
About the Cover

Intel® Technology Journal
march 2009

Advances in Embedded Systems Technology

copyright © 2009 Intel corporation. all rights reserved. Intel, and the Intel logo, are trademarks of Intel corporation in the U.S. and other countries. 

In
t

e
l

® t
e

c
h

n
o

lo
g

y
 jo

U
r

n
a

l | a
d

v
a

n
c

e
S

 In
 e

m
b

e
d

d
e

d
 S

y
S

t
e

m
S

 t
e

c
h

n
o

lo
g

y
v

o
l 13 | IS

S
U

e
 01 |  m

a
r

c
h

 2009

For further information on embedded systems technology, please visit the Intel® Embedded  
Design Center at: http://intel.com/embedded/edc

For further information about the Intel Technology Journal, please visit  
http://intel.com/technology/itj

$49.95 US

9 781934 053218

ISbn 978-1-934053-21-8

358587 20967 0



Articles

Table of Contents   |   3

Intel® Technology Journal | Volume 13, Issue 1, 2009

01  Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W  ....................6

02 Configuring and Tuning for Performance on Intel® 5100 Memory Controller 
Hub Chipset Based Platforms  ............................................................................................... 16

03 Solid State Drive Applications in Storage and Embedded Systems  ......................................  29

04 Fanless Design for Embedded Applications  .......................................................................... 54

05 Security Acceleration, Driver Architecture and Performance Measurements for Intel® 
EP80579 Integrated Processor with Intel® QuickAssist Technology  ......................................  66

06 Methods and Applications of System Virtualization Using Intel® Virtualization Technology 
(Intel® VT)  ..............................................................................................................................  74

07 Building and Deploying Better Embedded Systems with Intel® Active Management 
Technology (Intel® AMT)  ........................................................................................................  84

08 Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power 
Management (OSPM) through the Advanced Configuration and Power Interface (ACPI)  ....  96

09 A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures  ..........................  108

10 Digital Signal Processing on Intel® Architecture  .................................................................. 122

11 IA-32 Features and Flexibility for Next-Generation Industrial Control  .................................  146

12 Low Power Intel® Architecture Platform for In-Vehicle Infotainment  ....................................  160

INTEL® TECHNOLOGy JOURNAL

ADVANCES IN EMBEDDED SySTEM TECHNOLOGy



Intel Technology Journal   |   1

Intel® Technology Journal | Volume 13, Issue 1, 2009

Intel Technology Journal

Publisher 
Richard Bowles 

Program Manager 
Marleen Lundy

Managing Editor 
David King 

Technical Editor 
David Clark 

Content Architect 
Todd Knibbe  

Technical Illustrators 
Richard Eberly 
Margaret Anderson 

Peter Barry 
Marcie M Ford 

Todd Knibbe 
Atul Kwatra

Steven Adams 
Peter Barry 
Mark Brown 
Tom Brown 
Jason M Burris 
Lynn A Comp 
John Cormican 
Pete Dice 
Richard Dunphy 
Jerome W Esteban 

Dennis B Fallis 
Al Fazio 
Rajesh Gadiyar 
Javier Galindo 
Gunnar Gaubatz 
Byron R Gillespie 
Marc A Goldschmidt 
Knut S Grimsrud 
Chris D Lucero 
Lori M Matassa 

Michael G Millsap 
Udayan  Mukherjee 
Staci Palmer 
Michael A Rothman 
Lindsey A Sech 
Shrikant M Shah 
Brian J Skerry 
Durgesh Srivastava 
Edwin Verplanke 
Chad V Walker 

Technical and Strategic Reviewers              

Content Design 



Intel Technology Journal

Intel® Technology Journal | Volume 13, Issue 1, 2009

2   |   Intel Technology Journal

Copyright © 2009 Intel Corporation. All rights reserved. 
ISSN: 1535-864X 
ISBN 978-1-934053-21-8 
Intel Technology Journal 
Volume 13, Issue 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, 
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, 
or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 
750-4744. Requests to the Publisher for permission should be addressed to the Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR 
97124-5961. E mail: intelpress@intel.com.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is 
not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. 
The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, 
copyrights, or other intellectual property rights. 

Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

Third-party vendors, devices, and/or software are listed by Intel as a convenience to Intel’s general customer base, but Intel does not make any representations or warranties 
whatsoever regarding quality, reliability, functionality, or compatibility of these devices. This list and/or these devices may be subject to change without notice.

Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company, product, or event.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel, the Intel logo, Celeron, Intel Centrino, Intel Core Duo, Intel NetBurst, Intel Xeon, Itanium, Pentium, Pentium D, MMX, and VTune are trademarks or registered 
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

†Other names and brands may be claimed as the property of others. 

This book is printed on acid-free paper.  

Publisher:  Richard Bowles
Managing Editor:  David King

Library of Congress Cataloging in Publication Data:

Printed in 

10  9  8  7  6  5  4  3  2  1 

First printing March 2009



Articles

Table of Contents   |   3

Intel® Technology Journal | Volume 13, Issue 1, 2009

01  Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W  ....................6

02 Configuring and Tuning for Performance on Intel® 5100 Memory Controller 
Hub Chipset Based Platforms  ............................................................................................... 16

03 Solid State Drive Applications in Storage and Embedded Systems  ......................................  29

04 Fanless Design for Embedded Applications  .......................................................................... 54

05 Security Acceleration, Driver Architecture and Performance Measurements for Intel® 
EP80579 Integrated Processor with Intel® QuickAssist Technology  ......................................  66

06 Methods and Applications of System Virtualization Using Intel® Virtualization Technology 
(Intel® VT)  ..............................................................................................................................  74

07 Building and Deploying Better Embedded Systems with Intel® Active Management 
Technology (Intel® AMT)  ........................................................................................................  84

08 Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power 
Management (OSPM) through the Advanced Configuration and Power Interface (ACPI)  ....  96

09 A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures  ..........................  108

10 Digital Signal Processing on Intel® Architecture  .................................................................. 122

11 IA-32 Features and Flexibility for Next-Generation Industrial Control  .................................  146

12 Low Power Intel® Architecture Platform for In-Vehicle Infotainment  ....................................  160

INTEL® TECHNOLOGy JOURNAL

ADVANCES IN EMBEDDED SySTEM TECHNOLOGy



4   |   Foreword

Intel® Technology Journal | Volume 13, Issue 1, 2009

FOREWORD

Pranav Mehta 
Sr. Principal Engineer & CTO 
Embedded & Communications Group 
Intel Corporation

“So, what do you mean by an embedded device?” is a question I get asked fre-
quently. Many in academia and industry alike have offered and debated versions 
of its definition. While many achieve varying degrees of admirable brevity, insight, 
and accuracy, often these definitions leave an impression that embedded devices are 
somewhat less capable, outdated technology. Having been associated with Intel’s 
embedded products group for almost two decades, I find such characterizations 
lacking. Yes, embedded devices have their special requirements, from technical as 
well as business perspectives, but less capable technology is certainly not one of 
them. At the risk of inflaming the definition debate, here is my version as an Intel 
technologist: An embedded device is a differentiated compute platform that is 
either invisible, being part of a larger infrastructure, or predetermined to expose 
limited capabilities in deference to a dominant usage. Implicit in this definition are 
the notion of an embedded device having its unique requirements, its inconspicu-
ous pervasiveness throughout infrastructures supporting modern lifestyle, as well as 
an allusion to the underlying platform capable of much more than what is exposed 
in service of a primary set of use functions.

This edition of Intel Technology Journal marks the intersection of several major 
trends and events in the embedded world. As eloquently articulated in the ITU 
paper Internet of Things, embedded devices appear poised to lead the next wave 
of evolution of the Internet as they add Internet connectivity as a key platform 
attribute. Against this backdrop, two groundbreaking technology innovations from 
Intel—Power efficient Intel® Core™ microarchitecture  with an increasing num-
ber of cores and the introduction of the Intel® Atom™ processor, both benefitting 
immensely from the breakthrough High-K/Metal gate process technology—cre-
ate a unique opportunity to accelerate this embedded transformation with Intel® 
architecture. The Intel multi-core processor architecture and related technologies 
ensure continuation of the performance treadmill famously articulated by Moore’s 
Law, which is critical for the majority of embedded platforms that constitute the 
Internet infrastructure as new usage models involving video, voice, and data create 
an insatiable demand for network throughput and cost efficiency. On the other 
hand, the Intel Atom processor opens up possibilities for a completely new class of 
ultra low power and highly integrated System-on-a-Chip (SoC) devices with Intel 
architecture performance that were unimaginable before. 

“ An embedded device is a  

differentiated compute platform 

that is either invisible, being  

part of a larger infrastructure, or 

predetermined to expose limited 

capabilities in deference to a  

dominant usage.”

“ The Intel multi-core processor  

architecture and related technologies 

ensure continuation of the  

performance treadmill famously 

articulated by Moore’s Law,  

which is critical for the majority  

of embedded platforms that 

constitute the Internet infrastruc-

ture as new usage models involving 

video, voice, and data create an 

insatiable demand for network 

throughput and cost efficiency.”



Foreword   |   5

Intel® Technology Journal | Volume 13, Issue 1, 2009

Over the last several years, Intel’s Embedded and Communications Group has intro-
duced several products that achieve the best-in-class “power efficient performance” 
and push the boundaries of integration for SoC devices. We have done that while 
preserving the fundamental premise of Intel architecture—software scalability. Now, 
equipped with these new technologies and product capabilities, we are delighted to 
have the opportunity to accelerate the phenomenon of the embedded Internet. 

While I am proud to offer technical articles from members of Intel ECG’s technical 
team, I am equally proud to offer articles from developers who have embraced our 
embedded systems platforms and put them to use. Finally, I look forward to revisit-
ing embedded systems technology in a few years’ time. I believe that we will witness 
enormous progress over the years to come.

“ Finally, I look forward to  

revisiting embedded systems  

technology in a few years’ time.  

I believe that we will witness  

enormous progress over the  

years to come.”



6   |   Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W

Contributor

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

“ The article provides an overview  

of the different use cases and their  

effects on I/O performance, including 

memory bandwidth utilization from 

video decoding applications.”

PERFORMANCE ANALySIS OF THE INTEL® SySTEM CONTROLLER HUB 

(INTEL® SCH) US15W

Scott Foley
Intel Corporation
 

Abstract

The platform comprising the Intel® Atom™ processor and Intel® System Control-
ler Hub (Intel® SCH) US15W has recently been introduced into the embedded 
systems marketplace, for a wide range of uses. And with this pairing, Intel now has 
an incredibly low power (<5W maximum thermal design power [TDP]) platform 
built on Intel® architecture. This compares favorably to other platforms, such as 
ones based on Intel® Core™2 Solo processors, which have processor TDP’s alone of 
5.5W. Given the wide range of applications this new platform encompasses though, 
some design tradeoffs are inevitable. Performance is a notable tradeoff, and the 
performance of the Intel SCH is a good example to look at. 

Instead of looking into processing performance, this article takes a systematic look 
at the architecture of the Intel SCH US15W. It investigates the performance of 
the Intel SCH backbone and the effects that that backbone has on PCI Express* 
(PCIe*) bandwidth in particular. This includes not just empirical data, but also 
theoretical analysis of the Intel SCH internals. Furthermore, the article provides an 
overview of the different use cases and their effects on I/O performance, including 
memory bandwidth utilization from video decoding applications. With this knowl-
edge in hand, platform, hardware, and software engineers can better design systems 
that work efficiently with the Intel Atom processor’s low power offerings.

Intel® System Controller Hub (Intel® SCH) 
US15W Architecture

The Intel® System Controller Hub (Intel® SCH) US15W is the chipset used in 
small, low power Intel® Atom™ processor-based platform designs. It connects the 
Intel Atom processor and various I/O devices to system memory. At the heart of the 
Intel SCH and any platform is the memory controller. All of the various peripherals 
are vying for its attention, as can be seen in Figure 1. The processor’s Front Side Bus 
(FSB) is a constant consumer of memory bandwidth, as is the integrated graphics 
controller. These receive priority in the Intel SCH. Then comes everything else: 
USB, PATA, SDIO, PCIe, Audio, Legacy, and so on. Most of these devices have 
sporadic memory bandwidth needs. The possible exception would be PCI Express* 
(PCIe*), which we will discuss later. Before we understand how everything is 
connected though, we need to further understand the design goals of the  
Intel SCH.

Figure 1: Intel® Atom™ processor-based 

platform.

Intel® System
Controller Hub

(Intel® SCH)
US15W

Display

MMC/SD

USB

DDR2

PCIe

PATAAudioBIOS

Intel® Atom™
Processor

Intel® System Controller Hub US15W 
Intel® Atom™ processor
I/O performance analysis
optimization



Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W   |   7

Intel® Technology Journal | Volume 13, Issue 1, 2009

Tradeoffs

Power, performance, size, features—these are just some of the things designers have 
to balance when designing a chipset like the Intel SCH US15W. Each of these met-
rics interoperates with the others, and must be carefully considered. With the Intel 
SCH, the balance has shifted significantly towards power optimization, with power 
to performance efficiency being the utmost importance.

Media applications, in particular, are given more of the power budget in this 
platform. Thus, graphics are given more bandwidth and higher priority to access 
memory. The processor, via the FSB, is also given more of the memory controller’s 
time for running applications and/or performing software-based DSP functions and 
the like. The processor is the general purpose controller, and is expected to do most 
of the heavy lifting. Finally, the I/O devices were considered to typically require low 
to medium amounts of bandwidth and, as we will see, that is what they get.

Another requirement was to fit a large number of I/O types (features) in and still 
keep power low. To make a balance between features and power, tradeoffs must be 
made compared to more traditional Intel® architecture designs. The I/O devices’ 
connection to the memory controller reflects as much. As this article will show, all 
the I/O devices on the Intel SCH run on two equally shared unidirectional busses 
called the backbone, which has less access to memory bandwidth than either the 
integrated graphics controller or the FSB. How much bandwidth? Each bus of the 
backbone has a little more than the original PCI bus could handle. But of course 
PCIe allows for higher bandwidths than that, right? To know for sure, let us take a 
look at how PCI Express* works.

PCI Express* (PCIe*) Details

PCI Express, or PCIe, is a serialized/packetized implementation of the Peripheral 
Component Interconnect (PCI). While they share the same name and software 
concepts, the implementation of the two couldn’t be more different. PCI is parallel 
while PCIe is serial; PCI has a shared bus while PCIe employs a switched point-to-
point topology.

At a high level, PCIe looks a lot like a typical network stack. It has many of the 
same or similar layers as found in the OSI model for networked communications. 
Lower layers consist of physical transmission—the electrical/signaling aspects— 
and eventually progresses all the way up to transaction-based packets.

The transaction layer is responsible for all of the read/write transactions, or packets, 
implicit in data communication. And, among many other things, it also contains 
concepts for tracking buffer space. Technically this is done at a lower layer via Flow 
Control (FC) credits, but the concepts are very similar. These credits allow end points 
to know when to transmit data, and how much data they can safely transmit. They do 
this by updating each other on how much buffer space is available to the receiver. This 
eliminates wasted time and bandwidth by sending packets that cannot be accepted, 
and allows end points to speak to each other with a high degree of confidence.

“ With the Intel SCH, the balance 

has shifted significantly towards 

power optimization, with power  

to performance efficiency being  

the utmost importance.”

“ To make a balance between  

features and power, tradeoffs  

must be made compared to  

more traditional Intel®  

architecture designs.”

“ PCIe looks a lot like a typical  

network stack. It has many of  

the same or similar layers.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

8   |   Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W

As we move further down the PCIe protocol stack, we see how the end points are 
actually connected. PCIe uses the concepts of links and lanes.

Lanes are bidirectional serial interconnects (physically, two differential pairs) of a 
specific bandwidth. For the first generation of PCIe, as in the Intel SCH US15W, 
this bandwidth is 2.5 Gbps in each direction of the lane thanks to a 2.5-GHz  
signaling rate. Since lanes use 8/10-bit encoding, a single 8-bit byte requires 10  
encoded bits of transmission bandwidth. This makes our effective bandwidth  
calculation easy; dividing by ten we end up with 250 MBps of bandwidth in  
each direction, for any given lane.

Links are built of one or more lanes. A link may have four lanes, eight lanes, or 
even sixteen. Data is striped among all the possible lanes, much like with RAID-0 
disk arrays or memory accesses to DIMMs with many DRAM devices. This way, 
hardware PCIe devices can scale their bandwidth accordingly. Links on the Intel 
SCH US15W only consist of one lane, and there are two links. Therefore we say 
both links are x1 (by-one).

While each PCIe lane is capable of 250-MBps data rates in each direction, some 
of the data transmitted consists of control and other useful information. Like the 
transaction layer’s overhead, we can’t expect even theoretical applications to hit 
250-MBps data throughputs on a link. This additional overhead can be taken into 
account of course. Because the maximum payload size on the Intel SCH US15W 
is 128 bytes and the header and other packet/framing overhead typically consumes 
20 “bytes” (STP=1, sequence=2, header=12, LCRC=4, END=1) on a x1 link, our 
maximum posted transaction bandwidth would actually be closer to 216 MBps in 
each direction in this absolutely best-case scenario.

PCI Express* (PCIe*) Performance Measurements

Performance data collection and analysis on the Intel SCH US15W was performed 
using a combination of custom PCIe traffic generators and off-the-shelf PCIe logic 
analyzers. The traffic generators are highly configurable DMA engines, with a 
collection of custom software to create various traffic patterns and execute them. All 
tools are running on Linux. While these tools are capable of some data collection, 
data was validated using the logic analyzer. The test setup is shown in Figure 2.

As we can see, Figure 2 shows two traffic generators each connected to the Intel 
SCH via a x1 PCIe link; between are logic analyzers. In actual testing, only one ana-
lyzer was used. Initial test runs on both ports showed only one analyzer was needed 
for the tests presented in this article.

This article will call transactions moving data from a traffic generator to the Intel 
SCH writes to memory. They are also called upstream transactions. Reads from 
memory are initiated by the traffic generator and are completed by moving data 
from the Intel SCH’s memory to the traffic generator. These completions are also 
called downstream transactions.

Intel®
System

Controller
Hub

(Intel® SCH)
US15W

Link A

Link B

Traffic
Generator

Traffic
Generator

Intel®
Atom™

Processor

Logic
Analyzer

Logic
Analyzer

Figure 2: Test setup.

“ Lanes are bidirectional serial inter-

connects (physically, two differential 

pairs) of a specific bandwidth.”

“Data is striped among all the possible 

lanes, much like with RAID-0 disk 

arrays or memory accesses to DIMMs 

with many DRAM devices.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W   |   9

“ A test series consists of patterns 

from the same packet size, but  

enumerates all possible states for 

each port.”

Test patterns were generated using random physical memory addresses above a 
certain limit. That limit is also passed to the kernel at boot time to prevent con-
flicts. This eliminates the operating system overhead having much of an affect on 
our measurements. Four different test patterns were used for these tests: two write 
patterns and two read patterns. One write pattern generates 64-byte writes, while 
the other generates 128-byte writes. Similarly, one of the read patterns generates 
64-byte read requests, while the other generates 128-byte requests.

These test patterns are then used in various combinations to generate a test series. A 
test series consists of patterns from the same packet size, but enumerates all possible 
states for each port. Therre are three states: reading (RD), writing (WR), and sitting 
idle (N/A). After enumerating all possible state combinations, duplicates and the 
double idle test case are ignored. This leaves five tests per series.

Lastly, two different systems were tested, each with production stepping engineer-
ing samples.  One system with a Z530 processor running at 1.6 GHz, and the other 
with a Z510 processor running at 1.1GHz. Both use the Intel SCH US15W as the 
chipset, but with appropriate memory speeds for their respective processor.

PCI Express* (PCIe*) Performance of 1.1-GHz  
Intel® Atom™ Processor-based Platform

The first test series collected on a 1.1GHz Intel Atom processor and the Intel SCH 
US15W for 128-byte packets is shown in Figure 3.

Looking at this series running on the Intel SCH US15W, we see some interesting 
traits straight away. First of all, as expected, the PCIe link doesn’t reach the full 
216-MBps PCIe line rates we calculated earlier. This system reaches no more than 
about 133 MBps for reads and writes individually on a single link. When utilizing 
both links for reads we see a combined throughput of about 133 MBps as well, also 
evenly split. Yet with both links performing simultaneous writes we see 145 MBps, 
but again, evenly split. Finally, when performing reads on one link and writes on 
the other, the combined bandwidth is 212 MBps split evenly between the two links. 
These consistently even splits are clear evidence of round robin arbitration. Next let 
us look at the 64-byte packet series, shown in Figure 4.

This series does not just look about the same. For all practical purposes, it is the 
same. This is good, as it reinforces our assumptions thus far. Let us review the  
second platform’s results before digging in any deeper.

B
an

d
w

id
th

 (
M

B
p

s)

Test Cases

140

130

120

110

100

90

80

70

60

50

40
RD WR WR WR RD RD RD N/A WR N/A

Link A
Link B

Figure 3: Basic read and write results with a 

128-byte payload.

B
an

d
w

id
th

 (
M

B
p

s)

Test Cases

140

130

120

110

100

90

80

70

60

50

40
RD WR WR WR RD RD RD N/A WR N/A

Link A
Link B

Figure 4: Basic read and write results with a 

64-byte payload.



Intel® Technology Journal | Volume 13, Issue 1, 2009

10   |   Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W

PCI Express* (PCIe*) Performance of 1.6-GHz  
Intel® Atom™ Processor-based Platform

Now let us try running the two test series on a 1.6-GHz Intel Atom processor with 
the same Intel SCH US15W. Figure 5 shows the results for a 64-byte test series and 
Figure 6 shows the results for a 128-byte test series.

B
an

d
w

id
th

 (
M

B
p

s)

Test Cases

200

180

160

140

120

100

80

60

40
RD WR WR WR RD RD RD N/A WR N/A

Link A
Link B

Figure 5: 64-byte test series on 1.6-GHz platform.

B
an

d
w

id
th

 (
M

B
p

s)

Test Cases

200

180

160

140

120

100

80

60

40
RD WR WR WR RD RD RD N/A WR N/A

Link A
Link B

Figure 6: 128-byte test series on 1.6-GHz platform.

On the 1.6-GHz platform we see noticeable bandwidth increases over the 1.1-GHz 
platform. In fact, it increases proportional to the FSB speed. On the 1.1-GHz 
platform, the FSB was 400 MT/s, and on the 1.6-Ghz platform it is 533 MT/s. For 
throughputs, the two-link read test case (RD RD) measures in at 177 MBps com-
bined bandwidth. On the 400 MT/s FSB we saw 133 MBps for the same test case. 
Setting up the equality between FSB ratios and PCIe throughput ratios matches up 
closely. We’ll see why this is later.

There’s one other major observation. There’s an obvious delta between the single 
link read and single link write cases. With the 400 MT/s FSB part we saw equiva-
lent bandwidths for the equivalent cases, but with the higher speed FSB we see that 
neither case matches. In fact they practically alternate between the two packet sizes. 
Read throughputs at 64 bytes equal those of 128-byte write case and vice versa. 
We’ll look into why that may be later.

“ On the 1.6-Ghz platform we see  

noticeable bandwidth increases over 

the 1.1-Ghz platform.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W   |   11

Intel® System Controller Hub (Intel® SCH) 
US15W Backbone

We now have enough data to start to make detailed inferences as to the structure of 
the Intel SCH US15W’s backbone, shown in Figure 7, by analyzing the 1.1-GHz 
platform. We’ll start with the combined bandwidth of each test case for a series as 
shown in Figure 8. This data, the higher bandwidth Read/Write (RD WR) case in 
particular, is a good indicator that the internal bus consists of two independent 
buses, one for upstream and another for downstream.

Now, ignoring the RD WR test case, each direction (upstream and downstream) 
appears to have equal bandwidth: 133 MBps. If this is the case, that each bus has 
equal bandwidth, why is the read/write (RD WR) case not double the other cases? 
That is because the dual independent bus backbone comprises two simple paral-
lel buses, each conceptually similar to PCI. Each of those busses share address and 
data on the same wires (so it is at least a 32-bit bus). Therefore, read requests take 
up additional bandwidth on this bus, limiting the write requests. Since we would 
expect 133 MBps for each stream and we only see about 106 MBps, that additional 
bandwidth for the requests works out to roughly 27 MBps of useable bandwidth. 
We’ll touch on this later.

Another oddity when looking at the combined bandwidth chart is the slightly high-
er bandwidth of the dual-link writes (WR WR) case: 145 MBps versus 133 MBps 
for all others. This could be an artifact of the arbitration scheme used, or, possibly, a 
flow control buffer effect. Assuming each link has buffers that get filled quickly and 
only empties when a full transaction has completed internally over the backbone, 
ping ponging between the two (doubling the buffers) should allow each end point 
to feed data to the Intel SCH US15W at the highest rate the backbone supports: 
145 MBps.

Backbone Clock Frequency
Analyzing the bus further, we should be able to determine the clock rate of the 
backbone. This may provide us with clues to the width and efficiency of the back-
bone, in addition to understanding its clock rate.

First of all, the clock rate is 25 MHz for the 1.1-GHz platform. While this article 
will not go into the full details, one way to determine this frequency is by adding 
delays via the traffic generator and sweeping across a number of different delays. By 
analyzing the resulting traffic captures, one can see the latencies, on average, lining 
up into specific quanta or averages. Measuring the delta in delays between the dif-
ferent quantum levels provides a good guess as to the period of the internal clock—
in the case of the platform with the 1.1-GHz Intel Atom processor, approximately 
40 nanoseconds, corresponding to the 25-MHz clock. This analysis is not always 
feasible of course, but it is one possible approach. Repetitive patterns in the trace 
captures also reveal this periodicity or multiples of it.

Intel® System
Controller Hub

(Intel® SCH)
US15W

Display

MMC/SD

USB

DDR2

PCIe

PATAAudioBIOS

Intel® Atom™
Processor

B
a
c
k
b
o
n
e

USB

BIOS

Audio

PATA

PCIe

PCIe

MMC/
SD

DDR2

FSB

GFX

Figure 7: Intel® System Controller Hub (Intel® 

SCH) US15W backbone architecture

B
an

d
w

id
th

 (
M

B
p

s)

Test Cases

250

200

150

100

50

40
RD WR WR WR RD RD RD N/A WR N/A

Figure 8: 64-byte transactions on 1.1-GHz 

platform.



Intel® Technology Journal | Volume 13, Issue 1, 2009

12   |   Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W

This begs the question—why the relatively slow 25-MHz clock? The answer is that 
a slower signaling rate reduces power significantly (P~kfV^2 after all). This is one 
of those tradeoffs we mentioned earlier. It also minimizes high frequency noise and 
other negative signal integrity effects. Furthermore, a slower clock is good for reduc-
ing design and validation time among other things. But power appears to be the 
main reason.

Backbone Bus Width and Burst Length
Now that we know the clock frequency we can predict the backbone’s data bus 
width. This one was determined by a process of elimination and a bit of com-
mon sense. At 64 bits, the theoretical maximum bandwidth is 200 MBps for a bus 
running at 25 MHz. Higher or lower than that, but by powers of two, and you 
either get bandwidths that are too low or too high. At 128 bits, for example, the 
theoretical bandwidth doubles to 400 MBps. That would mean the efficiency of 
the backbone is approximately 36 percent given the 145 MBps maximum we were 
able to achieve empirically. This efficiency is simply far too low to be practical. And 
at 32 bits, we are left with a maximum bandwidth lower than we observed. Thus, 
64 bits it is.

Next, we can guess a transaction’s burst size. Since we know the backbone is a  
parallel bus, similar to PCI, transactions can vary in size. For each address phase,  
we want to determine the number of data phases. Assuming a 64-byte transaction 
takes as long to setup as a 128-byte transaction (address/control/turnaround phases), 
it seems obvious from the data collected that 64-byte bursts are the only logical 
option. If they were larger than that, we should have seen an increase in bandwidth 
at the 128-byte write packet sizes where efficiency increases. Note that this means 
running smaller than 64-byte packet sizes should show lower bandwidth.

Further evidence of 64-byte bursts are also seen when analyzing read transactions. 
When making 128-byte or larger requests, multiple 64-byte completions are always 
returned. The hardware simply completes the transactions on the PCIe side as soon 
as the internal 64-byte transaction (a full cache line) is completed.

Backbone Model
Knowing the backbone burst transaction size can help us understand efficiency, but 
we already know that. What it really helps us do is map out the backbone. We can 
create a chart of all the possible bandwidths that are feasible when PCIe is bursting. 
As a confirmation, this data should match up with data we have collected. With this 
affirmation, the additional insight gained will allow us to make better predictions of 
bandwidths at other transaction sizes, or when other devices are accessing the 
backbone. Figure 9 shows what a model of this looks like visually.

In Figure 9 we see a list of times measured in clock cycles and equivalent time in 
nanoseconds (assuming a 40-ns period). For each time we list the instantaneous 
bandwidth if transmitting 64 bytes given by the equation: 64 bytes/time.

Many of the bandwidths we have measured on the 1.1-GHz Intel Atom processor 
with the 400-MT/s FSB part show up in this graph. This graph also tells us ad-
ditional information about what is happening in the Intel SCH. If we look back at 

8 cycles - 320 ns 200 MBps

9 cycles - 360 ns 178 MBps

10 cycles - 400 ns 160 MBps

11 cycles - 440 ns 145 MBps

12 cycles - 480 ns 133 MBps

13 cycles - 520 ns 123 MBps

14 cycles - 560 ns 114 MBps

15 cycles - 600 ns 107 MBps

•
•
•

Figure 9: Possible backbone bandwidths based 

on 64-byte transfers over a 64-bit bus clocked at 

25 MHz (1.1-GHz platform).

“ A slower clock is good for reducing 

design and validation time among 

other things.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W   |   13

the combined bandwidth analysis we did for Figure 8, we saw read requests requir-
ing overhead of 27 MBps for the (RD WR) test. What we were really measuring 
was the number of clock cycles taken by a read request. In Figure 9, 106 MBps is 
about 15 cycles and 133 MBps is about 12 cycles. Thus we see a read request, on 
average, takes three backbone clock cycles to transmit. With this kind of knowledge 
we can start breaking down each transaction type to make better predictions of 
more complex test cases. 

So what about the 1.6-GHz platform with the 533-MT/s FSB? We noticed earlier 
that the FSB frequency changes created equally proportional changes in PCIe 
throughputs. Basically the backbone operates at one quarter the FSB BCLK rate, 
which is itself one quarter the FSB data transfer rate. As such, similar analysis and 
charts can be created using a 30-ns period of the 33.3-MHz clock in this platform 
instead of the 40-ns period of the 25-MHz clock in the 1.1-GHz platform. Digging 
deeper into test results for the 1.6-GHz platform will show more instability com-
pared to the predicted model. It is believed this is due to clock boundary crossing 
of the 30-ns backbone with the 4-ns based transfer rate of PCIe, but no additional 
effort was taken to verify this.

Further, this model does not predict the change in bandwidth between the RD N/A 
and WR N/A cases of the 1.6-GHz platform. Typically we would expect through-
puts to increase or remain the same as transaction sizes increase. With the writes, we 
see the opposite behavior. This might be best explained as an effect caused by full 
flow control buffers. Once these buffers fill up, transactions are allowed only when 
enough buffer space for a new transaction is free. The buffers should be sized to a 
multiple of the cache line size (64 bytes), with at least enough buffer to handle the 
maximum payload size (128 bytes). When write transactions are performed though, 
it is likely that the transaction size determines when buffers are free. That is, if 
128-byte PCIe transactions have been posted to the buffers, the backbone performs 
two 64-byte internal transactions before buffer space is freed, the flow control up-
date is sent, and another PCIe transaction is permitted. In the 64-byte case, a form 
of pipelining can take place. Here, when one internal transaction has completed, 
an update can be sent and another packet generated with a relatively short latency. 
At 33.3 MHz, the backbone can complete 64-byte transactions about as fast as the 
PCIe link can generate them (not so for the 25-MHz backbone). With 128-byte 
transactions though, the PCIe device must wait. This time spent waiting on the 
two backbone transactions to complete offsets the gains brought by the improved 
efficiency on the PCIe link.

Intel® System Controller Hub (Intel® SCH) 
US15W Under Pressure

Because the backbone is a shared bus, multiple simultaneous accesses have signifi-
cant impacts to instantaneous bandwidth (also known as latency). This means that 
for high bandwidth applications, any other traffic on the bus will diminish the 
bandwidth temporarily, but by a significant amount. Disk accesses, for example, 
may not change the overall bandwidth that much on average, but it will halve the 
available bandwidth for short durations/bursts.

“ With this kind of knowledge we  

can start breaking down each  

transaction type to make better  

predictions of more complex  

test cases.”

“ Basically the backbone operates at  

one quarter the FSB BCLK rate, 

which is itself one quarter the FSB 

data transfer rate.”

“ The buffers should be sized to a 

multiple of the cache line size  

(64 bytes), with at least enough 

buffer to handle the maximum 

payload size (128 bytes).”



Intel® Technology Journal | Volume 13, Issue 1, 2009

14   |   Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W

Why? Most transactions by I/O devices occur in bursts. As such, even “low” band-
width applications will request the full bandwidth of the bus for short times. For these 
short periods, “low” and “high” bandwidth requirements are indeterminable. This 
means that average bandwidth does not necessarily guarantee a consistent band-
width. If three devices all require the full bandwidth of the bus at the same time, 
each is only going to get one third of it for that time given round-robin arbitration. 
But this is not the only way the bandwidth may be impacted.

Even when the backbone is completely free for a given I/O device, bandwidth can 
be robbed at the memory controller level, as, for example, with video decoding, as 
shown in Figure 10.

Here we see our PCIe traffic generator writing data to memory. When decoding 
high definition video using the Intel SCH US15W’s hardware decoder, we see 
regular dips in PCIe traffic (highlighted in Figure 10). These blips occur at regular 
intervals that align to each frame in the video being decoded (approximately 41 ms 
for 24P video). After eliminating all possible I/O impacts, it was confirmed that 
memory bandwidth was the culprit.

Decoding high definition video is fairly memory intensive it turns out. Each un-
compressed frame of video is bounced to and from memory several times. Adding 
additional CPU accesses for memory on top of this will only exacerbate things.

Applying Architecture to Optimization

Putting together all of the architecture and performance information we have  
uncovered so far, we can now see what optimization is possible, starting with  
a recap of the architecture.

The Intel SCH US15W chipset employs a shared backbone architecture, not  
unlike PCI. Rather than a single shared bus as in PCI though, the Intel SCH 
US15W’s backbone consists of two independent 64-bit buses, each running at  
1/16 the system’s front side bus transfer rate (25 MT/s or 33.3 MT/s). One  
bus is used for writes and read requests to memory, while the other is dedicated  
to read completions.

Transactions on the backbone’s bus take, at best, three backbone clock cycles for 
the address, request, and arbitration phases, and allow for a maximum payload 
size of 64 bytes. Given the 64-bit width of the bus, 64 bytes of data adds an ad-
ditional 8 clock cycles to the transaction. Thus, 64-byte data transactions take at 
least 11 clock cycles to complete on the backbone for a maximum efficiency that is 
almost 73 percent.

How can this architectural understanding be used for optimizations? Because of the 
shared parallel bus nature of the backbone, PCIe hardware running on this platform 
performs better when conforming to certain parallel bus (think PCI) concepts. For 
example, PCIe devices on the Intel SCH cannot expect constant bandwidth at all 
times since they must share it equally with other peripherals. As such, PCIe devices 
that can vary their requirements (throttle) to maintain an average throughput will 

B
an

d
w

id
th

 (
M

B
p

s)

Time

Video Frame Displayed (1/24 second)

Video Frame Decode Time (variable)

Figure 10: 720P video decode impacts PCIe* 

traffic—each frame decoded corresponds to one 

of the dips as highlighted.

“ Thus, 64-byte data transactions  

take at least 11 clock cycles  

to complete on the backbone for  

a maximum efficiency that is  

almost 73 percent.”

“ Most transactions by I/O devices 

occur in bursts.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Performance Analysis of the Intel® System Controller Hub (Intel® SCH) US15W   |   15

work very well. Devices that do not throttle and instead enforce overly rigid band-
width requirements with inadequate buffers will suffer. Devices must also be able to 
operate under the maximum throughputs uncovered earlier.

Beyond hardware, drivers may be optimized much like they would be on a shared 
PCI bus. Driver tweaks can further improve the ability of the hardware to adapt to 
differing bandwidth conditions. Application software also plays a role here because 
applications can be created to minimize concurrent activities on the bus.

PCIe device performance can also be optimized with packet size changes and mem-
ory use. Read requests should be made 128 bytes or larger for maximum through-
put. Writes should be 64 bytes for optimal performance, even though 128 bytes 
would historically be better. Because of odd differences like this, hardware flexibility 
is ideal to maintain high performance on a wide range of platforms.

Last, but not least, even memory organization can affect performance. Though 
not discussed in this article, aligning transactions to cache line boundaries is very 
important, and this applies to all Intel architecture platforms.

Conclusion

All of the discussed topics—architecture, performance, optimization—are vital as-
pects to consider when developing platforms with the Intel Atom processor and the 
Intel SCH US15W. As we work to develop high performance systems with small 
power budgets, closer attention needs to be paid to a full system understanding. 
All aspects of a platform impact each other, and that becomes very clear when we 
push opposing design goals to their limits with new technologies. This analysis and 
uncovering of the backbone architecture hopefully imparts a better understanding 
of the platform such that software and drivers can be written efficiently, hardware 
can be designed efficiently, and the platform as a whole can be used as efficiently 
and effectively as possible.

Author Biography

Scott Foley: Scott Foley is a technical marketing engineer (TME) in Intel’s Low 
power Embedded Division (LEPD). He has been working on platforms based on 
the Intel® Atom™ processor for a little over a year, and has been at Intel for over 
three years. He has lectured inside and outside of Intel about various topics,  
including most recently a lecture at the Univeristy of Colorado at Boulder on  
the microarchitecture of the Intel® Atom™ processor. Before being a TME he  
spent time working in an embedded performance architecture group and helped 
in the development of tools used for this article. He can be reached via email  
at scott.n.foley at intel.com. Spreadsheet versions of the data presented may be 
requested at this address.

“ PCIe devices that can vary their  

requirements (throttle) to maintain 

an average throughput will work  

very well.”

“ Read requests should be made  

128 bytes or larger for maximum 

throughput. Writes should be 64 bytes 

for optimal performance, even though 

128 bytes would historically be better.”

“As we work to develop high  

performance systems with small power 

budgets, closer attention needs to be 

paid to a full system understanding.”



16   |   Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms

Contributor

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

CONFIGURING AND TUNING FOR PERFORMANCE ON INTEL® 5100 

MEMORy CONTROLLER HUB CHIPSET BASED PLATFORMS

Perry Taylor 
Intel Corporation Abstract

A system architect must make platform configuration choices based on multiple 
architecture tradeoffs between cost, power, and performance. Understanding the 
end impact on performance that these configuration decisions have is critical in 
designing competitive solutions around the Intel® 5100 Memory Controller Hub 
chipset (Intel® 5100 MCH chipset). 

This article presents performance-related architecture topics for the Intel 5100 
MCH chipset to assist system architects in designing a high performance solution. 
It will help engineers and architects make decisions with an awareness of perfor-
mance implications, such as CPU population, memory configuration, and I/O  
device placement. This article also addresses performance tuning options for  
the Intel 5100 MCH chipset that can help increase performance for specific  
usage models.

Introduction

Intel® 5100 Memory Controller Hub chipset (Intel® 5100 MCH chipset) solutions 
provide board designers with a “blank slate,” allowing flexible design and layout of 
memory, front side bus, generation 1 PCI Express* capability and legacy I/O. While 
this design flexibility is desirable, it also allows for less than optimal performance 
configurations. Likewise, even with a board laid out for optimal performance, 
designers or end users can cripple system performance by populating the platform 
with lower performing processors, low throughput memory configurations, and 
poorly placed I/O endpoints. Not only the hardware selection but also hardware 
placement is important to system performance. Memory placement and I/O  
placement can have significant impact on performance as we will later demonstrate. 
Once all hardware choices have been made, some additional performance may be  
possible with platform tuning for specific usage models. 

This article attempts to help with these three areas related to performance: 

• Intel® 5100 MCH configuration
• Hardware configuration
• Platform tuning 

The information provided is intended to help designers and end users make perfor-
mance aware decisions in regards to these three areas, allowing them to balance cost, 
power and thermals with performance needs on the Intel 5100 MCH chipset.

“ The information provided is  
intended to help designers and end  
users make performance aware  
decisions in regards to these three 
areas, allowing them to balance  
cost, power and thermals with   
performance needs on the Intel  
5100 MCH chipset.”

Intel® 5100 Memory Controller Hub chipset
Intel® 5100 MCH 
performance 
tuning 
memory bandwidth 
single channel 
dual channel 
dual-rank 
single-rank 
single socket 
dual socket 
quad-core 
dual-core 
DDR2-533 
DDR2-667 
I/O device placement 
platform tuning 
thermal throttle 
electrical throttle 
global throttle 
processor prefetching 
hardware prefetch 
second sector prefetch 
adjacent sector prefetch 
BIOS settings



Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms   |   17

Intel® Technology Journal | Volume 13, Issue 1, 2009

Performance Test Configuration

Performance data presented in this article is collected on the following  
system configuration:

• Williamsport Customer Reference Board (revision B)
• Dual Socket Intel® Xeon® processor E5410 2.33GHz (Quad-Core)
• Dual Socket Intel® Xeon® processor E5220 2.33GHz (Dual-Core)
• 2 memory channels, 2 DIMMs per channel, 4GB of system memory
• 4x1GB DDR2-667, dual rank, CL5
• BIOS version WSPTG015
• 32 Bit Linux* (Cent OS 4.4)

Intel® 5100 Memory Controller Hub Chipset Feature 
and Technology Overview

The Intel 5100 Memory Controller Hub (Intel 5100 MCH) chipset) is a low power 
memory controller hub designed specifically for embedded applications. The Intel 
5100 MCH chipset is derived from the Intel® 5000P Memory Controller Hub 
chipset (Intel® 5000P MCH chipset), a high performance server class chipset and  
as such, the Intel 5100 MCH chipset has many of the same features, technologies, 
and performance capabilities as the Intel 5000 Memory Controller Hub chipset 
(Intel® 5000 MCH chipset). The primary difference with the Intel 5100 MCH 
chipset as compared to the Intel® 5000 MCH chipset is the removal of the fully 
buffered DIMMs (FBDs) that were replaced with a native DDR2 controller. This 
architecture change reduces the total cost of platform ownership by reducing the 
overall platform power consumption while still delivering high performance. 

Figure 1 details the platform block diagram.

Like the Intel 5000 MCH chipset, the Intel 5100 MCH chipset is designed with 
a dual independent front side bus (FSB) for improved bandwidth and efficiency 
over previous generations, supporting 667, 1066, and 1333 MT/s. There are six 
x4 (pronounced “by four”) Generation 1 PCI Express GB links available for direct 
connect I/O and a x4 direct media interface (DMI) link available to interface with 
an I/O Controller Hub (ICH). The six x4 PCI Express links can be combined to 
form various combinations of x8 links and/or x16.

The Intel 5100 MCH chipset is designed with a native DDR2 memory controller 
supporting registered ECC DDR2533 and DDR2-667. Dual independent memory 
channels provide improved bandwidth and efficiency supporting up to 3 DIMM 
modules per channel. Intel 5100 MCH chipset supports singe rank, dual rank, and 
quad rank DIMMs up to a maximum of 6 ranks per channel and a total capacity of 
48 GB.

For more information on the Intel 5100 MCH chipset features, see:  
http://www.intel.com/Assets/PDF/datasheet/318378.pdf [2]

SAS/SATAII GbE 10 GbE PCI-X

12 USB 2.0 Ports
6 SATA Ports

x8 x8 x8

x16

P
C

Ie
 S

lo
t

x4 PCIe Gen1

Configurable set of PCI Express* x4, x8, or x16 ports

RAID
Controller

Dual GbE
(Zoar)

10 GbE
(Oplin) PXH

6 x1 Gen1 PCIe*
Ports

ICH9R

Intel® 5100 MCH

DDR2
533/667DDR2

533/667DDR2
533/667

DDR2
533/667DDR2

533/667DDR2
533/667

DIB FSB
1066/1333

x4 ESI

Intel® Xeon®
LV & LV ATCA

Processors

Intel® Xeon®
LV & LV ATCA

Processors

Figure 1: Intel® 5100 Memory Controller Hub 

chipset. Source: Intel Corporation, 2008

“ Intel 5100 MCH chipset supports 

singe rank, dual rank, and quad 

rank DIMMs up to a maximum 

of 6 ranks per channel and a total 

capacity of 48 GB.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

18   |   Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms

Performance-Related Architecture Considerations

The most important and often overlooked factor attributing to system performance 
is the hardware configuration. Platform hardware and software tuning can help 
extract the last bit of performance out of a system, but the hardware configuration 
ultimately determines the performance potential (or pitfalls) of a platform.

System architects may unintentionally end up designing a lower performing  
solution by choosing a less than desirable configuration in an attempt to save cost, 
power, thermals or design time. These sections address architecture considerations  
to help system architects and end users understand the performance impact of  
various tradeoffs when selecting CPU, memory, and I/O configurations.

CPU
The best processor configuration for computation performance will be the CPU 
with the maximum possible CPU frequency, cores/threads, sockets, and FSB speed. 
However this configuration does not always fit into the end budget, thermal, and 
power constraints. In this section we will explore performance impacts of choosing 
FSB frequency, dual-core versus quad-core; single socket versus dual socket, and 
finally a single socket quad-core compared to a dual socket dual-core on the Intel 
5100 MCH chipset architecture.

FSB Frequency
As explained earlier, the Intel 5100 MCH chipset supports FSB of 667, 1067, and 
1333 MT/s. For the best performance, processors supporting FSB of 1333 MT/s 
should be used. Note that higher FSB frequency not only results in higher effective 
FSB bandwidth and lower latency to memory but also makes the Intel 5100 MCH 
chipset core frequency proportionally faster. We will review FSB and memory fre-
quency performance data later in the article.

Quad-Core versus Dual-Core
Here we illustrate the performance benefit of the quad-core architecture versus 
dual-core with the benchmark SPEC CPU2006. SPEC CPU2006 is a suite of  
tests many of which are CPU compute–bound while some are CPU to memory 
bandwidth–bound. For complete information on SPEC CPU2006 refer to:  
http://www.spec.org. [3]

The performance gain on quad-core will vary per sub-test and depends on the  
limiting factors mentioned above. Sub-tests limited by CPU-memory path  
bandwidth see little to no benefit from quad-core while those limited by CPU  
computation scale almost perfectly. The end score is an averaging of these sub-tests.

Lab testing shows that the quad-core platform configuration improves the  
SPECfp_rate_base2006(est.) score by an average of 40 percent and the  
SPECint_rate_base2006(est.) score by an average of 57 percent over the dual-core 
platform configuration. As expected, some computation-heavy sub-tests show  
nearly perfect scaling from dual-core to quad-core while memory intensive sub-tests 
show no scaling from dual-core to quad-core.

“ Platform hardware and software  

tuning can help extract the last  

bit of performance out of a system, 

but the hardware configuration  

ultimately determines the  

performance potential (or pitfalls)  

of a platform.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms   |   19

Single Socket versus Dual Socket
Now we show the performance benefit of a single socket architecture with a quad 
core CPU versus dual socket architecture with a quad-core CPU again using the 
benchmark SPEC CPU2006. This configuration compares four cores on one socket 
against eight cores across two sockets. Again, the scaling results come down to CPU 
computation power and memory bandwidth. Our computation power is doubling 
so we can expect about the same scaling here as with dual-core versus quad-core, 
but we also expect higher bandwidth with the additional FSB. 

Tests show a 48 percent benefit on SPECfp_rate_base2006(est.) and 59 percent for 
SPECint_rate_base2006(est.) for this configuration.

Dual-Core and Dual Socket versus Quad-Core and Single Socket
Here we examine the performance difference between platforms configured with 
two dual-core processors versus a single socket populated with a quad-core. This is 
an interesting comparison since we are comparing an equal number of processor 
cores, but varying the number of physical processors and FSBs used. 

Generally, the dual-core dual socket configuration yields higher performance but 
also increases system cost and power consumption. At first glance, the performance 
seems very similar with a 6 percent increase for SPECfp_rate_base2006(est.) and 
SPECint_rate_base2006(est.) is within test noise of 3 percent.

To better understand this we need to look at the sub-tests of SPEC CPU2006 
Floating Point. Many of the tests perform the same on the two configurations. 
These tests are CPU-bound and performance is dependent on the processor core 
count and frequency. Some of the tests perform significantly better on the dual 
socket configuration. These tests are not CPU-bound, but rather memory-bound 
and dual socket configuration gives higher CPU-memory throughput. Figure 2 
shows the tests and percentage of increase for those tests sensitive to CPU-memory 
throughput such as: 410.bwaves, 433.milc, 437.leslie3d, 450.soplex,  
459.GemsFDTD, 470.lbm, 481.wlf, and 482.sphinx3. The remaining floating 
point tests are those that are computation-bound.

R
el

at
iv

e 
P

er
fo

rm
an

ce

1.2

1.4

1

0.6

0.8

0.4

0

0.2

Estimated Relative Performance

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ctu

sA
DM

43
7.

les
lie

3D

44
4.

na
m

d

45
0.

so
ple

x

45
3.

po
vr

ay

45
4.

cla
cu

lix

45
9.

Gem
sF

DTD

44
7.

de
alI

I

46
5.

to
nt

o

47
0.

lbm

48
1.

wrf

48
2.

sp
hin

x3

1 Socket Quad Core @ 2.33 GHz 2 Socket Dual Core @ 2.33 GHz

Figure 2: CPU2006fp performance, single socket quad-core versus dual socket 

dual-core. Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

20   |   Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms

Based on SPEC CPU2006, we see that the computation performance of dual core 
with dual socket design when compared to a quad core single socket design is simi-
lar, but memory throughput improves on the dual socket design compared to single 
socket, showing a 27 percent improvement using 2 sockets on 437.leslie3d(est.).

Memory
The memory subsystem is a vital component to platform performance and often 
becomes the limiting factor of benchmark throughput. Therefore it is critical to 
populate memory with end performance in mind. This section explores the perfor-
mance impact of populating one versus two channels, one DIMM per channel, two 
DIMMs per channel, three DIMMs per channel, dual rank DIMMs, single rank 
DIMMs, and memory frequency. 

Channel Population
The Intel 5100 MCH chipset features two independent DDR2 channels with each 
channel having its own independent memory controller. In order to get the most 
benefit out of the memory system, it is vital to populate both channels. Memory 
configurations with two or more DIMMs should divide DIMMs equally between 
the channels.

Figure 3 illustrates the performance delta when two DIMMs are placed in one 
channel versus divided between channels. Memory bandwidth tests results are from 
an Intel internal benchmark that behaves much like Stream Benchmark, with 
higher memory efficiency. A 92 percent increase is observed from one channel to 
two channels with 1-GB, dual rank, DDR2-667 modules when CPU is issuing 
66 percent read 33 percent write requests. From this data it is clear that utilizing 
both memory channels of the MCH is vital for memory performance. Based on the 
data in Figure 3, populating both memory channels is highly recommended.

DIMMs per Channel
Each memory channel on the Intel 5100 MCH chipset supports up to three  
DDR2 DIMMs. It is important to understand the performance impact of using 
one, two, or three DIMMs per channel to design a cost-effective product with  
high performance.

The estimated performance gains from one to two to three DIMM configurations 
with 1-GB, dual rank, 667 DDR2 modules is a 4.5 percent improvement from  
one DIMM to two DIMMs. Adding a third DIMM per channel does not typically 
increase bandwidth potential unless a benchmark is memory capacity limited. Popu-
lating three DIMMs per channel may potentially yield higher application/bench-
mark performance for capacity limited usage, but actually memory bandwidth  
will not increase. These data points indicate that utilizing both memory channels  
is much more important than populating multiple DIMMs on just one channel. 
Usage models requiring high memory throughput should populate two DIMMs  
per channel to gain the additional bandwidth while models with strict power 
and cost limits may consider using only one DIMM per channel. One must also 
consider the target software applications that will be executing on the platform. If 
maximum memory capacity is required then all three DIMMs per channel should 
be populated to achieve 4848 GB of total system memory.

R
el

at
iv

e 
B

an
d

w
id

th

Memory Configuration

1.6

1.8

2.0

1.4

1.2

1

0.8

0.6

0.4

0.2

0
1 Channel (2 DIMMs total) 2 Channels (2 DIMMs total)

Figure 3: One channel versus two channel 

memory performance with 66% read 33% write 

Source: Intel Corporation, 2009

“ The memory subsystem is a vital  

component to platform performance 

and often becomes the limiting  

factor of benchmark throughput.”

“ These data points indicate that 

utilizing both memory channels  

is much more important than  

populating multiple DIMMs on 

just one channel.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms   |   21

Dual Rank versus Single Rank
Dual rank DIMMs are recommended over single rank for performance and to enable 
full rank interleaving of 4:1. Figure 4 shows the measured benefit of dual rank with 
66 percent read 33 percent write traffic on various memory configurations. For the 
maximum configuration the dual rank memory provides an additional 6.5 percent 
throughput. Note: Three DIMMs per channel provides additional capacity, but not 
bandwidth (not shown in Figure 4).

DDR2-533 versus DDR2-667
When selecting memory frequency, the FSB frequency must also be considered due 
to the impact of memory gearing. Memory gearing refers to the frequency ratio 
between the front side bus and memory interface. When the ratio is not 1:1, ad-
ditional memory latency occurs. Table 1 shows possible frequency ratios related to 
memory gearing.

Testing shows that the reduced memory latency of 667 MHz over 533 MHz makes 
up for the negative impact of memory gearing. So a simple rule of thumb is that higher 
memory frequency provides higher performance. Figure 5 reports the relative CPU-
memory bandwidth recorded with each combination in dual socket configuration. Note 
that there is no gain from a 1067/533 configuration to 1067/667, but we show an 
estimated 22 percent bandwidth improvement with the 1333/667 configuration.

PCI Express*
Recall from the block diagram in Figure 1 that the PCI Express (PCIe) ports of the 
Intel 5100 MCH chipset can be configured in many ways. There are six x4 PCIe 
lanes available directly from the MCH. These can be configured as: a single x16 link 
with a 1x8 link, three x8 links, or six x4 links. There are also six x1 links available 
from the I/O controller hub (ICH), which can be combined for form one x4 and 
two x1 links. This section addresses performance related to these choices.

Lane Width
PCI Express lane width should be chosen based on required bandwidth of the I/O 
device. Peak PCI Express bandwidth efficiency is about 81 percent for reads and 
86 percent for writes on the Intel 5100 MCH chipset.

Another important concept with link width is transaction latency. Transmit time of 
PCI Express packets increases as the link width decreases. For this reason, perfor-
mance can benefit from link width even when higher bandwidth is not demanded.

%
 o

f 
B

an
d

w
id

th
 In

cr
ea

se

2

2.5

1.5

1

0.5

0
1 DIMM

(1 Channel)
2 DIMM

(1 Channel)
2 DIMM

(2 Channels)
4 DIMM

(2 Channels)

DIMM Population

Dual Rank

Single Rank

Figure 4: Single rank versus dual rank 

performance. Source: Intel Corporation, 2009

R
el

at
iv

e 
M

em
o

ry
 B

an
d

w
id

th

FSB/Memory Frequency

1.4

1.2

1

0.8

0.6

0.4

0.2

0
1067/533 1067/667 1333/533 1333/667

Figure 5: FSB and memory frequency bandwidth 

with 66% read 33% write.

Source: Intel Corporation, 2009

FSB Frequency DDR2 Frequency Memory Gearingvia I/O 
Controller Hub (ICH)

1067 MT/s 533 MHz 1:1 Ratio

1067 MT/s 667 MHz Not a 1:1 Ratio

1333 MT/s 533 MHz Not a 1:1 Ratio

1333 MT/s 667 MHz 1:1 Ratio

Table 1: Memory gearing table



Intel® Technology Journal | Volume 13, Issue 1, 2009

22   |   Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms

I/O Device Placement
For best performance, place I/O devices as close to the Intel 5100 MCH chipset as 
possible. Hence the use of direct MCH attached PCIe interfaces is recommended 
for performance sensitive IO devices. On the other hand, having relatively higher 
latency to memory, the PCIe slots on the I/O Controller Hub are recommended 
for less performance-sensitive applications. Note that increased latency also impacts 
throughput; how much will depend on how many outstanding transactions are 
pending. Tables 2 and 3 show the relative latency and bandwidth measured on a 
x4 PCI Express link via Intel 5100 MCH chipset and I/O Controller Hub. Note: 
The bandwidth measurement are carried out with up to 32 outstanding requests, 
hiding much of the latency impact on bandwidth while latency measurements are 
carried using one outstanding transaction at a time. Figure 6 illustrates recommend-
ed IO device placement for best performance. 

