previous one. This optimization is called transitive 
reduction. For example, in Figure 1, only the dependency from T1:W(b) to 
T2:R(b) is logged, as T1:R(a) to T2:W(a) is consequentially implied by 
T1:W(b) to T2:R(b). Transitive reduction is implemented by augmenting each 
core with a vector instruction count that keeps track of the latest CIC received 
by each core.

“There has been a lot of emphasis 

on providing hardware support for 

logging the interleavings of shared 

memory accesses more efficiently.”
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Figure 1: Point-to-point Approach
Source: Intel Corporation, 2009
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Chunk-based Approach
A chunk defines a block of memory instructions that executes in isolation, i.e., 
without a remote coherence request intervening and causing a conflict. Chunks 
are represented by using signatures, which are hardware implementations 
of Bloom Filters. Signatures are used to compactly represent sets of locally 
accessed read or write memory addresses and to disambiguate a remote shared 
memory reference against them. A conflict with the signatures ends a chunk 
and clears the signatures. 

Similar to point-to-point approaches, chunk-based approaches can also take 
advantage of transitive reduction to reduce the amount of logged information. 
As shown in Figure 2, the remote read T2:R(b) conflicts with the write 
signature of T1 and causes T1 to end its chunk and to clear its signatures. 
Consequently, the request T2:W(a) does not conflict and the dependency 
T1:R(a) to T2:W(a) is implied. In contrast to point-to-point approaches in 
which a timestamp is stored with each memory block, chunk-based approaches 
only need to store a timestamp per core to order chunks between threads.

We now describe two similar implementations of chunk-based approaches.

Rerun
In Rerun [18], episodes are like chunks. Rerun records a memory dependency 
by logging the length of an episode along with a timestamp. To identify the 
episodes that need to be logged, Rerun augments each core with a read and 
a write signature that keep track of the cache lines read and written by that 
core during the current episode, respectively. When a cache receives a remote 
coherence request, it checks its signatures to detect a conflict. If a conflict is 
detected, the core ends its current episode, which involves clearing the read and 
write signatures, creating a log entry containing the length of the terminating 
episode along with its timestamp, and updating the timestamp value. The 
timestamp represents a scalar clock maintained by each core to provide a 
total order among the episodes. The cores keep their timestamp up to date by 
piggybacking them on each cache coherence reply.

Deterministic replay is achieved by sequentially executing the episodes in order 
of increasing timestamps. To do so, a replayer typically examines the logs to 
identify which thread should be dispatched next and how many instructions it 
is allowed to execute until an episode of a different thread needs to be replayed.

DeLorean
Similar to Rerun, DeLorean [24] also logs chunks by using signatures, but does 
so in a different multi-processor execution environment. In this environment, 
cores continuously execute chunks that are separated by register checkpoints. 
A chunk execution in this environment is speculative, i.e., its side effects are 
visible to other cores only until after commit. Before a chunk can commit, 
however, its signatures are compared against the signatures of other chunks 
to detect conflicts. If a conflict is detected with a chunk, its signatures are 
cleared and the chunk is squashed and re-executed. While such an execution 
environment is not standard in today’s multi-processors, it has been shown to 
perform well [7]. The required hardware extensions are similar to hardware-
supported transactional memory systems [22].
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Figure 2: Chunk-based Approach
Source: Intel Corporation, 2009
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To enable deterministic replay, DeLorean logs the total order of chunk 
commits. Because in this execution environment chunks have a fixed size, e.g., 
1000 dynamic instructions, no additional information needs to be logged, 
except in the rare cases where chunks need to end early because of events such 
as interrupts. Consequently, the log size of DeLorean is about one order of 
magnitude smaller than in Rerun. DeLorean can even reduce the log size by 
another order of magnitude when operating in PicoLog mode. In this execution 
mode, the architecture commits chunks in a deterministic order, e.g., round 
robin. Although this execution mode sacrifices performance, DeLorean only 
needs to log the chunks that end due to non-deterministic events, such as 
interrupts.

Making Memory Race Recorders Practical for Modern CMPs
MRR approaches discussed so far are effective in logging the events required 
for deterministic replay, but they also impose some non-negligible amount of 
complexity and performance cost that can preclude hardware vendors from 
deploying similar solutions in real products. In this section, we pinpoint some 
of these issues and discuss possible ways to remedy them.

Implementation Complexity
Showstoppers with previous MRR approaches are the implementation 
complexity of proposed techniques and their associated hardware cost. 

With point-to-point approaches, for instance, a hardware estate for storing 
the timestamp of each accessed memory block is required. If the granularity 
of a memory block is a cache line, then each cache line must be augmented 
with storage for the timestamp. Because a cache line eviction throws away the 
information stored into it, the timestamp must also be stored at the next cache 
level to reduce logging frequency. FDR estimates this cost to be ~6 percent of 
the capacity of a 32KB L1 cache. 

The main hardware cost associated with chunk-based approaches lies in the 
storage required for signatures. In Rerun, for instance, the authors suggest 
using 1024-bit signatures to store read memory addresses and 256-bit 
signatures to store written memory addresses. In contrast to point-to-point 
approaches, these changes do not require modifications to the cache sub-system 
and are therefore less invasive. However, there is some complexity involved 
in implementing signatures. The authors in [30] show that implementing 
signatures in modern CMPs involves subtle interactions with the hierarchy 
and policy decisions of on-chip caches. The authors show that the signature 
placement in a multi-level cache hierarchy can degrade performance by 
increasing the traffic to the caches. They propose hybrid L1/L2 signature 
placement strategies to mitigate this performance degradation.

“The log size of DeLorean is about one 

order of magnitude smaller than in 

Rerun.”

“Showstoppers with previous MRR 

approaches are the implementation 

complexity of proposed techniques and 

their associated hardware cost.”

“The main hardware cost associated 

with chunk-based approaches lies in 

the storage required for signatures.”
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Performance Overhead
With the exception of DeLorean, all MRR approaches discussed in this 
section must piggyback on cache coherence messages to maintain ordering 
among events in the system. For instance, in FDR, the core ID and the CIC 
are piggybacked on each coherence reply to log a point-to-point dependency 
between two instructions from different threads, whereas in Rerun a timestamp 
is piggybacked on each coherence reply to maintain causal ordering between 
chunks. This overhead can hurt performance by putting a lot of pressure on the 
bandwidth. FDR and Rerun, for instance, report a performance cost of ~10 
percent, an estimation based on functional simulation. Ideally, we want this 
coherence traffic overhead to be nonexistent in real implementations of MRR. 
One way to attain this objective with a chunk-based approach has recently 
been proposed in [30]. The authors make the observation that maintaining 
causality at the chunk boundary is all that is needed to order chunks. Doing 
so eliminates the requirement to piggyback a timestamp on each coherence 
message. Using this approach, they show that the coherence traffic overhead 
can be reduced by several orders of magnitude compared to Rerun or FDR. 

Replay Performance
As discussed previously, there are plenty of applications that can benefit from 
deterministic replay. Each of these applications places different replay speed 
requirements on the system. For instance, while an application developer can 
easily accommodate slow replay during debugging, this is not the case for 
high-availability applications in which the downtime window during recovery 
must be shortened. Slow replay in this case can have devastating effects on the 
system. Instead, we would like a second machine to continuously replay the 
execution of the primary machine at a similar speed, and to be able to take 
over instantly if the primary fails. Ideally, we do not want a R&R system to be 
constrained by speed, because such a constraint would limit the system’s scope 
and restrict its applicability. Therefore, techniques are needed to improve the 
replay speed of MRR approaches.

DeLorean and FDR can replay a program at production run speed. In 
DeLorean, this is achieved by replaying chunks in parallel and re-synchronizing 
them according to the same commit order as recorded during their original 
execution. With FDR, threads are replayed in parallel and are only re-
synchronized at the locations corresponding to the point-to-point dependencies 
recorded during their original execution. Neither FDR nor DeLorean, however, 
is a likely choice for a practical MRR implementation today. As discussed 
previously, the complexity of FDR is a major showstopper in modern CMPs. 
For DeLorean, the execution environment it assumes is not standard in today’s 
multi-processors.

“The authors make the observation 

that maintaining causality at the 

chunk boundary is all that is needed 

to order chunks.”

“DeLorean and FDR can replay a 

program at production run speed.”
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Replaying episodes in Rerun is done sequentially, following increasing 
timestamp order. As such, Rerun cannot therefore meet the replay speed 
requirement of DMR usage models, such as fault-tolerance. As an alternative 
to Rerun, the authors in [30] have proposed a chunk-based replay scheme 
called a concurrent chunk region. A concurrent chunk region defines a set of 
chunks that can be replayed in parallel, because each chunk in such a region 
features the same timestamp as the chunk in other regions. To build such 
concurrent chunk regions, whenever a chunk must terminate due to a conflict, 
for instance, all chunks with similar timestamps must also be terminated 
simultaneously. Therefore, concurrent chunk regions trade off replay speed 
for log size. The authors in [30] have shown that, by using concurrent chunk 
regions, replay speed can be improved by several orders of magnitude at the 
cost of moderate log size increases. 

Conclusions
In this article we presented a comprehensive survey of DMR techniques to deal 
with multi-threaded program execution on CMP machines. We showed that 
software-only implementations of DMR are quite effective in recording and 
replaying concurrent programs, but they suffer from performance limitations 
that can restrict their applicability. To improve on performance, the memory 
non-determinism of multi-threaded programs must be recorded more 
efficiently. We described the hardware support needed to deal with fine-grained 
logging of memory interleavings more efficiently, using either point-to-point 
approaches or chunk-based approaches. Combined with software approaches, 
these hardware techniques can provide better performance and address a wider 
range of usage models. However, there are still several remaining challenges 
that need to be met before a complete solution can be deployed on real 
hardware. One such challenge involves recording memory non-determinism 
with non-sequentially consistent memory models. We hope that the discussions 
presented here help foster the research on DMR and that they stimulate a 
broader interest in DMR usage models.    

“A concurrent chunk region defines a 

set of chunks that can be replayed in 

parallel.”
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Abstract
The client computing platform is moving towards a heterogeneous architecture 
that consists of a combination of cores focused on scalar performance, and 
of a set of throughput-oriented cores. The throughput-oriented cores (such 
as those in the Intel® microarchitecture codename Larrabee processor) may 
be connected over both coherent and non-coherent interconnects, and they 
may have different instruction set architectures (ISAs). This article describes 
a programming model for such heterogeneous platforms. We discuss the 
language constructs, runtime implementation, and the memory model for 
such a programming environment. We implemented this programming 
environment in an Intel® x86 heterogeneous platform simulator and we ported 
a number of workloads to our programming environment. We present the 
performance of our programming environment on these workloads.

Introduction
Client computing platforms are moving towards a heterogeneous architecture 
with some processing cores focused on scalar performance and other cores 
focused on throughput performance. For example, desktop and notebook 
platforms may ship with one or more central processing units (CPUs), 
primarily focused on scalar performance, along with a graphics processing unit 
(GPU) that can be used for accelerating highly-parallel data kernels. These 
heterogeneous platforms can be used to provide a significant performance 
boost on highly-parallel non-graphics workloads in image processing, medical 
imaging, data mining [6], and other domains [10]. Several vendors have also 
come out with programming environments for such platforms, such as CUDA 
[11], CTM [2], and OpenCL [12]. 

Heterogeneous platforms have a number of unique architectural constraints:

 • The throughput-oriented cores (e.g., GPU) may be connected in 
both integrated and discrete forms. A system may also have a hybrid 
configuration where a low-power, lower-performance GPU is integrated 
with the chipset, and a higher-performance GPU is attached as a discrete 
device. Finally, a platform may also have multiple discrete GPU cards. The 
platform configuration determines many parameters, such as bandwidth 
and latency between the different kinds of processors, the cache coherency 
support, etc.
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 • The scalar and throughput-oriented cores may have different operating 
systems. For example, Intel’s upcoming processor, codename Larrabee [16], 
can have its own kernel. (The Larrabee processor is a general-throughput 
computing device that includes a software stack for high-performance 
graphics rendering.) This means that the virtual memory translation 
schemes (virtual to physical address translation) can be different between 
the different kinds of cores. The same virtual address can be simultaneously 
mapped to two different physical addresses — one residing in CPU 
memory and the other residing in the Larrabee processor memory. This also 
means that the system environment (loaders, linkers, etc.) can be different 
between the two cores. For example, the loader may load the application at 
different base addresses on different cores.

 • The scalar and throughput-oriented cores may have different ISAs, and 
hence the same code cannot be run on both kinds of cores. 

A programming model for heterogeneous platforms must address all of the 
aforementioned architectural constraints. Unfortunately, existing programming 
models such as Nvidia Compute Unified Device Architecture (CUDA) 
and ATI Close To the Metal (CTM) address only the ISA heterogeneity, by 
providing language annotations to mark code that must run on GPUs; they 
do not take other constraints into account. For example, CUDA does not 
address the memory management issues between CPU and GPU. It assumes 
that the CPU and GPU are separate address spaces and that the programmer 
uses separate memory allocation functions for the CPU and the GPU. Further, 
the programmer must explicitly serialize data structures, decide on the sharing 
protocol, and transfer the data back and forth. 

In this article, we propose a new programming model for heterogeneous Intel® 
x86 platforms that addresses all the issues just mentioned. First, we propose a 
uniform programming model for different platform configurations. Second, we 
propose using a shared memory model for all the cores in the platform (e.g., 
between the CPU and the Larrabee cores). Instead of sharing the entire virtual 
address space, we propose that only a part of the virtual address space be shared 
to enable an efficient implementation. Finally, like conventional programming 
models, we use language annotations to demarcate code that must run on the 
different cores, but we improve upon conventional models by extending our 
language support to include features such as function pointers.

We break from existing CPU-GPU programming models and propose a shared 
memory model, since a shared memory model opens up a completely new 
programming paradigm that improves overall platform performance. A shared 
memory model allows pointers and data structures to be seamlessly shared 
between the different cores (e.g., CPU and Larrabee cores) without requiring 
any marshalling. For example, consider a game engine that includes physics, 
artificial intelligence (AI), and rendering. A shared memory model allows the 
physics, AI, and game logic to be run on the scalar cores (e.g., CPU), while 

“The Larrabee processor is a general-

throughput computing device that 

includes a software stack for high-

performance graphics rendering.”

“CUDA does not address the 

memory management issues between 

CPU and GPU.”

“We break from existing CPU-GPU 

programming models and propose a 

shared memory model.”
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the rendering runs on the throughput cores (e.g., Larrabee core), with both the 
scalar and throughput cores sharing the scene graph. Such an execution model 
is not possible in current programming environments, since the scene graph 
would have to be serialized back and forth. 

We implemented our full programming environment, including the language 
and runtime support, and ported a number of highly parallel non-graphics 
workloads to this environment. In addition, we ported a full gaming 
application to our system. By using existing models, we spent one and a half 
weeks coding this application for data management for each new game feature: 
the game itself included about a dozen features. The serialization arises since 
the rendering is performed on the Larrabee processor, while the physics and 
game logic are executed on the CPU. All of this coding (and the associated 
debugging, etc.) is unnecessary in our system, since the scene graph and 
associated structures are placed in shared memory and used concurrently by all 
the cores in the platform. Our implementation works with different operating 
system kernels running on the scalar and throughput-oriented cores. 

We ported our programming environment to a heterogeneous Intel x86 
platform simulator that simulates a set of Larrabee, throughput-oriented cores 
attached as a discrete PCI-Express device to the CPU. We used such a platform 
for two reasons. First, we believe the Larrabee core is more representative of 
how GPUs are going to evolve into throughput-oriented cores. Second, the 
platform poses greater challenges, due to the heterogeneity in the system 
software stack, as opposed to simply ISA heterogeneity. Later in this article, we 
present performance results on a variety of workloads. 

To summarize, in this article, we discuss the design and implementation of a 
new programming model for heterogeneous Intel x86 platforms. We make the 
following contributions: 

 • Provide shared memory semantics between the CPU and the Larrabee 
processor by allowing pointers and data structures to be shared seamlessly. 
This extends previous work in the areas of distributed shared memory 
(DSM) and partitioned global address space (PGAS) languages by providing 
shared memory semantics in a platform with heterogeneous ISA, operating 
system kernels, etc. We also improve application performance by allowing 
user-level communication between the CPU and the Larrabee core.

 • Provide a uniform programming model for different platform 
configurations.

In the remainder of this article, we first provide a brief overview of the Larrabee 
architecture: then we discuss the proposed memory model, and we describe 
the language constructs for programming this platform. We then describe our 
prototype implementation, and finally we present performance numbers.
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Larrabee Architecture
The Larrabee architecture is a many-core x86 visual computing architecture 
that is based on in-order cores that run an extended version of the x86 
instruction set, including wide-vector processing instructions and some 
specialized scalar instructions. Each of the cores contains a 32 KB instruction 
cache and a 32 KB L1 data cache, and each core accesses its own subset of a 
coherent L2 cache to provide high-bandwidth L2 cache access. The L2 cache 
subset is 256 KB, and the subsets are connected by a high-bandwidth, on-die 
ring interconnect. Data written by a CPU core are stored in their own L2 
cache subset and are flushed from other subsets, if necessary. Each ring data 
path is 512 bits wide in each direction. The fixed function units and memory 
controller are spread across the ring to reduce congestion.

Each core has four hardware threads with separate register sets for each 
thread. Instruction issue alternates between the threads and it covers cases 
where the compiler is unable to schedule code without stalls. The core uses 
a dual-issue decoder, and the pairing rules for the primary and secondary 
instruction pipes are deterministic. All instructions can issue on the primary 
pipe, while the secondary pipe supports a large subset of the scalar x86 
instruction set, including loads, stores, simple ALU operations, vector stores, 
etc. The core supports 64-bit extensions and the full Intel Pentium® processor 
x86 instruction set. The Larrabee architecture consists of a 16-wide vector 
processing unit that executes integer, single precision float, and double 
precision float instructions. The vector unit supports gather-scatter and masked 
instructions, and it supports instructions with up to three source operands. 

Memory Model
The memory model for our system provides a window of shared addresses 
between the CPU and Larrabee cores, such as in PGAS [17] languages, 
but enhances it with additional ownership annotations. Any data structure 
that is shared between the CPU and Larrabee core must be allocated by the 
programmer in this space. The system provides a special malloc function 
that allocates data in this space. Static variables can be annotated with a type 
qualifier so that they are allocated in the shared window. However, unlike 
PGAS languages, there is no notion of affinity in the shared window. This is 
because data in the shared space must migrate between the CPU and Larrabee 
caches as they get used by each processor. Also, the representation of pointers 
does not change between the shared and private spaces. 

The remaining virtual address space is private to the CPU and Larrabee 
processor. By default, data get allocated in this space, and they are not visible to 
the other side. We choose this partitioned address space approach since it cuts 
down on the amount of memory that needs to be kept coherent, and it enables 
a more efficient implementation for discrete devices.

“Each core has four hardware 
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The proposed memory model can be extended in a straightforward way to 
multiple Larrabee processor configurations. The window of shared virtual 
addresses extends across all the devices. Any data structures allocated in this 
shared address window are visible to all agents, and pointers in this space can 
be freely exchanged between the devices. In addition, every agent has its own 
private memory as shown in Figure 1.

We propose using release consistency in the shared address space for several 
reasons. First, the system only needs to remember all the writes between 
successive release points, not the sequence of individual writes. This makes it 
easier to do bulk transfers at release points (e.g., several pages at a time). This 
is especially important in the discrete configuration, since it is more efficient 
to transfer bulk data over PCI-Express. Second, release consistency allows 
memory updates to be kept completely local until a release point, which is 
again important in a discrete configuration. In general, the release consistency 
model is a good match for the programming patterns in CPU-GPU platforms, 
since there are natural release and acquisition points in such programs. For 
example, a call from the CPU into the GPU is one such point. Making any of 
the CPU updates visible to the GPU before the call does not serve any purpose, 
and neither does it serve any purpose to enforce any order on how the CPU 
updates become visible, as long as all of them are visible before the GPU starts 
executing.  Finally, the proposed C/C++ memory model [5] can be mapped 
easily to our shared memory space. 

We augment our shared memory model with ownership rights to enable 
further coherence optimizations. Within the shared virtual address window, 
the CPU or Larrabee processor can specify at a particular point in time that it 
owns a specific chunk of addresses. If an address range in the shared window is 
owned by the CPU, then the CPU knows that the Larrabee processor cannot 
access those addresses and hence does not need to maintain coherence of those 
addresses with the Larrabee processor: for example, it can avoid sending any 
snoops or other coherence information to the Larrabee processor. The same is 
true of addresses owned by the Larrabee processor. If a CPU-owned address is 
accessed by the Larrabee processor, then the address becomes un-owned (with 
symmetrical behavior for those addresses owned by the Larrabee processor). 
We provide these ownership rights to leverage common usage models. For 
example, the CPU first accesses some data (e.g., initializing a data structure), 
and then hands them over to the Larrabee processor (e.g., computing on the 
data structure in a data parallel manner), and then the CPU analyzes the results 
of the computation and so on. The ownership rights allow an application to 
inform the system of this temporal locality and to optimize the coherence 
implementation. Note that these ownership rights are optimization hints only, 
and it is legal for the system to ignore these hints.

“The proposed memory model can 

be extended in a straightforward 

way to multiple Larrabee processor 

configurations.”
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Figure 1: CPU-larrabee Processor Memory 
Model
Source: Intel Corporation, 2009
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Language Constructs
To deal with platform heterogeneity, we add constructs to C that allow the 
programmer to specify whether a particular data item should be shared or 
private, and to specify whether a particular code chunk should be run on the 
CPU or on the Larrabee processor.

The first construct is the shared type qualifier, similar to UPC [17], which 
specifies a variable that is shared between the CPU and Larrabee processor. The 
qualifier can also be associated with pointer types to imply that the target of 
the pointer is in shared space. For example, one can write:

shared int var1;                    // int is in shared space

int var2;                              // int is not in shared space

shared int* ptr1;                  // ptr1 points to a shared location 

int* ptr2;                             // ptr2 points to private space

shared int *shared ptr1;       // ptr1 points to shared and is shared 

The compiler allocates globally shared variables in the shared memory space, 
while the system provides a special malloc function to allocate data in the 
shared memory. The actual virtual address range in each space is decided by the 
system and is transparent to the user. 

It is legal for a language implementation to allocate all data in the shared space 
— that is, map all malloc calls to the sharedMalloc and allocate all globals 
in the shared space. A programmer then deals only with shared data. The 
key point is that our system provides the hooks needed for programmers to 
demarcate private and shared data, should they want to do that.

We use an attribute, __attribute(Larrabee), to mark functions that should be 
executed on the Larrabee processor. For such functions, the compiler generates 
code that is specific to the Larrabee processor. When a non-annotated function 
calls a Larrabee annotated function, it implies a call from the CPU to the 
Larrabee processor. The compiler checks that all pointer arguments have shared 
type and invokes a runtime API for the remote call. Function pointer types 
are also annotated with the attribute notation, implying that they point to 
functions that are executed on the Larrabee processor. Non-annotated function 
pointer types point to functions that execute on the CPU. The compiler checks 
type equivalence during an assignment; for example, a function pointer with 
the Larrabee attribute must always be assigned the address of a function that is 
annotated for the Larrabee processor. 
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Our third construct denotes functions that execute on the CPU but can be 
called from the Larrabee processor. These functions are denoted by using 
__attribute(wrapper). We used this function in two ways. First, many programs 
link with precompiled libraries that can execute on the CPU. The functions 
in these libraries are marked as wrapper calls so that they execute on the CPU 
if called from Larrabee code. Second, while porting large programs from a 
CPU-only execution mode to a CPU plus Larrabee processor mode, it is very 
helpful to incrementally port the program. The wrapper attribute allows the 
programmer to stop the porting effort at any point in the call tree by calling 
back into the CPU. When a Larrabee function calls a wrapper function, the 
compiler invokes a runtime API for the remote call from the Larrabee processor 
to the CPU. Making Larrabee-to-CPU calls explicit allows the compiler to 
check that any pointer arguments have the shared type. 

