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ABSTRACT 
The fast introduction of the Intel® Core�2 Duo and Quad 
processors to the mass market has drawn attention to 
threadization (a.k.a. parallelization) and vectorization of 
the existing code in many application domains. In fact, 
multi-core processor vendors are eager to enable their 
users to exploit various levels of parallelism in order to 
harness the additional compute resources of multi-core 
processors. The Intel® C++/Fortran compiler provides an 
essential tool for unleashing the power of Intel Core 2 
Duo and Quad processors. This is accomplished by means 
of high-level loop optimizations and scalar optimizations 
to exploit multi-core processors and single-instruction-
multiple-data (SIMD) instructions, combined with 
advanced code generation, that is built on an intimate 
knowledge of micro-architectural performance aspects.  

In this paper we outline the design and implementation of 
a new threadizer and vectorizer inside the Intel® 10.1 
compilers, and we also provide an overview of the 
enhanced high-level loop optimizations and the low-level 
code generation used to obtain higher performance on 
platforms based on Intel Core 2 Duo and Quad processors. 
Significant performance gains are shown using the SPEC 
CPU2006* suite running on a system configured with two 
Intel® quad-core processors.  

INTRODUCTION 
The aggressive delivery of Intel® multi-core processors to 
the mass computer market shows that, as the performance 

improvements from continuously increasing clock 
frequencies start to taper off, other architectural advances 
that reduce latency or increase memory bandwidth are 
gaining importance [9]. In particular, since packaging 
densities are still growing, integrating multiple processors 
on a single die and using SIMD extensions are becoming 
more widespread [1]. The Intel Core 2 Duo and Quad 
processors are equipped with a rich set of micro-
architectural and architectural features to boost 
performance:  

dual-core or quad-core on a single chip 
wider execution units for Streaming SIMD Extensions 
(SSE, SSE2, SSE3)  
a set of new instructions referred to as Supplemental 
Streaming SIMD Extensions 3 (SSSE3)  
advanced smart shared L2 cache among cores on the 
same chip 

Due to the complexity of modern processors, compiler 
support has become an important part of obtaining higher 
performance. Most importantly, to assist programmers in 
leveraging all parallel capabilities of Intel�s new 
processors, the Intel C++/Fortran compiler provides an 
essential tool for unleashing the power of Intel multi-core 
processors and SIMD instructions by means of high-level 
optimizations and advanced code generation. 

The Intel compilers perform automatic optimizations of 
programs using threadization [10], vectorization [1, 2, 5], 
classical loop transformations (e.g., distribution, unrolling, 
interchange, fusion) [7, 11, 12], scalar optimizations such 
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as constant propagation, Partial Dead Store Elimination 
(PDSE), Partial Redundancy Elimination (PRE), copy 
propagation, Inter-Procedural Optimizations (IPO) [7], 
and advanced machine code generation techniques that 
together yield a significant performance gain compared to 
the default level of optimization. The contributions of the 
new threadizer and vectorizer are as follows:   

The new threadizer yields up to 4.63x speedup (with 
8 cores) by exploiting thread-level parallelism from a 
serial program in the SPEC* CPU2006 benchmark 
suites. Overall, the auto-threadization delivers a 
15.45% gain (geomean with 8 cores) for SPEC 
CFP2006 suite and a 12.17% gain (geomean with 8 
cores) for SPEC CINT2006 suite.  

The new vectorizer yields up to 1.28x performance 
speedup by exploiting SIMD-type vector parallelism 
from a serial program in the SPEC CPU2006 suites. 
Overall, the auto-vectorization delivers a 5.11% gain 
(geomean) for SPEC CFP2006 suite and a 2.01% 
gain (geomean) for SPEC CINT2006 suite. 

The rest of this paper is organized as follows. First, we 
provide some basics on the Intel® Core� micro-
architecture. Then, we discuss the design and 
implementation of the new threadizer and vectorizer, 
respectively, inside the Intel 10.1 compilers. 
Subsequently, we discuss the loop optimizations and 
enhancements made to support efficient threadization and 
vectorization. We also present an overview of advanced 
code generation for the Intel Core 2 Duo and Quad 
processors. Finally, we provide performance results using 
the SPEC CPU2006 industry-standard benchmark suite 
built with the Intel 10.1 C++ and FORTRAN compilers. 

INTEL® CORE� MICRO-
ARCHITECTURE 
Intel Core micro-architecture is the foundation for all new 
Intel® architecture-based desktop, mobile, and server 
multi-core processors. This state-of-the-art multi-core 
processor with optimized micro-architecture delivers a 
number of innovative features that have set new standards 
for energy-efficient performance. In this section we 
outline a few innovations relevant to this paper. A more 
detailed description can be found in the Intel® literature 
[4]. 

Figure 1: Quad-core processor schematic 

Figure 1 shows a schematic of the Intel Core 2 Quad 
processor. Two independent cores with their own private 
L1 caches reside on a single die. Two shared Level 2 (L2) 
caches, referred to as the Intel® Advanced Smart Cache,  
work by sharing the L2 cache between cores so that data 
are stored in one place accessible by the cores. Sharing the 
L2 cache enables a core to dynamically use up to 100% of 
the available L2 cache, thus optimizing cache resources.  

The quad-core processor is equipped with Intel® Smart 
Memory Access techniques that boost system performance 
by optimizing available data bandwidth from the memory 
subsystem and hiding the latency of memory accesses 
through two techniques: memory disambiguation and an 
instruction pointer-based prefetcher that fetches memory 
contents to the shared L2 cache and then into each private 
L1 cache before they are requested. The data prefetcher 
can detect strided memory access patterns to make 
accurate predictions about future load addresses. 

Another key feature of Intel Core micro-architecture is the 
Intel ®Advanced Digital Media Boost that can issue 128-
bit SSE instructions with a throughput of one per clock 
cycle. Previous-generation Intel processors had a 
sustained throughput of one instruction per two clock 
cycles, typically one cycle for the lower 64 bits followed 
by another cycle for the upper 64 bits. By widening 
execution units to the full 128 bits, the Intel processor 
effectively doubles the performance of a series of 128-bit 
SSE instructions relative to previous-generation Intel 
processors. In addition, the latency of various individual 
128-bit SSE instructions has been reduced, and SSSE3 has 
been added to extend the instruction set. As a result, more 
overall performance improvements can be expected from 
vectorization (i.e., transforming sequential code into 
SIMD instructions). 

REVAMPING THE THREADIZER  
In this section, we present our new threadizer framework 
that is highly integrated with our classical high-level loop 
optimizations, and we describe its main components. The 
strengths of the new threadizer include the following:  

A new Abstract Thread Representation (ATR), based 
on the concept of virtual threads, is designed to 
bridge the semantic gap between high-level 
representation and physical (hardware or OS) threads.  
Better interaction with other high-level loop-related 
optimizations gives better performance.  
The new threadizer is moved downstream to take 
advantage of scalar optimizations such as global 
constant propagation and Single-Static-Assignment 
(SSA) PRE, and some loop optimizations. 
A table-driven cost model simplifies maintenance and 
future extensibility.  
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Effective runtime threadization control and multiple 
schedule types such as static, dynamic, guided, and 
runtime are supported.    

The threadizer in the Intel compiler serves as a single 
module that covers different languages (C++ and Fortran), 
architectures (IA-32, Intel® 64, and IA-64), and operating 
systems (Microsoft Windows*, Linux*, and MacOS*).  

Virtual Threads  
Our new threadization framework is based on the concept 
of virtual threads. A virtual thread is an abstraction 
above physical threads provided by hardware threads or 
OS threads. Virtual threads can consist of arbitrary code 
blocks and have no nesting-level constraints as long as 
they obey the specified program execution order.    

A virtual thread denoted as a quadruple V( , s, e, d)
corresponds to a thread with instruction entry s, 
instruction exit e, data environment d, and thread id  that 
are assigned at runtime. An important property of a virtual 
thread is its lexical nesting level, which is denoted as 
depth(V( , s, e, d)). The depth is computed recursively as 
follows: 

When V( , s, e, d) represents a thread at the outer-most 
lexical nesting level of parallel constructs, we set its 
nesting level to depth(V( , s, e, d)) = 0. When V( , s, e, d) 
represents a thread at an inner lexical nesting level of 
parallel constructs, we set its nesting level to depth(V( , s, 
e, d)) = depth(parent(V( , s, e, d))) + 1.  

This lexical nesting-level property is not to be confused 
with the dynamic (runtime) nesting level of the physical 
threads supported by the threading runtime library. 
Another property of a virtual thread is its code block type 
(a loop, a region, a section, or a task) that can distinguish 
different threading semantics of a virtual thread and can 
guide the compiler to generate threaded code according to 
the definitions of the compiler-to-runtime interface. We 
say that a virtual thread is mapped to a physical thread (or 
a runtime thread) when the virtual thread is assigned a 
unique thread identifier  at runtime. Note that a virtual 
thread can be mapped to a team of physical threads for a 
parallel loop and region by assigning a unique thread 
identifier for each mapping. 

Threadization Framework  
Figure 2 outlines the new framework. The first two phases 
extract thread-level parallelism within different program 
scopes to construct virtual threads. The next two phases 
de-virtualize virtual threads progressively to match precise 
threading runtime constraints. The final phase lowers a 
virtual thread to threaded Intermediate Language (IL) by 
emitting calls supported by the runtime library.       

Phase I: Enabling transformations and loop analysis. 
This phase enables loop transformations that can increase 
thread-level parallelism, improve data locality, and 
identify threadizable loops within a compilation unit (or 
routine). This phase is enabled with Inter-Procedural 
Optimization (IPO) as well. Therefore, it is not limited to 
a single compilation unit, but rather allows whole-program 
parallelism extraction. 

Phase II: Virtual thread graph construction. This phase
extracts thread-level parallelism captured by parallel loops 
and it constructs sibling/nesting relationships between 
virtual threads. In addition, it also collects private, 
firstprivate, lastprivate, and reduction variables to build 
the data environment d for each virtual thread.  

Phase III: Devirtualization via privatization. This phase 
conducts transformations for all private, firstprivate, 
lastprivate, and reduction variables that are captured by 
the data environment d of virtual threads. For instance, 
given firstprivate(x), a local clone thr_x of global variable 
x is created on the stack and initialized with the value of x. 
All memory references to x in the thread are then 
substituted with thr_x.    

Figure 2: The new threadization framework 

Phase IV: Devirtualization via loop partition. This 
phase partitions a loop using the thread identifier based 
on a default schedule setting, or a scheduling type and 
chunk size specified with 
and  options. The loop partition 
is represented internally with the following format:   

LPARTITION (tid, sched, cs, lv, glow, gup, gstride, vlow, vup) 

where tid denotes the thread identifier, sched denotes the 
loop scheduling type, cs denotes chunk size, lv denotes 
whether the code for computing last value is needed or not 
(FALSE means last-value is not needed), glow and gup
denote the original loop lower and upper bounds, and 
gstride denotes the original loop stride. The parameters 
vlow and vup denote the loop�s lower and upper bounds 
after loop partitioning for the virtual thread, and they are 

  Enabling transformations / loop analysis   

   Thread virtualization          

     De-virtualization via privatization  

     De-virtualization via loop partition          

     Thread code generation        

 Virtual threads        

   Physical threads        

Transition         
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computed by an OpenMP runtime library routine to which 
we pass in the other parameters in LPARTITION. 

Phase V: Threaded-code generation. This phase maps a 
virtual thread to the compiler�s intermediate code such as 
IL statements or intrinsics, and to OpenMP runtime library 
calls according to the target platform. These statements 
and calls include (i) _fork_threads call that creates 
physical threads; (ii) a loop partitioning call to compute 
vlow, vup based on loop information captured in the 
LPARTITION of each virtual thread node; (iii) a T-entry
and T-return pair of statements for the virtual thread based 
on the MET technology presented in [10].  

A distinct characteristic of the new framework is that the 
threadization is carefully broken down into a sequence of 
transformations, each of which gradually transforms a 
virtual thread IL, without a thread identifier, to a virtual 
thread IL parameterized by a unique symbolic thread 
identifier. This process is clearly illustrated by the 
evolution of data properties and code re-structuring 
through each phase. 

Loop Transformations for Threadization 
Under the new framework, the compiler performs all 
necessary loop transformations to achieve a good data 
locality while preserving and enabling threadization 
opportunities. Consider the following loops from the 
subroutine  in 
436.cactusADM of the SPEC CPU2006 benchmarks.  

In Phase I, the compiler analysis proves that there are no 
loop-carried data dependencies for the loops, and no data 
dependencies that prevent loop fusion. Thus, the actions 
taken by the compiler are to fuse the two loops first, and 
then to perform the steps described in the previous 
section. When threadization is done, the compiler emits a 
�FUSED LOOP WAS PARALLELIZED� diagnostic. In 
this example, loop fusion increases the granularity of the 

parallel loop, which is an effective loop transformation to 
reduce thread forking and mapping overhead. After 
threadization, the vectorization phase will operate on the 
virtual thread code. In this example, the compiler 
continues by distributing the -loop to restrict the number 
of data streams per resulting loop, which favors write-
buffer combining, and then it vectorizes the resulting 
smaller loops. The compiler emits two �PARTIAL LOOP 
WAS VECTORIZED� diagnostics in this case. This 
indicates that an effective interaction of loop 
transformations, threadization, and vectorization can 
leverage the full potential of the Intel Core 2 Duo and 
Quad processor to achieve higher performance.     

Cost Model for Threadization     
Once a threadizable loop is identified in Phase I, Phase II 
forms a region within which the virtual thread will be 
constructed at compile time. Additionally, as the cost of 
thread activation and synchronization in a real system is in 
the range of hundreds of cycles on Intel Core 2 Duo and 
Quad processors, a key criterion in selecting a proper 
parallel loop candidate is to minimize the overhead of 
thread management.  

A complementary goal is to ensure that the virtual thread, 
once invoked, runs for an adequate number of cycles in 
order to amortize the thread activation cost. Therefore, it 
is desirable to choose a loop that iterates a reasonably 
large number of times. The cost estimation is done via a 
table-driven technique based on the Intel Core 2 Duo and 
Quad processor instruction latency information combined 
with the profiling information of basic block execution 
counts. This algorithm is effective, especially when 
combined with function inlining. 

Runtime Threadization Control     
Statically, loops that incur a large number of instruction 
cycles and no loop-carried data dependencies are 
identified for threadization. However, selecting an 
appropriate loop for threadization requires that loop 
tripcount and number of cycles taken for each iteration are 
known. Often, the loop�s lower and upper bounds are 
unknown at compile time, so the compiler can not 
compute the tripcount statically. In general, the static cost 
analysis may not provide an accurate cost estimation to 
guide and guard threadization in this case. To solve this 
issue, the new threadizer generates symbolic runtime test 
expressions and multi-versioned loops. Assume the 
symbolic tripcount expression of loop L is Etripcount(L), the 
estimated execution cycles of loop body of loop L is C(L). 
The following runtime tests are generated to control the 
threadization at runtime:     

C(L) < Thresholdpar 

Etripcount(L) × C(L) < Thresholdpar 
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Multi-versioning is necessary for runtime threadization 
control. Consider, for example, the following sequential 
loop in C: 

This loop is selected as a candidate loop for threading 
based on loop analysis. Then, static cost analysis finds that 
C(L) < Thresholdpar; however, the loop�s upper bound 
(representing size) and the tripcount  in the IL below 
are unknown at compile time. Hence, a runtime test code 

 < Thresholdpar / C(L) is generated together with two-
versioned loops. The pseudo-threaded code generated is 
sketched below.  

In this example, if  is less than 1363, the execution will 
switch to serial loop to avoid threading overhead. The 
runtime threadization control is a simple yet efficient way 
for parallelizing loops with unknown bounds at compile 
time. We obtained good speedup by emitting multi-
versioned serial and threaded code at compile time, and 
using runtime tests to select the most beneficial version to 
execute in some applications. 

REVAMPING THE VECTORIZER  
The new vectorizer is designed to be tightly integrated 
with our existing enhanced high-level loop transformation 

framework. The strengths of the new vectorizer include 
the following:  

A new Abstract Vector Representation (AVR) is 
designed to bridge the semantic gap between high-
level representation and low-level instruction.  

Better interaction with the new FP-model and other 
loop optimizations produces better performance.  

The new vectorizer is moved downstream to use SSA 
and leverage global constant propagation and 
Common Sub-expression Elimination (CSE). 

Table-driven type selection and code generation with 
a well-tuned cost model simplify maintenance and 
future extensibility. 

Essentially, the vectorizer converts sequential code into a 
vector form that exploits all Streaming SIMD Extensions. 
Consider, for example, the following sequential loop in C: 

When compiled for a target architecture that supports 
SSE2, the compiler generates a vectorized loop with the 
following assembly code: 

Here, the compiler first recognizes a vector loop with 
idiomatic saturation arithmetic and proper alignment of all 
access patterns and subsequently converts the code into 
appropriate SIMD instructions with vector length 16. Due 
to the removal of a conditional branch relative to a 
sequential implementation of the loop, in this particular 
case, vectorization typically exhibits a speedup that 
exceeds the vector length. 