Another important concept in I/O device placement is I/O Unit (IOU) balance 
within the MCH. As shown in Figure 7, the Intel 5100 MCH chipset’s available 
PCI Express slots are divided between IOU0 and IOU1. IOU0 contains the x4 
DMI link and 2x4 or 1x8 PCI Express links. IOU1 contains 4x4 or 2x8 PCI 
Express links. Populate PCI Express slots with the intent of balance loading traffic 
between the IOUs. Figure 7 also illustrates an example ordering preference to 
ensure IOU balance.

Out of the Box Performance

Prior to product release, Intel conducts performance testing and analysis to  
determine ideal default chipset and processor settings. This work results in the  
best “out of the box” performance for general usage models and in most cases  
additional tuning is not necessary.

Additional performance might be achieved depending on the CPU and memory 
configuration used, or the specific usage model of interest. Some of these additional 
tuning options are presented in the following section.

x4
 P

C
I E

xp
re

ss

Intel® 5100 MCH Controller

IOU1 IOU0

1

x4
 P

C
I E

xp
re

ss

4

x4
 P

C
I E

xp
re

ss

3

x4
 P

C
I E

xp
re

ss

6

x4
 P

C
I E

xp
re

ss

2

x4
 P

C
I E

xp
re

ss

5

x4
 D

M
I

Figure 7: I/O unit layout. 

Source: Intel Corporation, 2009

“ Populate PCI Express slots with 

the intent of balance loading  

traffic between the IOUs.”

X4 PCI Express* 
(PCIe*) 64-B Memory 
Read

Intel® 5100 Memory 
Controller Hub Chipset 
PCIe Slot

via I/O Controller Hub 
PCIe Slot

Relative Latency 1 2.07

Table 2: x4 PCI Express* (PCIe*) latency (lower is better)

X4 PCI Express* 
(PCIe*) 2-KB Requests 
to Memory

via Intel® 5100 Memory 
Controller Hub  
Chipset PCIe Slot

via I/O Controller Hub 
PCIe Slot

Relative Read 

Bandwidth

1 .90

Relative Write Bandwidth 1 .99

Relative Read/Write 

Bandwidth

1 .866

Table 3: x4 PCI Express* (PCIe*) bandwidth (higher is better)

Intel® 82801 IR
I/O Controller
Hub (ICH9R)

6x1 PCIE

Best Placement for
IO Performance

Reserve for Low-demand IO

2x4 PCIE

2x4 PCIE

2x4 PCIE

FSB0 FSB1

Channel0

Intel® 5100 Memory
Controller Hub

Chipset
Channel1

CPU0 CPU1

DDR2

Figure 6: I/O device placement recommendation.

Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms   |   23

Accessing the Intel® 5100 Memory Controller Hub 
Chipset Control Registers

The following sections about hardware tuning require an understanding of chipset 
control registers. Inside the Intel 5100 MCH chipset there are registers related to 
status, capabilities and control. These registers are defined in the datasheet [2]. 
Changing values within these registers can control specific behaviors of the Intel 
5100 MCH chipset. Registers are mapped to the PCI configuration space and they 
can be accessed with the correct physical address. The addressing nomenclature of 
the PCI configuration space is: bus, device, function, offset, and bits.

Linux provides the commands “lspci” and “setpci” for listing and changing the PCI 
configuration space. For example, let us say we want to disable FSB1. According to 
Table 4 we need to set bit 30 for bus 0, device 16, function 0 at offset 78h.
 

lspci –s 0:10.0 –xxx dumps config space for bus 0, device 10h, function 0. From 
this output we can locate the register at offset 78h (highlighted below in bold text).

[root]# lspci -s 0:10.0 -xxx

00:10.0 Host bridge: Intel Corporation: Unknown device 65f0 (rev 90)

00: 86 80 f0 65 00 00 00 00 90 00 00 06 00 00 80 00

10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

20: 00 00 00 00 00 00 00 00 00 00 00 00 86 80 86 80

30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

40: 00 00 ff 07 00 08 00 00 00 00 00 fe 00 00 00 00

50: 00 00 02 00 00 00 04 04 00 10 11 01 00 00 31 33

60: 00 12 08 01 00 e0 00 00 ff ff ff ff 00 00 00 00

70: 8c c0 e2 0f 00 00 00 00 8c c0 e2 0f 00 00 00 00

80: 01 00 80 00 04 02 80 00 00 00 00 00 00 00 00 00

90: 02 01 80 00 08 03 80 00 00 00 00 00 00 00 00 00

a0: 00 00 00 00 00 00 00 00 10 04 80 00 40 06 80 00

b0: 00 00 00 00 00 00 00 00 20 05 80 00 80 07 80 00

c0: 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a 00 00 00 00

d0: 00 00 00 00 00 00 00 00 0c 2c 00 00 03 01 00 00

e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

f0: dc 7f 40 00 06 81 58 81 f4 08 d8 03 80 00 00 00

“ Inside the Intel 5100 MCH  

chipset there are registers related  

to status, capabilities and control.”

Register Field Bus Device Function Offset Bit Value Result

FSBC[1] FSB1_dis 0 16 0 78h 30 1 FSB1 Disabled

Table 4: Disable FSB 1 example. Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

24   |   Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms

Remember that this is little endian, requiring us to flip it backwards per byte,  
resulting in: 0F E2 C0 8C. For completeness, this is broken down to bit level  
with bit 30 highlighted:

Default Setting:   0000 1111 1110 0010 1100 0000 1000 1100

New Setting:   0100 1111 1110 0010 1100 0000 1000 1100

Working backwards, the result is 4F E2 C0 8C, showing that we need to set offset 
7Bh = 4Fh as follows:

setpci –s 0:10.0 7b=4f

Hardware Tuning Recommendations

There are several hardware level settings that can be changed through BIOS menus 
or chipset control registers that can help improve performance. Here we discuss a 
few of these options for the Intel 5100 Memory Controller Hub. 

Intel® Processor Prefetching
Intel® Core™ microarchitecture has two hardware level prefetch mechanisms to help 
reduce CPU memory read latency. These prefetchers bring data into processor L2 
cache before the processor requires it in an attempt to produce a cache hit rather 
than a miss, resulting in increased performance.

There are two prefetchers available within the CPU architecture and can be set 
within BIOS, the hardware prefetch, also known as Data Prefetch Logic or DPL  
and the L2 Streaming Prefetch (L2S), also known as Adjacent Sector Prefetch. 

Tuning processor prefetching is a topic within itself and is beyond the scope  
of this article. Please refer to the following paper for further information on  
processor prefetching: 
http://software.intel.com/en-us/articles/optimizing-application-performance-on-
intel-coret-microarchitecture-using-hardware-implemented-prefetchers [4]

Hardware Prefetch
The default recommendation is to enable hardware prefetch. However, depending on 
individual usage models, hardware prefetch may also fetch more cache lines than are 
needed by an application. This can result in increased memory bus utilization and 
may affect performance under usage models that require heavy memory bandwidth. 
It is left to the user to choose hardware prefetch settings that best suit the application 
under consideration. It is beneficial to test with HW Prefetching ON and also OFF in 
order to determine the optimal performance for the specific usage model.

L2 Streaming Prefetch
L2S improves performance under some usage models with sequential memory 
addressing and/or spatial locality. L2S may be enabled/disabled via BIOS setting. 
Again, the effect of L2S on the performance is application-specific.

“ It is beneficial to test with  

HW Prefetching ON and also 

OFF in order to determine the 

optimal performance for the  

specific usage model.”

“ Remember that this is little  

endian, requiring us to flip it  

backwards per byte.”

“ Intel® Core™ microarchitecture 

has two hardware level prefetch 

mechanisms to help reduce CPU 

memory read latency.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms   |   25

FSB Tuning for Single Socket Configurations
In single socket configurations, the second, unused socket should not be populated 
with a processor and BIOS should disable the unused FSB. The motivation is to 
improve performance by allowing the bus to switch to in-order mode rather than 
deferred mode; this reduces transaction latency and protocol overhead. 

Table 4 above shows the bit in the FSBC[1] register that can be checked to verify 
that BIOS is disabling the second FSB in single socket configurations. For complete 
register definition, please see the Intel 5100 MCH Chipset Datasheet [2].

Memory Tuning
Memory timing settings are set to optimum values by default, providing the best 
performance possible within specification. DRAM timing registers should not be 
modified by end users except through preset BIOS settings.

For recommended memory settings, the following parameters should be selected  
in BIOS:

• MCH Channel Mode: Channel Interleave
• Channel Dependent Sparing: Disabled
• Channel Specific Sparing: Disabled
• Rank Interleave = 4:1
• Channel 0: Enabled
• Channel 1: Enabled
• DIMM Calibration Reuse: Enabled
• Read Completion Coalesce: Auto

PCI Express* Tuning with Maximum Payload Size 
The Intel 5100 MCH chipset supports a PCI Express Maximum Payload Size 
(MPS) of 128 bytes and 256 bytes. The default and recommended setting is  
128. A 128 byte payload size allows opportunistic split completion combining  
(coalescing) for read requests, a feature not supported with a 256-byte MPS.

Under specific I/O usage models that perform high percentages of inbound writes 
with large payloads and few inbound reads, it will benefit performance to disable 
coalescing and increase MPS to 256 bytes. This allows I/O devices to send up to 
256 bytes of data per write packet, improving write throughput but limits the  
maximum read completion size to 64 bytes, reducing read throughput potential.

Table 5 defines the register changes required in the Intel 5100 MCH chipset to 
implement a 256-byte MPS tweak. Note that end devices must also be changed to 
256-byte MPS.

“ Memory timing settings are set  

to optimum values by default,  

providing the best performance 

possible within specification.”

“ Under specific I/O usage models 

that perform high percentages  

of inbound writes with large  

payloads and few inbound reads, 

it will benefit performance to  

disable coalescing and increase 

MPS to 256 bytes.” 



Intel® Technology Journal | Volume 13, Issue 1, 2009

26   |   Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms

Throttling Mechanisms
During performance benchmarking it is sometimes useful to disable the throttling 
technologies of the Intel 5100 MCH chipset to verify that performance limits are 
not throttle related.

Thermal Throttle
Thermal throttle allows for dynamic frequency scaling based on defined thermal 
thresholds, but the Intel 5100 MCH chipset does not implement thermal throttling.

Other platform components may support thermal throttle, such as the CPU. Please 
refer to component-specific documentation on how to disable thermal throttle.

Global Throttle
Global throttle allows for software controlled throttling on memory activations for 
a long time window, as shown in Table 6. If the number of activations to a memory 
rank exceeds the specified limit, then further requests are blocked for the remainder 
of the activation window. Setting the following bit values to zero will disable global 
throttle features.  

Electrical Throttle
Electrical throttling is a mechanism that limits the number of activations within 
a short time interval that would otherwise cause silent data corruption on the 
DIMMs. Disable electrical throttle with the configuration settings listed in Table 7.

Register Field Bus Device Function Offset Bit(s) Value

PEXCTRL[7:2,0] COALESCE_EN 0 7-2,0 0 48h 10 0

PEXDEVCTRL[7:2,0] MPS 0 7-2,0 0 74h 5-7 001b 

Table 5: Enable 256-byte maximum payload size. Source: Intel Corporation, 2009

Register Field Bus Device Function Offset Bit(s) Value

THRTHIGH THRTHIGHLM 0 16 1 65h 7-0 0

THRTLOW THRTLOWLM 0 16 1 64h 7-0 0

GBLACT GBLACTLM 0 16 1 60h 7-0 0

Table 6: Disable global throttle. Source: Intel Corporation, 2009

Register Field Bus Device Function Offset Bit(s) Value

MTR[1:0][3:0] ETHROTTLE0 0 22 0 15Ah 9 0

MTR[1:0][3:0] ETHROTTLE0 0 22 0 158h 9 0

MTR[1:0][3:0] ETHROTTLE0 0 22 0 156h 9 0

MTR[1:0][3:0] ETHROTTLE0 0 22 0 154h 9 0

MTR[1:0][3:0] ETHROTTLE0 0 21 0 15Ah 9 0

MTR[1:0][3:0] ETHROTTLE0 0 21 0 158h 9 0

MTR[1:0][3:0] ETHROTTLE0 0 21 0 156h 9 0

MTR[1:0][3:0] ETHROTTLE0 0 21 0 154h 9 0

Table 7: Disable electrical throttle. Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms   |   27

Conclusion

When designing a solution with the Intel 5100 MCH chipset the designer should 
make architecture decisions based on CPU population, FSB frequency, memory 
population, memory frequency, I/O device selection, and placement with an under-
standing of how it will impact end performance. All areas of architecture should be 
carefully thought out with the end solution in mind to balance power, performance, 
cost and thermals. 

Disclaimers

Performance tests and ratings are measured using specific computer systems and/or 
components and reflect the approximate performance of Intel products as measured 
by those tests. Any difference in system hardware or software design or configuration 
may affect actual performance. Buyers should consult other sources of information to 
evaluate the performance of systems or components they are considering purchasing. 
For more information on performance tests and on the performance of Intel products, 
visit Intel Performance Benchmark Limitations at:  
http://www.intel.com/performance/resources/limits.htm

Intel, and the Intel logo, Intel Core, and Xeon are  trademarks of Intel Corporation 
in the U.S. and other countries.

Intel processor model numbers are not a measure of performance. Processor  
numbers differentiate features within each processor family, not across different 
processor families.

SPECint*_rate_base2006 and SPECfp*_rate_base2006 are capacity-based metrics 
used to measure throughput of a computer that is performing a number of tasks. 
This is achieved by running multiple copies of each benchmark simultaneously with 
the number of copies set to set to the number of logical hardware cores seen by the 
operating system. SPEC* CPU2006 provides a comparative measure of compute 
intensive performance across the widest practical range of hardware. The product 
consists of source code benchmarks that are developed from real user applications. 
These benchmarks depend on the processor, memory and compiler on the tested 
system. SPEC, SPECint, SPECfp, SPECrate are trademarks of the Standard Perfor-
mance Evaluation Corporation. For more information go to: www.spec.org/spec/
trademarks.html. [1]

All SPEC CPU2006 data in this document is estimated based on measurements 
of Intel internal reference platforms; the data is being provided as described in the 
CPU2006 Run Rules 4.5 Research and Academic usage of CPU2006.

Copyright © 2009 Intel Corporation. All rights reserved. *Other names and brands 
may be claimed as the property of others.

“ All areas of architecture should  

be carefully thought out with  

the end solution in mind to  

balance power, performance,  

cost and thermals.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

28   |   Configuring and Tuning for Performance on Intel® 5100 Memory Controller Hub Chipset Based Platforms

References
[1]  Use of SPEC Trademarks and Service Marks, URL: 

http://www.spec.org/spec/trademarks.html

[2]  Intel® 5100 Memory Controller Hub Chipset Datasheet, July 2008, 
Revision 003US

[3] Standard Performance Evaluation Corporation (SPEC), URL: www.spec.org

[4]  Hedge, Ravi. 2008. “Optimizing Application Performance on Intel® Core™ 
Microarchitecture Using Hardware-Implemented Prefetchters.” Intel® Software 
Network, URL: http://software.intel.com/en-us/articles/optimizing-application-
performance-on-intel-coret-microarchitecture-using-hardware-implemented-
prefetchers/

Author Biography

Perry Taylor: Perry Taylor is a senior performance engineer in the Embedded and 
Communications Group at Intel Corporation. Perry has been at Intel for 8 years 
and in that time has focused on performance analysis and tuning of Intel® architec-
ture and has received multiple divisional awards for his contributions.



Solid State Drive Applications in Storage and Embedded Systems   |   29

Intel® Technology Journal | Volume 13, Issue 1, 2009

Contributors

Index Words

SOLID STATE DRIVE APPLICATIONS IN STORAGE AND EMBEDDED SySTEMS

Sam Siewert, PhD 
Atrato Incorporated

Dane Nelson 
Intel Corporation

Abstract

Intel® X25-E and X25-M SATA Solid-State Drives have been designed to provide 
high performance and capacity density for use in applications which were limited 
by traditional hard disk drives (HDD), input/output (I/O) performance bottle-
necks, or performance density (as defined by bandwidth and I/Os/sec per gigabyte, 
per Rack Unit (RU), per Watt required to power, and per thermal unit waste heat. 
Solid State Drives (SSDs) have also found a place to assist in capacity density, 
which is the total gigabytes/terabytes per RU, per Watt, and per thermal unit waste 
heat. Enterprise, Web 2.0, and digital media system designers are looking at SSDs 
to lower power requirements and increase performance and capacity density. First 
as a replacement for high end SAS or Fiber Channel drives, but longer term for 
hybrid SSD + Hard Disk Drive (HDD) designs that are extremely low power, high 
performance density, and are highly reliable. This article provides an overview of 
the fundamentals of Intel’s Single Level Cell (SLC) and Multi Level Cell (MLC) 
NAND flash Solid State Drive technology and how it can be applied as a compo-
nent for system designs for optimal scaling and service provision in emergent Web 
2.0, digital media, high performance computing and embedded markets. A case 
study is provided that examines the application of SSDs in Atrato Inc.’s high perfor-
mance storage arrays. 

Introduction

Flash memory, especially NAND flash memory, has been steadily encroaching 
into new markets as the density has increased and the cost per gigabyte (GB) has 
decreased. First it was digital cameras, then cell phones, portable music players, 
removable digital storage, and now we are seeing the emergence of NAND based 
solid state drives (SSDs) in the consumer PC market. Some industry analysts pre-
dict that SSDs could be the single largest NAND market segment (in billions  
of GB shipped) by 2010.

The combined performance, reliability, and power of SSDs compared to traditional hard 
disk drives (HDD), explains the attraction of SSDs in the consumer marketplace. 

Intel Corporation has launched a line of high performance NAND based solid state 
drives; the Intel® X25-M and X18-M Mainstream SATA Solid-State Drives utilizing 
MLC NAND, and Intel® X25-E SATA Solid-State Drive utilizing SLC NAND. 
The higher performance density and lower price point make them a practical choice 
for the storage and embedded markets.

“ Some industry analysts predict that 

SSDs could be the single largest 

NAND market segment (in billions  

of GB shipped) by 2010.”

Intel® X25-E SATA Solid-State Drive
 Intel® X25-M SATA Solid-State Drive

SSDs 
RAID



Intel® Technology Journal | Volume 13, Issue 1, 2009

30   |   Solid State Drive Applications in Storage and Embedded Systems

The purpose of this article is to examine the unique benefits of Intel® Solid State 
Drive (Intel® SSD) over traditional HDDs and competing SSDs, and to explore the 
benefits one could realize in using these new high performance SSDs in storage and 
embedded applications.  

Solid State Drives versus Hard Disk Drives

Solid State Drives have no moving parts, unlike HDDs. The rotating media and 
servo-actuated read/write heads used to access HDD data are subject to mechanical 
failure and introduce seek and rotate latency. Capacity growth due to areal density 
advancement and low cost per gigabyte stored have been the main advantages of 
HDDs, but fast random access has always been a significant limitation. 

Physical Differences
The main difference between an HDD and SSD is the physical media in which 
the data is stored. A HDD has platters that encode digital data with magnetically 
charged media. These magnetic platters spin at a high rate of speed (5,400, 7,200, 
or 15,000 revolutions per minute, or RPM) so that a servo-controlled read/write 
head can be positioned over the cylinders/tracks of sector data for data access. In an 
SSD the digital data is stored directly in silicon NAND flash memory devices. An 
SSD has no mechanical moving parts, which improves the durability in resisting 
physical shock or mechanical failure and increases performance density. An SSD 
then uses a controller to emulate a mechanical hard disk drive, making it a direct 
replacement for mechanical hard disk drives but with much faster data access due to 
the lack of the servo positioning latency in HDDs. 

In addition to the memory, a solid state drive contains; an interface connector and 
controller, memory subsystem and controller, and a circuit board where all the 
electronics are housed.

Performance Differences
The main performance difference between HDDs and SSDs has to do with the 
limitation of the HDDs caused by the spinning mechanical platters. Two perfor-
mance metrics that improve greatly are the random reads and writes per second, 
and the time it takes to enter and resume from a low power state.  

Random read and write performance is measured in inputs/outputs per second, or 
IOPs. This is simply the number of reads or writes that can be completed in one 
second. A typical high performance 15-K RPM SAS hard drive can usually com-
plete about 300 IOPs of random 4-kilobyte (KB) data. By comparison, the Intel 
X25-E SATA Solid-State Drive is able to process over 35,000 random 4-KB read 
IOPs, a difference of 117 times. The reason for this is that logical data locations on 
an HDD are directly mapped to ordered physical locations on the spinning physical 
disks. To access (read or write) that data, the disk must spin around to the correct 
location and the read/write head must move to the correct radius to access the data. 
Therefore, random data accesses require multiple ordered physical movements in-
curring significant mechanical access latency and significantly limiting performance. 

“ The main performance difference 

between HDDs and SSDs has  

to do with the limitation of the 

HDDs caused by the spinning  

mechanical platters.”

“ The rotating media and servo- 

actuated read/write heads used  

to access HDD data are subject to  

mechanical failure and introduce 

seek and rotate latency.”

“ An SSD then uses a controller to 

emulate a mechanical hard disk 

drive, making it a direct replacement 

for mechanical hard disk drives but 

with much faster data access.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   31

In a NAND SSD the data is stored in a virtual memory map on the NAND flash. 
Accessing any part of that is as simple as changing the address and executing the 
next read or write. Since most workloads are random in nature, especially as indus-
tries move toward multi-core compute engines, multithreaded operating systems, 
and virtual machines, random disk performance will only increase in importance.

The other main performance difference is the ability to resume operation from a low 
power state quickly. The lower power state for a HDD is accomplished by parking 
the read/write head off to the side and stopping the spinning platter. When the next 
read or write is requested the platter needs to be spun back up and the head has to 
be moved back in place, which can take on the order of seconds. In an SSD however, 
when it is not processing read or write requests, it can put itself into a low power state 
(through Device Initiated Power Management, or DIPM) and recover within a few 
milliseconds to service the next request. Hard drives take closer to seconds to do this, 
so they do not take full advantage of DIPM.   

Barriers to Adoption
With SSDs’ higher performance, added reliability, and lower power, one may ask 
why they have not completely displaced HDDs. The main reason is cost, because 
SSDs cost many times more per gigabyte than mechanical hard drives today. There 
has been early adoption in markets that absolutely must have the performance, 
reliability, lower power, or resilience to shock and vibration, but mass consumer 
adoption will only happen when the cost of a comparably sized device approaches 
that of a Small Form Factor (SFF) hard disk drive.  

The second barrier is capacity, because SSDs typically have much smaller capacity than 
mechanical hard drives. As NAND flash densities increase, however, the capacity  
of SSDs will be large enough for most consumer, enterprise, and embedded  
marketplace needs.  

Third, the limited number of write cycles per storage cell is a barrier to applications 
that mostly ingest data (50-percent writes, 50-percent reads) for later access. Flash 
memory, as it is erased and rewritten, will lose the capability to hold a charge after 
many program/erase cycles. This makes flash memory a consumable resource. How-
ever, with increased density, along with more comprehensive write wear-leveling 
algorithms, the longevity of solid state drives has improved. 

Ideal Use Cases
Just because SSDs have an inherent advantage over HDDs in random read/write 
performance and in resumption from low power states doesn’t mean that SSDs are 
better than HDDs in every case. Hard disk drives are excellent for storing massive 
amounts of data such as movies, music, and large amounts of digital content in gen-
eral, due to their very low cost per gigabyte and continued improvements in areal 
density (gigabits/square-inch). Areal density improvements in HDD media technol-
ogy have in fact followed or exceeded Moore’s Law (capacity density doubling every 
18 months or less), but access to that data has not improved at the same pace. The 
servo and rotational latency for access to data in HDDs has in fact been nearly the 
same for decades if you look at year-over-year improvements. 

“ In an SSD however, when it 

is not processing read or write 

requests, it can put itself into a 

low power state (through Device 

Initiated Power Management, 

or DIPM) and recover within 

a few milliseconds to service the 

next request.”

“ Just because SSDs have an  

inherent advantage over  

HDDs in random read/write 

performance and in resumption 

from low power states doesn’t 

mean that SSDs are better than 

HDDs in every case.”

“ With SSDs’ higher performance, 

added reliability, and lower  

power, one may ask why they have 

not completely displaced HDDs.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

32   |   Solid State Drive Applications in Storage and Embedded Systems

Solid state drives, on the other hand, excel when the system requirements are more 
skewed toward performance, reliability, or power. The performance and power met-
rics were described above, and the reliability of NAND storage in SSDs has been 
shown to be many times more reliable than mechanical hard disk drives especially 
in harsh environments.  

Intel® Solid State Drive (Intel® SSD) Architecture 
and Design Considerations

The following sections describe the physical design and performance of Intel Solid 
State Drives.

Physical Design
Most solid state drives have a similar architecture; they all have a circuit board, 
interface controller, memory subsystem, and a bank of NAND flash memory. Intel 
SSD is no exception; it has 10 channels of NAND flash attached to the controller 
and it has a complex flash controller with advanced firmware, which allows it to 
achieve high random read write performance while at the same time managing the 
physical NAND to achieve the longest possible use of the drive.

Measuring SSD Performance
Traditional hard disk drive performance criteria apply directly to SSDs. The most 
common performance testing metrics are random and sequential sustained read/
write bandwidth, random and sequential read/write IOPs, and power consumed in 
both active and idle states.

Sequential sustained read/write rates are mainly a reflection of the amount of 
parallel NAND channels that can be activated at once. Intel’s 10 NAND channels 
allow for a very fast sequential throughput to the raw NAND, as is seen in the 
graph in Figure 1 showing sustained throughput versus data transfer size.  

Random sustained read/write rates are mainly due to how well the controller and 
firmware can handle multiple outstanding requests. Newer SATA system architec-
tures incorporate Native Command Queuing (NCQ), which allows multiple out-
standing disk requests to be queued up at the same time. In random performance 
the Intel X25-M and X18-M Mainstream SATA Solid-State Drives, and Intel 
X25-E SATA Solid-State Drives provide read performance that is four times that 
of a typical 2.5" SFF HDD, twice that of a 3.5" enterprise HDD and for random 
IOPs they provide improvement by several orders of magnitude.

Sequential and random IOPs in SSDs are affected by the number of channels accessing 
the NAND memory, as well as the architecture of the controller and data management 
firmware running on that controller. In Figure 1 and Figure 2 you can see Intel’s perfor-
mance across various workload sizes.

M
B

/s

250

300

200

150

100

50

0

13
10

72

32
76

8

65
53

6

16
38

4
40

96
81

92
20

48
10

2451
2

Workload Size

Read

Write

M
B

/s

250

200

150

100

50

0

13
10

72

32
76

8

65
53

6

16
38

4
40

96
81

92
20

48
10

2451
2

Workload Size

Seq QD=1
Seq QD=32
Rnd QD=1
Rnd QD=32

Seq QD=1
Seq QD=32
Rnd QD=1
Rnd QD=32

Figure 1: Performance for random/sequential 

read/write.Source: Intel Corporation, 2009

“ Solid state drives, on the other hand, 

excel when the system requirements 

are more skewed toward performance, 

reliability, or power.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   33

Wear Leveling and Write Amplification
Since NAND flash wears out after a certain number of program and erase cycles, the 
challenge is to extract maximum use from all of the NAND cells. The SSD’s controller 
firmware must make sure that the various program and erase cycles that come to the 
SSD from the host system are evenly distributed over all sectors of NAND memory  
providing even wear over the entire drive. If not designed correctly, a log file or page 
table can wear out one section of the NAND drive too quickly. Figure 3 shows how  
Intel handles these small writes and spreads the wear over the whole drive, which is 
shown by charting the program/erase cycle count of each NAND cell within the  
drive. As one can see, Intel’s controller wears evenly across every cell in the drive by 
distributing the writes evenly. 

The second main attribute that contributes to wear on the drive is called Write  
Amplification (WA), which is basically the amount of data written to the raw 
NAND divided by the amount of data written to the SSD by the host. This is  
an issue because NAND cells are only changeable in erase block sizes of at least  
128 KB, so if you want to change 1 byte of data in the SSD you have to first erase 
the block that byte resides in and then update the entire block with that 1 byte 
modified. The problem arises that more program/erase cycles are being used up than 
the actual amount of data sent to the drive by the host. Without careful NAND 
data management, WA levels can range from 20—40x. This means more erases 
(20–40x) of the NAND are being done then required based on new data sent to 
the SSD. The ideal case would be a WA of 1.0, which means that exactly the same 
amount of data would be written to the NAND as would be written to the SSD  
by the host.

Intel has taken a very close look at how to overcome this significant problem and 
has designed their controller accordingly. Intel’s proprietary algorithms bring the 
WA of most compute applications very close to the ideal, and as one can see in the 
graph in Figure 4 for Microsoft Windows XP running MobileMark 2007 we 
measure a WA of less than 1.1.

Combining optimizations in both wear leveling and WA result in large increases to 
Intel SSD product longevity.

New Tier of Caching/Storage Subsystem
So far we have looked at a direct comparison between SSDs and HDDs without 
much examination of their application. There is the obvious direct-replacement 
market where HDDs are not meeting either the performance or reliability or power 
requirements of today’s compute platforms. With high performance density SSDs 
the product designer has new options when designing embedded and scalable 
storage systems. The following sections examine how SSDs fit in today’s storage 
and embedded products as well as how they could possibly be used in new ways to 
define tiered storage that enables new levels of access performance combined with 
scalability to many petabytes of capacity using both HDDs and SSDs. 

Read

Write

IP
p

s

70000

80000

60000

30000

40000

50000

20000

10000

0

13
10

72

32
76

8

65
53

6

16
38

4
40

96
81

92
20

48
10

2451
2

Workload Size

IP
p

s

70000

60000

30000

40000

50000

20000

10000

0

13
10

72

32
76

8

65
53

6

16
38

4
40

96
81

92
20

48
10

2451
2

Workload Size

Seq QD=1
Seq QD=32
Rnd QD=1
Rnd QD=32

Seq QD=1
Seq QD=32
Rnd QD=1
Rnd QD=32

Figure 2: IOPs performance.

Source: Intel Corporation, 2009
P

ro
g

ra
m

 / 
E

ra
se

 C
yc

le
s

2500

2000

1500

1000

500

0
6145409720491

Sorted Erase Block (min to max)

Figure 3: Erase cycle count showing Wear 

Leveling while running MobileMark 2007.

Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

34   |   Solid State Drive Applications in Storage and Embedded Systems

SSD in Embedded Storage Applications

Emerging markets in Internet Protocol Television (IPTV), Video on Demand 
(VoD), the Digital Cinema Initiative (DCI), and Web 2.0 are bringing more 
on-demand high definition content to a broader base of users. This means that 
increased capacity and performance density is required from embedded devices 
as well as head-end, content distribution, and edge service systems. Storage in 
embedded mobile devices such as High Defintion (HD) digital cameras (1920 x 
1080, 2048 x 1080, Digital Cinema 4096 x 2160, Red* Scarlet* 6000 x 4000 high 
resolution frame formats) and consumer devices are pushing embedded storage 
requirements to terabyte levels. Likewise, capacity requirements for head-end digital 
media services are reaching petabyte levels. For example, one hour of HD content 
un-encoded raw format for 1080p at 24 fps would require 489 gigabytes. A library 
of that content with 10,000 hours would require around 5 petabytes of formatted 
capacity. Most often video is encoded for delivery to consumer devices, with com-
pression ratios that are 30 to 1 or more. Even with encoding, a library of 100,000 
hours (similar to total content at Netflix*) encoded in typical high definition distri-
bution/transport format requires 2 to 4 gigabytes per encoded hour on average, so 
at least 200,000 gigabytes or 200 terabytes total storage. Because of the multiplicity 
of transport encodings, content is stored in many formats, so capacity requirements 
are increased again. In this next section, we’ll analyze how combinations of SSD 
and high capacity and performance density hard disk drives (HDDs) in tiered stor-
age can help eliminate storage and I/O bottlenecks from both embedded and server 
systems and make the all-digital-content revolution a reality.    

Embedded Storage Growth
The increased capability of embedded storage and transport I/O in consumer 
devices has enabled the consumption of content at much higher bit rates. Progress 
in this embedded system segment has created demand for more high definition 
content from deeper content libraries. The emergence of affordable SSD for laptops 
over the next few years will help accelerate the demand for more on-demand high 
definition content. This means that the sources of content, starting with cameras, 
post-production, distribution, and finally delivery to consumers must all likewise 
upgrade to keep up.

General Architecture of Storage Applications
Today, most storage applications utilize HDDs, sometimes with redundant arrays 
of inexpensive disks (RAIDs) to scale capacity and performance. Embedded storage 
applications often make use of flash devices to store digital media, and small form 
factor HDDs to store larger content libraries. Content is often distributed on IEEE 
1394 (such as FireWire*), USB 2.0 (Universal Serial Bus), or eSATA (external Serial 
Advanced Technology Attachment) external HDD when capacity is an issue, but 
this is less portable and often a significant I/O bottleneck. Media flash devices pro-
vide great I/O performance, but with very limited capacity (64 gigabytes is a typical 
high end device). For portable or semi-portable capacity and performance density, 
SSDs and SSD arrays will help change the landscape for portable storage architec-
tures scaling to terabytes of capacity. As SSD cost continues down, the convenience, 
performance density, power, and durability of SSDs will likely drive mobile content 
storage completely to SSD. For system level content management with petabyte 
scale requirements, it is unlikely that SSD will replace HDDs for a very long time. 

Workload Duration (Minutes)

Writes from Host

Writes to NAND

D
at

a 
W

ri
tt

en
 (

M
B

)

1000

100

10

1

0
10 20 30 40 50 60 70 80 90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

Figure 4: Microsoft* Windows XP Mobile 

workload writes. Source: Intel Corporation, 2009

“ The emergence of affordable SSD for 

laptops over the next few years will 

help accelerate the demand for more 

on-demand high definition content.”

“ Storage in embedded mobile devices 

such as High Defintion (HD)  

digital cameras (1920 x 1080, 2048 

x 1080, Digital Cinema 4096 x 

2160, Red* Scarlet* 6000 x 4000 

high resolution frame formats) and  

consumer devices are pushing  

embedded storage requirements  

to terabyte levels.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   35

Today, most tiered storage moves content between flash media or SSD tiers and 
HDD tiers at a file level, with users actively managing how content is allocated 
between HDD and SSD tiers.

System Issues Today Using HDD
If we look at a 2K/4K format digital video camera typically used in cinema today, 
these cameras can produce 250 Megabits per second (Mb/sec) in JPEG 2000 (Joint 
Photographic Expert Group) format, which is about 25 MB/sec or 90 GB/hour. 
Today’s 2.5” SFF mobile class HDDs can keep up with this data rate and have 
capacities up to 500 gigabytes, which provides reasonable capture support for a 
single camera. The drawbacks though are that one HDD can not support multiple 
cameras, they have lower MTBF (Mean Time Between Failure) when used in harsh 
environments (often the case in filming), and they are slower to download from the 
HDD to a backup RAID for post production. Some cameras support raw 2K/4K 
video capture, which is 53-MB per frame and at 30 frames/sec, 1.5-GB/sec data 
capture per stream. These types of emergent capture rates will require solid-state 
storage solutions.

How SSDs Overcome These Issues
SSDs offer high-end digital 2K/4K/6K cameras the same advantages that smaller 
flash media provide consumers, but at capacities (160GB for Intel® X25-M SATA 
Solid-State Drive) that now make this a competitive option to HDD capture. 
This capacity offers approximately 2 hours of filming time and a capacity density 
that is competitive with SFF HDDs. The SSDs in this case would replace camera 
HDDs and offer lower power operation, equating to longer battery life, durability 
for filming in harsh environments, and high speed downloads to post-production 
RAID systems. The read rate of an Intel X25-E or X25-M SATA Solid-State Drive 
in sequential mode is at least four times that of typical SFF HDDs, so the down-
load time will be far less. Even at raw 2K/4K rates of 1.5-GB/sec for uncompressed 
video ingest, it only requires 8 X25 SSDs to achieve full performance, however, at 
today’s capacities (160 GB/SSD), the duration of ingest would only be 14 minutes 
(1.28 terabytes total SSD capacity for RAID0 mapping). One hundred percent 
ingest, rather than more typical 50 percent/50 percent write/read workloads is also 
a challenge for today’s SSDs. Hybrid solutions with HDD backing SSD where SLC 
SSD is used as an ingest FIFO are perhaps a better approach and discussed in more 
detail in upcoming sections of this article. 

Future Design Possibilities Exploiting SSD Advantages
The packaging of flash media into 2.5" and 1.8" SFF SAS/SATA (Serial Attached 
SCSI/Serial Advanced Technology Attachment) drives that are interchangeable with 
current SFF HDDs will help SSD adoption in the embedded segment of the digital 
media ecosystem. The SCSI (Small Computer System Interface) command set or 
ATA (Advanced Technology Attachment) command sets can both be transported 
to HDDs or SSDs over SAS with SATA tunneling protocols. This provides a 
high degree of interoperability with both embedded applications and larger scale 
RAID storage systems. As SSD cost per gigabyte is driven down and durability and 
maximum capacity per drive driven up by adoption of SSDs on the consumer side, 
the attractiveness of SSD replacement of HDDs for cameras will increase. Building 
hybrid arrays of SSD and HDD even for mobile field arrays provides a much better 
adoption path where cost/benefit tradeoffs can be made and systems right-sized. A 

“ Today, most tiered storage moves 

content between flash media  

or SSD tiers and HDD tiers  

at a file level, with users actively 

managing how content is  

allocated between HDD  

and SSD tiers.”

“ Emergent capture rates  

will require solid-state  

storage solutions.”

“The read rate of an Intel  

X25-E or X25-M SATA  

Solid-State Drive in sequential 

mode is at least four times that  

of typical SFF HDDs, so the 

download time will be far less.”

“ As SSD cost per gigabyte is  

driven down and durability  

and maximum capacity per  

drive driven up by adoption  

of SSDs on the consumer side,  

the attractiveness of SSD  

replacement of HDDs for  

cameras will increase.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

36   |   Solid State Drive Applications in Storage and Embedded Systems

key factor to success however is the development of software that can manage  
tiered SSD/HDD storage arrays for smaller mobile systems. This is even more  
important for post production, content delivery services, and the head-end side  
of the digital media ecosystem and will be covered in more detail in the following 
sections of this article.

Storage Challenges
Since magnetic media storage density has kept pace with Moore’s Law, both storage 
consumers and the storage industry have focused on cost per gigabyte and capac-
ity density as the key metric. However, access to that stored data in general has not 
kept pace. Most often access performance is scaled through RAID systems that 
stripe data and protect it with mirroring or parity so that more HDD actuators can 
be used in parallel to speed up access. The upper bound for HDD random data ac-
cess is in milliseconds, which has meant that the only way to scale access to storage 
is to scale the number of spindles data is striped over and to pack more spindles into 
less physical space. RAID storage system developers like Atrato Inc. have adopted 
SFF HDDs to increase performance density of HDD arrays. The Atrato V1000 
SAID (Self-Maintaining Array of Identical Disks) has 160 SFF HDDs (spindles) 
packed into a 3RU (rack unit) array. This is presently the highest performance 
density of any HDD RAID solution available. At the same time, the emergence of 
SSDs in capacities that approach HDD (today on can get a 160-GB Intel X25-M 
SATA Solid-State Drive compared to 500-GB 2.5" SATA HDD) and cost per giga-
byte that is only ten times that of HDD, has made tiered hybrid storage solutions 
for terabyte and petabyte scale storage very attractive. Rather than direct HDD 
replacement, tiered storage solutions add SSDs to enhance HDD access perfor-
mance. The key is a hybrid design with RAID storage that is well matched to SSD 
tier-0 storage used to accelerate data access to larger HDD-backed multi-terabyte or 
petabyte stores. The fully virtualized RAID10 random access, no cache performance 
of the Atrato V1000 array is up to 2-GB/sec at large block sizes with IOPs up to 
17K at small block size (measured with an HP DL580 G5 controller, where the rate 
limiting factor is the PCI Express* generation 1 and memory controller).

General Architecture of Storage Applications
Today most storage includes RAM-based I/O cache to accelerate writes on data ingest 
and to provide egress acceleration of reads through I/O cache read-ahead and hits to 
frequently accessed data. However, read cache often does little good for workloads 
that are more random and because the RAM cache sizes (even at 256 to 512 GB) are 
a very small fraction of capacity compared to petabyte back-end RAID storage (far 
less than one percent). Likewise, the cache miss penalty for missing RAM and going 
to an HDD backend is on the order of a 1000 to 1 or more (microsecond RAM cache 
access compared to millisecond HDD access). So, misses in RAM cache are likely and 
the penalty is huge, making RAM cache a wasted expenditure.

Figure 5 shows access patterns to storage that range from fully predictable/sequen-
tial to full random unpredictable access. Both SSDs and the high spindle density  
solutions perform well for random access. The SSDs provide this with the best 
overall performance and capacity density compared even to the high density HDD 

“As SSD cost per gigabyte is driven 

down and durability and maximum 

capacity per drive driven up by adoption 

of SSDs on the consumer side, the  

attractiveness of SSD replacement of 

HDDs for cameras will increase.”

“ RAID storage system developers like 

Atrato Inc. have adopted SFF HDDs 

to increase performance density of 

HDD arrays.”

“Rather than direct HDD 

replacement, tiered storage 

solutions add SSDs to enhance 

HDD access performance.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   37

arrays like the SAID if cost per gigabyte is not an issue. The most interesting aspect 
of both of these emergent storage technologies is that they provide a performance 
matched tier-0 and tier-1 for highly scalable storage. In summary, the SSDs are 
about ten times the cost per gigabyte, but ten times the capacity/performance 
density of the SAID and the SAID is ten times the capacity/performance density 
of traditional enterprise storage. This can further be combined with a 3.5" SATA 
lowest cost per gigabyte capacity tier-2 (archive) when very low cost infrequently 
accessed storage is needed.

In the following sections, we’ll examine how to tier arrays with an SSD tier-0. 

Sequential Random

Semi-Predictable
(Scalable MLC Flash)

Fully Predictable
(SLC/RAM FIFOs)

Ingest IO reforming

Non-Cacheable
(Solved by SAID spindle density)

egress IO read-
ahead

Hot-Spots

Figure 5: Performance range of access patterns observed by ApplicationSmart* Profiler. Source: Atrato, Inc., 2009

In Figure 5, totally random workloads are best served by storage devices with high 
degrees of concurrent access, which includes both SSD flash and devices like the 
Atrato SAID with a large number of concurrent HDD actuators. The biggest 
challenge arises for workloads that are totally random and access hundreds of 
terabytes to petabytes of storage. For this case, the SAID is the most cost-effective 
solution. For much smaller stores with totally random access (such as hundreds of 
gigabytes to terabytes), SSD provides the best solution. It is not possible to effec-
tively cache data in a tier-0 for totally random workloads, so workloads like this 
simply require mapping data to an appropriate all SSD or highly concurrent HDD 



Intel® Technology Journal | Volume 13, Issue 1, 2009

38   |   Solid State Drive Applications in Storage and Embedded Systems

array like the SAID based on capacity needed. The most common case however is in 
the middle, where data access is semi-predictable, and where SSD and HDD arrays 
like the SAID can be coordinated with intelligent block management so that access 
hot spots (LBA storage regions much more frequently accessed compared to others) 
can be migrated from the HDD tier-1 up to the SSD tier-0. Finally, for totally 
predictable sequential workloads, FIFOs (First-In-First-Out queues) can be 
employed, with SLC SSDs used for an ingest FIFO and a RAM FIFOs used for 
block read-ahead. The ingest FIFO allows applications to complete a single I/O in 
microseconds and RAID virtualization software is used to reform and complete I/O 
to an HDD tier-1 with threaded asynchronous I/O, keeping up with the low 
latency of SSD by employing parallel access to a large number of HDDs. The exact 
mechanisms Atrato has designed to provide optimal handling of this range of 
potential workloads is provided in more detail in upcoming sections after a quick 
review of how RAID partially addresses the HDD I/O bottleneck, so we can later 
examine how to combine SSDs with HDD RAID for an optimal hybrid solution.

Performance Bottlenecks that Exist Today
The most significant performance bottleneck in today’s storage is the HDD itself, 
limited by seek actuation and rotational latency for any given access, which is worst 
case when accesses are random distributed small I/Os. Most disk drives can only 
deliver a few hundred random IOPs and at most around 100 MB/sec for sequential 
large block access. Aggregating a larger number of drives into a RAID helps so that 
all actuators can be concurrently delivering I/O or portions of larger block I/O. In 
general an HDD has a mean time between failure (MTBF) somewhere between 
500,000 and 1 million hours, so in large populations (hundreds to thousands of 
drives) failures will occur on a monthly basis (two or more drives per hundred an-
nually). Furthermore, environmental effects like overheating can accelerate failure 
rates and failure distributions are not uniform. So, RAID-0 has been enhanced 
to either stripe and mirror (RAID-10), mirror stripes (RAID-0+1), or add parity 
blocks every nth drive so data striped on one drive can be recovered from remain-
ing data and parity blocks (RAID-50). Advanced double fault protection error 
correction code (ECC) schemes like RAID-6 can likewise be striped (RAID-60). 
So RAID provides some scaling and removes some of the single direct-attached 
drive bottleneck, but often requires users to buy more capacity than they need just 
to get better access performance, data loss protection, and reliability. For example, 
one may have 10 terabytes of data and need gigabyte bandwidth from it with small 
request sizes (32 K), which requires 32,768 IOPs to achieve 1 GB/sec. If each of the 
drives in the RAID array can deliver 100 IOPs, I need at least 320 drives! At 500 
GB of capacity per drive that is 160 terabytes and I only need 10 terabytes. One 
common trick to help when more performance is needed from the same capacity is 
to “short-stroke” drives whereby only the outer diameter of each drive is used which 
often provides a 25-percent acceleration based on the areal density of the media. 

Virtualization of a collection of drives also requires RAID mapping and presenta-
tion of a virtual logical unit number (LUN) or logical disk to an operating system. 
This means that all I/O requested from the RAID controller must be re-formed 
in a RAM buffer and re-initiated to the disk array for the original request. The 
virtualization makes RAID simple to use and also can handle much of the error 

“For totally predictable sequential 

workloads, FIFOs (First-In-First- 

Out queues) can be employed, with 

SLC SSDs used for an ingest FIFO 

and a RAM FIFOs used for block  

read-ahead.”

“ In general an HDD has a mean  

time between failure (MTBF)  

somewhere between 500,000 and  

1 million hours.”

“Virtualization of a collection of 

drives also requires RAID mapping 

and presentation of a virtual logical 

unit number (LUN) or logical disk  

to an operating system.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   39

recovery protocol (ERP) required for reliable/resilient RAID, but comes at the cost 
of additional processing, store-and-forward buffering, and I/O channels between the 
RAID controller, the ultimate user of the RAID system (initiator), and the back-end 
array of drives. Applications not written with RAID in mind that either do not or 
cannot initiate multiple asynchronous I/Os often will not get full advantage of the 
concurrent disk operation offered by large scale RAID. Even with striping, if an ap-
plication issues one I/O and awaits completion response before issuing the next, full 
RAID performance will not be realized. As shown in Figure 6, even if each I/O is 
large enough to stripe all the drives in a RAID set (unlikely for hundreds of drives in 
large scale RAID), the latency between I/O requests and lack of a queue (backlog) of 
multiple requests outstanding on the RAID controller will reduce performance.  

A1

E1

I1

M1

P(QRST)

B1

F1

J1

P(MNOP)

C1
G1

N1

P(IJKL)

D1

K1

O1

P(EFGH)

Q1 R1 S1

L1

P1

P(ABCD)

T1

H1

A2

E2

I2

M2

P(QRST)

B2

F2

J2

P(MNOP)

C2
G2

N2

P(IJKL)

D2

K2

O2

P(EFGH)

Q2 R2 S2

L2

P2

P(ABCD)

T2

H2

RAID-0 Striping Over RAID-5 Sets

A1, B1, C1, D1, A2, B2,C2, D2, E1, F1, G1, H1, ...,
Q2, R2, S2, T2

RAID-5 SetRAID-5 Set

Figure 6: RAID set striping and striding example. Source: Atrato, Inc., 2009

A much more ideal system would combine the capacity and performance scaling of 
RAID along with the performance density scaling of SSD in a hybrid array so that 
users could configure a mixture of HDDs and SSDs in one virtualized storage pool. 
In order to speed up access with 10 terabytes of SSDs, one would have to combine 
64 SSD drives into a virtualized array and stripe them with RAID-0. If they wanted 
data protection with RAID-10 it would increase the number of SSDs to 128. Even 
with lowering costs, this would be an expensive system compared to an HDD array 
or hybrid HDD+SSD array.

How SSDs Avoid These Bottlenecks
The bottleneck in embedded systems can be avoided by simply replacing today’s 
HDDs with SSDs. The superior random read (and to a less extent write) provides 
a tenfold performance increase in general, albeit at ten times the cost per gigabyte. 
For small scale storage (gigabytes up to a few terabytes) this makes sense since one 
only pays for the performance increase needed and with no excess capacity. So, for 
embedded systems, the solution is simple drive replacement, but for larger capac-
ity systems this does not make economic sense. What SSDs bring to larger scale 
systems is a tier that can be scaled to terabytes so that it can provide a 1-percent to 
10-percent cache for 10 to 100 terabytes per RAID expansion unit (or SAID in the 
case of the Atrato Inc. system). Furthermore, the Intel X25-E and X25-M SATA 

“ A much more ideal system would 

combine the capacity and  

performance scaling of RAID 

along with the performance  

density scaling of SSD in a  

hybrid array.”

“ The superior random read  

provides a tenfold performance 

increase in general, albeit at ten 

times the cost per gigabyte.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

40   |   Solid State Drive Applications in Storage and Embedded Systems

Solid-State Drive SFF design allows them to be scaled along with the HDD arrays 
using common SFF drives and protocols. An intelligent block-level managed solid-
state tier-0 with HDD tier-1 can then accelerate ingest of data to a RAID back-end 
store, sequential read-out of data from the back-end store, and can serve as a viable 
cache for the back-end HDD store that is much lower cost than RAM cache. In the 
following sections we will look at how SSDs are uniquely positioned to speed up 
HDD back-end stores geometrically with the addition of intelligent block manage-
ment and an SSD tier-0.  

Tiered Storage Using SSD and High Density HDD Arrays
The tiered approach described in the previous section can be managed at a file level 
or a block level. At the file level, intelligent users must partition databases and file 
systems and move data at the file container level based on access patterns for files 
to realize the speed-up made possible by tiers. Automated block level management 
using intelligent access pattern analysis software provides an increased level of 
precision in managing the allocation of data to the SSD tier0 and allows for SSD 
to be used as an access accelerator rather than a primary store. This overcomes the 
downside of the cost per gigabyte of SSDs for primary storage and makes optimal 
use of the performance density and low latency that SSDs have to offer.

Figures 7 through 9 show the potential for a coordinated SSD tier-0 with HDD 
tier-1 that is managed and virtualized by the Atrato Inc. virtualization engine. 
Figure 7 shows ingest acceleration through an SLC FIFO. Figure 8 shows sequential 
read-ahead acceleration through a RAM FIFO that can be combined with an MLC 
SSD semi-random read cache. The semi-random access SSD read cache has 

HDD SAID

VLUN1 VLUN2 VLUN-n

Front-End IO Interface (SCSI Target Mode Transport and Processing)

Back-End IO

Virtualization Engine

Customer Initiator

SSD JBOF

IO Request

IO Request Interface

Tier Manager

Tier-0 Analyzer

Tier-1 Analyzer

Ingress
Egress

FIFO VLUN1

Ingress
Egress

FIFO VLUN-n

Tier-0
Cache

FIFO VLUN2

Ingest IO Reforming
Egress IO Read-Ahead

ITL-Nexus
IO-Mapper

RAID-10 Mapping RAID-50 Mapping

Figure 7: Ingest I/O reforming using SLC SSD and Egress read-ahead RAM cache. Source: Atrato, Inc., 2009 

“An intelligent block-level managed 

solid-state tier-0 with HDD tier-1 

can then accelerate ingest of data  

to a RAID back-end store, sequential  

read-out of data from the back-end 

store, and can serve as a viable cache 

for the back-end HDD store that is 

much lower cost than RAM cache.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   41

read hit/miss, write-through, and write-back-to-SSD operations. It can also be 
pre-charged with known high access content during content ingest. Any high access 
content not pre-charged will be loaded into SSD as this is determined by a TAM  
(Tier Access Monitor) composed of a Tier block manager and tier-0 and tier-1  
access profile analyzers.

Ingest I/O acceleration provides a synergistic use of SSD performance density and 
low latency so that odd size single I/Os as shown in Figure 8 can be ingested quickly 
and then more optimally reformed into multiple I/Os for a RAID back-end HDD 
storage array.

Likewise, for semi-random access to large data stores, SSD provides a tier-0 block 
cache that is managed by the TAM profile analyzer and intelligent block manager so 
that the most frequently accessed LBA ranges (hot spots) are always replicated in the 
SSD tier-0. Figure 9 shows one of the many modes of the intelligent block manager 
where it replicates a frequently accessed block to the SSD tier-0 on a read I/O—the 
profile analyzer runs in the I/O path and constantly tracks the most often accessed 
blocks up to a scale that matches the size of the tier-0.

Overall, Figure 9 shows one mode of the intelligent block manager for write-back-
to-SSD on a cache miss and HDD back-end read. The intelligent block manager 
also includes modes for write-through (during content ingest), read hits, and read 
misses. These tiered-storage and cache features along with access profiling have been 
combined into a software package by Atrato Inc. called ApplicationSmart* and 
overall forms a hybrid HDD and SSD storage operating environment.

HDD SAID

VLUN1 VLUN2 VLUN-n

Front-End IO Interface (SCSI Target Mode Transport and Processing)

Back-End IO

Virtualization Engine

Customer Initiator

SSD JBOF

IO Request

IO Request Interface

Ingress
Egress

FIFO VLUN1

Ingress
Egress

FIFO VLUN-n

Tier-0
Cache

FIFO VLUN2

Ingest IO Reforming
Egress IO Read-Ahead

ITL-Nexus
IO-Mapper

RAID-10 Mapping RAID-50 Mapping

Tier Manager

Tier-0 Analyzer

Tier-1 Analyzer

Figure 9: MLC SSD Tier-0 read cache opportunistic load of high access blocks on a read request. Source: Atrato, Inc., 2009

Tier0 Array

• • •

• • •

SAID

RAID0
SATA
ROC2115K

Single IO

2115K
Single IO

Single IO
Completion

Single IO Completion

33rd Single 67KIO

AVE

16x 128K
Threaded
IOs

16x 128K
Threaded
IOs

Figure 8: Ingest I/O reforming using SLC SSD 

and Egress read-ahead RAM cache.

Source: Atrato, Inc., 2009  



Intel® Technology Journal | Volume 13, Issue 1, 2009

42   |   Solid State Drive Applications in Storage and Embedded Systems

This design for hybrid tiered storage with automatic block-level management of the 
SSD tier-0 ensures that users get maximum value out of the very high performance 
density SSDs and maximum application acceleration while at the same time being 
able to scale up to many petabytes of total content.  Compared to file-level tiered 
storage with an SSD tier-0, the block-level tier management is a more optimal and 
precise use of the higher cost, but higher performance density SSDs.

SSD in Atrato Storage Application

For larger scale systems (tens to hundreds of terabytes up to many petabytes), SSDs 
are a great option for HDD access acceleration compared to RAM I/O cache due to 
scalability, persistence features, and cost per gigabyte compared to RAM. The ability 
to scale to petabytes and maintain performance density comparable to SSD alone 
is the ultimate goal for digital media head-ends, content delivery systems, and edge 
servers. As discussed previously, a tiered storage approach is much more efficient 
than simply adding additional HDDs in large arrays where more performance is 
needed even though the capacity is not.

Employing MLC Intel X25-M SATA Solid-State Drives as a read cache intelligently 
managed by the Atrato Inc. ApplicationSmart software and SLC Intel X25-E SATA 
Solid-State Drives for an ingest FIFO along with a RAM-based egress read-ahead 
FIFO, Atrato has shown the ability to double, triple, and quadruple performance 
from an existing V1000 RAID system without adding wasted capacity. Figure 10 
shows a range of configurations for the Atrato V1000 with capacity ranging from 
80 to 320 terabytes total capacity with SSD tier-0 1RU expansion units for access 
acceleration. This example was composed assuming the use of an Intel® Microarchi-
tecture, codenamed Nehalem, the dual Intel® X58 Express chipset with off-the-shelf 
controller, which has at least 64 lanes of gen2 PCI-Express* and 8 total PCI-Express 
slots, 4 of which can be used for back-end SAID/SSD I/O and 4 of which can be 
used for front-end SAN or VOD transport I/O.

3U

3U

1U3U

1U
1U

3U

1U
1U
1U

Figure 10: Scaling of SAIDs and SSD expansion units for access acceleration. Source: Atrato, Inc., 2009

“The ability to scale to petabytes  

and maintain performance density 

comparable to SSD alone is the  

ultimate goal for digital media  

head-ends, content delivery systems, 

and edge servers.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   43

There are 12 potential configurations that will allow customers to “dial in” the 
capacity and performance needed. Table 1 summarizes the configurations and the 
speed-up provided by SSD tier expansion units.  