We also provide a construct and the corresponding runtime support for making 
asynchronous calls from the CPU to the Larrabee processor. This allows the 
CPU to avoid waiting for Larrabee computation to finish. Instead, the runtime 
system returns a handle that the CPU can query for completion. Since this 
does not introduce any new design issues, we focus mostly on synchronous calls 
in the remainder of this article.

Data Annotation Rules
These rules apply to data that can be allocated in the shared virtual space:

 • Shared can be used to qualify the type of variables with global storage. 
Shared cannot be used to qualify a variable with automatic storage unless it 
qualifies a pointer’s referenced type. 

 • A pointer in private space can point to any space. A pointer in shared space 
can only point to shared space but not to private space. 

 • A structure or union type can have the shared qualifier which then requires 
all fields to have the shared qualifier as well.

The following rules are applied to pointer manipulations: 

 • Binary operator (+,-,,==,......) is only allowed between two pointers pointing 
to the same space. The system provides API functions that perform dynamic 
checks. When an integer expression is added to or subtracted from a 
pointer, the result has the same type as the pointer. 

 • Assignment/casting from pointer-to-shared to pointer-to-private is allowed. 
If a type is not annotated, we assume that it denotes a private object. This 
makes it difficult to pass shared objects to legacy functions, since their 
signature requires private objects. The cast allows us to avoid copying 
between private and shared spaces when passing shared data to a legacy 
function.

 • Assignment/casting from pointer-to-private to pointer-to-shared is allowed 
only through a dynamic_cast. The dynamic_cast checks at runtime that the 
pointer-to-shared actually points to shared space. If the check fails, an error 
is thrown and the user has to explicitly copy the data from private space to 
shared space. This cast allows legacy code to efficiently return values.
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Our language can allow casting between the two spaces (with possibly a 
dynamic check) since our data representation remains the same regardless 
of whether the data are in shared or private space. Even pointers have the 
same representation regardless of whether they are pointing to private or 
shared space. Given any virtual address V in the shared address window, 
both the CPU and Larrabee processor have their own local physical address 
corresponding to this virtual address. Pointers on the CPU and Larrabee 
processor read from this local copy of the address, and the local copies get 
synced up as required by the memory model. 

Code Annotation Rules
These rules apply to the code or function, where they execute.

 • A __attribute(Larrabee) function is not allowed to call a non-annotated 
function. This is to ensure that the compiler knows about all the CPU 
functions that can be called from the Larrabee processor.

 • A __attribute(wrapper) function is not allowed to call into a __
attribute(Larrabee) function. This is primarily an implementation 
restriction in our system. 

 • Any pointer parameter of a Larrabee- or wrapper-annotated function must 
point to shared space.

The calling rules for functions also apply to function pointers. For example, 
a __attribute(Larrabee) function pointer called from a non-annotated function 
results in a CPU-to-Larrabee processor call. Similarly, un-annotated function 
pointers cannot be called from Larrabee functions. 

The runtime also provides APIs for mutexes and barriers to allow the 
application to perform explicit synchronization. These constructs are always 
allocated in the shared area.

Acquire and release points follow naturally from the language semantics. For 
example, a call from the CPU to the Larrabee processor is a release point on 
the CPU followed by an acquire point on the Larrabee processor. Similarly, a 
return from the Larrabee processor is a release point on the Larrabee and an 
acquire point on the CPU. Taking ownership of a mutex and releasing a mutex 
are acquire and release points, respectively, for the processor doing the mutex 
operation, while hitting a barrier and getting past a barrier are release and 
acquire points as well.
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Ownership Constructs
We also provide an API that allows the user to allocate chunks of memory 
(hereafter called arenas) inside the shared virtual region. The programmer can 
dynamically set the ownership attributes of an arena. Acquiring ownership of 
an arena also acts as an acquire operation on the arena, and releasing ownership 
of an arena acts as the release operation on the arena. The programmer can 
allocate space within an arena by passing the arena as an argument to a special 
malloc function. The runtime grows the arena as needed. The runtime API is 
shown here:

// Owned by the caller or shared 
Arena *allocateArena(OwnershipType type); 
//Allocate and free within arena 
shared void *arenaMalloc ( Arena*, size_t); 
void arenaFree( Arena *, shared void *); 
// Ownership for arena. If null changes ownership of entire shared area 
OwnershipType acquireOwnership(Arena*); 
OwnershipType releaseOwnership(Arena*); 
//Consistency for arena  
void arenaAcquire(Arena *); 
void arenaRelease(Arena *);

The programmer can optimize the coherence implementation by using the 
ownership API. For example, in a gaming application, while the CPU is 
generating a frame, the Larrabee processor may be rendering the previous 
frame. To leverage this pattern, the programmer can allocate two arenas, with 
the CPU acquiring ownership of one arena and generating the frame into that 
arena, while the Larrabee processor acquires ownership of the other arena and 
renders the frame in that arena. This prevents coherence messages from being 
exchanged between the CPU and Larrabee processor while the frames are 
being processed. When the CPU and Larrabee processor are finished with their 
current frames, they exchange ownership of their arenas, so that they continue 
to work without incurring coherence overhead.

Implementation
The compiler generates two binaries – one for execution on the Larrabee 
processor and another for CPU execution. We generate two different 
executables since the two operating systems can have different executable 
formats. The Larrabee binary contains the code that will execute on the 
Larrabee processor (annotated with the Larrabee attribute), while the CPU 
binary contains the CPU functions which include all un-annotated and 
wrapper-annotated functions. Our runtime library has a CPU and Larrabee 
component that are linked with the CPU and Larrabee application binaries 
to create the CPU and Larrabee executables. When the CPU binary starts 
executing, it calls a runtime function that loads the Larrabee executable. Both 
the CPU and Larrabee binaries create a daemon thread that is used for the 
communication.
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Implementing Shared Memory between the CPU and Larrabee 
Processor
Our implementation reuses some ideas from software distributed shared 
memory [9, 4] schemes, but there are some significant differences as well. 
Unlike DSMs, our implementation is complicated by the fact that the CPU 
and Larrabee processor can have different page tables and different virtual-to-
physical memory translations. Thus, when we want to sync up the contents of 
virtual address V between the CPU and Larrabee processor (e.g., at a release 
point), we may need to sync up the contents of different physical addresses, 
such as P1 on CPU and P2 on the Larrabee processor. Unfortunately, the CPU 
does not have access to the Larrabee processor’s page tables (hence the CPU has 
no knowledge of P2), and the Larrabee processor cannot access the CPU’s page 
tables and has no knowledge of P1.

We solve the aforementioned problem by leveraging the PCI aperture in a 
novel way. During initialization we map a portion of the PCI aperture space 
into the user space of the application and instantiate it with a task queue, a 
message queue, and copy buffers. When we need to copy pages, for example, 
from the CPU to the Larrabee processor, the runtime copies the pages into 
the PCI aperture copy buffers and tags the buffers with the virtual address 
and the process identifier. On the Larrabee side, the daemon thread copies 
the contents of the buffers into its address space by using the virtual address 
tag. Thus, we perform the copy in a two-step process—the CPU copies from 
its address space into a common buffer (PCI aperture) that both the CPU 
and Larrabee processor can access, while the Larrabee processor picks up 
the pages from the common buffer into its address space. Copies from the 
Larrabee processor to the CPU are done in a similar way. Note that since the 
aperture is pinned memory, the contents of the aperture are not lost if the 
CPU or Larrabee processor gets the context switched out. This allows the two 
processors to execute asynchronously, which is critical, since the two processors 
can have different operating systems and hence the context switches cannot be 
synchronized. Finally, note that we map the aperture space into the user space 
of the application, thus enabling user-level communication between the CPU 
and Larrabee processor. This makes the application stack vastly more efficient 
than going through the operating system driver stack. To ensure security, 
the aperture space is partitioned among the CPU processes that want to use 
Larrabee processor. At present, a maximum of eight processes can use the 
aperture space.
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We exploit one other difference between traditional software DSMs and CPU 
plus Larrabee processor platforms. Traditional DSMs were designed to scale on 
medium-to-large clusters. In contrast, CPU plus Larrabee processor systems are 
very small-scale clusters. We expect that no more than a handful of Larrabee 
cards and CPU sockets will be used well into the future. Moreover, the PCI 
aperture provides a convenient shared physical memory space between the 
different processors. Thus, we are able to centralize many data structures and 
make the implementation more efficient. For example, we put a directory in 
the PCI aperture that contains metadata about the pages in the shared address 
region. The metadata states whether the CPU or Larrabee processor holds the 
golden copy of a page (home for the page), contains a version number that 
tracks the number of updates to the page, mutexes that are acquired before 
updating the page, and other miscellaneous metadata. The directory is indexed 
by the virtual address of a page. Both the CPU and the Larrabee runtime 
systems maintain a private structure that contains local access permissions for 
the pages and the local version numbers of the pages. 

When the Larrabee processor performs an acquire operation, the corresponding 
pages are set to no-access on the Larrabee processor. At a subsequent read 
operation, the page fault handler on the Larrabee processor copies the page 
from the home location, if the page has been updated and released since the 
last Larrabee acquire. The directory and private version numbers are used 
to determine this. The page is then set to read-only. At a subsequent write 
operation, the page fault handler creates the backup copy of the page, marks 
the page as read-write, and increments the local version number of the page. 
At a release point, we perform a diff with the backup copy of the page and 
transmit the changes to the home location, while incrementing the directory 
version number. The CPU operations are symmetrical. Thus, between acquire 
and release points, the Larrabee processor and CPU operate out of their local 
memory and communicate with each other only at the explicit synchronization 
points. 

At startup the implementation decides the address range that will be shared 
between the CPU and Larrabee processor, and it ensures that this address range 
always remains mapped. This address range can grow dynamically and does not 
have to be contiguous; although in a 64-bit address space, the runtime system 
can reserve a continuous chunk upfront. 

Implementing Shared Memory Ownership
Every arena has associated metadata that identify the pages that belong to the 
arena. Suppose the Larrabee processor acquires ownership of an arena, we then 
make the corresponding pages non-accessible on the CPU. We copy from the 
home location any arena pages that have been updated and released since the 
last time the Larrabee processor performed an acquire operation. We set the 
pages to read-only so that subsequent Larrabee writes will trigger a fault, and 
the system can record which Larrabee pages are being updated. In the directory, 
we note that the Larrabee processor is the home node for the arena pages. On a 
release operation, we simply make the pages accessible again on the other side 
and update the directory version number of the pages. The CPU ownership 
operations are symmetrical.
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Note the performance advantages of acquiring ownership. At a release point 
we no longer need to perform diff operations, and we do not need to create a 
backup copy at a write fault, since we know that the other side is not updating 
the page. Second, since the user provides specific arenas to be handed over 
from one side to the other, the implementation can perform a bulk copy of 
the required pages at an acquire point. This leads to a more efficient copy 
operation, since the setup cost is incurred only once and gets amortized over a 
larger copy. 

Implementing Remote Calls 
A remote call between CPU and Larrabee cores is complicated by the fact 
that the two processors can have different system environments: for example, 
they can have different loaders. Larrabee and CPU binary code is also loaded 
separately and asynchronously. Suppose that the CPU code makes some 
calls into the Larrabee processor when the CPU binary code is loaded, the 
Larrabee binary code has still not been loaded and hence the addresses for 
Larrabee functions are still not known. Therefore, the operating system loader 
cannot patch up the references to Larrabee functions in the CPU binary code. 
Similarly, when the Larrabee binary code is being loaded, the Larrabee loader 
does not know the addresses of any CPU functions being called from Larrabee 
code and hence cannot patch those addresses.

We implement remote calls by using a combination of compiler and runtime 
techniques. Our language rules ensure that any function involved in remote 
calls (Larrabee or wrapper attribute functions) is annotated by the user. When 
compiling such functions, the compiler adds a call to a runtime API that 
registers function addresses dynamically. The compiler creates an initialization 
function for each file that invokes all the different registration calls. When 
the binary code gets loaded, the initialization function in each file gets called. 
The shared address space contains a jump table that is populated dynamically 
by the registration function. The table contains one slot for every annotated 
function. The format of every slot is <funcName, funcAddr> where funcName 
is a literal string of the function name, and funcAddr is the runtime address of 
the function. 

The translation scheme works as follows.

 • If a Larrabee (CPU) function is being called within a Larrabee (CPU) 
function, the generated code will do the call as is. 

 • If a Larrabee function is being called within a CPU function, the compiler-
generated code will do a remote call to the Larrabee processor: 

 ▪ The compiler-generated code will look up the jump table with the 
function name and obtain the function address.

 ▪ The generated code will pack the arguments into an argument buffer 
in shared space. It will then call a dispatch routine on the Larrabee side 
passing in the function address and the argument buffer address.
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There is a similar process for a wrapper function: if a wrapper function is called 
in a Larrabee code, a remote call is made to the CPU.  

For function pointer invocations, the translation scheme works as follows. 
When a function pointer with Larrabee annotation is assigned, the compiler-
generated code will look up the jump table with the function name and assign 
the function pointer with obtained function address. Although the lookup can 
be optimized when a Larrabee-annotated function pointer is assigned within 
Larrabee code, we forsake such optimization to use a single strategy for all 
function pointer assignments. If a Larrabee function pointer is being called 
within a Larrabee function, the compiler-generated code will do the call as 
is. If a Larrabee function pointer is being called within a CPU function, the 
compiler-generated code will do a remote call to the Larrabee side. The process 
is similar for a wrapper function pointer: if a wrapper function pointer is called 
in a Larrabee function, a remote call is made to the CPU side.  

The signaling between CPU and Larrabee processor happens with task queues 
in the PCI aperture space. The daemon threads on both sides poll their 
respective task queues and when they find an entry in the task queue, they 
spawn a new thread to invoke the corresponding function. The API for remote 
invocations is described in this code:

// Synchronous and asynchronous remote calls 
RPCHandler callRemote (FunctionType, RPCArgType); 
int resultReady (RPCHandler); 
Type getResult (RPCHandler);

Finally, the CPU and Larrabee processor cooperate while allocating memory in 
the shared area. Each processor allocates memory from either side of the shared 
address window. When one processor consumes half of the space, the two 
processors repartition the available space. 

Experimental Evaluation 
We used a heterogeneous platform simulator for measuring the performance of 
different workloads on our programming environment. This platform simulates 
a modern out-of-order CPU and a Larrabee system. The CPU simulation uses 
a memory and architecture configuration similar to that of the Intel® Core™2 
Duo processor. The Larrabee system was simulated as a discrete PCI-Express 
device with an interconnect latency and bandwidth similar to those of PCI-
Express 2.0, and the instruction set was modeled on the Intel Pentium® 
processor. It did not simulate the new Larrabee instructions and parts of the 
Larrabee memory hierarchy, such as the ring interconnect. The simulator 
ran a production-quality software stack on the two processors. The CPU ran 
Windows* Vista*, while Larrabee processor ran a lightweight operating-system 
kernel. 
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We used a number of well-known parallel non-graphics workloads [6] to 
measure the performance of our system. These include the Black Scholes* 
financial workload that does option pricing by using the Black Scholes 
method; the fast fourier transform (FFT) workload that does a radix-2 FFT 
algorithm used in many domains, such as signal processing; the Equake* 
workload, part of SpecOMP*, that performs earthquake modeling, and that 
is representative of high-performance computer (HPC) applications; and Art, 
also part of SpecOMP, that performs image recognition. The reported numbers 
are based on using the standard input sets for each of the applications. All 
these workloads were rewritten by using our programming constructs and were 
compiled with our tool chain. 

Figure 2 shows the fraction that total memory accesses were to shared data in 
the aforementioned workloads. The vast majority of the accesses were to private 
data. Note that read-only data accessed by multiple threads were privatized 
manually. This manual privatization helped in certain benchmarks like Black 
Scholes. It is not surprising that most of the accesses are to private data, since 
the computation threads in the workloads privatize the data that they operate 
on to get better memory locality. We expect workloads that scale to a large 
number of cores to behave similarly, since the programmer must be conscious 
of data locality and avoid false sharing in order to get good performance. The 
partial virtual address sharing memory model lets us leverage this access pattern 
by cutting down on the amount of data that need to be kept coherent.

We next show the performance of our system on the set of workloads. We ran 
the workloads on a simulated system with 1 CPU core and varied the number 
of Larrabee cores from 6 to 24. The workload computation was split between 
the CPU and Larrabee cores, with the compute-intensive portions executed on 
Larrabee cores. For example, all the option pricing in Black Scholes and the 
earthquake simulation in Equake is offloaded to Larrabee cores. We present 
the performance improvement relative to a single CPU and Larrabee core. 
Figure 3 compares the performance of our system, when the application does 
not use any ownership calls, to the performance when the user optimizes 
the application further by using ownership calls. The bars labeled “Mine/
Yours” represent the performance with ownership calls: (Mine implies pages 
were owned by CPU and Yours implies pages were owned by the Larrabee 
processor). The bars labeled “Ours” represent the performance without any 
ownership calls.
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As expected, the applications perform better with ownership calls than without. 
To understand the reason for this, we broke down the overhead of the system 
when the application was not using any ownership calls. Figure 4 shows the 
breakdown for Black Scholes. We show the breakdown for only one 
benchmark, but the ratios of the different overheads are very similar in all the 
benchmarks.

We break up the overhead into four categories. The first one relates to handling 
the page faults, since we use a virtual memory-based shared memory 
implementation, and reads/writes to a page after an acquire point triggers a 
fault. The second relates to the diff operation performed at release points to 
sync up the CPU and Larrabee copies of a page. The third is the amount of 
time spent in copying data from one side to the other. The copy operation is 
triggered from the page fault handler when either processor needs the latest 
copy of a page. We do not include the copy overhead as part of the page fault 
overhead, but present it separately, since we believe different optimizations can 
be applied to optimize it.

Finally, the fourth one shows the overhead spent in synchronizing messages. 
Note that in a discrete setting, the Larrabee processor is connected to the CPU 
over the PCI-Express. The PCI-Express protocol does not include atomic read-
modify-write operations. Therefore we have to perform some synchronization 
and hand shaking between the CPU and Larrabee processor by passing 
messages. 

When the application uses ownership of arenas, the diff overhead is completely 
eliminated. The page fault handling is reduced, since the write page-fault 
handler does not have to create a backup copy of the page. Moreover, since we 
copy all the pages in one step when we acquire ownership of an arena, we do 
not incur read page faults. 
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As expected, the applications perform better with ownership calls than without. 
To understand the reason for this, we broke down the overhead of the system 
when the application was not using any ownership calls. Figure 4 shows the 
breakdown for Black Scholes. We show the breakdown for only one 
benchmark, but the ratios of the different overheads are very similar in all the 
benchmarks.

We break up the overhead into four categories. The first one relates to handling 
the page faults, since we use a virtual memory-based shared memory 
implementation, and reads/writes to a page after an acquire point triggers a 
fault. The second relates to the diff operation performed at release points to 
sync up the CPU and Larrabee copies of a page. The third is the amount of 
time spent in copying data from one side to the other. The copy operation is 
triggered from the page fault handler when either processor needs the latest 
copy of a page. We do not include the copy overhead as part of the page fault 
overhead, but present it separately, since we believe different optimizations can 
be applied to optimize it.

Finally, the fourth one shows the overhead spent in synchronizing messages. 
Note that in a discrete setting, the Larrabee processor is connected to the CPU 
over the PCI-Express. The PCI-Express protocol does not include atomic read-
modify-write operations. Therefore we have to perform some synchronization 
and hand shaking between the CPU and Larrabee processor by passing 
messages. 

When the application uses ownership of arenas, the diff overhead is completely 
eliminated. The page fault handling is reduced, since the write page-fault 
handler does not have to create a backup copy of the page. Moreover, since we 
copy all the pages in one step when we acquire ownership of an arena, we do 
not incur read page faults. 

“The page fault handling is reduced, 

since the write page-fault handler does 

not have to create a backup copy of the 

page.”
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This also significantly reduces the synchronization message overhead since the 
CPU and Larrabee processor perform the handshaking at only ownership 
acquisition points rather than at many intermediate points (e.g., whenever 
pages are transferred from one side to the other). Figure 5 shows the overhead 
breakdown with ownership calls.

Finally, Figure 6 shows the overall performance of our system. All the 
workloads used the ownership APIs. The “ideal” bar represents hardware-
supported cache coherence between the CPU and Larrabee cores—in other 
words, this is the best performance that our shared memory implementation 
can provide. For Equake, since the amount of data transferred is very small 
compared to the computation involved, we notice that “ideal” and “discrete” 
times are almost identical. 

In all cases our shared memory implementation has low overhead and performs 
almost as well as the ideal case. Black Scholes shows the highest comparable 
overhead, since it has the lowest compute density: i.e., the amount of data 
transferred per unit computation time was the highest. Using Black Scholes 
we transfer about 13MB of data per second of computation time, while we 
transfer about 0.42MB of data per second of computation time when using 
Equake. Hence, the memory coherence overhead is negligible in Equake. The 
difference between the ideal scenario and our shared memory implementation 
increases with the number of cores, mainly due to synchronization overhead. 
In our implementation, synchronization penalties increase non-linearly with 
the number of cores.

“In all cases our shared memory 

implementation has low overhead 

and performs almost as well as the 

ideal case.”
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Related Work
There exists other research that is closely related to the work explicated in this 
article. Most closely related are the CUDA [11], OpenCL [12] and CTM 
[2] programming environments. Just as our technology does, OpenCL uses 
a weakly consistent shared memory model, but it is restricted to the GPU. 
Our work differs from CUDA, OpenCL, and CTM in several ways: unlike 
these environments we define a model for communication between the CPU 
and Larrabee processor; we provide direct user-level communication between 
the CPU and Larrabee processor, and we consider a bigger set of C language 
features, such as function pointers. Implementing a similar memory model is 
challenging on current GPUs due to their inherent limitations. 

The Cell processor [8] is another heterogeneous platform. While the power 
processor unit (PPU) is akin to a CPU, the synergistic processing units (SPUs) 
are much simpler than the Larrabee cores. For example, they do not run an 
operating system kernel. Unlike the SPU-PPU pair, the Larrabee processor and 
CPU pair is much more loosely coupled, since the Larrabee processor can be 
paired as a discrete GPU with any CPU running any operating system. Unlike 
our model, Cell programming involves explicit direct memory access (DMA) 
between the PPU and SPU. Our memory model is similar to that of PGAS 
languages [14, 17], and hence our language constructs are similar to those of 
Unified Parallel C (UPC) language [17]. However, UPC does not consider ISA 
or operating system heterogeneity. Higher-level PGAS languages such as X10 
[14] do not support the ownership mechanism that is crucial for a scalable, 
coherent implementation in a discrete scenario. Our implementation has 
similarities to software-distributed shared memory [9, 4] which also leverages 
virtual memory. Many of these S-DSM systems also use release consistency 
and they copy pages lazily on demand. The main differences with S-DSM 
systems is the level of heterogeneity. Unlike S-DSM systems, our system needs 
to consider a computing system where the processors have different ISAs and 
system environments. In particular, we need to support different processors 
with different virtual-to-physical page mappings. Finally, the performance 
tradeoffs between S-DSMs and CPU with Larrabee processor systems are 
different: S-DSMs were meant to scale on large clusters, while CPU with 
Larrabee processor systems should remain small scale clusters for some time in 
the future. The CUBA* [7] architecture proposes hardware support for faster 
communication between the CPU and GPU. However, the programming 
model assumes that the CPU and GPU are separate address spaces. The EXO* 
[18] model provides shared memory between a CPU and accelerators, but it 
requires the page tables to be kept in sync, which isn’t feasible in a discrete 
accelerator. 