Vectorization for Streaming SIMD Extensions strongly 
resembles vectorization for traditional vector architectures 
[1, 11], like a pipelined vector processor. There are a few 
important differences as well [2], briefly described below: 

A relatively short and fixed vector length requires a 
sequential �cleanup� loop to deal with the remaining 
iterations, but it also makes the vector instructions 
more suitable for fine-grained parallelism, as was first 
advocated in [2]. The shorter vector length can also 
be exploited during data dependence analysis. 
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A strong sensitivity to natural alignment (typically 16-
byte) requires elaborate compiler support to select, 
detect, or enforce a proper alignment on memory 
references. 

An idiomatic instruction set requires advanced idiom 
recognition in the compiler, such as detecting the 
saturation addition in the example above. 

Since vector lengths increase for narrower data types, 
compiler analysis is required to choose the narrowest 
possible data type that preserves the original meaning, 
such as recognizing that all 32-bit operations on variable 

 can be done in 8-bit precision. An in-depth description 
of vectorization technology in the Intel C++/Fortran 
compiler is given in Reference [2]. For the remainder of 
this section we focus on a few specifics for the Intel Core 
2 Duo and Quad processors. 

Alignment Optimization 
In the Intel Core micro-architecture, SIMD performance is 
still rather sensitive to natural alignment. Therefore, an 
important aspect of effective vectorization in the compiler 
is to select, detect, and enforce a favorable alignment on 
memory references. For instance, the vector loop in the 
previous section may only use the efficient  to 
load 16 bytes of data after the compiler has proven that 
both the initial alignment (alignment on entry of the loop) 
and the sustained alignment (alignment preserved during 
execution of a loop)1 of the memory reference a[i] is 16-
byte aligned. The less efficient  should have been 
used if the memory reference had an unknown alignment 
or was misaligned, because using aligned data movement 
instructions on unaligned memory locations yields a 
program fault. The Intel compiler uses a continuously 
growing assortment of alignment optimizations, including 
data layout optimization, inter- and intra-procedural 
alignment propagation, and loop transformations such as 
static and dynamic loop peeling and multi-versioning [1].  

Alignment propagation resembles classical constant 
propagation, but uses a more elaborate lattice of alignment 
values <2n, o>, where o denotes a non-negative offset 
relative to a base 2n and corresponding jump functions. 
Using a lattice of bases combined with offsets, a method 
described in [2], propagates more accurate information 
than just bases and ultimately offers more opportunities 
for optimizations, such as peeling off unfavorable 
alignments or using specific instruction sequences for a 
data movement that splits a cache line. The information is 
associated with all variables, not just pointers, and has 

1 A vector loop using SSE always sustains an initial 16-byte alignment 
for unit stride memory references. For a scalar loop, the sustained 
alignment depends on the data width of these memory references. 

been proven empirically to improve the accuracy of the 
computed results. A variety of alignment-related 
optimizations can be found in [1, 3, 6, 8]. 

Vectorizer Support for SSSE3 
The SIMD Extensions 3 [4] extend previous generations 
of SIMD extensions with sixteen new instructions that can 
operate on 128-bit operands or old-style 64-bit operands 
of the MMX� technology. New instructions most 
commonly used by automatic vectorization are listed in 
Table 1. 

Table 1: SSSE3 instructions used for auto-vectorization 

Instruction Suffix Description 
Packed align right 

Packed negation based on sign 

Packed absolute value 

Packed horizontal add 

Packed shuffle 

The  instruction is used to optimize multiple 
unaligned loads with a statically known offset into aligned 
loads that are subsequently rearranged into the appropriate 
vector format. The idiomatic  instruction is 
recognized in programming constructs that negate data 
elements based on the sign of other data elements. The 
packed absolute value instruction  provides a more 
compact and efficient way of vectorizing this operation 
than previously-used emulation sequences. Consider, as an 
example, the following loop that computes the absolute 
value of all elements in an array of type . 

The generated assembly code for plain SSE2 as well as 
SSSE3 is illustrated below. In this case, SSE2 shows a 
~20x speedup, while SSSE3 shows a ~30x speedup.  

Similarly, the  instruction provides a more 
compact way of summing up partial results after 
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vectorization sum reductions [1, 2]. However, the current 
micro-architectural implementation does not provide any 
latency reduction over the more elaborate instruction 
sequences used formerly. Finally, the  instruction 
provides an efficient way to perform a wide variety of data 
rearranging, as illustrated with the following loop that 
operates on two arrays of type . 

This conversion between a little-endian and big-endian 
representation of 32-bit data elements (4 bytes) can be 
vectorized effectively as follows. 

Here, register  is pre-loaded with the appropriate 
4x4 reshuffling pattern. In fact, any reshuffling of 4 
consecutive bytes, even allowing for repeats, can be 
similarly implemented. The instruction is also used in a 
peep-hole-like optimization of various data rearranging 
sequences generated by the vectorizer. 

ENHANCED LOOP OPTIMIZATIONS 
Besides revamping the threadizer and vectorizer, in the 
Intel 10.1 compilers, a single unified framework is 
designed primarily to provide better interaction among 
loop optimizations, threadizer, and vectorizer. The loop 
optimizations target cache and memory optimizations that 
are well known in the literature such as linear loop 
transformations, distribution, fusion, blocking, unroll-jam, 
loop-multi-versioning, and scalar replacement [7, 11, 12]. 
In order to derive the maximum possible performance for 
programs with effective threadization and vectorization, 
individual loop optimizations are enhanced and ordered in 
such a way as to achieve the best memory-locality while 
retaining the property that the innermost-loop can be 
efficiently vectorized. Similarly, optimizations are applied 
to a loop-nest to enable the threadization of the outer loop 
wherever possible, thus increasing the granularity of 
parallelism and reducing the overheads.  

Loop Distribution Enhancements 
Loop Distribution Pass-1 is invoked to generate more 
coarse-grained threadizable loops with statement re-
ordering and grouping while preserving the correctness 

and perfect nested loops that enable further loop 
optimizations such as interchange.  

Loop Distribution Pass-2 is invoked before vectorization. 
For each distributed loop, this groups together memory-
references that have required stride, data-type, and 
alignment. These properties ensure efficient vectorization 
of each such loop (where vectorization is legal) making 
good use of the available micro-architectural resources. 
Loop distribution heuristics also trade off maximally 
distributing for vectorization against improving cache 
reuse for vectorized loops. Intel Core micro-architecture 
features more write-combining buffers and larger data 
caches with higher associativity than previous generations. 
This enables better performance through vectorization 
without excessive loop distribution, thereby reducing 
vectorized loop overheads. 

Loop Multi-versioning  
The multi-versioning helps to deal with two potential 
roadblocks that prevent a loop from being vectorized or 
parallelized. The first roadblock is when the loop contains 
references with cross-iteration data dependencies. The 
second one is when the references� cross-iteration strides 
are unknown, e.g., dope vector based arrays in Fortran90. 
In either case, the multi-versioning module generates code 
that checks whether �required conditions� hold during 
runtime. It also generates different copies of the loop such 
that each copy is guarded under a different condition, and 
optimized according to the guarded condition. 

For example, if a loop has references a(i) and b(i), and 
data dependence cannot prove that a and b do not overlap, 
there are two possible ways that multi-versioning can help. 
If the compiler decides that vectorization is important, 
versioning will generate a test to ensure that a(0) and b(0) 
are at least 16 bytes apart. If this condition is tested true at 
runtime, a version of the loop that has been vectorized will 
be run. Otherwise, a non-vectorized version of the loop 
will be run; the latter version may still be optimized in 
other ways (e.g., unroll). Both loop versions and the 
runtime test have been pre-generated into the executable 
by the compiler. The multi-versioning module generates 
the different loop versions, and it annotates their 
properties with internal directives that are then used by the 
vectorizer. 

On the other hand, if threadization is more important, 
versioning will generate a test to ensure that the arrays do 
not overlap (using the initial addresses of a and b, and the 
number of loop iterations). The loop version guarded by 
this independence test can then be safely parallelized. 

Similarly, if a loop has references to dope vector-based 
arrays (e.g., assumed shape arrays), versioning can 
generate checks to examine the stride value of the arrays 
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from the dope vectors during runtime. If the strides are all 
one, the loop may then be efficiently vectorized (assuming 
other vectorization conditions pass.)   

The versioning uses a heuristic to decide on the number of 
the tests and number of versions of the loops, to reduce 
the impact on executable size. 

Loop Blocking and Unrolling 
The loop blocking and loop unrolling phases have been 
improved for the Intel Core micro-architectures. Based on 
our experience with application code, the enabling 
decisions and the optimization parameters have been 
modified to make the best use of the new cache 
architecture. The phase ordering of the blocking phase has 
also been modified with respect to the vectorization phase 
to extract the maximum benefit possible from these 
optimizations. 

Vectorizer modifies simple inner loops to create vector 
loops. This leads to complex loop structure that is not 
amenable to blocking�there are several cases where 
vectorization degrades performance when compared to 
just loop blocking. Another loop-blocking phase has been 
added before vectorization, so that blocking can make 
better use of the cache, and later vectorization on the 
innermost blocked loop can further improve parallelism 
across loop iterations. 

The loop blocking phase has also been enhanced in our 
new unified framework to get the best out of the Intel 
Core micro-architecture. Blocks or Tiles are used to hold 
data in the cache and are the stride factors for the outer 
block-controlling loops. Block or Tile-size selection 
algorithms are also improved. Our primary focus now is to 
improve cache locality at the L2 cache level. We try to 
enable more register re-use by performing unroll-jam 
(a.k.a register-blocking) of outer loops inside the inner 
blocked loops. 

The mechanism that controls the enabling or disabling of 
the loop unrolling has been improved. Unrolling can lead 
to register pressure resulting in poor code performance 
due to register spills and fills. Besides the obvious cases, 
it is hard to predict at compile-time whether loop unrolling 
would help or degrade performance. Our implementation 
makes this decision based on various program and 
architectural parameters. Determination of loop unrolling 
factors also needs to be aware of register pressure in the 
inner loop. Our experience shows that small unroll factors 
are effective in most cases. 

Loop Fusion and Interchange 
Loop fusion combines adjacent conforming nested loops 
into a single nested loop. This optimization can improve 
the cache context and increase the amount of computation, 

thus increasing the granularity of threadization reduced 
overheads. Loop interchange is done in such a way as to 
improve threadization at the outer level, and at the same 
time, keep the memory accesses in the innermost-loop 
unit-strided to enable efficient vectorization. 

ADVANCED CODE GENERATION 
The Intel compiler uses its intimate knowledge of the Intel 
micro-architecture to guide instruction selection tradeoffs. 
The compiler takes advantage of efficient instructions and 
instruction forms while avoiding inefficient instruction 
sequences. In addition, a restricted instruction scheduling 
form is used to enhance performance. 

Instruction Selection 
The bit test instruction  was introduced in the i386� 
processor. In some implementations, including the Intel 
NetBurst® micro-architecture, the instruction has a high 
latency. The Intel Core micro-architecture executes  in 
a single cycle, when the bit base operand is a register. 
Therefore, the Intel C++/Fortran compiler uses the 
instruction to implement a common bit test idiom when 
optimizing for the Intel Core micro-architecture. The 
optimized code runs about 20% faster than the generic 
version on an Intel Core 2 Duo processor. Both of these 
versions are shown below: 

C source code 

Generic code generation  

Intel Core micro-architecture code generation   

Variable-length instructions pose a challenge to the 
processor�s instruction decoder, which must identify 
where one instruction ends and the next begins. Some 
instruction prefixes change the length of their instructions 
and cause a significant decoder stall in the Intel Core 
micro-architecture. Integer instructions that take 
immediate arguments and use the operand size override 
prefix  suffer from this penalty, because the size of 
the immediate operand is changed by the prefix. The 
compiler avoids these instructions, as shown below: 

C source code 
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Generic code generation 

Intel Core micro-architecture code generation 

The vector unpack low instructions are convenient for 
gather and broadcast operations, which occur frequently in 
vector code. With the exception of the 64-bit to 128-bit 
instructions  and , unpack 
instructions are costly in the Intel Core micro-architecture 
compared to alternative code sequences. The Intel 
Fortran/C++ compiler favors alternative code sequences 
when optimizing for the Intel Core micro-architecture. 
Two examples are given below:  

Example I: Broadcast the least-significant single-
precision floating-point vector element. 

  Generic code generation     

  Intel Core micro-architecture implementation   

Example II: Gather four single-precision floating-point 
elements from locations 128 bytes apart. 

  Generic code generation  

  Intel Core microarchitecture implementation   

The conditional move instruction  presents an 
interesting dilemma for the compiler. It can achieve 
dramatic performance improvements when replacing a 
poorly predicted branch. On the other hand, replacing a 
branch with  may lengthen the critical path and 
cause a slowdown in cases where the branch is well 
predicted. Branch predictability is difficult to determine at 
compile time, so the decision of whether to use a branch 

or conditional move is made by rough heuristics that can 
often yield poor results. The Intel Core micro-architecture 
simplifies this tradeoff by providing a low-latency

 implementation compared to previous 
generations. When optimizing for the Intel Core micro-
architecture, the Intel compiler more aggressively 
eliminates branches in favor of . This strategy 
yields a substantial speedup for some applications. 

Instruction Scheduling 
In a dynamically scheduled environment like the Intel 
Core micro-architecture, the effectiveness of instruction 
scheduling at compile time is greatly reduced. Using its 
knowledge of machine internals, however, the Intel 
C++/Fortran compiler is able to schedule instructions to 
avoid micro-architectural pitfalls and to take advantage of 
micro-architectural features. 

As described earlier, the Intel Core micro-architecture 
features a data prefetcher to speculatively load data into 
the caches. The L2 to L1 cache prefetcher uses a 256-
entry table to map loads to load address predictors. This 
table is indexed by the lower eight bits of the instruction 
pointer (IP) address of the load. Since there is only one 
table entry per index, two loads offset by a multiple of 256 
bytes cannot both reside in the table. If a conflict occurs in 
a loop and involves a predictable load, the effectiveness of 
the data prefetcher can be drastically reduced. In a critical 
loop, this can cause a significant reduction in overall 
application performance. 

The compiler attempts to avoid IP prefetch conflicts in 
inner loops. It first identifies and classifies load 
instructions, distinguishing between loads that are likely to 
benefit from prefetching and those that are not. For 
example, loads from constant addresses will not benefit 
from prefetching. An IP prefetch conflict between two 
such loads is unlikely to affect performance. After 
identifying and classifying loads, the compiler inserts 
padding such that each prefetchable load has a modulo-
256 address that is different from every other load in the 
inner loop.   

The Intel Core micro-architecture can combine an integer 
compare ( ) or test ( ) instruction and a 
subsequent conditional jump instruction (  into a 
single micro-operation through a process called macro-
fusion. For macro-fusion to occur between  and , 
the jump condition must test only the carry and/or zero 
flags, which is typically the case for unsigned integer 
compare and jump operations. The Intel Fortran/C++ 
compiler takes advantages of the macro-fusion feature by 
generating code that is likely to expose macro-fusion 
opportunities by detecting compare and jump instructions 
that are candidates for fusion. During scheduling, it forces 
these compare and jump instructions to be adjacent. Note 
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that this strategy conflicts with a traditional latency-based 
strategy, which tends to separate producers (the compare 
in this case) from consumers (the conditional jump). 

PERFORMANCE RESULTS 
In this section we provide performance validation of the 
new threadizer and vectorizer using the industry-
standardized computationally intensive benchmark suite 
SPEC* CPU2006 in which the CINT2006 suite comprises 
12 integer C and C++ benchmarks, and the CFP2006 suite 
comprises 17 floating-point Fortran, C and C++ 
benchmarks, all derived from real-life applications that 
have up to 932818 lines of code. The SPEC CPU2006 
benchmarks are widely used and considered to be 
representative of a wide spectrum of application domains. 
The multi-core system used to measure performance is 
configured with two 2.67 GHz Intel Core 2 Quad 
processors with a 4M L2 cache, an 8 GB RAM, and 
booted with an SuSE Linux OS.  

Figure 3: SPEC CPU2006 speedup estimates with 
auto-threadizer based on internal measurements 

To evaluate the effectiveness of the new threadizer, we 
first measured the baseline performance with the option  
�  (i.e., 

). Then, we added the  switch to 
measure the speedup over the fully optimized baseline 
performance. The contributions from threadization are 
shown in Figure 3, which shows the speedup of 
benchmarks in the SPEC CFP2006 suite delivered by the 
auto-threadizer. The 15.45% geomean gain of all 
speedups is shown in the last column. Even though default 
base optimizations already obtain acceptable performance, 
auto-threadization of the Intel C++/Fortran compiler 
further boosts the performance of a number of benchmarks 
substantially, going up to a 2.52x speedup for a 
436.cactusADM. No benchmark suffered a noticeable 
slowdown due to the auto-threadizer.  