#SAID, 
#SSD 
Units

SSD 
Read 
Cache 
(TBs)

SSD ingest, 
egress 
(TBs)

BW 
(GBps)

IOPs Capacity 
(TBs)

Cost,  
Capacity,  
Performance  
Normalized 
Score

4, 0 0 0 5.6 64000 320 2.4

3, 1 1.6 0.896 5.7 102000 240 2.4

2, 2 3.2 0.896 5.8 140000 160 2.3

3, 0 0 0 4.2 48000 240 2.2

2, 1 1.6 0.896 4.3 86000 160 2.1

1, 3 4.8 0.896 5.9 178000 80 2.1

2, 0 0 0 2.8 32000 160 2.0

1, 2 3.2 0.896 4.4 124000 80 1.9

1, 1 1.6 0.896 2.9 70000 80 1.8

1, 0 0 0 1.4 16000 80 1.7

0, 4 6.4 0.896 6 216000 6.4 1.2

0, 3 4.8 0.896 4.5 162000 4.8 1.0

0, 2 3.2 0.896 3 108000 3.2 0.7

0, 1 1.6 0.896 1.5 54000 1.6 0.2

Table 1: Cost, capacity, performance tradeoffs for SSD and HDD expansion 

units. Source: Atrato, Inc., 2009

Looking at a chart of the cost-capacity-performance (CCP) scores and total 
capacity, this would allow a customer to choose a hybrid configuration that has the 
best value and does not force them to purchase more storage capacity than they 
need (nor the power and space to host it). The CCP scores are composed of average 
cost per gigabyte, capacity density, and equally valued IOPs and bandwidth in 
performance, with equal weight given to each category so that a maximum possible 
score was 3.0. As can be seen in Figure 10 and in Table 1, if one needs between 100 
and 200 terabytes total capacity, a 2 SAID + 2 SSD Expansion Unit configuration 
would be optimal. Furthermore, this would deliver performance that would exceed 
4 SAIDs assuming that the access pattern is one that can cache 3.2 terabytes of the 
most frequently accessed blocks out of 160 terabytes (2-percent cache capacity).

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
4,0 3,1 2,2 3,0 2,1 1,3 2,0 1,2 1,1 1,0 0,4 0,3 0,2 0,1

CCP Score
Capacity (100 TB s)

Figure 11: Cost, capacity, and performance 

score tradeoff. Source: Atrato, Inc., 2009

“ Looking at a chart of the cost-

capacity-performance (CCP)  

scores and total capacity, this 

would allow a customer to choose  

a hybrid configuration that has  

the best value.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

44   |   Solid State Drive Applications in Storage and Embedded Systems

Computing the value of a read cache is tricky and requires a good estimation of the 
hit/miss ratio and the miss penalty. In general, storage I/O is such that I/Os can 
complete out of order and there are rarely data dependencies like there might be in 
a CPU cache. This means the penalty is fairly simple and not amplified as it might 
be when CPU cache causes a CPU pipeline to stall. A miss most often simply means 
an extra SAID back-end I/O and one less tier-0 I/O. The Atrato ApplicationSmart 
algorithm is capable of quickly characterizing access patterns, detecting when they 
change, and recognizing patterns seen in the past. The ApplicationSmart Tier-
Analyzer simply monitors, analyzes, and provides a list of blocks to be promoted 
(most frequently accessed) from the back-end store and provides a list of blocks to 
be evicted from the tier-0 (least frequently accessed in cache). This allows the intel-
ligent block manager to migrate blocks between tiers as they are accessed through 
the Atrato virtualization engine in the I/O path. 

Figure 12 shows a test access pattern and Figure 13 shows the sorted test access pat-
tern. As long as the most frequently accessed blocks fit into the tier-0, speed-up can 
be computed based on total percentage access to SSD and total percentage access to 
the back-end HDD storage. The equations for speed-up from SSD tier-0 replication 
of frequently accessed blocks are summarized here:

(tier 0 _LBA_sets –1)

           i=0
tier0 _ hosted _ IOs =         ∑ sorted _ access _ counts[i]

(sizeof _ sorted _ access _ counts –1)

              i=0
total _ sorted _ IOs =         ∑ evaluate ( sorted _ access _ counts[i] 

tier0_hosted _ IOs
total _ sorted _ IOs

tier0 _ access _ fit =        

hit _ rate = tier0 _ access _ fit x tier0 _ efficiency = 1.0 x 0.6

THDD _ only

TSSD _ hit + THDD _ miss

speed _ up =

ave _ HDD _ latency

(hit _ rate x ave _ SSD _ latency) + ((1 - hit _ rate) x ave _ HDD _ latency )
speed _ up =

1000 μ sec 
(0.6 x 800 μ sec ) + ( 0.4 x 10000 μ sec )

speed _ up =

( sizeof _ sorted _ access _ counts –1)

             i=0
tier0 _ LBA _ size =          ∑ evaluate ( sorted _ access _ counts[i] > 0 )  x LBA _ set _size

“ In general, storage I/O is such that 

I/Os can complete out of order and 

there are rarely data dependencies 

like there might be in a CPU cache.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   45

In the last equation, if we assume average HDD latency is 10 milliseconds 
(10,000 microseconds) and SSD latency for a typical I/O (32 K) is 800 micro-
seconds, then with a 60-percent hit rate in tier-0 and 40-percent access rate on 
misses to the HDD storage, the speed-up is 2.1 times. As seen in Figure 12, we can 
organize the semi-random access pattern using ApplicationSmart so that 4000 of 
the most frequently accessed regions out of 120,000 total (3.2 terabytes of SSD and 
100 terabytes of HDD back-end storage) can be placed in the tier-0 for a speed-up 
of 3.8 with an 80-percent hit rate in tier-0.

90000
80000
70000
60000
50000
40000
30000
20000
10000

0

0

0

50

50
100

100

150

150

200

200

250

250

90000
80000
70000
60000
50000
40000
30000
20000
10000
0

Figure 12: Predictable I/O access pattern seen by ApplicationSmart Profiler. Source: Atrato, Inc., 2009

Figure 13 shows the organized (sorted) LBA regions that would be replicated in 
tier-0 by the intelligent block manager. The graph on the left shows all nonzero I/O 
access regions (18 x 16 = 288 regions). The graph on the right shows those 288 re-
gions sorted by access frequency. Simple inspection of these graphs shows us that if 
we replicated the 288 most frequently accessed regions, we could satisfy all I/O 
requests from the faster tier-0. Of course the pattern will not be exact over time and 
will require some dynamic recovery, so with a changing access pattern, even with 
active intelligent block management we might have an 80-percent hit rate. The 
intelligent block manager will evict the least accessed regions from the tier-0 and 
replace them with the new most frequently accessed regions over time. So the 
algorithm is adaptive and resilient to changing access patterns.



Intel® Technology Journal | Volume 13, Issue 1, 2009

46   |   Solid State Drive Applications in Storage and Embedded Systems

70000
60000
50000
40000
30000
20000
10000

0

0 2 4 6
18

1614
1210

86
42

0
8 10 12 14 16

Figure 13: Sorted I/O access pattern to be replicated in SSD Tier-0. Source: Atrato, Inc. 2009

In general, the speed-up can be summarized as shown in Figure 14, where in the 
best case the speed-up is the relative performance advantage of SSD compared to 
HDD, and otherwise scaled by the hit/miss ratio in tier-0 based on how well the 
intelligent block manager can keep the most frequently accessed blocks in tier-
0 over time and based on the tier-0 size.

It can clearly be seen that the payoff for intelligent block management is nonlinear 
and while a 60-percent hit rate results in a double speed-up, a more accurate 80- 
percent provides triple speed-up.

The ingest acceleration is much simpler in that it requires only an SLC SSD FIFO 
where I/Os can be ingested and reformed into more optimal well-striped RAID  
I/Os on the back-end. As described earlier, this simply allows applications that 
are not written to take full advantage of RAID concurrent I/Os to enjoy speed-up 
through the SLC FIFO and I/O reforming. The egress acceleration is an enhance-
ment to the read cache that provides a RAM-based FIFO for read-ahead LBAs that 
can be burst into buffers when a block is accessed where follow-up sequential access 
in that same region is likely. These features bundled together as ApplicationSmart 
along with SSD hardware are used to accelerate access performance to the existing 
V1000 without adding more spindles.

Overview of Atrato Solution
The Atrato solution is overall an autonomic application-aware architecture that 
provides self-healing disk drive automation [9] and self-optimizing performance with 
ApplicationSmart profiling and intelligent block management between the solid-state 
and SAID-based storage tiers as described here and in an Atrato Inc. patent [1].

R
ea

d
 A

cc
es

s 
S

p
ed

-U
p

6

7

8

5

4

2

3

1

0
0.00 0.20 0.40 0.60 0.80 1.00

Tier -0 Hit Rate

Figure 14: I/O access speed-up with hit rate for 

tier-0. Source: Atrato, Inc., 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   47

Related Research and Storage System Designs
The concept of application aware storage has existed for some time [2] and in fact 
several products have been built around these principles (Bycast StorageGRID, IBM 
Tivoli Storage Manager, Pillar Axiom). The ApplicationSmart profiler, Intelligent 
Block Manager and Ingest/Egress Accelerator features described in this article provide 
a self-optimizing block-level solution that recognizes how applications access informa-
tion and determines where to best store and retrieve that data based on those observed 
access patterns. One of the most significant differences between the Atrato solution 
and others is the design of the ApplicationSmart algorithm for scaling to terabytes of 
tier-0 (solid-state storage) and petabytes of tier-1 (HDD storage) with only megabytes 
of required RAM meta-data to do so. Much of the application-aware research and 
system designs have been focused on distributed hierarchies [4] and information hier-
archy models with user hint interfaces to gauge file-level relevance. Information life-
cycle management (ILM) is closely related to application-aware storage and normally 
focuses on file-level access, age, and relevance [7] as does hierarchical storage manage-
ment (HSM), which uses similar techniques, but with the goal to move files to ter-
tiary storage (archive) [5][9][10]. In general, block-level management is more precise 
than file-level, although the block-level ApplicationSmart features can be combined 
with file-level HSM or ILM since it is focused on replicating highly accessed, highly 
relevant data to solid-state storage for lower latency (faster) more predictable access. 
Ingest RAM-based cache for block level read-ahead is used in most operating systems 
as well as block-storage devices. Ingest write buffering is employed in individual disk 
drives as well as virtualized storage controllers (with NVRAM or battery-backed 
RAM). Often these RAM I/O buffers will also provide block-level cache and employ 
LRU (Least Recently Used) and LFU (Least Frequently Used) algorithms. However, 
for a 35-TB formatted LUN, this would require 256 GB of RAM to track LRU or 
LFU for LBA cache sets of 1024 LBAs each or an approximation of LRU/LFU–these 
traditional algorithms simply do not scale well. Furthermore, as noted in [9] the 
traditional cache algorithms are not precise or adaptive in addition to requiring huge 
amounts of RAM for the LRU/LFU meta-data compared to ApplicationSmart. 

Architecture
The Atrato solution for incorporating SSD into high capacity, high performance 
density solutions that can scale to petabytes includes five major features:

•  Ability to profile I/O access patterns to petabytes of storage using megabytes of 
RAM with a multi-resolution feature-vector-analysis algorithm to detect pattern 
changes and recognize patterns seen in the past.

•  Ability to create an SSD VLUN along with traditional HDD VLUNs with the 
same RAID features so that file-level tiers can be managed by applications.

•  Ability to create hybrid VLUNs that are composed of HDD capacity and SSD 
cache with intelligent block management to move most frequently accessed blocks 
between the tiers.

•  Ability to create hybrid VLUNs that are composed of HDD capacity and are allo-
cated SLC SSD ingest FIFO capacity to accelerate writes that are not well-formed 
and/or are not asynchronously and concurrently initiated.

•  Ability to create hybrid VLUNs that are composed of HDD capacity and al-
located RAM egress FIFO capacity so that  the back-end can burst sequential data 
for lower latency sequential read-out.

“One of the most significant 

differences between the Atrato 

solution and others is the  

design of the ApplicationSmart 

algorithm for scaling to  

terabytes of tier-0 (solid-state 

storage) and petabytes of  

tier-1 (HDD storage) with  

only megabytes of required 

RAM meta-data to do so.”

“Often these RAM I/O buffers will 

also provide block-level cache and 

employ LRU (Least Recently Used) 

and LFU (Least Frequently Used) 

algorithms. These traditional  

algorithms simply do not scale well.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

48   |   Solid State Drive Applications in Storage and Embedded Systems

With this architecture, the access pattern profiler feature allows users to determine 
how random their access is and how much an SSD tier along with RAM egress 
cache will accelerate access using the speed-up equations presented in the previous 
section. It does this by simply sorting access counts by region and by LBA cache-sets 
in a multi-level profiler in the I/O path. The I/O path analysis uses an LBA-address 
histogram with 64-bit counters to track number of I/O accesses in LBA address 
regions. The address regions are divided into coarse LBA bins (of tunable size) that 
divide total useable capacity into 256-MB regions (as an example). If, for example, 
the SSD capacity is 3 percent of the total capacity (for instance, 1 terabyte (TB) 
of SSD and 35 TB of HDD), then the SSDs would provide a cache that replicates 
3 percent of the total LBAs contained in the HDD array. As enumerated below, this 
would require 34 MB of RAM-based 64-bit counters (in addition to the 2.24 MB 
course 256-MB region counters) to track access patterns for a useable capacity of 35 
TB. In general, this algorithm easily profiles down to a single VoD 512-K block size 
using one millionth the RAM capacity for the HDD capacity it profiles. The hot spots 
within the highly accessed 256-MB regions become candidates for content replication 
in the faster access SSDs backed by the original copies on HDDs. This can be done 
with a fine-binned resolution of 1024 LBAs per SSD cache set (512 K) as shown in 
this example calculation of the space required for a detailed two-level profile.

•  Useable capacity for a RAID-10 mapping with 12.5 percent spare regions
 -  Example: (80 TB – 12.5 percent)/2 = 35 TB, 143360 256-MB regions,  
512-K LBAs per region

•  Total capacity required for histogram
 - 64-bit counter per region
 - Array of structures with {Counter, DetailPtr}
 - 2.24 MB for total capacity level 1 histogram

•  Detail level 2 histogram capacity required
 -  Top X%, Where X = (SSD_Capacity/Useable_Capacity) x 2 have detail pointers 
with 2x over-profiling

 - Example: 3 percent, 4300 detail regions, 8600 to 2x oversample
 - 1024 LBAs per cache set, or 512 K
 -  Region_size/LBA_set_size = 256 MB/512 K = 512 64-bit detail counters  
per region 

 - 4 K per detail histogram x 8600 = 34.4 MB

With the two-level (coarse region level and fine-binned) histogram, feature vector 
analysis mathematics is employed to determine when access patterns have changed 
significantly. This computation is done so that the SSD block cache is not re-loaded 
too frequently (cache thrashing). The proprietary mathematics for the Applica-
tionSmart feature-vector analysis is not presented here, but one should understand 
how access patterns change the computations and indicators.

“ In general, this algorithm easily  

profiles down to a single VoD  

512-K block size using one  

millionth the RAM capacity  

for the HDD capacity it profiles.”

“ Feature vector analysis mathematics 

is employed to determine when access 

patterns have changed significantly.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   49

When the coarse region level histogram changes (checked on a tunable periodic 
basis) as determined by ApplicationSmart ΔShape, a parameter that indicates the 
significance of access pattern change, then the fine-binned detail regions may be 
either re-mapped (to a new LBA address range) when there are significant changes in 
the coarse region level histogram to update detailed mapping, or when change is less 
significant this will simply trigger a shape change check on already existing detailed 
fine-binned histograms. The shape change computation reduces the frequency and 
amount of computation required to maintain access hot-spot mapping significantly. 
Only when access patterns change distribution and do so for sustained periods of time 
will re-computation of detailed mapping occur. The trigger for remapping is tunable 
through the ΔShape parameters along with thresholds for control of CPU use, to best 
fit the mapping to access pattern rates of change, and to minimize cache thrashing 
where blocks replicated to the SSD. The algorithm in ApplicationSmart is much more 
efficient and scalable than simply keeping 64-bit counters per LBA and allows it to 
scale to many petabytes of HDD primary storage and terabytes of tier-0 SSD storage 
in a hybrid system with modest RAM requirements.

Performance
Performance speed-up using ApplicationSmart is estimated by profiling an access 
pattern and then determining how stable access patterns perform without addi-
tion of SSDs to the Atrato V1000. Addition of SLC for write ingest acceleration 
is always expected to speed-up writes to the maximum theoretical capability of the 
V1000 since it allows all writes to be as perfectly re-formed as possible with mini-
mal response latency from the SLC ingest SSDs. Read acceleration is ideally expect-
ed to be equal to that of a SAID with each 10 SSD expansion unit added as long as 
sufficient cache-ability exists in the I/O access patterns. This can be measured and 
speed-up with SSD content replication cache computed (as shown earlier) while 
customers run real workloads. The ability to double performance using 8 SSDs and 
one SAID was shown compared to one SAID alone during early testing at Atrato 
Inc. Speed-ups that double, triple, and quadruple access performance are expected.

SSD Testing at Atrato
Atrato Inc. has been working with Intel X25-M and Intel® X25-E Solid-State Drives 
since June of 2008 and has tested hybrid RAID sets, drive replacement in the SAID 
array, and finally decided upon a hybrid tiered storage design using application aware-
ness with the first alpha version demonstrated in October 2008, a beta test program 
in progress this March, and release planned for the second quarter of 2009.

SSDs Make a Difference
Atrato Inc. has tested SSDs in numerous ways including hybrid RAID sets where an 
SSD is used as the parity drive in RAID-4, simple SSD VLUNs with user allocation 
of file system metadata to SSD and file system data to HDD in addition to the five 
features described in the previous sections. Experimentation showed that the most 
powerful uses of hybrid SSD and HDD are for ingest/egress FIFOs, read cache 
based on access profiles, and simple user specification of SSD VLUNs. The Atrato 
design for ApplicationSmart uses SSDs such that access performance improvement 
is considerable for ingest, for semi-random read access, and for sequential large 

“Atrato Inc. has been working 

with Intel X25-M and Intel® 

X25-E Solid-State Drives since 

June of 2008.”

“ Experimentation showed that  

the most powerful uses of hybrid 

SSD and HDD are for ingest/

egress FIFOs, read cache based 

on access profiles, and simple user 

specification of SSD VLUNs.”

“Only when access patterns 

change distribution and do so 

for sustained periods of time 

will re-computation of detailed 

mapping occur.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

50   |   Solid State Drive Applications in Storage and Embedded Systems

block predictable access. In the case of totally random small transaction I/O that is 
not cache-able at all, the Atrato design recognizes this with the access profiler and 
offers users the option to create an SSD VLUN or simply add more SAIDs that 
provide random access scaling with parallel HDD actuators. Overall, SSDs are used 
where they make the most difference and users are able to understand exactly the 
value the SSDs provide in hybrid configurations (access speed-up).

Conclusions Made about Intel SSDs
Atrato Inc. has found the Intel X25-E and Intel X25-M SATA Solid-State Drive 
integrate well with HDD arrays given the SATA interface, which has scalability 
through SAS/SATA controllers and JBOF* (Just a Bunch of Flash*). The Intel SSDs 
offer additional advantages to Atrato including SMART data for durability and 
life expectancy monitoring, write ingest protection, and ability to add SSDs as an 
enhancing feature to the V1000 rather than just as a drive replacement option.

Atrato Inc. plans to offer ApplicationSmart with Intel X25-E and X25-M SATA 
Solid-State Drives as an upgrade to the V1000 that can be configured by customers 
according to optimal use of the SSD tier.

Future Atrato Solution Using SSDs
The combination of well managed hybrid SSD+HDD is synergistic and unlocks the 
extreme IOPs capability of SSD along with the performance and capacity density of 
the SAID enabled by intelligent block management.

Issues Overcome by Using SSDs
Slow write performance to the Atrato V1000 has been a major issue for applications 
not well-adapted to RAID and could be solved with a RAM ingest FIFO. How-
ever this presents the problem of lost data should a power failure occur before all 
pending writes can be committed to the backing-store prior to shutdown. The Intel 
X25-E SATA Solid-State Drives provide ingest acceleration at lower cost and with 
greater safety than RAM ingest FIFOs. Atrato needed a cost-effective cache solu-
tion for the V1000 that could scale to many terabytes and SSDs provide this option 
whereas RAM does not.

Performance Gained by Using Intel SSD
The performance density gains will vary by customer and their total capacity  
requirements. For customers that need for example 80 terabytes total capacity,  
the savings with SSD is significant since this means that 3 1RU expansion units  
can be purchased instead of 3 more 3RU SAIDs and another 240 terabytes of  
capacity that aren’t really needed just to scale performance. This is the best solution  
for applications that have cache-able workloads, which can be verified with  
the Atrato ApplicationSmart access profiler.

“ Atrato Inc. has found the Intel X25-E 

and Intel X25-M SATA Solid-State 

Drive integrate well with HDD  

arrays given the SATA interface.”

“For customers that need for example 

80 terabytes total capacity, the savings 

with SSD is significant.”

“ The Intel X25-E SATA Solid-State 

Drives provide ingest acceleration 

at lower cost and with greater safety 

than RAM ingest FIFOs.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Solid State Drive Applications in Storage and Embedded Systems   |   51

Future Possibilities Opened Due to Intel SSDs
Future architectures for ApplicationSmart include scaling of SSD JBOFs with SAN 
attachment using Infiniband or 10G iSCSI such that the location of tier-0 storage 
and SAID storage can be distributed and scaled on a network in a general fashion 
giving customers even greater flexibility. The potential for direct integration of SSDs 
into SAIDs in units of 8 at a time or in a built-in expansion drawer is also being 
investigated. ApplicationSmart 1.0 is in beta testing now with a planned release for 
May 2009.

Conclusion

Using Intel® Solid State Drive (Intel® SSD) for Hybrid Arrays
The Intel X25-E SATA Solid-State Drive provides a cost effective option for hybrid ar-
rays with an SSD-based tier-0. As an example, Atrato has been able to integrate the Intel 
X25-E SATA Solid-State Drives in the V1000 tier-0 and with the overall virtualization 
software for the SAID so that performance can be doubled or even quadrupled. 

A New Storage and Caching Subsystem
The use of RAM cache for storage I/O is hugely expensive and very difficult to 
scale given the cost as well as the complexity of scalable memory controllers like 
FB-DIMM or R-DIMM beyond terabyte scale. Solid state drives are a better match 
for HDDs, while being an order of magnitude faster for random IOPs and provid-
ing the right amount of additional performance for the additional cost, providing 
for easily justifiable expense to obtain comparable application speed-up.  

SSDs for Multiple Embedded Storage Needs
The use of SSDs as drive replacements in embedded applications is inevitable and 
simple. On the small scale of embedded digital cameras and similar mobile storage 
devices, SSDs will meet a growing need for high performance, durable, low power 
direct-attach storage. For larger scale RAID systems, SSDs in hybrid configurations 
meet ingest, egress, and access cache needs far better than RAM and at much lower 
cost. Until SSD cost per gigabyte reaches better parity with HDD, which may never 
happen, hybrid HDD+SSD is here to stay, and many RAID vendors will adopt 
tiered SSD solutions given the cost/benefit advantage.

“ The potential for direct integration 

of SSDs into SAIDs in units  

of 8 at a time or in a built-in 

expansion drawer is also being 

investigated.”

“ Until SSD cost per gigabyte 

reaches better parity with HDD, 

which may never happen, hybrid 

HDD+SSD is here to stay, and 

many RAID vendors will adopt 

tiered SSD solutions given the 

cost/benefit advantage.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

52   |   Solid State Drive Applications in Storage and Embedded Systems

Acknowledgements

Nick Nielsen (Senior Software Engineer), Phillip Clark (Senior Software Engineer), 
Lars Boehenke (Software Engineer), Louis Morrison (Senior Electrical Design 
Engineer), and the entire Atrato, Inc. team who have all contributed to the Appli-
cationSmart software and integration of solid state disks with the V1000 intelligent 
RAID system.

References
[1]  “Systems and Methods for Block-Level Management of Tiered Storage,” 

US Patent Application # 12/364,271, February, 2009.
[2]  “Application Awareness Makes Storage More Useful,” Neal Leavitt, IEEE 

Computer Society, July 2008.
[3]  “Flash memories: Successes and challenges,” S.K. Lai, IBM Journal of Research 

and Development, Vol. 52, No. 4/5, July/September, 2008.
[4]  “Galapagos: Model driven discovery of end-to-end application-storage 

relationships in distributed systems,” K. Magoutis, M. Devarakonda, N. Joukov, 
N.G. Vogl, IBM Journal of Research and Development, Vol. 52, No. 4/5,  
July/September, 2008.

[5]  “Hierarchical Storage Management in a Distributed VOD System,” 
David W. Brubeck, Lawrence A. Rowe, IEEE MultiMedia, 1996.

[6]  “Storage-class memory: The next storage system technology,” R.F. Freitas,
W.W. Wilcke, IBM Journal of Research and Development, Vol. 52, No. 4/5, 
July/September, 2008.

[7]  “Information valuation for Information Lifecycle Management,” Ying Chen, 
Proceedings of the Second International Conference on Autonomic Computing, 
September, 2005.

[8]  “File classification in self-* storage systems,” M. Mesnier, E. Thereska, G.R. 
Ganger, D. Ellard, Margo Seltzer, Proceedings of the First International  
Conference on Autonomic Computing, May, 2004. 

[9]  “Atrato Design for Three Year Zero Maintenance,” Sam Siewert, Atrato Inc. 
White Paper, March 2008. 



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Solid State Drive Applications in Storage and Embedded Systems   |   53

Author Biographies

Dr. Sam Siewert: Dr. Sam Siewert is the chief technology officer (CTO) of Atrato, 
Inc. and has worked as a systems and software architect in the aerospace, telecom-
munications, digital cable, and storage industries. He also teaches as an Adjunct 
Professor at the University of Colorado at Boulder in the Embedded Systems 
Certification Program, which he co-founded in 2000. His research interests include 
high-performance computing and storage systems, digital media, and embedded 
real-time systems.

Dane Nelson: Dane Nelson is a field applications engineer at Intel Corporation. 
He has worked in multiple field sales and support roles at Intel for over 9 years and 
is currently a key embedded products field technical support person for Intel’s line 
of solid state drives.  



54   |   Fanless Design for Embedded Applications

Contributors

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

FANLESS DESIGN FOR EMBEDDED APPLICATIONS

Chun Howe Sim 
Intel Corporation

Jit Seng Loh 
Intel Corporation

Abstract

Embedded systems opportunities for Intel® architecture components exist in point-of-
sale, digital signage, and digital security surveillance, to name a few. When selecting 
Intel architecture, several key metrics are performance/watt, thermal design power 
(TDP), and fanless thermal solutions. The objective of this article is to provide readers 
with key reference fanless system design considerations to utilize in embedded ap-
plications. This article emphasizes analytical hand calculation for first-order approxi-
mations and provides computational fluid dynamics (CFD) simulation techniques to 
determine Intel architecture feasibility in fanless systems. Examples depicted illustrate 
fanless cooling design considerations for a point-of-sale system. 

Introduction

In markets for embedded systems, customers usually are looking for small form factors, 
low cost, high reliability and low power. The Embedded and Communications Group 
(ECG) within Intel Corporation addresses these specific needs for different embedded 
market segments, offering a wide range of products from performance to ultra low power 
to system on chip (SOC) solutions. Ultra low power solutions are often considered by 
many customers in fanless applications: examples include, point-of-sale terminals, digital 
signage, in-vehicle infotainment, and digital security surveillance.

For obvious reasons, fanless applications are getting more and more attention;  
simply adopting the currently available heatsink is no longer feasible. A clear  
understanding of natural convection heat transfer and how this theory can be  
applied to component level and system level thermal solution design is crucial.  
This article provides a reference for designing a fanless heatsink solution for a low 
voltage Intel® Architecture Processor. 

This article is divided into three main sections, starting with an analytical hand  
calculation to approximate an optimum fin spacing of a heatsink for a natural 
convection heat transfer, and then using industry standards in component level 
numerical simulation, applied design on experiment (DOE) to determine natural 
convection heatsink with optimal plate fin spacing. The final section is a system 
level computational fluid dynamics (CFD) analysis where a printed circuit board 
(PCB) form factor, component placement, and chassis vent holes are highlighted  
in the design considerations. 

“ A clear understanding of natural 

convection heat transfer and  

how this theory can be applied to  

component level and system level 

thermal solution design is crucial.”

Fanless 
computational fluid dynamics 
Grashof number 
Rayleigh number 
natural convection JEDEC 51-2 standard 
Point Of Sale 
Optimal plate fin spacing



Fanless Design for Embedded Applications   |   55 

Intel® Technology Journal | Volume 13, Issue 1, 2009

Thermal Solution Design (Analytic) 

Hand calculation uses fluid dynamics, heat, and mass transfer fundamental theories 
to derive thermal solution design equations. 

Natural Convection Theory
Natural convection, also known as free convection and a more commonly marketing 
term fanless, is a sub-classification of convection heat transfer. Unlike forced convec-
tion which is caused by external means (fans, pumps, or atmospheric winds), natural 
convection airflow is induced by buoyancy forces: a result of density differences 
caused by temperature variation in the fluid. In the semiconductor industry, most  
of the time air is the “fluid” unless otherwise specified. For additional information  
on natural convection theory, please refer to references [1] and [2].

Apart from natural convection, another major heat dissipating mode in natural con-
vection is radiation heat transfer. Analytical hand calculation on heatsink radiation 
is comprehensive and complex. This article does not derive equations of radiation 
where details of emissivity and absorptivity between components, wavelength, 
components geometry, and transmissivity angle are required in the study; rather we 
utilize computational fluid dynamics (CFD) to calculate components heat radia-
tion; inputs of components geometry, material properties and surface finishing are 
needed for the computation. For further reading on radiation (analytic) please refer 
to Chapter 12 in reference [1]. 

In natural convection, where the velocity of moving air is unknown, no single 
velocity is analogous to the free stream velocity that can be used to characterize 
the flow. The Reynolds number (Re) is usually used when performing dimensional 
analysis of fluid dynamics problems. For example it is used to characterize different 
flow regimes such as laminar or turbulent flow in a circular pipe. Thus, one cannot 
use the Reynolds number in the computation. Instead, the use of the Grashof num-
ber (Gr) and Rayleigh number (Ra) to correlate natural convection flows and heat 
transfer is recommended. Grashof number is defined as follows:

Gr =           =          
g β ρ 2 (TS – T f  ) L 3

μ 2 

Ra
Pr (1)

where:

g = acceleration of gravity (m/s2) L = characteristic length (m)
β = volume expansivity (1/K) μ = viscosity of fluid (Ns/m2)

ρ = density of fluid (kg/m3) Ra = Rayleigh number
TS = surface temperature (K) Pr = Prandtl number
Tf = fluid temperature (K)

“ Natural convection airflow is  

induced by buoyancy forces: a  

result of density differences  

caused by temperature variation  

in the fluid.”

“ The use of the Grashof number 

(Gr) and Rayleigh number (Ra) to 

correlate natural convection flows 

and heat transfer is recommended.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

56   |   Fanless Design for Embedded Applications

The Grashof number is a dimensionless number that approximates the ratio of the 
buoyancy to viscous force acting on a fluid. 

The Rayleigh number for a fluid is a dimensionless number that is associated with 
the ratio of buoyancy driven flow and thermal momentum diffusivities. The Ray-
leigh number is the product of the Grashof number and the Prandtl number, which 
will be used in the later section to determine optimal plate fin spacing. 

In summary, for natural convection airflow characterization use the Grashof number 
and for force convection airflow characterization use the Reynolds number. For natu-
ral convection airflow characterization with heat transfer use the Rayleigh number.

Volumetric Expansivity
Volumetric expansivity of a fluid provides a measure of the amount the density 
changes in response to a change in temperature at constant pressure. In most cases, 
a specific desirable volumetric expansivity of an application requires lab testing. This 
article does not emphasize the lab testing but rather uses the Ideal Gas Law  
to compute β for air. 

(2)β= 1
T f 

 

where Tf in the Ideal Gas Law must be expressed on an absolute scale (Kelvin or 
Rankine). For more information please see reference [2].

Substituting Equation 1 into Equation 2 becomes 

  (3)Gr =           
g ρ 2 (TS – T f  ) L 3

T f   μ 
2 

Converting the Grashof number to the Rayleigh number, Equation 3 becomes

(4)Ra = Gr Pr =           
g ρ 2 (TS – T f  ) L 3  Pr

T f   μ 
2 

Optimized Plate Fins Spacing
Determining optimal plate fin spacing of a natural convection small-form-factor 
heatsink is an effective way to improve heatsink performance. Recapping the natu-
ral convection theory section, natural convection occurs mainly due to buoyancy 
forces; the optimal plate fin spacing is needed to allow airflow between fins to 
stream as freely as possible from the heatsink base to the outer edge of heatsink fins. 
Convection heat transfer is optimized when the velocity boundary layer developed 
by buoyancy force and optimal plate fin spacing equals the thermal boundary layer 
developed by the plate fins. In steady state condition, where heatsink temperature 
reaches equilibrium, for the scope of this article, design engineers could assume that 

“ The optimal plate fin spacing is 

needed to allow airflow between 

fins to stream as freely as possible 

from the heatsink base to the outer 

edge of heatsink fins.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Fanless Design for Embedded Applications   |   57 

each plate fin is close to isothermal (ΔT across fin surface equals to zero). Then a 
first-order approximation of optimal plate fin spacing can be defined with a known 
heatsink volume (W x D x H) as

  (5)
4

1)(
714.2

Ra
LS =  

where:

S = optimum fin spacing
L = fin length parallel to airflow direction
Ra = Rayleigh number
Knowing Ra from Equation 4, we can now substitute it into Equation 5. 

  (6)
32

2

1

4
1

Pr})({
)(

714.2
LTTg

TL
S

fs

f

−
=

ρ

µ
 

For more information on optimum fin spacing please see reference [7]. 

Bare Die Type Package Natural Conveciton Thermal Solution Stackup
An Intel central processing unit (CPU) mainly consists of a bare die type package 
and integrated heat spreader (IHS) type package. In this section, we focus on 
component level bare die type package and its natural convection thermal solution 
stackup shown in Figure 1. A natural convection thermal solution consists of a heat-
sink, thermal interface material (TIM), and fastening mechanism.

This is a typical 2D reference picture showing the three main temperature measure-
ment points. These temperature measurement points are used to compute thermal 
performance of a heatsink. They are as follows:

TJ is the junction temperature; it is the temperature of the hottest spot at silicon die 
level in a package. 

TS is the heatsink temperature; it is the temperature of the center-bottom surface of 
the thermal solution base. One has to machine the thermal solution base per Intel 
specification for zero degree thermocouple attachment method and measure TS. For 
more information please see reference [10]. 

TLA is the local ambient temperature measurement within the system boundary. 
For natural convection TLA point is located at the side of the thermal solution, ap-
proximately 0.5”–1.0” away. It is recommended to use average TLA from a few TLA 
measurement points. For more details on exact measurement and location point 
please see references [4] and [5].

Thermal Performance Characterization for Bare Die
Thermal performance and thermal impedance are often confused and loosely used 
in the industry. Thermal performance (ψ) is an industrial standard to characterize 
heatsink cooling performance. This is a basic thermal engineering parameter that is 
used to evaluate and compare different heatsinks. Thermal performance from junc-

Heat
Sink

Silicon Die

Measured

Measured

Tlocal ambient (TLA)

Tsink (TS)

Given in EMTS/TDG

Board

TJunction (TJ)
Thermal Interface

Material (TIM)

Substrate

Solder
Balls/Pins

JS

JS

Figure 1: Component level bare die package 

thermal solution stackup.

Source: Intel Corporation, 2009

“ Thermal performance (ψ) is an 

industrial standard to characterize 

heatsink cooling performance.”

4



Intel® Technology Journal | Volume 13, Issue 1, 2009

58   |   Fanless Design for Embedded Applications

tion to ambient is a sum of thermal impedance of silicon die, TIM, and heatsink as 
shown in Equation 7. 

 SACSJCJA ψψψψ ++=   (7)

The ψJC value can be obtained from the chipset/processor manufacturer datasheet. 
The ψSA value is available through the heatsink vendors’ support collateral. For 
custom designs, CFD and/or lab experimentation determine ψSA value. For more 
information on ψJA and ψSA calculations please see reference [4]. 

 )(PDFRTIMCS =ψ   (8)

The PDF is Intel’s power density factor and is available upon request through a field 
application engineer (FAE). Most of the TIM manufacturers will also provide engi-
neers with the thermal resistance value RTIM, which is used to compute ψCS. (Refer 
to Equation 8.)

Thermal resistance (θ) on the other hand is the characterization of a package’s tem-
perature rise per watt. This value dictates what heatsink to use or design. To calcu-
late thermal impedance θJA of the CPU, first define the local ambient temperature, 
then obtain the maximum junction temperature and TDP from the Intel Thermal 
Design Guide (TDG). (See Equation 9.) 

TDP
TT AJ

JA
−

=θ  
 (9)

Figure 2 is an example of a range of local ambient temperatures versus thermal 
impedance plot. As shown in the graph, the area below the blue line highlights an 
acceptable heatsink performance for cooling. A heatsink of performance ψ

JA or 
better must be used must for effective cooling.

In summary, the thermal performance ψJA value of a heatsink must be equal or lower 
than thermal impedance θJA value at specified local ambient temperature range.

Example of an Optimized Plate Fin Extruded Thermal Solution  
Spacing Calculation
The following example illustrates the use of  to determine an optimal plate fin heat-
sink. First, several engineering parameters must be defined; the heatsink material is 
a solid extruded aluminum grade Al6063. Next, the heatsink base thickness is fixed 
at 2 mm, an optimal thickness for small form factor heatsink of a solid aluminum 
grade Al6063. The details of heat constriction are beyond the scope of this article 
and are therefore not discussed here. Next, obtain the Prandtl number using air 
property at atmospheric pressure with a surrounding temperature of 300°K. From 
reference [1] Appendix A, Table A-4 we know Pr = 0.707. Finally the temperature 
difference (TS – TF) is set to 50°C. This is the temperature difference between the 
fin walls and the air envelope around the fins. With the above engineering param-
eters the optimal fin spacing is calculated as shown in Table 1. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Local Ambient Temperature, TLA (˚C)

40 45 50 5520 25 30 35

Acceptable Thermal Solution Performance

Ju
n

ct
io

n
-t

o
A

m
b

ie
n

t 
T

h
er

m
al

 R
es

is
ta

n
ce

 J
A
(˚

C
/W

)

Figure 2: Thermal impedance of a CPU with 

respect to a range of local ambient temperature.

“ The PDF is Intel’s power density  

factor and is available upon  

request through a field application 

engineer (FAE).”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Fanless Design for Embedded Applications   |   59 

A heatsink with characteristic length of 50 mm shown in Table 1 requires an 
optimal fin spacing of 4.90 mm. Using optimal fin spacing (S) and Equation 10, 
heatsink fin count and fin thickness is determined. Manufacturing process tech-
nology and capabilities will influence heatsink fin height and fin thickness design. 
It is the design engineer’s responsibility to understand and take this into design 
consideration. For more information on the manufacturing process please refer to 
reference [8]. 

  (10)

n
nSLt )1( −−

=  

where: 

t = fin thickness (mm)
L = thermal solution length/size (mm)
S = optimum fin spacing (mm)

n = number of fins

As shown in Table 2, an optimized natural convection heatsink with characteristic 
length of 50 mm and an optimal fin spacing of 4.90 mm requires 10 fins with  
0.59 mm thick for each fin. 

“ Manufacturing process  

technology and capabilities will 

influence heatsink fin height and 

fin thickness design. It is the design 

engineer’s responsibility to  

understand and take this into  

design consideration.”

Fin Length, L (mm) Optimal fin spacing, S (mm)

35.0 4.48

37.5 4.56

40.0 4.63

42.5 4.70

45.0 4.77

47.5 4.84

50.0 4.90

Note: Make sure to use the correct measurement units as specified  
in above sections. 
Table 1: Optimum plate fin spacing for natural convection heat transfer

Fin Length, L 
(mm)

Optimum fin 
spacing, S (mm)

No. of fins, n Fin thickness, 
t (mm) 

35.0 4.48 7 1.16

37.5 4.56 8 0.70

40.0 4.63 8 0.95

42.5 4.70 8 1.20

45.0 4.77 9 0.76

47.5 4.84 9 0.97

50.0 4.90 10 0.59

Table 2: Calculated number of fins and fin thickness per optimum fin spacing



Intel® Technology Journal | Volume 13, Issue 1, 2009

60   |   Fanless Design for Embedded Applications

In summary, this section is a step by step analytical hand calculation. First, determine 
key parameters for designing a heatsink. Then determine the working/boundary 
conditions. Next, determine the optimal parallel plate fin spacing. Finally, calculate 
heatsink fin thickness and the number of fins. 

Thermal Solution Design (Numerical)

CFD uses numerical methods and algorithms to solve and analyze problems that 
involve fluid flows; software like Flotherm*, Icepak* Cfdesign* are industrial  
accepted CFD software packages that are capable of solving fluid flow and heat 
transfer. In this document, all CFD and results reported are based on Flotherm v7.1.

Component Level CFD
CFD simulation often started off with a component level simulation follow by 
system level. The advantages of a component level simulation over system level are 
that there are fewer components in a simulation model, microscopic detail level of 
analysis is feasible, and faster simulation in convergence and often errors (if any) are 
easily traceable. 

The example shown here uses a predefined boundary condition (JEDEC 51-2 
standard) to characterize and compare thermal performance of the three heatsinks: 
one optimized and the other two non-optimized natural convection heatsinks. The 
internal volume is modeled with a dimension of 304.8 x 304.8 x 304.8 mm; the 
enclosure material is polycarbonate and the thickness is 6 mm. A wall is used to 
position a thermal test vehicle (TTV) at the center of the enclosure. All simulation 
components are attached with radiation attributes. The radiation exchange factor will 
be calculated automatically by the software. Figure 3 shows the location of the local 
ambient temperature (TLA) measurement point with respect to the model setup. For 
more information on JEDEC51-2 setup and material used, see reference [9]. 

The TTV model used in simulation is an Intel® Pentium® M processor on 90 nm 
process. The Flotherm model is available upon request through your Intel field ap-
plication engineer (FAE). From the Intel Pentium M processor on 90 nm process 
Thermal Design Guide, refer to reference [4], Tj maximum = 100°C, and TDP is 
10 W. Table 3 shows the CPU thermal impedance requirement based on a range of 
local ambient temperature. The thermal test board (TTB) is modeled as a generic 
block with conductivity of 10 W/mK. 

T
LA

 (°C) 30 35 40 45 50 55 60

θ
 JA 

(°C/W) 7.0 6.5 6.0 5.5 5.0 4.5 4.0

Table 3: Intel® Pentium® M Processor on 90 nm process thermal impedance θ
JA

 
for range of T

LA

The three heatsink dimensions, geometries, and thermal performances are shown in 
Table 4. 

Heatsink

Thermal Test
Board (TTB)
+ Thermal Test
Vehicle (TTV)

Polycarbonate
Enclosure

TTV Suppot
Wall

Local Ambient
Temperature (TIa)

Measurement Point

Figure 3: Natural convection CFD simulation 

based on JEDEC51-2

“ CFD uses numerical methods and 

algorithms to solve and analyze 

problems that involve fluid flows.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Fanless Design for Embedded Applications   |   61 

Optimized HS Non-optimized 
HS1

Non-optimized 
HS2

HS Base (mm) 50 x 50 x 2

Fin Height 28 mm

Fin Thickness 0.59 mm 1.00 mm 1.00 mm

Fin Count 10 6 14

T
J
 (°C) 77.55 79.87 82.85

T
LA

 (°C) 33.04

Ψ
CS

 (°C/W) 0.17

Ψ
JA

 (°C/W) 4.62 4.85 5.11

Note: Referring to Shin-Etsu TIM datasheet, X23-7783D contact resistance is 
7.3 mm2K/W.
Table 4: Plate fin heatsink dimension and thermal performance 

In summary, this component level CFD example utilizes design on experiment 
(DOE) to determine the accuracy of the first-order approximation hand calculation in 
the earlier section. From the CFD model setup, grease type thermal interface material 
(TIM) was not factored in (the physical nature of grease TIM exhibits undeterminable 
measurement capability analysis (MCA) and modeling in CFD will cause inaccurate 
end results). Grease TIM performance depends on bond line thickness (BLT), contact 
pressure, surface roughness, and heat cycle. The detail discussion of grease TIM is 
beyond the scope of this article. Use Equation 8 to calculate TIM performance as is in 
this article. Table 4 shows the corrected thermal performance ΨJA. Take note that the 
final thermal performance ΨJA could differ pending on what TIM is used; the higher 
performance TIM used the lower final thermal performance.

System Level CFD
This section depicts a specific system level simulation using point of sale as an example. 
The goal is to enable the system designer to understand how CFD predicts an optimized 
natural convection heatsink performance under point-of-sale system boundary condi-
tions. The CFD example illustrated here is a 12.1” touchscreen LCD vertical standing 
POS system; refer to Figure 4. The enclosure is an aluminum box chassis with external 
dimensions of 300 x 250 x 65 mm. The enclosure is simulated with top and bottom 
vent openings; total free area ratio (FAR) is set to 20 percent for both top and bottom 
vents. The hole pattern for the vents are 5-mm hexagons uniformly distributed across 
the entire top and bottom surface. Vent holes governed by FAR are important as it 
determines whether the system/platform will experience heat soak. When heat soak 
occurs within a system, temperature rise (local ambient temperature minus room 
temperature) will increase.

There is a polyimide insulating film separating the LCD from a single board com-
puter (SBC) and other peripherals. Above the SBC is a DC to DC power PCB, 2.5" 
HDD and a CD-ROM drive modeled at the side (shown in Figure 4 as silver color 
blocks). A 12.1"  LCD is located right behind the insulating film. The SBC orienta-
tion as shown in Figure 4 is to accommodate side-accessible I/O ports and position 
the processor at the bottom, closest to the vents. The processor is placed at the lowest 

2.5" HDD

CD ROM Drive

Point of Sale Chassis with
Vent Holes (20% FAR)

Top Vent Holes
(20% FAR)

Polyimide Insulating Film
DC to DC Converter PCB

EPIC System/
Platform

Figure 4: System level CFD - 12.1” POS 

(vertical)

“ This component level CFD  

example utilizes design on  

experiment (DOE) to determine 

the accuracy of the first-order  

approximation hand calculation.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

62   |   Fanless Design for Embedded Applications

region of the enclosure to deliver fresh cooler air from the bottom vent openings. 
The SBC used is an Embedded Platform for Industrial Computing (EPIC) small 
form factor board with the Intel Pentium M processor built on 90-nm process 
paired with the Intel® 855GME Graphics Memory Controller Hub (GMCH) and 
Intel® 82801DB I/O Controller Hub 4 (ICH4). The thermal solution is a 50 x 50 x 
30 mm heatsink mentioned in the previous section. The orientation of the heatsink 
is aligned such that its plate fins are parallel to the direction of gravity. All simula-
tion components are attached with radiation attributes. The radiation exchange 
factor will be calculated automatically by the software. Table 5 is a list of compo-
nents used in the CFD simulation; most of the materials are found in the Flotherm 
built-in material library. The right column is each component’s TDP and is used for 
power budgeting.

Component Material Power (W)

12.1" LCD Alumina –

Insulating Film Polyimide –

Enclosure Al 6063 –

Power Board FR4 6 (assume)

Capacitors Ethylene Glycol –

Connectors Polycarbonate –

2.5" HDD Alumina 0.6

CD ROM Alumina –

I/O ports Polycarbonate –

EPIC SFF FR4 4 (assume)

SODIMM Heat Block 3.6 

CPU Heatsink Al 6063

MCH Heatsink Al 6063

CPU Complex model 10

MCH Complex model 4.3

ICH Complex model 2.5
 

Table 5: List of components material and power used in the CFD simulation

A single scenario example is used to illustrate system level CFD. Some components 
are modeled as simple resistance blocks and in real application it may dissipate 
power. It is up to the user to specify these values based on their power budget 
estimate. The focus is on CPU, MCH, and ICH; detail modeling with finer 
meshing is put within this area in the simulation to improve the accuracy of the 
results. The total system power dissipated is assumed to be approximately 30 W; this 
is by adding all the TDP values shown in Table 5. TDP summation in simulation is 
not a real world application and the example here is to simulate a worst case 
scenario only. 

Figure 5 shows the components’ temperature plot and particle plot. DC to DC 
converter PCB temperature shown is hottest mainly due to preheat from system/
platform below and heat soak. It is important not to place heat sensitive or low 

Temperature (degC)

Speed (ft/min)
62.3

100

55.4

92.2

48.4

84.4

41.5

76.7

34.6

68.9

27.7

61.1

20.8

53.3

13.8

45.6

6.92

37.8

4.31e-025

30

 Figure 5: System level CFD – temperature and 

velocity plot.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Fanless Design for Embedded Applications   |   63 

operating temperature components directly on top of a system/platform. When one 
looks more closely at the particle plot representing airflow within the enclosure, one 
can see that the top vent holes with 20 percent FAR are insufficient to remove the 
hot air generated. Top vent air is not exhausting linearly and air swirling is about to 
developed on the top right corner of the enclosure.

Local ambient temperature shown in Table 6 is an average temperature surround-
ing the CPU heatsink. Unlike JEDEC 51-2 standard, there is no designated TLA 
measurement point so it is the system engineer’s responsibility to make sure several 
measurement points are used to represent the actual local ambient temperature 
within the system boundary.

T
LA

  (°C) T
S
  (°C) T

J
  (°C) Ψ

TIM  
(°C/W) *Ψ

JA  
(°C/W)

31.0 72.98 76.58 0.17 4.72

Table 6: Thermal performance of the CPU in system level CFD

Component level simulation shows that the same heatsink used in system level sim-
ulation has a slightly better thermal performance ψJA, 4.62°C/W versus 4.72°C/W. 
The primary reason is due to the fact that component level CFD has a single heat 
source and ample air volume for natural convection. In system level CFD, compo-
nents are closely packed and experience mutual heating. The other reason is CFD 
meshing; component level has the advantage of modeling simplicity hence an opti-
mal mesh ratio is easily achievable. In system level CFD engineers are often testing 
to balance between modeling accuracy and overall solving duration/convergence. 

Conclusion

The Intel Embedded and Communications Group is now very much focused on 
low power and its efficiency. With the proper concept and design process, a fanless 
thermal solution is feasible on Intel architecture. This article serves as a reference 
solution to fanless cooling design for embedded applications.

“ With the proper concept  

and design process, a fanless  

thermal solution is feasible on 

Intel architecture.”

“ In system level CFD engineers are 

often testing to balance between 

modeling accuracy and overall  

solving duration/convergence.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

64   |   Fanless Design for Embedded Applications

Table of Acronyms and Symbols
CFD Computational Fluid Dynamic

CPU Central Processing Unit

DOE Design on Experiment

ECG Embedded and Communications Group

EPIC Embedded Platform for Industrial Computing 

FAR Free Area Ratio

FCBGA Flip Chip Ball Grid Array

Gr Grashof number; Ratio of buoyancy forces to viscous forces

ICH I/O Controller Hub

HIS Integrated Heat Spreader

MCH Memory Controller Hub

PCB Printed Circuit Board

PDF Power Density Factor

Pr Prandtl number; Ratio of the momentum and thermal diffusivities

Ra Rayleigh number; Ratio of the buoyancy force and momentum – 

thermal diffusivities 

Re Reynolds number; Ratio of the inertia and viscous forces

SBC Single Board Computing

TDP Thermal Design Power

TIM Thermal Interface Material

TTV Thermal Test Vehicle

ULV Ultra Low Voltage 

T
J

Junction Temperature

T
C

Case Temperature

T
S

Heatsink Temperature

T
LA

Local Ambient Temperature

Θ Theta is used to characterize thermal impedance of a package

Ψ Psi is used to characterize thermal performance of a heatsink

U U is the standard unit of measure for designating the vertical 

usable space or height of racks and cabinets; 1U = 44.45 mm

References
[1]  Fundamentals of Heat and Mass Transfer, 6th Edition, F. P. Incropera, 

D.P. Dewitt, T. L. Bergman, Lavine, A.S., John Wiley & Sons, Inc.
[2]  Introduction to Thermal & Fluid Engineering, D. A. Kaminski, M. K. Jensen, 

John Wiley & Sons, Inc.
[3]  ULV Intel® Celeron® M Processor @ 600MHz for fanless set top box application, 

18741
[4]  Intel® Pentium® M Processor on 90nm process for embedded application 

TDG, 302231

[5]  Intel® Celeron® M Processor ULV 373, Intel® 852GM Graphics Memory 
Controller Hub (GMCH) & Intel® 82801DB I/O Controller Hub (ICH4) 
TDG for EST, 313426



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Fanless Design for Embedded Applications   |   65 

[6]  Thermal Modeling of Isothermal Cuboids & Rectangular Heat Sink Cooled by 
Natural Convection, J. R. Culham, M. M. Yovanovich, Seri Lee, IEEE transac-
tions on components, packaging and manufacturing technology part A, Vol. 18, 
No. 3 September 1995

[7] Frigus Primore, A volumetric Approach to Natural Convection
[8]  Design for manufacturability of forced convection air cooled fully ducted heat 

sinks, Electronics Cooling, Volume 13, No. 3, August 2007
[9]  EIA/JEDEC51-2 Standard – Integrated Circuits Thermal Test Method 

Environment Conditions – Natural Convection (Still Air)

[10] TC attachment power point foils (internal)

Author Biographies

Chun Howe Sim: Chun Howe Sim (chun.howe.sim at intel.com) is a senior 
thermal mechanical application engineer in the Embedded and Communications 
Group at Intel Corporation. CH graduated from Oklahoma State University with 
a bachelor of science degree in mechanical engineering. CH joined Intel in 2005 
as a thermal mechanical application engineer and has presented various embedded 
thermal design tracks at Taiwan IDF, the India embedded solution seminar, and 
the PRC annual ICA. As a thermal mechanical engineer, CH supports Low Power 
Intel® Architecture (LPIA) products, Digital Security Surveillance (DSS), and works 
on natural convection thermal solutions for embedded applications. Prior to joining 
Intel, CH worked for American Power Conversion (APC) as a DC Network solu-
tion system design engineer who supported Cisco,* Lucent,* AT&T,* and HuaWei.* 
CH was part of the mechanical design engineer team developing the highly scalable 
APC* InfraStruXure* architecture for the DC network. 

Loh Jit Seng: Loh Jit Seng works as a thermal/mechanical application engineer 
in the Embedded and Communications Group (ECG) at Intel Corporation,  
supporting internal and external development of scalable and low-power embedded 
Intel architecture devices. His interests include fanless and liquid cooling technologies. 
Prior to joining Intel, he worked with iDEN Advanced Mechanics Group of Motorola,* 
working on structural and impact simulation of mobile phones. He received his 
bachelor’s degree in engineering and is currently pursuing his master of science 
degree from the University Science Malaysia. His e-mail is jit.seng.loh at intel.com. 

 



66   |   Security Acceleration, Driver Architecture and Performance Measurements for
  Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology

Contributors

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

SECURITy ACCELERATION, DRIVER ARCHITECTURE AND  

PERFORMANCE MEASUREMENTS FOR INTEL® EP80579 INTEGRATED 

PROCESSOR WITH INTEL® QUICKASSIST TECHNOLOGy

Sundaram Ramakesavan 
Intel Corporation

Sunish Parikh 
Intel Corporation

Brian A. Keating 
Intel Corporation

Abstract

This article describes how the Intel® QuickAssist Technology components in the 
Intel® EP80579 Integrated Processor offload the compute-intensive cryptographic 
operations from the Intel® architecture core to a low-power cryptographic accelera-
tor, thus making the processor ideal for security appliances requiring high through-
put cryptography, high value-add applications, and a low power profile. This article 
also describes the Intel QuickAssist Technology Cryptographic API, which is 
developed jointly with Intel’s partners in the Intel QuickAssist Technology commu-
nity to allow application scalability across multiple hardware and software vendors. 
The article concludes with performance data as measured at the API level and at the 
level of a typical IPsec VPN application. 

Introduction

The Intel® EP80579 Integrated Processor is a single chip that integrates in one 
die an Intel® Pentium® M processor, integrated memory controller hub (IMCH), 
integrated I/O controller hub (IICH) with two SATA and two USB 2.0 control-
lers, a PCI Express* (PCIe*) module, an I/O complex with three Gigabit Ethernet 
MACs (GbE), two Controller Area Network (CAN) interfaces, a IEEE 1588 timing 
module for both the GbE and CAN interfaces, a high precision watchdog timer 
(WDT), and a local expansion bus (LEB) interface. The integration of numerous 
functions usually available in discrete chips results in a cost-effective platform with 
significant footprint savings and time-to-market advantages. The high level of inte-
gration in a single die also means that less power is required to drive signals between 
different components and allows for the consolidation of clock and power delivery 
infrastructure, both of which result in a reduced power profile for the processor and 
platform. The Intel EP80579 Integrated Processor product line is available in 2 ver-
sions, the “embedded” version described above and also an “accelerated” version 
that includes Intel® QuickAssist Technology.