“Just as our technology does, OpenCL 

uses a weakly consistent shared 

memory model, but it is restricted to 

the GPU.”

“Unlike the SPU-PPU pair, the 

Larrabee processor and CPU pair is 

much more loosely coupled, since the 

Larrabee processor can be paired as a 

discrete GPU with any CPU running 

any operating system.”
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Conclusions
Heterogeneous computing platforms composed of a general-purpose scalar 
oriented CPU and throughput-oriented cores (e.g., a GPU) are increasingly 
being used in client computing systems. These platforms can be used for 
accelerating highly parallel workloads. There have been several programming 
model proposals for such platforms, but none of them address the CPU-GPU 
memory model. In this article we propose a new programming model for a 
heterogeneous Intel x86 system with the following key features: 

 • A shared memory model for all the cores in the platform. 

 • A uniform programming model for different configurations.

 • User annotations to demarcate code for CPU and Larrabee execution. 

We implemented the full software stack for our programming model including 
compiler and runtime support. We ported a number of parallel workloads to 
our programming model and evaluated the performance on a heterogeneous 
Intel x86 platform simulator. We show that our model can be implemented 
efficiently so that programmers are able to benefit from shared memory 
programming without paying a performance penalty. 
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Abstract
Tera-scale architectures represent a set of designs that enable high levels of 
parallelism to address the demands of existing and mostly emerging workloads. 
The on-chip interconnect element of such space is an essential ingredient 
with the desired flexibility and adaptivity to entertain the requirements of 
various designs. Highly integrated heterogeneous designs depend on a flexible 
interconnect topology to satisfy many different constraints. Demanding 
workloads create hot-spots and congestion in the network; thus, they desire 
an adaptive interconnect to respond gracefully to such transients. Other 
challenges, such as manufacturing defects, on-chip variation, and dynamic 
power management can also be better served through a flexible and adaptive 
interconnect.

In this article we present the design of an on-chip interconnect with aggressive 
latency, bandwidth, and energy characteristics that is also flexible and adaptive. 
We present the design choices and policies within the constraints of an on-chip 
interconnect and demonstrate the effectiveness of these choices for different 
usage scenarios.

Introduction 
Tera-scale architecture provides the foundation that can be used across a wide 
array of application domains taking advantage of increasing device densities 
offered by Moore’s law. A high degree of system integration, along with an 
architecture that can exploit different types of parallelism, characterizes this 
evolution. A typical implementation of such an architecture may include tens 
to hundreds of general-purpose compute elements, suitable for different types 
of parallelism, multiple levels of memory hierarchy to mitigate memory latency 
and  bandwidth bottlenecks, and interfaces to off-chip memory and I/O 
devices.

One tractable implementation for such an architecture is a modular design 
where the building blocks are implemented with well-defined physical and 
logical interfaces and are connected through an on-chip interconnect to realize 
a specific product. The definition of specific products is determined by cost, 
power, and performance goals. A large set of products targeting the needs of 
a variety of applications can be derived from different combinations of a few 
building blocks. A flexible and powerful on-chip interconnect is an essential 
building block to realize this vision.
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There are a few possible interconnect design options for the implementation 
space just suggested. One could partition the overall design into smaller sub-
systems, design interconnects suitable for each sub-system, and use a more 
suitable interconnect for interconnecting the sub-systems in their entirety. 
Such a methodology requires the design, analysis, and composition of multiple 
interconnects fitting well together to provide a cohesive overall connectivity. 
This approach takes a static design time view of interconnects, which may 
be acceptable in some contexts, but is specific to the need and not general-
purpose.

An alternative approach is to use a parameterized single interconnect design 
and apply it across all the sub-systems with specific parameters tuned for 
each sub-system. The design of such  an interconnect is substantially more 
challenging. On the other hand, a flexible and adaptive general-purpose 
interconnect has the potential to meet the needs of such systems in a more 
systematic and tractable  manner. We outline such an interconnect in this 
article. 

In this context, we first discuss a few example usage scenarios and show how 
these favor the use of such a general-purpose interconnect.

Usage Scenarios
As indicated earlier, the on-chip interconnect architecture discussed here 
is targeted towards a general-purpose design that can meet the needs of 
different sub-systems in a highly integrated and highly parallel architecture. 
The challenge of the underlying architecture is to be competitive with the 
application-specific designs in the specific context of the applications. Here 
we discuss a few example scenarios that are potential targets for tera-scale 
architecture.

Cloud Computing or a Virtualized Data Center
The aggregation of compute capacity in tera-scale architectures can be 
partitioned and virtualized to provide cloud computing services to multiple 
applications sharing the infrastructure. Such an environment should allow 
dynamic allocation and management of compute, memory, and IO resources 
with as much isolation between different partitions as possible. A large set of 
allocation and de-allocation of resources can create fragmentation that may not 
provide a clean and regular boundary between resources allocated for different 
purposes. The bridging interconnect housing these resources should be flexible 
enough to allow such cases without degrading service levels and without 
causing undue interference between different partitions. 

“Use a parameterized single 

interconnect design and apply it 

across all the sub-systems with specific 

parameters tuned for each sub-system.”
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Scientific Computing
Scientific computing applications cover the space from molecular dynamics 
to cosmic simulations, fluid dynamics, signal and image processing, data 
visualization, and other data and compute-intensive applications. These 
demanding applications are typically executed over large clusters of systems. 
The compute density per chip and energy per operation provided by tera-
scale architecture can greatly enhance the capability of systems targeting this 
application domain. A typical design for this domain would be dominated by a 
large number of processing elements on chip with either hardware- or software-
managed memory structures and provision for very high off-chip memory 
and system bandwidth. An interconnect designed for such applications should 
provide high bandwidth across all traffic patterns, even patterns that may be 
adversarial to a given topology. 

Visual Computing
Visual computing applications are similar to scientific computing applications 
in some aspects. However, these applications may additionally have real-time 
requirements including bounded-time and/or bandwidth guarantees. Also, 
different portions of an application (e.g., AI, physical simulation, rendering, 
etc.) have distinct requirements. This heterogeneity, reflected architecturally, 
would create topological irregularities and traffic hot-spots that must be 
handled to provide predictable performance for visual workloads.

Irregular Configurations
Cost and yield constraints for products with large numbers of cores may create 
a requirement for masking manufacturing failures or in-field failures of on-die 
components that in turn may result in configurations that deviate from the 
ideal topology of the on-chip interconnect. Another usage scenario that can 
create configurations that are less than ideal is an aggressive power-management 
strategy where certain segments of a chip are powered-down at low utilization. 
Such scenarios can be enabled only when the interconnect is capable of 
handling irregular topologies in a graceful manner.  

Attributes of On-chip Interconnect 
The on-chip interconnect for tera-scale architecture has to be designed keeping 
the usage scenarios just outlined in mind. Apart from the typical low-latency 
and high-bandwidth design goals, topology flexibility and predictable 
performance under a variety of loads are essential to enable the usage scenarios 
just described. We describe in this article the mechanisms to provide these 
features within the constraints of an on-chip interconnect for tera-scale 
architecture.

“Cost and yield constraints for 

products with large numbers of cores 

may create a requirement for masking 

manufacturing failures or in-field 

failures of on-die components.”
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One of the main drivers for tera-scale architecture is the power and thermal 
constraints on a chip that have necessitated the shift from optimizing for scalar 
performance to optimizing for parallel performance. This shift has resulted in 
the integration of a higher number of relatively simpler cores on a chip instead 
of driving towards higher frequency and higher micro-architectural complexity. 
This trend also has implications for the on-chip interconnect. Because of the 
weak correlation of frequency with process technology generation, logic delay 
is becoming a diminishing component of the critical path, and wire delay is 
becoming the dominant component in the interconnect design. This implies 
that topologies that optimize for the reduction of wire delay will become 
preferred topologies for tera-scale architectures. Given the two-dimensional 
orientation of a chip, two-dimensional network topologies are obvious choices. 

Another desirable attribute of an on-die interconnect is the ability to scale-
up or scale-down by the addition or reduction of processor cores and other 
blocks in a cost-performance optimal and simple manner, thereby enabling 
the design to span several product segments. Based on the usage scenarios 
described at the beginning of this article, a latency optimized interconnect is 
critical for minimizing memory latency and ensuring good performance in 
a cache-coherent chip multi-processor (CMP). In addition, partitioning and 
isolation, as well as fault-tolerance require support, based on the envisaged 
usage scenarios. Because of all of these considerations, two-dimensional mesh, 
torus, and its variants are good contenders for tera-scale designs. (Figure 1) The 
design discussed in this article assumes mesh and torus as primary topologies 
and allows variations to enable implementation flexibility.

Even though on-chip wiring channels are abundant, shrinking core and 
memory structure dimensions and increasing numbers of agents on a die will 
put pressure on global wiring channels on the chip. This implies that wiring 
efficiency, i.e., the ability to effectively utilize a given number of global wires, 
will be an important characteristic of on-chip interconnect.

In order to support good overall throughput and latency characteristics with 
a modest buffering cost, our design assumes a buffered interconnect, based 
on wormhole switching [1] and virtual channel flow control [2]. It supports 
multiple virtual channels to allow different types of traffic to share the physical 
wires. The details of this design are discussed in the following section.

The organization of the rest of this article is as follows. In the next section 
we present the details of the on-chip interconnect design, primarily focusing 
on the micro-architecture of the router and highlighting the choices made to 
optimize for latency and energy efficiency. We then focus on the support for 
flexibility and adaptivity, discussing the options and our preferred direction. 
The performance results are then presented for different usage scenarios, 
indicating the benefit derived from the various features in the interconnect. 
Next we discuss some of the related work and conclude our article with a 
summary of our work and next steps.

“Because of the weak correlation of 

frequency with process technology 

generation, logic delay is becoming a 

diminishing component of the critical 

path, and wire delay is becoming 

the dominant component in the 

interconnect design.”
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On-chip Interconnect Design
Before getting into the specifics of the micro-architecture of this design, let us 
look at the topological aspects. 

Supported Interconnect Topologies
The two dimensional on-die interconnect architecture we present is optimized 
for a CMP that is based on a tiled design supporting the mesh and torus 
topologies and a few variants. Some representative topologies are shown in 
Figure 1. Each processor tile may have a router that is connected to the local 
tile as well as to four other routers. Agents on the periphery can be connected 
to the local port of the router or directly to an unused router port of a 
neighboring tile. Other variations include two or more cores sharing a router, 
resulting in a concentrated topology that uses fewer routers for interconnecting 
the same number of cores. Another configuration is a torus with links that fold 
back along one or both of the horizontal and vertical directions. To balance 
wire delays in the torus topologies, links connect routers in alternate rows and/
or columns.

SysInt SysInt SysIO

Mem I/P Mem I/P

(a) 2D Mesh

SysInt SysInt SysIO

Mem I/P Mem I/P

(b) Mesh-Torus

HA HA

SysInt SysInt SysIO

HA HA

(c) Concentrated Mesh-Torus
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SysInt SysInt SysIO

(d) 2D Torus

Figure 1: Examples of 2D Mesh and Torus Variants
Source: Intel Corporation, 2009
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Router Micro-architecture
The principal component of the 2D interconnect fabric is a pipelined, low-
latency router with programmable routing algorithms that include support for 
performance isolation, fault-tolerance, and dynamic adaptive routing based on 
network conditions.

Figure 2 shows the stages of the router pipeline as well as the key functions 
performed in each stage. The functionality in our adaptive router includes most 
of the standard functionality that one can expect to see in a wormhole switched 
router [3]. 

Route Compute
This includes route computation for the header flit to determine the route, i.e., 
the output port of the router, which a packet must take towards its destination 
tile. In an adaptive routing scheme, this can imply that the packet may have a 
choice of more than one output port towards its destination (we support up to 
two output port choices). Our router architecture uses route pre-computation 
[4] for the route decision of neighboring routers, thereby removing route-
computation from the critical path of the router pipeline.(Route pre-compute 
options and design tradeoffs are discussed in “Flexible and Adaptive On-chip 
Interconnect.”).
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Figure 2: Adaptive Router Pipeline
Source: Intel Corporation, 2009

“The principal component of the 2D 

interconnect fabric is a pipelined, 

low-latency router with programmable 

routing algorithms.”
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Virtual Channels and Buffer Management
Our router architecture uses virtual channel flow control [21] both to improve 
performance and to enable support for deadlock-free routing in various flavors 
of deterministic, fault-tolerant and adaptive routing. The set of virtual channels 
(VCs) can be flexibly partitioned into two logical sets: routing VCs and 
performance VCs. Routing VCs are also logically grouped into virtual networks 
(VNs). VCs belonging to the same VN are used for message-class separation, 
but they use the same routing discipline. Routing VCs are used for satisfying 
deadlock-freedom requirements of a particular routing algorithm employed. 
Performance VCs belong to a common shared pool of VCs used for 
performance improvement (both for adaptive or deterministic routing 
schemes). Figure 3 shows an example of potential mappings of VCs to routing 
VCs belonging to specific message-classes and VNs, as well as the pool of 
performance VCs for 2D mesh and 2D torus topologies with minimal 
deadlock free XY routing algorithms for each network. The configuration is 
assumed to support 12 VCs and 4 message classes; the mesh requires a single 
VN (VN0) for deadlock freedom, whereas the torus requires 2VNs (VN0, 
VN1).

To support flexibility and optimal usage of packet buffering resources, our 
router supports a shared buffer at the input port that is used by all VNs in that 
port. The space in the buffer is dynamically managed by using a set of linked 
lists that track flits belonging to a given packet in a VC, as well as a list of 
free buffer slots for incoming flits. The operation of the flit-buffer is shown in 
Figure 4.

Depending on the size of the buffer, a banked implementation is used where 
each bank can be individually put into low-leakage states to save power at low 
levels of buffer utilization. Active power-management strategies to trade off 
performance and power can also be implemented.

Flow Control
The router supports credit-based flow control to manage the downstream 
buffering resources optimally. The flow control protocol is a typical scheme, 
except for the fact that it needs to handle the shared flit buffer resources and 
ensure reservation of at least 1-buffer slot resource for all routing VCs and 
also for each active performance VC. This is required to guarantee resource 
deadlock freedom with wormhole switching. 

Router Pipeline and Arbitration Mechanisms
Our adaptive router pipeline is a high-performance pipeline with the bypass 
capability of one pipeline stage based on network conditions.

A flit belonging to a packet enters the router at the input port. For a new 
packet, a message context is created to track relevant status information. The 
key functionality in the local arbitration stage is to determine a single packet at 
a given input that can contend for a router’s output port with other potential 
candidates from other input ports. 
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Figure 3: Mapping of Virtual Networks to Virtual 
Channels for a 2D Mesh and 2D Torus Topology
Source: Intel Corporation, 2009

“Our adaptive router pipeline is a 

high-performance pipeline with the 

bypass capability of one pipeline stage 

based on network conditions.”
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Our router applies a filter on less viable packets to improve the performance 
of the local and global arbitration stages.  Each packet may have up to two 
output-port candidates that may be used to route the packet to its desired 
destination. Both input and output side-arbiters make arbitration decisions, 
based on a round-robin priority.

Each output port selects a single winning input port from amongst one or 
more candidates from all input ports for the following cycle by using a rotating 
priority. A multi-flit packet may make a “hold” request, and the arbiter grants 
the output port to such an input port for an additional cycle. 

VC allocation, and allocation of a downstream buffer slot for the granted flit, 
also occurs after switch arbitration. Route pre-computation or route table 
lookup for the next router downstream occurs concurrently with arbitration. 
The final stage of the router pipeline is switch traversal from inputs to outputs. 
Appropriate sideband information for credit management (and setup of 
information based on look-ahead routing for header flits) is done at this stage, 
and the flit flows out of the router over the interconnect links to the input port 
of a downstream router.
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Flexible and Adaptive On-chip Interconnect 
In this section we describe the support for various routing algorithms to enable 
a flexible, configurable, and adaptive interconnect, and we discuss the design 
implications.

Support for Multiple Routing Algorithms
The router architecture supports distributed routing wherein the subsets of 
the routing decisions are made at each router along the path taken by a given 
packet.

In two-dimensional networks like mesh and torus, given a source node, the set 
of shortest paths to the destination fall into nine possible regions, as shown in 
Figure 5. The regions are labeled in terms of the minimal X and Y offset of 
shortest paths.

The baseline routing strategies supported by our router use this underlying 
classification of the destination for narrowing the set of paths to the destination 
[4, 5]. For minimal adaptive routing, up to two distinct directions may be 
permitted based on the region a destination node falls into. The routing 
decision (i.e., output ports and VN choices permitted) at each router is based 
on the current input port and VN a packet belongs to, as well as on the desired 
destination. For each VN, we can support the flexible algorithms with a small 
9-entry table [4, 5] or with an even more economical storage of only a few bits 
per port [6].

With the baseline routing support alone, minimal path deterministic routing 
in mesh and torus and partially and fully adaptive minimal path routing 
algorithms, such as those based on the turn model [7], are supported by our 
implementation. Our adaptive router architecture also supports the Duato 
protocol [8] which reduces the VC resource requirements while providing 
full adaptivity. Table 1 shows a comparison of the minimum number of VCs 
required to implement a deadlock-free turn-model that is based on fully-
adaptive routing versus that for a Duato-protocol-based implementation. 

Topology 2 Msg Classes 4 Msg Classes

Turn Model Duato Protocol Turn Model Duato Protocol

2D Mesh 4 3 8 5
2D Torus 6 5 12 9

Table 1: Minimum Virtual Channels Required for Fully-adaptive Routing 
(Turn Model v/s Duato Protocol)
Source: Intel Corporation, 2009

Baseline routing support also enables a deterministic fault-tolerant routing 
algorithm based on fault-region marking and fault-avoidance, such as in [9], as 
well as adaptive fault-tolerant routing algorithms [10]. Incomplete or irregular 
topologies caused by partial shutdown of the interconnect because of power-
performance tradeoffs can be treated in a manner similar to a network with 
faults for routing re-configuration purposes.
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Figure 5: The Nine Regions a Destination Node 
can Belong to Relative to a Given Router
Source: Intel Corporation, 2009
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Our router architecture also supports a novel two-phase routing protocol 
where a packet is routed to an intermediate destination and then to the final 
destination. This can be used to implement load-balancing and fault-tolerant 
routing algorithms, including non-minimal routing algorithms.

Finally, we also implement support for performance isolation amongst 
partitions on a mesh which may or may not have rectangular geometries. 
This is implemented through a hierarchical routing protocol that helps isolate 
communication of each partition including for non-rectangular partitions. This 
is purely a routing-based approach to providing isolation, and no additional 
resource management mechanisms, such as bandwidth reservation, are required 
with this approach.

Design Implications
Our flexible design had to have a minimal cost overhead in the definition 
phase. We outline next the various impacts of our design choices.

We maintain a high-performance router design by using a shared pool of 
VCs, as well as a shared buffer pool. The shared buffer pool reduces the 
overall buffer size and power requirements. Support for up to two output port 
choices with adaptive routing has little impact on the router performance. 
With the decoupled local and switch arbitration stages in the router pipeline 
(as described earlier), each packet arbitrates for a single output port candidate 
after applying the arbitration filter and path selection. The criteria used could 
be based on several congestion prediction heuristics that use locally available 
information, such as resource availability and/or resource usage history (see [4] 
for examples of such criteria). Path selection can be implemented without a 
significant impact on the arbitration stages.

Support for the adaptivity and flexible routing configuration requires the use 
of configurable route tables. While table storage requirements are small for the 
9-entry table (approximately 3-4 percent per VN, when compared to the flit 
buffer storage requirement), these can be reduced by an order of magnitude 
by using the approaches in [6]. These table storage optimizations, that are 
independent of the network size, considerably reduce the area and power 
requirements for supporting flexibility features in the on-chip interconnect.

In the next section we describe some representative performance results for 
flexible interconnection network architecture. 

Performance Results
We present the performance results for different configurations and traffic 
patterns to demonstrate the effectiveness of the adaptive routing scheme 
just described. However, before presenting the results on adaptive routing, 
we present the results to establish the optimal design parameters for typical 
operation.

“Our router architecture also supports 

a novel two-phase routing protocol 

where a packet is routed to an 

intermediate destination and then to 

the final destination.”

“Table storage optimizations, that 

are independent of the network size, 

considerably reduce the area and 

power requirements.”
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Figure 6 shows the effect of buffer size and number of VNs on each input 
port on the network capacity for a uniform random traffic pattern on a 6x6, 
two-dimensional mesh network. This traffic pattern uses a mix of single flit and 
five-flit packets divided between two  message classes, based on an expected 
distribution for cache coherency traffic. The target of each packet is randomly 
selected with equal probability, and the injection rate is increased until the 
network is close to saturation. For different buffer depths and VC settings, the 
network saturates at different points. Each plot in Figure 6 represents different 
buffer depths and shows the delivered throughput in terms of flits accepted per 
cycle per node for different numbers of VCs on the X-axis. The plots indicate 
that a larger number of buffers and VCs result in increased throughput; 
however, the improvement tapers off beyond sixteen buffers and ten virtual 
channels. These results were obtained by using a deterministic dimension-order 
routing scheme, since adaptive schemes are not beneficial for uniform random 
traffic patterns. We use sixteen buffers and twelve virtual channels as the 
baseline to evaluate the effectiveness of an adaptive routing scheme against that 
of a deterministic scheme. 

To illustrate the effectiveness of an adaptive routing scheme, we use a traffic 
pattern that is adversarial to two-dimensional mesh topology. Adversarial 
traffic for a given topology and routing scheme illustrates a worst-case scenario, 
which shows the extent of degradation in network performance for some 
traffic patterns. A matrix transpose is a perfect example for a mesh with X-Y 
deterministic routing, since it results in an uneven traffic load across the links 
along the diagonal.
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Figure 7 illustrates the source-destination relationship for a transpose 
operation. For this traffic pattern, a node labeled (i,j) communicates with node 
(j,i) and vice-versa. This results in nodes in the upper triangle (highlighted in 
orange) communicating with nodes in the lower triangle (highlighted in pink). 
The nodes on the diagonal (highlighted in blue) do not generate any traffic. 
Figure 7 also illustrates the route taken when a deterministic XY routing 
scheme and some possible alternatives allowed by an adaptive routing scheme 
are used. Paths highlighted with thick lines do not follow the XY routing 
scheme. There are many other paths possible between these source and 
destination nodes that are not shown in the figure. A deterministic routing 
scheme tends to concentrate load on a few links in the network for this traffic 
pattern, and not utilize other alternative paths between source-destination 
pairs. An adaptive routing scheme that allows more flexibility in path selection 
among multiple alternatives avoids congested routes and improves the overall 
capacity of the network.

The effect of path diversity in increasing the overall network capacity is 
illustrated through the load-throughput plot in Figure 8 for transpose traffic by 
using different routing schemes. XY represents a deterministic routing scheme, 
whereas Adaptive is an implementation of a minimal fully-adaptive routing 
scheme using the Duato protocol. As shown in the plot, the network capacity 
is severely restricted for this pattern when a deterministic routing scheme is 
used. The adaptive routing scheme delivers much higher throughput for this 
traffic pattern.
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When all the agents on the on-chip network are not of the same type, non-
homogeneous traffic patterns can be created with the potential for transient 
hot-spots. One example of this is the traffic going to and generated from 
memory controllers, I/O interfaces, and system interconnect. Depending on 
the phases of execution or type of workload, some of these agents may be more 
heavily used than others and may become bottlenecks on the interconnect, 
thereby affecting other traffic that shares the path with congested traffic. Such 
scenarios can be crudely approximated with a mix of traffic patterns between 
different sets of agents. To illustrate this scenario, we set up an experiment with 
a 6x6 mesh network where six agents at the periphery (three in the top row and 
three in the bottom row) are considered hot-spots with 30 percent of the traffic 
targeting these nodes with equal probability and the rest of the traffic targeting 
the remaining nodes with equal probability. Throughput delivered to each node 
in terms of flits per cycle was measured for all nodes combined, for hot-spot 
nodes, and for nodes excluding hot-spot nodes. The result is illustrated in 
Figure 9, which shows that overall throughput as well as the throughput 
delivered to hot-spot nodes and other nodes excluding the hot-spot nodes have 
improved. 