Auto-converting a sequential program into threaded code 
becomes an increasingly important technique to leverage 
multi-core platforms in a transparent manner. Besides the 
gain delivered for SPEC CFP2006 performance, the auto-
threadizer delivered a 12.17% gain (geomean) for SPEC 
CINT2006 on top of fully optimized serial code by using 

and  options 
that contributed to a 4.63x performance speedup for the 
462.libquantum.  

Figure 4: SPEC CPU2006 speedup estimates with 
auto-vectorizer based on internal measurements 

Vectorization also forms a significant part of performance 
improvements. To evaluate the effectiveness of the new 
vectorizer, we first measured the baseline performance 
using �  but with the vectorizer off (fast_xT_novec). 
Then, we measured the performance with the vectorizer 
enabled (fast_xT) to get the speedup over fast_xT_novec. 
The contributions made by vectorization are shown in 
Figure 4, which shows the speedup of benchmarks in the 
SPEC CFP2006 suite delivered by the auto-vectorizer. 
The 5.11% geomean gain is shown in the last column. 
Even though baseline optimizations already provide high 
performance, the auto-vectorizer of the Intel C++/Fortran 
compiler further boosts the performance of a number of 
benchmarks substantially, going up to a 1.29x speedup for 
436.cactusADM. Albeit generally biased towards floating-
point applications, the advanced code generation makes a 
noticeable contribution to integer applications: a 33.6% 
gain. In other cases, experience shows that it makes 
performance less sensitive to minor changes in the 
generated code. 

CONCLUSION 
The Intel 10.1 C++/Fortran compiler features various 
advanced compiler optimizations to leverage the enhanced 
capabilities of Intel Core 2 Duo and Quad processors. 
Threadization exploits thread-level parallelism in serial 
programs; vectorization exploits SIMD-based vector-level 
parallelism; and advanced code generation exploits 



Intel Technology Journal, Volume 11, Issue 4, 2007 

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 273 

important micro-architectural features for gaining a higher 
performance. This paper presented the implementation of 
the new threadizer and vectorizer and an overview of 
advanced code generation that specifically leverages the 
Intel Core micro-architecture.  

Performance validation was conducted with a large set of 
real-life industry-standard benchmarks. It was shown that 
advanced optimizations of the Intel C++/Fortran compiler 
can obtain further improvements over optimized code, 
with contributions from threadization, vectorization, loop 
optimizations, and target-specific code generation. 
Furthermore, these optimizations were added in a manner 
that still allows for our overall goal of continuing to 
generate code that runs well across all processors. 

More information on Intel high-performance compilers for 
Intel Architectures can be found at the Intel website 
http://intel.com/software/products/. 
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ABSTRACT 
While multi-core processors are all around us, their 
effective use is made much easier with performance 
analysis tools that enable the developer to identify parallel 
execution opportunities and parallel execution 
bottlenecks. In this paper we introduce the new profiling 
capabilities available in the Intel® Performance Tuning 
Utility. These include statistical call tree analysis based on 
stack sampling, profile-guided loop detection, and event-
based sampling data access profiling. The coordinated use 
of these features allows the developer to achieve better 
multi-core application performance. 

INTRODUCTION  
Parallel processing has been in common use for decades, 
but it�s only recently that it became available on virtually 
every computer with the advent of multi-core processors. 
Historically, mass performance analysis tools [1, 2, 3, 4] 
have not generally had features designed to help identify 
parallel execution opportunities nor many of the common 
parallel execution bottlenecks. The Intel Performance 
Tuning Utility (Intel PTU), externally available at [5], has 
many of these features available in a single tool on Intel®

Architecture.  

Building on the experience of the Intel VTune� 
Performance Analyzer, Intel PTU was designed to 
significantly improve on the data collection and display 
features available and add capabilities needed for enabling 
and analysis of parallel execution. Initially supported 
instrumentation-based control flow analysis (Exact Call 
Graph) suffers from excessive overhead and the resulting 
data distortion. This was replaced with a statistical 

approach to data collection based on call stack sampling 
in Intel PTU. The new statistical call stack sampling is 
supplemented with a precise call count data collection that 
can be used when required. Binary analysis was added to 
improve the disassembly displays through the use of basic 
blocks as the underlying execution units and to generate a 
control flow graph for the disassembly to simplify its 
interpretation. The binary analysis also enables the 
identification of loops, which, coupled with the 
performance data, allow for the identification of parallel 
execution opportunities. The full use of the Precise Event 
Based Sampling (PEBS) mechanism, only available on 
Intel® processors, enables simultaneous profiling by both 
Instruction Pointer (IP) and by data address, and a 
graphical filtering interface facilitates the analysis and 
identification of performance bottlenecks due to data 
access and layout issues. 

All Intel PTU features are thread and CPU aware and can 
display data specific to either. Intel PTU works on a wide 
range of Windows* and Linux* operating system flavors 
and provides the same look-and-feel on all of them. It can 
be used from the command-line or from a GUI, which 
integrates into the Eclipse* IDE.  

In this paper, we first describe the new features of Intel 
PTU in detail, as well as the analysis models facilitated by 
those features. We then illustrate the process of parallel 
software analysis and parallel execution discovery using 
Intel PTU on real program examples. We continue with an 
outline of areas for further development such as the 
quality of analysis and data representation, and finally we 
look at modern hardware performance monitoring 
capabilities. 
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Reading this paper requires some experience in parallel 
program design, as well as a certain knowledge of parallel 
performance monitoring and analysis. The sections below 
should not be viewed as providing a final recipe of 
efficient parallel software development or as describing 
methods of automated parallelization. Our goal, rather, is 
to illustrate the information that may be of use when 
dealing with parallel software and how that information 
may be collected, presented, and best interpreted with 
Intel PTU in order to ease the task of exploiting 
parallelization opportunities and parallel performance 
tuning. 

NEW PERFORMANCE ANALYSIS 
MODELS 
Performance tuning is like debugging: you�d like to avoid 
it but you cannot. And similar to the debugging process, 
you cannot do anything effectively unless you have a 
reliable tool that can save you a lot of time and effort. The 
importance of good debuggers and performance analyzers 
becomes critical as we move into the all-parallel world of 
microprocessing. 

Intel PTU is meant to become such a time-saving tool. We 
do not pretend though that the tool can fully automate the 
tuning process. We simply believe that it is more 
important to put the burden of routine work on the tool, 
and let engineers think about their performance problems 
rather than about the tool itself. 

To accomplish this, we focus on the following: 

Provide an easy way to perform repetitive data 
collection and analysis tasks. 

Provide effective and reliable methods of data 
collection and analysis that are relevant to both 
sequential and parallel programs. 

The rest of this section describes in detail how the above 
goals are addressed by Intel PTU. We explicitly indicate 
product features that are especially valuable in the case of 
parallel analysis. 

Projects, Configurations, and Experiments 
To be effective in repetitive performance tuning tasks 
Intel PTU introduces the concepts of project and profile 
configurations. 

Project contains information about the application, 
working directory, input arguments, maximum data 
collection time, etc. � in other words, it specifies what
should be analyzed.  

Profile configurations are a means of organizing 
collection methods into convenient and reusable shortcuts 
that can be reused for any project. Configurations can be 

predefined or user-defined. The predefined configurations 
for Intel PTU are as follows: 

Basic Statistical Call Graph 

Basic Sampling 

Basic Call Count 

Basic Data Access Profiling 

A single profile configuration can be defined for multiple 
Intel processors, thereby generalizing its use. For 
example, the predefined Basic Sampling configuration is 
defined to collect two performance events corresponding 
to the �number of cycles� and �instructions retired� events 
mapped to different hardware events on different 
processors. 

Creating a project is the first thing a user does. Once it is 
created, the predefined configurations list can be invoked 
by a simple right-click on the project in the navigator, 
floating the mouse over the �Profile As� option and 
selecting one of the profiling options (Figure 1). 

Figure 1: Launching a predefined data collection 

Alternatively, right clicking on the project and selecting 
the �Profile...� option will invoke the configuration editor 
allowing users to select one of their own existing 
configurations or to create and invoke a new one. 

After a profile configuration is applied to a project, the 
data are collected into an experiment. The basic 
visualization of the experiment data in Intel PTU is a 
tabular spreadsheet. The rows correspond to the currently 
chosen aggregation unit: module, function, basic block, or 
single address. The columns display the metrics for that 
region. The granularity of the aggregation unit can be 
selected through pull down menus (Figure 2). 
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Figure 2: Intel® PTU tabular data view 

For parallel programs, Intel PTU includes the current 
thread identifier (TID) and the CPU identifier in the 
program state information so that for each collection point 
it is clear which thread was executing on which processor 
at that moment. It is possible to filter the data for a 
specific thread, process, or CPU by using pull-down filter 
menus. Specifically this is useful for analysis of thread- or 
CPU-balancing. 

Now, let�s discuss the predefined analysis methods Intel 
PTU suggests.  

Statistical Call Graph Analysis 
Statistical Call Graph (a.k.a. Stack Sampling) collects its 
data by interrupting the program execution periodically 
(100 times per second) and capturing the current 
instruction pointer (IP) and the call stack. Using the IP 
value, it calculates how many samples occurred in a given 
function. This number is called Self Samples, because it 
corresponds to the number of samples that occurred in the 
function itself, not in the functions called by this function 
(callees). Places where a significant portion of samples 
occur are called hotspots. 

The sample data can be aggregated by different units: 
function, module, basic block, or address. In the Intel 
PTU GUI the aggregation unit concept is exposed as 
�granularity.� The function granularity is still the most 
popular, so it was made the default one in Hotspot view. 
By default, functions (rows) are sorted by the number of 
Self Samples, so the most active functions are displayed at 
the top. 

A second metric for each function, Total Samples, can be 
defined as the number of samples in the function plus all 
the samples that have the function in the call stack. Thus 
Total Samples measures the time in the function and 
everything the function calls. 

To illustrate this we used a simple program: 

The time spent in each function is proportional to the 
iteration count of the loops. The loops in f1, f2, f3 and f4
are defined to split the total execution time of the 
application and thus the expected numbers of samples, in 
a known manner. 30% in f1, 20% in f2, 40% in f3, and 
10% in f4, while main and foo are negligible. 

Figure 3: Statistical Call Graph results 

The top hotspot display shows that the self samples are in 
the ratio of 4:3:2:1 (Figure 3). The call stack expanded 
from f2 shows f1 and main as its callers. The four 
hotspots are all highlighted and the total sample count for 
them is shown below as 4124 samples. An important thing 
to note is that 829 samples for main here does not mean 
that we had 829 samples in the main() itself. It is all about 
samples in f2: we had 829 samples in f2, and for all those 
samples we had f1 and main as callers.  

Note the pull down menus for process, thread, and module 
filtering of the data displayed in the hotspot view. This 
greatly simplifies use of the view. This technique is 
common to hotspot displays for all the collection modes. 

The four functions were highlighted, one by one, by 
clicking the left mouse button and holding down the 
CTRL key. As the last function selected was f1, it is 
displayed in the Caller/Callee view. The call chain is 
expanded in both directions around f1 with callers of f1
shown above it and its callees shown below it. The total 
number of samples for f1 is equal to its self samples plus 

int f3() { 
    loop 40; 
    foo(); 
} 

void foo() { 
    f4(); 
} 

void f4() { 
    loop 10; 
} 

int main() { 
    f1(); 
} 

int f1() { 
    loop 30; 
    f2(); 
    f3(); 
} 

void f2() { 
    loop 20; 
} 
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the total number of samples for the functions it calls, f2
and f3. So we get 3703 total samples for f1 as 1230 plus 
1644 plus 829. The total for f3 is equal to the total 
number of self samples for f3 and f4. As main is the caller 
of f1 it inherits the self and total times associated with f1. 

Functions foo and main are not visible in the hotspot view 
because no samples occurred within their code ranges. 
Statistical Call Graph doesn�t capture every call the 
program made. There is another collection technique 
called Exact Call Graph that instruments all functions in 
the program and can collect information about each call. 
However, this method has a much higher overhead. It is 
also very intrusive and distorts the execution of parallel 
programs making it impossible to map the results of this 
analysis to the behavior of the original program. Hence, it 
has a limited scope of applicability and is not always 
relevant for parallelization tasks. Exact Call Graph has the 
advantage of providing function call counts; to provide 
this useful information Intel PTU has a special Basic Call 
Count configuration. 

Profile-Guided Loop Analysis 
An important step in program parallelization is deciding 
which parts of the program should be parallelized. Since 
loops are often good candidates for parallelization, Intel 
PTU treats loops in a very special way. 

Loops are identified by analysis of the binary. This 
information is then used to generate entries in the hint 
column. The hints tell you if there is a hot loop in the 
function and if a hot function was called from a loop. Hot 
functions called from a loop can be considered for 
parallelization. 

Event-based Sampling 
Intel processors have a powerful performance monitoring 
unit (PMU) that can count and interrupt execution for 
sampling on a wide variety of performance critical signals 
(e.g., CPU cycles, instructions retired, last-level cache 
misses, etc.). Intel PTU has made it easier to use the 
hundreds of performance events by displaying the 
sampling data in a logical and convenient manner. The 
event based sampling hotspot view shows an ordered 
spreadsheet of all functions, in all modules and processes 
by default. The spreadsheet can be sorted by any of the 
collected events. The granularity can be set to module, 
function (default), basic block, or instruction. A histogram 
of samples vs. IP can be viewed for any event with a right 
click option.  

Figure 4: Source view in Intel® PTU 

Double clicking on a row will open a source view display 
that includes a source view spreadsheet and a disassembly 
spreadsheet organized into units of basic blocks and a 
control flow graph for the basic blocks (Figure 4). The 
disassembly spreadsheet can be sorted by the sample 
totals for the basic blocks to ease the identification of 
hotspots. The disassembly view can be collapsed to only 
show the basic block data summary rows for analysis of 
large complex functions. 

There is also the ability to compare two event-based 
sampling experiments. This is particularly useful for 
identifying the performance differences from two binaries 
that have been compiled differently. 

As there are hundreds of events, their use must be 
organized into a methodology. An introduction to the use 
of the Intel® Core�2 processor PMU is discussed in [6]. 
A detailed discussion of the cycle accounting 
methodology on that processor is offered in [7]. The same 
Web site [8] also contains a number of articles about the 
use of the Itanium® processor PMU. There are a variety of 
performance issues associated with parallel execution. 
Their identification with the Intel Core 2 processor PMU 
is discussed in [9]. 

Data Access Analysis 
Data access tends to dominate application performance, 
even in single-threaded execution. Parallel execution only 
exacerbates this, as the number of execution units 
available has increased faster than the memory access 
capability. The actions of the processor, in response to 
data access requests, can be monitored with performance 
events counting last-level cache misses, bus traffic, and 
the like. What has not been generally available is the 
ability to analyze the application memory access behavior 
in terms of the data address patterns.  
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To collect and present performance metrics for accessed 
data addresses Intel PTU uses advanced features of Intel 
processors. Intel Itanium processor CPU supports 
capturing the data access address and access latency 
directly. On Intel Core 2, Xeon® and Pentium® 4 
processors the tool uses precise performance events that 
allow the capture of the values of all the registers at a 
known value of IP. When coupled with the disassembly of 
the function, load and store operations can have their 
target addresses reconstructed. This feature is unique for 
mass-market CPUs, and for end users, the aspects of the 
collection mechanism are abstracted by a predefined data 
access configuration that is used the same way on any of 
the supported processors. It is also possible to define 
custom data access configurations using any combination 
of memory-related events. 

Some of the more obvious objectives of address profiling 
would be identifying the following: 

1. Cachelines that are only partially consumed, 
increasing memory bandwidth and wasting cache 
space for no benefit. 

2. Cachelines shared by multiple threads unnecessarily 
(false sharing). 

3. Variables (and cachelines) that are being thrashed 
during synchronization. 

4. Arrays of structures that are not organized by usage, 
resulting in 1 above. 

5. Cachelines and variable access resulting in 
disproportionate access latency. 

Today data access analysis provides good help in 
pinpointing items 2 and 5, while easy identification of the 
rest of the items is still dependent on future development 
of the technology.  

For data access analysis, Intel PTU provides two hotspot 
views in both IP and data address (Figure 5). The IP 
hotspot view is similar to the other hotspot views but has 
columns associated with data access metrics (average and 
total latency, reference count, page access count, etc.). 
The address hotspot view uses a granularity of 64 byte 
aligned address ranges for IA-32 and Intel® 64 
Architecture-based processors and 128 byte aligned 
ranges on Itanium processors. These correspond to 
cachelines even though we use virtual rather than physical 
addresses. Similarly �pages� are usually defined as 4KB 
aligned ranges and 8KB ranges per the architecture.  

The address hotspots can be expanded to show which 
offsets into the lines were accessed, and which threads and 
functions accessed the offset. This easily identifies lines 
that are falsely shared by multiple threads. As a result of 
the automatic analysis, the tool highlights such lines in 
pink (note those pink lines in the address hotspot view in 
Figure 5). However, for now the false-positives are 
possible, although we hope to minimize their number in 
the future.  

Figure 5: Data access analysis views 

The two hotspot views (IP and data address) are coupled 
and a selection in one can be used to filter the display of 
the other (with control buttons indicated in Figure 5). 
Thus the user can select a single function, identify which 
lines it accesses heavily, select a set of those lines, and 

then see which other functions also access those same 
lines. This filtering extends down to the source views. 