The Intel EP80579 Integrated Processor with Intel QuickAssist Technology is a  
pin-compatible version of the same processor family that comes with additional 
integrated components, including an integrated cryptographic accelerator that  
supports both symmetric and asymmetric cryptographic operations and throughput 
that is best-in-class compared to other leading external accelerators. The crypto-
graphic accelerator allows the Intel EP80579 Integrated Processor to use a low 
power Intel® architecture core and still achieve impressive cryptographic perfor-
mance. Furthermore, the integrated cryptographic accelerator requires less power  
to drive signals between the accelerator, processor core, and DRAM. 

“ The integration of numerous  

functions usually available in  

discrete chips results in a cost- 

effective platform with significant 

footprint savings and time-to- 

market advantages.”

Security
Acceleration
Cryptography
Intel® QuickAssist Technology
Intel® EP80579 Integrated Processor



Security Acceleration, Driver Architecture and Performance Measurements for   |   67 
Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology              

Intel® Technology Journal | Volume 13, Issue 1, 2009

Note that the version of the chip that includes Intel QuickAssist Technology has 
other integrated components that facilitate both legacy and IP Telephony applica-
tions, but this article will focus on security applications. 

The following sections describe how the Intel EP80579 Integrated Processor with 
Intel QuickAssist Technology can be used for developing security applications, 
hardware components of Intel QuickAssist Technology that are relevant to security 
applications, and the Intel QuickAssist Technology Cryptographic API, which is 
part of the enabling software and provides a software interface to accelerate the 
cryptographic operations. 

Security Applications

In this section, we describe how the Intel EP80579 Integrated Processor with Intel 
QuickAssist Technology can be used for the development of security applications, 
including IPsec VPNs, SSL VPNs, and SSL Gateways.

Security applications need to perform many cryptographic operations. For example, 
VPNs provide secure communications by providing confidentiality, integrity, and 
authentication using encryption and cryptographic hash functions. Cryptographic 
algorithms are, by design, computationally expensive. By offloading these opera-
tions from the Intel architecture core onto the integrated cryptographic accelerator, 
valuable CPU cycles are preserved, which can be used instead to add differentiating 
features and capabilities to the application. The Intel EP80579 Integrated Proces-
sor with Intel QuickAssist Technology supports offloading and acceleration of the 
cipher and hash algorithms required by the popular IPsec and SSL protocols. 

IPSec and SSL protocols employ supporting protocols such as IKE and SSL hand-
shakes that use public key cryptography to securely exchange keys for their secure 
communications channels. Many of these public key algorithms rely on large random 
numbers and prime numbers, and modular arithmetic and exponentiation operations 
involving these large numbers. The Intel EP80579 Integrated Processor with Intel 
QuickAssist Technology has accelerators that can perform modular exponentiation 
and inversion for large numbers up to 4096 bits long. Random number generation 
requires a greater degree of unpredictability than is generated by traditional pseudo-
random number generators (PRNGs) found on many security coprocessors today. 
The Intel EP80579 Integrated Processor with Intel QuickAssist Technology strength-
ens the public key cryptography by offering a True Random Number Generation 
(TRNG) by including a Non-Deterministic Random Bit generator that periodically 
seeds a pseudo-random number generator.  

Security applications can use the cryptographic accelerators by directly calling the 
Intel QuickAssist Technology Cryptographic API. Alternatively, existing applications 
that use the open-source OpenBSD Cryptographic Framework (OCF) API can use 
the supplied OCF shim, which provides an implementation of the OCF API, to 
offload and accelerate their applications without any modifications to their code. 

“ We describe how the Intel 

EP80579 Integrated Processor 

with Intel QuickAssist Technology 

can be used for the development 

of security applications, including 

IPsec VPNs, SSL VPNs, and  

SSL Gateways.”

“ The Intel EP80579 Integrated 

Processor with Intel QuickAssist 

Technology strengthens the  

public key cryptography by  

offering a True Random Number  

Generation (TRNG) by its  

inclusion of a Non-Deterministic 

Random Bit generator that  

periodically seeds a pseudo-random 

number generator.”

“ VPNs provide secure  

communications by providing  

confidentiality, integrity, and  

authentication using encryption 

and cryptographic hash functions.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

68   |   Security Acceleration, Driver Architecture and Performance Measurements for
  Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology

Thus, there are simple mechanisms to offload and accelerate compute intensive 
operations of security applications and free up Intel architecture cycles for new and 
existing security applications. 

Since the Intel EP80579 Integrated Processor is built on the Intel architecture, 
existing x86 software will run with minimal, if any, modification. In addition, for 
customers porting from non-Intel architecture platforms, it opens opportunities to 
reuse numerous existing applications and utilities to add capabilities to the product, 
choose from a variety of development tools, and make use of a highly optimizing 
Intel® compiler. 

Hardware Components

Figure 1 is a block diagram of the Intel EP80579 Integrated Processor with Intel 
QuickAssist Technology showing the various integrated components. The key  
components relevant to security applications are the Intel® Architecture Processor 
where the security application is run, the Acceleration and I/O Complex (AIOC), 
and PCIe, which can be used to attach external NICs or other cards. Within the 
AIOC, the three Gigabit Ethernet (GbE) MACs are provided, while the combina-
tion of the Acceleration Services Unit (ASU) and Security Services Unit (SSU) act 
as the cryptographic accelerator. The ASU acts as a micro-sequencer for the SSU, 
invoking DMA between DRAM and the SSU’s own internal memory and providing 
the Intel architecture core with an asynchronous request/response interface to the cryp-
tographic acceleration where the requests and responses are sent via “rings” or circular 
buffers. Software running on the Intel architecture sends cryptographic requests by  
writing to these request rings and receives responses by reading from the response  
rings. The Response rings can also be configured to generate interrupts. 

Intel® QuickAssist Technology-based Cryptographic API

Each Intel EP80579 Integrated Processor comes with redistributable and royalty-
free enabling software that includes an implementation of the Intel QuickAssist 
Technology-based Cryptographic API. This API is grouped into various functional 
categories. One category supports session-based invocation of symmetric cryptog-
raphy (cipher and authentication algorithms) that allows cryptographic parameters 
such as cipher, mode, or keys to be specified once, rather than on every invocation 
of the operation. Other categories include asymmetric public key algorithms like 
RSA, DSA, and Diffie-Hellman. Another category of APIs accelerates modular ex-
ponentiation and inversion of large numbers. Further API categories generate true 
random numbers, test the primality of numbers, and generate keys for SSL/TLS. 
Some miscellaneous API functions provide maintenance and statistics collection. 

“ Each Intel EP80579 Integrated  

Processor comes with redistributable 

and royalty-free enabling software 

that includes an implementation  

of the Intel QuickAssist Technology-

based Cryptographic API.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Security Acceleration, Driver Architecture and Performance Measurements for   |   69 
Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology

SPI
LPC1.1

SPA 2.0
(x2)

USB 2.0
(x2)

UART (x2)
GPIO (x36)
SMBus (x2)

Acceleration
Services Unit

IA-32 Core L2 Cache
(265 KB)

Acceleration and I/O Complex

Intel Architecture Complex

IICH

256 KB
ASU SRAM

PCI
Express*
Interface

(x1)

Memory Controller

(DDR-2 400/533/667/800,
64b with ECC)

FSB

APIC, DMA, Timers, Watch Dog
Timer, RTC, HPET (x3)

IMCH

Local
Expansion

Bus 

MDIO (x1)
CAN (x2)
SSP (x1)

IEEE-1588

TDM
Imterface
(12 E1/T1)

GigE
MAC

#2

GigE
MAC

#1

GigE
MAC

#0

Transplant
PCI to PCI Bridge

Memory Controller Hub

EDMA

Figure 1: Intel® EP80579 Integrated Processor product line with Intel® QuickAssist Technology. Source: Intel Corporation, 2009

The API supports various modes of operation that result in overall performance 
enhancement and allow for design flexibility. For example, the APIs used for  
symmetric and asymmetric cryptographic acceleration support both asynchronous 
and synchronous modes for receiving the cryptographic results, and in-place and 
out-of-place copying of cryptographic results for design flexibility. The symmetric 
cryptography API also supports algorithm chaining (to allow a cipher and hash  
to be performed, in either order, in a single request to the hardware), algorithm 
nesting, and partial-packet processing that improve the overall performance of 
security applications. 



Intel® Technology Journal | Volume 13, Issue 1, 2009

70   |   Security Acceleration, Driver Architecture and Performance Measurements for
  Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology

The implementation of the API generates the request message and sends it to the 
ASU via a ring. The request message contains all the information required by the 
hardware accelerator, including the cryptographic parameters, pointers to the data 
buffers on which to operate, and so on. If synchronous operation was requested, the 
API implementation now blocks pending the response arriving. Otherwise, control 
is returned immediately to the caller.

Once the operation is complete, a response message containing information such  
as the encrypted result, computed key, and status are sent back to the Intel architec-
ture core via another ring configured to generate an interrupt. Using information  
in the response, the API implementation either unblocks the caller or invokes the 
requested callback function in a bottom-half context. See Figure 2 for a stack of 
various software components.

Intel QuickAssist Technology-based Cryptographic APIs have been developed in 
collaboration with Intel’s partners in the Intel QuickAssist Technology community 
to ensure its suitability and scalability. Partners with cryptographic accelerators 
are developing implementations of the API for their own accelerators. This allows 
application developers to easily port their security applications developed for Intel 
EP80579 Integrated processor to other Intel architecture platforms using crypto-
graphic accelerators from other vendors if a different performance/power/price ratio 
is required. 

Intel QuickAssist Technology-based Cryptographic APIs are also extensible. Future 
revisions of Intel QuickAssist Technology could offer higher performance, include 
additional cryptographic algorithms in support of wireless 3GPP standards, as well 
as non-cryptographic acceleration such as compression and regular expression pat-
tern matching. 

Performance

Security performance on the Intel EP80579 Integrated Processor with Intel Quick-
Assist Technology can be measured at the API level as well as at the level of a full 
application like IPSec. The API level measurements gives the potential best case 
performance, while the application level measurement shows how a typical non-
optimized open-source application can benefit by using the transparent acceleration 
offered by the OCF software shim and the underlying cryptographic accelerator. The 
application-level performance measurement was made using the popular open-source 
IPSec application Openswan.* 

API-Level Performance
Here we compare the execution of the encryption algorithm 3DES-CBC, which is 
known to be computationally expensive at the API-level, against the OCF’s default 
software implementation in the cryptosoft module. The performance test involves 
generating random plaintext messages of varying size in memory and requesting 
encrypt operations to be performed. The returned cipher text is not verified in the 
performance measuring test; however, prior to taking measurements the tests are 
executed and the result sampled and verified. System performance is a measurement 
of the total time taken from the submission of the first operation to the return of 
the final callback when the last operation has completed.

User

Kernel

Kernel
Application

/dev/crypto

User
Application IKEOpen SSL

Openswan

OCF

Shim Layer

Intel® QuickAssist Cryptographic Library

Rings

Combined
Operation

Low Level
Acceleration

Bulk Crypto
and Authentication

RSA DH
DSA

RNG
Bulk

Crypto
Authen-
tication

Mod
Expo

Figure 2: Intel® QuickAssist Technology-

based Cryptographic Library, user application, 

middleware, accelerator stack.

Source: Intel Corporation, 2009

“ Intel QuickAssist Technology-based 

Cryptographic APIs have been  

developed in collaboration with Intel’s 

partners in the Intel QuickAssist  

Technology community to ensure its 

suitability and scalability.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Security Acceleration, Driver Architecture and Performance Measurements for   |   71 
Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology

API-Level Performance Test Setup
The API-level performance test setup is detailed in Tables 1 and 2, for hardware and 
software respectively.

Figure 3 shows the raw throughput performance when directly accessing the Intel 
QuickAssist Technology Cryptographic APIs that Intel provides. As evident from 
the chart, at large packet sizes, using the hardware acceleration engines in the Intel 
EP80579 Integrated Processors for cryptographic operations gives about a 43x 
performance boost over doing cryptographic operations in software.
 
Application Performance Using Openswan*
In this case, we measure the combined performance of the 3DES-CBC encryption 
and decryption with chained HMAC-SHA1 authentication for the open-source 
IPSec VPN application. Openswan natively uses Linux* Kernel Crypto API, but 
was patched to work with the OCF framework using a patch available from the 
ocf-linux open source project. In order to benchmark the Intel EP80579 Integrated 
Processor, measurements were taken first by configuring the OCF to use Intel 
QuickAssist Technology-based Cryptographic API via the OCF Shim, and then 
measured again by configuring the OCF to use software cryptographic module 
cryptosoft. The measurements were made on a 1.2-GHz Intel EP80579 Integrated 
Processor Customer Reference Board (CRB) using Spirent* SmartFlow* to generate 
and terminate traffic.

Application-Level Performance Test Setup
The test setup for Openswan, shown in Figure 4, consisted of two Intel EP80579 
Integrated Processor CRBs connected via Openswan VPN tunnels. Spirent Smart-
Flow application software was used to generate and terminate traffic across configured 
tunnels. The monitoring PC running Wireshark* (formerly called Ethereal*) was used 
to verify the tunnels established prior to taking test measurements and was discon-
nected for the actual performance measurements. The application-level performance 
test setup is detailed in Tables 3 and 4, for hardware and software respectively. 

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Packet Size (Bytes)

2000

2500

3000

1500

1000

500

0
64 128 256 512 1024 2048

H/W Crypto Acceleration

S/W Crypto

Figure 3: Look-aside Cryptographic API result.

Source: Intel Corporation, 2009

Spirent‡
SmartFlow‡

Spirent‡
SmartFlow‡

PC to monitor
traffic

192.168.1.y

192.2.2.x192.1.1.x

OpenSwan*/OCF*
WITH security

acceleration

OpenSwan*/OCF*
WITHOUT security
acceleration

VPN tunnels between
customer reference

boards that use Intel® EP80579
Integrated Processors

Figure 4: IPSec configuration used in 

performance measurement.

Platform Intel® EP80579 Integrated Processor Customer Reference Board

Processor Intel EP80579 Integrated Processor with Intel® QuickAssist Technology

Core Frequency 1.2 GHz

L2 Cache 256 KB

Front Side Bus 133 MHz (Quad pumped)

PCIx/PCI Express* (PCIe*) PCIe x4

Memory 1 GB DDR2 Registered 800 MHz DIMM, Single Rank

Ethernet 3 on-board NICs

Table 1: API-level performance test hardware setup

Operation System Redhat* Enterprise Linux* 5 Client; kernel version 2.6.18

Enabling Software for Security Applications on  
Intel® QuickAssist Technology

Intel® EP80579 Software for Security Applications on Intel® QuickAssist 
Technology Version L.1.0.104

BIOS Intel® EP80579 Integrated Processor CRB BIOS version 057

Table 2: API-level performance test software setup



Intel® Technology Journal | Volume 13, Issue 1, 2009

72   |   Security Acceleration, Driver Architecture and Performance Measurements for
  Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology

Using the cryptographic accelerator in the Intel EP80579 Integrated Processor 
increases the throughput of an IPSec VPN application by almost 17x (Figure 5) 
as compared to using software only to secure the traffic. The results above were 
obtained using a single tunnel between two Intel EP80579 Integrated Processors 
with Intel QuickAssist Technology–based gateway systems.

Conclusion

The Intel EP80579 Integrated Processor product line integrates together an Intel 
architecture core, chipset, and cryptographic accelerator into a single System on a 
Chip. With its high level of integration and embedded lifecycle support, it provides 
a combination of performance, footprint savings, cost-effectiveness, time to market 
advantages, and low power profile that compare very favorably to discrete, multi-chip 
solutions. When using the Intel EP80579 Integrated Processor with Intel QuickAssist 
Technology, the security processing can be offloaded onto the integrated accelera-
tors, freeing up CPU cycles that can then be used to increase throughput, or to add 
differentiating features and capabilities to the Intel architecture application, or both. 
The Intel QuickAssist Technology-based Cryptographic API was defined in collabora-
tion with Intel’s partners. Applications developed against this API can be run on other 
Intel architecture platforms using cryptographic accelerators from Intel’s partners to 
achieve different performance/power/price ratios.

“ The Intel EP80579 Integrated  

Processor product line integrates 

together an Intel architecture core, 

chipset, and cryptographic accelerator 

into a single System on a Chip.”

Platform Intel® EP80579 Integrated Processor Customer Reference Board

Processor Intel EP80579 Integrated Processor with Intel® QuickAssist Technology

Core Frequency 1.2 GHz

L2 Cache 256 KB

Front Side Bus 133 MHz (Quad Pumped)

PCIx/PCI Express* (PCIe*) PCIe x4

Memory 1 GB DDR2 Registered 800 MHz DIMM, Single Rank

Ethernet 3 on-board NICs

Table 3: Application-level performance test hardware setup 

Operation System Redhat* Enterprise Linux* 5 Client; kernel version 2.6.18

Openswan* Openswan VPN software version 2.4.9

Framework Open Cryptographic Framework Patch 20070727

Enabling Software for Security Applications on Intel 
QuickAssist Technology

Intel® EP80579 Software for Security Applications on Intel® QuickAssist 
Technology Release 1.0.1_RC2

BIOS Intel® EP80579 Integrated Processor CRB BIOS version 061

Table 4: Application-level performance test software setup 

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Packet Size (Bytes)

400
500
600
700
800

300
200
100

0
64 128 256 512 1024 1400

H/W Crypto Acceleration

S/W Crypto

Figure 5: Application level performance results 

using Openswan.*



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Security Acceleration, Driver Architecture and Performance Measurements for   |   73 
Intel® EP80579 Integrated Processor with Intel® QuickAssist Technology          

References

See www.intel.com/go/soc for all hardware documentation, software documentation, 
application notes, and white papers.

Author Biographies

Sundaram Ramakesavan: Sundaram Ramakesavan has a master of science degree 
in computer science from Queen’s University Canada. He has worked in various 
telecommunication, data communication, security, user interface, and localization 
projects at Nortel Networks and Intel Corporation. He is currently a technical mar-
keting engineer specializing in cryptography and security applications. His e-mail is 
ramu.ramakesavan at intel.com

Sunish Parikh: Sunish Parikh has been at Intel Corporation since August 2000. He 
has a master of science degree in computer engineering from Florida Atlantic Uni-
versity. Sunish has previously worked in the area of software performance optimiza-
tions in the enterprise applications market. He is currently working on performance 
of software and hardware products in the Embedded and Communications Group 
at Intel Corporation. His email is sunish.u.parikh at intel.com

Brian A. Keating: Brian A. Keating is a software architect with the Performance 
Processor Division at Intel Corporation’s Embedded and Communications Group. 
Brian has been with Intel for seven years, during which time he has worked in 
software development on a number of Intel’s network processors, communications 
processors, and related products. Brian is currently the lead software architect for 
the Intel® EP80579 Integrated Processor product family, with a focus on security 
applications. Previously, Brian has architected and developed software for media 
gateways with a leading telecommunications and networking vendor, and developed 
security software with a leading computer vendor. 

His email is brian.a.keating at intel.com



74   |   Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)

Contributor

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

METHODS AND APPLICATIONS OF SySTEM VIRTUALIzATION USING  

INTEL® VIRTUALIzATION TECHNOLOGy (INTEL® VT)

David Kleidermacher, CTO

Green Hills Software, Inc.

Abstract

The motivations for system virtualization technology in the data center are well 
known, including resource optimization and improved service availability. But 
virtualization technology has broader applications throughout the enterprise and 
in the home, including security-enabled mobile devices, virtual appliances, secure 
servers, personal/corporate shared use laptops, trusted web-based transactions, and 
more. This vision is made possible due to Intel® Virtualization Technology (Intel® 
VT), which is hardware virtualization technology that scales from embedded and 
mobile devices up to server-class computing. This article provides an overview of 
the evolution of hypervisor architectures, including both software and hardware 
trends, and how they affect the security and practicality of system virtualization.  
We shall also discuss a range of compelling applications for secure virtualization 
across a variety of communities of interest.

Introduction

Computer system virtualization was first introduced in mainframes during the 
1960s and 1970s. Although virtualization remained a largely untapped facility  
during the 1980s and 1990s, computer scientists have long understood many  
of the applications of virtualization, including the ability to run distinct and  
legacy operating systems on a single hardware platform.

At the start of the millennium, VMware proved the practicality of full system  
virtualization, hosting unmodified, general purpose, “guest” operating systems  
such as Windows on common Intel® architecture-based hardware platforms.

In 2005, Intel launched Intel® Virtualization Technology (Intel® VT), which both 
simplified and accelerated virtualization. Consequently, a number of virtualization 
software products have emerged, alternatively called virtual machine monitors or 
hypervisors, with varying characteristics and goals.

While Intel VT may be best known for its application in data center server consoli-
dation and provisioning, Intel VT has proliferated across desktop- and laptop-class 
chipsets, and has most recently found its way into Intel® Atom™ processors, built for 
low power and designed for embedded and mobile applications. 

The availability of Intel VT across such a wide range of computing platforms pro-
vides developers and technologists with the ultimate open platform: the ability to 
run any flavor of operating system in any combination, creating an unprecedented 
flexibility for deployment and usage. This article introduces some of these emerging 

“ A number of virtualization  

software products have emerged,  

alternatively called virtual machine 

monitors or hypervisors, with  

varying characteristics and goals.”

Intel® vPro™ technology
Intel® Virtualization Technology
Intel® VT
security 
virtualization 
hypervisor 
Common Criteria 
Intel® Atom™ processor
microkernel 
mobile Internet devices 
real-time



Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)   |   75 

Intel® Technology Journal | Volume 13, Issue 1, 2009

uses, with an emphasis on the latest platforms enabled with Intel VT: embedded and 
mobile. Because embedded and mobile platforms often have resource and security 
constraints that differ drastically from enterprise computing platforms, this article also 
focuses on the impact of hypervisor architecture upon these constraints.  

Applications of System Virtualization

Mainframe virtualization was driven by some of the same applications found in 
today’s enterprise systems. Initially, virtualization was used for time sharing, similar 
to the improved hardware utilization driving modern data center server consolida-
tion. Another important usage involved testing and exploring new operating system 
architectures. Virtualization was also used to maintain backward compatibility of 
legacy versions of operating systems. 

Environment Sandboxing
Implicit in the concept of consolidation is the premise that independent virtual 
machines are kept securely separated from each other. The ability to guarantee 
separation is highly dependent upon the robustness of the underlying hypervisor 
software. As we’ll soon discuss, researchers have found flaws in commercial  
hypervisors that violate this separation assumption. Nevertheless, an important 
theoretical application of virtual machine compartmentalization is to “sandbox” 
software that is not trusted. For example, a web browser connected to the Internet 
can be sandboxed in a virtual machine so that Internet-borne malware or browser 
vulnerabilities are unable to infiltrate or otherwise adversely impact the user’s  
primary operating system environment.

Virtual Security Appliances
Another example, the virtual security appliance, does the opposite: sandbox trusted 
software away from the user’s operating system environment. Consider anti-virus 
software that runs on a Mobile Internet Device (MID). A few years ago, the “Metal 
Gear” Symbian Trojan was able to propagate itself by disabling the mobile device’s 
anti-malware software. [1] Virtualization can solve this problem by placing the 
anti-malware software into a separate virtual machine, as shown in Figure 1.

The virtual appliance can analyze data going into and out of the user’s environment 
or hook into the user’s operating system for demand-driven processing.  

Hypervisor Architectures

Hypervisor architectures vary along several dimensions. Some are open source, 
others are proprietary. Some comprise thin hypervisors augmented with special-
ized guest operating systems. Others employ a monolithic hypervisor that is fully 
self-contained. In this section, we shall compare and contrast currently available 
architectures.

Monolithic Hypervisor
Hypervisor architectures seen in commercial applications most often employ a 
monolithic architecture, as shown in Figure 2. Similar to monolithic operating 
systems, the monolithic hypervisor requires a large body of operating software, 

User Virtual
Machine

Virtual
Appliance

Virtual Machine

Guest
Operating

System

Virtual Machine

Antimalware
ApplicationFilter Network

Hypervisor

Figure 1: Virtual security appliance.

Source: Green Hills Software, 2008

“ Initially, virtualization was  

used for time sharing, similar  

to the improved hardware  

utilization driving modern  

data center server consolidation.”

“ Virtualization can solve this  

problem by placing the  

anti-malware software into a  

separate virtual machine.”

“ Hypervisor architectures vary 

along several dimensions.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

76   |   Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)

including device drivers and middleware, to support the execution of one or more 
guest environments. In addition, the monolithic architecture often uses a single 
instance of the virtualization component to support multiple guest environments. 
Thus, a single flaw in the hypervisor may result in a compromise of the fundamental 
guest environment separation intended by virtualization in the first place.

Console Guest Hypervisor
An alternative approach uses a trimmed down hypervisor that runs in the  
microprocessor’s privileged mode but employs a special guest operating system 
partition to handle the I/O control and services for the other guest operating 
systems Thus, a complex body of software must still be relied upon for system 
security. As shown in Figure 3, a typical console guest, such as Linux operating 
system, may add far more code to the virtualization layer than found in a  
monolithic hypervisor. 

Microkernel-based Hypervisor
The newest hypervisor architecture was designed specifically to provide robust 
separation between guest environments. Figure 4 shows the microkernel-based 
hypervisor architecture. 

This architecture places the computer virtualization complexity into user-mode  
processes outside the trusted operating system microkernel, as, for example, in 
Green Hills Software’s Integrity. A separate instance of the virtualization layer is 
used for each guest environment. Thus, the virtualization layer need only meet  
the equivalent (and, typically, relatively low) robustness level of the guest itself.

Paravirtualization
System virtualization can be implemented with full virtualization or paravirtualiza-
tion, a term first coined in the 2001 Denali project. [2] With full virtualization, 
unmodified guest operating systems are supported. With paravirtualization, the 
guest operating system is modified in order to improve the ability of the underlying 
hypervisor to achieve its intended function.

Paravirtualization is often able to provide improved performance and lower power 
consumption. For example, device drivers in the guest operating system can be 
modified to make direct use of the I/O hardware instead of requiring I/O accesses 
to be trapped and emulated by the hypervisor.

Contrary to enterprise computing requirements, most of the virtualization deployed 
within low power embedded systems have used paravirtualization. This trend is likely 
to change, however, due to the inclusion of Intel VT in low power chipsets. The 
advantage to full virtualization is the ability to use unmodified versions of operating 
systems that have a proven fielded pedigree and do not require the maintenance as-
sociated with custom modifications. This maintenance savings is especially important 
in embedded devices where I/O peripherals tend to vary dramatically across designs.

Leveraging Intel® VT
Intel VT has been a key factor in the growing adoption of full virtualization through-
out the enterprise computing world. Intel VT for IA-32, Intel® 64 and Intel® Architec-
ture (Intel VT-x) provides a number of hypervisor assistance capabilities. For example, 

Hypervisor

Networking

Device Drivers

File System

Scheduling

Guest #1 Guest #2

Figure 2: Monolithic hypervisor architecture.

Source: Green Hills Software, 2008

HypervisorDevices

Guest #1 Guest #2

Console Guest
(dom 0)

Drivers

I/O

I/O

Figure 3: Console guest hypervisor architecture.

Source: Green Hills Software, 2008

Virtualization
Layer #2

Virtualization
Layer #1

Guest #1 Guest #2

TCP/IP File System
Device
Drivers

Kernel

Figure 4: Microkernel-based hypervisor 

architecture. Source: Green Hills Software, 2008



Intel® Technology Journal | Volume 13, Issue 1, 2009

Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)   |   77 

true hardware hypervisor mode enables unmodified ring-0 guest operating systems 
to execute with reduced privilege. Intel VT-x will also prevent a guest operating 
system from referencing physical memory beyond what has been allocated to the 
guest’s virtual machine. In addition, Intel VT-x enables selective exception injection, 
so that hypervisor-defined classes of exceptions can be handled directly by the guest 
operating system without incurring the overhead of hypervisor software interposing.

Early Results with Intel® VT
In 2006, Green Hills Software demonstrated virtualization using Intel VT-x. Prior 
to this, in 2005, Green Hills demonstrated a full virtualization solution on platforms 
without Intel VT capabilities. We did so by using selective dynamic translation tech-
niques conceptually similar to that employed by original versions of VMware. 

Green Hills Software’s previous desktop solution was able to support no more than 
two simultaneous full-motion audio/video clips (each in a separate virtual machine) 
without dropping frames. With Intel VT-x on similar class desktops, the number 
of simultaneous clips was limited only by the total RAM available to host multiple 
virtual machines. General PC benchmarks showed an approximate factor of two per-
formance improvement for Intel VT-x over earlier platforms. In addition, the Green 
Hills virtualization layer was radically simplified due to the Intel VT-x capabilities.

Recent Improvements
In 2008, Green Hills Software demonstrated its virtualization technology enabled 
by Intel VT-x on Intel Atom processors, thereby taking advantage of the scalabil-
ity of Intel VT-x across low power embedded systems, laptops and desktops, and 
server-class systems.

In 2007, Green Hills demonstrated the use of Intel VT for Directed I/O (Intel VT-d)  
in its desktop-based offerings. In 2008, Green Hills demonstrated the use of  
Intel VT-d in Intel® Centrino® 2 processor technology-based laptops. Intel VT-d’s 
DMA remapping capability further enhances virtualization performance and  
reduces hypervisor software complexity by enabling select I/O peripherals to be  
controlled directly by the guest operating system, with little or no intervention  
from virtualization software.

Intel VT has enabled Green Hills Software and other technology suppliers to  
leverage the power of full system virtualization across a wide range of hardware 
platforms, vertical industries, and emerging usage scenarios (some of which we  
shall discuss in the section “Emerging Applications for Virtualization”).  

Hypervisor Security

Some tout virtualization as a technique in a “layered defense” for system security. The 
theory postulates that since only the guest operating system is exposed to external 
threats, an attacker who penetrates the guest will be unable to subvert the rest of 
the system. In essence, the virtualization software is providing an isolation function 
similar to the process model provided by most modern operating systems. 

“ True hardware hypervisor mode 

enables unmodified ring-0 guest 

operating systems to execute with 

reduced privilege.”

“ General PC benchmarks showed 

an approximate factor of two  

performance improvement for  

Intel VT-x over earlier platforms.”

“ Intel VT has enabled Green Hills 

Software and other technology  

suppliers to leverage the power of 

full system virtualization across a 

wide range of hardware platforms, 

vertical industries, and emerging 

usage scenarios.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

78   |   Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)

Published Hypervisor Subversions
However, common enterprise virtualization products have not met security require-
ments for high robustness and were never designed or intended to meet these levels. 
Thus, it should come as no surprise that the theory of security via virtualization  
has no existence proof. Rather, a number of studies of virtualization security and 
successful subversions of hypervisors have been published. 

In 2006, the SubVirt project demonstrated hypervisor rootkits that subverted both 
VMware and VirtualPC. [3] 

The BluePill project took hypervisor rootkits a step further by demonstrating a  
malware payload that was itself a hypervisor that could be installed on-the-fly, 
beneath a natively running Windows operating system. [4]

Tavis Ormandy performed an empirical study of hypervisor vulnerabilities. The 
researchers generated random I/O activity into the hypervisor, attempting to trigger 
crashes or other anomalous behavior. The project discovered vulnerabilities in QEMU, 
VMware* Workstation and Server, Bochs, and a pair of unnamed proprietary hypervisor 
products. [5]

Clearly, the risk of an “escape” from the virtual machine layer, exposing all guests, 
is very real. This is particularly true of hypervisors characterized by monolithic code 
bases. As one analyst has said, “Virtualization is essentially a new operating system 
…, and it enables an intimate interaction between underlying hardware and the 
environment. The potential for messing things up is significant.” [6]

At the 2008 Black Hat conference, security researcher Joanna Rutkowska and her 
team presented their findings of a brief research project to locate vulnerabilities in 
Xen. [7] One hypothesis was that Xen would be less likely to have serious vulner-
abilities, as compared to VMware and Microsoft* Hyper-V, due to the fact that Xen 
is an open source technology and therefore benefits from the “many-eyes” exposure 
of the code base. 

Rutkowka’s team discovered three different and fully exploitable vulnerabilities that 
the researchers used to commandeer the computer by way of the hypervisor. Ironi-
cally, one of these attacks took advantage of a buffer overflow defect in Xen’s Flask 
layer. Flask is a security framework that is the same one used in SELinux. It was 
added to Xen to improve security. 

Rutkowka’s results further underscore an important principle: software that has not 
been designed for and evaluated to high levels of assurance must be assumed to be 
subvertible by determined and well-resourced entities.

High Assurance Approach
However, the hypervisor need not hamper security efforts. For example, Integrity is 
an operating system that has achieved a high assurance Common Criteria security 
certification. [8] Designed for EAL 7, the highest security level, Integrity meets 
what the National Security Agency deems is required for “high robustness:” protec-
tion of high value resources against highly determined and sophisticated attackers. 

“ A number of studies of virtualization 

security and successful subversions of  

hypervisors have been published.”

“Rutkowka’s results further  

underscore an important principle: 

software that has not been designed 

for and evaluated to high levels of 

assurance must be assumed to be 

subvertible by determined and  

well-resourced entities.” 

“Clearly, the risk of an ‘escape’ from 

the virtual machine layer, exposing 

all guests, is very real.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)   |   79 

Our operating system is being used in NSA-approved cryptographic communications 
devices, avionics systems that control passenger and military jets, life-critical medical 
systems, secure financial transaction systems, and a wide variety of other safety and 
security-critical systems. 

We have found that a security kernel can provide domain separation with virtualization 
duties relegated to user-mode applications. This approach achieves a high level of assur-
ance against hypervisor escapes.

Integrity provides a full-featured applications programming interface (API)  
and software development kit (SDK), enabling the creation and deployment of  
secure applications that cannot be trusted to run on a guest. Thus, critical security  
applications and data such as firewalls, databases, and cryptographic subsystems  
can be deployed both alongside and securely separated from general purpose  
operating environments such as Windows or Linux. 

The combination of virtualized and native applications results in a powerful hybrid 
operating environment, as shown in Figure 5, for the deployment of highly secure yet 
richly functional systems. In the following section, we shall discuss how this hybrid 
architecture is especially critical for the flexibility required in embedded systems.

User
Mode

Supervisor
Mode

Virtualization
Layer 

Windows

Windows
Application

Windows
Application

Virtualization
Layer 

Windows

Windows
Application

Windows
Application

INTEGRITY

PC Hardware

Critical
Application

Critical
Application

Figure 5: Virtualized environments alongside native applications. Source: Green Hills Software, 2008

Emerging Applications for Virtualization

The use of virtualization outside of traditional enterprise PC and server markets is 
nascent, and yet presents a significant opportunity. In this section, we shall discuss a 
sample of emerging applications with significant promise. 

“ We have found that a security  

kernel can provide domain  

separation with virtualization  

duties relegated to user-mode  

applications.”

“ The use of virtualization outside 

of traditional enterprise PC and 

server markets is nascent.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

80   |   Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)

Telecom Blade Consolidation
Virtualization enables multiple embedded operating systems, such as Linux and 
VxWorks, to execute on a single telecom computer, such as an AdvancedTCA blade 
server based on Intel® Architecture Processors. In addition, the microkernel-based 
virtualization architecture enables real-time applications to execute natively. Thus, 
control plane and data plane applications, typically requiring multiple blades, can 
be consolidated. Telecom consolidation provides the same sorts of size, weight, 
power, and cost efficiencies that enterprise servers have enjoyed with VMware. 

Electronic Flight Bag
Electronic Flight Bag (EFB) is a general purpose computing platform that flight  
crews use to perform flight management tasks, including calculating take-off param-
eters and viewing navigational charts more easily and efficiently. EFBs replace the 
stereotypical paper-based flight bags carried by pilots. There are three classes of EFBs, 
with class three being a device that interacts with the onboard avionics and requires 
airworthiness certification. 

Using the hybrid virtualization architecture, a class three EFB can provide a Win-
dows environment (including common applications such as Microsoft Excel) for 
pilots while hosting safety-critical applications that validate parameters before they 
are input into the avionics system. Virtualization enables class three EFBs to be 
deployed in the portable form factor that is critical for a cramped cockpit. 

Intelligent Munitions System 
Intelligent Munitions System (IMS) is a next-generation U.S. military net-centric 
weapons system. One component of IMS includes the ability to dynamically alter 
the state of munitions (such as mines) to meet the requirements of an evolving bat-
tlescape. Using the hybrid virtualization architecture, the safety-critical function of 
programming the munitions and providing a trusted display of weapons state for the 
soldier is handled by secure applications running on the safety-certified microkernel. 
A standard Linux or Windows graphical interface is enabled with virtualization.

In-Vehicle Infotainment
Demand for more advanced infotainment systems is growing rapidly. In addition to 
theater-quality audio and video and GPS navigation, wireless networking and other 
office technologies are making their way into the car. Despite this increasing com-
plexity, passenger expectations for “instant on” and high availability remain. At the 
same time, automobile systems designers must always struggle to keep cost, weight, 
power, and component size to a minimum. 

Although we expect desktop operating systems to crash occasionally, automobile 
passengers expect the radio and other traditional “head-unit” components never  
to fail. In fact, a failure in one of these components is liable to cause an expensive 
(for the automobile manufacturer) visit to the repair shop. Even worse, a severe 
design flaw in one of these systems may result in a recall that wipes out the profit  
on an entire model year of cars. Exacerbating the reliability problem is a new  
generation of security threats: bringing the Internet into the car exposes it to all  
the viruses and worms that target networked Windows-based computers.

“ Electronic Flight Bag (EFB) is a 

general purpose computing platform 

that flight crews use to perform flight 

management tasks.”

“ The currently deployed solution, 

found on select high-end  

automobiles, is to divide the  

infotainment system onto two  

independent hardware platforms.”

“ Virtualization enables class three 

EFBs to be deployed in the portable 

form factor that is critical for a 

cramped cockpit.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)   |   81 

The currently deployed solution, found on select high-end automobiles, is to divide 
the infotainment system onto two independent hardware platforms, placing the 
high-reliability, real-time components onto a computer running a real-time operat-
ing system, and the Windows component on a separate PC. This solution is highly 
undesirable, however, because of the need to tightly constrain component cost, size, 
power, and weight within the automobile.

The hybrid virtualization architecture provides an ideal solution. Head unit  
applications running under control of the real-time kernel are guaranteed to per-
form flawlessly. Because the real-time kernel is optimized for the extremely fast  
boot times required by automotive systems, instant-on requirements are met.  

Multiple instances of Windows, powered by multiple instances of the virtual 
machine, can run simultaneously on the same computer. In the back seat, each 
passenger has a private video monitor. One passenger could even reboot Windows 
without affecting the second passenger’s email session. 

Next Generation Mobile Internet Devices
Using the hybrid virtualization architecture, mobile device manufacturers and 
service providers can leverage traditional operating systems and software, such as  
the Linux-based Moblin platform [9], while guaranteeing the integrity, availability, 
and confidentiality of critical applications and information (Figure 6). 

We bring our mobile devices wherever we go. Ultimately, consumers would like to use 
mobile devices as the key to the automobile, a smart card for safe Internet banking, a 
virtual credit card for retail payments, a ticket for public transportation, and a driver’s 
license and/or passport. There is a compelling world of personal digital convenience 
just over the horizon. 

The lack of a high security operating environment, however, precludes these applica-
tions from reaching the level of trust that consumer’s demand. High assurance secure 
platform technology, taking maximum advantage of Intel silicon features such as Intel 
VT, enables this level of trust. Furthermore, security applications can be incorporated 
alongside the familiar mobile multimedia operating system on one chip (SoC), saving 
precious power and production cost.

Reducing Mobile Device Certification Cost
A certified high assurance operating system can dramatically reduce the cost  
and certification time of mobile devices, for two main reasons. First, because  
it is already certified to protect the most sensitive information exposed to sophis-
ticated attackers, the operating system can be used to manage the security-critical 
subsystems. The certified operating system comes with all of its design and testing 
artifacts available to the certification authority, thus precluding the cost and time  
of certifying an operating system.

Second, the operating system and virtualization software take advantage of Intel VT 
and the Intel architecture Memory Management Unit (MMU) to partition security-
critical components from the user’s multimedia environment. For example, a bank 
may require certification of the cryptographic subsystems used to authenticate and 
encrypt banking transaction messages, but the bank will not care about certifying 
the system’s multimedia functions.

INTEGRITY Kernel

Hardware

Security
Critical

Application

Security
Critical

Application

Virtual Machine

Guest
Operating
System #1

Virtual Machine

Guest
Operating
System #2

Figure 6: Virtualization environment for Mobile 

Internet Devices (MID). Source: Green Hills 

Software, 2008

“ Multiple instances of Windows, 

powered by multiple instances  

of the virtual machine, can  

run simultaneously on the  

same computer.”

“ There is a compelling world of  

personal digital convenience just 

over the horizon.”

“ A certified high assurance  

operating system can dramatically 

reduce the cost and certification 

time of mobile devices.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

82   |   Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)

Split Mobile Personalities
With secure virtualization technology, the mobile device can host multiple instances 
of mobile operating systems. For example, the device can incorporate one instance 
of Linux that the consumer uses for the phone function, e-mail, and other “critical” 
applications. A second instance of Linux can be used specifically for browsing the 
Internet. No matter how badly the Internet instance is compromised with viruses 
and Trojans, the malware cannot affect the user’s critical instance. The only way for 
files to be moved from the Internet domain to the critical user domain is by using a 
secure cut and paste mechanism that requires human user interaction and cannot be 
spoofed or commandeered. A simple key sequence or icon is used to switch between 
the two Linux interfaces.

Secure virtualization can also be used to provide an MID with multiple operating  
system personalities, enabling service providers, phone manufacturers, and consumers  
to provide and enjoy a choice of environments on a single device. Furthermore, by 
virtualizing the user environment, personas (personal data, settings, and so on) can be 
easily migrated across devices, in much the same way that virtual machines are migrated 
for service provisioning in the data center.

In a recent article discussing the growth of mobile devices in corporate environ-
ments, USA Today stated that “mobile devices represent the most porous piece of 
the IT infrastructure.” [10] The same problems that plague desktops and servers are 
afflicting mobile devices. Secure operating systems and virtualization technology 
provide a solution to the demand for enhanced security in the resource-constrained 
environment of portable consumer devices.

Gaming Systems
Gaming systems manufacturers are promoting the use of open network connectiv-
ity in next-generation gaming systems and properties. This vision provides for some 
exciting possibilities, yet the security challenges that arise in this architecture are not 
unlike other network-centric initiatives, such as the military’s Global Information 
Grid (GIG): in both cases, formerly isolated assets are being connected to networks 
at risk of cyber attack. Clearly, gaming systems are an attractive target for well-
resourced hostile entities. 

The same hybrid virtualization architecture previously discussed can enhance user-
to-game and game-to-server interactions. Secure communications components, 
including network security protocols and key management, can be securely parti-
tioned away from the gaming multimedia environment (such as Linux, for example) 
which is hosted in a virtual machine using Intel VT. This is done in both the game 
console clients as well as in the servers, providing secure end-to-end encryption, 
authentication, and transaction verification. 

Conclusion

In the past decade, virtualization has reemerged as a disruptive technology in the 
enterprise. However, due to resource constraints and different usage scenarios, virtual-
ization has seen slower adoption in other areas of the computing world, in particular 
mobile and embedded systems. This is likely to change, due to two significant recent 
innovations. First, low power, Intel Atom processors now incorporate the same kind of 

“ No matter how badly the Internet 

instance is compromised with viruses 

and Trojans, the malware cannot  

affect the user’s critical instance.”

“ Secure communications  

components, including network 

security protocols and key  

management, can be securely  

partitioned away from the gaming 

multimedia environment.”

“ Formerly isolated assets are being 

connected to networks at risk of 

cyber attack.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Methods and Applications of System Virtualization using Intel® Virtualization Technology (Intel® VT)   |   83 

hypervisor hardware acceleration enjoyed by desktop and server processors. Second, 
the advent of a powerful hybrid architecture incorporating certified high robustness 
security kernels, augmented with secure virtualization using Intel VT, represents a 
better fit for resource-constrained systems that often have rigorous safety, security, 
reliability, real-time, memory-efficiency, and/or power-efficiency requirements. The 
future for Intel VT-enabled applications is indeed bright.

References

[1]  Larry Garfield. “‘Metal Gear’ Symbian OS Trojan disables anti-virus software.” 
http://www.infosyncworld.com/, 2004.

[2]  Whitaker, et al. “Denali: Lightweight Virtual Machines for Distributed and 
Networked Applications.” USENIX Annual Technical Conference. 2002.

[3]  Samuel King, et al. “SubVirt: Implementing malware with virtual machines.” 
IEEE Symposium on Security and Privacy. 2006.

[4]  Joanna Rutkowska. “Subverting Vista Kernel for Fun and Profit.” Black Hat 
USA. 2006.

[5]  Tavis Ormandy. “An Empirical Study into the Security Exposure to Hosts of 
Hostile Virtualized Environments.” http://taviso.decsystem.org/virtsec.pdf, 2006.

[6]  Denise Dubie. “Security concerns cloud virtualization deployments.” 
http://www.techworld.com/, 2007.

[7]  Joanna Rutkowska, Alexander Tereshkin, and Rafal Wojtczuk. “Detecting and 
Preventing the Xen Hypervisor Subversions;” “Bluepilling the Xen Hypervisor;” 
“Subverting the Xen Hypervisor.” Black Hat USA. 2008.

[8] Common Criteria Validated Products List. http://www.niap-ccevs.org/, 2008.

[9] Moblin.org. http://moblin.org

[10]  Byron Acohido, “Cellphone security seen as profit frontier.” 
http://www.usatoday.com/, 2008.

Author Biography

David Kleidermacher: David Kleidermacher is chief technology officer at Green 
Hills Software where he has been responsible for operating system and virtualiza-
tion technology over the past decade and has managed the team responsible for 
implementing Intel®-based solutions, including operating systems, hypervisors, and 
compilers. David helped launch the new Intel® vPro™ technology with Intel at Intel 
Developer Forum (IDF) in 2007, demonstrating the use of Intel® Virtualization 
Technology (Intel® VT) and Intel® Trusted Execution Technology (Intel® TXT). 
David can be contacted at davek at ghs.com.



84   |   Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)

Contributor

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

BUILDING AND DEPLOyING BETTER EMBEDDED SySTEMS WITH INTEL® 

ACTIVE MANAGEMENT TECHNOLOGy (INTEL® AMT)

Jose Izaguirre 
Intel Corporation

Abstract

Intel® Active Management Technology (Intel® AMT) is a technology intended  
to provide enhanced remote management of computing devices, primarily note-
book and desktop PCs. But the benefits of Intel AMT extend far beyond the PC 
and are equally important to practically any industry that depends on customer 
facing computing equipment to run their day-to-day operations. Industries such  
as banking, retail, entertainment, and travel, for example, all rely on embedded 
computing equipment to run their businesses. For these industries and many  
others, mission critical equipment such as automated teller machines, point- 
of-sale (POS) workstations, slot machines, and airline check-in terminals,  
respectively, downtime means lost revenue. It is therefore paramount for the  
embedded computing equipment to be reliable, secure, highly available, and  
manageable. These are all fundamental attributes of Intel AMT and therefore make 
Intel AMT extremely valuable to a significant number of embedded applications. 

This article provides a high level description of Intel Active Management Technology, 
explains some key benefits of the technology and presents a case study of how Intel 
AMT can be successfully applied to point-of-sale workstations to offer enhanced energy 
efficiency and advanced remote management capabilities to retail IT enterprises. 

Introduction

Corporations have always looked to reduce costs and improve operational efficiency 
by employing technology to automate as many business processes as possible. 
The automation occurs at all levels of the enterprise but of particular importance, 
especially for retail businesses, is the automation that is customer facing, or in 
other words, the equipment with which the end customer interacts. This equip-
ment is often a function-specific device also commonly referred to as an embedded 
system. Automated teller machines, point-of-sale workstations, vending kiosks, 
self-checkout systems, slot machines, and airline check-in terminals are all examples 
of customer facing embedded systems used in retail establishments. Of course, if the 
equipment is not operational it often means lost revenue for the business. Perhaps 
more importantly, however, it is the negative customer experience that is the most 
damaging. In retail, it is all about customer service, and a bad customer experience 
can impact customer loyalty and damage the corporate brand. Therefore, the retail 
IT enterprise must balance the deployment of customer-facing embedded systems 
that are cost effective yet very reliable and highly available. Intel® Active Manage-
ment Technology (Intel® AMT) enhances embedded system performance on all of 
these metrics.

“ Automated teller machines, point-

of-sale workstations, vending 

kiosks, self-checkout systems, slot 

machines, and airline check-in  

terminals are all examples of 

customer facing embedded systems 

used in retail establishments.”

Intel® Active Management Technology
Intel® AMT
remote management 
embedded 
Point-of-Sale 
POS 
manageability 
out-of-band 
Serial-over-LAN 
IDE-Redirection



Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)   |   85 

Intel® Technology Journal | Volume 13, Issue 1, 2009

Overview of Intel® Active Management Technology 
(Intel® AMT)

Intel Active Management Technology is a hardware-based solution that uses 
out-of-band communication for management access to client systems. Intel AMT is 
one of the key technology ingredients of Intel® vPro™ technology, a platform brand 
of business optimized computers. In situations where a remote client system is 
inaccessible, such as when the machine is turned off, the hard disk drive has crashed 
or the operating system is hung, Intel AMT provides the mechanism by which a 
server running remote management software would be able to still access the client 
system and perform basic management tasks. Intel AMT is dedicated hardware 
contained within certain Intel® mobile and desktop chipsets, such as the Mobile 
Intel® GM45 Express chipset or the Intel® Q35/Q45 Express chipsets and which are 
also used in many embedded devices. Figure 1 describes the client side Intel AMT 
hardware components.

At a high level, client-side Intel AMT is made up of the following components:

•  Intel® Manageability Engine (Intel® ME) – a microcontroller-based subsystem that 
provides an out-of-band (OOB) management communication channel, maintains 
a TCP/IP stack and runs the Intel ME firmware. The Intel ME is the heart of 
Intel AMT and resides in the chipset’s Memory Control Hub (MCH).

•  Nonvolatile memory – persistent memory used to store the compressed Intel 
ME firmware as well as hardware and software information for IT staff to access 
using the OOB channel. This includes approximately 192 KB of third party 
data storage space (3PDS) for general purpose use by OEM platform software 
or third party software applications. The 3PDS space could optionally be use for 
encryption of sensitive data or secure keys. This nonvolatile memory resides in 
flash memory and is often combined onto a single SPI flash device along with the 
system’s BIOS, Video BIOS, LAN ROM, and so on.

•  System Memory – a portion of the system’s main DRAM (channel 0) is used to 
run the decompressed Intel ME Firmware similar to what happens with system’s 
BIOS. Intel ME requires DRAM channel 0 in order for the Intel ME to run and 
be initialized properly. If no memory is populated in channel 0 then Intel ME will 
be disabled.

•  Intel AMT–capable networking hardware – specific Intel wired or wireless 
networking silicon with necessary hooks to support Intel AMT. These  
hooks implement filters that interact with inbound and outbound TCP/IP  
networking traffic.

Key Features for Embedded Applications

Intel AMT is designed with a complete set of management functions to meet the 
deployment needs of IT administrators. Let us take a closer look at just four key 
enabling features of Intel AMT of particular importance to Point-of-Sale as well as 
to other mission-critical embedded applications. 

Out of Band Management
Prior to Intel AMT, remote management depended on the operating system as well 

NVM (Flash)

System BIOS

Video BIOS

ME FW

3PDS

LAN ROM

I/O Controller Hub

Filters

Sensors

MAC

CPU

Graphics & Memory
Controller Hub

Manageability
Engine

System
Memory

LAN Controller
Wired Wireless

Out-of-
Band

Gigabit
Ethernet

Out-of-
Band

802.11

Figure 1: Intel® Active Management Technology 

(Intel® AMT) hardware architecture.

Source: Intel Corporation, 2008

“ Intel AMT is one of the key  

technology ingredients of Intel® 

vPro™ technology, a platform brand 

of business optimized computers.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

86   |   Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)

as having a remote management software agent up and running on the client. If the 
operating system (OS) was locked up, then the software agent was prevented from 
working and the remote management capability was lost. Intel AMT provides a 
completely separate hardware subsystem that runs a dedicated TCP/IP stack and 
thus creates an “out-of-band” management communication channel. This capability 
makes it possible to inspect inbound/outbound packets before the OS has visibility 
to them. Effectively what you end up with is two logical network connections (one 
in-band, one out-of-band) using one physical RJ45 networking connector. This 
allows Intel AMT to offer a substantial number of management tasks that can 
significantly improve uptime and reduce maintenance costs. As illustrated in 
Figure 2, having a completely independent communication channel also allows for 
remote management functions to take place effectively 100 percent of the time and 
without regard to the state of the OS, such that blue screens and even powered 
down systems are still accessible by the help desk or IT personnel. Maintaining 
connectivity enables support personnel to more rapidly and accurately diagnose the 
failure condition, which in turn reduces the number of physical support visits. 

Serial-over-LAN Redirection Capability
One of the key features of Intel AMT is its support for Serial-over-LAN redirec-
tion. Serial-over-LAN (SOL) is a mechanism that allows the input and output of the 
serial port of the client system to be redirected using Internet Protocol (IP) to other 
computers on the network, in this case, the remote management server(s). With 
Serial-over-LAN, the POS client’s text-based display output could be redirected to the 
remote management console. This allows the help desk see the remote client’s Power 
On Self Test (POST) sequence or navigate and control the client’s BIOS settings.

IDE Redirection Capability
IDE Redirection (IDER) allows an administrator to redirect the client’s IDE  
interface to boot from an image, floppy, or CD device located in or accessible  
by the remote management server. Once an IDER session is established, the  
managed client can use the server device as if it were directly attached to one of its 
own IDE channels. Intel AMT registers the remote device as a virtual IDE device  
on the client. This can be useful for remotely booting an otherwise unresponsive  
computer. A failing client, for example, could be forced to boot from a diagnostic  
image anywhere on the network. The administrator could then take action and  
perform any operation, ranging from a basic boot sector repair to a complete  
reformatting of the client disk thereby restoring the client back to a working state. 

Both SOL and IDER may be used together. 

Security
Is Intel AMT secure? This is an important question that is often asked in the early 
stages of Intel AMT evaluation, especially for organizations handling personal 
information or financial transactions. This is the case with many embedded systems 
such as ATMs and point-of-sale workstations. Intel AMT integrates comprehensive 
security measures to provide end-to-end data integrity, both within the client as 

Requires Working 
OS and CPU

Working OS and
CPU not required

Traditional Serial or
Ethernet Link

Intel® AMT-enabled
Out-of-Band Link

POS Workstation with
Remote Management

IT Console with Browser or
 Management Tool

Figure 2: Out-of-band remote management

Source: Intel Corporation, 2008

“ Once an IDER session is  

established, the managed client 

can use the server device as if it 

were directly attached to one of  

its own IDE channels.”

“ Serial-over-LAN (SOL) is a  

mechanism that allows the input  

and output of the serial port of the  

client system to be redirected using  

Internet Protocol (IP) to other computers 

on the network, in this case, the remote 

management server(s).”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)   |   87 

well as between the client and the remote management server(s). IT administrators 
can optionally encrypt all traffic between the management console and the Intel 
AMT clients. This encryption is based on standard Secure Socket Layer (SSL)/ 
Transport Layer Security (TLS) encryption protocols that are the same technologies 
used today on secure Web transactions. Each major component of the Intel AMT 
framework is protected.

Intel® Manageability Engine Firmware Image Security
Only firmware images approved by Intel can run on the Intel AMT subsystem 
hardware. The signing method for the flash code is based on public/private key 
cryptography. The Intel AMT firmware images are encrypted using a firmware  
signing key (FWSK) pair. When the system powers up, a secure boot sequence 
is accomplished by means of the Intel ME boot ROM verifying that the public 
FWSK on flash is valid, based on the hash value in ROM. If successful, the system 
continues to boot from flash code.

Network Traffic Security
Network security is provided by the industry standard SOAP/HTTPS protocol, 
which is the same communication security employed by leading e-commerce and 
financial institutions. They cannot be changed. 

Network Access Security
Intel AMT supports 802.1x network access security. This allows Intel AMT to function 
in network environments requiring this higher level of access protection. This capability 
exists on both the Intel AMT-capable wired and wireless LAN interfaces. 

Available authentication methods include:

• Transport Layer Security (TLS)
• Tunneled Transport Layer Security (TTLS)
•  Microsoft Challenge Handshake Authentication Protocol version 2 

(MS-CHAP v2)
• Protected Extensible Authentication Protocol (PEAP)
• Extensible Authentication Protocol (EAP)
• Generic Token Card (GTC)
• Flexible Authentication via Secure Tunneling (FAST)

Intel AMT also supports combination of authentication methods such as  
EAPFAST TLS, PEAP MS-CHAP v2, EAPFAST MS-CHAP v2, EAP GTC,  
and EAPFAST GTC.