The interconnection network can be reconfigured in the presence of faults 
through adoption of fault-tolerant routing algorithms. In the absence of 
fault-tolerant routing, the network can become virtually unusable in the 
presence of high levels of identified and isolated faulty components. It may be 
possible to operate the network at a significantly diminished capacity by 
avoiding complete rows and/or columns of nodes containing a faulty node; i.e., 
use the nodes in that column or row as pass-through nodes. Here, we do not 
address a comparative performance benefit of fault-tolerant routing. However, 
in Figure 10 we show the fraction of usable nodes in the network and the 
resulting impact to the network latency as a sensitivity study to the number of 
faults in the network. The data are derived from an implementation of a 
fault-tolerant XY routing [9] which restricts the faulty regions to being 
rectangular in shape. The node failures in this context can be the result of core 
or router failure. Figure 10 (a) shows that when the number of randomly 
located faulty nodes is small, little or no additional nodes may be needed to be 
turned off to satisfy the rectangular shape constraint of faulty regions and to 
safely support the use of the rest of the network. As the number of faults 
increases, additional nodes, that are unsafe and prevent deadlock-free routing, 
need to be turned off. Figure 10 (b) shows that the increase in the average 
number of hops in the network is also small for a small number of faults. As 
the number of faults increases, the average number of unsafe nodes increases 
and then begins to drop off as the overall working cluster size (actual remaining 
functional system) diminishes, compared to the size of the full network. The 
actual region of interest is for a single to a small number of node failures for 
which fault-tolerant routing provides graceful degradation in performance.
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Related Work
With increasing interest in CMP and system-on-chip (SoC) designs, on-chip 
networks are a very active area of research. The current generation of CMP 
and SoC designs have taken very different approaches: CMP designs favor 
customized, implementation-specific, on-chip networks that change from 
generation to generation, whereas SoC designs use standardized networks that 
allow quick integration of different design blocks. As the complexity and level 
of integration increases with CMPs, it is likely that CMP designs will also 
move towards standardized networks. Some of the research prototypes, such 
as Intel’s tera-FLOP processor [11] and other recent designs from different 
vendors, have indicated a move towards this trend. The design presented in 
this article is a leap forward from the design used in [11]: it addresses some 
of the performance bottlenecks, such as the limited number of VCs, a more 
optimized design with lower latency, area and power, and advanced capabilities, 
such as flexible and adaptive routing.

Research into flexible and adaptive networks has been ongoing for a long 
time, and the techniques developed have been applied in various networks 
in operation. The closest interconnect type to on-chip networks, where 
similar requirements and tradeoffs are at play, is in the area of multi-processor 
networks. However, on-chip networks have to be further optimized for latency 
and storage overheads, a factor that drove the decisions for the design presented 
in this article. For example, off-chip multi-processor networks have typically 
used virtual cut-through techniques [12, 13, 14], but these designs could result 
in larger buffering overheads, as the number of VCs increases. The design 
presented in this article uses wormhole switching [1], which does not require 
buffers to be allocated for the entire packet.

The route specification mechanism used in this work relies on either a 
compressed table or on a LBDR [4, 5, 6] mechanism for look-ahead routing 
[4] such that route determination does not add to the pipeline delay at each 
router. Off-chip networks, such as the IBM Blue Gene/L* torus network 
[12] avoid using any table, and it relies on X, Y, and Z offsets to destination 
to make routing decisions. However, the Blue Gene/L network does not 
allow any topological irregularities and cannot tolerate link or router failures. 
Routing schemes used in the Cray T3E* [13] system allows more flexibility 
and can tolerate link and router failures, but adaptive routing is disabled when 
minimal paths from source to destination contain broken links. Cray T3E 
implementation requires a table as large as the system size (up to 544 entries) 
to determine the routing tags. As the number of agents grows on a chip, large 
table sizes result in area and power overheads.

Note that Cray T3E also uses an adaptive routing scheme by using escape 
VCs [8] similar to the scheme used in our implementation. However, the 
Cray T3E implementation has only one VC for adaptive routing usage, and it 
uses a virtual cut-through in the adaptive channels that require space for the 
entire packet. Such an implementation limits the benefit of adaptivity. Our 
implementation uses wormhole switching, even in the adaptive channels, and 
it allows multiple VCs to be used for packets, with the use of adaptive routing.

“With increasing interest in CMP and 

system-on-chip (SoC) designs, on-chip 
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Conclusions
We have presented the details of an on-die fabric with an adaptive router that 
supports various 2D interconnect topologies for tera-scale architectures. 2D 
mesh and torus topologies provide good latency and bandwidth scaling for tens 
to more than a hundred processor cores, as well as the additional connectivity 
that enables multiple paths between source-destination pairs that can be 
exploited by adaptive routing algorithms.

The architecture presented has an aggressive low-latency router pipeline. It 
can also provide high throughput in the presence of adversarial traffic patterns 
and hot-spots through the use of adaptive routing. The adaptive routing 
is supported without impacting the router pipeline performance, and it is 
supported through very economical and configurable routing table storage 
requirements. This router also supports very efficient use of resources by 
making use of shared (performance) VC and buffer pools.

The propsed fabric architecture and routing algorithms also support the ability 
to provide partitioning with performance isolation and the ability to tolerate 
several faults or irregularities in the topology, such as those caused by partial 
shutdown of processing cores and other components for power management.
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Abstract
Integrated circuit processing technology and computer architectures continue 
to mature. Single chip CPUs have been demonstrated to exceed one TeraFLOP 
[1]. This high level of computation, concentrated in a small area, creates many 
system design challenges. One of these major challenges is designing and 
building a memory sub-system that allows these CPUs to perform well while 
staying within reasonable system cost, volume, and power constraints.

This article describes the challenges that tera-scale computing presents to 
the memory sub-system, such as performance metrics including memory 
bandwidth capacity and latency, as well as the physical challenges of packaging 
and memory channel design. New technologies that need to be developed and 
matured for tera-scale memory sub-systems are also discussed.

Introduction
The architecture and construction of computers have gone through many 
changes. The first electronic digital computer was invented in 1939, and it 
is usually credited to John V. Atanasaff and Clifford Berry from Iowa State 
University. It consisted of vacuum tubes, capacitors, and a rotating drum 
memory. In 1945, the ENIAC was built: it weighed over 20 tons and filled 
a large room. In 1948, a team of engineers at Manchester University built a 
machine nicknamed “the baby.” This was the first computer that was able to 
store its own programs, and it is usually considered to be the forerunner to the 
computers we use today. A type of altered cathode ray tube was used to store 
data.

The design constraints of these early electronic computers were the required 
computer room volume and the power consumed, primarily due to the use of 
thousands of vacuum tubes. In 1959, Jack Kilby, then at Texas Instruments, 
and Robert Noyce, then at Fairchild Semiconductor, invented the monolithic 
integrated circuit. The transition to integrated circuits was the start of 
an impressive treadmill for the computer industry where more and more 
transistors could be built and connected within a monolithic “chip.” There 
have been varying different architectures, often categorized as mainframes 
and microprocessors (microcomputers). The level of integration for these 
computers has increased over time, but the basic architecture comprising a 
central processing unit (CPU) and memory has remained.
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Abstract
Integrated circuit processing technology and computer architectures continue 
to mature. Single chip CPUs have been demonstrated to exceed one TeraFLOP 
[1]. This high level of computation, concentrated in a small area, creates many 
system design challenges. One of these major challenges is designing and 
building a memory sub-system that allows these CPUs to perform well while 
staying within reasonable system cost, volume, and power constraints.

This article describes the challenges that tera-scale computing presents to 
the memory sub-system, such as performance metrics including memory 
bandwidth capacity and latency, as well as the physical challenges of packaging 
and memory channel design. New technologies that need to be developed and 
matured for tera-scale memory sub-systems are also discussed.

Introduction
The architecture and construction of computers have gone through many 
changes. The first electronic digital computer was invented in 1939, and it 
is usually credited to John V. Atanasaff and Clifford Berry from Iowa State 
University. It consisted of vacuum tubes, capacitors, and a rotating drum 
memory. In 1945, the ENIAC was built: it weighed over 20 tons and filled 
a large room. In 1948, a team of engineers at Manchester University built a 
machine nicknamed “the baby.” This was the first computer that was able to 
store its own programs, and it is usually considered to be the forerunner to the 
computers we use today. A type of altered cathode ray tube was used to store 
data.

The design constraints of these early electronic computers were the required 
computer room volume and the power consumed, primarily due to the use of 
thousands of vacuum tubes. In 1959, Jack Kilby, then at Texas Instruments, 
and Robert Noyce, then at Fairchild Semiconductor, invented the monolithic 
integrated circuit. The transition to integrated circuits was the start of 
an impressive treadmill for the computer industry where more and more 
transistors could be built and connected within a monolithic “chip.” There 
have been varying different architectures, often categorized as mainframes 
and microprocessors (microcomputers). The level of integration for these 
computers has increased over time, but the basic architecture comprising a 
central processing unit (CPU) and memory has remained.

“The level of integration for computers 

has increased over time, but the basic 

architecture comprising a central 

processing unit (CPU) and memory 

has remained.”

In the early years of electronic computers, drum memory was often used. 
This consisted of a rotating drum coated with ferromagnetic material and 
containing a row of read and write heads. Drum memory was followed by 
core memory that used magnetic rings to store information in the orientation 
of the magnetic field. As transistors matured, core memory was replaced with 
microchips, by using configurations of transistors and, often, capacitors to store 
digital information.

CPUs and memory have evolved to use high transistor count integrated 
circuits; they both use complementary metal oxide semiconductor (CMOS) 
technology. Although the components of CPUs and memory are built basically 
in the same way, memory and CPU continue to be partitioned into different 
sub-systems within a computer. Such a method has worked well up to this 
point: the transistor density (transistors per area of silicon substrate) for CPUs 
and the density of those used to create memory chips continue to follow 
Moore’s Law [1]. These increases in integration have allowed for increased 
functionality and increased clock frequency, both leading to impressive 
improvements in system performance and reductions in system costs.

In the last decade, however, double data rate (DDR) memory has emerged as 
the dominant memory technology (in terms of number of units sold). Some of 
the key features that have made DDR memory appealing are the low cost per 
bit, sufficient bandwidth to supply instructions and data to the CPUs, and the 
shared bus aspect of the interfaces to the memory chips: more memory can be 
added to a memory channel interface if more capacity is needed, a form of “pay 
as you go” method of memory acquisition.

Recently, however, we are starting to see some strain in the ability of DDR-
based memory to meet the needs of higher- and higher-performing tera-
scale CPUs. The two constraints being felt most are the increasing power 
consumption that comes with the increased power density, as well as the 
electro-mechanical challenges (signal integrity) associated with exchanging data 
between two chips: i.e., not allowing bit rates per pin or trace to increase at a 
fast enough rate.

“Double data rate (DDR) memory 

has emerged as the dominant memory 

technology (in terms of number of 

units sold).”
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Memory Fundamentals
In this article we focus on the memory in microprocessor-based systems. More 
precisely, we focus on memory that is outside of the CPU, that is, we do not 
focus on on-die caches, or on non-volatile storage. This memory outside of the 
CPU is circled in the simple drawing in Figure 1.
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Figure 1: System Block Diagram
Source: Intel Corporation, 2009

Key Metrics
The key metrics for memory sub-systems are bandwidth, capacity, latency, 
power, system volume, and cost. We examine these next.

Bandwidth. Bandwidth is defined as bytes moved between the memory and 
the CPU’s memory controller. Bandwidth is usually the most talked-about 
performance parameter. The bandwidth required for a system is usually market 
segment and application (working set size, code arrangement, and structure) 
dependent. Amdahl’s rule of Thumb [3] suggests there should be one Bps for 
each instruction per second executed. This ratio is sometimes converted to one 
Bps, per floating point operation, per second. Designing and implementing 
that high a ratio of memory bandwidth to CPU performance has not been met 
for most general-purpose computer systems today.

Capacity. The capacity is the total number of bytes stored. A weak correlation 
exists between the capacity of memory to performance. There is a large range 
for memory capacity compared to bandwidth to memory. When comparing 
capacity (bytes) to bandwidth (Bps) in a ratio, the range goes from very small 
(0.10 to large (10).

Latency. This is the time it takes to read a word from memory. The focus is 
usually on read latency. Write latency can be posted (put in a queue) and is 
therefore considered less important. The latencies to DRAM devices have been 
reduced slowly over the last decade.

Power (energy per time). Power equals the energy consumed divided by the time 
in which that energy is consumed. Sometimes power is a more useful metric 
than energy per bit moved. In effect, to be accurate in assessing the power and 
energy efficiency of memory, both metrics are useful. Although the majority of 
the power consumed is often dependent on how much data are moved, power 
is also consumed that is not directly dependent on the data read and written. 
Lastly, the power and energy per bit moved for memory are also dependent on 
how the DRAM devices are physically connected to the memory controller.

System volume. This is the space taken up by the DRAM chips (often called 
DRAM devices). It is common for DRAM devices to be mounted on a 
small printed circuit board, called dual inline memory modules (DIMMs). 
Therefore, system volume is sometimes measured in mm3. Board area (mm2) 
is often considered, and although technically not a volume, board area is often 
lumped into the “volume” category. Volume reductions must be accompanied 
with commensurate power reduction so that power densities are not increased.

Cost. The cost refers to the money it costs to implement the memory sub-
system of choice.

Memory Sub-system Scaling
Most DRAM processes are very efficient at implementing small-sized trench 
capacitors in their substrate, as well as low leakage transistors. These processes 
tend to favor fast n-channel transistors used as charge switches. DRAMs 
often implement the p-channel transistors to be slow (longer switching time) 
relative to the n-channel transistors. Therefore, a DRAM process is not good 
for general logic functions when compared to the processes used to implement 
CPUs. Because of these choices, the evolution of DRAM has seen a high 
percentage of logic functions managed in the DRAM controller, not the 
DRAM itself. These choices, coupled with process shrinks, have resulted in an 
impressive reduction in per-memory bit cost.

As CPU performance has increased, the bit rate per pin or bit rate per bump 
(depending on the CPU and packaging technology) has also increased. 
Unfortunately for system designers, the ability to increase performance within 
a chip has increased much faster than the ability to increase the bit rate per 
pin, bit rate per bump, and bit rate per trace. The result has been a reduction 
in the number of DIMMs that can be attached to a memory channel while still 
maintaining good signal integrity. Although these challenges and limitations 
may be well understood, they have proven to be difficult to solve within the 
current cost constraints of most systems.

“The focus is usually on read latency. 

Write latency can be posted (put in a 

queue) and is therefore considered less 

important.”
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Latency. This is the time it takes to read a word from memory. The focus is 
usually on read latency. Write latency can be posted (put in a queue) and is 
therefore considered less important. The latencies to DRAM devices have been 
reduced slowly over the last decade.

Power (energy per time). Power equals the energy consumed divided by the time 
in which that energy is consumed. Sometimes power is a more useful metric 
than energy per bit moved. In effect, to be accurate in assessing the power and 
energy efficiency of memory, both metrics are useful. Although the majority of 
the power consumed is often dependent on how much data are moved, power 
is also consumed that is not directly dependent on the data read and written. 
Lastly, the power and energy per bit moved for memory are also dependent on 
how the DRAM devices are physically connected to the memory controller.

System volume. This is the space taken up by the DRAM chips (often called 
DRAM devices). It is common for DRAM devices to be mounted on a 
small printed circuit board, called dual inline memory modules (DIMMs). 
Therefore, system volume is sometimes measured in mm3. Board area (mm2) 
is often considered, and although technically not a volume, board area is often 
lumped into the “volume” category. Volume reductions must be accompanied 
with commensurate power reduction so that power densities are not increased.

Cost. The cost refers to the money it costs to implement the memory sub-
system of choice.

Memory Sub-system Scaling
Most DRAM processes are very efficient at implementing small-sized trench 
capacitors in their substrate, as well as low leakage transistors. These processes 
tend to favor fast n-channel transistors used as charge switches. DRAMs 
often implement the p-channel transistors to be slow (longer switching time) 
relative to the n-channel transistors. Therefore, a DRAM process is not good 
for general logic functions when compared to the processes used to implement 
CPUs. Because of these choices, the evolution of DRAM has seen a high 
percentage of logic functions managed in the DRAM controller, not the 
DRAM itself. These choices, coupled with process shrinks, have resulted in an 
impressive reduction in per-memory bit cost.

As CPU performance has increased, the bit rate per pin or bit rate per bump 
(depending on the CPU and packaging technology) has also increased. 
Unfortunately for system designers, the ability to increase performance within 
a chip has increased much faster than the ability to increase the bit rate per 
pin, bit rate per bump, and bit rate per trace. The result has been a reduction 
in the number of DIMMs that can be attached to a memory channel while still 
maintaining good signal integrity. Although these challenges and limitations 
may be well understood, they have proven to be difficult to solve within the 
current cost constraints of most systems.

“Volume reductions must be 

accompanied with commensurate 

power reduction so that power 

densities are not increased.”

“The evolution of DRAM has seen 

a high percentage of logic functions 

managed in the DRAM controller, not 

the DRAM itself.”
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To summarize, memory sub-systems are mostly constrained by four main 
factors: bandwidth, power, capacity, and cost. System main memory is 
typically implemented with commodity DRAM. The bandwidth per pin is 
not increasing as quickly as the compute capability of CPUs: this imbalance 
causes an increase in CPU pin count, and it either adds cost, or reduces the 
bandwidth per compute operation, and decreases the system performance. 
The capacity-dependent power for DRAM, and the energy per bit which is 
read and written for DRAM, are not decreasing as quickly as the compute 
capability of the CPUs is increasing. Tera-scale CPUs increase performance by 
allowing many threads to run simultaneously. Concurrently running threads 
are expected to maintain or increase the demand for bandwidth beyond the 
traditional twice-every-two-year curve [4].

Evolutionary Memory Scaling
The interface to dual inline memory modules and the architecture of double 
data rate memory do not scale well for future tera-scale CPUs. The following 
sections address the areas where scaling to the future is problematic.

Bandwidth
Traditionally, volume microprocessor-based systems have demanded an 
increase of two times per two years in off-chip bandwidth. This trend of 
increased bandwidth demand is based on the bandwidth demand of a single 
microprocessor core. As we add cores to the microprocessor, and increase 
the parallel applications running on those cores, the bandwidth demand will 
increase beyond this traditional trend. The increased demand has historically 
been met by using commodity DRAM (DDRx) technology, and in some 
high-end applications, by using specialized memory such as graphics DRAM 
(GDDRx). The bandwidth supplied by these devices is limited by the width of 
the external interface, the pin speed of that interface, and the cycle time and 
banking of the DRAM itself.

The cycle time of the DRAM is limited by both the DRAM process technology 
and by the architecture of the chip, i.e., the size of the physical arrays and the 
parasitics associated with them. DRAM technology has been optimized for 
capacity, not for bandwidth. The transistors are designed for low-leakage power, 
and the metal stack is composed of two to three layers that are optimized 
for density. The cycle time for large arrays is thus limited by metal parasitics 
and by the transistors (optimized for DRAM) that are used for control logic 
and the datapath. Decreasing the sub array size to reduce these parasitics, as 
is typically done for GDDRx, means replicating peripheral circuits, such as 
decoders and sense amps, and increasing the wiring required to get the data 
from the increased number of sub-arrays off of the chip. These factors decrease 
the memory density, thereby increasing the cost per bit, while also increasing 
power consumption. 

“Volume microprocessor-based 

systems have demanded an increase 

of two times per two years in off-chip 

bandwidth.”

“DRAM technology has been 

optimized for capacity, not for 

bandwidth.”
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Figure 2: DDR2 Four-DIMM Topology
Source: Intel Corporation, 2009

The pin speed of the external interface is limited by the performance of the 
low-leakage transistors available as well as by the configuration of the physical 
components in the path between the memory controller and memory 
packages, connectors, sockets, wires, etc. The width of the interface is limited 
by package size and cost, as well as by the interconnect components, such as 
module connectors. A major limitation in pin speed for DDRx solutions is the 
physical configuration. Packaged DRAM devices are placed on DIMMs. 
Multiple DIMMs are then connected to a common set of wires going to a 
memory controller. This common set of wires forms a DRAM “channel.” 
DIMMs are connected to this channel by inserting the DIMMs into edge 
connectors on a motherboard. This “multi-drop” style of connection creates an 
electrical discontinuity, or impedance change, at each DIMM connector on the 
common motherboard wires. Such a design limits the overall speed of the 
wires. An electrical illustration of this type of connection is shown for a DDR2 
four-DIMM topology in Figure 2.

Figure 3 shows a “pulse response,” or representation, of the distortion 
introduced by propagating a voltage pulse representing one bit of data across 
this interconnect.
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In order to increase the pin speed, the number of DIMMs connected to the 
channel must decrease in each generation. DDR2 has four DIMMs while 
DDR3 data rates often allow just two: a future DDR4 will likely be limited to 
one DIMM per channel, and eventually only have a single “rank” of memory 
on that DIMM, meaning there will be a DRAM device on only one side of 
the DIMM. Once we move to one DIMM per channel in DDR4, the pin 
speed will be capped at 2.5-3.5 Gigabits per second (Gbps) per pin, due to the 
signaling scheme used and the physical channel components. At that point, 
DDRx bandwidth scaling via pin speed will cease. This will correspond to a 
bandwidth of 24 Gigabytes per second (GBps) at a 3 Gbps pin speed for a 
64-bit-wide interface. Adding more bandwidth then means adding memory 
pins and channels to the system that will be limited by component package 
sizes, pin counts, and DIMM connector pin counts. 

In order to get more bandwidth without adding channels, we then must 
move to GDDRx-type topologies. In this technology design, the memory 
device is soldered to the motherboard, and there is one chip or set of chips 
per channel, thus removing the DIMM-related discontinuity. However, this 
severely limits capacity, since the multiple DIMM, multiple ranks per DIMM 
scheme, is now gone. To improve the cycle time of the memory, the sub-array 
size is decreased, again trading reduced capacity for increased bandwidth. This 
design will provide a solution for a pin speed increase of up to 5 – 6 Gbps, 
at which time DRAM process technology and package parasitics will prevent 
further increases. Exotic solutions such as the so-called XDR scheme proposed 
by RAMBUS Corporation would involve a two-pin per signal, or differential 
scheme, to increase the pin speed further. To justify the extra pins, pins whose 
speed is twice that of GDDRx would be necessary. Such a design will severely 
push the capability of DRAM process technology and result in unacceptable 
increases in power and perhaps cost.

Power
DRAM power is composed of three main components: power consumed 
by the storage array, power consumed by the peripheral circuits, and power 
consumed by the datapath from the array to the I/O pins. Approximately 50 
percent of the power is in the datapath, with the other 50 percent split between 
peripheral circuits and the array. Historical power trends for DDRx-based 
systems show overall power to be between 40 – 200 milliwatts (mW) per 
Gbps. This number is dependent on both the particular type of memory used, 
DDRx or GDDRx, for example; the power supply; process technology nodes; 
the physical interconnect channel configuration; and the memory usage model. 
Smaller sub-arrays are more power efficient at the expense of capacity. This 
makes GDDRx, for example, two to three times more power efficient than 
DDRx, but with a substantial density penalty.

As mentioned previously, DRAM process technology is not amenable to 
high-speed functions. In order to keep the datapath relatively narrow and save 
external pins, the datapath becomes the highest speed portion of the design, 
thus consuming 50 percent of the device power.