We went through the most important features of Intel 
PTU. We learned the important concepts provided by the 
tool (project, profile configuration, and experiment). We 
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found out which collection and analysis capabilities are 
supported and identified which of them are specifically 
applicable for parallelization tasks. Now it�s time to 
discuss how what we learned can be applied to solving 
real-world parallelization problems. 

TUNING FOR DATA-LEVEL 
PARALLELISM  
In this section we provide a real tuning example to 
highlight the capabilities of Intel PTU in real-world 
software analysis. We start with discovering parallel 
execution opportunities, and then we analyze the 
efficiency of parallelization by locating thread interaction 
and data layout issues. In the course of our analysis we 
consider the data-level parallelism wherein different data 
ranges are processed in parallel on a shared-memory 
multi-processor. 

SP Application and Environment 
For our example we took the SP code from the NAS 2.3 
Benchmark Suite (NPB2.3) [10]. We started by profiling 
the serial version of SP, then took the OpenMP C 
implementation, made by the OMNI compiler team [11, 
12], analyzed, and tuned it.  

SP is a simulated computational fluid dynamics 
application. The finite difference solution is based on an 
approximate factorization that decouples the x, y, and z 
dimensions [13]. The data set we use is class A, for which 
a problem size is equal to 64. The simulation is done in 
400 high-level iterations over time. The main loop 
contains the following calls: 

Where x_solve calls lhsx and ninvr; y_solve � lhsy 
and pinvr; z_solve � lhsz and tzetar. 

At each iteration, SP re-calculates a number of three- 
(64x64x64) and four-dimensional (5x64x64x64) arrays 
consisting of double precision floating-point numbers and 
consuming ~76 Mb of the memory space in total.  

Our environment was Red Hat Linux* 3.0 Update 8 
running on a 2.66 GHz Quad-Core Intel® Xeon® processor 
53001 series system. This system had eight cores 
configured in four paired CPUs, with two such pairs per 
package. Each CPU had a 4Mb L2 cache. The application 
was compiled using the Intel® Compiler 10.0 with options 
�-O3 �openmp  �g.�  

Identifying Synchronization Overhead Using 
Statistical Call Graph 
We started with the Basic Statistical Call Graph and Loop 
Analysis to understand the behavior of the serial version 
of SP. As can be seen in Figure 6, the tool identified a 
number of hotspot functions (most of the samples reside in 
compute_rhs). These hotspots have significant numbers of 
samples that fall in loops inside the hotspots (circled 
arrow icons). In addition every hotspot is called from 
within a loop (exclamation mark icons). 

Figure 6: SP serial version hotspots in Statistical Call 
Graph display  

Inspection of the source for the hotspot functions suggests 
that we cannot parallelize the program in question 

1 Intel processor numbers are not a measure of 
performance. Processor numbers differentiate features 
within each processor family, not across different 
processor families. See 
www.intel.com/products/processor_number for details. 

for (it=1; it<=niter; it++)  { 

    compute_rhs(); 

    txinrv(); 

    x_solve(); 

    y_solve(); 

    z_solve(): 

    add(); 

} 
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assigning a different thread to every time iteration (that is, 
trying to multi-thread the loop surrounding the hotspot 
calls), because every new time iteration depends on the 
arrays produced by the previous iterations. Instead, we can 
employ data decomposition and assign multiple threads to 
different iterations of the loops inside the hotspots. For 
such an approach, OpenMP [11] is the obvious choice. 

The timing of the parallel version of SP from the OMNI 
package [12] when running from two to eight threads is 
shown in Table 1. The two-threaded version�s execution 
time decreased from 130 seconds to 91 seconds. 

Table 1: SP OpenMP execution time and relative 
__kmpc_barrier contribution for different numbers of 

threads 

However, running the code with four threads or more 
shows no additional performance gain. This clearly 
indicates that there are some problems with SP OpenMP 
implementation.  

The Statistical Call Graph profile for the 4-thread 
execution (Figure 7) shows that one of the main hotspots, 
namely the __kmp_wait_sleep function, belongs to the 
libguide library. Another substantial hotspot that belongs 
to libguide is __kmp_x86_pause. These hotspots all have 
the __kmpc_barrier function on their stacks. 
__kmpc_barrier in turn is called from many SP functions. 
This can be seen either from the expanded stack of the 
__kmp_wait_sleep hotspot (Figure 7) or, in an 
aggregated form, in the caller-callee view (Figure 8). 
__kmpc_barrier is dominantly called from the lhsx, 
lhsy and lhsz functions as the total number of samples 
for these three functions clearly account for the majority 
of the time (Figure 8). 

Figure 7: Hotspots for SP OpenMP. Number of 
threads  = 4. The partial stack for the 
__kmp_wait_sleep hotspot is shown. 

Figure 8: Caller/callee view for SP OpenMP with 
__kmpc_barrier as a target function. This view is 

useful in evaluating an aggregated target contribution 
and the relative contributions of its callers. 

The data for the __kmpc_barrier itself and its callees 
contribution are summarized in Table 1. The tables show 
that the number of total samples for __kmpc_barrier
grows up to one quarter of the application�s total number 
of samples when running with more than four threads. By 
total samples we mean the self sample count plus the self 
counts of all the functions down the call chain (callees). 

The conclusion from the profiling session is that the initial 
SP OpenMP implementation doesn�t scale because of a 
significant synchronization overhead exposed as a 
substantial number of total samples associated with the 
__kmpc_barrier function.  

#of threads 1 2 4 8 

SP OpenMP execution 
time (sec) 130 91 92 94 

Total __kmpc_barrier (%) N/A 16 22 27 
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Note that Intel PTU significantly simplifies the 
identification of the total contribution of a function by 
automatically synchronizing views for the focus function. 
Thus, the Caller/Callee view displays aggregated total 
samples for a function selected in the Hotspot view.  

To find the cause of the synchronization overhead, we 
look at the lhs[*] functions code (Figure 9) and find where 
the OpenMP �omp for� pragmas are applied. Instead of 
being applied to the outer loops, they are applied to the 
inner loop, decomposing the leading dimensions of the 
multi-dimensional arrays and causing a considerable 
overhead at an implicit barrier. 

Figure 9: A code fragment from the lhsy function 
causing barrier overhead 

Figure 10: An optimized code fragment at the lhsy
function  

Similar problems were observed in other functions where 
the �omp for� pragmas were applied to the middle loop of 
three nested loops. We modified the initial SP OpenMP 
implementation by making changes to lhs* and *_solve
functions so that the �omp for� pragmas were properly 

applied to the outermost loop. Further, we merged some 
separate loops under one �omp for� pragma. We also had 
to privatize several variables as part of the changes to 
ensure the correctness of the program. 

The improved version of the same non-optimal code 
fragment (from Figure 9) is shown in Figure 10. We refer 
to this version of the SP code as �SP OpenMP Opt.�  

Data Layout Analysis Using Sampling and 
Data Access Profiling 
However, while the issue of the large barrier overhead was 
fixed by these modifications, the overall performance and 
scaling did not improve much beyond two threads (see 
Table 2).  

Table 2: Execution time for SP OpenMP initial version 
and optimized version (time is in seconds) 

Since the SP application uses ~76 Mb of data space and 
our system has only 16 Mb of shared L2 cache, the 
memory usage approach might be the reason for the poor 
improvement in scaling. To prove this we launched 
sampling, and we collected the 
MEM_LOAD_RETIERED.L2_LINE_MISS event for SP 
OpenMP Opt running with thread numbers 1 through 8. 
The results (summarized in Table 3) clearly indicate that 
the number of L2 cache line misses grows with the 
increasing number of threads. Although for the code to be 
scalable the number of cache misses should remain the 
same or even decrease. 

Profiling runs for four and eight threads reveal that 
compute_rhs and z_solve functions are the main 
hotspots, contributing ~28% and ~12% L2 cache line 
misses, respectively, in both runs. The other main hotspots 
are the x_solve and y_solve functions. 

Table 3: Count of the 
MEM_LOAD_RETIERED.L2_LINE_MISS event for 

the SP OpenMP Opt code 

The Data Profiling analysis for the four- and eight-thread 
runs confirms the same functions as the memory access 
bottlenecks. The Data Access Display shows that 
compute_rhs, z_solve, y_solve and x_solve functions 

# of 
threads 1 2 4 8 

Event 
count 3.5E+08 3.3E+08 4.1E+08 6.3E+08 

#of threads 1 2 4 8 

SP OpenMP initial 130 91 92 94 

SP OpenMP Opt 130 91 78 72 
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are also hotspots in terms of Last Level Cache (LLC) 
misses, Total Latency, and Cachelines accessed 
(Figure 11). 

Figure 11: Main hotspots for the SP OpenMP Opt 8 
threads run in the Data Access Display. The figure also 

illustrates how to filter the cachelines accessed by 
selected functions.  

The reason for the growing number of cache misses (refer 
to Table 3) for four- and eight-thread runs might be 
interfering data accesses. The data access profile allows us 
to investigate if there are access contention issues for the 
cachelines used in the hotspots compute_rhs, z_solve, 
y_solve, and x_solve, particularly those caused by the 
threads running on different cores but accessing the same 
cachelines. This will show if there are any contentious 
lines associated with high average latencies and accessed 
by several threads. 

To explore contention issues we ran the SP OpenMP Opt 
version with eight threads, bounding each thread to a 
distinct core using the KMP_AFFINITY environment 
variable supported by the Intel Compiler OpenMP run-
time library. The execution time and hotspots do not 
change with respect to the non-bound run.  

In data access view we select the hotspot functions and 
use the �Filter by Selection in Code Hotspots� button 
(circled in Figure 11), to display only the cachelines 
accessed by these functions.  

A number of filtered cachelines are marked in pink as 
likely suffering from false-sharing. But false-sharing (as 
well as true-sharing) is a particular case of thread access 
contention. Consequently, we sort cachelines by average 
latency and select the high latency lines. We then filter 
back either on a specific cacheline or a few of them to 
identify the functions that are associated with the 

contention. This is done by using the �Filter by Selection 
in Data Hotspots� button (triangled in Figure 11).  

We found a number of cases (one example is in Figure 12) 
where the same cachelines were accessed from different 
threads by the functions compute_rhs & x_solve, 
x_solve & y_solve, y_solve & z_solve. Specifically, 
Figure 12 demonstrates that the same highlighted 
cacheline was accessed by the different threads in the 
x_solve and y_solve functions. The second access (by 
y_solve, as it called after x_solve in the code) is 
associated with the high latency (250 cycles) equal to an 
L2 miss penalty.  

Figure 12: The IP hotspot view filtered by the selected 
cacheline  

We drill down from the filtered hotspot view to the source 
view (now only displaying the filtered accesses) of the 
functions, e.g., x_solve and y_solve ones, to identify the 
source lines that generated the access contention.  

The source code identified by the access counts on these 
lines in turn identifies a number of cache contention 
patterns. Figure 13 displays the typical one we discovered.  

In this case the x_solve function writes to the elements of 
the arrays rhs and lhs, and the y_solve function reads 
from them. The �omp for� pragma is placed in such a way 
that the data decomposition of these arrays is different in 
these two function fragments. In x_solve the 
decomposition, over the third index of rhs, causes 
thread_1 to write into rhs[*][*][T1_range][*], thread_2 
writes into rhs[*][*][T2_range][*] and so on. While in 
y_solve, the decomposition is over the second index, so
thread_1 here reads from rhs[*][T1_range][*][*]. 

This results in multiple cores having to shuffle the 
cachelines between themselves as they execute x_solve 
and then y_solve. This in turn results in a large number
of load-driven cache misses and the resulting execution 
stalls.  

We didn�t go further with optimizing the SP code since 
our purpose was just to demonstrate how an application 
using data parallelism is analyzed and tuned with Intel 
PTU.  
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Possible ways for further optimization could be code 
transformations to make the �omp for� pragmas apply to 
the outermost loops, iterating over the same dimension 
indices. This would decrease the shuffling of the 
cachelines between cores and thereby improve the 
performance. 

It would be also useful to consider decreasing some array 
sizes (to apply data blocking optimization), as described 
in [13]. This would bring an even bigger performance gain 
due to a more efficient cache usage.  

Figure 13: Code fragments causing cacheline 
contention 

In this section we have shown that Statistical Call Graph 
analysis may be very helpful in the initial stages of parallel 
code tuning. Proceeding with the analysis requires some 
knowledge of the processor architecture to identify the 
hardware events to collect and to interpret the collected 
data. Advanced scalability estimations can hardly be 
performed without the help of data access profiling whose 
automatic analysis and flexible filtering interface enable 
pinpointing of such problems as cache contention 
(particularly false-sharing) and high latency loads at the 
source code level. 

CHALLENGES AND FUTURE 
DIRECTIONS  
Extensibility was among the primary design concepts of 
the Intel PTU architecture, which may enable us to 
integrate more advanced profiling techniques in the future, 
many of which we can already define and describe. 

The first step that we would like to take in the near future 
is to extend the Statistical Call Graph (which is now time-
based in Intel PTU) to also use rich event-based sampling 
capabilities. The major advantages of this are expected to 
be as follows: 

Increased sampling granularity (as the sampling 
interval will no longer be limited by the operating 
system timer resolution and task scheduler 
properties). 

Higher correlation of the sampled execution paths 
with the architectural characteristics of a computer 
system. 

In data profiling, a unique problem is dealing with arrays 
of large structures. Being able to display the access pattern 
in terms of the structure size granularity allows the user to 
split the structures by usage, reducing bandwidth and 
increasing cache utilization efficiency. 

Another important improvement and a major challenge 
with regard to data access analysis is the need to operate 
on the categories that are understandable by a 
programmer. This means we need to switch from raw 
addresses (which may mean anything) to the actual 
variable names, allocation blocks, and so on. 

A very promising technology that we are also going to 
implement is the ability to handle the lowest-level 
operating system task context switches. This should 
enable the retrieval of information about thread 
synchronization patterns, excessive synchronization, 
overall processor utilization by multiple threads, thread 
migration between processors, thread switch overhead, 
and other characteristics that are vital for a detailed 
analysis of heavily threaded, multi-component 
applications. 

The above described data collection challenges and 
improvements necessitate changes in the visualization as 
well. Thus, we would like to introduce a timeline view, the 
natural representation of thread activity over time. The 
timeline will reflect the state of threads, their location with 
respect to processors and cores, and the actual 
performance characteristics for each thread activity point 
in time. The overtime representation is supposed to 
facilitate intuitive understanding of the logic of a parallel 
program and thread state transition patterns; and it may 
help to determine distinct phases within the program�s 
operation flow. Most importantly, the timeline is designed 
to be fully integrated into the rest of the existing views to 
simplify navigation, incorporate new cross-filtering 
modes, and make it possible to quickly obtain aggregated 
characteristics for each thread execution point, state, or 
phase. 
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CONCLUSION  
The performance analysis features available in the Intel 
Performance Tuning Utility assist at virtually every stage 
of both parallel and sequential software performance 
tuning and may be extremely helpful at the preliminary 
stages of determining parallelization strategies. 

We discussed data-level decomposition strategy in real 
program examples and illustrated how the efficiency of a 
parallel implementation can be estimated, and which steps 
should be performed to optimize a parallel program using 
the Intel Performance Tuning Utility. 

Being easy to use and powerful at the same time, Intel 
PTU is growing its customer base inside Intel for solving 
today�s problems and serving as a vehicle for exploring 
new features for future commercial tools.   

We plan on improving Intel PTU with newer performance 
data-collection techniques and analysis models to keep 
pace with user needs and modern processor architecture 
developments. Intel PTU is available for an external 
download from Whatif.intel.com Web site [5]. 

REFERENCES 
[1] Intel VTune� Performance Analyzer, at 

http://www3.intel.com/cd/software/products/asmo-
na/eng/vtune/239144.htm 

[2] Sun Studio Performance Analyzer, at 
http://developers.sun.com/sunstudio/ 

[3] Optimizing with Shark, at 
http://developer.apple.com/tools/shark_optimize.ht
ml  

[4] Gprof, at 
http://www.gnu.org/software/binutils/binutils.html 

[5] Intel® What If site, at http://Whatif.intel.com 

[6] D. Levinthal, �Introduction to Performance 
Analysis on Intel Core 2 Duo Processors,� at 
http://www.devx.com/go-parallel/Link/33305 

[7] D. Levinthal, �Execution-based Cycle Accounting 
on Intel Core 2 Processors,� at 
http://www.devx.com/go-parallel/Link/33315 

[8] �Go Parallel Web Site,� at 
http://www.devx.com/go-parallel/Door/32532 

[9] D. Levinthal, �Analyzing and Resolving Multi-
Core Non Scaling on Intel Core 2 Processors,� at 
http://www.devx.com/go-parallel/Link/34762 

[10] �NAS Parallel Benchmarks,� at 
http://www.nas.nasa.gov/Resources/Software/npb.html

[11] �Open MP standard,� at http://www.openmp.org 

[12] �OpenMP C versions of NPB2.3,� at 
http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html

[13] H. Jin, M. Frumkin, J. Yan, �The OpenMP 
Implementation of NAS Parallel Benchmarks and 
Its Performance,� at 
http://www.nas.nasa.gov/News/Techreports/1999/P
DF/nas-99-011.pdf 

AUTHORS� BIOGRAPHIES 
Alexei Alexandrov is a Senior Software Engineer in the 
Software and Solutions Group at Intel. His interests 
include building and designing modern performance 
analysis tools, large software development, CPU micro-
architecture, and performance analysis. Alexei has a Ph.D. 
degree from the Saratov State Technical University. His 
e-mail is alexei.alexandrov at intel.com.  