These key attributes of Intel AMT can be utilized and designed into embedded  
platforms to enhance the product’s reliability, manageability, and serviceability. 

“ Encryption is based on standard 

Secure Socket Layer (SSL)/  

Transport Layer Security (TLS)  

encryption protocols that are the 

same technologies used today on 

secure Web transactions.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

88   |   Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)

NCR* Case Study

NCR Corporation is a global technology company and leader in automated teller 
machines, as well as self- and assisted-service solutions including point of sale. Early 
in the development of Intel AMT, NCR recognized the potential this technology 
had for its customer base so the company began to explore how it could incorporate 
the technology and apply it to its hardware and software products. NCR had exist-
ing remote management solutions but looked forward to enhancing their offerings 
by leveraging the OOB capabilities in Intel AMT to increase the number of issues 
that could be fixed remotely thus decreasing the number of expensive field visits. 
NCR thoroughly reviewed the Intel AMT feature set and decided to take a phased 
approach to enable its own remote management solution, called NCR* Retail Systems 
Manager, to support Intel AMT. The objective was to start in the first release with a 
subset of the overall Intel AMT features most easily implemented by their end cus-
tomers then build from there and add additional Intel AMT capabilities over time.

Why Intel® Active Management Technology (Intel® AMT)  
for Point-of-Sale Workstations?
NCR saw several benefits in Intel AMT that would allow the organization to  
make huge strides in operational efficiency by a) reducing “truck rolls” b) increasing 
accuracy of problem resolution and c) improving help desk productivity. NCR was 
initially attracted to the power control capabilities of Intel AMT for remote control  
of unattended remote POS terminals as well as for the opportunity for power  
savings during off hours. NCR’s service organization also reviewed its service call  
records and realized that Intel AMT could potentially make a significant impact on 
servicing POS terminal hard disk drive failures. The failure analysis reports revealed 
that hard disk drives were one of the top failing hardware components besides 
fans and certain peripherals attached to the POS like receipt printers and scanners; 
however, a significant percentage of returned hard disk drives were later found to be 
in perfect working order. While the problem appeared as a disk failure, in most cases 
the root cause was a corrupted file or other software problem and not a hardware 
problem at all. Immediately NCR realized the hard disk drive “false” failures could 
easily be reduced by employing out-of-band management and running remote disk 
diagnostics via IDE redirection thus verifying if the drive was indeed bad prior 
to sending out a field engineer. The total cost of ownership (TCO) value derived 
from Intel AMT is compelling. A recent study by Global Retail Insights finds the 
cost savings from advanced manageability (improvements in service calls, power-
off automation, and asset deployment/tracking) to be approximately USD 205 per 
POS terminal per year.1 Over a typical 7 year asset life, the advanced manageability 
benefit amounts to nearly 60 percent of the hardware acquisition cost.

Point of Sale Clients
The Intel AMT enabled clients in this case are point–of-sale workstations as well 
as self service kiosks supporting a mix of Intel AMT v2.2 on Intel® Q965 Express 
chipset platforms as well as Intel AMT v4.0 on Mobile Intel GM45 Express chipset 
platforms, both chipsets are part of Intel’s embedded long-life roadmap. NCR’s 

“ NCR had existing remote  

management solutions but  

looked forward to enhancing  

their offerings by leveraging the 

OOB capabilities.”

“While the problem appeared as a 

disk failure, in most cases the root 

cause was a corrupted file or other 

software problem and not a  

hardware problem at all.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)   |   89 

POS and kiosk products are manufactured in Asia through a contract manufacturer 
who pre-configures the systems’ flash image according to NCR specifications. Enter-
prise mode was chosen as the default configuration due to the fact that most NCR 
customers for this line of POS and kiosk product are large retailers with centralized 
IT organizations. 

Retail Enterprise
The retail IT enterprise system architecture and infrastructure varies depending on 
the size of the retailer and the number of POS workstations. A small neighborhood 
convenience store may only have 1 POS while a large department store chain may 
have thousands of stores each with 30 or more POS terminals. Figure 3 represents  
a typical retail IT infrastructure architecture. Many large retail IT enterprises are 
centralized and maintain their own IT help desk. Remote management services, 
leveraging Intel AMT, could be provided by either the retailer’s IT organization or 
outsourced to a third party or even a mixture of both. Intel AMT requires certain 
ports to be “open” in order to allow management traffic to go through them. The 
Intel AMT ports are 16992 (non-TLS), 16993 (TLS), 16994 (non-TLS redirec-
tion), 16995 (TLS redirection) and 9971. Port 9971 is the default provisioning port 
used to listen for “hello” packets from Intel AMT clients. These ports have been 
assigned to Intel by the Internet Assigned Numbers Authority (IANA) but can be 
used by the customer’s IT organization, third party remote management service 
providers, or equipment manufacturers. In NCR’s case, the ability to enhance their 
remote management solutions with Intel AMT allows the company to offer a more 
competitive and profitable solution, which therefore allows NCR to grow their 
services business. NCR estimates the addressable services market for the industries 
they serve to grow to USD 8.2 billion by 2011.5

NCR* Retail Systems Manager
The NCR Retail Systems Manager (RSM) is a software package for monitoring 
retail POS workstations, peripherals and applications. RSM operates independently 
from the POS application and provides remote access, 24/7 remote monitoring and 
alerting, remote diagnostics, and remote resolution through a user friendly Web-
based interface. 

There are three versions of RSM: Local, Site, and Enterprise Editions. RSM Local 
Edition (RSM LE) resides on the POS workstations themselves and provides local 
diagnostics capability; RSM Site Edition (RSM SE) serves as the in-store monitoring 
point; while RSM Enterprise Edition (RSM EE) provides same functionality as  
Site Edition but adds centralized management as well as third party management 
capability. All three versions have been modified to support Intel AMT. 

RSM LE
RSM LE runs locally on the terminal and is targeted for standalone, non-networked 
clients or for attended operations at the client. It provides the ability to configure 
the POS workstation and its peripherals and to run basic diagnostics. RSM LE can 
be used by the customer to configure and diagnose problems on an individual client 
or POS workstation.

Customer
Corporate

Stores

Customer
Help Desk

RSM NCR Edition
 and Database

NCR
Customer
Services

• • •

User
Workstations

Remote Management

SSL Appliance

VPN Appliance

NCR 
Firewall

Customer
Firewall

Internet

Allerts, Asset Info

DNS/DHCP/
Network

Management
System

RSM Routing
Agent

RSM EE and
Database

Remote 
Access to 
RSME EE 
Console via 
Web Browser

Hop-Off
Server

• • •

RSM SE

• • •

RSM SE

• • •

Figure 3: Typical retail IT enterprise system 

architecture. Source: NCR Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

90   |   Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)

Once a valid RSM license file is detected, RSM LE assumes two additional func-
tions. The first is to be an agent that feeds information upward in the RSM archi-
tecture and allows control of the client via RSM. The second is to awaken a state 
processing engine that manages the terminal and peripherals through states that are 
predefined for customers.

RSM SE
RSM SE runs on a store server and provides the important role of traffic routing 
and store-level management. It provides the ability to manage groups of terminals or 
individual terminals within the store. RSM SE is accessible via a web browser both in 
the store and from RSM Enterprise Edition. The web browser can be running locally 
on the RSM SE server or remotely from any other server or workstation within the 
network. Therefore, remote management can be performed from a server within the 
store or from a remote location such as the retailer’s helpdesk, store, or headquarters. 

For those environments that do not have a store server, RSM LE and RSM SE have 
been certified to run in a workstation-server configuration on the same workstation.

RSM EE
RSM EE runs on an enterprise server in conjunction with a Microsoft SQL Server 
database. RSM EE provides an estate wide view of the terminal and peripheral 
assets in terms of asset information and state-of-health. RSM EE also provides a 
graphical user interface for navigation in the retailer’s estate of stores and terminals.

Intel® Active Management Technology (Intel® AMT) Enabling and Provisioning
NCR’s RSM product was an existing member of the company’s remote manage-
ment solution and preceded Intel AMT, so in order for RSM to become capable of 
implementing Intel AMT, it was necessary for NCR to make modifications to RSM 
and develop an Intel AMT plug-in for their existing remote management software. 
NCR accomplished this by making use of the AMT Software Development Kit 
(SDK)2. This SDK contains a Network Interface Guide, which includes all of the 
necessary APIs for RSM to be able to communicate with and send specific com-
mands to the Intel Manageability Engine on the POS workstations. NCR software 
engineers added support for the Intel AMT APIs into the RSM product. This re-
quired minor architectural changes to RSM based on the fact it now had to perform 
certain tasks within the context of Intel AMT6. These tasks, for example, included 
the “zero touch” remote configuration functionality, where the server can provision 
the Intel AMT–enabled client without the need to physically touch the client in the 
process. Remote configuration can therefore be performed on “bare-bones” systems, 
before the OS and/or software management agents are installed. Remote configura-
tion allows the retailer to purchase and install the equipment and then set up and 
configure the Intel AMT capability at a later date without incurring the higher costs 
of physically touching every machine already deployed.

“ Remote management can be  

performed from a server within  

the store or from a remote location 

such as the retailer’s helpdesk, store, 

or headquarters.”

“ Remote configuration allows the 

retailer to purchase and install the 

equipment and then set up and 

configure the Intel AMT capability 

at a later date without incurring the 

higher costs of physically touching 

every machine already deployed.”

“ RSM EE provides an estate wide 

view of the terminal and peripheral 

assets in terms of asset information 

and state-of-health.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)   |   91 

Once both the client hardware and remote management console software are ready 
for Intel AMT and the customer has deployed the necessary equipment, the next 
phase is provisioning the equipment in the IT enterprise. Provisioning refers to the 
process by which an Intel AMT client is configured with the attributes necessary for 
the client to become manageable within a specific IT environment. There are two 
modes of Intel AMT provisioning: Small Business Mode (less complex and suitable 
for small volume deployments) and Enterprise Mode (more complex and suitable 
for large volume deployments). A typical large centralized retailer employing Intel 
AMT Enterprise Mode would provision for Intel AMT as follows:

•  Pre-shared secrets are generated and associated to the provisioning server.
•  The pre-shared secrets are distributed to the Intel Management Engine 

(Intel ME).
•  With the Intel Management Engine in setup mode, an IP address and associated 

DHCP options are obtained.
•  The Intel Management Engine requests resolution of “ProvisionServer” based 

on the specified DNS domain.
•  POS Intel AMT enabled client sends “hello” packet to ProvisionServer.

Domain_Name.com upon connecting to network
•  Provisioning requests are received by provisioning server (handled by either RSM 

EE or RSM SE depending on customer configuration).
•  The POS Intel AMT client and provisioning server exchange keys, establish trust, 

and securely transfer configuration data to the Intel AMT client 

For more detailed descriptions, please refer to the Intel® Active Management Technology 
(Intel® AMT) Setup and Configuration Service Installation and User Manual.3

Target Usage Models
There are three basic usage models in which Intel AMT plays a central role: remote 
power control, remote repair, and remote asset and software management. All three 
models have direct cost-saving advantage for both the equipment manufacturer as 
well as the IT enterprise.

Remote Power On/Off Power Savings
Many retailers today leave their machines up and running during store off-hours 
for a number of reasons, such as the potential for deployment of software patches, 
the inconvenience of having people manually turn the machines off or the time 
required for the machines to fully become operational when business resumes the 
next day. Also, while some companies enable sleep states while the machine is idle, 
the reality is that most POS in the field today remain fully powered even when 
the system is not in use. Intel AMT may be utilized to automatically and remotely 
power down the POS clients during store off-hours and then remotely power them 
back up before store employees arrive the next business day to reopen the store. 
The study by Global Retail Insights mentioned earlier finds that a retailer with 200 
stores, 10 POS workstations per store and operating 14 hours per day, 360 days per year 
could save approximately USD 162,000 annually simply by implementing power-off au-
tomation.1 Also, if you consider that hardware using Intel AMT is inherently more 
energy efficient due to the newer technology microprocessors and chipsets, and that 
it takes approximately 3 watts of power to cool the store for every 1 watt of power 

“ Provisioning refers to the process  

by which an Intel AMT client  

is configured with the attributes 

necessary for the client to become 

manageable within a specific  

IT environment.”

“ Intel AMT may be utilized to 

automatically and remotely  

power down the POS clients  

during store off-hours and then  

remotely power them back up  

before store employees arrive  

the next business day to reopen  

the store.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

92   |   Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)

that is placed into the store, retailers could realize an additional 70-percent  
reduction in terminal cooling costs. This equates to an additional USD 120,000 
per year according to Global Retail Insights. Thus, implementing remote power 
down during off hours could potentially save USD 282,000 per year (USD 
162,000000 + 120,000). Over an asset life of 7 years, the savings adds up to  
nearly USD 2,000,000.

Remote power on/off automation can be implemented using Intel AMT by simply 
sending the encrypted power on/off command from the IT management console at 
predetermined times that can be programmed into the console. Intel AMT supports 
power on, power off, and power cycle (power off then back on) commands. IT  
personnel may also remotely manage the clients when in sleep modes S3 (suspend  
to RAM) or S4 (suspend to disk) as long as the clients remain plugged into AC 
power and connected using wired networking (wireless power policies place greater 
priority on battery life and therefore shut down the Intel ME). This allows for even 
further reductions in energy consumption since in most retail environments there  
is a considerable amount of time when the machine is idle and not in use. 

Remote Diagnostics and Repair
Another important use case for the retail IT enterprise is the ability to perform 
remote diagnostics and repair. As stated earlier, if the machines are down, the 
company is most likely not making money. In many cases a machine may be unable  
to boot the operating system due to a number of reasons such as missing or corrupt 
OS files, drivers, or registry entries. NCR RSM can leverage the power control 
capability in Intel AMT to power cycle the machine, employ IDER to boot from a 
remote image containing a small OS such as DOS, and then run diagnostic software 
to pinpoint the problem. In the same fashion, IT personnel can push updated drivers 
at runtime and patch them into the main OS. Figure 4 illustrates the sequence.

Preventive maintenance is another area where Intel AMT adds significant value, 
particularly for mission critical equipment. The ability to predict when a compo-
nent might fail and take action prior to it failing is a tremendous benefit. The 3PDS 
area of an Intel AMT–enabled POS workstation, for example, can be used to store 
information about field replaceable system components. Peripheral component 
information such as manufacturer, model numbers, and serial numbers, as well as 
information like the number of hours the power supply is on, the number of lines 
a receipt printer has printed, the number of card swipes a magnetic stripe reader 
has read, or the number of times the solenoid of a cash drawer has fired could all 
be tracked. Thresholds can be set according to historical reliability data so that 
alerts can go back to the Intel AMT–enabled remote console and allow the service 
personnel to take action before the component actually fails and the service can be 
performed at a convenient time for the customer. Global Retail Insights reports that 
a conservative 15-percent reduction in physical service calls can save approximately 
USD 108,000 per year.

NCR POS NCR IT Console

1

Remote rebook from
 standard image

IT diagnoses problems
 and repairs

2

OS hung or unable to boot

Expired heartbeat, 
send alert

4

3

Figure 4: Remote diagnostics and repair 

sequence. Source: NCR Corporation, 2008

“ Retailers could realize an additional 

70-percent reduction in terminal 

cooling costs. This equates to an  

additional USD 120,000 per year 

according to Global Retail Insights.”

“ The number of lines a receipt 

printer has printed, the number 

of card swipes a magnetic stripe 

reader has read, or the number of 

times the solenoid of a cash drawer 

has fired could all be tracked.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)   |   93 

Remote Asset and Software Management
Tracking important system information such as equipment location, serial numbers, 
asset numbers, and installed software are extremely important to an IT organization. 
Having this information readily available allows the enterprise to better control their 
hardware and software inventory as well as manage software patches and licensing.

Intel AMT allows IT administrators to reduce the support costs and keep their  
systems operating at peak performance by ensuring their clients have the latest soft-
ware updates. With Intel AMT, software patches and updates can be scheduled during 
times that minimize impact to the business such as store off hours or off-peak times. 
The remote console could also be designed to support mass deployment of software 
update distribution following a one-to-many model (from one management console 
to many remote clients simultaneously). This is a key benefit for a retail enterprise 
because it allows for software image uniformity required to deliver consistent  
device behavior and customer service. A one-to-many deployment model allows  
IT administrators to create groups or collections of Intel AMT enabled clients  
and then distribute BIOS or software updates with a single command to all clients 
within the group, thereby significantly reducing the time and cost it takes to make 
BIOS changes over a wide range of terminals. 

Challenges in Activating Intel® Active Management Technology  
(Intel® AMT)
While there are substantial benefits to be gained from Intel AMT, there are also 
a number of challenges to deal with. The good news is that these challenges can 
certainly be overcome with some up front planning and infrastructure preparation. 
Once an IT enterprise gains a basic understanding of the technology and its poten-
tial benefits and decides to move forward with Intel AMT activation, the following 
are a few things for the organization to consider:

Establish goals and objectives – the organization should outline what it wants to 
accomplish and set appropriate objectives to meet both short term and long term 
goals. Define which Intel AMT features will be implemented and in what time-
frame. Start small then build from there.

Measure benefits – the organization should determine the key metrics to measure 
before and after Intel AMT activation; for example, percentage energy savings or per-
centage reduction in physical support visits or percentage reduction in total support 
costs, so that benefits can be quantified and then determine if a positive ROI exists. 

Define enterprise infrastructure impact – Implementing Intel AMT often means 
doing things a little differently. The organization should ask: Is the necessary 
infrastructure in place? (DNS/DHCP servers, provisioning server, keys/certificates, 
remote management console that supports desired implementation features). What 
internal processes need to change to support this technology?

“ The good news is that these  

challenges can certainly be over-

come with some up front planning 

and infrastructure preparation.”

“ Implementing Intel AMT  

often means doing things a  

little differently.”

“ With Intel AMT, software patches 

and updates can be scheduled  

during times that minimize  

impact to the business such as  

store off hours or off-peak times.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

94   |   Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)

Define the appropriate security level for the customer environment –  Insufficient 
security allows for potential attacks or may expose sensitive financial or personal 
consumer data. However, too much security is more complex to implement and 
may require additional expertise.

Allocate appropriate resources – there is certainly a learning curve required to successfully 
implement Intel AMT and OEMs as well as retail IT must allow for adequate time and 
resources. There is an extensive number of tools, utilities, software, and documentation 
available to assist with the learning curve. 

Conclusion

Intel AMT is a powerful technology with broad and direct applicability to customer-
facing, mission-critical embedded equipment. Intel AMT can save power, reduce 
service calls, improve uptime, and reduce overall product maintenance and support 
costs. Intel AMT can deliver compelling total cost of ownership savings of approxi-
mately USD 200 per machine per year and lifecycle benefit equivalent to nearly 60 
percent of the original purchase price. For mission critical embedded applications, 
Intel AMT in most cases delivers a positive return on investment and therefore 
becomes a key differentiator for the OEM. While implementing the technology  
is not a trivial task, with appropriate planning and preparation, it can be successfully 
integrated into embedded, mission-critical devices and deployed into the corresponding 
IT environment. Intel AMT serves as an enabler for companies like NCR to build  
better products and deliver proactive service intelligence ultimately leading to 
improvements in operational efficiency, profitability, and significant increases in 
customer service.

Acknowledgements

I would like to acknowledge and thank the technical reviewers of this article: Jerome 
Esteban, Dennis Fallis, and Mike Millsap for their valuable input. Special thanks 
also go to Alan Hartman and Roger Farmer of NCR Corporation for their support 
of this article as well as their many contributions to the successful development and 
deployment of Intel AMT technology in NCR products. 



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Building and Deploying Better Embedded Systems with Intel® Active Management Technology (Intel® AMT)   |   95 

References
[1]  S. Langdoc, Global Retail Insights, an IDC Company. “Advanced CPUs: The 

Impact on TCO Evaluations of Retail Store IT Investments.” September 2008
[2]  Intel® Active Management Technology (Intel® AMT) Software Development Kit, 

the reference for Intel AMT developers. http://www.intel.com/software/amt-sdk

[3] Intel® vPro™ Expert Center.  http://www.intel.com/go/vproexpert

[4]  Manageability Developer Tool Kit (DTK), a complete set of freely available Intel 
AMT tools and source code.  http://www.intel.com/software/amt-dtk

[5] NCR* Analyst Day presentation, December 2008  http://www.ncr.com

[6] NCR correspondence

Author’s Biography

Jose Izaguirre: Jose Izaguirre is part of Intel Corporation’s Sales and Marketing 
Group and has held the role of field applications engineer for the past 8 years.  
In this position he is responsible for driving strategic embedded systems customer 
engagements, participating in pre-sales technical activities, and providing post-sales 
customer technical support. Jose joined Intel following more than 10 years at  
NCR Corporation where he held a number of engineering roles that included  
POS and kiosk system architecture as well as motherboard architecture, design,  
and development. Jose received a bachelor’s degree in electrical engineering from 
Vanderbilt University and also holds a master’s of business administration degree 
from Georgia State University.



96   |   

Contributors

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

IMPLEMENTING FIRMWARE FOR EMBEDDED INTEL® ARCHITECTURE 

SySTEMS: OS-DIRECTED POWER MANAGEMENT (OSPM) THROUGH  

THE ADVANCED CONFIGURATION AND POWER INTERFACE (ACPI)

John MacInnis 
Intel Corporation

Abstract

A firmware component is essential for embedded systems using Intel®  
architecture designs. 

Embedded Intel® Architecture designs must include a firmware stack that initializes 
the platform hardware and provides support for the operating system (OS). Power 
management is a design priority for both server equipment and battery-operated 
devices. The firmware layer plays a critical role in embedded system power manage-
ment. OS-directed power management using the Advanced Configuration and Power 
Interface (ACPI) methodology is a solution that allows for cost-effective firmware 
development and quick time to market. Pushing state machine management and 
decision policies to the OS and driver layer allows post-production flexibility for  
tuning power management. This article explores how ACPI has provided efficiencies 
over APM and BIOS-directed power management and provides a condensed overview 
of APCI technology. 

Introduction

Embedded systems using the Intel® architecture must include a firmware stack that 
initializes CPU cores, memory, I/O, peripherals, graphics, and provides runtime 
support for operating systems. While Intel architecture-based PC designs typically 
use a full BIOS solution as a firmware stack, many embedded systems are designed 
with a more optimized firmware layer known as a boot loader. The job of the boot 
loader is to quickly initialize platform hardware and boot the system to an embed-
ded real-time operating system (RTOS) or OS. Until recently, many embedded 
operating systems were designed to boot the device and enable all the drivers and 
networking on the board with no power management per se. 

As Intel architecture expands into more differentiated types of embedded systems, 
power management becomes increasingly important both for saving electricity costs  
as well as maximizing battery life in mobile systems.  

OS-directed Power Management (OSPM) using ACPI methodology provides an  
efficient power management option. For system developers, an ACPI design can 
help yield full PM control with quick time to market and cost savings. It offers  
flexibility by pushing state machine management and policy decisions to the OS 
and driver layer. The OS creates policy decisions based on system use, applications, 
and user preferences. From a maintenance and support perspective, patches, updates 
and bug fixes are better managed at the OS and driver layer than in the firmware.

“ Many embedded systems  

are designed with a more  

optimized firmware layer  

known as a boot loader.”

Intel® Architecture
Firmware
Advanced Configuration and Power  
Interface (ACPI)
OS-Directed Power Management
Embedded

“ For system developers, an ACPI 

design can help yield full PM  

control with quick time to market 

and cost savings.”



   |   97 

Intel® Technology Journal | Volume 13, Issue 1, 2009

Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

A Note About Firmware Terminology
Since the first IBM* clones in the early 1980s, the PC BIOS has been the predomi-
nant firmware layer in most of Intel architecture system designs commonly referred 
to as x86. It has been observed that many Embedded Intel® Architecture product 
designers have unique requirements not always completely satisfied by the standard 
PC BIOS. This paper uses the terms firmware and boot loader to denote the distinct 
differences between a PC BIOS and the hybrid firmware required for many of today’s 
embedded systems.

Dynamic System Power Management

Many types of embedded systems built on Intel architecture are necessarily becoming 
more power-savvy. Implementing power management involves complex state 
machines that encompass every power domain in the system. Power domains can  
be thought of globally as the entire system, individual chips, or devices that can be 
controlled to minimize power use, as illustrated in the diagram in Figure 1. 

Power and Thermal Management States
G0, G1, G2, and G3 signify global system states physically identifiable by the user

G3 – Mechanical Off

G2 – Soft Off

G1 – Sleeping

G0 - Working

S0, S1, S2, S3, S4 signify different degrees of system sleep states invoked during 
G1.

D0, D1,…, Dn signify device sleep states. ACPI tables include device-specific 
methods to power down peripherals, while preserving Gx and Sx system states;  
for example, powering down a hard disk, dimming a display or powering down 
peripheral buses when they are not being used.

C0, C1, C2, C3, and C4 signify different levels of CPU sleep states. The presumption 
is that deeper sleep states save more power at the tradeoff cost of longer latency to return 
to full on.

P0, P1, P2,…, Pn signify CPU performance states while the system is on and the 
CPU is executing commands or in the C0 state.

G0 Working

• • •
G1 Sleeping

G3
Mechanical Off

G2
Soft Off

S4

S0

S3 C3

S2 C2

S1 C1

D1n

D12

D11

D10

D2n

D22

D21

D20

Dnn

Dn2

Dn1

Dn0

Tn
T2

T1

T0

P0
P1 P2 Pn

Figure 1: System power state diagram.

Source: Intel Corporation, 2009

“ Many Embedded Intel®  

Architecture product designers  

have unique requirements not  

always completely satisfied by  

the standard PC BIOS.”

“ The presumption is that deeper 

sleep states save more power at  

the tradeoff cost of longer latency  

to return to full on.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

98   |   Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

“ BIOS-based power management 

engines are costly to implement 

and offer little in the way of  

flexibility in the field or at  

the OS layer.”

T0, T1, T2,…, Tn signify CPU-throttled states while the CPU is in the P0 
operational mode. Clock throttling is a technique used to reduce a clock duty cycle, 
which effectively reduces the active frequency of the CPU. The throttling technique 
is mostly used for thermal control. Throttling can also be used for things such as 
controlling fan speed. Figure 2 shows a basic conceptual diagram of a clock 
throttled to 50 percent duty cycle.

Power Consumption and Battery Life
Power consumption is inversely related to performance, which is why a handheld 
media player can play 40 hours of music but only 8 hours of video. Playing video 
requires more devices to be powered on as well as computational CPU power. Since 
battery life is inversely proportional to system power draw, reducing power draw by 
50 percent doubles the remaining battery life, as shown in Equation1.

Remaining Battery Life (h) =              (1)Remaining Capacity (Wh)
System Power Draw (W)

System PM Design Firmware – OS Cooperative Model
In Intel architecture systems, the firmware has unique knowledge of the platform 
power capabilities and control mechanisms. From development cost and mainte-
nance perspectives, it is desirable to maintain the state machine complexity and 
decision policies at the OS layer. The best approach for embedded systems using 
Intel architecture is for the firmware to support the embedded OS by passing up 
control information unique to the platform while maintaining the state machine 
and decision policies at the OS and driver layer. This design approach is known as 
OS-directed power management or OSPM. 

Under OSPM, the OS directs all system and device power state transitions. Employing 
user preferences and knowledge of how devices are being used by applications, the OS 
puts devices in and out of low-power states. The OS uses platform information from the 
firmware to control power state transition in hardware. APCI methodology serves a key 
role in both standardizing the firmware to OS interface and optimizing power manage-
ment and thermal control at the OS layer. 

Advantages of ACPI over Previous Techniques

Before ACPI technology was adopted, Intel architecture systems first relied  
on BIOS-based power management schemes and then later designs based  
on Advanced Power Management (APM). 

V
o

lt
ag

e

Vcc

t

Full Clock

V
o

lt
ag

e

Vcc

t

50% Duty Cycle

Figure 2: Clock throttling.

Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

    |   99 Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

BIOS-based Power Management
BIOS-based power management engines are costly to implement and offer little in 
the way of flexibility in the field or at the OS layer. In BIOS-based power manage-
ment, a PM state machine was designed and managed inside the BIOS firmware and 
then ported for each specific platform. The BIOS relied on system usage indicators 
such as CPU cache lines, system timers, and hardware switches to determine PM 
state switching triggers. In this scheme the validation and testing phase was fairly 
complex. Updating firmware in the field is a nontrivial task and riskier than installing 
OS patches or updating drivers. Once the BIOS-driven power management engine 
shipped in a product it was difficult to modify, optimize or fix compatibility bugs. 
In the field systems could and sometimes did unexpectedly hang due to insufficient 
system monitoring or incompatibility with OS and runtime applications.

Advanced Power Management (APM)
In the 1990s APM brought a significant improvement by adding a rich API layer 
used for a more cooperative model between the OS and the BIOS. Using APM  
the OS was required to call the BIOS on a predetermined frequency in order to 
reset counters thereby indicating system use. APM also employed APIs to allow 
the OS to make policy decisions and make calls into the BIOS to initiate power 
management controls. 

APM expanded power management choices to scalable levels of sleep states to  
balance power savings and wake latency. It also allowed for power managing  
devices independently. For example the OS could elect to put the hard drive in 
sleep mode while keeping the rest of the system awake. 

APM was an improvement in overall system PM capability and allowed for better 
management from the OS but it had the negative effect of requiring the BIOS  
to maintain a more complex state machine than before. This involved increased 
development and testing/validation costs. When quality and unexpected errors  
occurred they were difficult and costly to fix downstream from the factory where the 
BIOS is typically finalized. The APM scheme was responsible for many infamous 
“blue screens,” which were challenging to work around in the field and sometimes 
required BIOS field upgrades, a costly and somewhat risky operation.

“APM expanded power  

management choices to scalable  

levels of sleep states to balance  

power savings and wake latency.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

100   |   Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

Advanced Configuration and Power Interface (ACPI)
APCI solved many problems by creating a scheme where the BIOS or embedded 
boot loader firmware is only responsible for passing its knowledge of the hardware 
control mechanisms and methods to the OS while pushing state machine manage-
ment and PM policy decisions to the OS and driver layer. APCI methodology can 
simplify the BIOS or firmware implementation and testing cycle. Instead of testing 
a complex state machine, firmware validation can cycle through forced system states 
exercising all ACPI control methods and verify correct operation and desired results 
from the hardware, as illustrated in Figure 4. This can save significant time and cost 
at the BIOS and firmware design center and can help achieve greater quality 
objectives at the firmware layer which in turn eliminate costly and risky BIOS or 
firmware upgrades in the field.

ACPI Overview 

First published in 1999, the Advanced Configuration and Power Interface (ACPI) 
specification is an open industry specification co-developed by Hewlett-Packard,* 
Intel, Microsoft,* Phoenix,* and Toshiba.* [1]

The ACPI specification was developed to establish industry common interfaces 
enabling robust OS-directed motherboard device configuration and power  
management of both devices and entire systems. In compliant systems, ACPI  
is the key element in operating system–directed configuration and Power Management 
(OSPM). ACPI evolves a preexisting collection of power management BIOS code.  
Advanced Power Management (APM) application programming interfaces (APIs), 
PNPBIOS APIs, multiprocessor specification (MPS) tables and so on into a  
well-defined power management and configuration interface specification. ACPI 
remains a key component of later Universal Extensible Firmware Interface  
(UEFI) specifications.

HARDWARE

Power control 
functions integrated 
in CPU, components 
and mainboard

FIRMWARE

Test and verify HW 
power management 
functionality under 
forced system state
conditions

OS and DRIVERS

Develop PM state 
machine and polocies 
Tune for drivers, user 
preferences and 
application loads

Figure 3: System power management development and operational phases 

Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

    |   101 Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

ACPI specifications define ACPI hardware interfaces, ACPI software interfaces, and 
ACPI data structures. The specifications also define the semantics of these inter-
faces. ACPI is not a software specification; it is not a hardware specification, 
although it addresses both software and hardware and how they must behave. ACPI 
is, instead, an interface specification comprised of both software and hardware 
elements, as shown in Figure 4.

Firmware creators write definition blocks using the ACPI control method source 
language (ASL) and operating systems use an ACPI control method language 
(AML) interpreter to produce byte stream encoding.

ACPI Operation Overview

The way ACPI works is that the firmware creates a hierarchical set of objects that 
define system capabilities and methods to control system hardware. The APCI 
objects are then passed to the operating system in a well defined handshake during 
OS boot. The OS loads the ACPI objects into its kernel and then uses the informa-
tion along with OS level system drivers to define and execute dynamic hardware 
configuration, thermal management control policies, and power management 
control policies. 

Before OS boot, the firmware places a series of pointers and table arrays in memory 
for the OS to locate. During boot the OS searches for a signature indicating pres-
ence of a root system description pointer (RSDP). The pointer is found either by 
scanning predefined memory space for the signature, “RSD PTR” or through and 
Extensible Firmware Interface (EFI) protocol. In the case of an EFI-compliant 
system, the RSDP is detected through the presence of a unique GUID in the EFI 
System Table, which specifies the location of the RSDP.

Root System Description Pointer (RSDP)
The RSDP contains a 32-bit pointer to the Root System Description Table (RSDT) 
and/or a 64-bit pointer to the Extended System Description Table (XSDT). The 
RSDT and the XSDT hold equivalent data, one for 32-bit systems and the other 
for 64-bit systems respectively. In this way a single firmware image can support  
both 32- and 64-bit operating systems. 

Operating System Kernel

OS-directed Power
Management

ACPI Driver/AML
Interpreter

Firmware ACPI Tables

Platform Hardware
ACPI

Registers

Figure 4: ACPI system architecture.

Source: Intel Corporation, 2009

“ Firmware creates a hierarchical  

set of objects that define system 

capabilities and methods to  

control system hardware.”

“ A single firmware image can  

support both 32- and 64-bit  

operating systems.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

102   |   Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

Root System Description Table (RSDT)
The RSDT/XSDT tables point to platform-specific table headers, which in turn 
contain platform-specific ACPI objects. The ACPI firmware table structure is 
illustrated in Figure 5. One such table is the Fixed ACPI Description Table (FADT) 
which contains the Firmware ACPI Control Structure (FACS) and pointer to the 
Differentiated System Description Table (DSDT).  

Differentiated System Description Table (DSDT)
The DSDT contains information for base support of the platform including objects, 
data, and methods that define the platform hardware and how to work with it includ-
ing power state transitions. The DSDT is unique and always loaded in the OS kernel 
and once loaded cannot be unloaded during the runtime cycle of the system. Sec-
ondary System Description Tables (SSDTs) can be included to augment the DSDT 
or differentiate between platform SKUs. The SSDTs cannot replace the DSDT or 
override its functionality.

The ACPI Name Space
Using the table data, the OS creates what is known as the ACPI namespace,  
which becomes part of the runtime kernel. The ACPI namespace is a hierarchical 
tree structure of named objects and data used to manage dynamic hardware con-
figuration and to create and execute power and thermal management policies.

The information in the ACPI namespace comes from the DSDT, which contains 
the Differentiated Definition Block, and one or more other definition blocks. A 
definition block contains information about the hardware in the form of data and 
control methods encoded in ACPI Machine Language (AML). A control method 
is a definition of how the OS can perform hardware related tasks. The firmware 
author writes control methods using ACPI Source Language (ASL) which is then 
compiled to AML using an Intel® ASL compiler.

ASL Programming Language
ACPI Source Language (ASL) is a language for defining ACPI objects especially for 
writing ACPI control methods. Firmware developers define objects and write con-
trol methods in ASL and then compile them into ACPI Machine Language (AML) 
using a translator tool commonly known as a compiler. For a complete description 
of ASL, refer to Chapter 17 of the ACPI Specification revision 3.0b. The following 
code provides an example of basic ASL code used to define and APCI definition 
block and some basic control methods.

Firmware ACPI
Control Structure

(FACS)

Differentiated
System Description

Table (DSDT)

Secondary System
Description

Table(s) (SSDT)

Fixed ACPI Description Table(s)
(FADT)

Extended System Description
Table (XSDT)

OS-directed Power
Management

Contains an array of
64-bit pointer to OS
and platform specific

table headers

Contains an array of
32-bit pointer to OS
and platform specific

table headers

Root System Description
Pointer (RSDP)

64-bit 32-bit

Figure 5: ACPI firmware table structure.

Source: Intel Corporation, 2009

“ ACPI Source Language (ASL)  

is a language for defining ACPI 

objects especially for writing ACPI 

control methods.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

    |   103 Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

// ACPI Control Method Source Language (ASL) Example  
DefinitionBlock ( 
 “forbook.aml”,  // Output Filename 
 “DSDT”,   // Signature 
 0x02,    // DSDT Compliance Revision 
 “OEM”,    // OEMID 
 “forbook”,   // TABLE ID 
 0x1000    // OEM Revision 
) 
{ // start of definition block  
 OperationRegion(\GIO, SystemIO, 0x125, 0x1)  
 Field(\GIO, ByteAcc, NoLock, Preserve) { 
  CT01, 1,  
 } 
 Scope(\_SB) { // start of scope 
  Device(PCI0) {  // start of device 
           PowerResource(FET0, 0, 0) {  // start of pwr 
    Method (_ON) { 
              Store (Ones, CT01)        // assert power 
     Sleep (30)          // wait 30m 
    } 
    Method (_OFF) { 
             Store (Zero, CT01)          // assert reset# 
    } 
    Method (_STA) { 
     Return (CT01) 
    } 
   } // end of power 
  } // end of device 
 } // end of scope 
} // end of definition block 

CPU Power and Thermal Management
APCI is used to help implement CPU controls for both thermal and power manage-
ment. Clock throttling for example is commonly used for passive thermal control, 
meaning without turning on fans. The CPU dissipates less heat when it is actively 
throttled. Switching CPU power states, known as Cx states, is commonly used to save 
power when the full performance capabilities of the CPU are not required. 

“ Clock throttling for example is 

commonly used for passive thermal 

control, meaning without turning 

on fans.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

104   |   Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

Processor Control Block
CPU control can be done through ACPI standard hardware using the processor 
control block registers named P_CNT, P_LVL2 and P_LVL3. 

Processor Control (P_CNT) - The CLK_VAL field is where the duty setting of 
the throttling hardware is programmed as described by the DUTY_WIDTH and 
DUTY_OFFSET values in the FADT. Table 1 lists the processor control register bits.

Table 2 shows CPU clock throttling information. Writes to the control registers  
allow for programming the clock throttling duty cycle. 

Processor LVL2 Register (P_LVL2) - The P_PVL2 register is used to transition the 
CPU into the C2 low power state. Similarly the P_PVL3 register is used to transi-
tion the CPU to the C3 low power state and so on. In general, a higher number 
means more power savings at the expense of conversely longer wake time latency. 
Table 3 describes the P_LVL2 control for invoking the C2 state.

Bit Name Description

0–3 CLK_VAL Possible locations for the clock throttling value.

4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL field. The THT_EN bit must be reset to 
LOW when changing the CLK_VAL field (changing the duty setting).

5–31 CLK_VAL Possible locations for the clock throttling value.

Table 1: Processor control register bits. Source: Advanced Configuration and Power Interface Specification; Revision 3.0b (2006)

Field Byte Length Byte Offset Description

DUTy_OFFSET 1 104 The zero-based index of where the processor’s duty cycle setting is within the 
processor’s P_CNT register.

DUTy_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in the P_CNT register. Each 
processor’s duty cycle setting allows the software to select a nominal processor 
frequency below its absolute frequency as defined by:

THTL_EN = 1

BF * DC/(2DUTy_WIDTH)

    Where:

BF–Base frequency

DC–Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF. A DUTy_WIDTH value of 
0 indicates that processor duty cycle is not supported and the processor continuously 
runs at its base frequency.

Table 2: FADT processor throttle control information. Source: Advanced Configuration and Power Interface Specification; 
Revision 3.0b (2006)



Intel® Technology Journal | Volume 13, Issue 1, 2009

    |   105 Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

CPU Throttling Control through Software
CPU throttling control can be directed through software using CPU control 
methods written in ASL and passed to the operating system through the DSDT or 
SSDT. Primary control methods include the following. 

_PTC (Processor Throttling Control) - Defines throttling control and status regis-
ters. This is an example usage of the _PTC object in a Processor object list:

   Processor ( 
 \_SB.CPU0,  // Processor Name 
 3,    // ACPI Processor number 
 0x120,   // PBlk system IO address 
 6 )    // PBlkLen 
    { //Object List 
 
 Name(_PTC, Package ()              // Processor Throttling Control object
 { 
  ResourceTemplate(){Register(FFixedHW, 0, 0, 0)},  
// Throttling_CTRL 
  ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}  
// Trottling_STATUS 
 }) // End of _PTC object 
    } // End of Object List
_TSS (Throttling Supported States) – Defines a table of throttling states and con-
trol/status values. This is an example usage of the _TSS object in a Processor object 
list: 
Name (_TSS, Package() 
{  // Field Name                 Field 
Type 
 Package ()         
// Throttle State 0 Definition – T0 
 {  
  FreqPercentageOfMaximum,   // %CPU core 
freq in T0 state 
  Power,        
// Max Power dissipation in mW for T0 
  TransitionLatency,     // Worst 
case transition latency Tx->T0  
  Control,       
// Value to be written to CPU Ctrl register 
  Status        

Bit Name Description

0-7 P_LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads to this register 
also generate an “enter a C2 power state” to the clock control logic.

Table 3: Processor LVL2 register bits. Source: Advanced Configuration and Power Interface Specification; Revision 3.0b (2006)



Intel® Technology Journal | Volume 13, Issue 1, 2009

106   |   Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

// Status register value after transition  
 }, 
 . 
 . 
 . 
  Package ()        
 // Throttle State n Definition – Tn 
 {  
  FreqPercentageOfMaximum,   // %CPU core 
freq in Tn state 
  Power,        
// Max Power dissipation in mW for Tn 
  TransitionLatency,     // Worst 
case transition latency Tx->Tn  
  Control,       
// Value to be written to CPU Ctrl register 
  Status        
// Status register value after transition  
 } 
}) // End of _TSS object
_TPC (Throttling Present Capabilities) - Specifies the number of currently available 
throttling states. Platform notification signals re-evaluation. This is an example usage 
of the _TPC object in a Processor object list:
    Method (_TPC, 0)  // Throttling Present Capabilities method 
  { 
   If (\_SB.AC) 
   { 
    Return(0)  // All Throttle 
States are available for use. 
   } 
   Else 
   { 
    Return(2)  // Throttle States 0 
and 1 won’t be used. 
   } 
  } // End of _TPC method 

Conclusion 

Today’s embedded systems built on Intel architecture have distinctly different 
requirements from the standard PC BIOS. For embedded systems requiring power 
management, an ACPI based model is recommended. ACPI includes well defined 
limits of firmware functionality that help yield high quality firmware while keeping 
production costs downs and time to market fast. At the same time ACPI can enable 
very flexible and efficient power management. It is encouraged that embedded firm-
ware or boot loader developers work closely with embedded OS/RTOS designers to 
understand and build fully optimized boot loader to OS protocols and interfaces. 

“ ACPI includes well defined limits 

of firmware functionality that help 

yield high quality firmware while 

keeping production costs downs 

and time to market fast.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

   |   107 Implementing Firmware for Embedded Intel® Architecture Systems: OS-Directed Power Management (OSPM) through the Advanced 
Configuration and Power Interface (ACPI)

References
[1]  Advanced Configuration and Power Interface Speciation; Revision 3.0b October 

10, 2006; Hewlett-Packard,* Intel, Microsoft,* Phoenix,* Toshiba*

Author Biography

John C. MacInnis: John C. MacInnis, Embedded and Communications Group, 
Intel Corporation, Technical Marketing, has held engineering, management, 
product marketing and technical marketing positions managing Intel® architecture 
firmware and BIOS for over 15 years. He holds an MBA from the University of 
Phoenix and a BSECE from the University of Michigan.



108   |   A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures

Contributors

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

A REAL-TIME HPC APPROACH FOR OPTIMIzING  

INTEL MULTI-CORE ARCHITECTURES

Dr. Aljosa Vrancic 
National Instruments

Jeff Meisel 
National Instruments

Abstract

Complex math is at the heart of many of the biggest technical challenges facing  
today’s engineers. With embedded multi-core processors, the type of calculations 
that would have traditionally required a supercomputer can now be performed at 
lower power in a real-time, embedded environment. This article presents findings that 
demonstrate how a novel approach with Intel hardware and software technology 
is allowing for real-time high-performance computing (HPC) in order to solve engi-
neering problems with multi-core processors that were not possible only five years 
ago. First, we will review real-time concepts that are important for understanding 
this domain of engineering problems. Then, we will compare the traditional HPC 
approach with the real-time HPC approach outlined in this article. Next, we will 
outline software architecture approaches for utilizing multi-core processors along 
with cache optimizations. Finally, industry examples will be considered that employ 
this methodology.

Introduction to Real-Time Concepts

Because tasks that require acceleration are so computationally intensive, your typical 
HPC problem could not traditionally be solved with a normal desktop computer, 
let alone an embedded system. However, disruptive technologies such as multi-core 
processors enable more and more HPC applications to now be solved with off-the-
shelf hardware.

Where the concept of real-time HPC comes into the picture is with regard to  
number crunching in a deterministic, low-latency environment. Many HPC  
applications perform offline simulations thousands and thousands of times and 
then report the results. This is not a real-time operation because there is no timing 
constraint specifying how quickly the results must be returned. The results just  
need to be calculated as fast as possible.

Previously, these applications have been developed using a message passing protocol 
(such as MPI or MPICH) to divide tasks across the different nodes in the system.  
A typical distributed computer scenario looks like the one shown in Figure 1, with 
one head node that acts as a master and distributes processing to the slave nodes in 
the system.

By default, it is not real-time friendly because of latencies associated with networking 
technologies (like Ethernet). In addition, the synchronization implied by the message 
passing protocol is not necessarily predictable with granular timing in the millisecond 
ranges. Note that such a configuration could potentially be made real-time by 

Node 1 Node 3

Node 2 Node 4

Hub

Head Node

Figure 1: Example configuration in a traditional 
HPC system .

Multi-Core
Symmetric Multiprocessing (SMP)
High-Performance Computing (HPC)
Nehalem
Cache Optimization
Real-Time Operating System (RTOS)
LabVIEW



A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures   |   109 

Intel® Technology Journal | Volume 13, Issue 1, 2009

replacing the communication layer with a real-time hardware and software layer 
(such as reflective memory), and by adding manual synchronization to prioritize and 
ensure completion of tasks in a bounded timeframe. Generally speaking though, the 
standard HPC approach was not designed for real-time systems and presents serious 
challenges when real-time control is needed.

An Embedded, Real-Time HPC Approach  
with Multi-Core Processors

The approach outlined in this article is based on a real-time software stack, as  
described in Table 1, and off-the-shelf multi-core processors.

Real-time applications have algorithms that need to be accelerated but often involve 
the control of real-world physical systems—so the traditional HPC approach is not 
applicable. In a real-time scenario, the result of an operation must be returned in a 
predictable amount of time. The challenge is that until recently, it has been very hard 
to solve an HPC problem while at the same time closing a loop under 1 millisecond.

Furthermore, a more embedded approach may need to be implemented, where 
physical size and power constraints place limitations on the design of the system.

Now consider a multi-core architecture, where today you can find up to 16  
processing cores. 

From a latency perspective, instead of communicating over Ethernet, with a 
multi-core architecture that can be found in off-the-hardware there is inter-core 
communication that is determined by system bus speeds. So return-trip times are 
much more bounded. Consider a simplified diagram of a quad-core system shown 
in Figure 2.

In addition, multi-core processors can utilize symmetric multiprocessing (SMP) 
operating systems—a technology found in general purpose operating systems like 
Microsoft* Windows,* Linux, and Apple Mac OS* for years to automatically load-
balance tasks across available CPU resources. Now real-time operating systems are 
offering SMP support. This means that a developer can specify timing and prioritize 

System Bus
System
Memory

L2 Cache

Core 0 Core 1

L2 Cache

Core 2 Core 3

Figure 2: Example configuration in a multicore 
system. Source: Adapted from Tian and Shih, 
“Software Techniques for Shared-Cache Multi-
Core Systems,” Intel Software Network.

“ Generally speaking though, the 

standard HPC approach was not 

designed for real-time systems and 

presents serious challenges when 

real-time control is needed.”

Real-Time Software Stack Description

Development Tool or Programming 
Language

The development tool or programming language must provide support to target the RTOS 
of choice, and allow for threading correctness and optimization.  Debugging and tracing 
capabilities are provided to analyze real-time multi-core systems.

Libraries Libraries are thread-safe, and by making them reentrant, may be executed in parallel. 
Algorithms will not induce jitter and avoid dynamic memory allocation or account for it in 
some way.

Device Drivers Drivers are designed for optimal multithreaded performance.

RTOS The RTOS supports multithreading and multitasking, and it can load-balance tasks on multi-
core processors with SMP. 

Table 1: Real-Time Software Stack.



Intel® Technology Journal | Volume 13, Issue 1, 2009

110   |   A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures

thread interactions. Th is is a tremendous simplifi cation compared with message-
passing and manual synchronization, and it can all be done in real-time.

Real-Time HPC System Description

For the approaches outlined in this article, Figure 3 represents the general software 
and hardware approach that has been applied.  

Note: Th e optimizations layer is included as part of the LabVIEW language; how-
ever, it deserves mentioning as a separate component.  

Multi-core Programming Patterns for Real-Time Math 

From a software architecture perspective, the developer should look to incorporate 
a parallel pattern that best suites the real-time HPC problem. Before choosing the 
appropriate pattern, both application characteristics and hardware architecture 
should be considered. For example, is the application computation or I/O bound? 
How will cache structure, overall memory hierarchy, and system bus speeds aff ect 
the ability to meet real-time requirements? Because of the wide range of scenarios 
that are dependent on the specifi c application, the LabVIEW language includes 
hardware-specifi c optimizations, timing, and querying capabilities to help the devel-
oper utilize the multi-core architecture in the most effi  cient manner possible. (From 
a historical perspective, LabVIEW originated as a programming tool for test and 
measurement applications, and therefore it was very important to include timing 
and synchronization capabilities in the form of native constructs in the language.)

As we will observe, these patterns map well to real-world applications that contain 
characteristics that are common for real-time HPC applications: (a) the patterns 
execute code in a loop that may be continuous, and (b) the patterns are com-
municating with I/O. By I/O, in this sense, we are talking about analog to digital 
conversion or digital to analog conversion that would be used to control real-world 
phenomena or control system. (For many control engineers, 1 millisecond (ms) is 
viewed as the longest acceptable “round trip time”, so any software component that 
induces > 1 ms of jitter would make the system unfeasible.)

Entire books are dedicated to programming patterns, and for completeness we will 
at a high-level consider three such patterns that can be applied to a real-time HPC 
application (without delving into the intricacies):

• Pipelining
• Data parallelism
• N-dimensional grid  

Pipelining
Pipelining is known as the “assembly line” technique, as shown in Figure 4. Th is 
approach should be considered in streaming applications and anytime a CPU-
intensive algorithm must be modifi ed in sequence, where each step takes consider-
able time.  

Programming Language

National Instruments LabVIEW 
(datafl ow programming language)

Optimizations (algorithms and structures)

Intel® Math Kernel Library (Intel® MKL)

Intel® Integrated Programming Primitives (Intel® IPP)

Intel® Th read Building Blocks (Intel® TBB)

Real-Time Operation System (RTOS)

National Instruments LabVIEW 
Real-Time SMP

Multicore Processor

Nehalem (or other platform based on 
Intel Architecture)

Figure 3: Example Software and Hardware 

Components in Real-Time HPC System

1 2 3 4

Figure 4: Sequential stages of an algorithm

“For many control engineers, 1 

millisecond (ms) is viewed as the 

longest acceptable “round trip 

time”, so any software component 

that induces > 1 ms of jitter would 

make the system unfeasible.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures   |   111 

Like an assembly line, each stage focuses on one unit of work, with the result passed 
to the next stage until the end of the line is reached.  

By applying a pipelining strategy to an application that will be executed on a 
multi-core CPU, you can break the algorithm into steps that have roughly the same 
unit of work and run each step on a separate core. The algorithm may be repeated 
on multiple sets of data or in data that is streaming continuously, as shown in 
Figure 5.  

The key here is to break your algorithm up into steps that take equal time as each 
iteration is gated by the longest individual step in the overall process. Caveats to 
this technique arise when data falls out of cache, or when the penalty for inter-core 
communication exceeds the gain in performance.  

A code example in LabVIEW is demonstrated in Figure 6. A loop structure is 
denoted by a black border with stages S1, S2, S3, and S4 representing the functions 
in the algorithm that must execute in sequence. Since LabVIEW is a structure 
dataflow language, the output of each function passes along the wire to the input of 
the next. A special feedback node, which appears as an arrow with a small dot 
underneath, is used to denote a separation of the functions into separate pipeline 
stages. A non-pipelined version of the same code would look very similar, without 
the feedback nodes. Real-time HPC examples that commonly employ this tech-
nique include streaming applications where fast Fourier transforms (FFTs) require 
manipulation one step at a time. 

Data Parallelism
Data Parallelism is a technique that can be applied to large datasets by splitting up 
a large array or matrix into subsets, performing the operation, and then combining 
the result.

First consider the sequential implementation, whereby a single CPU would attempt 
to crunch the entire dataset by itself, as illustrated in Figure 7.

Instead, consider the example of the same dataset in Figure 8, but now split into 
four parts. This can be spread across the available cores to achieve a significant 
speed-up.

Now let’s examine how this technique can be applied,  practically speaking. In real-time 
HPC, a very common, efficient, and successful strategy in applications such as control 
systems is the parallel execution of matrix-vector multiplications of considerable size. 
The matrix is typically fixed, and it can be decomposed in advance. The vector is pro-
vided on a per-loop basis as the result of measurements gathered by sensors. The result 
of the matrix-vector could be used to control actuators, for example. 

CPU 1 1111

CPU 2 2222

CPU 3 3333

CPU 4 4444

Figure 5: Pipelined approach.

Figure 6: Pipelined approach in LabVIEW.

CPU 1

CPU 2

CPU 3

CPU 4

Figure 7: Operation over a large dataset utilizing 
one CPU.

CPU 1

CPU 2

CPU 3

CPU 4

Figure 8: Data Parallelism technique.



Intel® Technology Journal | Volume 13, Issue 1, 2009

112   |   A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures

A matrix-vector multiplication distributed to 8 cores is shown in Figure 9 
(execution is performed from left to right). The matrix is split before it enters  
the while-loop. Each block is multiplied by the vector and the resulting vectors  
are combined to form the final result.

Structured Grid
The structured grid pattern is at the heart of many computations involving physical 
models, as illustrated in Figure 10. A 2D (or ND) grid is calculated every iteration 
and each updated grid value is a function of its neighbors. The parallel version 
would split the grid into sub-grids where each sub-grid is computed independently. 
Communication between workers is only the width of the neighborhood. Parallel 
efficiency is a function of the area to perimeter ratio.

For example, in the LabVIEW diagram in Figure 11, one can solve the heat 
equation, where the boundary conditions are constantly changing. The 16 visible 
icons represent tasks that can solve the Laplace equation of a certain grid size;  
these 16 tasks map onto 16 cores (the Laplace equation is a way to solve the heat 
equation). Once per iteration of the loop, boundary conditions are exchanged 
between those cores and a global solution is built up. The arrows represent data 
exchange between elements. Such a diagram can also be mapped onto a 1-, 2-, 4-, 
or 8-core computer. A very similar strategy could also be used for machines with 
greater numbers of cores as they become available. 

A key element to any design pattern is how to map to the underlying memory 
hierarchy. The next section reviews important cache considerations that should be 
followed for optimal CPU performance in real-time HPC applications. 

Figure 9: Matrix-vector multiplication using data 
parallelism technique.

Figure 10: Structured grid approach. Figure 11: Laplace Equation implemented with Structured 
grid approach.



Intel® Technology Journal | Volume 13, Issue 1, 2009

A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures   |   113 

Cache Considerations

In traditional embedded systems, CPU caches are viewed as a necessary evil. The 
evil side shows up as a nondeterministic execution time inversely proportional to 
the amount of code and/or data of a time-critical task located inside the cache when 
the task execution has been triggered. For demonstration purposes, we will profile 
cache performance to better understand some important characteristics. The 
technique applied is using a structure within LabVIEW called a timed loop, shown 
in Figure 12.

The timed loop acts as a regular while loop, but with some special characteristics 
that lend themselves to profiling hardware. For example, the structure will execute 
any code within the loop in a single thread. The timed loop can be configured 
with microsecond granularity, and it can be assigned a relative priority that will be 
handled by the RTOS. In addition, it can set processor affinity, and it can also react 
to hardware interrupts. Although the programming patterns shown in the previous 
section do not utilize the timed loop, it is also quite useful for dealing with real-
time HPC applications, and parallelism is harvested through the use of multiple 
structures and queue structures to pass data between the structures. The following 
describes benchmarks that were performed to understand cache performance. 