“DDR2 has four DIMMs while 

DDR3 data rates often allow just two: 

a future DDR4 will likely be limited 

to one DIMM per channel.”

“To keep the datapath relatively 

narrow and save external pins, the 

datapath becomes the highest speed 

portion of the design, thus consuming 

50 percent of the device power.”
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The physical channel for GDDRx, which connects to one device per channel, 
is different than the channel for fully buffered DIMMS, which have added 
active devices on the DIMM to form connections to other DIMMs in a 
“point-to-point” fashion. This design configuration is the least power efficient 
of all configurations, due to the added power of the added active device.

Usage policies such as “page open” or “page closed” have a large impact on 
power efficiency, depending on the “activation efficiency” of the device, or 
on the amount of data actually used when a row of the memory array is 
“activated,” or read to the sense amplifiers in preparation for making the data 
available to send to the external memory pins.

As a quick case study, assume that a future high-end system needs a terabyte 
per second (TBps) of external bandwidth. This corresponds to 8 terabits per 
second (Tbps) of bandwidth. At 40 mW per Gbps this memory sub-system 
then consumes 320 Watts. At 200 mW per Gbps, it consumes 1600 Watts. 
These efficiencies will scale somewhat with further decreases in DRAM power 
supply, but beyond 1.2 Volts (currently at 1.5 Volts), this will become very 
difficult to reduce further, due to process technology and circuit constraints. 
Clearly, an evolutionary solution to providing high bandwidth will become a 
show-stopper due to power.

Capacity
We have already discussed the tradeoff for bandwidth versus capacity in 
traditional memory sub-systems. One solution is fully buffered DIMMs, 
which, as previously discussed, will be limited by power. Interim solutions, 
such as a “buffer on board,” will help in the short term by placing a single 
buffering component on the motherboard rather than on the DIMMS, but 
will still be limited, due to both expandability and power constraints. 

Latency
Latency is trending down somewhat in absolute terms with process technology 
improvements, but when measured in number of processor cycles, the latency 
has been increasing. Latency improvements (reductions) would come from 
reducing the size of the memory sub-array to limit on-chip wire parasitics, 
and from moving the memory as close to the memory controller as possible to 
limit external wire length. Both of these solutions are limited in effectiveness 
and/or trade capacity for latency. The memory controller, due to its complex 
association with rows, columns, pages, and ranks of DDR devices has the 
largest impact on latency in the system. If the architecture of DRAM devices 
does not change, it will be very difficult to reduce the complexity of the 
memory controllers. Therefore, it will be very difficult to reduce the latency to 
read from and write to memory while maintaining the existing cost per bit and 
existing bandwidths.

“When measured in number of 

processor cycles, the latency has been 

increasing.”



Intel® Technology Journal | Volume 13, Issue 4, 2009

88   |   Tera-scale Memory Challenges and Solutions

Evolutionary Summary
In summary, the key trends for evolutionary memory sub-system scaling are 
these:

 • Bandwidth scaling for traditional DDRx-based systems will end at about 
24 GBps for a single channel.

 • To get this bandwidth, capacity per channel will be limited to one DIMM 
without extra components, such as buffer on board (motherboard).

 • GDDRx gives increased bandwidth but at the cost of capacity. Pin speed 
will be limited to 5 – 6 Gbps for GDDR channels being constructed today.

 • Power in the memory sub-system varies from 40 – 200 mW per Gbps, 
translating to hundreds of Watts for a TBps of bandwidth.

 • Adding capacity to evolutionary memory sub-systems is limited to adding 
channels, fully buffered DIMMs, or putting a buffer on the motherboard. 
All of these add cost and power to the system. Fully buffered DIMM 
memory is the least power efficient of all DRAM memory technologies.

 • Latency improvements for evolutionary systems will be minimal.

Tera-scale Memory Challenges
Tera-scale CPUs put additional stress on the memory sub-system and the 
technologies used to implement them. In the following section, we describe 
some of those challenges.

Memory Technology
As we look forward to the era of tera-scale computing, the first question we 
need to ask is which memory technology(s) will fill the needs of these systems. 
DRAM technology has long dominated the market for off-chip memory 
bandwidth solutions in computing systems. While non-volatile memory 
technologies such as NAND Flash and Phase Change Memory are vying for 
a share of this market, they are at a disadvantage with respect to bandwidth, 
latency, and power. Given this, DRAM technology will continue to be 
the solution of choice in these applications for the foreseeable future. We, 
therefore, discuss future DRAM memories.

We discussed basic DRAM technology earlier in this article. Since the 
technology is fundamentally dependent on a fixed amount of energy storage on 
a capacitor, density scaling will become problematic in DRAM technology. At 
that point, 3-D technology will become a viable path for further scaling.

“DRAM technology will continue 

to be the solution of choice in these 

applications for the foreseeable future.”
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Key Metric Equals Bytes per FLOP
The key metric for the performance of memory sub-systems is bandwidth (Bps) 
per computational performance. Performance is usually measured as floating 
point operations per second (FLOPs per second), sometimes instructions 
executed per second, and [rarely] clock frequency (cycles per second). Typically, 
the seconds unit in both the denominator and the numerator are removed, 
and the metric is expressed as bytes per FLOP. Available bandwidth within 
a platform has increased twice every two years for many years. Multi-core 
technology continues to increase the bandwidth demand of CPUs, while at the 
same time, the available bandwidth as well as the capability of external memory 
sub-systems are increasing at a lower rate, due to increased DRAM limitations 
described earlier.

Future Memory Sub-systems
Changing or fixing one of the problems with bandwidth will not alter the 
fundamental challenges we face with memory sub-systems. We need a holistic 
approach to achieve the required results. The main factors that will need to 
be addressed to achieve the optimal solution for increased bandwidth and 
lower energy per bit of future tera-scale memory sub-systems are the channel 
materials, the IO density, the memory density, and the memory device 
architecture. We examine the changes required in each of these areas.

Channel Materials
First we look at the materials that could be used to construct channels between 
CPUs and memory modules.

Typically, in order to increase rates as much as possible at the longer lengths, 
complexity is added to the I/O solution in the form of additional equalization, 
more complex clocking circuits, and possibly, data coding. These added 
features increase the power consumed by the I/O solution. More complex 
interconnects, such as flex cabling, improved board materials, such as Rogers 
or high-density interconnect (HDI), and eventually, optical solutions, must 
be considered. These features can increase the cost of the I/O solution. To 
reduce the impact of the increased cost of the channel, the size of the channel 
should be reduced, and this has additional electrical signaling benefits. In order 
to minimize both power and cost, locality in the data movement should be 
exploited to the greatest possible extent. Exploiting locality of data movement 
leads to the next desired characteristic in our future memory solutions: I/O 
density.

“Available bandwidth within a 

platform has increased twice every two 

years for many years.”
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I/O Density
In looking at the desired characteristics for future memory sub-systems 
that require very high bandwidth, it is instructive to divide the challenge 
of building a high I/O density solution into two parts: I/O and memory 
core components. We first look at the I/O solution. In Figure 5, we plot the 
power efficiency in mW per Gbps of various I/O options, including DDR3, 
GDDR5, on-package I/O, two experimental Intel interfaces, and an interface 
that may be enabled through short, dense interconnects.

0.1

10

1

0 10 205 15

Proposed
(target)

1.0

I/O
 P

o
w

er
 E

ff
ic

ie
n

cy
 (

m
W

/G
b

/s
)

~15

DDR3
GDDR5

~25

On-pkg I/O
~8

2.7

3.6
5.0

Date Rate (Gb/s)

11.7

Intel ISSCC 06

Intel VLSI 07

Figure 5: Power Efficiency of Various I/O Options Plotted in mW per Gbps
Source: Intel Corporation, 2009

Note that the traditional memory interfaces achieve power efficiencies that vary 
from 15 mW/Gbps to 20mW/Gbps. These numbers are dependent on the 
physical channel between the CPU’s memory controller and the memory, the 
style of the I/O, and the rate at which the I/O is running. Typically, the faster 
the I/O, the less power efficient it will be, as the process technology is pushed 
harder and features are added to the I/O solution to increase speed. The Intel 
research presented at the International Solid State Circuits Conference in 2006 
[5] is an interface built to achieve 20 Gbps on 90 nm CMOS. The interface 
labeled “Intel VLSI 07” [6] in Figure 5, on the other hand, was built to operate 
across a wide performance range with optimum power efficiency at all 
performance points. Note that, for that interface, the power efficiency does 
indeed improve at lower data rates, 2.7 mW per Gbps at 5 Gbps, versus 15 
mW per Gbps at 15 Gbps. This improvement is achieved by optimizing both 
the I/O circuits and the power supply for each data rate to achieve the desired 
bit error rate on the interface, given the non-linear characteristic of reduced 
power efficiency as the bit rate increases. By utilizing shorter, more optimized 
interconnects, we can potentially further improve this style of interface to 
achieve approximately 1 mW per Gbps at 10 Gbps. Note that this is 
approximately an order of magnitude better than the I/O solution on 
traditional memory technologies.
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From the data given, we can draw the conclusion that, in order to minimize 
the power consumed, any data movement should be across as wide of an 
interface as possible. For a given aggregate desired bandwidth, this means that 
we can operate each I/O line at the lowest possible rate, thereby improving 
the power efficiency. In order to improve power efficiency without increasing 
the size or form factor of the system or the associated distances that data must 
move, we need to increase the density of the interconnect of the channel 
between the memory controller and the memory. 

The density of traditional chip-to-chip interconnects is limited by several 
factors, chief of which, is, of course, the cost of the selected interconnect. 
Traditional printed circuit board technology is, for example, much less dense 
than microprocessor package interconnect density as measured by the number 
of wires per cross-sectional area. Given this knowledge, one obvious way to 
increase the interconnect density is to mount the memory on the 
microprocessor package as shown in Figure 6.

Using this configuration, no connections between the CPU and the memory 
go to the motherboard, and the improved channel material yields the density 
increase. This configuration helps to solve the problem of moving bits from 
the microprocessor to the edge of the memory die; however, we also need to 
explore more efficient methods of moving those bits in and out of the memory 
array.

Memory Density
Earlier in this article, we discussed the limitations that DRAM technology 
imposes on high bandwidth solutions, as well as the fact that density scaling 
may become an issue at some point in the future. We need a technology that 
will solve both of these issues. 3-D technology, based on through silicon vias 
(TSVs), offers one such possible solution [7, 8, 9]. 3-D stacked memory will 
provide an increase in memory density through stacking, and it will enable 
a wide datapath from the memory to the external pins, relaxing the per-pin 
bandwidth requirement in the memory array as shown in Figure 7.
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Figure 7: 3-D Stacked Memory Module [7]
Source: Intel Corporation, 2009

“To minimize the power consumed, 

any data movement should be across as 

wide of an interface as possible.”
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This design achieves six objectives:

 • We provide a method for further scaling of DRAM density.

 • We enable a relatively wide datapath from the memory array to the memory 
pins, relaxing the speed constraints on the DRAM technology. 

 • We maintain a high density connection from the memory module to the 
memory controller, which makes for more efficient use of power. We never 
connect to low-density motherboards, sockets, or connectors. 

 • We eliminate many of the traditional interconnect components from the 
electrical path, including memory controller package vertical path, socket, 
and memory edge connectors.

 • We can separate the high bandwidth I/O solution from the microprocessor 
and memory controller power delivery path, since we are using the top of 
the package rather than the bottom to deliver bandwidth. 

 • The increased density eliminates the need for the electrically-challenged and 
energy-inefficient, multi-drop DIMM bus. The new stacked memory will 
be seen as a single load device.

Finally, we need a way to move the data from the wide datapath from the 
memory array to the memory device pins. There are several possible ways to 
move the data: the general characteristics necessary for an optimal solution are 
the ability to efficiently multiplex the data at a rate that matches the data rate 
of the increased device pins (Gbps), rather than a rate that matches the slower, 
wider memory datapath, at an efficient energy level (picojoules per bit) that 
closely matches the characteristics of the CPU generating the memory requests. 

Now that we have an efficient method of moving the bits, and a means to 
scale device capacity, we look at what we can do with the memory device 
architecture.

Memory Device Architecture
DDR-based DRAM devices use an architecture of rows of bits that are 
activated via a row address strobe (RAS). This causes small charges stored 
on rows of capacitors to pull up or down a bit bus that is attached to sense 
amplifiers. These sense amplifiers amplify the small voltage from the memory 
bit storage capacitor into an externally readable voltage and they buffer them in 
temporary storage. The relatively few bits that are being read or written within 
that row are then selected via a column address strobe (CAS). This architecture  
provides a good set of choices when low-cost per DRAM bit is the highest 
priority. This architecture also allows for low pin-count devices and minimizes 
the area required for logic and data paths within the die. A simplified drawing 
of this architecture is shown in Figure 8.

“RAS/CAS provides a good set of 

choices when low-cost per DRAM bit 

is the highest priority.”
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Figure 8: Simplified DRAM Architecture
Source: Intel Corporation, 2009

Unfortunately, this architecture is not conducive to low energy per bit read or 
written, since energy is used to amplify all of the bits in the entire row even 
though only a few are read. Therefore energy is wasted on the unused bits. Row 
access sizes, called pages, are generally in the 1-Kilobyte to 2-Kilobyte range, 
while the memory requests that activated the page are commonly only 8 bytes, 
a 128:1 or 256:1 ratio, respectively. Although operating systems and memory 
controllers try to optimize data placement and access patterns to maximize the 
reuse of an activated page, most of the data in an activated page are not used. 
To make matters worse, as the number of cores in CPUs increases and more 
threads are executing concurrently, the address locality of data accesses, and 
therefore the ability to maximize activated page reuse, is decreasing. This will 
lead to further wasted energy in the memory sub-system.

As DRAM technology has advanced and capacity per device has increased 
over the last 15 years, the page size and therefore activation energy has not 
been reduced as quickly as the number of bits has increased. Adding banks 
enables multiple rows to be activated and held open while other banks are 
being accessed. This feature has an additional benefit of reducing the need for 
consecutive spatial locality of accesses to reuse an activated page, but it does 
little to address the overall ratio of activated energy to request size. “As the number of cores.. increases.. 

and more threads are executing 

concurrently, the address locality… is 

decreasing.”
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Reducing the energy of the memory device architecture will require a reduction 
in the size of the pages to reduce the activation energy per request. Various 
page sizes must be investigated against many workloads. To further mitigate the 
impact of the loss of spatial locality, due to advanced multi-threaded, multi-
core, tera-scale CPUs, the number of banks can be greatly increased, which 
should also simplify the routing of the bit lines and sense amplifiers in the 
memory device [8].

TSVs, as discussed previously, can be used to route many pages from a 
large number of banks within the DRAM memory array to the device pins 
and connect them to the improved channel between the DRAM memory 
module and the tera-scale CPU. A discussion of how proposed memory 
array architecture is implemented and routed with TSVs to the device pins is 
beyond the scope of this article, and, moreover, is dependent on the individual 
technology developed by the memory array manufacturers; however, the 
individual technologies discussed in this article can be combined to achieve an 
overall improved memory device architecture. 

Memory Hierarchy
Given a memory of the type we describe, we must also examine the entire 
memory hierarchy. For example, it may be advantageous to add a level of 
memory to the hierarchy. We may have some amount of high-bandwidth 
memory, while the rest of the memory capacity has a low-bandwidth 
requirement. There will be cost, performance, and power tradeoffs when 
deciding how the high-bandwidth memory is connected to the CPU. The same 
is true for the lower bandwidth, higher capacity of the slower “bulk” memory. 
Since the majority of the memory is low bandwidth, we have several options 
for connecting it to the CPU, such as connecting the memory to the printed 
circuit board and using copper traces.

The reasons for inserting an additional level in the memory hierarchy are the 
same as those for looking into new memory technologies: performance, power, 
and cost. More precisely, a new memory hierarchy could provide increased 
performance, low power, or both increased performance and lower power, 
within a set cost constraint. Equally appealing is reducing cost but maintaining 
the same performance and power consumption levels, something that may also 
be possible with the addition of another level of memory hierarchy.

Analyzing different memory hierarchies is a huge challenge. All the metrics 
mentioned previously need to be evaluated in the context of the applications of 
interest (see “Key Metrics”). Adding to the challenge is anticipating the effect 
tera-scale CPUs will have on the memory traffic to and from memory.

“A new memory hierarchy could 

provide increased performance, low 

power, or both increased performance 

and lower power, within a set cost 

constraint.”
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The techniques to estimate the performance of memory are often broken into 
cache management and memory management. For comparison purposes, we 
choose the following starting point.

 • Caches are on the same CPU die as the processing cores.

 • The capacity of the caches is in the range of 1 – 4 Megabytes per core for 
the last level of cache (if there is more than one level of cache present).

 • The unloaded latency to read from a cache is in the range of 10–30 
nanoseconds (ns).

 • The replacement policy of the cache is managed by an algorithm managed 
by hardware in the CPU. Cache lines are the unit of transfer (size of 
data that is placed and replaced). The cache line size (number of bytes) 
is dependent on the architecture of the core. Most current CPUs usually 
have two or more levels of cache as well as a (very low-latency) register file 
per core. In a thorough analysis of memory sub-system performance, these 
features would have to be considered.

 • The main memory is DRAM, and it is on separate chips from the CPU.

 • The range of the capacity of main memory varied greatly from system to 
system, with the average range within an order of magnitude of 1 Gigabyte 
per core.

 • The unloaded latency to read from main memory is on the order of 
magnitude of 50 ns.

 • The “replacement” policy is pages, managed by the operating system (OS). 
The size of pages varies; it is commonly 4 Kilobytes or larger.

When considering additional levels of the memory hierarchy, the key decisions 
are where to add a level or levels in the memory hierarchy and how the levels of 
memory are managed.

Memory Hierarchy — Where to Add Memory
When designing a memory hierarchy, we use the following guidelines. Looking 
out from a CPU, the closer (lower) level of memory must have the lowest 
latency and the highest bandwidth, and it can have the lowest capacity. As the 
levels of memory increase, the latency increases; the bandwidth decreases while 
the capacity increases. Hidden within these guidelines is the fact that the lower 
the latency to the memory, the higher the cost per bit. Also, the lower the 
latency to the memory, the higher the energy per bit read and written.

Earlier, we concluded that to meet the needs of tera-scale systems, designers 
should investigate new architectures and manufacturing techniques for 
DRAM, with an emphasis on 3-D stacking with TSVs. We are confident that 
these techniques will lead to improved DRAM products, while maintaining 
a low cost per bit stored. We also realize that when the new technologies are 
introduced, it will take time for the price per bit to drop. Therefore, early use 
of 3-D stacked memory as near memory, backed up by DDR-based DRAM or 
other low cost per bit memory technologies, may be an appealing and cost-
effective choice for designers.

“The lower the latency to memory, the 

higher the energy per bit read and 

written.”
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Memory Hierarchy — How Layers are Managed
Usage and management policies for near memory and where these policies are 
implemented are difficult research questions to answer. We chose to separate 
these questions into two procedures: manage the near memory as a cache 
or present the memory to the OS as two regions of memory with different 
performance and energy characteristics.

Using policies implemented in hardware to manage the near memory 
as a cache is appealing, because this kind of management will cause the 
minimum disruption to application and OS software. The effectiveness of this 
management scheme will depend on how well the replacement policy leads 
to a high hit rate into the near memory. A high hit rate is essential to make 
this memory hierarchy meet the performance-to-cost goal. Target application 
data set size and memory access patterns, and how those interact with the 
replacement policy, will have a large impact on the hit rate. Other factors that 
will come into play are how the near memory is arranged: associatively and 
number of ways (if more than one way in the cache). Adding to the challenge 
is that the size of the unit of data that is replaced also affects the performance 
and complexity (a form of cost) of the memory sub-system. As the associativity 
increases, the size of the tags increase. As the size of the replacement unit 
decreases, the hit rate should increase, but the number of tags also increases.

The other extreme for a near and far memory management choice is to provide 
mechanisms in hardware to move data to and from either range of memory, 
and to leave the replacement policy to software. Due to the design complexity, 
we expect that the majority of people writing application code and OS code 
will not have enough incentive to tackle this problem for many years. Tera-
scale computing will provide an increasing number of threads that are available 
for running applications. Effectively using and coordinating those threads will 
require that applications and the OS’s that those application run on evolve 
further. Code that is specialized for a lightweight OS and written to specific 
hardware will be the only code that can take advantage of two-level memory 
sub-systems managed by software.

Power and Energy Considerations
As the hierarchy of the memory sub-system is examined, more emphasis must 
be placed on the power (energy used per time) that is consumed to run the 
applications. The simple statement that data movement must be minimized 
will take on additional importance as tera-scale CPUs are built. For example, 
if a memory sub-system is built with near and far memory, the near memory 
will consume a low amount of energy to read and write bits, as well as lower 
latency, higher bandwidth, and less capacity than those required by far 
memory. The bandwidth to and from the near memory must be considerably 
higher than the bandwidth to and from the far memory, but the cost per bit of 
the far memory must be lower than the cost per bit of the near memory. This 
creates an additional incentive for designers to choose replacement policies for 
the near memory, such that the hit rate is high and the eviction rate is low.

“Using policies implemented in 

hardware to manage the near memory 

as a cache is appealing, because this 

kind of management will cause the 

minimum disruption to application 

and OS software.”
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Summary and Conclusions
Tera-scale CPUs will demand a large amount of bandwidth from their memory 
sub-systems. Their demand for memory bandwidth will exceed one TBps. 
Current DRAM architectures and the DDR-based interfaces to those chips 
will not meet the needs of tera-scale CPUs. There is no simple solution to the 
challenges associated with bandwidth to memory; many aspects of the memory 
sub-system will require further research. Three key metrics have been identified 
that need improvement: bandwidth, power, and cost. There are strong 
dependencies between these metrics.

Increasing the bit rate per pin conflicts with lowering the power of the memory 
sub-system. I/O circuits have demonstrated impressively high bit rates. 
However, I/O circuits achieve higher power efficiency (lower mW per Gbps) 
at slower data rates. Therefore, to achieve high-bandwidth interfaces that are 
power efficient, wide slow interfaces need to be developed. To support those 
interfaces, new packaging and new materials will need to be used. In order to 
keep costs down, the use of these new technologies needs to be localized to 
small areas.

The use of TSVs as a third dimension of connection between DRAM chips is a 
promising technology to increase the capacity of DRAM products and reduce 
power consumption. TSVs effectively provide many more I/O connection 
points into and out of the DRAM chips. These connection points allow for 
different ways to access and manage the bit storage arrays that can lead to 
more accesses in parallel, thereby improving performance. TSVs also allow for 
different access groupings within the DRAM chips that can reduce the power 
consumed.

The introduction of different architectures of DRAM chips creates questions of 
what memory sub-systems will look like in the future. As new types of memory 
are built, the memory sub-systems will evolve to use the new memory products 
in ways that best meet the market segment’s performance, power, and cost 
requirements. Not all memory sub-systems will look the same.

“Tera-scale CPUs will demand a large 

amount of bandwidth from their 

memory sub-systems. Their demand for 

memory bandwidth will exceed one 

TBps. Current DRAM architectures 

and the DDR-based interfaces to those 

chips will not meet the needs of tera-

scale CPUs.”
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Abstract
Key enablers to achieving tera-scale processor performance under a constant 
power envelope will be the addition of special-purpose hardware accelerators 
and their ability to operate at ultra-low supply voltages. Special-purpose 
hardware accelerators can improve energy efficiency by an order of magnitude, 
compared to general-purpose cores, for key compute-intensive applications. 
Performance per Watt increases as the supply voltage is reduced, but the 
degraded transistor on/off current ratios at the lower supply voltages can 
limit the minimum operational supply voltage. Circuit solutions for robust 
operation at ultra-low supply voltages will also need to minimize any 
performance impact on the nominal supply operation for a highly scalable 
design.