Stanislav Bratanov is a Research Engineer in the 
Software and Solutions Group at Intel. His research 
interests include multi-processor software platforms, 
operating system environments, software performance 
monitoring and analysis systems, and platform-dependent 
media data coding. He graduated from Nizhniy Novgorod 
State University, Russia. His e-mail is stanislav.bratanov 
at intel.com. 

Julia Fedorova is a Senior Software Engineer in the 
Software and Solutions Group at Intel. Her research 
interests are performance analysis tools, tuning and 
optimization, and data access analysis. Prior to Intel she 
worked in the Russian Nuclear Center. Julia has an M. Sc. 
degree in Computational Physics from the Moscow 
Engineering-Physical Institute. Her e-mail is 
julia.fedorova at intel.com.  

David Levinthal is a Senior Software Engineer in the 
Software and Solutions Group at Intel. His research 
interests include hardware performance events, computer 
architecture, and software optimization. He holds a 
Physics degrees from the University of California at 
Berkeley and Columbia University. He was a Professor of 
Physics at Florida State University. He has been awarded 
the DOE OJI award, the NSF PYI award, and a Sloan 
Foundation Fellowship. His e-mail is david.a.levinthal at 
intel.com.  

Igor Lopatin is a Software Engineer in the Software and 
Solutions Group at Intel. His research interests include 
software for multi-core architectures and tools based on 
dynamic binary instrumentation techniques. He graduated 
from Nizhny Novgorod State University, Russia. His 
e-mail is igor.loopatin at intel.com. 

Dmitry Ryabtsev is a Senior Software Engineer in the 
Software and Solutions Group at Intel. He has worked on 
the VTune Performance Analyzer and currently is 



Intel Technology Journal, Volume 11, Issue 3, 2007 

Parallelization Made Easier with Intel® Performance-Tuning Utility 286 

focusing on DAP for Intel PTU. He received his B.S. and 
M.S. degrees from the Nizhny Novgorod State University, 
Russia. His e-mail is dimitry.ryabtsev at intel.com.  

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino 
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel 
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, 
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. 
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel 
NetMerge, Intel NetStructure, Intel SingleDriver, Intel 
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel 
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, 
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, 
skoool, Sound Mark, The Journey Inside, VTune, Xeon, 
and Xeon Inside are trademarks or registered trademarks 
of Intel Corporation or its subsidiaries in the United States 
and other countries. 

Intel�s trademarks may be used publicly with permission 
only from Intel. Fair use of Intel�s trademarks in 
advertising and promotion of Intel products requires 
proper acknowledgement. 

*Other names and brands may be claimed as the property 
of others. 

Microsoft, Windows, and the Windows logo are 
trademarks, or registered trademarks of Microsoft 
Corporation in the United States and/or other countries. 

Bluetooth is a trademark owned by its proprietor and used 
by Intel Corporation under license. 

Intel Corporation uses the Palm OS® Ready mark under 
license from Palm, Inc. 

Copyright © 2007 Intel Corporation. All rights reserved. 

This publication was downloaded from 
http://www.intel.com. 

Additional legal notices at: 
http://www.intel.com/sites/corporate/tradmarx.htm. 





�























Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 299 

Intel® Performance Libraries: Multi-Core-Ready Software 
for Numeric-Intensive Computation 

Ilya Burylov, Performance Library Lab, Intel Corporation 
Michael Chuvelev, Performance Library Lab, Intel Corporation 

Bruce Greer, Performance Library Lab, Intel Corporation 
Greg Henry, Performance Library Lab, Intel Corporation 

Sergey Kuznetsov, Performance Library Lab, Intel Corporation 
Boris Sabanin, Performance Library Lab, Intel Corporation 

Index words: mathematics, library, parallel software, multi-core, vector math, BLAS, LAPACK 

ABSTRACT 
In this paper we present the Intel® Math Kernel Library 
(MKL) as a mathematical software package for scientific 
and technical computation designed for ease of use in 
environments that can vary greatly. Ease of use includes 
the build environment (use with different compilers), 
optimal performance on multiple platforms (automated 
selection of code based on the end-user system), optimal 
performance (optimization of an algorithm), interfaces to 
other libraries (FFTW), and effective use of multi-core 
processors through parallelization. We also discuss how 
this concept of ease of use will be expanded to provide 
more flexibility in the use of the library without greatly 
expanding its size. 

Much of the paper is devoted to the optimization and 
parallelization of the library, critical in this era of multi-
core processors. We discuss some of the methods used to 
improve performance that largely focus on cache 
utilization and minimization of table look-aside buffer 
(TLB) misses. Specifically, we look at the parallel 
performance of Basic Linear Algebra Subroutines [3] 
(BLAS), LAPACK [1], the Vector Math Library (VML), 
and a sparse linear solver (PARDISO). We include a brief 
section on a second application library, Integrated 
Performance Primitives (IPP), which complements the 
MKL in media applications. 

INTRODUCTION 
The Intel® Math Kernel Library (MKL) is a math library 
for use in scientific and engineering applications 
supporting a number of different mathematical areas: 

Linear algebra. Basic Linear Algebra Subroutines 
(BLAS), LAPACK, ScaLAPACK, sparse BLAS, iterative 

sparse solvers, preconditioners, direct sparse solver 
(PARDISO) 

Signal processing. FFTs, cluster FFTs 

Vector math. Vector Math Library 

Statistics. Vector Statistics Library with random number 
generators 

PDEs. Poisson, Helmholtz solvers, trigonometric 
transforms 

Optimization. Trust region solvers 

Other. Interval linear solvers, multi-precision integer 
arithmetic 

Among the key guidelines for the development of the 
library are using optimized math software for 
computationally demanding algorithms; threading and 
parallelizing these algorithms to make full use of multi-
processor, multi-core [2], and multi-computer systems, 
making the library easy to use, and maintaining a high 
quality. Our focus in this paper is mostly on performance 
but we also introduce the paper with a discussion on ease 
of use.  

A number of the features of the library do not relate to 
math functionality but contribute to ease of use. Some of 
these are: 

Designing the library to be compiler-independent 
eliminates the need for compiler-specific versions and 
allows C language programs to link to the Fortran 
portions of the library without the usual Fortran run-
time libraries. Perhaps it is more correct to state that 
all compiler dependencies have been isolated (as will 
be explained in the discussion of the layer model of 
the library). 
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Providing competitive performance on non-Intel®

processors so software vendors can use a single 
library in their products for Intel® architecture 
computers. 

Parallelizing those parts of the library where 
parallelization makes sense. Most of the library 
functions could be parallelized but would not improve 
in performance if parallelized. Most of this paper 
deals with parallel performance on multi-core 
processors. 

Using interface files to map FFTW to MKL FFTs, 
other files to map older MKL FFTs to the more recent 
FFTs as well as using Java interface examples for 
various parts of the library. 

To further enhance usability, future versions of MKL will 
introduce a �layer model� (see Figure 1). This version will 
have four layers: interface, threading, computational, and 
run-time, or compiler-specific, library layer. 

The first layer already exists for the 32-bit Windows* 
version but will be ubiquitous in the library. This layer 
allows MKL to accommodate different interfaces, 
including, for instance, gfortran. This and some other 
Fortran compilers handle complex return values 
differently than the Intel compiler for the Intel® 64 
Architecture-based processors on Linux*. This difference 
can be dealt with through an interface file without 
duplicating the rest of the library. Similarly, the basic 
library for a 64-bit operating system (OS) will use 64-bit 
integers going forward, but LP64 (32-bit integers for a 64-
bit OS) will be accommodated with a layer. 

An area that has been problematic, and will be more 
difficult going forward, has been the intermingling of user 
threaded code with MKL, where the user�s program is 
compiled with a non-Intel compiler. The second layer 
deals with this mismatch. All MKL threading is function 
based, so the threaded portion will be compiled with 
different compilers (Intel and gfortran, for instance) and 
the threaded portion provided as a layer. By turning 
threading off during compilation of the threaded software, 
a non-threaded layer will create a sequential version of the 
library. By linking in the appropriate threaded layer, 
multiple threading environments will be supported, 
including a sequential version of the library, with just a 
small increase in the size of the package. 

The third layer is the computational layer. This layer does 
all the computations and includes processor-specific code 
that is chosen at run time.  

The fourth layer contains support files such as libguide, 
the threading library for Intel® compilers, and the BLACS, 
which are specific to compilers and message passing 
interface (MPI) versions. 

Figure 1: Layer model for MKL 

In the rest of this paper we focus on performance for 
multi-core processors. Fortunately, many of the methods 
needed to achieve scaling with multi-core processor 
systems are similar to those used in shared memory 
parallel systems, at least for many of the functions of 
MKL. However, because of the shared caches of multi-
core processors there are additional opportunities for 
threading functions such as VML, as explained in one of 
the performance sections.   

We discuss parallelization and optimization for several 
different areas supported by the Intel® libraries in this 
order: BLAS, LAPACK, sparse linear solvers, VML, and 
codecs from IPP. Other key functions such as FFTs are 
not discussed. Especially in the cases of the BLAS and 
LAPACK, the contribution of the MKL developers is to 
take extant code and optimize it, including parallelizing it 
where that makes sense.  

The fundamental problem for much mathematical software 
is how to structure the problem in such a way that the 
caches can be effectively used. Before looking at these 
problems it is useful to look at the problem from a data 
consumption versus data supply rate point of view.  

Consider the Intel® Core�2 Duo processor, with a dual 
core running at 3.0 GHz performing the dot product. If we 
assume that one vector can be kept in cache, at what rate 
must the memory system supply data to keep just one 
dual-core processor busy? Each processor can do two 
double-precision multiplies per clock or four multiplies 
per clock, requiring 32 bytes (8 bytes per double precision 
word) per clock. At 3 GHz, this is 96 GB/second. For a 
dual-socket system (Woodcrest) the system must provide 
192 GB/s to keep all four cores busy. On a Clovertown 
system the number of cores doubles again and the 
demand, at the same frequency, goes to 384 GB/s.  

Layer Examples

Interface 

Threading 

Computation 

Support 

mkl_s, mkl_c, 
lp-64 

Intel, gfortran, 
etc 

BLAS, 
LAPACK, 

Libguide 
BLACS 
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Choose any realistic memory bandwidth and divide it into 
the rate at which the processor can consume the data and 
you will have an estimate of the number of times a datum 
must be used once it is in cache in order to keep all the 
cores busy.  

Much of the optimization efforts of MKL are centered on 
how to get that reuse factor high as well as how to deal 
with the many architectural complexity issues. In the 
following sections we discuss some of the problems and 
solutions for performance in MKL and briefly in IPP.  

BLAS 
Libraries are often an easy way to improve performance of 
an application. In the Introduction, we discussed the broad 
range of functionality that MKL offers as well as some of 
the ways the design is intended to make its use easy. 
Applications linked with MKL will see improvements in 
performance, especially if run on multi-core systems, 
through the many threaded functions of the library. 

The real issue is how MKL takes advantage of 
performance features such as SIMD hardware, and why 
multi-core processing exacerbates performance-sensitive 
issues. We start by describing single core performance 
optimization and move onto parallelization. If the single-
core performance is far from optimal, it logically follows 
that the multi-core performance may not be ideal either. 

Were MKL limited to a single set of functions, that set 
would be the BLAS because of its importance as a 
building block for higher order linear algebra 
functionality. The BLAS encapsulates several important 
dense linear algebra kernels.   

�Levels� is an important notion of the BLAS philosophy. 
Examples of Level 1 algorithms include taking an inner 
product of two vectors, or scaling a vector by a constant 
multiplier. Level 2 algorithms are matrix-vector 
multiplication or a single right-hand-side triangular solve. 
Level 3 algorithms include dense matrix-matrix 
multiplication. If we assume a vector is length N or a 
matrix is order N, then the number of floating point 
operations (flops) for a Level 1, Level 2, and Level 3 
algorithm are O(N), O(N2), and O(N3), respectively. The 
data movement, however, is O(N), O(N2), and O(N2), 
respectively. This last fact is crucial for optimization and 
threading performance. This makes the number of floating 
point operations per data item moved O(1), O(1), and 
O(N), respectively. 

Memory performance is inadequate to directly support the 
computational speed of the processor. This gap has 
increased over the years and multi-core processors 
accelerate the mismatch between memory system 
performance and the data demands of the processor. To 
deal with this discrepancy, processors use a memory 

hierarchy. Each level of the memory hierarchy boasts a 
different latency and bandwidth. We consider the highest 
level machine registers. Register data movement keeps 
pace with processor clock rates. The next level is the first-
level (L1) cache (small size) followed by the second-level 
(L2) cache (larger). Some machines also have a third-level 
(L3) cache (largest). Finally, at the bottom, there is the 
machine memory. This is often pictured as a pyramid, as 
shown in Figure 2.  

Figure 2: Memory hierarchy pyramid 

The closer to the top of the pyramid, the more valuable the 
resource is and the greater its performance in terms of 
bandwidth and reduced latency. The challenge for the 
developer is to keep data in the fast memories long 
enough to amortize the cost of getting the data there. 
Blocking algorithms along with data organization ensure 
that more work gets done at the faster top of the pyramid. 
MKL blocks algorithms such as the Level 3 BLAS, where 
the amount of work, O(N3), can be much greater than the 
amount of data movement, O(N2).   
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Figure 3: Shared cache top of pyramid 

While this situation has existed in architectures for many 
years, the recent advent of multi-core processing merely 
adds to the complexity of the problem both because 
parallelism is not mandatory and because of the sharing of 
caches between cores. If two or more cores share a 
secondary cache, for instance, the familiar top of the 
pyramid suddenly looks like Figure 3. The bottom of the 
pyramid remains the same as in Figure 2.  

What we typically see is a large cost for moving elements 
from main memory, compared to the very fast capacities 
of Figure 2. The complexity of the memory system�
mapping the memory onto the cache�includes the use of 
an additional cache called the table look-aside buffer, or 
TLB. Each memory page mapped to the cache has a TLB 
entry.  

When data are referenced, they may be in the L1 cache, 
L2 cache, or in memory. In addition, the page may or may 
not be in the TLB. Each miss�L1, L2, higher order 
cache, TLB�is increasingly expensive to retrieve. While 
the processor can hide some cache misses, TLB misses 
will cause stalls while the page address for the data is 
found and loaded. 

In addition to the cache structure we have already 
outlined, most caches have a given associativity set, 
meaning how addresses are shared in their mapping to a 
given cache line. There is also a dependency on the cache 
replacement policies that determines when cache lines are 
evicted from the cache. There are other features of caches 
that will affect the performance of the processor: bank 
structure, how and when data are written back to memory, 
and so on. 

All of these issues are accounted for either explicitly (by 
design) or implicitly (by automated searches through 

design space) for key MKL functions such as the BLAS. 
The result is code that is tuned for a single core. Now we 
need to parallelize the code.  

One of the most important considerations is where to 
thread an application. If an algorithm from LAPACK calls 
the Level 3 BLAS, there is now a choice of where to 
thread. One can parallelize at the LAPACK level, the 
BLAS level, or both. We have consistently found it to be 
the case where parallelizing at the LAPACK level yields 
the greatest advantage. 

Figure 4 illustrates this for the LAPACK function 
DGETRF, which performs LU factorization and is the 
basis for the LINPACK benchmark. The chart shows the 
ratios of performance for threading at the LAPACK and 
BLAS levels, with the BLAS-level performance being 1.0. 
Problem sizes are 1,000 times the abscissa values. 

As the figure shows, for smaller sizes, the higher-level 
threading is up to 80% faster. But even at 30,000 
equations, the LAPACK-level threading is nearly 10% 
faster on eight threads and 5% faster on two and four 
threads. 

LAPACK 
In the previous section we discussed the factors that go 
into the optimization of functions and showed how 
choosing the right level for parallelization can have a 
substantial impact on parallel performance as the number 
of cores increases, using LU factorization (DGETRF) as 
an example. The MKL has threaded and optimized many 
of the most important LAPACK functions. The problem is 
usually the same: how to feed the arithmetic units, which 
translates into how to get data into the caches and then to 
reuse them sufficiently to accommodate the substantial 

Registers Registers Registers Registers

1st Level Cache 1st Level Cache 1st  Level Cache 1st Level Cache

2nd Level Cache
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differences in the rate of consumption by the floating 
point hardware and the rate of supply by the memory 
subsystem. 