An execution time of a single timed loop iteration as a function of the amount of 
cached code/data is shown in Figure 13. The loop runs every 10 milliseconds, and 
we use an indirect way to cause the loop’s code/data to be flushed from the cache; a 
lower priority task that runs after each iteration of the loop adds 1 to each element 
of an increasingly larger array of doubles flushing more and more of time critical 
task’s data from the CPU cache. In addition to longer runtime, in the worst-case 
scenario the time goes from 4 to 30 microseconds  for an increase by a factor of  
7.5. Figure 13 also shows that decaching also increases jitter. The same graph can  
be also used to demonstrate the “necessary” part of the picture. Even though some 
embedded CPUs will go as far as completely eliminating cache to increase deter-
minism, it is obvious that such measures will also significantly reduce performance. 
Besides, few people are willing to go back one or two CPU generations in perfor-
mance especially as the amounts of L1/L2/L3 cache are continuously increasing 
providing enough room for most applications to run while incurring only minor 
cache penalties.

Figure 12: Timed loop structure (used for 
benchmark use-cases).

R
u

n
 T

im
e 

(µ
s)

Cache Flush Data Size (KB)

11

10

9

8

7

6

5

4

3

2

1
0

9000800070006000500040003000200010000 10,000

Figure 13: Execution time of a simple time-
critical task as a function of amount of cached 
code/data on 3.2 GHz/8-MB L3 cache i7 Intel 
CPU using LabVIEW Real Time. Initial ramp-up 
due to 256K L2 cache.



Intel® Technology Journal | Volume 13, Issue 1, 2009

114   |   A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures

In real-time HPC, the cache is extremely important because of its ability to keep 
the CPU’s computational resources busy. For example, let’s assume that we want to 
add 1 to all elements in a single-precision array on a 3-GHz processor that can 
execute one single-precision floating point operation every clock cycle—a task of 
only 3 GFLOPs. The memory bandwidth required to keep the FPU busy would 
have to be at least 24 GB/s (12 GB/s in each direction), bandwidth above the latest 
generation of processors with built in memory controllers. The three-channel i7 
CPU tops out at 18 GB/s. However, the CPUs can perform more than one FLOP 
per cycle because they contain multiple FPUs. Using SSE instructions, one can add 
four single precision floating point numbers every cycle so our array example would 
require at least 96 GB/s memory bandwidth to prevent stalls. The red curve in 
Figure 14 contains benchmark results for the described application. Figure 14 shows  
GFLOPs as a function of array size on 3.2 GHz i7 (3.2 GHz, 8 MB L3) for x[i] = 
x[i] + 1 (red curve) and x[i] = A*x[i]2 + B*x[i] + c (black curve) operation on each 
element of a single-precision floating point array using SSE instructions. The 
second graph zooms into first 512 KB region. Three steps are clearly visible: L1 
(32K), L2 (256K) and L3 (8M). Benchmark executed on LabVIEW Real-Time 
platform thus minimum amount of jitter. When all data fits in L1, one CPU can 
achieve approximately 8.5 GFLOPs requiring 72 GB/s memory bandwidth. When 
running out of L2, CPU delivers 4.75 GFLOPs requiring 38 GB/s. Once data does 
not fit into CPU caches any more, the performance drops to 0.6 GFLOPs com-
pletely bounded by 4.8 GB/s memory bandwidth.

Zooming into the plot further also shows additional step at the beginning for the 
red curve, which may point to another level of cache 8K.

The ratio between maximum and minimum performance is a whopping 14x. The 
situation gets worse on a quad core CPU since the application can easily be paral-
lelized. In the best case, the four CPUs can deliver 36 GFLOPs since the caches 
are independent and in the worst case the performance stays at 0.6 GFLOPs since 
the memory bandwidth is shared among the processors. The resulting maximum/
minimum performance ratio jumps to 56x. As a verification, we run another test 
for which more FLOPs are performed for each array element brought into the FPU. 
Instead of only adding one to the element, we calculate a second order polynomial, 
which requires four FLOPs compared to one originally. Results are shown in Figure 
14 (black curve).  AS expected, the maximum performance goes up to 15 GFLOPs 
since the memory is being accessed less. For the same reason, the performance dif-
ference between data completely located in L1 and L2 caches, respectively, drops. 
As main memory latency and bandwidth becomes a gating factor, we again see large 
drop-off in the GFLOPs performance, though to a lesser value of “only” 8x.

The above simple example demonstrates that multiple cores with their fast caches 
can deliver better-than-linear performance increase if the problem that did not 
originally fit into a single-CPU cache can fit into multiple CPU caches after it 
has been parallelized. However, Figure 14 also implies that any unnecessary data 
transfer between the CPUs can seriously degrade performance especially if data has 
to be moved to/from main memory. Causing cache misses while parallelizing the 
application can not only eat up all performance improvements resulting from an 
increased number of CPUs, but it can also cause an application to run tens of times 
slower than on single CPU.

G
F

L
O

P
s

Array Size (KB)

20

18

16

14

12

10

8

6

4

0
4504003503002502001501005000 500 550

Figure 14: GFLOPs as a function of array size on 
3.2 GHz i7. 

“ In real-time HPC, the cache  

is extremely important because  

of its ability to keep the CPU’s  

computational resources busy.”

“ Multiple cores with their fast 

caches can deliver better-than-

linear performance increase if the 

problem that did not originally fit 

into a single-CPU cache can fit 

into multiple CPU caches after it 

has been parallelized.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures   |   115 

So, what can one do if real-time HPC application data does not fit into cache? The 
answer depends on the amounts of data used for the time-critical versus non-time-
critical tasks. For example, the data used in a control algorithm must be readily 
available at all times and should be kept in cache at all cost. The data that is used for 
user interface display or calculation of real-time parameters can be flushed.  

If the data used by the time-critical code fits into the cache, the application must 
overcome cache strategy that can be simply described as “use it or lose it,” by, well, 
using the data. In other words, accessing data even when it is not required will keep 
it in the cache. In some cases, the CPU may offer explicit instructions for locking 
down parts of the cache but that is more exception than a rule. For example, if there 
is control data that may be used as the plant approaches some critical point, access-
ing data in each control step is a must. An argument that executing control code 
each iteration that may otherwise be required to run only once every 1000 itera-
tions is overkill, since even in the worst case the out-of-cache execution may be only 
20x slower, is correct, at least when viewed form an HPC point of view. Following 
the described approach would yield 50x worst CPU utilization and proportionally 
slower execution. Unfortunately, in the real-time HPC this line of argument is false 
because a 20x slower execution of control algorithm can result in serious damage—
the real-time requirement states that every control action must be taken before a 
given deadline, which may be much shorter that the worst-case out-of-cache 20x 
longer execution time.

Another way to keep data in the CPU cache is to prevent any other thread from  
execution on the given processor. This is where ability of an RTOS to reserve certain 
CPUs for execution of a single task becomes extremely powerful. One does have to 
keep in mind that certain caches may be shared between multiple CPUs (for  
example, L3 cache in Intel’s i7 architecture is shared between up to 8 CPUs)  
residing on the same physical chip so reserving a core on the processor that churns  
a lot of data on its other cores will be ineffective.

Finally, what can one do if the real-time data does not fit in the cache? Short 
of redesigning the underlying algorithm to use less data, or further prioritizing 
importance of different real-time tasks and devising a scheduling scheme that will 
keep the most important data in cache, there is not much that can be done. The 
penalty can be reduced if one can design an algorithm that can access data in two 
directions. If the data is always accessed in the same order, once it does not fit into 
the cache any more, each single element access will result in the cache miss. On the 
other hand, if the algorithm alternates between accessing data from first-to-last and 
last-to-first element, cache misses will be limited only to the amount of data actually 
not fitting into the cache: the data accessed last in the previous step is now accessed 
first and is thus already located in the cache. While this approach will always reduce 
algorithm execution time in the absolute terms, the relative performance benefit 
will decrease as more and more data does not fit into the cache.

“ If the data used by the time- 

critical code fits into the cache, the 

application must overcome cache 

strategy that can be simply  

described as ‘use it or lose it’.”

“ While this approach will always 

reduce algorithm execution time 

in the absolute terms, the relative 

performance benefit will decrease 

as more and more data does not fit 

into the cache.”

“ This is where ability of an RTOS 

to reserve certain CPUs for  

execution of a single task  

becomes extremely powerful.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

116   |   A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures

Figure 15 and 16 show benchmarks from a real-world application to which we 
applied all cache management methods described above. The figures show time 
required to multiply a symmetric matrix with a vector. The multiplication is part of 
a control algorithm that has to calculate 3000 actuator control values based on 6000 
sensor input values in less than 1 ms. (This industry example is from the European 
Southern Observatory and is mentioned in the final section of the paper).  

Initially, we tried to use standard libraries for matrix vector multiplication but we 
could not achieve desired performance. The algorithms were top notch but they 
were not optimized for real-time HPC. So, we developed a new vector-matrix  
multiplication algorithm that took advantage of the following:

•  In the control applications, the interaction matrix whose inverse is used for 
calculation of actuator values does not change often. Consequently, expensive  
offline preprocessing and repackaging of the matrix into a form that takes  
advantage of L1/L2 structure of the CPU as well as exercises SSE vector units  
to their fullest when performing online real-time calculation is possible.

•  By dedicating CPUs to control a task only, the control matrix stays in the cache 
and offers the highest level of performance.

•  Splitting vector matrix multiplication into parallel tasks increases the amount 
of cache available for the problem.

•  The new algorithm can access matrix data from both ends.

Figure 15 shows a Matrix vector multiplication time (worst case) as a function  
of matrix size. Platform: Dual Quad-core 2.6-GHz Intel® Xeon processors, with  
a 12-MB cache each. The results were achieved by using only 4 cores, 2 on each 
processor. Utilizing all 8 cores resulted in further multiplication time for 3k x 3k 
matrix of 500 us. 

Figure 16 depicts the Nehalem (8M L3) – cache boundary approximately 1900.  
The curve is similar to that of curve for the Intel® Xeon® processor. The difference  
is due to direction toggling smaller because of a much larger increase in memory 
bandwidth compared to the increase in computation power. Excellent memory 
performance is visible for the 6K x 6K case: for 20% CPU clock increase, there is  
a 160% increase in performance (210% for non-toggling approach).

The results show that we are able to achieve 0.7 ms multiplication time for the 
required 3k x 3k matrix. The 1-millisecond limit is reached for the matrix size  
of about 3.3k x 3.3k, which is also close to the total L2 cache size (2 processors x  
12 MB = 24 MB L2). Increasing the matrix size 4 times (6k x 6k) speeds execution 
time 17 times, implying a 4x degradation in GFLOPs. Using direction toggling 
approach results in up to 50 percent relative performance improvements for data 
sizes slightly larger than the available L2. The speed-up reduces in relative terms as 
the matrix is getting larger.

M
u

lt
ip

lic
at

io
n

 T
im

e 
(µ

s) 10000

12000

8000

6000

4000

2000

0
6000500040003000200010000

Matrix Size

Direction
Toggling

Normal

Figure 15: Matrix vector multiplication time (worst 
case) as a function of matrix size. 

M
u

lt
ip

lic
at

io
n

 T
im

e 
(µ

s) 3000

4000

2000

1000

0
6000500040003000200010000

Matrix Size

Toggling

Normal

Figure 16: Nehalem (8M L3) – cache boundary 
approximately 1900. 



Intel® Technology Journal | Volume 13, Issue 1, 2009

A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures   |   117 

Industry Examples

The following industry examples show how real-time HPC is being applied today, 
in many cases where only five years ago the computational results would not be 
achievable. All of these examples were developed with the LabVIEW programming 
language to take advantage of multi-core technology. 

Structural Health Monitoring on China’s Donghai Bridge
The Donghai Bridge, shown in Figure 17, is China’s first sea-crossing bridge, 
stretching across the East China Sea and connecting Shanghai to Yangshan  
Island. The bridge has a full length of 32.50 km, a 25.32-km portion of which 
is above water. 

Obviously, the monitoring system for Donghai Bridge is of a large scale with a 
variety of quantities to be monitored and transmitted.

Modal analysis methods can be used to reflect the dynamic properties of the bridge. 
In fact, modal analysis is a standard engineering practice in today’s structural health 
monitoring (SHM). 

To cope with the modal analysis on large structures like bridges, however, a rela-
tively new type of modal analysis method has been developed, which works with 
the data gathered at the same time the structure being analyzed is working. This is 
operational modal analysis. In this method, no explicit stimulus signal is applied 
to the structure; rather, the natural forces from the environment and the work load 
applied to the structure serve as the stimuli, which are random and unknown. Only 
the signals measured by the sensors put on the structure can be obtained and used, 
which serve as the response signals. 

Within the operational modal analysis domain, there is a type of method that 
employs output-only system identification (or in other terms, time series analysis) 
techniques, namely, stochastic subspace identification (SSI). 

In order to monitor a bridge’s health status better, some informative quantities  
are needed to be tracked in real-time. In particular, it is highly desirable that the 
resonance frequencies are monitored in real-time. The challenge now is to do  
resonance frequency calculation online, which is a topic of current research for  
a wide range of applications.

To enable SSI methods to be working online, SSI needs to be reformulated to some 
sort of recursive fashion so as to reach the necessary computational efficiency. This 
is recursive stochastic subspace identification (RSSI). With RSSI, the multichannel 
sampled data are read and possibly decimated. The decimated data then are fed to 
the RSSI algorithm. Each time a new decimated data sample is fed in, a new set of 
resonance frequencies of the system under investigation are produced. That is, the 
resonance frequencies are updated as the data acquisition process goes on. If the 
RSSI algorithm is fast enough, this updating procedure is running in real-time.

Figure 17: Donghai Bridge.
Source:  Wikipedia Commons

“ If the RSSI algorithm is fast 

enough, this updating procedure is 

running in real-time.”

“ No explicit stimulus signal is  

applied to the structure; rather,  

the natural forces from the  

environment and the work load 

applied to the structure serve as  

the stimuli, which are random 

and unknown.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

118   |   A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures

Although further experiments need to be performed to validate the RSSI method, 
the results so far have shown feasibility and effectiveness of this method under the 
real-time requirement. With this method, the important resonance frequencies of 
the bridge can be tracked in real-time, which is necessary for better bridge health 
monitoring solutions.

Vision Perception for Autonomous Vehicles
In an autonomous vehicle application, TORC Technologies and Virginia Tech used 
LabVIEW to implement parallel processing while developing vision intelligence in 
its autonomous vehicle for the 2007 DARPA Urban Challenge. LabVIEW runs on 
two quad-core servers and performs the primary perception in the vehicle. 

This type of application is a clear example of where high-computation must be 
obtained in an embedded form factor, in order not only to meet the demands  
of the application but also to fit within low power constraints.  

Nuclear Fusion Research
At the Max Planck Institute for Plasma Physics in Garching, Germany, researchers 
implemented a tokamak control system to more effectively confine plasma. 

For the primary processing, they developed a LabVIEW application that split  
up matrix multiplication operations using a data parallelism technique on an  
octal-core system. 

Dr. Louis Giannone, the lead researcher on the project, was able to speed up the 
matrix multiplication operations by a factor of five while meeting the 1-millesecond 
real-time control loop rate.

Real-Time Control of the World’s Largest Telescope
The European Southern Observatory (ESO) is an astronomical research organization 
supported by 13 European countries, and has expertise developing and deploying 
some of the world’s most advanced telescopes. The organization is currently working 
on a USD 1 billion 66-antenna submillimeter telescope scheduled for completion at 
the Llano de Chajnantor in 2012.

One current project on their design board is the Extremely Large Telescope. The 
design for this 42 m primary mirror diameter telescope is in phase B and received 
USD 100 million in funding for preliminary design and prototyping. After phase B, 
construction is expected to start in late 2010.

The system, controlled by LabVIEW software, must read the sensors to determine 
the mirror segment locations and, if the segments move, use the actuators to realign 
them. LabVIEW computes a 3,000 by 6,000 matrix by 6,000 vector product and 
must complete this computation 500 to 1,000 times per second to produce effective 
mirror adjustments.

Sensors and actuators also control the M4 adaptive mirror. However, M4 is a thin 
deformable mirror—2.5 m in diameter and spread over 8,000 actuators. This 
problem is similar to the M1 active control, but instead of retaining the shape, we 
must adapt the shape based on measured wave front image data. The wave front 
data maps to a 14,000 value vector, and we must update the 8,000 actuators every 

“ TORC Technologies and Virginia 

Tech used LabVIEW to implement 

parallel processing while developing 

vision intelligence in its autonomous 

vehicle for the 2007 DARPA Urban 

Challenge.”

“ One current project on their  

design board is the Extremely 

Large Telescope. The design for  

this 42 m primary mirror  

diameter telescope is in phase B.”

“ Dr. Louis Giannone, the lead  

researcher on the project, was  

able to speed up the matrix  

multiplication operations by a  

factor of five while meeting the 

1-millesecond real-time control  

loop rate.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures   |   119 

few milliseconds, creating a matrix-vector multiply of an 8 by 14 k control matrix 
by a 14 k vector. Rounding up the computational challenge to 9 by 15 k, this 
requires about 15 times the large segmented M1 control computation.

Jason Spyromillo from the European Southern Observatory, describe the challenge 
as follows: “Our approach is to simulate the layout and design the control matrix 
and control loop. At the heart of all these operations is a very large LabVIEW 
matrix-vector function that executes the bulk of the computation. M1 and M4  
control requires enormous computational ability, which we approached with 
multiple multi-core systems. Because M4 control represents 15 3 by 3 k submatrix 
problems, we require 15 machines that must contain as many cores as possible. 
Therefore, the control system must command multi-core processing.” 

“Smart Car” Simulation for Adaptive Cruise Control and Lane  
Departure Systems
Over the last 15 years, passive safety technologies such as ABS, electronic stability 
control, and front/side airbags have become ubiquitous features on a wide range  
of passenger vehicles and trucks.  

The adoption of these technologies has greatly accelerated the use of simulation 
software into vehicle engineering. Using a combination of CarSim (Mechanical 
Simulation’s internationally validated, high-fidelity simulation software) and Lab-
VIEW, engineers routinely design, test, optimize, and verify new controller features 
months before a physical vehicle is available for the test track. 

Now that vehicles are monitoring their environment with several vision and radar 
sensors and actually communicating with other cars on the road, it is essential that 
every vehicle in the test plan has a highly accurate performance model because each 
car and truck will be automatically controlled near physical limitations. 

To address these requirements, CarSim has been integrated with National Instruments 
multi-core real-time processors and LabVIEW RT to allow vehicle designers to run 
as many as sixteen high fidelity vehicles on the same multi-core platform. This 
extraordinary power allows an engineer to design a complex, coordinated traffic 
scenario involving over a dozen cars with confidence that each vehicle in the test 
will behave accurately. This type of a test would be impossible at a proving ground. 

Advanced Cancer Research Using Next Generation Medical  
Imaging Techniques
Optical coherence tomography (OCT) is a noninvasive imaging technique that 
provides subsurface, cross-sectional images of translucent or opaque materials.  
OCT images enable us to visualize tissues or other objects with resolution similar  
to that of some microscopes. There has been an increasing interest in OCT because 
it provides much greater resolution than other imaging techniques such as magnetic 
resonance imaging (MRI) or positron emission tomography (PET). Additionally, 
the method is extremely safe for the patients. 

To address this challenge, Dr. Kohji Ohbayashi from Kitasato University led a team 
of researchers to design a systembased on LabVIEW and multi-core technology. The 
hardware design utilized a patented light-source technology along with a high-speed 

Figure 18: Example Section of M1 Mirror, 
simulated in LabVIEW.

Figure 19: Simulation of Adaptive Cruise Control 
using CarSim.*

“ There has been an increasing  

interest in OCT because it  

provides much greater resolution 

than other imaging techniques.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

120   |   A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures

(60 MS/s) data acquisition system with 32 NI PXI-5105 digitizers to provide 256 
simultaneously sampled channels.

The team at Kitasato University was able to create the fastest OCT system in the 
world, achieving a 60 MHz axial scan rate. 

From a pure number crunching perspective, 700,000 FFTs were calculated per 
second. The end goal of this research is to help detect cancer sooner in patients and 
increase their quality of life.

Conclusion

This article presented findings that demonstrate how a novel approach with Intel 
hardware and software technology is allowing for real-time HPC in order to solve 
engineering problems with multi-core processing that were not possible only five 
years ago. This approach is being deployed in widely varying applications, including 
the following: structural health-monitoring, vehicle perception for autonomous 
vehicles, tokamak control, “smart car” simulations, control and simulation for the 
world’s large telescope, and advanced cancer research through optical coherence 
tomography (OCT).  

Acknowledgements

The authors would like to acknowledge the following for their contributions  
to this article:  Rachel Garcia Granillo, Dr. Jin Hu, Bryan Marker, Rob Dye,  
Dr. Lothar Wenzel, Mike Cerna, Jason Spyromilio, Dr. Ohbayashi, Dr. Giannone, 
and Michael Fleming.  

References

Akhter and Roberts. Multi-Core Programming. 2006 Intel Press. 

Bridge Health Monitoring System. Shanghai Just One Technology.  
http://zone.ni.com/devzone/cda/tut/p/id/6624

Cleary and Hobbs, California Institute of Technology. “A Comparison  
of LAM-MPI and MPICH Messaging Calls with Cluster Computing.”  
http://www.jyi.org/research/re.php?id=752

Domeika, Max. Software Development for Embedded Multi-core Systems:  
A Practical Guide Using Embedded Intel® Architecture. Newnes 2008.

Eadline, Douglas. “Polls, Trends, and the Multi-core Effect.” September 18th, 2007 
http://www.linux-mag.com/id/4127

Giannone, Dr. Louis. Real-Time Plasma Diagnostics.  
ftp://ftp.ni.com/pub/branches/italy/rnd_table_physics/rnd_table_physics08_max_
plank.pdf

Meisel and Weltzin. “Programming Strategies for Multicore Processing: Pipelining.” 
www.techonline.com/electronics_directory/techpaper/207600982¨

“ The end goal of this research  

is to help detect cancer sooner  

in patients and increase their 

quality of life.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

A Real-Time HPC Approach for Optimizing Intel Multi-Core Architectures   |   121 

Ohbayashi, Dr. Kohji. Advanced Cancer Research Using Next Generation Medical 
Imaging. http://sine.ni.com/cs/app/doc/p/id/cs-11321

Spyromilio, Jason. Developing Real-Time Control for the World’s Largest Tele-
scope. http://sine.ni.com/cs/app/doc/p/id/cs-11465

Tian and Shih. “Software Techniques for Shared-Cache Multi-Core Systems.” Intel 
Software Network. July 9th, 2007.  
http://softwarecommunity.intel.com/articles/eng/2760.htm

Author Biographies

Dr. Aljosa Vrancic: Dr. Aljosa Vrancic is a principal engineer at National Instru-
ments. He holds a B.S. in electrical engineering from the University of Zagreb, and 
an M.S. degree and PhD in Physics from Louisiana State University. He is a leading 
technical authority in the areas of deterministic protocols, real-time SMP operating 
systems, and software optimization for large scale computation. 

Jeff Meisel: Jeff Meisel is the LabVIEW product manager at National Instruments 
and holds a B.S. in computer engineering from Kansas State University. He represents 
National Instruments as a member of the Multi-core Association and has published 
over 20 articles on the topic of multi-core programming techniques. He has 
presented at industry conferences such as Embedded World Germany, Embedded 
Systems Conference, and the Real-Time Computing Conference. 



122   |   Digital Signal Processing on Intel® Architecture

Contributors

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

DIGITAL SIGNAL PROCESSING ON INTEL® ARCHITECTURE

David Martinez-Nieto
Intel Corporation

Martin McDonnell
Intel Corporation

Peter Carlston
Intel Corporation

Ken Reynolds
Intel Corporation

Vasco Santos
Intel Corporation

Abstract

The suitability of Intel® multi-core processors for embedded digital signal processing 
(DSP) applications is now being reevaluated. Major advances in power-efficient 
transistor technology, optimized multi-core processor microarchitectures and the 
evolution of Intel® Streaming SIMD Extensions (Intel® SSE) for vector processing 
have combined to produce favorable GFLOPS/watt and GFLOPS/size ratios.  
In addition, other factors such as code portability across the entire range of Intel® 
processors and a large set of Intel and third-party software development tools  
and performance libraries often mean that software development and support  
costs can be substantially reduced. 

This article explores the main differences between traditional digital signal processors 
and modern Intel general purpose processor architectures and gives some orientation 
on how DSP engineers can most effectively take advantage of the resources available 
in Intel processors. We then show how these techniques were used to implement and 
benchmark performance of medical ultrasound, wireless infrastructure, and advanced 
radar processing algorithms on a variety of current Intel processors. 

Introduction

Digital signal and image processing (DSP) is ubiquitous: From digital cameras 
to cell phones, HDTV to DVDs, satellite radio to medical imaging. The mod-
ern world is increasingly dependent on DSP algorithms. Although, traditionally, 
special-purpose silicon devices such as digital signal processors, ASICs, or FPGAs 
are used for data manipulation, general purpose processors (GPPs) can now also be 
used for DSP workloads. Code is generally easier and more cost-effective to develop 
and support on GPPs than on large DSPs or FPGAs. GPPs are also able to com-
bine general purpose processing with digital signal processing in the same chip, a 
major advantage for many complex algorithms. Intel’s processor microarchitecture, 
instruction set, and performance libraries have features and benefits that can be 
exploited to deliver the performance and capability required by DSP applications.

We first consider the main techniques that should be considered when program-
ming DSP algorithms on Intel® architecture, and then illustrate their use in medical 
ultrasound, wireless infrastructure, and advanced radar post-processing algorithms.

Embedded DSP
Intel® architecture
Vector Processing
Parallel Processing
Optimization

“ The modern world is increasingly 

dependent on DSP algorithms.”



Digital Signal Processing on Intel® Architecture   |   123 

Intel® Technology Journal | Volume 13, Issue 1, 2009

Clock Speed and Cache Size

DSP performance on a GPP is closely related to the clock speed of the processor, and, 
depending on the workload, the size of its on-chip memory caches. NA Software 
Ltd* (NASL) recently compared the performance of their VSIPL* library functions 
for Intel® Architecture Processors with their VSIPL library for PowerPC* architec-
ture processor.1 (VSIPL is an industry standard, hardware-agnostic API for DSP 
and vector math.) Table 1 shows the effect of processor frequency and cache size  
on the time it takes to complete a complex vector multiply operation with vectors 
of various lengths (N) on a single core of three processors.

Normalized for clock speed, all processors exhibit roughly the same performance. 
But the data clearly shows that the speed of the processor is the predominant  
determinant of performance: the 1.0-GHz Freescale* processor takes longer to com-
plete the complex vector multiply than the 1.88- and 2.18-GHz Intel® processors; 
the 2.18-GHz processor is always faster than the 1.88-GHz processor, except when 
N = 128. The clue to this apparent anomaly is L2 cache sizes. The complex vector 
multiply calculation repeatedly works on the same area of memory—for N = 128, 
3 MB of memory are required (128K x sizeof(complex) x 3 vectors). So the N = 128 K  
calculation requires three-fourths of the Intel® Core™2 Duo processor T7400’s 
cache, resulting in a higher percentage of cache misses: its N = 128 times are 4x 
its N = 64 K times. The data only requires half of the Intel® Core™2 Duo processor 
SL9400’s 6-MB cache: the N = 128 times are almost precisely 2x its N = 64 K 
times. With only 1 MB of L2 cache a Freescale MPC 8641D core is at a  
disadvantage with all N values from 32 K upwards. 

But what about performance per watt? The MPC 8641D has published thermals  
of around 25 W, the Intel Core 2 Duo processor T7400 around 45 W (including  
chipset) and the Intel Core 2 Duo processor SL9400 (also including chipset) 
around 28 W. So the Intel Core 2 Duo processor SL9400 has the highest  
performance/watt ratio of the three processors when doing these types  
of calculations.

“ DSP performance on a GPP is 

closely related to the clock speed  

of the processor, and, depending  

on the workload, the size of its  

on-chip memory caches.”

Processor Name Clock Speed & L2 Cache Size Value of N

256 1 K 4 K 16 K 32 K 64 K 128 K

Freescale* MPC 8641D  1.0 GHz; 1 MB per core 0.78 2.5 18.7 74 145 3,391 9,384

Intel® Core™2 Duo Processor T7400  2.18 GHz; 4 MB shared 0.42 1.8 8.3 33 66 131 527

Intel® Core™2 Duo Processor SL9400 1.88 GHz; 6 MB shared 0.44 2.0 8.8 35 75 151 300

Table 1: Complex vector multiply v1(n):= v2(n)*v3(n); times in microseconds. Single core. Times in italic indicate that the data requires 

a significant portion or is too large to fit into the processor’s L2 cache. Source: NA Software Ltd



Intel® Technology Journal | Volume 13, Issue 1, 2009

124   |   Digital Signal Processing on Intel® Architecture

Vectorization

Although DSP algorithms tend to be mathematically intensive, they are often fairly 
simple in concept. Filters and Fast Fourier Transforms (FFTs), for example, can be 
implemented using simple multiply and accumulate instructions. Modern GPPs 
use Single Instruction Multiple Data (SIMD) techniques to increase their perfor-
mance on these types of low-level DSP functions. Current Intel® Core™ processor 
family and Intel® Xeon® processor have 16 128-bit vector registers that can be 
configured as groups of 16, 8, 4 or 2 samples depending on the data format and 
precision required. For single-precision (32-bit) floating point SIMD processing, 
for example, four floating point (FP) numbers which need to be multiplied by a 
second value are loaded into vector register 1 with the multiplicand(s) in register 2. 
Then the multiply operation is executed on all four numbers in a single processor 
clock cycle. Current Intel® Core™2 processor family and Intel Xeon processor have 
a 4-wide instruction pipeline with two FP Arithmetic Logical Units, so potentially 
8 single-precision FP operations can be done per clock cycle per core. This number 
will increase to 16 operations per clock when the Intel® Advanced Vector Extensions 
(Intel® AVX) Instruction Set Architecture debuts in 2010 “Sandy Bridge” genera-
tion processors since AVX SIMD registers will be 256 bits wide.2

FIR filters are used in a large percentage of DSP algorithms. They can be easily  
vectorized since there is no dependency between the calculation of the current 
frame and the output of the previous frame. This makes them perform very well  
on SIMD processors.  

On the other hand, when contiguous input/output interdependence exists (as in 
recursive filter implementations), efficient vectorization is not always possible. In 
some cases, however, a careful analysis of the algorithm may still reveal opportunities  
for vectorized processing as presented in the LTE Turbo Encoder case study.

Parallelization

Intel architecture, as a multi-core architecture, is suited for executing multiple 
threads in parallel. In terms of DSP programming, there are several approaches  
for achieving parallelism:

•	 	Pipelined execution: The algorithm is divided in stages and each of these stages 
is assigned to a different thread. 

•	 	Concurrent execution: The input data is partitioned, and each thread processes 
its own portion of the input data through the whole algorithm. This is only  
possible if the functionality of the algorithm is not compromised.

Both approaches can also be combined in order to maximize performance  
and efficient resource utilization. 

“ Filters and Fast Fourier Transforms 

(FFTs), for example, can be imple-

mented using simple multiply and 

accumulate instructions.”

“ In terms of DSP programming, 

there are several approaches for 

achieving parallelism.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   125 

When evaluating parallelism, the programmer should also consider cache hierarchy. 
For maximum throughput, each thread should ideally have its input/output data 
fit within local caches (L1, L2), minimizing cache trashing due to inter-core coher-
ency overheads. On every stage of the algorithm, threads should guarantee that their 
output data is contiguously stored in blocks with size that is a multiple of the internal 
cache line width. Inter-thread data dependencies should be minimized and pipelined 
to reduce algorithm lock-ups. Thread affinity [3] should also be defined carefully.

Memory Organization

Memory organization on a DSP differs from that found on Intel architecture. On 
traditional DSP architectures, the developer manually partitions the memory space 
in order to reduce the number of accesses to external memories. Program, data, 
temporary buffers and look-up tables all need to be allocated carefully, as accessing 
the external memory is costly in terms of latencies introduced. 

By comparison, Intel architecture is populated with large amounts of cache while DSPs 
traditionally include dedicated internal memory. On one hand, this overcomes the strict 
separation of fast/slow memory devices, enabling more “transparent” memory manage-
ment strategies. On the other hand, all data, look-up tables and program are originally 
located in “far” memory. Applications may need to warm the cache with the appropriate 
data at start-up. To maximize platform performance, it is also important to understand 
the differences between local and shared caches, as well as cache coherency, especially in 
the context of multi-threaded applications that span multiple processor cores.

To further reduce the latency penalties due to cache misses, Intel architecture  
includes an automatic hardware pre-fetcher, details on which can be found in [4].  
Output data should ideally be generated sequentially, or at least in a way in  
which concurrent threads output do not generate cache line invalidations, that 
is, threads working on the same cache line should be executed in the same core. 
Accessing memory in a scattered pattern across multiple pages should be avoided 
whenever possible.

Fixed and Floating Point Performance

Fixed-point implementations have been traditionally used as a result of the lack  
of availability or lower performance typically associated with floating-point opera-
tions. Fixed-point operations though, usually require additional range-checking 
computation for overflow and saturation which increases the complexity of the 
implementation, consequently penalizing performance. On Intel architecture, 
SIMD floating-point code is almost on par as fixed-point (performance-wise, for 
the same data width), and may even be faster depending on the implementation 
overheads associated with the latter, so in a number of cases the above tradeoffs are 
no longer necessary.

“ For maximum throughput, each 

thread should ideally have its 

input/output data fit within local 

caches (L1, L2), minimizing  

cache trashing due to inter-core  

coherency overheads.”

“ Fixed-point implementations have 

been traditionally used as a result  

of the lack of availability or lower  

performance typically associated 

with floating-point operations.”

“ Applications may need to warm 

the cache with the appropriate 

data at start-up.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

126   |   Digital Signal Processing on Intel® Architecture

Intel® Performance Libraries

The Intel® Performance Libraries provide optimized foundation-level building block 
functions for accelerating the development of high performance applications. This 
set of libraries consists of the Intel® Integrated Performance Primitives (Intel® IPP), 
the Intel® Math Kernel Library (Intel® MKL), and the Intel® Threading Building 
Blocks (Intel® TBB). These performance libraries and tools are optimized across the 
full range of Intel processors. Upon their initialization, they automatically detect 
the type of processor on which they are running and use the sub-function optimiza-
tions for that specific processor family. All Intel IPP and Intel MKL are thread-safe, 
and those functions that benefit from multi-threading are already threaded. More 
detailed information about these libraries and the type of efficiency, portability, and 
performance scalability they provide can be found at the Intel® Software Network 
Web site [9].   

Performance Measurement and Tuning

Quickly identifying and eliminating performance bottlenecks in complex DSP  
software often requires the aid of specialized tools. Intel® VTune™ Performance 
Analyzer is an example of a tool than can greatly facilitate tuning a DSP application 
for maximum performance. Among other advantages, Intel VTune Performance 
Analyzer provides low-overhead profiling and system wide analysis (OS, drivers, 
third party libraries). The tool provides both command line and graphical interfaces. 
Profiling using such tools as Intel VTune Performance Analyzer provides helpful 
hints in addressing the types of parallelization issues mentioned in Section 0.  
For example, an increase in L2, L3 cache line invalidations may indicate a loss  
of efficiency due to the way memory is being addressed.  

Coding for Automatic Vectorization

Efficiently taking advantage of the vector processing units on modern CPUs can 
be accomplished by assembly-level programming. The instruction set reference and 
optimization manuals [4] detail the necessary low-level functionality description 
and performance provided by the underlying processing units. Although low-level 
programming potentiates a higher performance level, effective code portability, 
maintainability and development efficiency can only be attained by using higher-
level languages.

Automatic vectorization is available on mainstream compilers such as GCC and  
Intel® C++ Compiler, and consists of a series of methods that identify and implement 
vectorizable loops according to the version of the SIMD instruction set specified. 
Although it works transparently to the programmer, increasing the percentage  
of code amenable to vectorization requires developers to be aware of issues related  
to, for example, data dependence and memory alignment. [5][6][7][8] 

In cases where it is not possible to resolve data dependence or memory alignment, 
compilers may automatically add test code constructs prior to the loop. To work 
around data dependence, both vectorized and nonvectorized versions of the loop are 
implemented, and the selection of which version to run is based on the test results. 

“ All Intel IPP and Intel MKL are 

thread-safe, and those functions 

that benefit from multi-threading 

are already threaded.”

“ To work around data dependence, 

both vectorized and nonvectorized 

versions of the loop are implemented, 

and the selection of which version to 

run is based on the test results.”

“ Profiling using such tools as Intel 

VTune Performance Analyzer  

provides helpful hints in addressing 

the types of parallelization issues.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   127 

To circumvent memory misalignment issues, the compiler may “peel” a number  
of iterations off the loop so that at least part of it runs vectorized [6]. Besides obvi-
ous increases in program size, this overhead also affects overall loop performance. 
The use of special #pragma directives and other keywords can guide the compiler 
through its code generation process, avoiding this overhead. 

Code listing 1, Code listing 2, Code listing 3, Code listing 4, and Code listing 5 
show different versions of a simple vector multiply-accumulate function, where  
the use of #pragma directives gives hints to the compiler regarding vectorization. 

void vecmac( float* x, float* a, float* y, int len )
{
  /* The loop below is already vectorizable as-is. */
  int i;
  for( i = 0; i < len; i++ )
    y[i] += x[i] * a[i];

}

Code listing 1: Vector multiply-accumulate function.

void vecmac_nv( float* x, float* a, float* y, int len )
{
  int i;
  /* Do not vectorize loop */
  #pragma novector 
  for( i = 0; i < len; i++ )
    y[i] += x[i] * a[i];
}

Code listing 2: Vector multiply-accumulate function, hinting for non-vectorization.

void vecmac_al( float* x, float* a, float* y, int len )
{
  int i;
  /* Assume data is aligned in memory. An exception is 
                 caused if this assumption is not valid. */
  #pragma vector aligned
  for( i = 0; i < len; i++ )
    y[i] += x[i] * a[i];
}

Code listing 3: Vector multiply-accumulate function, asserting memory 
alignment property.

“ The use of #pragma directives  

gives hints to the compiler  

regarding vectorization.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

128   |   Digital Signal Processing on Intel® Architecture

void vecmac_iv( float* x, float* a, float* y, int len )
{
  int i;
  /* Discard data dependence assumptions. Results may 
      differ if arrays do overlap in memory. */
  #pragma ivdep
  for( i = 0; i < len; i++ )
    y[i] += x[i] * a[i];
}

Code listing 4: Vector multiply-accumulate function, discarding assumed 
data dependences.

void vecmac_al_iv( float* x, float* a, float* y, int len )
{
  int i;
  #pragma vector aligned
  #pragma ivdep
  for( i = 0; i < len; i++ )
    y[i] += x[i] * a[i];
}

Code listing 5: Vector multiply-accumulate function, asserting memory alignment 
property and discarding assumed data dependences.

Comparison on both generated assembly (ASM) code size and performance was 
carried out for the different versions of the vecmac function, on an Intel® Core™2 
Duo processor platform (2.533 GHz, 6 MB L2 cache) running Linux* 2.6.18 and 
Intel C++ Compiler 11.0. Table 2 summarizes the results obtained for random 
input vectors with len = 1000. The impact of memory alignment is also included in 
the performance numbers, which are normalized to the vecmac_nv version having 
nonaligned input data. 

Intel® Core™2 Duo Processor (2.533 GHz, 6 MB L2 cache)
Linux* 2.6.18, Intel® C++ Compiler 11.0

Version Data is aligned in 
memory?

ASM code size 
(number of 
instructions)

Performance ratio 
(higher is better)

vecmac_nv No 68 1x (reference)

Vecmac No 118 2.31x

vecmac_iv No 84 2.32x

vecmac_nv yes 68 1.002x

Vecmac yes 118 2.88x

vecmac_iv yes 84 2.9x

vecmac_al yes 89 3.71x

vecmac_al_iv yes 47 3.75x

Table 2: Assembly code size and performance comparison for the various 
versions of the vector multiply-accumulate function.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   129 

The insignificant performance impact in using the #pragma ivdep directive is due to 
the fact that, in this case, there is no overlap (aliasing) between the memory regions 
occupied by x[ ], a[ ] and y[ ]. A vectorized version of the loop is always run, even 
when this hint is not given to the compiler. The only difference is the initial overlap 
tests performed to these arrays, hence the differences in resulting assembly code size. 

The effect of having the arrays aligned in memory is visible in the performance values 
for the vecmac and vecmac_iv implementations. Although the loop is still vectorized in 
both versions, nonaligned memory access introduces performance penalties. 

Finally, it is seen that fully vectorized versions of the same loop outperform the 
nonvectorized code by a factor close to 4x, as initially anticipated for 32-bit floating 
point processing.

Programming with Intel® Streaming SIMD Extensions 
(Intel® SSE) Intrinsics

In most cases, using performance libraries as building blocks and coding for efficient 
vectorization, together with carefully-designed multi-threaded software architectures, 
will provide high performance levels. However, in cases where performance libraries  
cannot be used, or when tuning a specific portion of an algorithm can provide 
significant performance improvements, lower-level programming can be used. 
Intrinsic functions provide an intermediate abstraction level between assembly code 
and higher-level C code. The abstraction level at which the programmer works is 
low, allowing vector operations, but some details like register allocation are hidden 
from the developer. Also, the compiler can still perform optimizations over the code 
that uses intrinsics (in contrast with inline ASM). 

Code listing 6 presents an example of Intel SSE intrinsic programming that calculates 
the complex reciprocal (conjugate of the number divided by the squared modulo) of a 
series of 32-bit floating-point input samples. Four input samples are processed at the 
same time in order to take best advantage of the SIMD arithmetic units.

“ Fully vectorized versions of  

the same loop outperform the  

nonvectorized code by a factor 

close to 4x.”

“ The abstraction level at which the 

programmer works is low, allowing 

vector operations, but some details 

like register allocation are hidden 

from the developer.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

130   |   Digital Signal Processing on Intel® Architecture

/* load data  */ 
sseX[0] = _mm_load_ps(&x[i+0]); 
sseX[1] = _mm_load_ps(&x[i+2]); 
/* Negate Imaginary part */ 
sseX[0] = _mm_xor_ps(sseX[0], NegFx); 
sseX[1] = _mm_xor_ps(sseX[1], NegFx); 
/* multiply to calculate real and imaginary squares */ 
sseM[0] = _mm_mul_ps(sseX[0], sseX[0]); 
sseM[1] = _mm_mul_ps(sseX[1], sseX[1]); 
/* real and imaginary parts are now squared and placed
 * horizontally. Add them in that direction/ 
sseI = _mm_hadd_ps(sseM[0], sseM[1]); 
/* calculate the four reciprocals */ 
sseI = _mm_rcp_ps(sseI); 
/* reorder to multiply both real and imag on samples */ 
sseT[0] = _mm_shuffle_ps(sseI,sseI,0x50); // 01 01 00 00 
sseT[1] = _mm_shuffle_ps(sseI,sseI,0xFA); // 11 11 10 10 
/* multiply by conjugate */ 
sseY[0] = _mm_mul_ps(sseT[0],sseX[0]); 
sseY[1] = _mm_mul_ps(sseT[1],sseX[1]); 
/* store */ 
_mm_store_ps(&y[i+0], sseY[0]); 
_mm_store_ps(&y[i+2], sseY[1]);

Code listing 6: Complex reciprocal implementation using Intel® Streaming SIMD 
Extensions (Intel® SSE) intrinsics

complex float *x, *y; // pointers to input and output data
float Ix, Qx; // real and imaginary parts
float Rcp; // reciprocal
/* load */
Ix = *(float *) &x[i];
Qx = *(1+(float *) &x[i]);
/* calculate inverse of power */
Rcp = 1.0f/(Ix*Ix +Qx*Qx);
/* assign */
y[i] = Rcp*(Ix – I*Qx);

Code listing 7: Complex reciprocal implementation using standard C

The versions presented above where tested [19] over 1000 samples, the Intel SSE 
intrinsics version showed a performance advantage of 31.4 percent against the  
standard C implementation.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   131 

Case Study: Medical Ultrasound Imaging

Medical ultrasound imaging is a field that demands a significant amount of embedded 
computational performance, even on lower-end portable devices. Even though the 
physical configurations, parameters, and functions provided vary widely across the 
available device ranges, basic functions such as B-mode imaging share the same  
basic algorithmic pattern: beamforming, envelope extraction, and polar-to-Cartesian 
coordinate translation. 

Figure 1 shows the block diagram of a typical, basic ultrasound imaging implementation. 
The transducer array comprises a number of ultrasound emitters/receivers that con-
nect to an analog frontend (AFE) which are responsible for conditioning the ultra-
sound signals. These signals are converted to/from a digital representation by means of 
a series of ADCs/DACs. The transmit and receive beamformer components delay and 
weight each of the transducer elements during transmission and reception, dynamically 
focusing the transducer array in a sequence of directions during each image frame, 
without the need for mechanical moving parts or complex analog circuitry (at the cost 
of a significant increase in digital computational requirements). An envelope detector 
extracts the information carried by the ultrasound signals, which is then stored and 
prepared for display. Common systems also have the ability to detect and measure the 
velocity of blood flow, usually carried out by a Doppler processing algorithm. Image 
compression and storage for post-analysis is also a common feature.

Signal
cond.

Transducer
Array

DAC

ADC

Image Compression

Display Processing

Control and Calibration

Tx Beamformer

Rx Beamformer

Envelope Detection Doppler Processing

Beamforming Control

Figure 1: Block diagram of a typical ultrasound imaging application. The dashed line separates the hardware and software components

Source: Intel, 2009

“ Basic functions such as B-mode 

imaging share the same basic  

algorithmic pattern: beamforming, 

envelope extraction, and polar-to-

Cartesian coordinate translation.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

132   |   Digital Signal Processing on Intel® Architecture

The highlighted blocks in Figure 1 have been prototyped and measured for perfor-
mance on the Intel Core 2 Duo and Intel® Atom™ processors, looking at a B-mode 
imaging application. The Intel IPP was used thoroughly in this prototype. A brief 
discussion on the architecture, parameters and corresponding estimated performance 
requirements for each of these blocks follows next. Table 3 lists some of the overall 
parameter values for this prototype system.

Parameter Value

Number of transducers 128

Number of scanned lines per frame 
(steering directions)

128

Angle aperture 90 degrees

Number of samples acquired, per 
transducer per line

3000

Output image dimensions 640x480 (pixels)

Image resolution 8-bit grayscale

Target number of frames per second 30

Input signal resolution 12-bit fixed point

Output signal resolution 8-bit fixed point

Computational precision (all stages) 32-bit floating point

Table 3: Overall parameters for the ultrasound prototype.

Receive Beamformer 
This block implements delay-and-sum synthetic receive focusing with linear 
interpolation and dynamic apodization. Figure 2 shows the DSP block diagram  
for this module.

For each scan line that is acquired, each signal stream xk(n) coming from the transducer 
elements passes through an upsampler, an interpolation filter I(z), a delay element, 
a downsampler, and is multiplied by a dynamically varying apodization coefficient. 
The resulting signals are then accumulated and a single stream y(n) is sent to the next 
processing stage. The delay values are pre-computed [10], multiplied by M and rounded 
to the nearest integer value (operator [ ]) and stored in a look-up table (LUT), and are 
recomputed each time a new line starts to be acquired. The apodization function [11] 
updates itself for each sampling period of the input streams. All its coefficients are also 
pre-computed are stored in a LUT.

The interpolation filter is a first-order linear interpolating filter.

If this filter is decomposed into its M polyphase components [12], only N/M of its 
taps need to be computed (N being the total number of taps). An interpolation/
decimation factor of 4 was chosen for this prototype, which means that the filter  
has a 7-tap, linear-phase FIR configuration. 

In terms of number of floating-point DSP operations per second, and assuming that 
each of the filter instances processes 2 taps per input sample, the structure of Figure 
2 would require more than 7.3 GFLOPs for real-time, 30 fps B-mode imaging, a 
performance level that is difficult to achieve using typical DSP or GPP architectures. 
Figure 3 shows a rearrangement of the same block diagram, where the 128 parallel 

•
•
•

•
•
•

•
•
•

x1(n)
M I(z)

x2(n)
M I(z)

xN(n)
M I(z)

y(n)
•
•
•

•
•
•

M

1(n)

M

2(n)

M

N(n)

Figure 2: Block diagram of the receive 

beamformer. Source: Intel, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   133 

filters are transformed into a single filter having the same impulse response. This 
block diagram is equivalent to the previous one, apart from a loss of accuracy in  
the delays applied to the apodization coefficients.

Although the channel streams are accumulated at the higher sampling rate, at 
most the same number of additions is performed since, for each M samples of the 
upsampled signals, only one is not equal to zero. The interpolating filter is now a 
decimating filter, and an efficient polyphase implementation is also possible. 

Assuming the worst-case scenario in which all delay values are the same, the number 
of operations for the beamforming algorithm is now 3.1 GFLOPs. Still being a  
high performance target, this represents a reduction of more than 57 percent in 
computational complexity when compared to the algorithm of Figure 2.

Envelope Detector
The envelope detector algorithm uses a Hilbert transformer as its central building 
block. The incoming signals are seen as being modulated in amplitude, where the 
ultrasound pulses carry (modulate) the information to be displayed. Figure 4 shows 
its block diagram. The order L of the Hilbert transformer is 30.

Assuming that the logarithm consumes 10 DSP operations per sample, the  
computational requirements for this block would be 437.8 MFLOPs.

Display Processing
The main responsibility of this block is to convert the array containing all the infor-
mation to be displayed from polar to Cartesian coordinates. Figure 5 illustrates the 
transformation performed in this module, in which a hypothetical scanned object  
(a rectangle) is “de-warped” for proper visual representation.

  = arctan(y/x)

d = sqrt(x2+y2)

x

y

d

Scanned
Object

Scanned
Object

d

Figure 5: Polar-to-Cartesian conversion of a hypothetically-scanned rectangular object. Source: Intel, 2009

•
•
•

•
•
•

•
•
•

x1(n)
M

xN(n)
M

1(n+

N(n+

)

)

MI(z)
y(n)

Figure 3: Simplified block diagram of the receive 

beamformer. Source: Intel, 2009

z-L/2

H(z)

Hilbert
Transformer

x(n) y(n)

(.)2

(.)2

log(.)

u(n)

û(n)
offset

scale

Figure 4: Block diagram of the envelope detector.

Source: Intel, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

134   |   Digital Signal Processing on Intel® Architecture

In Figure 5, θ represents the steering angle, d is the penetration depth, and x and y 
are the pixel coordinates in the output image.

During initialization, the application takes the physical parameters of the system 
and determines the active pixels in the output target frame. Using the conversion 
formulas in the figure, a LUT is built that stores all the information required for 
mapping between coordinate spaces. Bilinear interpolation is performed in the 
(d, θ) space for an increased quality of the output images.

For a 640 x 480 pixel image and for a 90 degree angle aperture, the number of 
active pixels is about 150,000. To obtain the output pixel amplitude values, the 4 
nearest values are read from the polar-coordinate space, and bilinear interpolation is 
performed using the mapping information computed upon initialization. Figure 6 
illustrates this process. For each pixel, 13 DSP operations in total are performed. For 
a 30 fps system, 58.5 MFLOPs are required.

x

y

d

“Ideal”  Point

d

Figure 6: Illustration of the process for obtaining the output pixels values. Source: Intel, 2009

Performance Results
Table 4 and Table 5 show the performance results for each of the 3 DSP modules 
described above, running on Intel Core 2 Duo and Intel Atom processors. The 
benchmark was run on a single-thread, single–core configuration; that is, no high-
grain parallelism was taken into consideration. Linux 2.6.18 was running on the Intel 
Core 2 Duo processor system (GCC 4.1.1 was used for compiling the application), 
and Linux 2.6.24 on the Intel Atom processor platform (GCC 4.2.3). Intel IPP  
version 6.0 was installed on both platforms.

“For a 640x480 pixel image and 

for a 90 degree angle aperture, the 

number of active pixels is about 

150,000.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   135 

Besides the lower clock frequency, other factors influence the lower performance 
values obtained with the Intel Atom processor: total available cache size and number 
of instructions retired per clock cycle. Being optimized for low-power applications, 
the instruction pipeline on Intel Atom processor is not able to retire as many  
instructions per clock cycle (in average) as the Intel Core 2 Duo processor.

Due to its more straightforward nature in terms of memory accessing, the envelope 
detector is the most efficient part of the processing chain. 

The low performance values for the display processing algorithm are heavily due to 
the nonsequential memory access patterns. Besides generating many cache line and 
page misses, this also makes the algorithm unsuitable for vectorization, although it 
could still operate in a parallel fashion on a multi-core, multi-threaded platform.

One of the largest performance bottlenecks of the beamforming algorithm is caused 
by the varying delay values applied to the signals causing many nonaligned memory 
access patterns. Usually, and because of its high performance requirements, this part 
of the algorithm is offloaded to external, dedicated circuitry, mostly based on FP-
GAs. Table 6 shows the benchmark results in terms of number of frames per second 
attainable for each of the platforms tested, excluding the beamformer algorithm.

Target frames/second Benchmark results 
Intel® Core™2 Duo 
Processor

Intel® Atom™ 
Processor N270

30 125.94 21.05

Table 6: Benchmark results in frames/second excluding beamformer.

“ One of the largest performance 

bottlenecks of the beamforming 

algorithm is caused by the varying 

delay values applied to the signals 

causing many nonaligned memory 

access patterns.”

Intel® Core™2 Duo Processor (2.533 GHz, 6 MB L2 cache)

Algorithm Processing requirements 
(MFLOPs)

Time to process one frame 
(ms)

Equivalent processing 
throughput (MFLOPs)

RX beamforming 3098.9 227.8 453.45

Envelope detection 437.8 4.55 3207. 3

Display processing 58.5 3.39 575.22

Total 3595.2 235.74 508.36

Total (excluding beamformer) 496.3 7.94 2083.5

Table 4: Performance results for the Intel® Core™2 Duo processor.

Intel® Atom™ Processor N270 (1.6 GHz, 512 KB L2 cache)

Algorithm Processing requirements 
(MFLOPs)

Time to process one frame (ms) Equivalent processing 
throughput (MFLOPs)

RX beamforming 3098.9 1177.3 87.74

Envelope detection 437.8 22.78 640.62

Display processing 58.5 24.73 78.85

Total 3595.2 1224.8 97.85

Total (excluding beamformer) 496.3 47.51 348.21

Table 5: Performance results for the Intel® Atom™ processor.



Intel® Technology Journal | Volume 13, Issue 1, 2009

136   |   Digital Signal Processing on Intel® Architecture

While the Intel Atom processor seems not to be able to reach the initial 30 fps  
target, the Intel Core 2 Duo processor clearly does it and provides headroom to  
accommodate other runtime control and processing tasks needed in a fully func-
tional ultrasound imaging application. It is also worth noting that opportunities 
for parallel processing exist in several parts of the algorithm, though they were not 
taken into consideration throughout this study.

Case Study: Wireless Baseband Signal Processing

In wireless communication systems, the physical layer (PHY) (baseband signal pro-
cessing) is usually implemented in dedicated hardware (ASICs), or in a combination 
of DSPs and FPGAs, because of its extremely high computational load. GPPs (such  
as Intel architecture) have traditionally been reserved for higher, less demanding layers 
of the associated protocols.

This section, however, will show that two of the most demanding next-generation 
baseband processing algorithms can be effectively implemented on modern Intel 
processors—LTE turbo encoder [18] and channel estimation.

The following discussion assumes Intel architecture as the target platform for imple-
mentation, and the parameters shown in Table 7.

LTE Bandwith 20 MHz

FFT length 2048

Spatial Antenna MIMO 4x4, 1 sector

OFDM symbols per slot 7

Slots per frame 20

Frame duration 10 ms

Encoding 1/3 Parallel Concatenated 
Convolutional Turbo-Encoder

Raw Bit-rate 172 Mbit/s

Bit-rate at TE input 57 Mbit/s

Table 7: Parameters for LTE algorithm discussion.

LTE Turbo Encoder
The Turbo encoder is an algorithm that operates intensively at bit level. This is one 
of the reasons why it is usually offloaded to dedicated circuitry. As will be shown 
further, there are software architecture alternatives that can lead to an efficient  
realization on an Intel architecture platform.

The LTE standard [18] specifies the Turbo encoding scheme as depicted in Figure 7.

“ This section, however, will show 

that two of the most demanding 

next-generation baseband processing 

algorithms can be effectively imple-

mented on modern Intel processors.”

“ There are software architecture  

alternatives that can lead to an  

efficient realization on an Intel  

architecture platform.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   137 

xk

zk

Turbo Code
Internal

Interleaver

c'k

1st Constituent Encoder

2nd Constituent Encoder

Output

D D D
ck

z'k

D D D

x'k

Figure 7: Block diagram of the LTE Turbo encoder. Source: 3GPP

The scheme implements a Parallel Concatenated Convolutional Code (PCCC)  
using two 8-state constituent encoders in parallel, and comprises an internal  
interleaver. For each input bit, 3 bits are generated at the output.