This article describes ultra-low voltage design techniques and learnings from a 
video motion estimation engine fabricated in 65 nm CMOS technology. This 
chip is targeted for special-purpose, on-die acceleration of SAD computation 
in real-time video encoding workloads on power-constrained mobile 
microprocessors. Various datapath circuit innovations within the accelerator 
improve energy efficiency for SAD calculations at nominal supplies, while 
ultra-low voltage optimizations enable robust circuit operation for further 
efficiency gains at ultra-low supply voltages, with minimal impact on nominal 
supply performance. Silicon measurements of the accelerator demonstrate 
performance of 2.055 GHz at the nominal supply voltage of 1.2 V, with 
scalable performance of up to 2.4 GHz at 1.4 V, 50° C. Robust, ultra-low 
voltage, optimized circuits enable operation measured down to 230 mV (sub-
threshold). Across this wide range of operational supplies, maximum energy 
efficiency of 411 GOPS/W or 12.8 macro-block SADs/nJ is achieved by 
operating the accelerator at a near-threshold voltage of 320 mV, for 23 MHz 
frequency and 56 μW power consumption. This represents a 9.6X higher 
efficiency than at the nominal 1.2 V operation.

Introduction
As transistor integration density continues to increase, the number of cores 
in a microprocessor will also increase to handle higher performance demands. 
Improvements in future microprocessor energy efficiency will necessitate 
that not all the additional cores be targeted for general-purpose processing. 
For specific applications, such as video processing, graphics, encryption, and 
communication, dedicated hardware accelerators can provide 10 – 100x higher 
energy efficiency or performance per Watt. Future multi-core processors will 
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need to be heterogeneous so that key applications, that are computationally 
intensive or inefficiently handled by general-purpose cores, can be processed 
by the dedicated accelerators to improve the overall energy efficiency of 
the processor. The range of applications that can be mapped to a particular 
accelerator is determined by the degree of flexibility or reconfigurability of 
the accelerator, which also provides a design tradeoff against the achievable 
energy efficiency. Figure 1 shows the conceptual organization of such a future 
microprocessor to achieve tera-scale performance within a constant power 
envelope.

The increasing number of video-capture applications in mobile devices 
motivates the need for energy-efficient compression of raw video data to 
meet the storage and transmission constraints of mobile platforms. Motion 
estimation (ME) is the most performance- and power-critical operation 
in video encoding, and it can benefit from accelerator circuits to increase 
throughput in a power-efficient manner. Furthermore, encoder specifications 
have a wide range of requirements for throughput and power to handle a 
variety of video resolution, frame rate, and application specifications [1-6], 
resulting in the need for tunable power and performance capabilities for such 
accelerators. ME algorithms remove inter-frame redundancies to achieve 
video compression. Similarities between consecutive frames are used to locate 
movement of pixel blocks in the current frame with respect to the reference 
frames. Motion vectors for block translations are used to encode the frames, 
which can be reconstructed by the decoder from the reference frames. The 
error metric, used for the purposes of block matching by the algorithms, is the 
SAD between the respective pixel blocks of the two frames.

IA Cores SP HW Accelerators

Encryption
Accelerators

Graphics/Video
Accelerators

Search/Speech
Accelerators

Vdd

Freq = 1
Throughput = 1
Power = 1
Area = 1
Pwr Den = 1

Logic Core

0.67 · Vdd

Freq = 0.5
Throughput = 1
Power = 0.45
Area = 2
Pwr Den = 0.225

Logic Core

Logic Core

Figure 1: Conceptual Organization of a Tera-scale Processor and Supply Voltage Scaling Impact
Source: Intel Corporation, 2009

“The degree of flexibility or 

reconfigurability of the accelerator 

provides a design tradeoff against the 

achievable energy efficiency.”
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Further improvements in energy efficiency can be achieved by lowering the 
supply voltage of a special-purpose accelerator or core, as power consumption 
decreases by a greater percentage than the corresponding decrease in 
performance. Various signal-processing and compute-intensive applications 
have a high degree of parallelism. Increased hardware-level parallelism for these 
applications can enable the same throughput at the lower supply voltage, while 
taking advantage of the increased energy efficiency for lowering overall power 
consumption. This effect is illustrated in Figure 1: the supply voltage is reduced 
for a processing core by one-third, for a 50 percent reduction in the normalized 
frequency. Two cores at the lower supply voltage operate at half the frequency, 
but they maintain the same throughput as that of a single core at the nominal 
supply, while consuming less than half the total power. The power-density, 
which determines thermal hot-spots on the die, is also reduced in this example 
by more than 75 percent. Further gains in energy efficiency can be obtained by 
operating at aggressively lower supply voltages.

Processors operating at ultra-low and sub-threshold voltages have been 
demonstrated for niche applications with low throughput requirements 
[7-10]. However, the robustness of circuit operation decreases at lower supply 
voltages, and design optimizations that enable robust functionality at ultra-low 
supply voltage can severely degrade performance at the nominal voltage. ME 
accelerators, targeted for integration in high-performance microprocessors, 
require both high performance at the nominal supply voltages and energy-
efficient robust performance in the presence of increased variations at ultra-low 
supply voltages. Though body biasing and circuit sizing have been used to 
address variations at sub-threshold supplies [8-10], these techniques can incur 
considerable area and power penalties. Circuit operation at ultra-low supply 
voltages also requires level-shifting circuits for interfacing with other processing 
or memory units that operate at higher supply voltages. These level shifters 
add power and performance overhead that must be reduced to maximize the 
energy-efficiency gains from low-voltage operation.

A ME engine, targeted for special-purpose, on-die acceleration of SAD 
computation [11] in real-time video encoding workloads on power-constrained 
microprocessors, is fabricated in 65 nm CMOS [12]. Intensive SAD 
computations required for ME block searches benefit from SAD datapath 
optimizations that improve energy efficiency. The accelerator increases 
ME energy efficiency with circuit techniques: among these are speculative 
difference computation with parallel sign generation for SADs, optimal reuse 
of sum XOR min-terms in static 4:2 compressor carry gates, and distributed 
accumulation of input carries for efficient negation. Robust ultra-low voltage 
optimized circuits result in a wide operational range of supply voltages (1.4 V 
– 230 mV) with minimal performance and power overhead at nominal 
operation, enabling the accelerator to achieve an optimal energy-delay tradeoff, 
by dynamically varying operating conditions based on target performance 
demands and power budgets. Nominal performance (measured at 1.2 V, 
50° C) for the accelerator is 2.055 GHz, with 48 mW of power consumption. 
Performance is scalable up to 2.4 GHz, 82 mW (measured at 1.4 V, 50° C), 
while the lowest power consumption of 14.4 μW (4.3 MHz performance) 
is achieved in deep-sub-threshold operations at 230 mV. Ultra-low supply 
operation enables increased energy efficiency, with maximum energy efficiency 

“Power consumption decreases 

by a greater percentage than 

the corresponding decrease in 

performance.”

“Design optimizations that enable 

robust functionality at ultra-low 

supply voltage can severely degrade 

performance at the nominal voltage.”
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Further improvements in energy efficiency can be achieved by lowering the 
supply voltage of a special-purpose accelerator or core, as power consumption 
decreases by a greater percentage than the corresponding decrease in 
performance. Various signal-processing and compute-intensive applications 
have a high degree of parallelism. Increased hardware-level parallelism for these 
applications can enable the same throughput at the lower supply voltage, while 
taking advantage of the increased energy efficiency for lowering overall power 
consumption. This effect is illustrated in Figure 1: the supply voltage is reduced 
for a processing core by one-third, for a 50 percent reduction in the normalized 
frequency. Two cores at the lower supply voltage operate at half the frequency, 
but they maintain the same throughput as that of a single core at the nominal 
supply, while consuming less than half the total power. The power-density, 
which determines thermal hot-spots on the die, is also reduced in this example 
by more than 75 percent. Further gains in energy efficiency can be obtained by 
operating at aggressively lower supply voltages.

Processors operating at ultra-low and sub-threshold voltages have been 
demonstrated for niche applications with low throughput requirements 
[7-10]. However, the robustness of circuit operation decreases at lower supply 
voltages, and design optimizations that enable robust functionality at ultra-low 
supply voltage can severely degrade performance at the nominal voltage. ME 
accelerators, targeted for integration in high-performance microprocessors, 
require both high performance at the nominal supply voltages and energy-
efficient robust performance in the presence of increased variations at ultra-low 
supply voltages. Though body biasing and circuit sizing have been used to 
address variations at sub-threshold supplies [8-10], these techniques can incur 
considerable area and power penalties. Circuit operation at ultra-low supply 
voltages also requires level-shifting circuits for interfacing with other processing 
or memory units that operate at higher supply voltages. These level shifters 
add power and performance overhead that must be reduced to maximize the 
energy-efficiency gains from low-voltage operation.

A ME engine, targeted for special-purpose, on-die acceleration of SAD 
computation [11] in real-time video encoding workloads on power-constrained 
microprocessors, is fabricated in 65 nm CMOS [12]. Intensive SAD 
computations required for ME block searches benefit from SAD datapath 
optimizations that improve energy efficiency. The accelerator increases 
ME energy efficiency with circuit techniques: among these are speculative 
difference computation with parallel sign generation for SADs, optimal reuse 
of sum XOR min-terms in static 4:2 compressor carry gates, and distributed 
accumulation of input carries for efficient negation. Robust ultra-low voltage 
optimized circuits result in a wide operational range of supply voltages (1.4 V 
– 230 mV) with minimal performance and power overhead at nominal 
operation, enabling the accelerator to achieve an optimal energy-delay tradeoff, 
by dynamically varying operating conditions based on target performance 
demands and power budgets. Nominal performance (measured at 1.2 V, 
50° C) for the accelerator is 2.055 GHz, with 48 mW of power consumption. 
Performance is scalable up to 2.4 GHz, 82 mW (measured at 1.4 V, 50° C), 
while the lowest power consumption of 14.4 μW (4.3 MHz performance) 
is achieved in deep-sub-threshold operations at 230 mV. Ultra-low supply 
operation enables increased energy efficiency, with maximum energy efficiency 

“The accelerator can achieve an 

optimal energy-delay tradeoff, by 

dynamically varying operating 

conditions based on target 

performance demands and power 

budgets.”

of 411 GOPS per Watt (measured at 320 mV, 50° C), for 23 MHz of 
performance and 56 μW of power consumption. Two-stage cascaded, split-
output-level shifter circuits provide energy and area-optimized up-conversion 
of ultra-low voltage signals to the nominal supply. The accelerator can tolerate 
up to ±2x process and temperature-induced performance variations at ultra-low 
supplies by using supply voltage compensation of ±50 mV.

For the remainder of this article, we first describe the accelerator organization 
and SAD8 circuits; we then describe the circuit designs and optimizations that 
enable ultra-low voltage operation for achieving higher energy efficiency. We 
detail the cascaded split-output-level shifter circuit next, and then we provide 
power, performance, and energy-efficiency measurements on silicon. We end 
our discussion with measurement results that demonstrate the use of supply 
compensation to counter large performance variations at ultra-low voltages.

Motion Estimation Accelerator Organization
The motion estimation accelerator (Figure 2) uses SAD calculations to locate 
a block in the current frame that is minimally different from a block in a 
reference frame. Pixels from the reference and current frames, stored in local 
memory, are provided as inputs to the SAD8 unit, which computes the SAD 
for eight pairs of 8b pixels in a single cycle. The SAD8 unit operates at a lower 
supply voltage to improve the energy efficiency of the critical computation. 
This operation is highly parallel for motion estimation, and the SAD8 unit can 
be scaled accordingly for iterative inter-frame SAD calculations. The output of 
the SAD8 unit is up-converted to the higher supply by a level shifter circuit. 
Supply compensation is used to maintain constant performance for the SAD8 
unit under increased temperature and process-induced variations at low supply 
voltages.
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Within the SAD8, absolute differences between pixel pairs are computed and 
summed. Each pixel pair contains one pixel from the reference frame and one 
pixel from the current frame. The SAD2 unit computes the SAD for two pixel 
pairs, followed by two stages of compressor units, to provide SAD computation 
for eight pixel pairs in carry-save format. Absolute difference calculations, as 
well as summations, are accomplished with 4:2 compressors to increase energy 
efficiency. A carry propagation adder converts the carry-save SAD output to a 
normal 11b unsigned binary number, providing the metric for block matching, 
required by the ME algorithms. The accelerator architecture can also be 
extended to handle wider SAD computations, e.g., SAD16, SAD32, etc., by 
increasing the number of compressor stages before the final carry propagating 
adder.

SAD8 Circuits
Several circuit optimizations improve the performance and energy efficiency of 
the SAD8 unit (Figure 3). We discuss some of these here.

Speculative SAD2 
The SAD is composed of the operations of computing the difference, the 
absolute value, and the summation of the absolute values, in sequential order. 
In a conventional SAD2 circuit, the difference between each pixel pair is 
computed and, based on the sign of this difference, either the true or negated 
output is selected to obtain the non-negative (absolute) difference. Following 
this, a summation stage adds the two absolute differences. The requirement 
that the sign of the difference must be resolved prior to summation results in 
a dependency that prevents further computation from being completed before 
the 2:1 multiplexer selects between the positive or negative difference values. 
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The speculative SAD2 circuit (Figure 3) enables more computation ahead 
of the sign and before the multiplexer stage. The difference and sum stages 
are combined to produce the sums of differences, by using 4:2 compressors. 
Speculation on the signs of differences requires all four possible sums of 
differences, ±(a0 - b0) + ±(a1 - b1), to be computed before the late-arriving 
signs, by negating the appropriate inputs. Two of these sums are computed 
by using a pair of 4:2 compressors, while compressor symmetry is used to 
obtain the other two sums of differences by inverting the outputs of these 4:2 
compressors. The late-arriving signs of the differences select the correct SAD 
with the 4:1 multiplexer. Summation of differences prior to sign computation 
and four-way speculation, using only two 4:2 compressors, provides a 
performance advantage that can be translated to a 30 percent energy reduction 
compared to a conventional non-speculative design for the same delay; thus, 
energy efficiency is improved for SAD2 computation.

Efficient Carry Insertion for 2’s Complement
The SAD operation negates one input in each pixel pair for the difference 
computation. Negating a number in 2’s complement arithmetic requires 
a bit-wise inversion of the input, followed by the addition of 1 at the least 
significant bit (LSB). Irrespective of whether the true or negative output of the 
difference is selected to obtain the absolute difference, the addition of a 1 is 
required for every pixel pair, as exactly one input is negated. In conventional 
designs, this is implemented by setting the carry-in (Cin) for the difference 
to 1 and selecting the true output of the difference. Selection of the inverted 
output is the equivalent of inverting all the inputs with Cin=0. In this case, a 1 
is added after the multiplexer. Conditional negation to obtain the non-negative 
difference requires the use of a half adder stage after the multiplexer to insert a 
conditional carry for every pair, adding to the critical path of the conventional 
design.

The speculative SAD circuit removes the half adder stage from the critical path. 
Selection of the inverted output of any of the 4:2 compressors to obtain the 
SAD in the SAD2 circuit is equivalent to inverting all the inputs and setting 
the LSB Cin of the compressor to 0. A carry is conditionally inserted in the 
LSB, after the 4:1 multiplexer, by setting the output carry c[0] to 1 with the 
use of a parallel 2:1 multiplexer. In a conventional compressor tree this is 
an unused signal, set to 0. This speculative SAD2 circuit accommodates the 
addition of a single 1 for every two pixel-pairs and only half the negation 
carries required for all eight pairs. Carry insertion for the other four pixel-pairs 
is accomplished by adding a constant 4 in the compressor tree in a distributed 
manner: this is done by setting the LSB Cin of the three 4:2 compressor units 
and the final adder to 1. Optimized distribution of all the carries required for 
negation results in a zero-delay penalty; consequently, the critical path of the 
SAD8 unit is reduced.

“Optimized distribution of all the 

carries required for negation results in 

a zero-delay penalty.”
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Sign Generation
The computation to determine the sign of the difference is part of the critical 
path in the SAD2 circuit. The sign-generation circuit uses a propagate-generate 
(PG) stage followed by a 3-stage, radix-2, logarithmic carry tree for delay 
reduction. Since the most significant bit (MSB) carry provides the sign, the 
carry tree is optimized to compute only the carry-out of the 8b difference. The 
signs of differences are decoded and buffered to provide the 4:1 multiplexer 
selects within the SAD2. Sign computation of the difference is carried out 
in parallel with the 4:2 summation, with the path from SAD2 inputs to 
multiplexer selects being more critical than the 4:2 compressor, by one gate 
stage.

Compressor
An energy-efficient 4:2 compressor circuit (Figure 4) is a key building block 
for the SAD8 design, as it is used throughout the datapath for difference 
calculations and summations. The first stage of sum XORs in the compressor 
is expanded to two stages of NAND gates, by using differential inputs, to 
enable reuse of XOR min-terms in the carry logic. The remaining XORs 
and multiplexer are implemented without buffering or series connected 
transmission gates, and they provide differential outputs. The differential 
outputs are directly compatible with next-stage compressor inputs and also 
provide inverted outputs without any delay penalty. This property enables 
generation of both true and inverted outputs of the 4:2 compressor pair in 
the SAD2 circuit, without affecting the critical path. Sharing of min-terms 
by using the first stage of NAND gates, between the XOR and carry logic, 
allows the 4:2 compressor design to be optimized further within the SAD8, by 
relocating these NAND gates in front of the inter-compressor wires. This not 
only results in improved drive strength for the long wires, as they are driven 
by NAND gates rather than the transmission gates of the compressor, but 
also eliminates long differential interconnects, thereby reducing wiring and 
associated energy by 50 percent. Without this optimization, extra inverters 
would be required in the critical path to achieve the same result. Also, the first 
stage of NAND gates of each 4:2 compressor in the second summation stage 
of the SAD8 is moved behind the multiplexers in each pair of SAD2 circuits 
(Figure 3). This provides a 50 percent reduction in the number of multiplexers, 
in addition to the wire reduction benefit.
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Final Adder
Following the compressor tree in the SAD8 circuit, a final 11b adder (Figure 3) 
converts the SAD from carry-save format to a normal binary number. The 
adder design uses a radix-2 sparse carry-merge tree that generates carries at 
alternate bit positions only. The sums are pre-computed by the conditional 2b 
and 3b sum generators, with the correct sum being selected by the late-arriving 
carry from the carry-merge tree. This design results in a 50 percent wiring 
reduction within the carry tree compared to that of a conventional Kogge-
Stone adder, while maintaining the same number of gate stages in the critical 
path.

The combined result of the circuit optimizations just described translates 
into a 20 percent reduction in delay for the SAD8 unit compared to a 
conventional non-speculative carry-propagating, adder-based implementation. 
This performance advantage translates to a 24 percent energy-reduction at iso 
performance.

Ultra-Low Voltage Circuit Optimizations
Though the performance-per-Watt can be significantly improved for 
parallelizable workloads, such as ME, by lowering the supply voltage, transistor 
on/off current ratios degrade considerably at ultra-low supply voltages. As a 
result, DC node voltages drift away from full-rail values, thereby affecting noise 
margins and reliability across process skews. Circuits such as flip-flops, wide 
multiplexers, deep-stack logic, and series connected transmission gates have 
nodes with weak on-current paths and large off-current paths that are more 
vulnerable to this effect, unless optimized for reliable low-supply operation [7]. 

The storage nodes in flip-flops have weak keepers and large transmission gates. 
When the transmission gate for the slave stage of a conventional master-slave 
flip-flop circuit (Figure 5) is turned off (Φ=0), the weak on-current from the 
slave-keeper contends with the large off-current through the transmission gate. 
This causes the node voltage to droop, affecting the stability of the storage 
node. Ultra-low voltage reliability of the flip-flops can be improved by the use 
of non-minimum channel length devices in the transmission gates to reduce 
off-currents exponentially. Furthermore, upsized keepers improve on-currents 
that restore the charge that is lost due to leakage at this node. The write 
operation remains unaffected since the keepers can be interrupted. At reduced 
supply voltages, the worst-case static droop (Figure 5) for the conventional 
flip-flop increases considerably to more than 40 percent of the supply voltage 
at 200 mV, severely affecting functionality. The circuit modifications just 
described reduce the worst-case droop by 4X in the ultra-low voltage optimized 
design.

“This design results in a 50 percent 

wiring reduction within the carry tree 

compared to that of a conventional 

Kogge-Stone adder.”
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Figure 5: Flip-flop and Multiplexer Optimizations for Ultra-low Voltage 
Operation
Source: Intel Corporation, 2009

Wide multiplexers are also prone to static droops on nodes shared by 
transmission gates at ultra-low supplies. Such structures are typical for one-hot 
multiplexers, where the on-current of one of the selected inputs contends with 
the off-current of the remaining unselected inputs. To avoid this situation, 
wide multiplexers have been remapped in the datapath by the use of 2:1 
multiplexers, thereby reducing worst-case, off-current contention. Remapping 
a one-hot 4:1 multiplexer to an encoded 4:1 multiplexer composed of 2:1 
multiplexers results in up to a 3X reduction in worst-case static droop 
(Figure 5).

Other optimizations in the datapath include remapping deep stacked 
combinational logic and series connected transmission gates to a maximum of 
three transistor stacks. All the circuit optimizations to enable reliable ultra-
low voltage operation result in a 1 percent area, a 1 percent power, and a 
2 percent performance penalty for the accelerator at the nominal 1.2 V supply, 
representing a favorable tradeoff for enabling ultra-low voltage operation.

“Optimizations in the datapath 

include remapping deep stacked 

combinational logic and series 

connected transmission gates to a 

maximum of three transistor stacks.”
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Level Shifter Circuits
The use of multiple supply voltage domains results in the need for level shifter 
circuits at the low-to-high voltage domain boundaries. Conventional level 
shifters use a cascode voltage switch logic (CVSL) stage to provide the up-
conversion functionality, with the associated contention currents contributing 
to a significant portion of power of the level shifter. Driving the output load 
directly with the CVSL stage increases its size, while use of additional gain 
stages at the output of the level shifter, to reduce CVSL stage loading, results in 
increased delay. The low-voltage output of the ME accelerator is up-converted 
to the nominal voltage level by using a two-stage cascaded split-output level 
shifter (Figure 6). An intermediate supply voltage for up-conversion over such 
a large voltage range limits the maximum current ratio between the higher-
supply PMOS pull-up and lower-supply NMOS pull-down devices for correct 
CVSL stage functionality. Energy-efficient, up-conversion from sub-threshold 
voltage levels to nominal supply outputs is achieved by decoupling the CVSL 
stage of this level shifter from the output, thereby enabling a downsized CVSL 
stage for the same load without the need for extra gates in the critical path. 
Reduced contention currents in a downsized CVSL stage enable the split-
output design to achieve up to a 20 percent energy reduction for equal fan-out 
and delay (Figure 6). Furthermore, simultaneous reductions of 11 percent in 
level shifter area and 14 percent fan-in loading (Table below) are achieved with 
the split-output design.
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Measurement Results
The accelerator operates at a nominal supply voltage of 1.2 V and is 
implemented in a 65 nm CMOS technology, with one poly and eight layer 
copper interconnects [12]. Figure 7 shows the die micrograph of the chip, with 
the ME accelerator occupying an area of 0.089 mm2 (Table 1). The total die 
area is 0.96 mm2, with a pad count of 50. The total number of transistors in 
the ME accelerator and test circuits is 70,000.