Figure 4: LAPACK vs. BLAS-level threading

LAPACK largely replaced LINPACK and employs 
blocked algorithms instead of the vector algorithms of 
LINPACK, making it much better suited for cache-based 
architectures. However, there are many areas where 
LAPACK code can further employ Level 3 BLAS [4] 
instead of the lower-level functions, which can improve 
cache usage. That, in turn, improves parallel performance, 
including performance on multi-core systems. We provide 
several examples of how increasing the use of higher-level 
BLAS substantially improves the performance of the 
MKL implementation of LAPACK over the reference 
implementation. 

One of the important linear algebra applications is double-
sided decompositions like singular value decomposition 
(SVD) or Symmetric Eigenvalue Decomposition. In MKL 
we block the chains of plane rotations using Level 3 
BLAS, resulting in remarkable improvements in 
performance of up to about 18x. Figure 5 compares the 
resulting threaded symmetric solver DSYEV against the 
reference implementation, with performance 
improvements of up to approximately 18x. In this chart, 

the MKL performance1 is threaded using eight threads, 
computing all eigenvectors. 

A second example employing a blocking algorithm 
implementation that allows the use of higher-order BLAS 
are the routines operating on packed storage format. This 
optimization requires the allocation of additional 
workspace of size N*NB (where N is the size of the 
problem, and NB is the block size, usually around 64). 
Use of workspace is common in other LAPACK functions 
and the cost, in terms of memory usage, is small.  

Figure 5: DSYEV improvements via Level 3 BLAS 

In the case of the Cholesky solver performance on packed 
storage format, the performance improvement again is 
around 18x on the same system as for DSYEV, as shown 
in Figure 6. 

While restructuring of the LAPACK code to use Level 3 
BLAS improves performance markedly, more advanced 
techniques must be employed to minimize dependencies 
on the sequential code that remain after employing Level 
3 BLAS. 

1 2.4 GHz, Dual-socket, Quad-Core Intel® Xeon®

processor 5300 Series 1067 MHz front-side bus. 2x4 MB 
L2 cache. 
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Figure 6: Packed-format Cholesky factorization 

Figure 7: DGETRF-level versus BLAS-level threading 

In such functions as LU and QR factorization [5], a look-
ahead technique is used that allows the next block 
factorization to begin before the matrix has been fully 
updated, which increases concurrency. Figure 7 looks at 
DGETRF performance on an 8-core system comparing 
MKL versus netlib performance. As the chart shows, there 
are optimizations in MKL that improve the performance 
even on one thread vis-à-vis the reference implementation. 

VECTOR MATH LIBRARY (VML) 
As we suggested earlier, the main issue in threading 
various math functions is not so much whether they can be 
threaded (are operations separable) but rather whether 
there are sufficient operations on the data once they are in 
cache to permit other cores/processors to also get data to 
work on. In other words, this all comes down to a memory 
bandwidth issue. 

The transcendental functions of VML typically require 10-
50 cycles per element (CPE), typically with one input and 
one output value per element. Taking this into 
consideration we can roughly estimate the break-even 
point of threading by the following inequality: 

S/T+O < S    N*CPE/T+O < N*CPE   N > O * T / 
(CPE * (T-1)), 

where S = CPE*N and N is the vector length � is the 
number of cycles to execute a particular function in serial 
mode, O is the number of clocks for overhead for starting 
threads (it really depends on T, the total number of threads 
used) and CPE which is the cpe of the function in serial 
case. One can see that with increasing CPE (more 
complex functions) the shorter vectors can be effectively 
parallelized. The greatest difficulty here is to make an 
estimation of O.  

Our computations show that O, measured in cycles, 
depends mostly on the number of sockets, the number of 
cores, and whether hyperthreading is turned on or off. 
This inequality, estimation of O, and a table of CPE 
values for each function are used in order to choose the 
number of threads for a particular function call during 
runtime.  

Figure 8 shows the speedups for three VML functions on 
a Woodcrest system (dual socket, dual core) compared to 
single-thread performance on the same processor. 



Intel Technology Journal, Volume 11, Issue 4, 2007 

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 305 

Figure 8: VML scaling on selected functions

Though VML can choose some particular number of 
threads it is difficult to do this accurately: 

Performance is often data dependent. For example, 
the dCbrt function (cubic root for double precision 
vectors) has 27.96 cpe for uniformly distributed data 
on the interval [-10000;10000], but 15.00 cpe if the 
vector is all zeros.  

Data location. If the input/output vectors are in 
cache, scaling and performance will be much better 
than if the data are in memory.  

When several different successive vector functions 
work with the same vectors, a different number of 
threads can be chosen, and as a result data might stay 
in the wrong cache if the cache is not shared.  

The influence of overhead might be significantly 
lowered by using threading at a higher level (i.e., if 
the user calls the VML functions from a threaded 
application). 

In summary, for VML, multi-core shared cache 
architectures have opened opportunities for threading that 
did not exist previously, but the performance is dependent 
on factors the VML developer can only partly control. It is 
likely that in most cases calling VML functions from a 
threaded application will result in better performance than 
invoking the threaded VML. 

SPARSE LINEAR ALGEBRA 
Solving large sparse linear systems of equations is often a 
stumbling block in many scientific problems. MKL offers 
several approaches for solving such problems. The 
PARDISO solver is a sparse direct supernodal solver that 
is thread-safe, high-performing, and memory-efficient. 
Using this tool, you can solve symmetric and non-
symmetric sparse linear systems of equations on shared-
memory multi-processors. However, there is a point where 
the memory requirements for large systems can become 
prohibitively high, and the PARDISO/DSS (direct sparse 
solver) will not work. This is where MKL iterative sparse 
solvers come in: these solvers can provide a remedy, 
because only a few working vectors and the primary data 
need be stored. 

MKL iterative solvers are based on a reverse 
communication interface (RCI) scheme that makes the 
user responsible for providing certain operations for the 
solver (for example, matrix-vector multiplications). To 
simplify the usage of MKL iterative solvers and gain 
additional performance, MKL offers sparse BLAS 
functions, which is a set of functions that perform a 
number of common vector and matrix operations for the 
most popular sparse storage schemes: compressed sparse 
row (CSR), compressed sparse column (CSC), diagonal, 
coordinate (COO), skyline, and block sparse row formats. 
Most MKL sparse BLAS routines are threaded using 
OpenMP. As in the case of the VML, for instance, 
performance on sparse BLAS is improved when the data 
are in the common cache for the cores and those BLAS 
are threaded. 

Like dense matrices, the performance of MKL 
PARDISO/DSS and MKL sparse BLAS depends on the 
details of the machine architectures, but unlike dense 
problems, the performance of these components also 
depends on the structure of the matrix, because the 
distribution of the nonzero elements in a sparse matrix 
determines the memory access patterns. However, many 
physical problems expose a well-behaved sparse structure, 
or the rows can be re-ordered to yield a better structure. 
PARDISO uses approximate minimum degree ordering 
and METIS reordering techniques for getting 
permutations to minimize fill-in and the associated 
memory requirements. Internal storage for the matrix 
factors in PARDISO is a block format. Most of the 
computations are done with the help of MKL Level 3 
BLAS and LAPACK. The usage of Level 3 BLAS and 
supernode pivoting coupled with supernode partitioning 
and synchronous computations allows PARDISO to 
achieve high-gigaflop rates and nearly linear speedup on 
multi-core platforms.  

There are differences in optimization of Level 2 and Level 
3 sparse BLAS on many core platforms, and some 
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optimization problems are similar to the problems of 
dense Level 2 and Level 3 BLAS (e.g., low locality in 
Level 2 routines). For Level 3 sparse BLAS, reorganizing 
the computations to perform the entire set of 
multiplications as a single operation produces significantly 
better performance. It is natural to expect that 
performance and scalability of Level 3 sparse BLAS are 
better than those of Level 2 sparse BLAS. MKL sparse 
BLAS routines for the block sparse row format that 
exploit the benefits of data blocking have better data 
locality and vector instructions: for example, the SSE2 
instruction set can be applied even for Level 2 sparse 
BLAS in this case. Similar optimizations are done for the 
diagonal and skyline format, because the elements of the 
source vector as well as destination vector are accessed 
sequentially. The Level 2 sparse BLAS operations for 
point entry sparse formats, such as the compressed sparse 
row (CSR) or coordinate formats (COO), are the most 
difficult area for optimization, because the elements of the 
source vector are accessed in a discontinuous way that 
leads to poor temporal locality. However, it appeared that 
even Level 2 sparse BLAS can be threaded effectively at 
least on the latest Intel® multi-core platforms. In addition, 
many well-known methods have been used for 
optimization of MKL Sparse BLAS. Among these are 
blocking, prefetching, OpenMP, etc., which allow for 
better performance of Sparse BLAS on multi-core 
architectures.   

INTEGRATED PERFORMANCE 
PRIMITIVES (IPP) 
IPP is a multi-functional library highly optimized for Intel 
architecture. IPP covers 15 functional domains that can be 
recognized by a suffix in the library file names. For 
example, functions with IPPs in their names are signal 
processing functions, note suffix �s.� There are more than 
two-thousand functions processing 1D signals/data of 
different data types: real and complex, signed and 
unsigned, floating point, and integer. The other libraries in 
IPP are image processing �i,� JPEG primitives �j,� audio 
coding �ac,� color conversion �cc,� string processing 
�ch,� cryptography �cp,� computer vision �cv,� data 
compression �dc,� small matrix operations �m,� realistic 
rendering �r,� speech coding �sc,� speech recognition 
primitives �sr,� video coding �vc,� vector math �vm.�

IPP is optimized for several Intel architectures: IA32, 
IA64, Intel 64, and IXP. Within each architecture are 
optimizations for specific processors. For instance, within 
IA32 architecture there are specific optimizations for the 
Pentium® 4 and Intel Core 2 Duo processors, among 
others.  

IPP is optimized at three levels: algorithmic, effective use 
of SIMD instructions (SSE2, SSE3), and parallelization at 
both the primitive and component levels. Primitive-level 
threading is the threading implemented in IPP functions. 
Not every function in IPP is parallelized because of the 
overhead added by threading. However, the good news 
here is that IPP is by design a set of build blocks and 
applications that developers can easily use to thread their 
application by calling the primitives on different threads.  

Component-level threading is threading provided in such 
components as video codecs, the H264 encoder and 
decoder; the jpeg viewer, and the IPP implementation of 
well-known data compression libraries, ZLIB and GZIP. 
These components, as well as others, are shipped with IPP 
as IPP samples given in their source codes. 

An example of algorithm optimization is the median filter 
in the Signal and Image processing domains. Table 1, for 
instance, illustrates the results, in clocks-per-element, of 
IPP optimization of the median filter compared with the 
LEADtools library.   

Table 1: IPP compared to LEADtools  
on median filter 

Spatial filter 
with mask 5x5 

Function cpe 

LEADtools L_MedianFilterBitmap 345 
IPP ippiFilterMedian_16s_C3R 35 

CPU optimization with the SIMD instruction set, which is 
done for many functions in IPP, also gives a performance 
gain that can be measured by comparing the performance 
ratio numbers of the C version of the library to the CPU 
specific library, such as optimizing for the Intel Core 2 
Duo processor. Table 2 illustrates the performance 
advantage of multi-core threading on MPEG4 decoding. 

Table 2: Speedup on threaded MPEG4 

Stream2 Resolution Frames Bitrate 
MB/s 

FPS 
1T 

FPS 
2T 

Ratio 

1 1280x720 IPB 4.0 199 328 1.65 
2 720x576 IP 4.7 298 411 1.38 
3 640x476 IP 2.2 671 841 1.25 
4 640x480 IP, 

OBMC 
1.0 650 650 1.6 

2 Stream 1: preakness_59.94fps_Xvid_4Mbs_CBR.avi; 
Stream 2: Boss.avi; Stream 3: Taxi.avi; Stream 4: 
Term2.divx 
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SUMMARY 
The Intel MKL is part of a suite of tools offered by Intel 
to help developers create software efficiently and to 
achieve high performance. For MKL, the goal has been to 
provide an easy-to-use software package to aid in the 
development of mathematical software. Achieving that 
goal has a number of facets, some of which we have 
touched on in this paper: functionality, compiler 
independence, performance, and the most recent efforts in 
performance, focusing on helping the user get the full 
benefits available from Intel multi-core systems. We have 
discussed in general terms some of the approaches taken 
by library developers to achieve the performance goals 
including threading at a higher level of functionality 
(LAPACK) and improving the locality of reference for 
data in LAPACK codes through more effective use of the 
Level 3 BLAS, and so on. 

As the complexity and core counts for microprocessors 
continue to grow, MKL (and IPP) will optimize functions 
that impact performance in key application areas ensuring 
full and effective use of those processor developments. 
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GLOSSARY 
BLACS: Basic Linear Algebra Communication 
Subprograms � a set of functions developed for 
ScaLAPACK which isolate the communications used by 
the software from the communication layer such as MPI. 
Used throughout MKL cluster software. 

BLAS: Basic Linear Algebra Subprograms � a set of 
dense vector, vector matrix and matrix math functions 
useful in creating higher level functions such as solvers. 

CODEC: COder/DECoder � used for encoding or 
decoding digital data streams such as video or audio. 

DSS: Direct Sparse Solver � solves a system of equations 
in an a priori known number of operations in contrast to 
iterative sparse solvers for which the number of operations 
is data dependent. 

FFT: Fast Fourier Transform � algorithms to convert, for 
instance, a time series into a frequency series in an 
efficient way. 

FFTW: Fastest FFT in the West � a publicly available 
software package to create highly optimal FFTS. See 
http://www.fftw.org.  

IMSL � A large commercial math software package. See 
http://www.vni.com 

LAPACK: Linear Algebra PACKage � a set of solvers for 
systems of equations, eigensolvers, etc, using blocked 
algorithms that make effective use of the Level 3 BLAS. 

LINPACK � Predates LAPACK and based on vector 
operations. Also a benchmark solving systems of linear 
equations. 

METIS � A set of programs for partitioning unstructured 
graphs. See http://glaros.dtc.umn.edu/gkhome/views/metis 

MPI: Message Passing Interface � A widely used 
distributed memory (cluster) communication package.  

NAGLIB � A large math software package similar to 
IMSL. See http://www.nag.com 

NETLIB � A repository of software packages such as 
BLAS, BLACS, LAPACK, LINPACK, ScaLAPACK and 
others. See http://www.netlib.org 

PARDISO: PARallel DIrect SOlver � A parallel direct 
solver from University of Basel and licensed by MKL. 
See http://www.pardiso-project.org 

PDE � Partial Differential Equation. 

ScaLAPACK: Scalable LAPACK � cluster versions of 
much of LAPACK. 

SIMD: Single Instruction Multiple Data � hardware to 
perform multiple arithmetic operations simultaneously on 

a single instruction, such as the SSE2 and SSE3 
instructions. 
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ABSTRACT 
This paper describes two features of Intel® Threading 
Building Blocks (Intel® TBB) [1] that provide the 
foundation for its robust performance: a work-stealing 
task scheduler and a scalable memory allocator.  

Work-stealing task schedulers efficiently balance load 
while maintaining the natural data locality found in many 
applications. The Intel TBB task scheduler is available to 
users directly through an API and is also used in the 
implementation of the algorithms included in the library.  

In this paper, we provide an overview of the TBB task 
scheduler and discuss three manual optimizations that 
users can make to improve its performance: continuation 
passing, scheduler bypass, and task recycling. In the 
Experimental Results section of this paper, we provide 
performance results for several benchmarks that 
demonstrate the potential scalability of applications 
threaded with TBB, as well as the positive impact of these 
manual optimizations on the performance of fine-grain 
tasks. 

The task scheduler is complemented by the Intel TBB 
scalable memory allocator. Memory allocation can often 
be a limiting bottleneck in parallel applications. Using the 
TBB scalable memory allocator eliminates this bottleneck 
and also improves cache behavior. We discuss details of 
the design and implementation of the TBB scalable 
allocator and evaluate its performance relative to several 
commercial and non-commercial allocators, showing that 
the TBB allocator is competitive with these other 
allocators.  

INTRODUCTION 
Performance-oriented developers now face the daunting 
task of threading their applications. Introducing 
parallelism into an application is a large investment. It is 
therefore imperative to implement a scalable solution, one 

that continues to increase performance, as the number of 
available cores and threads increases.  

Intel TBB is a C++ template library that is designed to 
assist developers in porting their applications to multi-
core platforms. The TBB library provides generic parallel 
algorithms [18] and concurrent containers [19] that enable 
users to write parallel programs without directly creating 
and managing threads. These algorithms are tested and 
tuned for the current generation of multi-core processors, 
and they are designed to scale as the core count continues 
to increase.  

To provide efficient performance today and continued 
scalability tomorrow, the library is designed to support 
fine-grain parallelism through tasks. Tasks are user-level 
objects that are scheduled for execution by the TBB task 
scheduler. The task scheduler maintains a pool of native 
threads and a set of per-thread ready pools of tasks. At 
initialization, the TBB scheduler creates an appropriate 
number of threads in the pool (by default, 1 per hardware 
thread) and maintains the ready pools using a randomized 
work-stealing algorithm [2, 3]. 