Internal Interleaver
The relationship between the input i and output π(i) bit indexes (positions in the 
stream) is defined by the following expression:

π(i) = (f1  ∙ i 
2+ f 2

 ∙ i)mod (K)
 

K is the input block size in number of bits (188 possible values ranging from 40 to 
6144). The constants f1 and f2 are predetermined by the standard, and depend 
solely on K. 
At a cost of a slightly larger memory footprint (710 kilobytes), it is possible to 
pre-generate the π(i) LUTs for each allowed value of K. For processing a single data 
frame, only the portion of the table referring to the current K value will be used 
(maximum 12 KB).

Computing the permutation indexes at runtime would require 4 multiplications, 
1 division and 1 addition, giving a total of 6 integer operations per bit.

Convolutional Encoders
Each convolutional encoder implements a finite state machine (FSM) that cannot 
be completely vectorized or parallelized due to its recursive nature. 

In terms of complexity, the implementation of this state machine requires 4 XOR 
operations per bit per encoder. If all the possible state transitions are expanded and 
stored in a LUT, the number of operations is 8 per byte per encoder.

“ Each convolutional encoder 

implements a finite state machine 

(FSM) that cannot be completely 

vectorized or parallelized due to its 

recursive nature.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

138   |   Digital Signal Processing on Intel® Architecture

Total Computational Requirements
For an input rate of 57 Mbit/s, the Turbo encoder requires 57.34 MOP (Million 
Integer Operations) for processing a single 10-ms frame.

Internal Interleaver Implementation
In order to allow parallelization and vectorization, the algorithm was changed by 
replacing the mod operation with a comparison test and a subtraction. Also, the 
inter-sample dependence was reassessed for allowing 8-way vectorized implementation 
as follows:

ρL(n, i) = π(i - L) + (f 1 ∙ L + f 2 ∙ L ∙ (2 ∙ n + L )) mod (K)

τL(i) = ρL (and(i, L - 1), i)

π(i) = τL (i) - K ∙ τL (i)  < K ?)

For parallel implementation, each thread receives a portion of the input data stream 
within the 6144-bit maximum range. The results (in CPU cycles) per input byte are 
given in Table 8 for the reference system described below. These results are included 
in the overall Turbo encoder performance measurements presented ahead. As can be 
seen from the results in Table 8, performance scales in an almost linear manner with 
the number of threads.

Threads Cycles per byte

1 19.76

2 9.745

4 4.99

Table 8: CPU cycle counts per byte on multithreaded implementation 
of internal interleaver.

Convolutional Encoder Implementation
The implementation for this block comprises two steps: 

•	 	Generate all possible FSM state transitions and output values for each input value, 
regardless of the current state of the FSM. Generation of the output values is done 
in parallel.

•	 	From the results generated in the previous step, select the one that corresponds to 
the actual state. All other generated results are discarded. The two convolutional 
encoders operate in parallel during this step.

A LUT is used that stores the pre-computed transition matrix (for each possible 
value of the input and FSM state). The size of this LUT depends on the number  
of bits sent to the encoders in each iteration.

Table 9 shows the number of cycles it takes to encode the input stream, as well as 
the memory footprint, per iteration. It can be seen that on Intel architecture, the 
large cache size allows a more flexible tradeoff between performance and memory 
usage. In this case, a 128-KB table is used.

“ For parallel implementation, 

each thread receives a portion of 

the input data stream within the 

6144-bit maximum range.”

“ A LUT is used that stores the  

pre-computed transition matrix  

(for each possible value of the  

input and FSM state).”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   139 

input (bits) LUT Size (bytes) Clks Clks/Byte

1 32 6.41 51.28

4 256 6.54 13.08

8 4096 6.57 6.57

12 131072 6.55 4.37

16 2097152 9.51 4.76

Table 9: CPU cycle counts for the LUT-based encoder.

Overall Performance Results for the Complete Turbo Encoder
From Tables 8 and 9, the internal interleaver takes 4.99 cycles per byte, using  
4 independent threads for an input block size of 6144 bits, while the encoder, 
which uses 2 threads, takes 4.76 cycles per byte. As there is no inter-block depen-
dence it is possible to run two encoders in parallel on the reference platform [19].

As a result, a 10-ms frame (57 Mbps) is encoded in 159.1 microseconds corresponding 
to a total CPU usage of 1.59 percent.

Channel Estimation
On the next generation of mobile wireless standards the estimation of the channel 
characteristics is necessary to provide high data throughputs. LTE includes a number 
of reference signals in its data frame that are used to compute the estimation, as 
illustrated in Figure 8.

These reference signals are sent every 6 subcarriers with alternate frequency offsets. 
They are sent on the first and fourth OFDM symbols of each slot, so two channel 
estimations are computed per slot.

The estimation consists of a time average of the current reference frame and the 5 
previous ones, in order to minimize noise distortion.

Figure 9 represents the high-level view of the channel estimator, comprising a 
complex reciprocal operation (rcp(z)), a complex multiplication per each set of 
reference values, an averaging operator (Σ in Figure 9) and a polyphase interpolator 
(H(z)).

In terms of computational complexity per sample: 

•	 	Reciprocal calculation: 6 multiplications, 1 division and 1 addition.
•	 	Complex multiplication: 4 multiplications and 2 additions.
•	 	Averaging operation: 6 additions and 1 multiplication.
•	 	Polyphase interpolator: 6 multiplications and 3 additions.
•	 	Total number of operations: 30.

For a 10-ms full 4x4 MIMO, 20-MHz frame, the algorithm computes 120 channel 
estimations, where only 340 samples per frame are used. Multiplying this by the 
total number of operations per sample we get a total of 1.224 MFLOP per frame. 

Antenna Port 0 Antenna Port 1

Antenna Port 3Antenna Port 2

F
o

u
r 

A
n

te
n

n
a 

P
o

rt
s

Figure 8: Spacing of Reference signals on each 

antenna. Source: 3GPP LTE Standard

3

RX Reference
Frame

rcp(z) X

Pre-calculated
Reference Values

H(z) 3

Figure 9: High-level view of the channel 

estimator. Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

140   |   Digital Signal Processing on Intel® Architecture

Implementation
The input data parameters are assumed as described in Table 10.

Only the complex multiplications and reciprocals are computed in floating point. 
Reciprocals in particular are implemented with SSE intrinsics for a higher through-
put. The performance results in CPU cycles per reference input sample are presented 
in Table 11.

For a 10-ms frame, and assigning two cores per MIMO channel on our system [19], 
each thread computes a total of 20 estimations per frame, resulting in 47.2 micro-
seconds processing time per frame, and a total CPU usage of 0.48 percent. 

Overall Turbo Encoder and Channel Estimation Performance
Table 12 summarizes the performance results of the Intel architecture implementation 
for both algorithms. The first column states the computational complexity of the 
algorithm in terms of millions of (floating-point) operations per frame. The second 
shows the actual time taken by our reference system to process the data (using  
the 8 cores available). The final column is the total CPU usage for processing the  
57 Mbps data stream. 

While the actual partitioning of the system will depend on the amount of baseband 
processing offloaded or/and throughput required, the results show that it is possible 
to move several portions of the baseband processing into an Intel arechitecture-
based platform.

Case Study: SARMTI—An Advanced Radar Post-Processing Algorithm
Sophisticated military radar post-processing is certainly not the first embedded 
DSP application that comes to mind. Yet processing efficiency is always a concern: 
projects are always seeking the highest performance possible within a fixed thermal 
and volume footprint.[13]   

“ Sophisticated military radar  

post-processing is certainly  

not the first embedded DSP  

application that comes to mind.”

Input Type Fixed point 16-bit IQ pairs

ADC 12 bits

Frame size 2048 complex samples

Reference points in frame (per antenna) 340 complex samples

Table 10: Input data format for channel estimation.

 Reciprocal  
Calculation

Complex  
multiplication

Interpolation Averaging Total

Cycles/sample 7.53 4.51 7.68 0.29 20.01

Table 11: CPU cycles per complex input sample for each stage of the channel estimation algorithm.

Dual Intel® Core™ i7 Processor 2120 MHZ (4 cores/CPU, 1.5 GB DDR3/CPU, 8 MB cache/CPU)

Algorithm 10-ms Frame Processing 
requirements (MOP/MFLOP)

Time to process a 10-ms frame 
(microsecs)

CPU usage

Turbo-Encoder 57.34 159 1.59%

Channel Estimation 1.224 47.3. 0.48%

Table 12: Summary of performance results for selected baseband proccessing.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   141 

A major US defense contractor asked Intel and N.A. Software Ltd[14] (NASL) 
to determine how much the performance of a highly innovative radar algorithm 
“SARMTI” could be increased by multi-threading it and running it across multiple 
Intel architecture cores. The results could then be used to estimate the minimum 
size, weight, and power systems of various capabilities would require. 

SARMTI was developed by Dr. Chris Oliver, CBE, of InfoSAR[15]. It combines 
the best features of the two predominant radar types in use today: Moving Target 
Indication (MTI) and Synthetic Aperture Radar (SAR). The computational loads 
to perform the SARMTI processing in needed time frames is an NX computational 
problem. But by focusing on the underlying physics, Dr. Oliver has discovered a 
way to transform the problem into a much more manageable “N*x” problem.

The basic difficulty with currently deployed airborne systems is that they must often 
consist of both MTI and SAR radar systems, with their separate waveforms, processing, 
and display modules. This is because MTI systems are very good at tracking fast- 
moving ground and airborne objects, but slow-moving or stationary objects degrade 
the image. Imaging radar systems, such as SAR, are capable of resolving stationary 
ground objects and features to less than 1 meter, but any movement (of the airplane 
or objects on the ground) shifts and blurs the image, so positions of moving objects 
cannot be accurately determined. Therefore current systems must rely on highly 
trained radar operators to register the moving target data collected/processed during one 
time period using MTI waveforms with the images of the ground collected using SAR 
waveforms during a different time period. Once registered, analysis and correlation of 
the disparate images is also often performed manually.

NASL began the SARMTI multi-threading project by using the GNU profiler 
gprof to determine where to focus their work. It showed that the serial algorithm 
was spending 64 percent of its time compressing complex data and about 30 
percent of its time detecting targets. So NASL threaded those areas, resulting  
in an overall algorithm structure diagrammed in Figure 10.

Since SARMTI is a post-processing algorithm, it begins after a raw SAR image  
(>14 MB) is loaded into memory. Some serial (non-threaded) processing is done  
at the beginning, then again during a small synchronization process in the middle 
and then at the end to display the image. But during the data compression and  
target detection phases, data tiles are processed independently on each core (repre-
sented by the TH[read] boxes.) NASL did not use core or processor affinity to assign 
specific threads to specific cores or processors; they let Linux dynamically place each 
process on the core with the least load. Analysis showed that core utilization was in 
fact quite balanced. 

NASL next turned their attention to optimizing FFT and vector math operations, 
since SARMTI contains many billions of FFT and math operations. The original 
SARMTI code used FFT performance libraries from FFTW,* so the Intel Math 
Kernel Library (Intel MKL) “FFTW Wrappers” were substituted. In addition, the 
original C versions of complex vector add, conjugate, and multiply operations 

Raw SAR Image Data
In Memory ( > 14 MB/Image)

Serial
Code

•   •   •TH THTH TH

Serial
Code

•   •   •TH THTH TH

Serial
Code

Compress
Complex

Data

Detect
Targets

Display
SARMTI
Image

Figure 10: Conceptual Structure of SARMTI

Source: NA Software Ltd., 2009

“ The computational loads to  

perform the SARMTI processing 

in needed time frames is an NX 

computational problem. But by 

focusing on the underlying physics, 

Dr. Oliver has discovered a way to 

transform the problem into a much 

more manageable ‘N*x’ problem.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

142   |   Digital Signal Processing on Intel® Architecture

were replaced with the corresponding functions in the Intel MKL. Total Intel MKL 
speed-up by itself ranged from 14.7 to 18.4 percent.  

Table 13 summarizes the overall results of these efforts when the multi-threaded 
algorithm was run on a four-socket Intel rack mount server.[17] 

The overall speed up from the original serial code to the multi-threaded code 
running with 24 threads across 24 cores ranged between 17 and 33 times. The large 
performance gains from the original, totally serial code, to the multi-threaded 
version (1T) were realized by optimizing the algorithm during the multi-threading 
process (in addition to the previously mentioned gains from Intel MKL). The 
speed-up from multi-threaded code running on 1 core to 24 threads running on 
24 cores was about 12X for all test scenarios. Figure 11 shows how performance 
scaled per core. 

The slope of the curves shows that SARMTI scales quite well from one to eight 
cores. The rate of increase slows after eight threads/cores, but performance did 
continue to increase.  

NASL investigated a number of areas to see if scaling per core could be increased. 
Neither front side bus nor memory bandwidth turned out to be issues. Cache 
thrashing was also not a problem since NASL had been careful to use localized 
memory for each thread. Early portions of the data compression stage are the only 
place where threads do process data from the same area of memory since they are all 
starting with the same input image. But changing the algorithm to make N copies 
of the image and then processing that unique memory block on each thread intro-
duced overhead that actually increased execution times.  

It turned out that some parts of the algorithm simply threaded more efficiently than 
others. Different portions of the algorithm use differently sized data sets, whose sizes 
change dynamically as the geometry changes. Some of the data sets simply do not 
thread efficiently across 24 cores.

The next phase of the project will be to determine the performance increases (and 
hence potential reduction in system size, weight and power) that tightly coupling 
FPGAs to Intel Xeon processors will bring.[17] 

S
ec

o
n

d
s

Threads (Cores)

40

50

60
70

30

20

10
0

1T 2T 4T 8T 16T 24T

Test 1
Test 2
Test 3

Test 4

Figure 11: SARMTI scalability graphed per 

number of cores. Source: NA Software, Ltd.

“ The large performance gains from 

the original, totally serial code, to the 

multi-threaded version (1T) were 

realized by optimizing the algorithm 

during the multi-threading process.”

Test Scenario Original Non-
Threaded Time

Hardware Threads (Cores) Speed Up 
(1T→24T)

Total Speed Up 
(0→24T)1T 2T 4T 8T 16 T 24 T

test1 85.4 36.2 18.4 9.5 5.5 4.1 2.9 12.6X 29X

test2 120.2 44.8 23 12.2 7.1 5.1 3.7 12X 32X

test3 104 35.3 17.9 9.3 5.4 4 2.8 12.4X 17X

test4 166.2 59.5 30.9 16.5 9.5 6.6 4.9 12X 33X

Table 13: Total SARMTI performance increase: 0 to 24-cores and threads (in seconds) (4x Intel® Xeon® Processors X7460)
Source: NA Software Ltd, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

Digital Signal Processing on Intel® Architecture   |   143 

Conclusions

Modern Intel general purpose processors incorporate a number of features of real value 
to DSP algorithm developers, including high clock speeds, large on-chip memory 
caches and multi-issue SIMD vector processing units. Their multiple cores are often 
an advantage in highly parallelizable DSP workloads, and software engineers can write 
applications at whatever level of abstraction makes sense: they can use higher-level 
languages and take advantage of compiler’s automatic vectorization features. They can 
further optimize performance by linking in Intel IPP and MKL functions. In addi-
tion, if certain areas require it, SSE intrinsics are available, or the rich and growing  
set of specialized SSE and other assembly instructions can be used directly. 

The ultrasound and LTE studies we have summarized indicate that current Intel 
Architecture Processors may now be suitable for a surprising amount of intensive 
DSP work, while the SARMTI performance optimization study demonstrates the 
kind of impressive performance increases multi-threading can unlock.

References
[1]  The Freescale* MPC 8641D processor and Intel® Core™2 Duo processor T7400 

were measured as installed in GE Fanuc* DSP230 and VR11 embedded boards. 
The VXWorks* 6.6 version of NASL’s VSIPL* library was used. The Intel® 
Core™2 Duo processor SL9400 was measured in an HP* 2530P laptop and is 
included to provide performance figures for a later, lower-power version of the 
Intel® Core™2 Duo processor architecture. NA Software* has both Linux* and 
VxWorks 6.6 versions of their VSIPL libraries for Intel® architecture, and used 
the Linux versions with the Intel® processors. There is no significant perfor-
mance difference between the VXWorks and Linux versions in these applica-
tions. They chose to use the Linux version for these tests because Linux was 
easier to install on the HP laptop. All timings are with warm caches.

[2]  Intel® Advanced Vector Extensions (Intel® AVX) information is available at 
http://software.intel.com

[3] Thread affinity is the ability to assign a thread to a single processor core.
[4]  Intel Corporation. “Intel® 64 and IA-32 Architectures Software Developer’s 

Manuals.” URL: http://www.intel.com/products/processor/manuals/

[5] Aart J. C. Bik. “The Software Vectorization Handbook”. Intel Press. May, 2004.
[6]  Aart Bik, et al. “Programming Guidelines for Vectorizing C/C++ Compilers.” 

Dr. Dobb’s Newsletter. February, 2003. URL: http://www.ddj.com/
cpp/184401611 

[7]  Aart J. C. Bik, et al. “Automatic Intra-Register Vectorization for the Intel® 
Architecture.” International Journal of Parallel Programming, Vol. 30, No. 2, 
April 2002.

[8]  Aart Bik, et al. “Efficient Exploitation of Parallelism on Intel® Pentium® III 
and Intel® Pentium® 4 Processors-Based Systems.” Intel Technology Journal. 
February, 2001.

[9] Information on Intel® software products can be found at http://software.intel.com

[10]  H. T. Feldkamper, et al. “Low Power Delay Calculation for Digital Beamforming 
in Handheld Ultrasound Systems.” IEEE Ultrasonics Symposium, pp. 1763-
1766, 2000



Intel® Technology Journal | Volume 13, Issue 1, 2009

144   |   Digital Signal Processing on Intel® Architecture

[11]  Jacob Kortbek, Svetoslav Nikolov, Jørgen Arendt Jensen. “Effective and versatile 
software beamformation toolbox.” Medical Imaging 2007: Ultrasonic Imaging 
and Signal Processing. Proceedings of the SPIE, Volume 6513

[12] P. P. Vaidyanathan. “Multirate Systems and Filter Banks.” Prentice Hall, 1993.

[13]  See, for example proceedings of the High Performance Embedded Computing 
Workshop at http://www.ll.mit.edu/HPEC

[14] N.A. Software Ltd. information is at http://www.nasoftware.co.uk/

[15] More information on SARMTI can be found at http://www.infosar.co.uk

[16]  NA Software Ltd. measured the performance of SARMTI on the Intel® 
SFC4UR system with four Intel® Xeon® Processors X7460, each with 6 cores 
running at 2.66 GHz, and 16 MB of shared L3 cache. Sixteen MB 667-MHz 
FBDIMMs, Fedora* release 8 (Werewolf*) for x86_64 architecture (Linux* 
2.6.23 kernel), GCC 4.1.2, flags: -O3 –Xt –ip –fno_alias –fargument-noalias, 
Intel® C++ Compiler 10.0; Compile flags: icc –O3 –Xt –ip –fno_alias – 
fargument-noalias,* Intel® Math Kernel Library (Intel® MKL) version 10.0

[17]  See the Intel® QuickAssist Technology references to Xilinx* and Altera* FPGA 
in-socket accelerator modules available from XtremeData* and Nallatech* at 
http://www.intel.com/technology/platforms/quickassist/  

[18] The LTE specification is available at www.3gpp.org

[19]  Reference system: Dual Intel® Core™ i7 Processor 2112 MHz (8 MB Cache/
CPU, 1.5 GB DDR3 800MHz/CPU. 64-bit CentOS 5.0, Intel® C++ Compiler 
10.0.0.64, 80 GB HD Samsung* 5400 rpm)

Author Biographies

David Martinez: David Martinez joined the DSP on IA team in February 2008. 
Since then, he has been working on implementing Wireless Baseband algorithms 
on Intel® architecture. Previously, David had been working for three years on codec 
and signal processing optimization for mobile devices, mainly in H264, MPEG-4 
decoding and DVB-H demodulation. 

He received his ME on Telecommunications and Electrical Engineering at the 
Polytechnic University of Madrid (UPM) and the Ecole Superieure d’Electricite of 
Paris in 2005.

Vasco Santos is a DSP software engineer working in the DSP on IA team based in 
Shannon, Ireland, where he has been developing work on medical ultrasound  
imaging and wireless baseband signal processing.

Prior to joining Intel in May 2008, Vasco was a senior digital design engineer at 
Chipidea Microelectronica, S.A., Portugal, where he spent 4 years developing efficient 
ASIC DSP architectures for delta-sigma audio data converters and wireless baseband 
frontends. Vasco also has 2 years of research and development experience in semantic 
characterization of audio signals. He received his B.S. and M.S. degrees in electrical 
and computer engineering from the Faculty of Engineering of the University of Porto, 
Portugal, in 2002 and 2005, respectively. 



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Digital Signal Processing on Intel® Architecture   |   145

Martin Mc Donnell: Martin Mc Donnell is a system architect working in the ADS 
team based in Shannon, Ireland, where he is active in the fields of voice and wireless 
processing. He has over 20 years experience in the embedded communications arena. 
Prior to joining Intel’s Accelerated DSP Software team, Martin worked in a number 
of companies (including Digital Equipment Corp., Tellabs, Avocent Corp.) special-
izing in the field of data and multimedia communications, producing products in 
the IP networking, telephony, multimedia over IP, and ultra low latency video codec 
technology areas.

Ken Reynolds: Ken Reynolds is engineering manager for the ADS (Accelerated 
DSP Software) team based in Shannon, Ireland.

Ken has nearly 18 years experience in the industry, initially in the area of high speed 
digital design (encompassing embedded, ASIC, FPGA, RF, and DSP) and more 
recently in leading research and development teams, which, in his previous two 
companies (Azea Networks and Alcatel), focused on signal conditioning and error 
correction for high bit rate optical communication systems. He has worked mostly 
in the telecommunications and defense industries in the UK and USA.

Ken joined Intel in January, 2008.

Peter Carlston: Peter Carlston is a platform architect with Intel’s Embedded Com-
puting Division. He has held a wide variety of software and systems engineering 
positions at Unisys and Intel.



146   |   IA-32 Features and Flexibility for Next-Generation Industrial Control

Contributors

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

IA-32 FEATURES AND FLEXIBILITy FOR NEXT-GENERATION  

INDUSTRIAL CONTROL

Ian Gilvarry 
Intel Corporation

Abstract

Industrial control systems are rapidly evolving towards standardized, general- 
purpose platforms that incorporate concepts traditionally associated with the  
domain of Information Technology (IT). The push of IT into the industrial sector  
is occurring both at the field level, where sensors and actuators are more and more 
intelligent, and at the control level, to replace the dedicated hardware approach 
found in previously designed applications. New programmable logic controllers 
(PLCs) are being designed using commercial off the shelf (COTS) hardware based 
on embedded PCs. Key to the design are benefits associated with PC software architec-
tures where designers have many choices to incorporate the reliability, determinism, and 
control functions that are required. This makes the PC software extremely flexible 
and well suited for complex applications. These new types of industrial controllers 
are in effect open control platforms that bring into scope the advantages inherent in 
the PC industry including open programming, connectivity, and greater flexibility.

This article describes a suggested design approach for an open control platform using 
the Intel® Atom™ processor. It illustrates how these new processors provide the ben-
efits of IA-32 open architectures while at the same time meeting the power and cost 
envelope associated with designs at the control level in industrial factory automation.

Traditional Industrial Automation Control

Traditional industrial automation control has been implemented using the pro-
grammable logic controller (PLC), a programmable microprocessor-based device 
used to control assembly lines and machinery on the shop floor as well as many 
other types of mechanical, electrical, and electronic equipment in a plant. Typically 
programmed in an IEC 61131 programming language, a PLC was designed for 
real-time use in rugged, industrial environments. Connected to sensors and actuators, 
PLCs were categorized by the number and type of I/O ports they provided and by 
their I/O scan rate.

For over two decades PLCs were engineered using proprietary architectures. These 
PLCs were based on dedicated hardware platforms, with real-time operating systems 
(RTOS), and functions strictly limited to the actions to be performed. With such 
PLCs, when you selected a particular vendor and PLC family you were locked into 
the corresponding boards and functions that were available to that particular line. 
While this approach offers easy-to-integrate hardware, high quality components, and 
knowledgeable support, it also is closed to unusual implementations or deviations 
from standard configurations.

Intel® Atom™ processor
programmable logic controllers
fieldbus
real-time Ethernet
software-plc

“ With such PLCs, when you  

selected a particular vendor and 

PLC family you were locked into 

the corresponding boards and  

functions that were available to 

that particular line.”



IA-32 Features and Flexibility for Next-Generation Industrial Control     |    

Intel® Technology Journal | Volume 13, Issue 1, 2009

PLCs have served well as individual islands of manufacturing control. However, 
digital factory automation has evolved into complex, interconnected manufactur-
ing cells. Process control data flows upwards from the cell into the MRP system, 
as dynamically reconfigurable process steps flow downwards. “Just in Time” (JIT) 
product distribution and an increasing number of offered products drive companies 
towards reconfigurable manufacturing. Connecting the work cells into the plant’s 
MRP system requires new communication interfaces and also creates a demand for 
statistical information and additional data acquisition at the work cell. Work cells 
are also increasing in sensor count and complexity. Often these newer sensors are 
difficult to interface with traditional PLC hardware. The communications interface, 
the statistical functions, the data acquisition functions, and the new sensors are 
often difficult to add to the traditional PLC.

Towards Embedded Processors for PC-Based  
Industrial Automation

In recent years industrial control systems have been transitioning more towards  
standardized, general-purpose platforms based on the adoption of PC technology. 
One of the fundamental drivers for this has been the desire by end users to merge 
their information technology and automation engineering systems into one com-
plete end-to-end platform. The push of information technology into automation  
is happening at the field Level where sensors and actuators are more and more  
intelligent, and also at the control level, where embedded PC technology is being 
used to replace the traditional PLC.

As well as convergence of information systems and automation engineering,  
the deployment of web-service based architectures and the proliferation of  
industrial Ethernet are additional factors that are influencing end users and  
original equipment manufacturers (OEMs) to migrate industrial control  
systems to PC-based architectures.

Special software packages for embedded PC platforms implement the functions that 
traditionally were implemented in separated dedicated hardware. Advantages here 
are many including:

•	 	No need of dedicated hardware
•	 	Integration of different functions in a single machine (HMI and PLC run in a 

single embedded PC)
•	 	Ease of interfacing basic control functions with high level functions
•	 	Native remote communication using Ethernet or the Internet

Today a digital factory system includes a network of intelligent field devices  
and one or more dedicated devices for running the control tasks that are called 
controllers. Additional devices may be used for human machine interface (HMI), 
remote communication, data storage, advanced control, and other tasks.

“ Connecting the work cells into the 

plant’s MRP system requires new 

communication interfaces and also 

creates a demand for statistical 

information and additional data 

acquisition at the work cell.”

“ One of the fundamental drivers 

for this has been the desire by end 

users to merge their information 

technology and automation  

engineering systems into one  

complete end-to-end platform.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

148   |   IA-32 Features and Flexibility for Next-Generation Industrial Control

Traditionally the terms “low power” and “ultra low power” when used in relation 
to Intel® processor platforms have been at odds with the definitions used in embedded 
designs. Typically there was an order of magnitude difference between the two, with 
Intel’s lowest power platform, of the order of 10 W, compared to a typical 1-W 
envelope for a low power embedded platform. This challenge was a barrier for the 
adoption of Intel® architecture into the fanless, completely sealed designs commonly 
required in the typical harsh working environment of industrial control. Designers 
were faced with the dilemma of designing expensive thermal solutions to be able to 
adopt the benefits of PC architectures into the industrial control arena.

Realizing the Threshold for Fanless Industrial  
Control Designs

The Intel® Atom™ processors are the first of a new generation of processors over  
the coming years from Intel that will focus on addressing demand for performance 
in the tight constraints and harsh operating environments typically associated  
with industrial automation. Designs will benefit from being designed with the open 
architectures associated with PC technology but at the same time meet the demands 
of miniaturization associated with small form factors platforms, and cost-effectively 
meet the demand for more distributed intelligence in the factory.

The Intel® Atom™ processor Z5xx series brings the Intel® architecture to small form 
factor, thermally constrained, and fanless embedded applications. Implemented in 
45 nm technology, these power-optimized processors provide robust performance-
per-watt in an ultra-small 13x14 mm package.

These processors are validated with the Intel® System Controller Hub US15W 
(Intel® SCH US15W), which integrates a graphics memory controller hub and an 
I/O controller hub into one small 22x22 mm package. This low-power platform 
has a combined thermal design power under 5 W, and average power consumption 
typically less than 2 W.

Intel® Atom™ Processor Features
•	 	Intel’s 45 nm technology, based on a Hafnium, high-K metal gate formula, 

is designed to reduce power consumption, increase switching speed, and  
significantly increase transistor density over previous 65 nm technology.

•	 	Multiple micro-ops per instruction are combined into a single micro-op and 
executed in a single cycle, resulting in improved performance and power savings.

•	 	In-order execution core consumes less power than out-of-order execution.
•	 	Intel® Hyper-Threading Technology (Intel® HT Technology; 1.6-GHz version 

only) provides high performance-per-watt efficiency in an in-order pipeline. 
Intel HT Technology provides increased system responsiveness in multitasking 
environments. One execution core is seen as two logical processors, and parallel 
threads are executed on a single core with shared resources.

“ Traditionally the terms ‘low power’ 

and ‘ultra low power’ when used 

in relation to Intel® processor  

platforms have been at odds  

with the definitions used in  

embedded designs.”

“ Designs will benefit from being 

designed with the open architectures 

associated with PC technology but at 

the same time meet the demands 

of miniaturization associated with 

small form factors platforms, and 

cost-effectively meet the demand 

for more distributed intelligence  

in the factory.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

IA-32 Features and Flexibility for Next-Generation Industrial Control     |   149 

The evolution of low power Intel architecture was realized through a number of 
technological advances and some common sense power budget analysis. The power 
considerations of typical embedded platforms break down into two key areas, heat 
dissipated and average power consumed.

Using the Intel® Pentium® M processor, the analysis focused on identifying the 
main power consumers within the instruction pipeline. This is a 14-stage, 3-way 
superscalar pipeline whose instruction execution engine is based on an out-of-order 
execution scheduler. This analysis highlighted not only the large amount of power 
required for the execution scheduler logic but also significant power consumed by 
the ancillary logic, which optimizes instruction flow to the scheduler.

The pipeline stages were deconstructed and rebuilt as a 2-way superscalar, in-order 
pipeline, allowing many of the power-hungry stages to be removed or reduced, lead-
ing to a power savings of over 60 percent compared to the Intel Pentium M proces-
sor, as Figure 1 illustrates. Following this, the next stage was to examine the delivery 
of instructions and data to the pipeline. This highlighted two major elements, the 
caches and front side bus (FSB).

The L2 cache was designed as an 8-way associative 512-KB unit, with the capability 
of reducing the number of ways to zero, through save of dynamic cache sizing to 
use power. L2 pre-fetchers are implemented to maintain an optimal placement of 
data and instructions for the processor core.

The FSB interface connects the processor and system controller hub (SCH). The 
FSB was originally designed to support multiprocessor systems, where the bus  
could extend to 250 mm and up to four loads: this is reflected in the choice of  
logic technology used in the I/O buffers. AGTL+ logic, while providing excellent 
signal integrity, consumes a relatively large amount of power. A CMOS FSB imple-
mentation was found to be more suited to low power applications, consuming less 
than 40 percent of an AGTL interface.

One of the key enabling technologies for low power Intel architecture was the tran-
sition in manufacturing process to 45-nm High-K metal gate type transistors. As 
semiconductor process technology gets ever smaller, the materials used in the manu-
facture of transistors has come under scrutiny, particularly the gate oxide leakage of 
SiO2. To implement 45-nm transistors effectively, a material with a high dielectric 
constant was required (High-K). One such material is Hafnium (Hf) and provides 
excellent transistor characteristics, when coupled with a metal gate.

In embedded systems in-order pipelines can suffer from the problem of stalls due  
to memory access latency issues. The resolution of this problem came from an 
unusual source. Intel HT Technology enables the creation of logical processors, 
within a single physical core, capable of executing instructions independent of each 
other. As a result of sharing physical resources, Intel HT Technology relies on the 
processor stall time on individual execution pipelines to allow the logical processors 
to remain active for a much longer period of time. The Intel Atom processor can use 
Intel HT Technology on its two execution pipelines to increase performance by up to 
30 percent on applications that can make use of the multi-threaded environment.

“ The Intel Atom processor can  

use Intel HT Technology on its  

two execution pipelines to increase 

performance by up to 30 percent 

on applications that can make  

use of the multi-threaded  

environment.”

“ A CMOS FSB implementation 

was found to be more suited  

to low power applications,  

consuming less than 40 percent  

of an AGTL interface.”

N
o

rm
al

iz
ed

 t
o

 P
en

ti
u

m
®

 M

35%

30%

25%

20%

15%

10%

5%

0%
Fetch and
Decode

Out of
Order

Floating
Point

Integer Other Memory

Pentium® M
Intel® Atom™

Figure 1: Pipeline power savings.



Intel® Technology Journal | Volume 13, Issue 1, 2009

150   |   IA-32 Features and Flexibility for Next-Generation Industrial Control

In order to maximize the performance of the pipeline, the Intel® compiler has added 
“in-order” extensions, which allow up to 25-percent performance improvement 
compared with code compiled using standard flags.

As has been long included in the standard IA-32 instruction set, the Intel Atom 
processor supports the SIMD extensions up to Intel® Streaming SIMD Extensions 
3.1 (Intel® SSE3.1). These instructions can be used to implement many media and 
data processing algorithms. Traditionally considered the domain of the DSP, the 
SSE instructions are executed in dedicated logic within the execution pipeline.

Delivering a low power processor on its own does not necessarily meet the needs 
of an embedded low power market, where low power, small platform footprint and 
low chip count tend to be the key cornerstones of a typical design.

To address this, the Intel Atom processor platform is paired with an Intel® System 
Controller Hub (Intel® SCH), which takes the traditional components of memory 
controller, graphics and I/O complex, integrated into a single chip, attached to the 
Intel Atom processor platform over a 400-MHz/533-MHz FSB. Figure 2 shows a 
typical Intel Atom processor platform.

To meet the need for a small footprint, the processor and chipset are offered in 
ultra-small footprint packages, with a size of 13 mm x 14 mm and 22 mm and 
22 mm respectively. This footprint enables complete platforms to be developed  
with an area of less than 6000 mm.2

The Intel System Controller Hub continues the delivery of features and attributes 
suitable for the low power embedded market. The main features of the Intel System 
Controller Hub are described below:

•	 	The memory interface is a single channel 32-bit DDR-2 memory, capable of 
implementing un-terminated memory-down solutions of up to 2 GB locked  
to the FSB speed.

•	 	Closely coupled to the memory controller is the 3D graphics subsystem, sharing 
system memory in a Unified Memory Architecture (UMA) configuration.

•	 	The graphics controller offers respectable 3D performance and also has the 
ability in hardware to completely decode a range of video streams (MPEG 2  
and 4, H.264 WMV9/VC1, and others), removing this task from the main  
processor core.

•	 	The graphics controller can output two simultaneous independent streams using 
an LVDS and sDVO interface, these display interfaces may be configured using 
the embedded graphics driver configuration tool.

Embedded applications are usually defined by their I/O requirements. The Intel SCH 
provides the designer a range of interfaces, from USB ports, which may operate in 
Host or Client mode, SDIO/MMC controllers supporting a wide range of card types 
and an eIDE P-ATA controller, which enables the use of the latest solid state drives 
(SSDs) and provides the designer with a storage interface that can easily be switched 
in and out of low power states (SATA interfaces require more link management and 
cannot easily be turned on and off when not in use). In addition to the integrated 
features, the Intel SCH offers two PCI Express* x1 ports for further expansion.

Intel® System
Controller Hub

(Intel® SCH)

Intel® Atom™
Processor

LVDS

SDVO

PCI
Express

USB 2.0
Host/Client

SD/SDIO/
MMC

Codec

HD
Audio

SMC

FWH

DRAM DRAM

DRAM DRAM

400 / 533 MT/s

400 / 533 MT/s

1366 x 768

1280 x 1024

Two x 1
Ports

8 Ports

3 Ports

48 MHz
33 MHz

P-ATA

Figure 2: Typical Intel® Atom™ processor 

platform.

“ To meet the need for a small  

footprint, the processor and  

chipset are offered in ultra-small 

footprint packages, with a size  

of 13 mm x 14 mm and 22 mm 

and 22 mm respectively.”

“ The Intel SCH provides the  

designer a range of interfaces.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

IA-32 Features and Flexibility for Next-Generation Industrial Control     |   151 

Systems Architecture Considerations for Embedded  
PC-based Platforms versus Dedicated Hardware

In contrast to traditional PLCs, the next-generation industrial controllers based on 
embedded PC processors, which are sometimes also referred to as programmable 
automation controllers, handle multiple domains: not only logic, but motion, 
drives, and process control on a single platform. This brings key advantages including 
the ability to use a single development environment and also enables the use of 
open architectures for programming languages, and network interfaces.

Characteristics of industrial controllers with embedded PC processors:

•	 	Tight integration of controller hardware and software
•	 	Programmable to enable design control programs to support a process that 

“flows” across several machines or units
•	 	Operation on open, modular architectures that mirror industry applications, 

from machine layouts in factories to unit operation in process plants
•	 	Employment of de facto standards for network interfaces, languages, 

and protocols
•	 	Provision of efficient processing and I/O scanning

The key to realizing industrial control designs is to incorporate support for the 
many bus networks that exist in the factory environment. This takes into account 
the situation today in which machine builders, OEMs, systems integrators, and 
users have a plethora of fieldbus solutions they have to consider for use on their 
automation projects. These fieldbus solutions allow the common support of field 
measurement, control, status, and diagnostic information. For motion control and 
real-time tasks this information needs to be exchanged in a deterministic manner 
between field devices and automation controllers.

Commonly accepted fieldbus protocols for industrial automation applications are 
summarized in Table 1.

The industrial automation community often refers to “real-time” when discussing 
capabilities of industrial automation systems. But what are the requirements for 
industrial real-time? It needs to be put into context as different applications have 
different real-time needs. The most stringent requirements for motion control 
involve cycle times of around 50 microseconds and permissive jitter (deviation 
from the desired cycle time) of around 10 microseconds. Special applications with 
requirements tighter than this must be handled with application-specific hardware; 
normal industrial fieldbus–based systems cannot handle those applications. Typical 
cycle times for position control lie in the 1 to 4 milliseconds range, but have very 
short jitter times, usually less than 20 microseconds. Pure PLC sequential logic 
usually does not require less than 10 milliseconds cycle times and jitter can be in 
milliseconds range. Communication with higher level computers will be in the 
seconds range.

“ The next-generation industrial 

controllers based on embedded  

PC processors handle multiple  

domains: not only logic, but  

motion, drives, and process  

control on a single platform.”

“ The key to realizing industrial 

control designs is to incorporate  

support for the many bus  

networks that exist in the  

factory environment.”

“ But what are the requirements  

for industrial real-time? It needs  

to be put into context as different  

applications have different real-

time needs.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

152   |   IA-32 Features and Flexibility for Next-Generation Industrial Control

Field bus technology Standards General information

Foundation Fieldbus (FF) IEC/EN 61784-1 CPF 1, 

IEC61158 Type 1

Process bus, up to 32 devices, speed 31,25 kbit/s, 2.5 Mbit/s or 

10 Mbit/s, up to 1900 range at lowest speed

ControlNet IEC/EN 61784-1 CPF 2, 

IEC61158 Type 2

Universal Ethernet/IP bus, up to 99 nodes, 5Mb/s, 1000/3000 

meters

Profibus IEC/EN 61784-1 CPF 3, 

IEC61158 Type 3

Universal bus, up to 32 nodes per segment and up to 125  

nodes in network, electrically RS-485, speeds from 9.6 kbit/s  

to 12 Mbit/s, up to 1200 meters at low speeds

P-Net IEC/EN 61784-1 CPF 4, 

IEC61158 Type 4

Two wire circular network, up to 32 hosts / 125 devices, 

electrically RS-485, sped 78.6 kbit/s

FP High Speed Ethernet (HSE) IEC/EN 61158 

Type 5 

Adaptation of Foundation Fieldbus to Ethernet, uses 100 Mbit/s 

Ethernet media

WorldFIP IEC/EN 61784-1 CPF 5, 

IEC61158 Type 7

Universal bus, up to 256 nodes per bus, speeds 31.25 kbit/s, 

1 Mbit/s and 2.5 Mbit/s, up to 2000 meters

Interbus-S IEC/EN 61784-1 CPF 6, 

IEC61158 Type 8

Sensor bus, master-slave data transfer and common frame 

protocol, supports up to 4096 I/O points, speed 500 kbit/s,  

up to 400 meters

Fieldbus Messaging 

Specification (FMS)

IEC/EN 61158  

Type 9

This is OSI layer 7 command set (Fieldbus Messaging 

Specification), does not specify any physical bus

Profinet IEC/EN 61158  

Type 10

Ethernet based Profibus protocol

Acutuator Sensor Interface 

(ASI)

IEC 62026-2:2000, EN 

50295:1999

Binary sensor bus, up to 31 slaves, up to 124 binary operations, 

5 ms, 100 meters

DeviceNet ISO 11898, IEC 62026-3:2000, 

EN 50325-2:2000

Sensor bus, transport layer is based on CAN technology, 

125-500 kbit/s, 500-100 meters

SDS ISO 11898, IEC 62026-5:2000, 

EN 50325-3:2001

Sensor bus, transport layer is based on CAN technology,  

125 kbit/s - 1 Mbit/s

CANopen ISO 11898, EN 50325-4:2002 Up to 2032 objects, 125 kbit/s - 1 Mbit/s, up to 40 meters  

at full speed

LON-Works Manufacturer specific system Used mostly in building automation, 255 segments, 127 nodes 

per segment, maximum 32385 nodes in system

Modbus MODBUS Protocol is a messaging structure that is widely used 

to establish master-slave communication between intelligent 

devices. The MODBUS protocol comes in 2 flavors: ASCII 

transmission mode and RTU transmission mode. MODBUS is 

traditionally implemented using RS232, RS422, or RS485 over  

a variety of media (fiber, radio, cellular, etc.).

Modbus TCP/IP MODBUS Protocol is a messaging structure that is widely used 

to establish master-slave communication between intelligent 

devices. MODBUS TCP/IP uses TCP/IP and Ethernet to carry 

the MODBUS messaging structure.

Modbus RTPS IEC PAS 62030:2004 On-going MODBUS standardizing work

Table 1: Fieldbus protocols. Source: Intel Corporation, 2009



Intel® Technology Journal | Volume 13, Issue 1, 2009

IA-32 Features and Flexibility for Next-Generation Industrial Control     |   153 

Architecturally embedded PC industrial control systems can be split into  
the following subsystems:

•	 	physical I/O modules
•	 	fieldbus network
•	 	interface card
•	 	OPC client/server for connecting the interface card and the soft PLC
•	 	the soft PLC package
•	 	OPC client/server between the SoftPLC and the HMI
•	 	the HMI

The key to unlocking the power of these new industrial controllers is the software. 
Software must provide the stability and reliability of the real-time OS to handle I/O 
and system timing, execution priorities, and to enable multi-loop execution. The 
software must also offer a breadth of control and analysis functions. This should 
include typical control functions such as digital logic and PID, and less common 
algorithms such as fuzzy logic and the capability to run model-based control. The 
software must also provide the analysis algorithms for machine vision and motion 
control, the capability to log data, and the network communications support to 
connect into back-end IT office systems, and to other systems on the factory floor.

In an embedded PC-based industrial control solution there are several software 
components interacting for determining the final behavior.

The Soft PLC
One of the core software components for the new class of controllers based on  
embedded PC technology is a soft PLC. A soft PLC is a runtime environment  
used for simulation of a PLC in an embedded PC. Using the soft PLC, part of the 
CPU is reserved for simulation of the PLC system for controlling a machine and 
the other part is designated to the operating system. The soft PLC operation is identical 
to normal PLC operation: it implements the control logic with the standard IEC 
61131-3 programming syntax. It receives data from field devices, processes them 
through the logic implemented with an IEC 61131-3 compliant language, and at 
the end of the cycle it sends the outputs to the field devices and to the HMI.

Key to accepting the design concept for PC-based industrial controller is verification 
of the real-time performance of the soft PLC application. The sometimes random 
behavior of PCs cannot be accepted for applications of industrial control. The most 
important feature of a controller is not only to perform the task in a certain time slot, 
but also the ability to perform the cyclic tasks always with the same time. 

OLE for Process Control
A key part of a PC-based system is the interface between the field devices and the 
soft PLC. Logically, the interface is between data transmitted by a fieldbus and a 
software tool running in the PC. This connection is obtained by means of an I/O 
interface that communicates with the fieldbus devices and transfers data to the  
PC by means of a software interface. One such interface is defined by the OPC 
Foundation: OLE for Process Control (OPC). This defines a set of standard inter-
faces based upon Microsoft OLE/COM technology. The application of the OPC 

“ The software must also provide the 

analysis algorithms for machine  

vision and motion control, the 

capability to log data, and the 

network communications support 

to connect into back-end IT office 

systems, and to other systems on the 

factory floor.”

“ A soft PLC is a runtime  

environment used for simulation  

of a PLC in an embedded PC.”

“ The most important feature of a 

controller is not only to perform 

the task in a certain time slot,  

but also the ability to perform  

the cyclic tasks always with the 

same time.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

154   |   IA-32 Features and Flexibility for Next-Generation Industrial Control

standard interface makes possible interoperability between automation/control  
applications, field systems/devices and business/office applications, typically an OLE 
for Process Control (OPC) server. The OPC server guarantees a standard data format 
that can be accessed and used by every OPC client, like the soft PLC itself. The soft 
PLC acts as an OPC client for reading and writing the data received from the field 
through the interface card that integrates an OPC server.

The OPC client/server architecture is used not only for the interface between  
the field and the control layers, but also for the interface between the soft PLC  
and the HMI.

Considering the above described SW architecture, The data exchange between  
separate software packages plays a fundamental role in the PC-based solutions  
and cannot be neglected. Data conversion may become a task with longer time  
requirements that the control functions. A control system in PC environment  
is made of a set of cyclic processes, mainly the soft PLC and the OPC client/ 
server cycles.

When analyzing the time behavior of a PC-based solution, it is mandatory to 
measure the regularity of each cycle time under different system conditions. In the 
overall system, we also have other processes that consume time, such as the fieldbus 
communication, the interface card conversion time, the I/O module response time.

Operating System Considerations
Different scenarios are possible for these types of systems based on the choice of 
operating system (OS).

The embedded PC could run a general purpose multitasking OS where several  
applications run in time sharing with the soft PLC sharing the same computational 
resources (CPU and memory). The OS guarantees the multitasking by setting the 
time scheduling of the running tasks. There are three different types of scheduling 
algorithms: timesharing, multi-programming, and real-time.

In a timesharing scheduler, a precise time slot is assigned to each running task. The 
task must abandon the CPU before the assigned time expiration either voluntarily 
(the operation has finished) or by the action of the OS (hardware interrupt). The 
time-sharing scheduler is designed to execute several processes simultaneously, or 
better in rapidly successive time slots. The CPU communicates with all the periph-
erals of the embedded PC via one or more internal buses. Several processes manage 
these buses and must be scheduled by the OS together with the soft PLC and the 
other applications. The time assignment to each process depends on its priority that 
can be only partially defined by the user. For this reason, it is not easy to determine 
which processes are served by the OS in a given time slot. In the default conditions 
all the processes have the same priority level. This means they have the same CPU 
time at their disposal. Therefore, a general purpose, multitasking OS is intrinsically 
not deterministic in running concurrent applications. The running time of a control 
application (like a soft PLC) cannot be guaranteed with these operating systems. 
This is a theoretical limit that cannot be overcome unless an RTOS is used.

“ The OPC server guarantees  

a standard data format that  

can be accessed and used by  

every OPC client, like the soft  

PLC itself.”

“ The OS guarantees the  

multitasking by setting the  

time scheduling of the running 

tasks. There are three different 

types of scheduling algorithms:  

timesharing, multi-programming, 

and real-time.”

“ The CPU communicates with all 

the peripherals of the embedded 

PC via one or more internal buses. 

Several processes manage these 

buses and must be scheduled by the 

OS together with the soft PLC and 

the other applications.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

IA-32 Features and Flexibility for Next-Generation Industrial Control     |   155 

The real-time operating system performances can be divided into two different 
categories according to the effects on the system of the missing of a deadline: hard 
real-time and soft real-time.

In a hard real-time behavior, a specific action must be performed at a given time that 
cannot be missed unless losing the performance. A RTOS for hard real-time applica-
tions operates at low level, with a close interaction with the hardware platform.

These RTOSs are normally based on a priority driven preemptive scheduler  
that allocate a fixed bandwidth of the processor capacity to the real-time  
processes or threads.

For less critical applications (soft real-time) it is possible to use conventional PCs 
running a real-time extension of a general purpose multitasking OS. The real-time 
applications are scheduled by the real-time extension that guarantees an almost de-
terministic behavior. In such application, all the wanted real-time applications must 
run the real-time environment.

A further possibility is simply running the real-time applications in a non-RTOS 
verifying that the system performances are adequate for reaching the desired results. 
In other words, we can run the soft PLC in a normal Windows* or Linux* PC, 
accepting that the PC response is driven by a nondeterministic operating system, 
provided that the overall performances are anyway sufficient for ensuring the con-
trol functions effectiveness. Such an approach means that the PC environment is 
performing so well that the random variations of its throughput remains well within 
the acceptable limits for a given control application. This process is in progress for 
the soft PLCs that will run more and more in conventional PCs. For this reason, it 
is mandatory to define a benchmark for evaluating the performances of such PC-
based systems. The benchmark should include:

•	 	The definition of the PC environment where the control applications run
•	 	The tools for measuring the time behavior of the system in terms of response time 

to events for interrupt based functions, and jitter for cyclic functions

Referencing requirements and concepts presented in this section, the hardware and 
software requirements are summarized in Figure 3.

“ Such an approach means that the 

PC environment is performing so 

well that the random variations of 

its throughput remains well within 

the acceptable limits for a given 

control application.”

“ For less critical applications  

(soft real-time) it is possible to  

use conventional PCs running a  

real-time extension of a general 

purpose multitasking OS.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

156   |   IA-32 Features and Flexibility for Next-Generation Industrial Control

Rugged Modular Hardware

I/O Communication Controller

Analog
and

Digital I/O

Analog
and

Digital I/O

Analog
and

Digital I/O

Analog
and

Digital I/O

Fieldbus
Interface

Custom
Hardware

(FPGA)
Motion Vision Ethernet

Flexible Open Software

Control and Analysis Functions Real-Time OS

Control
Algorithms

Multiple
Loop

Operation

Execution
Priorities

Built-In
Services

I/O and
System
Timing

Signal
Analysis

Data
Logging

Network
Protocols

3rd Party
Code

Figure 3: Summary of rugged modular hardware.

A Design Approach Based on the Intel® Atom™ Processor

At the hardware level a high level block diagram for a modular PLC based on the 
Intel Atom processor is shown in Figure 4. By incorporating one of the industrial 
temperatures versions available in the Intel Atom processor family, which has the 
thermal footprint that enables fanless systems to be developed, the design is well-
suited to the harsh environment found in many industrial settings.

The combination of the Intel Atom processor paired with the Intel System Controller  
Hub provides the majority of the interfacing required for the industrial control 
application. The Intel System Controller Hub measures 22 mm x 22 mm and 
provides integrated graphics, a digital-audio interface, a main-memory interface, 
and numerous peripheral I/O interfaces. It supports single-channel DDR2 memory. 
Front side bus (FSB) speed is 400 MHz or 533 MHz. Maximum memory is 2 GB. 
There are eight USB 2.0 host ports and one USB 2.0 client port. The parallel ATA 
interface supports two disk drives. System designers will add DRAM and physical-
layer (PHY) chips for the features they wish to support. Additionally there are three 
fabrics: one for memory traffic, a second for I/O traffic, and a third message-based 
network that handles almost everything else. To manage these fabrics, the north 
bridge integrates an 8051 eight-bit microcontroller. The integrated 2D/3D graphics 
engine can drive a 1,366-pixel x 768-pixel display in 24-bit color. The integrated 
video engine can decode 1080p HDTV streams at 30 frames per second, using only 
150 mW in the process. It supports MPEG1, MPEG2, MPEG4, and H.264 video 
and is compatible with Microsoft* DirectX* 9 and DirectX 10 graphics.

“ By incorporating one of the  

industrial temperatures versions 

available in the Intel Atom  

processor family, which has the 

thermal footprint that enables 

fanless systems to be developed, the 

design is well-suited to the harsh 

environment found in many  

industrial settings.”

“ The Intel System Controller Hub 

measures 22 mm x 22 mm and 

provides integrated graphics, a 

digital-audio interface, a main-

memory interface, and numerous 

peripheral I/O interfaces.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

IA-32 Features and Flexibility for Next-Generation Industrial Control     |   157 

ADC
FPGA

w/RT-Ethernet
and FieldBus

Expansion
ModuleSig

Cond

Depth

Distance

Temperature
Pressure

Buttons and
Keypads

Indicator
LEDs

USB

USB

I2C

RTC

GPIO

PCIe

Sensors, Alarms
and Control

I/O

Optional
Display

Network

--------- LAN
(802.3)802.11

WiXXX
UWB

LPIA
Chipset

Security

AMTPower
Management

LPIA
Processor

P/SATA

SDIO

SPI

Memory and
Storage

SDRAM DDR
Memory

SD Flash

SPI Flash

SSD Flash

Central
Monitoring
Network

Local
Device

Interface
Legend

External
Source

Intel
Sourced

Figure 4: Typical Intel® Atom™ processor platform.

To enable all the fieldbus and real-time Ethernet protocols support is typically  
realized either with the OEM’s own ASIC, or by using an FPGA. The FPGA  
in this case acts as an intelligent peripheral extender to this platform to add the 
industrial I/O not contained in the base Intel System Controller Hub.

Functionally the FPGA will interface to the Intel System Controller Hub through 
a single lane PCI Express interface. The FPGA is usually architected in such a way 
that it can be easily extended (or modified) for additional peripherals.

The interface allows exchanging the data between CPU and FPGA with very short 
latency times, typically in the range of microseconds.

Software running on Intel Atom processors will implement the protocol processing 
for fieldbus and real-time Ethernet. A number of independent software vendors 
deliver software stacks all delivering support for the IA-32 instruction set.

This design approach maximizes how open modular systems can be built for industrial 
automation. By incorporating the CPU and chipset on to a module and the indus-
trial fieldbus and real-time Ethernet I/O on an FPGA, this solution easily scales 
to incorporate new CPU modules and to incorporate variances and new standards 
associated with industrial I/O.

“ This design approach maximizes 

how open modular systems can be 

built for industrial automation.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

158   |   IA-32 Features and Flexibility for Next-Generation Industrial Control

The advantages with this design include:

•	 	Maximum flexibility to incorporate support for industrial I/O.
•	 	Low power that enables high performance fanless designs.
•	 	PCI Express for high performance I/O.
•	 	Extreme low power that enables rugged solutions for harsh environments.
•	 	Integrated graphics for embedded HMI.
•	 	Intel Hyper-Threading Technology (Intel HT Technology) that enhances 

real-time performance.
•	 	Very slim housing and possible small form factor.
•	 	Power over Ethernet (including TFT-Display).
•	 	Miscellaneous functions integrated into one peripheral FPGA (LPC, FWH-I/F, 

keyboard touch controller, bus-interface like Ethernet, CAN, and so on).
•	 	Easy adoption of various industrial buses I/F with standard interconnect modules.

Conclusion

Today traditional industrial control using proprietary architectures has been super-
seded by new PC-based control systems that are generically referred to as open control. 
Open control gives the engineer the freedom of choice of the hardware platform, the 
operating system, and the software architecture. Instead of fitting an application into a 
predefined architecture, the designer has the choice of hardware and software components, 
to exactly meet the requirements of the design while drastically reducing costs and 
time to market. Open control provides standardization. Open control systems can be 
programmed using any of the IEC 61131 standard languages. Commonly available 
processors such as the Intel Architecture family can be used. Commonly available  
solutions can be provided by manufacturers or a customer specific design can be  
created by selecting the appropriate component.

The Intel Atom processor is designed in the Intel architecture tradition of providing 
general purpose computing platforms. The power of the customer application is 
unlocked by the versatility and power of the software applications that may be  
designed on the platform. The Intel Atom processor is fully compliant with the  
IA-32 architecture, enabling designers to use the vast software ecosystem to  
ensure fast time to market for new designs.

The advantage to end users includes the ability to leverage a common well known 
architecture from high end industrial PCs right down to low level intelligent field 
devices and PLCs. Developing on a common platform architecture also simplifies the 
convergence challenge between corporate IT and automation systems. The ability 
to develop real-time systems using open standards on scaleable platforms can bring 
significant benefits to developers in terms of engineering reuse as well as bringing 
products to market quickly and efficiently.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

IA-32 Features and Flexibility for Next-Generation Industrial Control     |   159 

In conclusion, designing with the Intel Atom processor, brings all of the benefits 
traditionally associated with Intel architecture designs to the low power or “real” 
embedded market. If you interested in learning more about Intel’s embedded prod-
uct family, please check out http://rethink.intel.com.