Process 65 nm CMOS
Nominal Supply 1.2 V
Interconnect 1 poly, 8 metal Cu
Accelerator Area 0.089 mm2

Die Area 0.960 mm2

Number of Transistors 70 K

Pad Count 50
Table 1: Implementation Details
Source: Intel Corporation, 2009
Frequency and power measurements (Figure 8) of the ME accelerator were 
obtained by sweeping the supply voltage in a temperature-stabilized 
environment of 50° C. The accelerator is fully functional over a wide operating 
range of 1.4 V to 230 mV (sub-threshold region). At the nominal supply of 
1.2 V, the ME accelerator operates at a maximum frequency of 2.055 GHz, 
consuming a total power of 48 mW. This represents an energy-efficiency metric 
of 43 GOPS/Watt, where one operation is a complete SAD of eight pixel pairs. 
Performance can be scaled up to 2.4 GHz at 1.4 V, with a total power 
consumption of 82 mW, for purposes such as accelerating high-resolution 
video streams.
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Measurement Results
The accelerator operates at a nominal supply voltage of 1.2 V and is 
implemented in a 65 nm CMOS technology, with one poly and eight layer 
copper interconnects [12]. Figure 7 shows the die micrograph of the chip, with 
the ME accelerator occupying an area of 0.089 mm2 (Table 1). The total die 
area is 0.96 mm2, with a pad count of 50. The total number of transistors in 
the ME accelerator and test circuits is 70,000.

Process 65 nm CMOS
Nominal Supply 1.2 V
Interconnect 1 poly, 8 metal Cu
Accelerator Area 0.089 mm2

Die Area 0.960 mm2

Number of Transistors 70 K

Pad Count 50
Table 1: Implementation Details
Source: Intel Corporation, 2009
Frequency and power measurements (Figure 8) of the ME accelerator were 
obtained by sweeping the supply voltage in a temperature-stabilized 
environment of 50° C. The accelerator is fully functional over a wide operating 
range of 1.4 V to 230 mV (sub-threshold region). At the nominal supply of 
1.2 V, the ME accelerator operates at a maximum frequency of 2.055 GHz, 
consuming a total power of 48 mW. This represents an energy-efficiency metric 
of 43 GOPS/Watt, where one operation is a complete SAD of eight pixel pairs. 
Performance can be scaled up to 2.4 GHz at 1.4 V, with a total power 
consumption of 82 mW, for purposes such as accelerating high-resolution 
video streams.

0.5 1.0 1.5 2.0

N
or

m
al

iz
ed

 D
is

tr
ib

ut
io

n

65nm CMOS, 50°C

1.2V

320mV

0

1

Frequency variation 
across fast – slow dies

±18%

±2X

Normalized Frequency

1

101

103

104

102

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Supply Voltage (V)

65nm CMOS
Typical Die Measurements

M
ax

im
um

 F
re

qu
en

cy
 (M

H
z)

±2X

±5%

0°
C

11
0°

C

50°C

320mV

Frequency variation 
across 0-110°C

Figure 9: Frequency Variations Across 0 – 110° C 
Temperature and Fast-slow Process Skews
Source: Intel Corporation, 2009

Figure 8 also shows the energy-efficiency and leakage-power measurements over 
the same range of supply voltages at a temperature of 50° C. The total active 
leakage power component is 1.6 mW (3 percent of total power) at the nominal 
1.2 V supply, increasing to 3.4 mW at 1.4 V. As the supply voltage is reduced, 
the power consumption drops at a faster rate than the maximum frequency, 
resulting in improved energy efficiency. The ME algorithms have a high degree 
of parallelism, as well as a wide range of performance requirements, to take 
advantage of the increased SAD unit energy efficiency at the ultra-low voltage 
supplies. Ultra-low voltage circuit optimizations enable reliable operation at 
deep sub-threshold supply voltages as low as 230 mV, with a frequency of 
4.3 MHz and a total power consumption of 14.4 μW. However, accelerator 
performance in the deep sub-threshold region degrades at a higher rate than 
total power, resulting in sub-optimal energy efficiency. Peak energy efficiency 
of 411 GOPS/Watt is measured at a near-threshold supply voltage of 320 mV, 
with a maximum frequency of 23 MHz and total power of 56 μW (9.6X 
higher energy efficiency compared to nominal voltage operation at 1.2 V). 
Processing a 16x16-pixel macro-block requires 32 SAD8 operations, resulting 
in a peak SAD efficiency of 12.8 macro-block SADs/nJ. Although absolute 
leakage power scales with supply voltage (Figure 8), the leakage component of 
total power increases to 44 percent at the energy-optimal 320 mV supply. ME 
accelerator performance and energy-efficiency measurements are summarized 
in Table 2.

Worst-case Power 48 mW at 2.055 GHz, 1.2 V, 50˚ C (nominal)
Active leakage power 1.6 mW at 1.2 V, 50˚ C (3% of total power)
Nominal performance 2.055 GHz, 43 GOPS/Watt at 1.2 V, 50˚ C
Peak performance 2.4 GHz, 82 mW at 1.4 V, 50˚ C
Ultra-low voltage mode  
total power

56 mW at 23 MHz, 320 mV, 50˚C

Ultra-low voltage  
energy-efficiency

411 GOPS/Watt at 320 mV, 50˚ C 
(9.6X higher than nominal)

Minimum supply  
voltage operation

4.3 MHz,  14.4 mW at 230 mV, 50˚ C 

Table 2: Measured Performance and Power Summary
Source: Intel Corporation, 2009
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Supply Compensation
On-currents are exponentially related to process parameters and temperature 
at the ultra-low supply voltages, which increases the process and temperature-
induced performance variations. Frequency measurements of the accelerator 
(typical die) over a supply voltage range of 1.4 V to 0.25 V for constant 
temperatures of 0, 50, and 110°C (Figure 9), show a temperature-based 
frequency variation of ±5 percent around the 50° C temperature point, at the 
1.2 V nominal supply. This variation increases to ±2x at the peak efficiency 
supply voltage of 320 mV. Figure 9 also shows the normalized performance 
distributions due to process variations for the accelerator at the 1.2 V and 
320 mV supplies. These distribution curves are obtained from Monte-Carlo-
based variation analysis and simulations, with the performance for the two 
supplies normalized to their respective medians. Frequency spread between 
fast and slow skews increases from ±18 percent at 1.2 V, to ±2x at the 320 mV 
supply. While circuit monitoring and compensation techniques have been 
demonstrated for nominal operation [13, 14], ultra-low voltage operation 
requires compensation solutions to address a much larger performance spread.

1500

1800

2100

2400

2700

Slow Typical Fast

Process Skew  

F
re

qu
en

cy
 (

M
H

z)

1500

1800

2100

2400

2700

0 50 110

Temperature (°C)  

F
re

qu
en

cy
 (

M
H

z)

0

14

28

42

56

70

Slow Typical Fast

Process Skew  
F

re
qu

en
cy

 (
M

H
z)

0

14

28

42

56

70

0 50 110

Temperature (°C)  

F
re

qu
en

cy
 (

M
H

z)

23MHz

65nm CMOS, 320mV, Typical Die

23MHz

2055MHz +60mV-20mV 2055MHz+135mV

-200mV

+50mV

-50mV

+40mV

-50mV

Iso-frequency operation measured at 23MHz

Iso-frequency operation measured at 2055MHz 

65nm CMOS, 320mV, 50 °C

65nm CMOS, 1.2V, Typical Die 65nm CMOS, 1.2V, 50°C

Figure 10. Supply Voltage Compensation Measurements for Temperature 
and Process Variation at 320 mV and 1.2 V Operation
Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 4, 2009

Ultra-low Voltage Technologies for Energy-efficient Special-purpose Hardware Accelerators   |   115

The exponential relationship between on-currents and supply voltage in the 
ultra-low voltage region enables the use of supply voltage as a powerful knob 
to compensate for the increased process and temperature-induced variations. 
Compensation for the ±2x performance difference across the extreme 
temperature range of 0-110°C, for a typical die operating at 320 mV, is 
provided by increasing the supply voltage at the lower temperature by 50 mV 
and decreasing the supply voltage at the higher temperature by 50 mV to 
maintain the nominal performance of 23 MHz (Figure 10). Compensation 
across process skews at 320 mV, at a constant 50°C temperature, requires a 
supply voltage increase of 40 mV at the slow process skew, and a decrease 
of 50 mV for the fast process skew is required to maintain the nominal 
performance. Thus, a measured range of ±50 mV above/below 320 mV is 
adequate to compensate for the larger performance variations across a wide 
range of process or temperature corners. In comparison, at the nominal supply 
of 1.2 V, supply voltage adjustments of -20 mV and +60 mV at 0 and 110° 
C, respectively, are required to address the ±5 percent performance variation 
below/above 50° C to maintain the nominal 2.055 GHz performance 
(Figure 10). To address the ±18 percent performance variations due to process 
skew at 1.2 V, the accelerator at the slow/fast process skews requires supply 
compensation of +135/-200 mV to maintain iso-frequency. The larger range 
of supply voltage compensation for process skews at nominal supplies is due to 
the lower sensitivity of performance to supply voltage in this region.

Summary and Conclusions

Special-purpose hardware accelerators and robust ultra-low voltage operation 
are key enablers for improved energy efficiency in multi-core processors with 
tera-scale performance. We demonstrate these two technologies in this article 
by describing the design, challenges, solutions, and silicon measurements for 
an ultra-low voltage ME accelerator, fabricated in 65 nm CMOS. Energy-
efficient circuits enable computation of eight pixel-pair SADs with an energy 
efficiency of 411 GOPS/Watt at 320 mV, consuming 56 μW of power for 
23 MHz operation. Ultra-low voltage circuit optimizations enable robust 
operation over a wide range of supply voltages from 1.4 V down to a sub-
threshold operation at 230 mV. At the nominal supply of 1.2 V, the accelerator 
operates at 2.055 GHz consuming 48 mW at 50° C, and it scales to 2.4 GHz 
operation at 1.4 V. Supply adjustments of ±50 mV compensate for ±2x process 
and temperature-induced variations at the ultra-low supply voltage of 320 mV, 
enabling the accelerator to achieve high energy efficiency at the ultra-low 
supplies with constant performance. 

“Special-purpose hardware accelerators 

and robust ultra-low voltage operation 

are key enablers for improved energy 

efficiency in multi-core processors with 

tera-scale performance.”

“Energy-efficient circuits enable 

computation of eight pixel-pair 

SADs with an energy efficiency 

of 411 GOPS/Watt at 320 mV, 

consuming 56 μW of power for 

23 MHz operation.”
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Abstract
Sustained tera-scale-level performance within an aff ordable power envelope Sustained tera-scale-level performance within an aff ordable power envelope 
is made possible by an energy-effi  cient, power-managed simple core, and is made possible by an energy-effi  cient, power-managed simple core, and 
by a packet-switched, two-dimensional mesh network on a chip. From our by a packet-switched, two-dimensional mesh network on a chip. From our 
research, we learned that (1) the network consumes almost a third of the total research, we learned that (1) the network consumes almost a third of the total 
power, clearly indicating the need for a new approach, (2) fi ne-grained power power, clearly indicating the need for a new approach, (2) fi ne-grained power 
management and low-power design techniques enable peak energy effi  ciency management and low-power design techniques enable peak energy effi  ciency 
of 19.4 GFLOPS/Watt and a 2X reduction in standby leakage power, and of 19.4 GFLOPS/Watt and a 2X reduction in standby leakage power, and 
(3) the tiled design methodology quadruples design productivity without (3) the tiled design methodology quadruples design productivity without 
compromising design quality.compromising design quality.

Introduction
Intel’s Tera-scale Research Computing Program [1] lays out a vision for future Intel’s Tera-scale Research Computing Program [1] lays out a vision for future 
computing platforms and underscores the need for tera-scale performance. We computing platforms and underscores the need for tera-scale performance. We 
envision hundreds of networked cores running complex parallel applications envision hundreds of networked cores running complex parallel applications 
under a highly constrained energy budget. Consequently, one of the important under a highly constrained energy budget. Consequently, one of the important 
research areas in this initiative is to develop a scalable tera-scale processor research areas in this initiative is to develop a scalable tera-scale processor 
architecture that can address the needs of our future platforms. Th e Terafl ops architecture that can address the needs of our future platforms. Th e Terafl ops 
Research Processor is a key fi rst step in this direction. Focusing on some of the Research Processor is a key fi rst step in this direction. Focusing on some of the 
vital ingredients of a tera-scale architecture: a power optimized core, a scalable vital ingredients of a tera-scale architecture: a power optimized core, a scalable 
on-chip interconnect, and a modular global clocking solution, we established on-chip interconnect, and a modular global clocking solution, we established 
the following research goals for our project:the following research goals for our project:

 • Achieve teraFLOPS performance under 100 W.

 • Prototype a high-performance and scalable on-chip interconnect.

 • Demonstrate an energy-effi  cient architecture with fi ne-grained power 
management.

 • Develop design methodologies for network-on-chip architectures (NoC).

Our intent in this article is to focus on key lessons we learned from the Our intent in this article is to focus on key lessons we learned from the 
research prototype. We present our fi ndings in a structured format. We fi rst research prototype. We present our fi ndings in a structured format. We fi rst 
provide an overview of the chip and briefl y describe key building blocks. provide an overview of the chip and briefl y describe key building blocks. 
We then highlight the novel design techniques implemented on the chip We then highlight the novel design techniques implemented on the chip 
and the tiled design approach. Next, we summarize measured silicon results. and the tiled design approach. Next, we summarize measured silicon results. 
Finally, we discuss the pros and cons of certain design decisions, including our Finally, we discuss the pros and cons of certain design decisions, including our 
recommendations for future tera-scale platforms.recommendations for future tera-scale platforms.
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Architecture Overview
Rapid advancement in semiconductor process technology and a quest for Rapid advancement in semiconductor process technology and a quest for 
increased energy effi  ciency have fueled the popularity of multi-core and NoC increased energy effi  ciency have fueled the popularity of multi-core and NoC 
architectures [2]. Th e teraFLOPS research processor contains 80 tiles arranged architectures [2]. Th e teraFLOPS research processor contains 80 tiles arranged 
as an 8 x 10, 2-D mesh network, shown in Figure 1. Each tile consists of as an 8 x 10, 2-D mesh network, shown in Figure 1. Each tile consists of 
a processing engine (PE) connected to a 5-port router with mesochronous a processing engine (PE) connected to a 5-port router with mesochronous 
interfaces (MSINT), which forwards packets between the tiles. More detailed interfaces (MSINT), which forwards packets between the tiles. More detailed 
information on the chip architecture and interconnect can be found in [3, 4].information on the chip architecture and interconnect can be found in [3, 4].
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Source: Intel Corporation, 2009

Processing Engine
Th e PE contains two independent fully-pipelined, single-precision, fl oating-Th e PE contains two independent fully-pipelined, single-precision, fl oating-
point multiply-accumulator (FPMAC) units capable of providing an aggregate point multiply-accumulator (FPMAC) units capable of providing an aggregate 
performance of 20 GFLOPS. Th e key to achieving this high performance is performance of 20 GFLOPS. Th e key to achieving this high performance is 
a fast, single cycle, accumulation algorithm [5], developed by analyzing each a fast, single cycle, accumulation algorithm [5], developed by analyzing each 
of the critical operations involved in conventional fl oating point units (FPUs) of the critical operations involved in conventional fl oating point units (FPUs) 
with the intent of eliminating, reducing, or deferring the amount of logic with the intent of eliminating, reducing, or deferring the amount of logic 
operations inside the accumulate loop. operations inside the accumulate loop. 

We came up with the following three optimizations. First, the accumulator We came up with the following three optimizations. First, the accumulator 
retains the multiplier output in carry-save format and uses an array of 4-2 retains the multiplier output in carry-save format and uses an array of 4-2 
carry-save adders to accumulate the results in an intermediate format. Th is carry-save adders to accumulate the results in an intermediate format. Th is 
removes the need for a carry-propagate adder in the critical path. Second, removes the need for a carry-propagate adder in the critical path. Second, 
accumulation is performed in base 32, converting expensive variable shifters accumulation is performed in base 32, converting expensive variable shifters 
in the accumulate loop to constant shifters. Th ird, we moved the costly in the accumulate loop to constant shifters. Th ird, we moved the costly 
normalization step outside the accumulate loop, where the accumulation normalization step outside the accumulate loop, where the accumulation 
result in carry-save is added, and the sum is normalized and converted back result in carry-save is added, and the sum is normalized and converted back 
to base 2. Th ese optimizations allow accumulation to be implemented in to base 2. Th ese optimizations allow accumulation to be implemented in 
just fi fteen FO4 stages. Th is approach also reduces the latency of dependent just fi fteen FO4 stages. Th is approach also reduces the latency of dependent 
FPMAC instructions and enables a sustained multiply-add result (2FLOPS) FPMAC instructions and enables a sustained multiply-add result (2FLOPS) 
every cycle. Moving to 64-bit arithmetic results in wider mantissa for increased every cycle. Moving to 64-bit arithmetic results in wider mantissa for increased 
throughput. throughput. 

“Th e PE contains two independent “Th e PE contains two independent 

fully-pipelined, single-precision units fully-pipelined, single-precision units 

capable of providing an aggregate capable of providing an aggregate 

performance of 20 GFLOPS.”performance of 20 GFLOPS.”
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Th e PE includes a 3-KB, single-cycle, instruction memory (IMEM) and 2KB Th e PE includes a 3-KB, single-cycle, instruction memory (IMEM) and 2KB 
of data memory (DMEM). Th is amounts to a total distributed on-die memory of data memory (DMEM). Th is amounts to a total distributed on-die memory 
of 400 KB. Th e capacity of the local memory was enough to support blocked of 400 KB. Th e capacity of the local memory was enough to support blocked 
execution of a select few LAPACK kernels. With a 10-port (6-read, 4-write) execution of a select few LAPACK kernels. With a 10-port (6-read, 4-write) 
register fi le, we allow scheduling to both FPMACs, simultaneous DMEM register fi le, we allow scheduling to both FPMACs, simultaneous DMEM 
load/store, and packet send/receive from the mesh network. A router interface load/store, and packet send/receive from the mesh network. A router interface 
block (RIB) handles packet encapsulation between the PE and router. block (RIB) handles packet encapsulation between the PE and router. 

On-chip Interconnect
Th e 80-tile, on-chip network is a 2D mesh that provides a bisection bandwidth Th e 80-tile, on-chip network is a 2D mesh that provides a bisection bandwidth 
of 2 Terabits/s. Th e key communication block for the NoC is a 5-port, of 2 Terabits/s. Th e key communication block for the NoC is a 5-port, 
pipelined, packet-switched router with two virtual lanes (see Figure 2) capable pipelined, packet-switched router with two virtual lanes (see Figure 2) capable 
of operating at 5 GHz [6] at a nominal supply of 1.2 V. It has a 6-cycle latency of operating at 5 GHz [6] at a nominal supply of 1.2 V. It has a 6-cycle latency 
or 1.2 ns/hop at  5 GHz. It connects to each of its neighbors and the PE by or 1.2 ns/hop at  5 GHz. It connects to each of its neighbors and the PE by 
using phase-tolerant mesochronous links that can deliver data at 20 GBytes/using phase-tolerant mesochronous links that can deliver data at 20 GBytes/
sec. Th e network uses a source-directed routing scheme, based on wormhole sec. Th e network uses a source-directed routing scheme, based on wormhole 
switching, that has two virtual lanes for dead-lock free routing and an on-off  switching, that has two virtual lanes for dead-lock free routing and an on-off  
scheme, by using almost-full signals for fl ow control. Th e width of the links scheme, by using almost-full signals for fl ow control. Th e width of the links 
and router frequency were chosen to transfer a single precision FPU operand at and router frequency were chosen to transfer a single precision FPU operand at 
high speed and approximately 1 ns/hop latency.high speed and approximately 1 ns/hop latency.
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“Th e 80-tile, on-chip network is a “Th e 80-tile, on-chip network is a 

2D mesh that provides a bisection 2D mesh that provides a bisection 

bandwidth of 2 Terabits/s.”bandwidth of 2 Terabits/s.”
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Instruction Set and Programming Model 
We defi ne a 96-bit Very Long Instruction Word (VLIW) that allows a We defi ne a 96-bit Very Long Instruction Word (VLIW) that allows a 
maximum of up to eight operations to be issued every cycle. Th e instructions maximum of up to eight operations to be issued every cycle. Th e instructions 
fall into one of fi ve categories: instruction issue to both fl oating-point units, fall into one of fi ve categories: instruction issue to both fl oating-point units, 
simultaneous data memory load and stores, packet send/receive via the on-die simultaneous data memory load and stores, packet send/receive via the on-die 
mesh network, program control that uses jump and branch instructions, and mesh network, program control that uses jump and branch instructions, and 
synchronization primitives for data transfer between PEs. synchronization primitives for data transfer between PEs. With the exception With the exception 
of FPU instructions, which have a pipeline latency of nine cycles, most other of FPU instructions, which have a pipeline latency of nine cycles, most other 
instructions execute in one to two cycles.instructions execute in one to two cycles.

To aid with power management, the instruction set includes support for To aid with power management, the instruction set includes support for 
dynamic sleep and wakeup of each fl oating-point unit. Th e architecture allows dynamic sleep and wakeup of each fl oating-point unit. Th e architecture allows 
any PE to issue sleep packets to any other tile or to wake it up for processing any PE to issue sleep packets to any other tile or to wake it up for processing 
tasks.tasks.

Th e architecture supports a message-passing programming model by providing Th e architecture supports a message-passing programming model by providing 
special instructions to exchange messages to coordinate execution and share special instructions to exchange messages to coordinate execution and share 
data [7]. Th e fully symmetric architecture allows any PE to send or receive data [7]. Th e fully symmetric architecture allows any PE to send or receive 
instructions and data packets to or from any other tile.instructions and data packets to or from any other tile.

Novel Circuit and Design Techniques
We used several circuit techniques to achieve high performance, low power, We used several circuit techniques to achieve high performance, low power, 
and a short design cycle. Th e fi fteen FO4 design uses a balanced core and and a short design cycle. Th e fi fteen FO4 design uses a balanced core and 
router pipeline, with critical stages employing performance-setting, semi-router pipeline, with critical stages employing performance-setting, semi-
dynamic fl ip-fl ops. In addition, a robust scalable mesochronous clock dynamic fl ip-fl ops. In addition, a robust scalable mesochronous clock 
distribution is employed in a 65-nanometer, 8-metal CMOS process that distribution is employed in a 65-nanometer, 8-metal CMOS process that 
enables high integration and single-chip realization of the teraFLOP processor.enables high integration and single-chip realization of the teraFLOP processor.

Circuit Design Style
To enable a 5-GHz operation, we designed the entire core by using hand-To enable a 5-GHz operation, we designed the entire core by using hand-
optimized datapath macros. For quick turnaround we used CMOS static gates optimized datapath macros. For quick turnaround we used CMOS static gates 
to implement most of the logic. However, critical registers in the FPMAC and to implement most of the logic. However, critical registers in the FPMAC and 
at the router crossbar output utilize implicit-pulsed, semi-dynamic fl ip-fl ops at the router crossbar output utilize implicit-pulsed, semi-dynamic fl ip-fl ops 
(SDFF) [8, 9], which have a dynamic master stage coupled with a pseudostatic (SDFF) [8, 9], which have a dynamic master stage coupled with a pseudostatic 
slave stage. When compared to a conventional static, master-slave fl ip-fl op, slave stage. When compared to a conventional static, master-slave fl ip-fl op, 
SDFF provides both shorter latency and the capability of incorporating logic SDFF provides both shorter latency and the capability of incorporating logic 
functions, with minimum delay penalty, each of which are desirable properties functions, with minimum delay penalty, each of which are desirable properties 
in high-performance digital designs. However, pulsed fl ip-fl ops have several in high-performance digital designs. However, pulsed fl ip-fl ops have several 
important disadvantages. Th e worst-case hold time of this fl ip-fl op can exceed important disadvantages. Th e worst-case hold time of this fl ip-fl op can exceed 
clock-to-output delay because of pulse width variations across process, voltage, clock-to-output delay because of pulse width variations across process, voltage, 
and temperature conditions. Th erefore, pulsed fl ip fl ops must be carefully and temperature conditions. Th erefore, pulsed fl ip fl ops must be carefully 
designed to avoid failures due to min-delay violations.designed to avoid failures due to min-delay violations.