In this paper, we describe the design of the TBB task 
scheduler and several scheduling optimizations users can 
keep in mind while coding their applications. In the 
Results section, we explore the scalability of TBB 
applications and highlight the impact of these scheduling 
optimizations on performance. 

The task scheduler is complemented by the Intel TBB 
scalable memory allocator. In this paper, we provide an 
overview of its design and look at the tradeoffs. We 
compare its performance to several other commercial and 
non-commercial allocators. 

RELATED WORK 
The Intel TBB task scheduler is inspired by the early Cilk 
scheduler [2, 3]. Cilk is a parallel extension of the C 
programming language that defines additional keywords 
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and constructs. The Cilk project was a descendant of the 
Parallel Continuation Machine (PCM)/Threaded-C [13]. 

Both Cilk and the Intel TBB schedule lightweight tasks 
onto user threads. The Chare Kernel [14] is a portable set 
of functions that allows users to express parallelism in 
terms of small tasks (chares) with the runtime 
transparently managing resources. Unlike Intel TBB and 
Cilk, however, the Chare Kernel is targeted toward 
message passing machines. 

Mainstream languages, such as those supported by the 
.NET CLR also recognize the need for thread pools, 
where users can submit tasks without the need to explicitly 
manage threads [15]. However, in the .NET CLR these 
thread pools are targeted at general-purpose applications 
and are not tuned for compute-intensive applications.  

The McRT research program at Intel presented a software 
prototype of an integrated runtime library for large-scale 
chip-level multiprocessing (CMP) platforms [17], 
including a highly configurable, user-level scheduler. It 
can be used to realize a variety of co-operative scheduling 
strategies, including work stealing.  

The design of the Intel TBB scalable allocator is based on 
contemporary research in scalable memory allocation [8, 
9] and utilizes best-known design solutions; it has 
common roots with Hoard [8], LFMalloc, Vam [10], 
Streamflow [11] and other state-of-the-art concurrent and 
sequential allocators. The TBB scalable allocator is a 
productization of the scalable memory allocator 
developed as part of the McRT research program [7, 17].  

THE TBB TASK SCHEDULER 
The Intel TBB task scheduler is a work-stealing
scheduler. The design of the TBB scheduler is inspired by 
the early Cilk scheduler, which Blumofe and Leiserson [2, 
3] proved has optimal space, time, and communication 
bounds for well-structured (�fully strict�) programs. 

In a system that uses work-stealing, each thread maintains 
a local pool of tasks that are ready to run. Using local 
pools avoids the contention that may arise with the use of 
a global task queue. When executed, a task performs work 
and also may create additional tasks that are placed in the 
local pool. If a thread�s pool becomes empty, it attempts 
to steal a task from another random thread�s pool. This 
approach is in contrast to static scheduling methods where 
threads are assigned work up-front and from other 
dynamic scheduling methods where a central pool of tasks 
(or iterations) is maintained. 

Blumofe and Leiserson [2, 3] showed that the expected 
parallel runtime of applications scheduled by the Cilk 
scheduler is )(][ 1 TPTOTE P , where 1T  is the 

�work� or sequential time of the application, and T  is 
the critical path length. This optimal bound shows that as 
P , the expected time is only limited by the critical 
path length (the sequential part) of the application.  

To achieve these same optimal bounds, the TBB task 
scheduler also uses a randomized work-stealing algorithm. 
An overview of its implementation is provided in the 
following section. 

An Overview of the Task Scheduler Design 
The TBB task scheduler evaluates task graphs. A task 
graph is a directed graph where nodes are tasks, and each 
node points to its parent, which is another task that is 
waiting on it to complete, or NULL. Each task has a 
refcount that counts the number of tasks that have it as 
their parent. Each task also has a depth, which is usually 
one more than the depth of its parent. The work of the task 
is performed by a user-defined function  that is 
encapsulated within the task object. 

To assist in providing an overview of the Intel TBB task 
scheduler, we use calculation of the nth Fibonacci number 
as a running example. A serial implementation of our 
Fibonacci example is shown below: 

The function , shown below, uses the TBB 
task API to construct the root node of a task graph, an 
object of type . When this task�s function 

 is called, it will create two child tasks, also of 
type . Child  will calculate fibonacci(n-1) and 
child  will calculate fibonacci(n-2). When each of these 
tasks is executed, they will in turn recursively spawn child 
tasks as follows: 
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For performance reasons, TBB requires users to set task 
refcounts explicitly with the  call, 
instead of atomically incrementing it in 

 The refcount should be set for a task 
before spawning any of its children.  

Each task that spawns children waits at the 
 call until all of its children 

complete. An additional guard reference is required for 
this  as shown in the above example by using the refcount 
of 3, while there are only 2 child tasks. A thread that 
enters a  is free to execute 
other ready tasks while it waits.  

In  after completing the wait call, the 
results of the child tasks are summed and returned. When 

 no additional child tasks are created and 
instead the leaf task will directly call SerialFib. 

Figure 1 shows a snapshot of a task graph that might be 
created by an execution of ParallelFib. Tasks with non-
zero reference counts (A, B, and C) must wait for their 
child tasks to complete before proceeding. The leaf tasks 
are ready to run. 

As mentioned previously, the TBB library maintains a 
pool of threads, each of which has its own pool of ready 
tasks. Each per-thread task pool is implemented as an 
array of lists of tasks. A task goes into a pool only when it 
is deemed ready to run, i.e., it has been spawned and has a 
refcount of 0. Figure 2 shows a snapshot of a pool that 
corresponds to the task graph in Figure 1. Tasks A, B, and 
C do not appear in the pool because they have non-zero 
refcounts and therefore are not ready to run. 

Figure 1: Intermediate task graph for the Fibonacci example 
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task G 

task F 

task E task D deepest 

shallowest 

Figure 2: A pool of ready tasks that  
corresponds to the graph in Figure 1 

Breadth-First Theft and Depth-First Work 
The TBB task scheduler�s fundamental strategy is 
�breadth-first theft and depth-first work.� The breadth-
first theft rule raises parallelism sufficiently to keep 
threads busy. The depth-first work rule keeps each thread 
operating efficiently once it has sufficient work to do. 

A depth-first execution of a graph is the most efficient 
when performing a sequential execution because it 
provides better temporal locality and limits the space 
required for storing tasks. The deepest tasks are the most 
recently created tasks, and therefore are hottest in cache. 
When they complete, their parents can then execute, and 
although the parents are not hot in the cache, they�re 
warmer than the tasks above them. A depth-first execution 
also limits the space required for storing tasks. When 
executing a node, only the nodes that lie along the path 
from the root to that node need to exist in memory.  

Depth-first execution of a graph, however, limits 
parallelism. In contrast, always executing the shallowest 
tasks first leads to a breadth-first unfolding of the tree. 
This creates an exponential number of nodes that coexist 
simultaneously, providing ample tasks to steal but also 
excessively consuming memory. 

To balance efficient execution and parallelism, the TBB 
scheduler therefore uses the �breadth-first theft and depth-
first work� rule.  

Each thread in the TBB thread pool executes a worker 
routine that actively looks for ready tasks to execute. A 
thread will first take the task at the front of the deepest list 
of its own pool1. If there are no ready tasks in its own pool 
and there is at least one non-empty task pool, it will then 
steal from the front of the shallowest list of another 

1 Optimizations will be discussed later that allow tasks to 
directly return a next task to execute, bypassing the task 
scheduler. 

randomly chosen pool. If the chosen pool is empty, the 
thread tries to steal from another randomly selected thread 
until it succeeds. 

Scheduling Trade-offs and Optimizations 
The Intel TBB task scheduler was inspired by the Cilk 
scheduler. Cilk is a parallel extension of the C 
programming language that defines additional keywords 
and constructs. Since Cilk requires a modified C compiler, 
it can rely on the compiler to perform Cilk-specific 
transformations and optimizations.  

TBB on the other hand is a C++ template library and can 
be compiled using any standard-compliant C++ compiler. 
While this makes TBB more portable, it also means that 
correctness and performance cannot depend on any TBB-
specific compiler passes. The TBB task API has therefore 
been designed to allow users to perform certain 
scheduling optimizations �manually� to achieve increased 
performance when necessary. The most important of these 
optimization opportunities are discussed below and their 
impact is evaluated in the Experimental Results section.  

Minimizing Stack Use with Continuation Tasks 
As mentioned before, TBB uses a �breadth-first theft and 
depth-first work� approach. However, this approach can 
sometimes cause the processor stack to overflow.  

For example, consider the case when a task enters a 
 The task cannot continue 

until all of its children complete. On entering the wait, the 
calling thread is released to execute or steal other tasks. If 
it steals the shallowest task from another thread, it then 
begins a depth-first execution of this stolen tree. 

However, the initial task that entered the 
 is kept on the processor 

stack to maintain its local storage and instruction pointer. 
The newly stolen tree then begins to unfold on top of the 
waiting subtree on the processor stack. This situation 
could occur repeatedly, causing the stack to overflow. 

To avoid this situation, the TBB task scheduler forces a 
thread to only steal tasks that are deeper than any waiting 
task. While this limits stack growth, it also limits the 
choice of tasks to steal and therefore might limit 
parallelism. 

To avoid restricting the choice of tasks to steal while at 
the same time limiting stack space growth, the TBB task 
interface allows developers to specify continuation tasks. 
A task can replace itself in the graph with a continuation 
task and then return, freeing up its stack space. When the 
children complete, the continuation task is spawned to 
finish the work delegated to it by the parent.  

To use a continuation task , the children of a task are 
allocated as children of  and not the task itself. Like 
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other tasks,  becomes ready to run when its children 
complete and will only then be spawned. The code for 
spawning children using �continuation-passing� for our 
Fibonacci example is shown below: 

The implementation of  (not 
shown) inherits from , and sums  and 

 into  in its  function. The benefit of this 
approach is that after spawning children tasks in FibTask, 
the  function returns, removing itself from the 
stack. Only the tasks that are actively executing are on the 
processor stack. 

While there are benefits to the use of continuation tasks, 
there are also downsides. When using continuation tasks, 
all live state passed from parent to child cannot reside in 
the parent or its  stack frame, since the parent 
may be destroyed before the child completes. Therefore 
additional care may be needed to properly encapsulate the 
live state of the computation. Also continuation passing 
requires the creation of an additional task object. In fine-
grain tasks, this additional runtime overhead of task 
creation might be noticeable.   

Reducing Overheads: Scheduler Bypass and Task 
Recycling 
Luckily once an algorithm is using continuation tasks, it 
can also make use of two other overhead reducing 
techniques: scheduler bypass and task recycling. 

With scheduler bypass, a task�s  function 
explicitly returns the next task to execute. Since the next 
task is known, the more complex logic to select a task is 
avoided in the scheduler�s code. To use scheduler bypass 
in our Fibonacci example, the child task  is not spawned 
but is instead returned as shown below:  

Once continuation passing and scheduler bypass are in 
use, it also becomes possible to recycle task objects. 
Normally when a task returns from its  function, 
the task object is automatically deallocated. However, a 

user can choose to recycle a task object, making it live 
beyond the return and avoiding the repeated allocation 
and deallocation of task objects. Recycling a task as one 
of its own children is shown below for Fibonacci: 

As shown in the Experimental Results section, scheduler 
bypass and task recycling often more than make up for the 
extra overhead added from the allocation of a continuation 
task. 

SCALABLE MEMORY ALLOCATION 
Until recently, mainstream client applications have 
targeted single-processor PCs. Therefore state-of-the-art 
general-purpose memory allocators such as Doug Lea�s 
dlmalloc [4] have evolved to optimize for the sequential 
case. They were designed with two main principles in 
mind: efficient use of memory space and minimization of 
CPU overhead. Unfortunately, design decisions made to 
achieve these principles often hinder these allocators from 
providing good parallel performance. 

Even the best sequential allocator can easily become a 
performance bottleneck in a parallel application. To 
ensure correctness, access to its heap must be properly 
protected. Using a single global lock for protection would 
amount to serializing all allocations. Detlefs et al. [5] 
showed that real applications spend up to 20% of 
execution time in memory allocator routines (even more 
with inefficient allocators). According to Amdahl�s law 
[6], an application that is 20% sequential can never 
achieve more than a 5x speedup, even when using an 
infinite number of cores. Serializing allocations is 
therefore clearly not a scalable solution. Though more 
advanced schemas were developed to adapt dlmalloc for 
multi-threaded applications [12, 16], their scalability is 
also limited [8, 9, 12]. 

In addition, while space and CPU efficiency remain 
considerations in the design of a scalable memory 
allocator, they are not as important as before. The larger 
memory sizes available in the average PC and the growing 
speed gap between CPU and memory bring other 
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considerations to the forefront, such as cache locality and 
prevention of false sharing.  

Unfortunately, malloc implementations supplied by widely 
used C runtime libraries such as glibc and the Microsoft 
Visual C++* RTL still do not provide proper scalability 
for multi-threaded applications. As Intel TBB aims to ease 
the development of efficient and scalable parallel 
applications, it is unable to rely on these by-default 
allocators, and therefore provides its own scalable 
memory allocation library. 

The TBB Scalable Allocator 
The TBB scalable allocator is a productization of the 
scalable memory allocator developed as part of the McRT 
research program at Intel [7, 17]. 

In TBB, we improved the McRT code for better 
portability (for example, we had to rework the parts 
depending on other components of the McRT library) and 
addressed the performance of some corner case situations 
that were ignored by the research project. However, the 
major structure of the TBB scalable allocator is the same 
as the McRT design. 

Figure 3 shows the high-level design of the TBB scalable 
allocator.  

OS virtual memory

An application

The global heap of 
free blocks

Global lists of 
abandoned blocks

Thread-private heap: size-segregated 
bins organized as lists of memory blocks

large objects small objects

OS virtual memory

An application

The global heap of 
free blocks

Global lists of 
abandoned blocks

Thread-private heap: size-segregated 
bins organized as lists of memory blocks

large objects small objects

Figure 3: High-level design of the scalable allocator 

The allocator requests memory from the OS in 1MB 
chunks and divides each chunk into 16K-byte aligned 
blocks2. These blocks are initially placed in the global 
heap of free blocks. Currently, requested memory is never 
returned to OS (except for large allocations as described 
below), so the allocator carefully ensures that memory is 
reused. New blocks are only requested when a thread 
can�t find any free objects in the blocks of its own heap 
and there are no available blocks in the global heap. 

2 Following the authors of the McRT malloc [7], we will 
use terms �object� and �block�; in other literature, they 
can be called �block� and �superblock,� respectively. 

As in some other allocators, requests for large objects are 
redirected straight to OS virtual memory services. In the 
TBB allocator, the border between large and �regular� 
sizes lies slightly below 8K. However, we found that for 
better competitiveness, memory pieces of 8K to ~64K size 
should also be cached; explicitly managing these sizes is 
part of the future work for TBB. 

Like many other widely used concurrent allocators, the 
TBB allocator uses thread-private heaps. Such a design 
has proven to cut down on the amount of code that 
requires synchronization, and reduce false sharing, thus 
providing better scalability. Each thread allocates its own 
copy of heap structures and accesses it via thread-specific 
data (TSD) using corresponding system APIs.  

The heaps are segregated, i.e., they use different storage 
bins to allocate objects of different sizes. A memory 
request size is rounded up to the nearest object size. This 
technique provides better locality for similarly-sized 
objects that are often used together (for example, imagine 
an application traversing over a list or a tree). In the TBB 
allocator, the difference between consecutive object sizes 
in general does not exceed 25%, so internal fragmentation 
remains reasonable. 

Figure 4 illustrates the internal design of a bin. A bin only 
holds objects of a particular size, and it is organized as a 
double-linked list of blocks. At each moment, there is at 
most one active block used to fulfill allocation requests for 
a given object size. Once the active block has no more 
free objects, the bin is switched to use another block. 
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Figure 4: Design of a storage bin in a  
thread-private heap 

Unlike in other allocators, the active block may be located 
in the middle of the list; empty enough3 blocks are placed 
before it, and full blocks are placed after it. This design 

3 A block counts as �empty enough� if the share of 
allocated objects drops below the predefined threshold. 
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minimizes the time to search for a new block if the active 
one is full. When enough objects are freed in a block, the 
block is moved right before the active block and thus 
becomes available for further allocation. A block with all 
its objects freed returns back to the global heap; new 
blocks are taken from there as required. 

The design decisions made at higher levels allow certain 
optimization techniques for object allocation. With thread-
local heaps, the common allocation path does not contain 
synchronization apart from the TSD access managed by 
the OS; the same is true for deallocation of a thread�s own 
objects, as shown below.  

Size segregation and aligned blocks have made per-object 
headers needless; all information required to free an 
object can be easily obtained via the block header. As a 
result, objects are tightly packed in the block (as shown in 
Figure 5), which leads to a potentially smaller memory 
footprint and better cache locality.  

Bump pointer Private free list

Public free list

Double-linked 
list of blocks

Bump pointer Private free list

Public free list

Double-linked 
list of blocks

Figure 5: Structure of a memory block containing 
allocation objects of a specific size 

Berger et al. [8] proved that allocators with pure private 
heaps cause unbounded memory blowup in producer-
consumer applications. To avoid this, memory should be 
returned to the heap it was allocated from. In the TBB 
scalable allocator, an object is naturally returned to its 
enclosing block. However doing so means that a foreign 
thread4 can interfere with operations of the owning thread, 
possibly leading to slowdown. To avoid that, two separate 
free lists are used for objects returned by the owner and by 
foreign threads.  