Author Biography

Ian Gilvarry: Ian Gilvarry is currently the worldwide industrial automation marketing 
manager within the Intel Embedded and Communications Group. He leads the market 
development activities to define and position Intel platforms strategically to drive for 
new use cases and applications in the industrial segment. He has been with Intel 
since 2000. Prior to assuming his current responsibilities in 2007, he previously 
held roles in product marketing and business development within Intel’s Network 
Processor Divison. His e-mail address is ian.gilvarry at intel.com.



160   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

Contributors

Intel® Technology Journal | Volume 13, Issue 1, 2009

Index Words

LOW POWER INTEL® ARCHITECTURE PLATFORM FOR 

IN-VEHICLE INFOTAINMENT

Suresh Marisetty
Intel Corporation

Durgesh Srivastava
Intel Corporation

Joel Hoffmann
Intel Corporation

Brad Starks
Intel Corporation

Abstract

Automotive manufacturers today face a tremendous challenge in trying to bridge 
the historically long development cycles of a vehicle to the ever-changing I/O  
and multimedia demands of the consumer. The main function of the car’s enter-
tainment system or the head unit is enabling a variety of functions like navigation, 
radio, DVD players, climate control, Bluetooth*, and so on. Further, with the 
promise of the connected car becoming a reality enabled through broad deployment  
of multimedia-capable mobile wireless technologies, the automotive industry sees  
an opportunity to deliver new value-added services to the consumer. However, with  
today’s proprietary head-unit solutions they have limited ability to offer such services.  
A cost-effective solution to address this need is to use standards-based platform 
technologies that can take advantage of the huge ecosystem built around PC  
standards and consumer-oriented applications and services. The platforms based on 
Intel® architecture have been evolving in tandem with various I/O and multimedia 
technologies and have been adopting these technologies in a seamless way. An in  
vehicle infotainment (IVI) platform is an architecture based on these building 
blocks, but with optimizations for the automotive environment.  

This article presents the architecture of this platform for the IVI market segment 
powered by the Intel® Atom™ processor family of low power embedded processors 
and standards-based platform hardware and software ecosystem. An overview of  
the key technology blocks that make up the Intel-based IVI platform is presented, 
followed by a brief description of the challenges faced in optimization and incorpo-
rating these into the Intel-based IVI platform. In addition, the opportunities presented 
by the Intel-based IVI platform for future usage models are also highlighted. The 
challenges and opportunities are presented both from a hardware and software  
perspective to meet the power, performance, size, differentiation, and other needs  
of the automotive environment and usage models.   

Automotive
Infotainment
IVI
Intel® Atom™ Processor
Moblin
Head Unit
SoC
Embedded



Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   161 

Intel® Technology Journal | Volume 13, Issue 1, 2009

Introduction

We will start with the architecture of an IVI platform with a brief introduction to 
the platform stack and delve into each of the stack components, both from an  
hardware and software perspective; we will also examine their interdependencies. 
The theme of discussion for each of these technology areas is as follows:

•	Overview with usage models
•	Bullet Body 10/12. Praesent feugiat. 

 - By car OEM and end customers
•	Challenges that:

 -  Were overcome in optimizing and enabling various technology blocks for an 
Intel-based IVI platform

 -  Remain to be addressed now and in the future by Intel Corporation,  
the car OEM, IHV/ISV/OSV, and academia for various  
usage models

•	Opportunities that present themselves to:
 - Car OEM for product differentiation
 -  Third party software and hardware vendors to enable new markets— 
ecosystem enabling

 - Academia for identifying areas of advanced research and technology development

An in-depth discussion follows covering the following technology building blocks 
for blocks for an Intel-based IVI platform: 

•	Intel-based IVI platform overview
•	Usage models and software environments
•	System on a Chip (SoC) Architectures for an Intel-based IVI platform
•	Platform boot solution and latencies
•	Multimedia (graphics/video/display/audio)
•	Generic and automotive-specific I/O fabric
•	Intel technologies with focus on Intel® Virtualization Technology (Intel®  VT)
•	Manageability and security
•	Seamless connectivity
•	Power management

Intel-Based IVI Platform Overview
The framework or stack for an Intel-based IVI platform consists consists of software 
and hardware components with well defined interfaces between them to boot an 
operating system (OS) supporting the key application functionality of an automotive 
head-unit, as shown in Figure 1.  



Intel® Technology Journal | Volume 13, Issue 1, 2009

162   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

HMI
Layer

Application
Layer

Middleware
Layer

OS
Layer

Hardware
Layer

Storage CAN MOST* • • • BootloaderMemoryCPU

Speech User Interface HMI Core

Entertainment Mobile
Office Networking Platform Management

and Diagnostics Navigation Vehicle

Media and
Graphics

CE
Connectivity Networking

Platform
Management

Power State
Management System Infrastructure

Online Services
(Mobile Office)

Automotive
Connectivity

Board Support
Package OS Core

Figure 1: Stack components for an Intel-based IVI platform

The following is the brief description of each of the components of the stack:

•	 	Hardware Layer: The core part of the hardware layer is comprised of Intel® Atom™ 
processor with all the necessary hardware and firmware to boot any off-the-shelf 
or embedded OS. This layer is further complemented with the inclusion of a set 
of automotive OEM-specific I/O devices, such as MOST*/CAN buses, connected 
through an industry standard I/O fabric, such as PCI Express*. The use of the 
Intel Atom processor–based SoC solution facilitates the inclusion of many other 
extended inputs/outputs available for the Intel® architecture platform, without 
affecting the core platform functions. This allows the car manufacturers to be able 
to provide end solutions with many options with little to no additional cost or soft-
ware development effort, facilitating product differentiation. A typical Intel-based 
IVI platform configuration built around the Intel Atom processor is as shown in 
the Table 1.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   163 

Hardware Function Description

Intel® Atom™ Processor CPU supporting frequencies for sufficient integer and floating point performance  

Supports Intel® Hyper-Threading Technology (Intel® HT Technology), Intel® Virtualization 

Technology (Intel® VT)

Memory Controller Support low cost 1-2 MB DIMM/UDIMM like DDR2-533 and DDR2-667

Video Decoder Full hardware decode pipeline for MPEG2, MPEG4, VC1, WMV9, H.264 (main and high profile 

level 4.1), DivX*

Graphics Engine Performance: Fill rate of at least 400 megapixels/sec and 3DMark*05 score of 120

HD Audio High definition audio based on the Intel® High Definition Audio (Intel® HD Audio) specification 

or its equivalent (http://www.Intel.com/standards/hdaudio/)

Display Dual simultaneous display hardware support like LVDS/DVI/dRGB/TV Out  

WXGA 1280x800 18 bpp; XGA 1024x768 24 bpp

I/O Fabric Gen1 PCI Express* x1 Expansion slots and USB 2.0

Compatibility I/O Block PC compatibility core system block components like PIC, RTC, Timer, GPIO, Power 

Management, Firmware Hub Interface, and LPC, to allow shrink-wrap OS boot

Car OEM Automotive Specific I/O MOST*, CAN, SPI, Bluetooth*, UART, SDIO, Ethernet, Radio Tuner, Video Capture, GPS, 

GRyO, etc.

•	 	OS Layer: Given the platform’s Intel architecture compatibility lineage, a range 
of operating systems are enabled, including embedded real-time OS (RTOS) and 
commercial off-the-shelf operating systems that run on a standard PC platform. 
This layer also includes drivers that are specific to automotive I/O.

•	 	Middleware Layer: The Intel-based IVI platform middleware can include a rich 
set of components and interfaces to realize all functional areas of the application 
layer, such as Bluetooth* with support for various profiles and CAN/MOST  
protocol stacks.

•	 	Application Layer: The applications include the ones designed into many 
mobile Internet devices (MIDs) or handheld devices like Web browsers, calendar, 
Bluetooth phone, vehicle management functionalities, multimedia entertainment 
system, and so on. This layer can provide a rich set of applications and many cus-
tomization options that conform to Intel architecture binary format.

•	 	HMI Layer: The Human Machine Interface (HMI) is the central interface to the 
user of the IVI system. The HMI has control of the display of the HMI Head 
Unit and has the responsibility to process and react to all user inputs coming into 
the system, such as speech recognition and touch screen input.

In regards to the overall Intel-based IVI platform stack itself, the key challenges  
are the integration or seamless porting of various applications and middleware to 
the automotive-specific user interface standards. The ecosystem of this software  
includes independent software, OS vendors (ISVs/OSVs) or the Linux* Open 
Source community. 

The automotive environment requires hardware components that are highly reliable. 
Intel is now offering the Intel Atom processors with industrial temperature options 
(minus 40° to 85° C). For further platform differentiation beyond the solution  
from Intel, the car OEM may be limited to picking third-party vendor hardware  
IP blocks that meet the reliability requirements.  

“  The key challenges are the  

integration or seamless porting  

of various applications and  

middleware to the automotive- 

specific user interface standards”.

Table 1: Typical Intel-based IVI platform configuration



Intel® Technology Journal | Volume 13, Issue 1, 2009

164   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

ISVs and OSVs can provide powerful user interface (HMI) tools or development 
kits, to enable easy OEM HMI customization across their product line. Third-party 
hardware vendors can provide various automotive-specific I/O solutions to allow 
easy car OEM product differentiation. In addition, it is a new opportunity for 
application developers to port Intel architecture applications to the Intel-based IVI 
platform ecosystem and maximize reuse and applicability of their software across a 
number of Intel architecture platforms.

Usage Model 

In-vehicle infotainment platforms that are well connected, blending embedded and 
vehicle-independent services and content with bidirectional communication capa-
bilities to the outside world, do not exist today. While a range of nomadic device 
services and proprietary embedded vehicle systems can be found in some segments, 
these discrete services are not operating within a comprehensive OEM defined 
environment. Figure 2 outlines some of the challenges.

Solution

Features Available

Affordable Reliable

Aftermarket Advancing

• Quick to Market – Costly to Support
• Added Warranty Burden from end
  customer integration

Devices Proliferating

• Mobile Devices Selling – Breadth of
  Products Growing
• Need to Standardize, Capitalize

Wireless Innovation

• Bandwidth Increasing – Consumer
  Expectations Rising
• Vehicle Specific Technologies from
  Adjacent Industries Maturing

In
fr

astructure

Device

A
pp

lication

Connected Vision Blurred

• Lacking True Bidirectional Integration to
  Outside World
• Comprehensive Customer-Defined
  Environment Needed

Disparate Systems

• Time Wasted on Non-Standards
• Information Poor,
  While Data Rich

Automaker Efforts Challenged

• Incompatible Business Model vs. 
  Consumer Demand Cycle
• Broadest Expertise Missing

Figure 2:  In-Vehicle Infotainment (IVI) platform use case challenges.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   165

Global automakers have come to realize that customers desire connectivity to  
content and services that are not possible to achieve with existing business models  
and currently used embedded systems. In addition, automakers could leverage  
the expertise, knowledge, or business structure from other embedded platforms  
to provide the hardware, applications, data or communications conduits to support 
the breadth of needs. 

There is significant momentum within the industry and major automakers are  
exploring ways to deliver content and services desired by customers to the vehicle. 
The exploration is primarily driven by the advancements and maturity of the  
communication technologies and protocols like cellular, satellite, Wi-Fi*/  
WiMAX*, and DSRC. 

Although every automaker would like to provide content and services, they  
incur huge risks being first to market if other automakers do not participate.  
This creates the dichotomy of balancing confidential efforts with the need for  
industry-wide, cross-vehicle, and cross-brand solutions to capture the interest  
of large service providers.

Since automakers historically have engaged tier-1 suppliers to develop, integrate, and 
deliver components, the value chain was straightforward and limited in scope. With 
the need to provide a means for customers to communicate externally to the vehicle 
for information and entertainment systems, automakers now must become directly 
familiar with all of the stakeholder domains that impact this larger ecosystem.

 

“ Global automakers have come  

to realize that customers desire  

connectivity to content and services 

that are not possible to achieve 

with existing business models and  

currently used embedded systems.”

“ Although every automaker would 

like to provide content and services, 

they incur huge risks being first  

to market if other automakers  

do not participate.”

Figure 3:  In-Vehicle Infotainment platform business challenges and opportunities.



Intel® Technology Journal | Volume 13, Issue 1, 2009

166   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

There are a significant number of commodity software and hardware components 
that can be leveraged, leaving the OEM to focus on adding value. In order to 
capitalize on this potential, a strong partnership between key providers of devices, 
infrastructure, and applications will be essential to the acceptance of infotainment 
services on a broad scale. Meanwhile the solution needs to support the traditional 
requirements for automakers: availability, reliability, affordability, and desirable 
features for consumers. Therefore, the industry segment alignment needs to be de-
veloped and implemented by the key providers to distribute the cost of developing 
and marketing innovative connected services. As consumer and business awareness 
grows, more services can be offered at prices acceptable to the market. 

In-Vehicle Infotainment Operating Systems
An Intel-based IVI platform can run many of the commercial generic operating 
systems like Linux, Microsoft* Windows* XP Embedded, and real-time operating 
systems like QNX*, Windows CE, VxWorks*, and Embedded Linux. Most of the 
operating systems that run on an Intel architecture platform will run unchanged, 
offering a wide choice to the car OEM.

Some embedded and real-time operating systems are optimized for the automotive  
environment with attributes of smaller OS footprints, sub-second boot times,  
and optimization for power and performance. Key examples of such operating  
systems are QNX Neutrino*, Wind River* Linux Platform for Infotainment,  
Moblin* IVI (Moblin.org), Microsoft Auto, or variants of Linux from various  
ISVs and tier-1 customers.

OS vendors are faced with new challenges of porting the generic OS to automotive 
user interfaces like touch screen and voice commands to assure safer driving experiences. 
In addition, traditional shrink-wrap operating systems require a PC-like BIOS with 
high boot latencies and make them not very desirable. The key challenges that the 
car OEM and the automotive suppliers face is the choice of the OS and the ecosystem 
built around each. Too much choice is a good thing, but at the same time it is  
hard to settle on one over the other, as each choice has its own compelling advan-
tages. Due to the flexibility of IVI platform, a customer may demand for an OS/
application suite other than what the car OEM wants to bundle, leaving the  
OEM in a dilemma.  

The OS vendors can help develop seamless plug-in interfaces to enable their own  
or third-party user interfaces, while leveraging their underlying core OS features. 
Making shrink-wrap operating systems to boot with IVI latencies is a challenging 
area and requires some innovation both by the BIOS vendors and OS vendors.  
The variety of operating system choices is opening up new opportunities. One  
such opportunity to meet the customer demands is the use of Intel Virtualization 
Technology offered by the Atom processor, allowing not only the car OEM but  
also the end customer to simultaneously run multiple operating systems and  
benefit from the ecosystem built around each of the Intel architecture platform 
operating systems. We cover more on this in the subsequent section on Intel  
Virtualization Technology. 

“ The industry segment alignment 

needs to be developed and  

implemented by the key  

providers to distribute the cost  

of developing and marketing  

innovative connected services.”

“  Making shrink-wrap operating 

systems to boot with IVI latencies 

is a challenging area and requires 

some innovation both by the 

BIOS vendors and OS vendors.”

“ The key challenges that the car 

OEM and the automotive suppliers 

face is the choice of the OS and the 

ecosystem built around each.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   167 

System on a Chip Architecture

The first generation Intel-based IVI platform is based on the Intel Atom processor 
with extended functions. The processor and its companion I/O chip were repack-
aged to meet the extended temperature and low defects per million (DPM) 
requirements for automotive and embedded customers. 

The Intel-based IVI platform addresses the challenges of getting to market quickly 
and easily differentiating car OEM products by allowing reuse from the ecosystem.

•	 	Includes all the legacy support that is required to run an OS like: connectivity to 
flash for boot firmware, the 8259 interrupt controller, I/O APIC, SMBus, GPIO, 
power management, real-time clock, and timers.  

•	 	Includes all Intel-proprietary hardware blocks like: graphics/video, Intel® High 
Definition Audio module, and so on.

•	 	Includes a scalable industry-standard PCI Express (PCIe) interconnect  
•	 	Allows third-party vendors to focus on building many different flavors of I/O 

hubs using standard “jelly-beans” (the standard input/output functions) from 
external companies.

•	 	The Intel-based IVI platform is architected in such a way that the functionality in 
the SoC partition will be a common denominator across all OEMs, including the 
associated platform firmware, also known as the BIOS or boot loader. 

•	 	All automotive-specific I/O functionality follows the PCIe add-on card model 
without requiring any platform changes but a set of device drivers for the target 
OS. Alternatively, the same software transparency can be achieved through the 
USB and SDIO interfaces plug-in device model as well.

We see more opportunities than challenges in this context. The SoC being designed 
for the Intel-based IVI platform is flexible enough that a car OEM can enable mul-
tiple variations of products to cater to different end-user needs and cost structures 
and not require major reworking of software.

Platform Boot Solution

Users expect an instant power-on experience, similar to that of most consumer 
appliances like TV. To meet the same expectation, one of the key requirements  
of the Intel-based IVI platform is sub-second cold boot times to help facilitate  
this user experience when the ignition is turned on. The typical boot latencies  
are as illustrated in Figure 5.

For an Intel-based IVI platform, multiple types of OS boot loaders shall be  
supported for various operating systems as follows:

•	 	ACPI-compliant UEFI BIOS with an EFI OS boot loader (such as eLilo). This is 
typically used with after-market products that may run embedded versions of a 
shrink-wrap OS such as Standard Embedded Linux or Windows XPe that requires 
PC compatibility and is readily available from the by BIOS vendors or original 
device manufacturers (ODMs). This solution provides the most flexibility for 
seamless addition of I/O, but at the expense of higher boot latencies. Many of 
the initialization sequences in the boot path are optimized to reduce the latencies 
significantly in the order of 5-10 seconds. 

3rd Party
Automotive IO

Offering

SoC Boundary

Intel® Atom™
Processor

Poulsbo

DDRGraphics

PCI-E

3rd Party
Automotive IO

Offering

OIP SoC

DDR

Intel® Atom™
Processor

Graphics

PCI-E

Current 3 Chip
Solution for OIP

Future Generation SoC
OIP Solution

3rd Party
Automotive IO

Offering

OIP SoC

DDR

CPU
Core

Graphics

PCI-E

OIP SoC

DDR

CPU
Core

Graphics

I/Os

Future
Roadmaps

Figure 4: Intel-based IVI platform hardware 

architecture and directions.

CAN Operable < 100 ms

MOST Operable < 500 ms

FM Radio < 1000 ms

PDC, Beep < 2000 ms

Navigation < 8000 – 15000 ms

Human Machine Interface (HMI)
< 5000–6000 ms

OS Hand Off < 1000 ms
Rear View Camera < 1000 ms

Splash Screen < 500 ms

Power On = 0 ms 

Bootloader Dependency

OS Dependency
OEM Hardware
Dependency
Main Boot Path
OEM Software Path

Figure 5: Intel-based IVI platform boot latencies.



Intel® Technology Journal | Volume 13, Issue 1, 2009

168   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

•	 	Embedded OS boot loader. This is the highly optimized solution for an Intel-
based IVI platform for low boot the functions on the SoC. This solution is meant 
to work with an OS that does not rely on the PC BIOS compatibility, such as an 
embedded OS and some variants of Linux. The boot latencies are achieved at the 
expense of giving up flexibility of seamless support for new I/O hardware outside 
the fixed function SoC, during the OS pre-launch environment. However, any such 
I/O will still be enabled in the OS through appropriate device driver software. 

Traditional platforms typically have boot latencies of about 10–40 seconds before 
the HMI is activated. Getting this HMI active latency down to 5–6 seconds with an 
active splash screen in <500 ms was a big challenge. To reduce time to market and 
product development cost, it was highly desired to make the same boot firmware 
and OS solution scale across different car OEM platforms with varying topology, 
but based on the same SoC core. Many optimizations were done, to both the BIOS 
and boot loader solutions from the norm, to fit into an Intel-based IVI platform, 
the key being the reordering and early initialization of user-visible I/O like display 
activation, initial program load (IPL) boot menus, enabling processor cache usage  
at boot as high speed RAM, and so on.

The need for a boot solution that is low cost, has a smaller footprint, offers low boot 
latencies, and is platform-agnostic is an exciting opportunity for ISVs and OSVs. 
This also creates opportunities for car OEMs to provide creative solutions with their 
own IP, to make their products competitive and unique. In addition, there is an 
opportunity for the device vendors to provide hardware IP that are self-initializing, 
thereby relieving the boot software from doing the same and giving back some time 
to improve latencies, such as initializing and activating the CAN interface. The 
challenge that remains to be addressed is a single solution that can boot both 
shrink-wrap OS requiring PC compatibility and embedded OS, but with the 
flexibility of allowing platform differentiation and low boot latencies. There are 
opportunities for the OS vendors to come up with innovative optimizations within 
the OS boot flows, such as replacing graphics hardware initialization in firmware 
with early OS initialization for the same.

Graphics
The most compelling advantage to using an Intel architecture platform as the basis 
for IVI is the ability to repurpose familiar desktop/mobile applications without 
substantial development. An Intel-based IVI platform includes an Intel® Graphics 
Media Accelerator 500 series graphics controller with supported drivers for Linux, 
Windows XP and Windows CE operating systems, with frequencies of 200 – 400 
MHz, fill rates of 400-800 Mpixels/sec and 3DMark’05 of 130 and up. High-level 
industry standard APIs such as OpenGL*, OpenGL ES, and D3D are available to 
support a wide range of application development opportunities. By using a graphics 
device with full support for desktop operating systems and industry standard APIs, an 
Intel-based IVI platform makes it easy to develop custom human machine interfaces 
and to integrate applications familiar to the Intel® architecture system user.
Two significant challenges are faced when using shrink-wrap operating systems  
on an Intel-based IVI platform. First, the user expects to be presented with an  
appealing graphics display as early as possible after turning the key and second, the 
user expects the familiar applications to perform with reasonable speed while the 
hardware is optimized for low power consumption.

Firmware Development Kit

Core Platform
Initialization

Firmware Library
Script

Boot
Firmware

Binary

Core Platform
Configuration

Table

API Config

Generate

Main

Figure 6: Firmware architecture model.

“ Getting this HMI active latency 

down to 5–6 seconds with an  

active splash screen in <500 ms 

was a big challenge.”

“ There are opportunities for the OS 

vendors to come up with innovative 

optimizations within the OS boot 

flows, such as replacing graphics 

hardware initialization in firm-

ware with early OS initialization 

for the same.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   169 

Boot time display has been addressed on the Intel-based IVI platform using three 
technologies to ensure an immediate and stable graphics display.

•	 	Splash Screen: The platform boot firmware is enabled with a tuned graphics 
driver with the ability to present a static splash screen or video from a backup 
camera within 400 ms from power on.

•	 	Seamless Display: A technology whereby the splash screen image and display 
mode are retained by the graphics driver during initialization.

•	 	Operating System Suppression: Shrink-wrap operating systems such as Linux 
should not be allowed to display during the boot process. Any intermediate  
mode changes or partially rendered graphics are avoided. The Intel-based IVI  
platform OS drivers instead maintain the splash screen until the full human  
machine interface is rendered and immediately does a flip from the splash  
screen to the final intended interface.

These three technologies combined provide an immediate and appealing graphics  
display that remains viewable without glitches from mode setting until the full 
HMI is available. Never is the user presented with a partial or unstable display  
as is commonplace in desktop or mobile boot processes.

The second challenge is that the Intel-based IVI platform hardware is optimized for 
low power consumption. The graphics capabilities must be chosen such that the 
performance level is an appropriate match for the applications used. This problem 
is exacerbated when using desktop applications that may be poorly tuned for low 
power systems. This challenge is overcome by taking special care to choose applica-
tions that are well suited for the hardware platform. Combining applications from 
software stacks such as Moblin, Windows CE, or Neutrino will help to minimize 
the investment cost for the OEM, as those applications have been optimized for  
low power platforms by design.

The human machine interface options that are made available by using a common 
set of graphics APIs is greatly increased thereby giving each OEM significant room 
for differentiation. The application stack can be developed and debugged in a full 
desktop environment with full access to familiar debuggers and tool chains and 
then needs only to be tuned for the Intel-based IVI platform. This development 
methodology reduces time to market for the OEM. Additionally, by using indus-
try standard APIs, the application software can be reused and extended to future 
platforms with minimal rework.

Display
The Intel-based IVI platform hardware comes equipped with a flexible display  
controller capable of supporting a wide range of display devices. The display  
controller supports two fully independent display pipelines. One display pipeline  
connects to LVDS displays ranging from VGA-sized 640x480 to full high-definition 
video at 1080p. The second display pipeline uses the sDVO protocol to connect to 
an independent display encoder; sDVO display encoders are available supporting 
LVDS, VGA, DVI, HDMI, or analog TV. The capabilities of the Intel-based IVI 
platform hardware platform are a good match for the in-car use models using both 
front- and rear-seat entertainment. 

“ The user expects to be presented 

with an appealing graphics display 

as early as possible after turning 

the key.”

“ These three technologies combined 

provide an immediate and  

appealing graphics display that 

remains viewable without glitches 

from mode setting until the full 

HMI is available.”

“ The application stack can be  

developed and debugged in a  

full desktop environment with  

full access to familiar debuggers 

and tool chains.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

170   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

Video
Intel-based IVI platform graphics drivers will have support for hardware accelera-
tion of video decode for the following standards: MPEG2, MPEG4, H.264, VC1, 
through a set of OS-specific APIs. This feature will allow the platform to decode 
high quality video content such as Blu-Ray for rear-seat entertainment without 
exhausting the CPU resources on the platform. In this manner the platform will 
enable rear-seat entertainment without sacrificing the usability of the in-dash HMI 
or navigation applications.

Audio
The Intel High Definition Audio Specification describes a new audio hardware 
architecture that has been developed as the successor to the Intel AC ’97 codec and 
controller specification. The audio system will also support a distributed digital 
audio infrastructure such as Media Oriented Systems Transport (MOST).

The Intel-based IVI platform HD Audio architecture provides a uniform programming 
interface for digital audio controllers, enabled through a standard-based register set 
that is uniform across all implementations. The HD audio is one of the technologies 
that is a simple adoption from other Intel architecture-based platforms and will take 
advantage of the huge ecosystem built around it, such as software and codecs.

The HD audio supports up to eight simultaneous audio channels with each channel 
in turn supporting a variety of audio codecs, such as Dolby* Digital 5.1. This archi-
tecture fits very naturally because of the automotive usage model of having multiple 
audio sources and synchronizes well with various combinations of audio mixing and 
separation options such as streaming audio over to the front and rear passenger with 
one supporting a hands-free phone/headset, while the rear entertainment system is 
playing back a Blu-Ray audio track coupled with the dual independent displays.  

Having the capability to support 8 audio channels on the Intel-based IVI platform 
creates an opportunity for the OEM to harness the richness of this environment and 
innovate with new products. We can only imagine the possibilities of different usage 
models with multiple audio stream sources, mixing, and destinations throughout 
the automobile.

Generic I/O
Generic I/O typically refers to the I/O fabric and devices that are required for run-
ning a general purpose OS. This includes a set of devices and I/O fabric falling into 
the following categories: memory controller, video decoder, graphics engine, HD 
audio bus interface; display; I/O fabric, and the compatibility I/O block as shown 
in Table 1. In the Intel-based IVI platform architecture, these are integrated as part 
of the SoC silicon. Various implementations of the Intel-based IVI platform may 
move some of this functionality in and out of the SoC for ease of design and to 
allow more flexibility. However, the software model will be agnostic to this physical 
partitioning and is the key benefit of the Intel-based IVI platform architecture. 

“ This feature will allow the  

platform to decode high quality 

video content such as Blu-Ray for 

rear-seat entertainment without 

exhausting the CPU resources on 

the platform.”

“The HD audio is one of the  

technologies that is a simple  

adoption from the Intel  

architecture-based platforms and 

will take advantage of the huge 

ecosystem built around it, such as 

software and codecs.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   171 

Automotive I/O
This is the key variable component of the Intel-based IVI platform architecture, 
which is specific to each car OEM. The Intel-based IVI platform allows this extended 
functionality through an add-on PCIe device model, which may be attached to a 
daughter card type module. The same OEM may have different versions of this 
add-on module, for their low-end to value-line products. As outlined in this article, 
enabling of any of the I/O functionality does not require SoC hardware or firm-
ware changes, but an incremental inclusion of device drivers for the extended PCIe 
device functions on the target OS. This hardware and software model lends itself to 
a highly scalable platform. The current generation Intel-based IVI platform includes 
a standard set of core automotive I/O like MOST, CAN, SPI, Bluetooth, SDIO, 
Ethernet, radio tuner, video capture for cameras, GPS/GRYO, digital TV, and the 
Apple* iPod interface.

One of the key technology areas that is evolving is that of the connected vehicle 
with many compelling applications through WiFi, Wi-Max/3G/4G connectivity. 
Some of the interesting applications that might be developed and enabled are: social 
networking, services like local search (POI), real-time traffic, imagery collections, 
Web search, widgets, and so on.

Intel® Technologies

Intel includes various technologies in its products, but the relevant ones for the 
Intel-based IVI platform are covered here from the IVI usage perspective. Each 
of the Intel® platform solutions has varying levels of technology support, due to 
independencies on various platform hardware component features. While we cover 
these technologies and their applicability to the Intel-based IVI platform, one must 
reference each of the product SKU specifications for the available support.  

Virtualization
Virtualization creates a level of abstraction between physical hardware and the operating 
system. The abstraction layer, referred to as the hypervisor, executes the OS as a 
guest within a virtual machine (VM) environment and virtualizes or emulates the 
platform resources (CPU, memory, and I/O) to the guest OS. Multiple guest  
operating systems can be supported by the hypervisor, each encapsulated within  
its own VM, executing unmodified software stacks with user applications (fully  
virtualized) or modified to run in conjunction with the hypervisor (para-virtualized).

Intel Virtualization Technology (Intel VT) applicable to the Intel-based IVI platform  
is based on two different components, namely Intel® Virtualization Technology  
(Intel® VT) for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x) support  
on the processor and Intel® Virtualization Technology (Intel® VT) for Directed I/O 
(Intel® VT-d) support in the controller hub. Intel VT-x constitutes a set of virtual-
machine extensions (VMXs) that support virtualization of the processor hardware. 
Intel VT-d provides IO device assignment to the VM with hardware-assisted DMA 
and interrupt remapping from the I/O devices. For complete details of Intel VT, 
visit http://developer.intel.com.

“ Enabling of any of the I/O  

functionality does not require  

SoC hardware or firmware changes, 

but an incremental inclusion of 

device drivers for the extended 

PCIe device functions on the  

target OS.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

172   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

Each of the Intel platform solutions has a varying set of hardware capabilities  
for virtualization. The key virtualization usage models for the Intel-based IVI  
platform  that a car OEM can use with the appropriate built-in Intel VT  
hardware are described in the following paragraphs.

Consolidation: This usage model is the concept of combining multiple applications, 
each of them executing on a separate hardware platform, onto a single hardware 
platform without modification of the application or the OS. Executing on a virtu-
alized platform, each application executes within its own OS environment as a guest 
within a separate VM. These embedded applications are typically characterized as 
running under a real-time OS (RTOS) with one or more dedicated I/O devices.  
The driving function behind consolidation is the cost reduction associated with 
fewer platforms and lower maintenance costs, power consumption, heat dissipation  
and cooling, and weight, while increasing platform reliability due to fewer components, 
as illustrated in Figure 7.

Platform
HW

Platform
HW

Platform
HW

Platform 
HW

Virtual
Machine
Monitor

Dedicated
I/O

Dedicated
I/O

Dedicated
I/O

RTOS RTOS RTOS

App0 App1 AppN

App0 App1 AppN

VM0 VM1 VMN

Guest
RTOS

Guest
RTOS

Guest
RTOS

Figure 7:  Consolidation usage model.

Examples of IVI and vehicle applications that could be consolidated are listed below.

•	 	Engine information: alerts, warnings, and diagnostics
•	 	Auto control, information: wipers, lights, turn signal, tire pressure
•	 	Driver assist: lane departure warning, blind spot detection, front/rear proximity, 

external temperature, and directional information 
•	 	Fuel economy: average and instantaneous MPG, optimum speed, distance 

remaining to refuel
•	 	Environmental controls: interior lighting, temperature regulation, mirror 

and seat positioning
•	 	Electronic dashboard



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   173 

Hybrid: The hybrid usage model diverges from the typical embedded hypervisor as 
a thin virtualization layer by integrating a RTOS or kernel into the hypervisor or 
partially-virtualizes an RTOS for closer coupling with the platform I/O, as shown 
in Figure 8. This usage model has particular value to the IVI market segment where 
the existing RTOS along with the IVI applications executing on it can be either 
integrated or partially-virtualized with the hypervisor, while new applications of-
fered by a general purpose OS (GPOS) can be quickly brought to the IVI platform 
by executing it in a separate VM. Another consideration for the RTOS and GPOS 
partitioning is the boot time of the OS and availability requirements of the applica-
tion. Applications or devices that require immediate availability are allocated to the 
RTOS partition, while those applications which are tolerant of a few seconds of 
delay in availability can execute in the GPOS partition.

Examples of applications that could execute in a hybrid usage model and their ap-
plicable partition are listed below.

•	 	RTOS partition
Rearview camera 
Audio, video playback 
Digital radio 
Cell phone hands free

•	 	GPOS partition
Games 
Navigation 
Electronic owner’s manual

One of the challenges is to provide I/O access to VMs through an efficient and 
secure implementation. Three such implementations are device emulation or partial 
virtualization or hardware assisted virtualization. Device emulation implements  
the physical device driver in the hypervisor, which emulates existing interfaces and 
incurs a latency penalty as each I/O must traverse the emulation driver. Partial 
virtualization allows a VM to directly access an I/O device to eliminate the latency 
penalty through a set of VMM specific interfaces, which require changes in the 
guest OS. The hardware-assisted I/O virtualization requires support in the platform 
chipset hardware.

“ Applications or devices that  

require immediate availability are 

allocated to the RTOS partition, 

while those applications which are 

tolerant of a few seconds of delay 

in availability can execute in the 

GPOS partition.”

Platform 
HW

Dedicated
I/O

Dedicated
I/O Memory Processor/CS

Shared I/O Device
(GFX)

Fast Boot
I/O

Virtual
Machine
Monitor

Shared I/O Device
Driver

Native App
CE ManagerNavigationInternet

Virtual Machine

Moblin / Guest OS

Figure 8:  Hybrid usage model.



Intel® Technology Journal | Volume 13, Issue 1, 2009

174   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

The virtualization hypervisor induces overhead on the IVI platform performance, 
whether it is through the virtualization of the processor or emulation of the IO. Op-
timizing the hypervisor to reduce virtualization overhead and achieve near real-time 
latency is an opportunity for continuous performance improvements. The consoli-
dation and hybrid usage models presented previously are just two examples of how 
virtualization can be implemented in an Intel-based IVI platform. Developing other 
models and application partitioning provides numerous opportunities for product 
differentiation and value-add to the end customer. Depending on the VMM model 
chosen, appropriate hardware may need to be designed into the platform upfront or 
select the appropriate Intel architecture-based processor and chipset solution for the 
Intel-based IVI platform.

Intel® Hyper Threading Technology (Intel® HT Technology)
This is one of the Intel technologies that is enabled by default on the Intel-based IVI 
platform in hardware. The key dependency to leverage from this is the support in 
the OS for symmetric multiprocessing (SMP). Some applications have been bench-
marked and are known to show an improvement in performance by 30 percent 
with Intel® Hyper Threading Technology (Intel® HT Technology). The enabling of 
Intel HT Technology is transparent to the application, in the sense that the same 
applications running on a uni-processor machine can run in a seamless way. Future 
Intel-based IVI platform processors may support multiple cores and the same SMP 
software would run unchanged.

Maximum benefit of Intel HT Technology to the end-customer depends on the col-
laborative effort by the IBV, OSV, and ISV. Supporting SMP by default in the OS is 
an opportunity for the OS vendors to help facilitate execution of heavier workloads 
more efficiently. The application vendors in turn can develop high performance ap-
plications through development of multi-threaded applications that can execute in 
parallel. The benefits can be further extended by the ISVs making their middleware 
and device driver software MP-safe such as with reentrancy and non-blocking APIs. 

Security
There are two key aspects of security that an Intel-based IVI platform is targeted 
to support for “open and closed device” usage models and they are (1) to enable 
a tamper-resistant software environment to protect against malicious attacks and 
(2) to offer ability to playback DRM-protected content like Blu-Ray for rear-seat 
entertainment. The usage model shown in Table 2 for the Intel-based IVI platform 
exposes it to various types of threats and therefore presents the need to protect 
against them.

“  Optimizing the hypervisor to  

reduce virtualization overhead 

and achieve near real-time latency 

is an opportunity for continuous  

performance improvements.”

“ The enabling of Intel HT  

Technology is transparent to  

the application, in the sense that 

the same applications running on 

a uni-processor machine can run 

in a seamless way.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   175 

Usage Model Threats

Internet Connectivity Malware attack, DoS Attacks, Packet  

Replay/Reuse, etc.

Secure Internet Transaction Steal Privacy sensitive data

DRM Content Usage Steal DRM protected content

Browser Usage Malware attack, Phishing

Software Downloads/Updates Change OS/Software Stack

Device Management DoS attack, Illegal device connections

ID Management Dictionary Attacks, Stolen Privacy Data

One Time Provisioning Steal OEM data, Unauthorized Activation

Full Featured OS All of the above

Biometrics (Finger print sensor) Steal user data, authentication credentials

Table 2: Usage model and security threats.

Based on the usage model described in Table 2, the assets on the platform that need 
to be protected that a hacker could attempt to compromise are as follows:

•	 	Platform resources such as CPU, memory, network (3G, WiMax, WiFi).
•	 	Privacy-sensitive data such as personal identification, address book, location, 

e-mail messages, DRM-protected copyrighted content like music and video.
•	 	Trusted services such as financial, device management and provisioning, 

trusted kernel components

The mitigation against the security threats shall require the Intel-based IVI  
platform security architecture to use a combination of hardware and software  
security ingredients like:

•	 	Trusted boot, secure storage and key management with Trusted Computing 
Group’s Trusted Platform Module (TPM), coupled with appropriate hardware 
based root of trust such as Intel® Trusted Execution Technology (Intel® TXT).  
The Intel TXT feature is available only on certain Intel® Architecture Processors. 
In its absence, an appropriate alternative mechanism may be supported. These 
security features are becoming pervasive on most mobile platforms and would  
be very applicable to the Intel-based IVI platform as well.

•	 	DRM content protection based on commercial media players executing 
on Intel architecture.

•	 	Application isolation through OS-based mechanisms.
•	 	Trusted domains and domain isolation through virtualization.
•	 	Anti-virus through third-party software libraries and application design.

Security is a strong requirement, considering the new threats the automobile is 
exposed to due to connectivity to the Internet and rich features as shown in Table 
2. Providing a secure car in an open usage model has become a challenge. Not all 
of the above features are present in the current generation of the Intel-based IVI 
platforms. The expectation is that over time, many of these will be enabled in a 
phased manner.

“ Security is a strong requirement, 

considering the new threats the 

automobile is exposed to due to  

connectivity to the Internet and 

rich features.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

176   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

The Intel-based IVI platform with an Intel Atom processor and an industrial grade 
TPM device will allow a car OEM to deliver differentiating security. This is also a 
great opportunity for third-party vendors to provide various platform security ingre-
dients as outlined in the Table 3.

The support for each of the security ingredients translates into the following opportunities:

•	 	Silicon vendors or IHVs: Hardware for trusted boot and DRM, such as TPM
•	 	OS and software vendors: Develop and deliver hardware and OS-assisted trusted 

boot, domain isolation, application isolation, anti-virus and DRM-enabled  
media players

•	 	Academia: More research into robust crypto algorithms, audio/video encoding/
decoding standards and a balanced hardware/software solution that would make 
efficient use of the CPU.

Manageability
The manageability or device management (DM) framework provides services on the 
client platform, for use by IT personnel remotely. These services facilitate the key 
device management functions like provisioning, platform configuration changes, 
system logs, event management, software inventory, and software/firmware updates. 
The actual services enabled on a particular platform are choice for the car OEM.

Open Mobile Alliance - Device Management (OMA-DM) is one of the popular 
protocols that would allow manufacturers to cleanly build DM applications that 
fit well into the IVI usage model. Many of the standard operating systems sup-
port OMA-DM or a variation of it with enhanced security. The data transport for 
OMA-DM for the Intel-based IVI platform is typically over wireless connectivity 
like WiMax or 3G/4G. This protocol can run well on top of the transport layers like 
HTTPS, OBEX, and WAP-WSP. The Intel-based IVI platform would be able to 
support this, as long as the OEM supports the connectivity and the client services. 
One of the limitations of OMA-DM is that the Intel-based IVI platform is fully 
powered with the DM client services activated on top of a fully functional OS.

The other possible framework for manageability is Intel® Active Management 
Technology (Intel® AMT). Intel AMT provides full featured manageability that can 
discover failures, proactively alert, remotely heal, recover, and protect. Intel AMT 
Out of Band (OOB) device management allows remote management regardless of 

“ These services facilitate the key 

device management functions  

like provisioning, platform  

configuration changes, system  

logs, event management,  

software inventory, and software/ 

firmware updates.”

Threats Security Ingredient

Malware attack Application isolation, domain isolation, tamper-resistant software (TRS), anti-virus protection

Steal privacy sensitive data Trusted boot, secure storage

Steal DRM protected content Application isolation, domain isolation, tamper-resistant software

Change OS/software stack Tamper-resistant software, trusted OS, secure boot

DoS attack Tamper-resistant software, trusted OS, Anti-virus protection, trusted boot

Steal OEM data Tamper-resistant software

Phishing Anti-virus

Steal user data Secure key management, secure storage, tamper-resistant software

Table 3: Security mitigation strategies.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   177 

device power or OS state. Remote troubleshooting and recovery could significantly 
reduce dealer service calls. Proactive alerting decreases downtime and minimizes 
time to repair. 

In the manageability space, making Intel AMT available on the Intel-based IVI 
platform is an opportunity that allows car OEM differentiation and provides a 
much richer manageability features. This is also an opportunity for IHVs/ISVs  
to pursue, while research into retrofitting OMA-DM with the benefits of the  
Intel AMT features on the part of academia would be welcomed to enable Intel 
AMT on the current generation the Intel-based IVI platform with limited to no 
hardware changes.

In-Car Connectivity
The rising popularity of passenger entertainment systems and cameras in and on the 
car places an increasing burden on the car’s network infrastructure to transport large 
amounts of high-bandwidth, low latency video and audio data between built-in  
devices such as the head unit, DVD players and changers, cameras, rear-seat entertain-
ment system, amplifiers, speakers, and remote displays. Legacy in-car connection tech-
nologies such as CAN, LIN, and Flexray are cost-effective and well-suited for messaging 
between engine control units (ECUs) in the car, but these technologies lack the neces-
sary bandwidth to distribute video content. Blu-Ray video, for example, requires up to 
54 megabits per second of bandwidth, well above the capability of legacy car networks. 
Technologies that have been explored for interconnectivity of in-car multimedia devices 
include MOST, Ethernet, and IDB-1394. MOST and Ethernet will both be enabled by 
the Intel-based IVI platform.

MOST*
Currently, the leading in-car multimedia transport technology is Media Oriented 
Systems Transport (MOST). MOST requires each device in the network to be 
equipped with a MOST Network Interface Controller (NIC). MOST is a circuit-
switched, time-domain multiplexed network technology that enables the transfer 
of digital audio, video, data, and control information between multiple networked 
devices. MOST scales in bandwidth from 25 Mbps (MOST25) up to 150 Mbps 
(MOST150). MOST150 is capable of transferring content at 150 Mbps over 
a polymer optical fiber (POF) wire harness. In addition to higher bandwidth, 
MOST150 features new isochronous transport mechanisms to support extensive 
video applications, as well as an Ethernet channel for efficient transport of IP-based 
packet data. MOST has a strong presence in automotive and many multimedia 
devices currently support MOST, so its popularity in high-end cars is not expected 
to diminish in the foreseeable future. The Intel-based IVI platform with the Intel 
Atom processor will feature a glueless, high-bandwidth dedicated interface to a 
MOST Intelligent Network Interface Controller (INIC). Drivers and a MOST 
protocol stack will also be available to enable MOST integration.

Ethernet
While the synchronous nature of MOST makes it ideal for transporting high- 
bandwidth, low-latency multimedia traffic between endpoints in a network, nothing 
surpasses Ethernet networking in terms of its raw bandwidth, cost, extensive eco-
system, hardware availability, and software support. Historically, Ethernet has been 

“ Remote troubleshooting and  

recovery could significantly reduce 

dealer service calls. Proactive  

alerting decreases downtime  

and minimizes time to repair.”

“ The Intel-based IVI platform with 

the Intel Atom  processor will 

feature a glueless, high-bandwidth 

dedicated interface to a MOST 

Intelligent Network Interface  

Controller (INIC).”

“ Technologies that have been  

explored for interconnectivity of 

in-car multimedia devices include 

MOST, Ethernet, and IDB-1394. 

MOST and Ethernet will both 

be enabled by the Intel-based IVI 

platform.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

178   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

used in the car strictly for diagnostic services and software updates. Ethernet cost-
effectively scales up to 1 Gigabit per second, which allows large amounts of data 
exchange between the service infrastructure and the car. However, Ethernet quality 
of service (QoS) mechanisms have been inadequate for distributing low-latency, 
jitter-free synchronized audio and video traffic throughout the car. For example, if 
the car’s head unit is distributing multiple channels of audio to network attached 
speakers and synchronized video to a network-attached display, the speakers and the 
display must share a common clock in order to prevent speaker channels from drift-
ing apart and to maintain lip synchronization between the audio and video. Some 
new techniques being proposed by the recently-formed 802.1 Audio/Video Bridg-
ing (AVB) Task Group promise to provide time-synchronized low latency streaming 
services over Ethernet could address this shortcoming. Some car OEMs are also per-
forming trials to explore data transport of IP over Ethernet with QoS mechanisms 
implemented in the IP layer. Still, AVB is likely to become the most cost-effective 
and efficient solution for audio and video streaming over Ethernet. The Intel-based 
IVI platform with the Intel Atom processor will include an Ethernet controller that 
includes support for AVB with a clock output pin to drive an external audio clock. 

In-Cabin Connectivity (Car-to-Portable Device) 
The demand for on-the-go access to audio/video content and information has 
exploded over the past few years. Consumers are increasingly consuming content 
on the go through iPods and portable multimedia players. Having a multimedia-
capable platform in the car offers an opportunity to bring portable content in the 
car and use the high-quality displays, sound systems, and controls of the car to 
render that content in a more enjoyable way. Historically, portable devices have 
been connected to the car primarily through a USB port or a proprietary wired 
analog interface. An increasing number of devices now include wireless interfaces 
that enable devices to stream content to the car with more quality and less effort by 
the consumer. Bluetooth also enables hands-free cell phone operation. The Intel-
based IVI platform includes a high-speed synchronous serial port to allow streaming 
of low-latency audio and voice from a Bluetooth chipset. The platform also offers a 
complete Bluetooth software stack and Bluetooth profiles for audio streaming and 
hands-free calling. WiFi controllers can be attached to the platform through PCI 
Express, USB, or SDIO.

Power Management

The Intel-based IVI platform has its own local power management architecture to 
manage the SoC and the automotive I/O fabric, with the associated policies. In 
addition, an automotive power state manager (PSM) can exist as a central entity to 
keep track of the overall power states in an automobile and respond to events like 
Ignition On/Off, Drive-Idle, Under/Over Voltage Events, Manageability Service 
calls, and so on. It is beyond the scope of this article to describe the PSM.

“ Ethernet cost-effectively scales up to 

1 Gigabit per second, which allows 

large amounts of data exchange 

between the service infrastructure 

and the car.”

“ The Intel-based IVI platform 

with the Intel Atom processor will 

include an Ethernet controller that 

includes support for AVB with a 

clock output pin to drive an  

external audio clock.”

“ An automotive power state  

manager (PSM) can exist as  

a central entity to keep track  

of the overall power states in an  

automobile and respond to events 

like Ignition On/Off, Drive-Idle,  

Under/Over Voltage Events,  

Manageability Service calls,  

and so on.”



Intel® Technology Journal | Volume 13, Issue 1, 2009

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   179 

Traditional Intel architecture platforms support various power management capabil-
ities, to conserve power and this applies to both battery and AC powered platforms. 
The Intel-based IVI platform system does support the power management states as 
shown in Table 4.

As it was highlighted earlier, one of the key design goals of the Intel-based IVI 
platform is a fast boot in the order of seconds. Typically, any resumption from 
Suspend/Hibernate back to active state involves restoring the previous state. In an 
automobile environment with multiple users of the same vehicle, it is challenging 
to resume from suspend, as the users might change across these transitions and one 
users context could get inadvertently restored for another user. This makes the fast 
boot with a completely fresh state on every power on a key requirement for the plat-
form, so that every user always starts with a new context. In addition, long duration 
S3 states may drain battery power if not handled properly.  

The built-in clock throttling feature of the Intel-based IVI platform can be used for 
thermal management, in addition to power managing the idle I/O devices. Howev-
er, the actual usage model is left to the OEM and can be used in conjunction with 
the climate control system of the automobile.

Conclusions

Enabling the standards-based the Intel-based IVI platform on Intel architecture is 
opening up many opportunities both from a technical innovation and business op-
portunity standpoint. The scope of these opportunities will further expand with the 
wide availability of WiMax/4G infrastructure for the connected car usage model. 

In consideration of the combined technical and market requirements in automo-
tive infotainment, leading automobile manufacturers and suppliers announced 
in March 2009 the formation of the GENIVI Alliance, a nonprofit organization 
committed to driving the development and broad adoption of an open source In-
Vehicle Infotainment (IVI) reference platform.

By removing the costly duplication in specifications and lower level software func-
tions, opportunities for new services desired by automotive customers can be devel-
oped instead, resulting in new sources of revenue. Based primarily on key technical 
working groups, the outcome of vetted specifications and reference implementa-
tions will be available to all members for commercial development along with many 
elements planned for release into open source.

“ This makes the fast boot with a 

completely fresh state on every 

power on a key requirement for the 

platform, so that every user always 

starts with a new context.”

Description System CPU Device Usage

Fully On S0 C0-C6 D0 Ignition On

Low On/User Idle S1 D1/D3 Thermal Management

Standby/System Idle S2 D2/D3 Thermal Management

Sleep/Suspend to RAM S3 Power Off D3 Not Used

Hibernate/Suspend to NVM or Soft Off S4/S5 Power Off D4 Not Used

Table 4: Intel-based IVI platform power state usage.



Intel® Technology Journal | Volume 13, Issue 1, 2009

180   |   Low Power Intel® Architecture Platform for In-Vehicle Infotainment

The new Alliance (expected to reach up to 150 companies by 2010) will unite 
industry leading automotive, consumer electronics, communications, application 
development and entertainment companies investing in the IVI market to align 
requirements, deliver reference implementations, offer certification programs and 
foster a vibrant IVI community with the purpose of removing waste from the devel-
opment cycle.  

References:
1.  Microsoft Corporation, Microsoft* Auto Platform Overview

http://download.microsoft.com/download/6/5/0/6505FA0E-1F39-4A34- 
BDC9-A655A5D3D2DB/MicrosoftAutoPlatformOverview3%201.pdf

2.  Moblin.org, Moblin* for IVI – Software Architecture Overview, 
http://moblin.org/pdfs/moblin_ivi_sao_v0.8.pdf, May 2008.

3.  Intel Corporation, Intel® Atom™ Processor Z5xx Series and Intel® System 
Controller Hub US15W Development Kit, http://www.intel.com/design/intarch/
devkits/index.htm?iid=embnav1+devkit

4.  Intel Corporation, Intel® Active Management Technology (Intel® AMT), 
http://www.intel.com/technology/platform-technology/intel-amt/ 

5.  Media Oriented System Transport Technology, http://www.mostcooperation.com/
home/index.html

Author Biographies

Suresh Marisetty: Suresh Marisetty is a software and systems architect at Intel 
Corporation and has been involved with enabling of various end-to-end Intel® 
architecture server, desktop, mobile, and embedded platform technology ingredients 
across the industry, in close collaboration with OEM customers, OS vendors, and 
standards bodies. He has been with Intel for about 20 years and currently has 17 
patents and over half a dozen internal and external papers on various topics. His 
current focus areas include security, manageability, low latency boot solutions and 
end-to-end IVI platform software architecture.

Durgesh Srivastava: Durgesh Srivastava is silicon and systems architect for Intel 
Corporation’s Low Power Embedded Products Division (LEPD). He has been  
involved in debug hooks architecture, power reduction, platform power manage-
ment, CPU uncore/MCH, memory subsystem architecture, and silicon debug. 
He is currently driving 32-nm System-on-a-Chip solutions for the next generation 
embedded products.



Copyright
Copyright © 2009 Intel Corporation. All rights reserved.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Low Power Intel® Architecture Platform for In-Vehicle Infotainment   |   181 

Joel Andrew Hoffmann: Joel Andrew Hoffmann is the Strategic Market Devel-
opment Manager for Intel’s In-Vehicle Infotainment Group. In this capacity, he 
leads automotive business developments in wireless networking and enterprise IT 
solutions. He is also responsible for managing Intel’s Infotainment vision, which 
includes spearheading Intel’s efforts with GENIVI, a cross-industry consortium of 
companies with the goal to accelerate adoption of entertainment, navigation and 
communication services in automobiles. Within GENIVI, Hoffmann promotes 
community support for translating open source innovation into commercial solu-
tions adopted by automakers, suppliers and a growing infotainment ecosystem. 

Since joining Intel Corporation in 2000, Hoffmann has been instrumental in  
establishing an early incubation of connected vehicles for DaimlerChrysler, now 
Chrysler, by promoting standards-based software and hardware alignment and 
helped institute a high performance computing cluster which reduced the auto 
company’s costs substantially. With a background of sales and technical experience 
in automotive, telecommunications and consumer electronics, Hoffman has previ-
ously created business plans for the Michigan Connected Vehicle Proving Center, 
developed marketing strategies for Skyway Systems, now Inilex, and held a board 
seat in the Connected Vehicle Trade Association on Intel’s behalf.

Previously, as Global Automotive Industry Manager, Hoffmann developed Intel’s 
first automotive vertical strategy focused on business transformation, new market 
growth and engagement with auto industry companies such as BMW, Toyota, Ford 
and DaimlerChrysler.

Acknowledgements

The authors would like to acknowledge the following for their feedback and contribu-
tions to the paper: Staci Palmer, Peter Barry, Lomesh Agarwal, Matt Sottek, Lindsey 
Sech, Steve Adams, Scott Hoke, Lynn Comp, Sam Lamagna, and Mark Brown.



Intel® Technology Journal | Volume 13, Issue 1, 2009

Intel Technology Journal

182   |   Intel Technology Journal

Lomesh Agrawal 
Stephen Ahern 
Lars Boehenke 
John Browne 
Mike Cerna 
Robert Chavez 
Phillip Clark 
James A Coleman 
Mike Delves 
Scott M Doyle 
Richard Dunphy 
Rob Dye 
Roger Farmer 
Michael Flemming 
Rachel Garcia Granillo 

Dr. Giannone 
John Griffin 
Alan Hartman 
Joel A. Hoffman 
Scott Hoke 
Dr. Jin Hu 
Robert M Kowalczyk 
Sam Lamagna 
Chris D Lucero 
Bryan Marker 
Louis Morrison 
Dave Murray 
James E Myers 
Nick Nielsen 
Dr. Ohbayashi 

Chris Oliver 
Chun Keang Ooi 
Staci Palmer 
Frank Poole 
Gina M Rophael 
Greg Schultz 
Li Shang 
Matt Sottek 
Jason Spyromilio 
Mark R. Swanson 
Blake A Thompson 
Tom Tucker 
Hwan Ming Wang 
Dr. Luthar Wenzel

Peer Reviewers 



About the Cover

Intel® Technology Journal
march 2009

Advances in Embedded Systems Technology

copyright © 2009 Intel corporation. all rights reserved. Intel, and the Intel logo, are trademarks of Intel corporation in the U.S. and other countries. 

In
t

e
l

® t
e

c
h

n
o

lo
g

y
 jo

U
r

n
a

l | a
d

v
a

n
c

e
S

 In
 e

m
b

e
d

d
e

d
 S

y
S

t
e

m
S

 t
e

c
h

n
o

lo
g

y
v

o
l 13 | IS

S
U

e
 01 |  m

a
r

c
h

 2009

For further information on embedded systems technology, please visit the Intel® Embedded  
Design Center at: http://intel.com/embedded/edc

For further information about the Intel Technology Journal, please visit  
http://intel.com/technology/itj

$49.95 US

9 781934 053218

ISbn 978-1-934053-21-8

358587 20967 0


	ITJ9 1x TOC
	ITJ9.1x.Front_Covers
	ITJ9.1x_HB_2Brick
	ITJ9.1x.Back_Covers