“We defi ne a 96-bit Very Long “We defi ne a 96-bit Very Long 

Instruction Word (VLIW) that allows Instruction Word (VLIW) that allows 

a maximum of up to eight operations a maximum of up to eight operations 

to be issued every cycle.”to be issued every cycle.”

“With the exception of FPU “With the exception of FPU 

instructions, which have a pipeline instructions, which have a pipeline 

latency of nine cycles, most other latency of nine cycles, most other 

instructions execute in one to two instructions execute in one to two 

cycles.”cycles.”

“To enable a 5-GHz operation, we “To enable a 5-GHz operation, we 

designed the entire core by using hand-designed the entire core by using hand-

optimized datapath macros.”optimized datapath macros.”
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Fine grain Power Management
To achieve the goal of demonstrating teraFLOPS performance below 100 watts To achieve the goal of demonstrating teraFLOPS performance below 100 watts 
of power, we had to adopt and combine various power-saving features and of power, we had to adopt and combine various power-saving features and 
use innovative power-management technologies. To this end, use innovative power-management technologies. To this end, we used fi ne-we used fi ne-
grained clock gating and sleep transistor circuits [10] to reduce active and grained clock gating and sleep transistor circuits [10] to reduce active and 
standby leakage power, which are controlled at full-chip, tile-slice, and standby leakage power, which are controlled at full-chip, tile-slice, and 
individual tile levels, based on workload. Figure 3 shows clock and power individual tile levels, based on workload. Figure 3 shows clock and power 
gating in the FPMAC, router, and instruction/data memories. Approximately gating in the FPMAC, router, and instruction/data memories. Approximately 
90 percent of FPU logic and 74 percent of each PE is sleep enabled. Each tile 90 percent of FPU logic and 74 percent of each PE is sleep enabled. Each tile 
is partitioned into twenty-one smaller sleep regions, and dynamic control of is partitioned into twenty-one smaller sleep regions, and dynamic control of 
individual blocks is based on instruction type. Each FPMAC can be controlled individual blocks is based on instruction type. Each FPMAC can be controlled 
through NAP/WAKE instructions. Th e router is partitioned into ten smaller through NAP/WAKE instructions. Th e router is partitioned into ten smaller 
sleep regions, and control of individual router ports depends on network sleep regions, and control of individual router ports depends on network 
traffi  c patterns. We inserted sleep transistors in the register fi le cells without traffi  c patterns. We inserted sleep transistors in the register fi le cells without 
impacting area too much. An additional track had to be used to route the sleep impacting area too much. An additional track had to be used to route the sleep 
signal. Special attention was paid to sleep-non-sleep interfaces, and intelligent signal. Special attention was paid to sleep-non-sleep interfaces, and intelligent 
data gating at fl ip-fl op boundaries ensured additional fi rewall circuits were not data gating at fl ip-fl op boundaries ensured additional fi rewall circuits were not 
required.required.
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Mesochronous Clocking
Th e chip uses a scalable global mesochronous clocking technique, that allows Th e chip uses a scalable global mesochronous clocking technique, that allows 
for clock-phase-insensitive communication across tiles and for synchronous for clock-phase-insensitive communication across tiles and for synchronous 
operation within each tile. Th e on-chip PLL output is routed by using operation within each tile. Th e on-chip PLL output is routed by using 
horizontal (Metal-8) and vertical (Metal-7) spines. Each spine consists of horizontal (Metal-8) and vertical (Metal-7) spines. Each spine consists of 
diff erential clocks for low duty-cycle variation along the worst-case clock route diff erential clocks for low duty-cycle variation along the worst-case clock route 
of 26 mm. An op-amp at each tile converts the diff erential clock inputs to of 26 mm. An op-amp at each tile converts the diff erential clock inputs to 
a single-ended clock with a 50 percent duty cycle, prior to distribution, by a single-ended clock with a 50 percent duty cycle, prior to distribution, by 
using an H-tree. Th e 2-mm long point-to-point, unidirectional router links using an H-tree. Th e 2-mm long point-to-point, unidirectional router links 
implement a phase-tolerant, mesochronous interface as shown in Figure 4. implement a phase-tolerant, mesochronous interface as shown in Figure 4. 
Th is allows clock-phase-insensitive communication across tiles and enables a Th is allows clock-phase-insensitive communication across tiles and enables a 
scalable, on-die communication fabric that simplifi es global clock distribution. scalable, on-die communication fabric that simplifi es global clock distribution. 

Double-pumped Crossbar
Th e crossbar switch area increases as a square function O(nTh e crossbar switch area increases as a square function O(n2) of the total ) of the total 
number of I/O ports and the number of bits per port. Consequently, the number of I/O ports and the number of bits per port. Consequently, the 
crossbar can dominate a large percentage of the area. To alleviate this problem, crossbar can dominate a large percentage of the area. To alleviate this problem, 
we double pump the crossbar data buses by interleaving alternate data bits as we double pump the crossbar data buses by interleaving alternate data bits as 
shown in Figure 5. We use dual-edge triggered fl ip-fl ops to do this; thereby, shown in Figure 5. We use dual-edge triggered fl ip-fl ops to do this; thereby, 
eff ectively reducing by half the crossbar hardware cost. eff ectively reducing by half the crossbar hardware cost. 
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Tiled-design Methodology
While implementing the teraFLOPS processor, we followed a “tiled design While implementing the teraFLOPS processor, we followed a “tiled design 
methodology” methodology” where each tile is completely self-contained, including power where each tile is completely self-contained, including power 
bumps, power tracks, and global clock routing. Th is design enabled us to bumps, power tracks, and global clock routing. Th is design enabled us to 
seamlessly array all tiles at the top level, by simply using abutment. Th is seamlessly array all tiles at the top level, by simply using abutment. Th is 
methodology enabled rapid completion of a fully custom design with less than methodology enabled rapid completion of a fully custom design with less than 
400 person-months of eff ort.400 person-months of eff ort.

Results
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We fabricated the teraFLOPS processor in 65-nm process technology. Th e die We fabricated the teraFLOPS processor in 65-nm process technology. Th e die 
photographs in Figure 6 identify the chip’s functional blocks and individual photographs in Figure 6 identify the chip’s functional blocks and individual 
tiles. Th e 275-mmtiles. Th e 275-mm2, fully custom design contains 100 million transistors. Th e , fully custom design contains 100 million transistors. Th e 
chip supports a wide dynamic range of operation; namely, 1 GHz at 670 mV chip supports a wide dynamic range of operation; namely, 1 GHz at 670 mV 
up to 5.67 GHz at 1.35 V, as shown in Figure 7. Increased performance with up to 5.67 GHz at 1.35 V, as shown in Figure 7. Increased performance with 
higher voltage and frequency can be achieved at the cost of power. As we scale higher voltage and frequency can be achieved at the cost of power. As we scale 
Vcc/frequency, power consumption ranges from 15.6 W to 230 W as shown in Vcc/frequency, power consumption ranges from 15.6 W to 230 W as shown in 
Figure 8. Fine-grain sleep transistors limit the leakage power from 9.6 percent Figure 8. Fine-grain sleep transistors limit the leakage power from 9.6 percent 
to 15.6 percent of the total power. With all 80 tiles actively performing to 15.6 percent of the total power. With all 80 tiles actively performing 
single-precision, block-matrix operations, the chip achieves a peak performance single-precision, block-matrix operations, the chip achieves a peak performance 
of 1.0 TFLOPS at 3.16 GHz while dissipating 97 W. By reducing voltage, and of 1.0 TFLOPS at 3.16 GHz while dissipating 97 W. By reducing voltage, and 
by operating close to the threshold voltage of the transistor, energy effi  ciency by operating close to the threshold voltage of the transistor, energy effi  ciency 
for the stencil application can be improved from 5.8 GFLOPS per Watt to a for the stencil application can be improved from 5.8 GFLOPS per Watt to a 
maximum of 19.4 GFLOPS per Watt as shown in Figure 9.maximum of 19.4 GFLOPS per Watt as shown in Figure 9.

“Each tile is completely self-contained, “Each tile is completely self-contained, 

including power bumps, power tracks, including power bumps, power tracks, 

and global clock routing.”and global clock routing.”
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Th e measured global clock distribution power is 2 W at 1.2 V and 5.1 GHz Th e measured global clock distribution power is 2 W at 1.2 V and 5.1 GHz 
operation, and it accounts for just 1.3 percent of the total chip power. At the operation, and it accounts for just 1.3 percent of the total chip power. At the 
tile level, power breakdown shows that the dual FPMACs account for tile level, power breakdown shows that the dual FPMACs account for 
36 percent of total power, the router and links account for 28 percent, the 36 percent of total power, the router and links account for 28 percent, the 
IMEM and DMEM account for 21 percent, the tile-level synchronous clock IMEM and DMEM account for 21 percent, the tile-level synchronous clock 
distribution accounts for 11 percent, and the multi-ported register fi le accounts distribution accounts for 11 percent, and the multi-ported register fi le accounts 
for 4 percent. In sleep mode, the nMOS sleep transistors are turned off , for 4 percent. In sleep mode, the nMOS sleep transistors are turned off , 
reducing chip leakage by 2X, while preserving the logic state in all memory reducing chip leakage by 2X, while preserving the logic state in all memory 
arrays. Total network power per tile can be lowered from a maximum of arrays. Total network power per tile can be lowered from a maximum of 
924 mW with all router ports active to 126 mW, resulting in a 7.3X reduction. 924 mW with all router ports active to 126 mW, resulting in a 7.3X reduction. 
Th e network leakage power per tile when all ports and global clock buff ers to Th e network leakage power per tile when all ports and global clock buff ers to 
the router are disabled is 126 mW. Th is number includes power dissipated in the router are disabled is 126 mW. Th is number includes power dissipated in 
the router, MSINT, and in the links.the router, MSINT, and in the links.

Discussion and Tradeoffs
Th e goal of achieving teraFLOPS performance under 100 W entails studying Th e goal of achieving teraFLOPS performance under 100 W entails studying 
the traditional tradeoff s between performance, power, and die size, but equally the traditional tradeoff s between performance, power, and die size, but equally 
important are looking at issues such as multi-generation scalability, modular important are looking at issues such as multi-generation scalability, modular 
design/validation, and support for parallel programming models.design/validation, and support for parallel programming models.

Today’s general-purpose cores are capable of performance in the order of tens Today’s general-purpose cores are capable of performance in the order of tens 
of GFLOPS. However, achieving teraFLOPS performance with these cores of GFLOPS. However, achieving teraFLOPS performance with these cores 
on the current process technology is prohibitive, from an area and power on the current process technology is prohibitive, from an area and power 
perspective. Our work corroborates that a computational fabric built by using perspective. Our work corroborates that a computational fabric built by using 
programmable, special-purpose cores provides high levels of performance in an programmable, special-purpose cores provides high levels of performance in an 
energy-effi  cient manner. Power-optimized fast computation hardware, simple energy-effi  cient manner. Power-optimized fast computation hardware, simple 
decoded VLIW instruction words, and low-power memories ensure that a decoded VLIW instruction words, and low-power memories ensure that a 
large percentage of the energy consumed goes towards computing FLOPS. large percentage of the energy consumed goes towards computing FLOPS. 
While architecting the core we were aware of the importance of balancing While architecting the core we were aware of the importance of balancing 
data memory bandwidth with compute/communication bandwidth, which data memory bandwidth with compute/communication bandwidth, which 
entailed adding a single cycle, 6-read, 4-write register fi le. As data transfer on entailed adding a single cycle, 6-read, 4-write register fi le. As data transfer on 
chip costs signifi cant energy, larger caches will be required to keep the data chip costs signifi cant energy, larger caches will be required to keep the data 
local. Maintaining coherency across many cores is a signifi cant challenge as local. Maintaining coherency across many cores is a signifi cant challenge as 
well. Hardware costs and increased coherency traffi  c on the mesh will pose well. Hardware costs and increased coherency traffi  c on the mesh will pose 
hurdles for completely hardware-based coherent systems. Instead, future hurdles for completely hardware-based coherent systems. Instead, future 
tera-scale processors will explore message-passing architectures. Special on-die, tera-scale processors will explore message-passing architectures. Special on-die, 
message-passing hardware is very effi  cient for core-to-core communication, message-passing hardware is very effi  cient for core-to-core communication, 
making software-based coherency with hardware assists a viable solution for making software-based coherency with hardware assists a viable solution for 
the future. In addition to support for message passing, another enhancement the future. In addition to support for message passing, another enhancement 
that proved important is the ability to overlap compute and communication. that proved important is the ability to overlap compute and communication. 
A core can directly transfer instructions/data into the local memory of another A core can directly transfer instructions/data into the local memory of another 
core without interrupting the other core. Th is resulted in improved FPMAC core without interrupting the other core. Th is resulted in improved FPMAC 
utilization with fewer idle cycles and enabled performance numbers that were utilization with fewer idle cycles and enabled performance numbers that were 
close to the maximum achievable.close to the maximum achievable.
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With increasing demand for interconnect bandwidth, on-chip networks are With increasing demand for interconnect bandwidth, on-chip networks are 
taking up a substantial portion of the system’s power budget. taking up a substantial portion of the system’s power budget. Th e router on Th e router on 
our teraFLOPS processor consumes 28 percent of tile power. Our goal for a our teraFLOPS processor consumes 28 percent of tile power. Our goal for a 
compelling solution is to use compact low-power routers that consume less compelling solution is to use compact low-power routers that consume less 
than 10 percent of the chip power and die budget. At the same time they than 10 percent of the chip power and die budget. At the same time they 
must deliver high, on-die bisection bandwidth and low latency. Techniques, must deliver high, on-die bisection bandwidth and low latency. Techniques, 
such as speculation and bypass, are well known, but they add to the power such as speculation and bypass, are well known, but they add to the power 
consumption and are therefore undesirable. Future routers would also need to consumption and are therefore undesirable. Future routers would also need to 
incorporate extensive fi ne-grained, power-management techniques to enable incorporate extensive fi ne-grained, power-management techniques to enable 
dynamic operation that adapts to diff ering traffi  c patterns. Heterogeneous dynamic operation that adapts to diff ering traffi  c patterns. Heterogeneous 
NoCs [11], that allocate resources as needed, and circuit-switched networks NoCs [11], that allocate resources as needed, and circuit-switched networks 
[12, 13] are promising approaches. Traffi  c patterns and bandwidth [12, 13] are promising approaches. Traffi  c patterns and bandwidth 
requirements are going to dictate on-die network architectures for the future. requirements are going to dictate on-die network architectures for the future. 
Hybrid approaches to on-die networks can save communication power by Hybrid approaches to on-die networks can save communication power by 
utilizing fewer fully-connected crossbar routers at the expense of reduced utilizing fewer fully-connected crossbar routers at the expense of reduced 
bandwidth. Instead of one router per core in each tile, we could amortize bandwidth. Instead of one router per core in each tile, we could amortize 
the power/area of the router by having two or more cores on a shared bus the power/area of the router by having two or more cores on a shared bus 
connected to the local port of the router in each tile.connected to the local port of the router in each tile.

Th e two popular clocking techniques for on-die networks are 1) a completely Th e two popular clocking techniques for on-die networks are 1) a completely 
synchronous system with closely matched skews, and 2) a globally synchronous system with closely matched skews, and 2) a globally 
asynchronous, locally synchronous system with handshaking signals for data asynchronous, locally synchronous system with handshaking signals for data 
transfer (GALS). Synchronous systems are the simplest to implement and are transfer (GALS). Synchronous systems are the simplest to implement and are 
well understood, but they can consume signifi cant power for high-frequency well understood, but they can consume signifi cant power for high-frequency 
clock distribution. With increased with-in die variation, matching skews across clock distribution. With increased with-in die variation, matching skews across 
large dies is becoming diffi  cult, which also results in excessive timing guard large dies is becoming diffi  cult, which also results in excessive timing guard 
bands. GALS suff ers from area overhead, due to additional hand-shaking bands. GALS suff ers from area overhead, due to additional hand-shaking 
circuits, lack of mature design tools, and increased design complexity. Th e circuits, lack of mature design tools, and increased design complexity. Th e 
mesochronous clocking scheme tries to address these problems by distributing mesochronous clocking scheme tries to address these problems by distributing 
a single frequency clock without the overhead of matching clock skews. Th is a single frequency clock without the overhead of matching clock skews. Th is 
causes phase diff erences between clocks, distributed to individual routers that causes phase diff erences between clocks, distributed to individual routers that 
need to be accounted for by synchronization circuitry in the data paths. Th is need to be accounted for by synchronization circuitry in the data paths. Th is 
technique scales well as tiles are added or removed. Multiple cycles are required technique scales well as tiles are added or removed. Multiple cycles are required 
for the global clock to propagate to all 80 tiles; this systematic skew inherent for the global clock to propagate to all 80 tiles; this systematic skew inherent 
in the distribution helps spread peak currents because of simultaneous clock in the distribution helps spread peak currents because of simultaneous clock 
switching. To support mesochronous or phase-tolerant communication across switching. To support mesochronous or phase-tolerant communication across 
tiles, we pay a synchronization latency penalty for the benefi t of a lightweight tiles, we pay a synchronization latency penalty for the benefi t of a lightweight 
global clock distribution. Th e area and power overhead of the synchronizers global clock distribution. Th e area and power overhead of the synchronizers 
can be signifi cant for wide links. It is important to understand these tradeoff s can be signifi cant for wide links. It is important to understand these tradeoff s 
before abandoning a synchronous implementation in favor of mesochronous before abandoning a synchronous implementation in favor of mesochronous 
clocking.clocking.

“Th e router on our teraFLOPS “Th e router on our teraFLOPS 

processor consumes 28 percent of tile processor consumes 28 percent of tile 
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routers that consume less than 10 routers that consume less than 10 

percent of the chip power.”percent of the chip power.”
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Tera-scale computing platforms need to be effi  cient to meet the energy Tera-scale computing platforms need to be effi  cient to meet the energy 
constraints of future data centers. We employed per-tile, fi ne-grained power constraints of future data centers. We employed per-tile, fi ne-grained power 
management with clock and power gating. By exposing WAKE/NAP management with clock and power gating. By exposing WAKE/NAP 
instructions to software, we could put FPMACs to sleep during idle windows. instructions to software, we could put FPMACs to sleep during idle windows. 
Th is enabled us to reach Th is enabled us to reach an energy effi  ciency of 19.4 GFLOPS/Watt. In an energy effi  ciency of 19.4 GFLOPS/Watt. In 
stark contrast, a 3-GHz, general-purpose CPU provides an energy effi  ciency stark contrast, a 3-GHz, general-purpose CPU provides an energy effi  ciency 
of 0.07 GFLOPS/Watt. As diff erent applications with diff erent compute/of 0.07 GFLOPS/Watt. As diff erent applications with diff erent compute/
communication profi les and performance requirements are invoked over communication profi les and performance requirements are invoked over 
time, the optimal number of cores and Vcc/frequency to achieve maximum time, the optimal number of cores and Vcc/frequency to achieve maximum 
energy effi  ciency varies. Hence, to further improve workload effi  ciency, we energy effi  ciency varies. Hence, to further improve workload effi  ciency, we 
recommend dynamic voltage frequency scaling with independent voltage and recommend dynamic voltage frequency scaling with independent voltage and 
frequency islands for future tera-scale processors.frequency islands for future tera-scale processors.

To operate across a wide dynamic voltage range it is important to implement To operate across a wide dynamic voltage range it is important to implement 
circuits with robust static CMOS logic that operate at low voltages. Operating circuits with robust static CMOS logic that operate at low voltages. Operating 
close to threshold voltage of the transistor increases energy effi  ciency; however, close to threshold voltage of the transistor increases energy effi  ciency; however, 
contention circuits in register fi les and small signal arrays typically limit the contention circuits in register fi les and small signal arrays typically limit the 
lowest operating voltage (Vccmin) of a processor. It is critical for tera-scale lowest operating voltage (Vccmin) of a processor. It is critical for tera-scale 
processors to operate at the lowest energy point, and this makes research in processors to operate at the lowest energy point, and this makes research in 
Vccmin-lowering techniques a vital part of the tera-scale research agenda. Vccmin-lowering techniques a vital part of the tera-scale research agenda. 
Designs should also be optimized for power with extensive usage of low-leakage Designs should also be optimized for power with extensive usage of low-leakage 
transistors and selective usage of nominal transistors in critical paths. It is transistors and selective usage of nominal transistors in critical paths. It is 
important to strike a balance between delay penalty and leakage savings during important to strike a balance between delay penalty and leakage savings during 
device-type selection for sleep transistors. We chose to utilize nominal devices device-type selection for sleep transistors. We chose to utilize nominal devices 
for 5-GHz operation with a 2X leakage savings.for 5-GHz operation with a 2X leakage savings.

As we integrate more cores on a single die, adopting a scalable design As we integrate more cores on a single die, adopting a scalable design 
methodology is critical for design convergence, validation, product methodology is critical for design convergence, validation, product 
segmentation, and time-to-market. Th e proposed tiled design methodology segmentation, and time-to-market. Th e proposed tiled design methodology 
enabled faster convergence in timing verifi cation and physical design. enabled faster convergence in timing verifi cation and physical design. 
Global wires that do not scale well with technology could be avoided. Global wires that do not scale well with technology could be avoided. 
We ensured We ensured the tiles were small, completely self-contained, and could be the tiles were small, completely self-contained, and could be 
assembled by abutment. Th is also ensures uniform metal/via density that assembled by abutment. Th is also ensures uniform metal/via density that 
helps in manufacturability and yield. Consequently, we achieved high levels helps in manufacturability and yield. Consequently, we achieved high levels 
of integration with a small design team and low overhead. Pre/post-silicon of integration with a small design team and low overhead. Pre/post-silicon 
debug eff ort was greatly reduced with fi rst silicon stepping fully functional. debug eff ort was greatly reduced with fi rst silicon stepping fully functional. 
In addition, a standardized communication fabric with a predefi ned interface In addition, a standardized communication fabric with a predefi ned interface 
combined with a tiled design approach provides the fl exibility of integrating combined with a tiled design approach provides the fl exibility of integrating 
any number of homogenous or heterogeneous cores and facilitates product any number of homogenous or heterogeneous cores and facilitates product 
segmentation.segmentation.

“We reached an energy effi  ciency “We reached an energy effi  ciency 

of 19.4 GFLOPS/Watt. In stark of 19.4 GFLOPS/Watt. In stark 
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CPU provides an energy effi  ciency of CPU provides an energy effi  ciency of 
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“Th e tiles were small, completely self-“Th e tiles were small, completely self-
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Conclusion
Tera-fl op performance is possible within a mainstream power envelope. Tera-fl op performance is possible within a mainstream power envelope. 
Careful co-design at architecture, logic, circuit, and physical design levels Careful co-design at architecture, logic, circuit, and physical design levels 
pays off , with silicon achieving an average performance of 1 TFLOP at 97 W pays off , with silicon achieving an average performance of 1 TFLOP at 97 W 
and a peak power effi  ciency of 19.4 GFLOPS/Watt. Tile-based methodology and a peak power effi  ciency of 19.4 GFLOPS/Watt. Tile-based methodology 
fulfi lled its promise, and the design was done with half the team in half the fulfi lled its promise, and the design was done with half the team in half the 
time. Communication power accounts for almost one-third of the total power, time. Communication power accounts for almost one-third of the total power, 
highlighting the need for further research in low-power, scalable networks that highlighting the need for further research in low-power, scalable networks that 
can satisfy the requirements of a tera-scale platform. On a fi nal note, to be can satisfy the requirements of a tera-scale platform. On a fi nal note, to be 
able to successfully exploit the computing capability of a tera-scale processor, able to successfully exploit the computing capability of a tera-scale processor, 
research into parallel programming is vital.research into parallel programming is vital.
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