Allocation requests are usually served from the private 
free list and so do not require synchronization; only when 
the request cannot be satisfied this way are the public free 
lists inspected. Unlike in McRT malloc [7], we do not 
make repatriation of objects completely non-blocking due 
to portability restrictions and stricter requirements; we use 
fine-grained locks that are distributed as much as possible. 

4 A thread returning a memory object to the block owned 
by another thread. 

EXPERIMENTAL RESULTS 
In this section, we present performance data to evaluate 
the performance of both the Intel TBB task scheduler and 
the scalable memory allocator. All results were collected 
on a server system with two Quad-Core Intel® Xeon®

processors X53555 running Red Hat Enterprise Linux 4 
(update 4). We present data using 1 through 8 threads to 
show performance on both a small number of cores as 
well as to show the scalability beyond the number of cores 
available in a single multi-core processor today. 

Performance of the Task Scheduler 
In this section, we present the scalability of several 
benchmarks, highlighting the impact of continuation 
passing, scheduler bypass, and task recycling on the 
performance of each application. 

Methodology 
To evaluate the performance of the TBB scheduler as well 
as the impact of the manual optimization described above, 
we show results for applications using TBB without 
scheduling optimization (TBB); using only continuation 
passing (TBB+C); using continuation passing and 
scheduler bypass (TBB+CB); and using continuation 
passing, scheduler bypass, and task recycling 
(TBB+CBR). For each benchmark we show the speedups 
relative to an optimized serial implementation that does 
not use TBB.  

Benchmark Descriptions 
We use four applications to evaluate the performance of 
the task scheduler:  

fibonacci. The Fibonacci benchmark corresponds to 
the running example provided above in the 
description of the task scheduler. In our benchmark 
runs, we calculate the 50th Fibonacci number, with 
serial cutoffs of 12 and 20. 

parallel_for. This microbenchmark uses an Intel 
TBB parallel_for algorithm to iterate over a range of 
100 million integers applying an empty loop body to 
each element. In the TBB library, all three scheduling 
optimizations are used by default. To allow the 
performance impact of the various optimizations to be 

5 Intel processor numbers are not a measure of 
performance. Processor numbers differentiate features 
within each processor family, not across different 
processor families. See 
www.intel.com/products/processor_number for details. 
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measured, the implementation of parallel_for was 
modified to allow the selective disabling of specific 
optimizations.  

sub_string_finder. This benchmark is an example 
that is provided with the TBB library. The application 
calculates, for each position in a string, the location of 
the largest substring found elsewhere in the string that 
matches a string starting at the current position. The 
code uses the modified parallel_for described above 
to isolate the impact of the scheduling optimizations.  

tacheon. Tacheon is a 3D ray tracer that is distributed 
as another example with the TBB library. The code 
also uses the parallel_for algorithm modified to allow 
selective disabling of optimizations.  

Benchmark Results 
Figure 6 shows the performance of the Fibonacci example 
when executed on 1 through 8 threads on the 
aforementioned server. In the tests we used serial cutoffs 
of 12 and 20. When calculating the 50th Fibonacci 
number, the overhead of task creation is small when using 
a cutoff of 20, as shown by the speedup of 1 when using 1 
thread. The scalability for this case is also excellent, with 
a speedup of nearly 8 on 8 threads. 
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Figure 6: The speedup of the Fibonacci example when 
using different scheduling optimizations and serial 

cutoff values. The performance on 1 through 8 threads 
is reported for each configuration. 

With a cutoff of 12, however, finer-grain tasks are created 
resulting in a noticeable scheduling overhead and 
a speedup of only 0.93 on 1 thread. With measurable 
overheads, the impact of the scheduling optimizations can 
also be seen. As discussed above, the use of continuation 
passing may provide additional opportunities for stealing 
but requires the allocation of additional task objects, often 
resulting in a slowdown. This effect is clearly seen in the 
TBB+C bars in Figure 6. However continuation passing 
also enables the scheduler bypass and task recycling 
optimizations, which when combined, result in speedups 

beyond the simple TBB case. On 8 threads, the speedup 
increases from 7.2 with no optimizations to 7.4 with all 
optimizations, an increase of approximately 3%. 

The performance of the parallel_for microbenchmark is 
shown in Figure 7. The parallel_for algorithm creates 
tasks that apply a user-provided body to subranges of the 
user-provided range. When using the parallel_for 
algorithm, developers may explicitly specify a grainsize or 
choose to use the auto_partitioner. If a grainsize is 
specified, the default parallel_for algorithm recursively 
divides the provide range until the subranges are less than 
the grainsize. Tasks are created that apply the body to 
these subranges. If the auto_partitioner is used, the library 
adaptively tries to select a good partitioning of the range.   
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Figure 7: The speedup of the parallel_for benchmark 
when using different scheduling optimizations and 

grainsizes. The AUTO configurations use the 
auto_partitioner to divide the loop iterations; the 
other configurations use the provided grainsize 

parameter with the simple_paritioner. The 
performance is reported on 1 through 8 threads. 

In Figure 7, results for a grainsize of 100, a grainsize of 
10,000,000, and the auto_partitioner are shown. Again, 
for a large grainsize (and the correspondingly large-grain 
tasks) the overhead of the scheduler is negligible and the 
speedup on 8 threads is close to 8. Interestingly, the lack 
of available parallelism limits speedup even for large 
tasks, as demonstrated by the speedup increase with 
continuation passing over the base unoptimized case. 

The fine-grain tasks, of only 100 iterations of an empty 
loop body, show high overhead (a speedup of 0.15 on 1 
thread and 1.19 on 8 threads). Again because of the 
visibility of overheads, the impact of scheduler bypass and 
task recycling is clear on 1 through 8 threads. The 
speedup of 1.19 on 8 threads is improved to 1.34 when all 
three optimizations are applied. 

Figures 8 and 9 present the performance of two larger, 
more realistic benchmarks. In both of these benchmarks, 
the performance using the default grainsize of 100 for 



Intel Technology Journal, Volume 11, Issue 4, 2007 

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 317 

sub_string_finder and of 50 for tacheon is measured as 
well as a grainsize of 1. In both applications, the 
scheduling overhead shown in the 1-thread case is small 
even when a grainsize of 1 is used. The scalability of both 
applications is also good, with a speedup of close to 8 for 
sub_string_finder and a speedup of 7.7 for tacheon.  
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Figure 8: The speedup of the sub_string_finder 
example using different scheduling optimizations and 
grainsize parameters. The performance on 1, 2, 4, and 

8 threads is presented. 
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Figure 9: The speedup of the tacheon example using 
different scheduling optimizations and grainsize 

parameters. The performance on 1, 2, 4, and 8 threads 
is presented. 

In summary, the scalability of the TBB scheduler is shown 
to allow linear speedups for several small benchmarks.6 It 
is also clear that the overhead of the TBB scheduler is 
seen for fine-grain tasks (for example 100 iterations of an 
empty loop). When these overheads are visible, 
continuation passing alone often leads to a slowdown 

6 The speedup of other applications will vary depending 
on application characteristics. 

relative to the unoptimized case. However, continuation 
passing can be applied to enable scheduler bypass and 
task recycling, which are consistently shown to improve 
performance when scheduling fine-grain tasks.  

Performance of Memory Allocation 
In this section, we present the comparative performance 
data for the TBB scalable allocator and five other 
commercial and non-commercial memory allocators. 

Memory Allocators being Compared 
The TBB scalable memory allocator binaries were 
obtained from tbb20_010oss_lin.tar.gz package available 
at http://www.threadingbuildingblocks.org. 

Other allocators in the comparison are these: 

The default memory allocator of GNU C runtime 
library (glibc) v2.3.4. 

Google�s TCMalloc (google-perftools v0.92) from 
http://code.google.com/p/google-perftools built by 
gcc 3.4.6. 

Hoard v3.6.2 taken from http://www.hoard.org, also 
built by gcc 3.4.6. 

Memory Tuning System* (MTS) binaries provided 
by NewCode Technologies, Inc., 
http://www.newcodeinc.com. 

SmartHeap* for SMP binaries provided by 
MicroQuill, http://www.microquill.com. 

Benchmark Description 
When comparing memory allocators, it makes sense to use 
different tests that exercise different aspects of memory 
allocation routines. We used four benchmarks in our 
study: the Larson benchmark, the MTS demo test, and two 
internally developed microbenchmarks, speed-cross and 
false-sharing. 

The false-sharing micro-benchmark was developed to 
check for the performance penalty due to false sharing 
induced by an allocator. Each thread repeatedly allocates a 
small object of a given size, then writes and reads every 
byte in the object many times in a loop and measures the 
time of the loop. The result is reported for every thread. If 
objects allocated by different threads share the same cache 
line, there should be a significant time penalty. 

The speed-cross micro-benchmark was developed as a 
stress-test of the multi-threaded behavior of an allocator. 
Each thread repeatedly allocates a chunk of memory 
objects, touches each one by reading and writing a few 
bytes, and then transmits these objects in equal proportion 
to all other threads. Then each thread deallocates the 
objects it just received. Thus all objects are freed by 
foreign threads, and all subsequent allocations potentially 
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reuse these objects. The test reports average allocation 
and deallocation time per 1,000 objects. 

Unlike the microbenchmarks intended to check specific 
aspects of memory allocation, the other two tests try to 
exercise memory in a more or less realistic way. 

The MTS demo test was obtained from the MTS 
evaluation package. It attempts to mimic typical allocation 
behavior of applications by requesting few large objects, 
more medium-size objects, and significantly more small 
objects. The test measures elapsed time in seconds. 

The Larson benchmark was originally developed by 
Larson and Krishnan [12] to model the allocation 
behavior of a multi-threaded server and test its throughput 
as the number of malloc and free pair operations per 
second. We took the benchmark from 
http://www.hoard.org. 

Benchmark Results 
The internal micro-benchmark data presented below were 
collected for objects of the machine word size, i.e., eight 
bytes on our test server.  

The false-sharing benchmark demonstrates that of all the 
tested allocators, only the glibc allocator induces false 
sharing. Figure 10 shows execution time for various 
numbers of running threads as the percent of difference 
from the single-threaded run. While the test slowed down 
by 40-50% when executed with the default allocator, the 
difference is within 10% for all of the other allocators.  
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Figure 10: The difference in execution time of the 
false-sharing benchmark, running on 2, 4, and 8 

threads, to the time of the single-threaded run, for 
various memory allocators 

In addition, the test was faster with multiple threads which 
is especially well observed for eight threads. This effect 
could be possibly explained by decreased thread migration 
between cores when the number of active threads 
increases. 

The speed-cross benchmark heavily stresses the allocators 
by freeing every object in a thread other than the one it 

was allocated; it�s truly a worst-case test. In Figure 11, the 
summary time7 of malloc and cross-thread free operations 
is shown for various numbers of threads. For allocators 
returning memory pieces to the heap of the allocating 
thread, the internal contention increases with the growing 
number of threads. The chart demonstrates that the TBB 
scalable allocator keeps being faster than the others with a 
growing number of threads and increasing contention. 
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Figure 11: The average time to allocate and free 1,000 
objects in the speed-cross benchmark is presented for 
1, 2, 4, and 8 threads. The chart uses logarithmic scale. 

Figure 12 demonstrates the elapsed time to run as reported 
by the MTS demo test.  

0

1

2

3

4

5

6

7

1 2 4 8

threads

 glibc
 Google
 Hoard
 MTS
 SmartHeap
 TBB allocator

Figure 12: The elapsed time of the MTS demo test 
running on 1, 2, 4, and 8 threads, for various memory 

allocators 

It is clearly seen that the test slows down as the number of 
threads increases for both the glibc malloc and Google�s 
allocator; obviously their performance does not scale in 
this test. Other allocators scale well enough, though the 
test performance drops faster with the TBB allocator than 
with Hoard and the two commercial allocators. We are 

7 Due to nature of the benchmark, it separately collects 
data for malloc and free, then sums them up. 
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currently investigating the source of this performance 
drop.  

The Larson benchmark results are shown in Figure 13. 
The benchmark parameters were set to allocate small size 
objects of 8 to 100 bytes. The TBB allocator scales 
linearly in this test with the best speedup slope. With 8 
threads, it provides a 6x increase in throughput. Also note 
that the glibc malloc experienced a drop in throughput 
with multiple threads running. As in the other tests before, 
the Larson benchmark gives additional proof that the 
default glibc allocator can be a bottleneck in parallel code. 
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Figure 13: The throughput, in allocations per second, 
of the Larson benchmark running on 1 through 8 

threads for various memory allocators 

To summarize, all examined allocators except the glibc 
malloc showed their eligibility for parallel applications, 
and there is no single winner. While not always the best, 
the TBB scalable allocator performed competitively in all 
our tests. 

Combined Performance of the Task 
Scheduler and the Scalable Allocator 
In this section, we show the impact of the scalable 
allocator combined with an analysis of the impact of the 
task-scheduling optimizations. For this analysis, we use 
the tree sum example application provided in the TBB 
library distribution.  

The tree sum application first generates a binary tree that 
contains nodes each holding a float value. It then performs 
a summation of the values in the tree. Both phases are 
done in parallel using TBB tasks, with a serial cutoff value 
below which the subtrees are allocated or summed 
sequentially. 

Figure 14 shows the performance of the tree allocation 
phase of the benchmark when using both the scalable 
allocator and the default malloc implementation. Results 
are provided for a serial cutoff of both 100 nodes and 
10,000 nodes. 

First, it is clear that the allocation phase scales as 
additional threads are used only when the scalable 
allocator is employed. The performance of the standard 
malloc version degrades as additional threads are used. 

Second, the impact of the scheduling optimizations is 
again demonstrated by the finer grained tasks (a cutoff of 
10 nodes). There is an initial loss for employing 
continuation passing, but this loss is mitigated by the 
additional application of scheduler bypass and task 
recycling. And as expected, the larger tasks of 10,000 
nodes show negligible impact from the optimizations. 
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Figure 14: The speedup of the tree allocation phase of 
the tree_sum example using the scalable allocator and 
the default malloc implementation. The impact of the 
various scheduling optimizations is also shown. The 
performance on 1, 2, 4, and 8 threads is shown when 

using a serial cutoff of 10 and 10,000. 

Figure 15 shows the performance of the summation phase 
of tree sum. Because of the locality and false-sharing 
benefits of the scalable allocator, the performance and 
scalability of the computation are also better than with the 
standard malloc implementation. The impact of the 
manual scheduling optimizations is also seen here for fine-
grain tasks, and it is negligible for large-grain tasks. 



Intel Technology Journal, Volume 11, Issue 4, 2007 

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 320 

0
1
2
3
4
5
6
7
8

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10 10000 10 10000

scalable stdmalloc

TBB
TBB+C
TBB+CB
TBB+CBR

Average of Summation Speedup

Allocator Cutoff Threads

Opt

Figure 15: The speedup of the tree summation phase of 
the tree_sum example using the scalable allocator and 
the default malloc implementation. The impact of the 
various scheduling optimizations is also shown. The 
performance on 1, 2, 4, and 8 threads is shown when 

using a serial cutoff of 10 and 10,000. 

CONCLUSION 
Intel Threading Building Blocks is a C++ template library 
designed to raise the level of abstraction for parallelism as 
developers port their code to multi-core platforms. 
Starting with the 2.0 version, Intel TBB is also provided at 
www.threadingbuildingblocks.org as an open-source 
project licensed under the GNU Public License.  

Two key features of the library are its work-stealing task 
scheduler and scalable memory allocator. Both of these 
systems reduce the need of users to understand the many 
complex issues related to multi-core performance and 
scalability. 

In the TBB Task Scheduler section, we provided an 
overview of the task scheduler design and outlined several 
manual optimizations that users can perform to improve 
the performance of the scheduler when executing fine-
grain tasks. 

In the Scalable Memory Allocation section, we described 
the motivation for and implementation of the scalable 
memory allocator, highlighting the design characteristics 
that decrease synchronization, increase locality, and avoid 
false sharing. 

In the Experimental Results section, we explored the 
performance of a number of benchmarks on a server with 
two Quad-Core Intel Xeon processors. We showed that 
the overhead of work stealing is low for large-grain tasks, 
and that the manual optimizations described in this paper 
offer a small but noticeable improvement when scheduling 
fine-grain tasks. 

In our evaluation of scalable memory allocators, the TBB 
scalable allocator was shown to be competitive with 
several commercial and research allocators.   

In an analysis of an example that studied the combined 
effects of the scheduling optimizations and the scalable 
allocator, the use of the scalable allocator showed a large 
impact for both small- and large-grain tasks. The 
scheduling optimizations were shown to have a small 
performance impact for the small-grain tasks and a 
negligible impact on the scheduling of the larger-grain 
tasks. This confirms the assertion that memory allocation 
can sometimes be a limiting factor in the scalability of 
parallel applications and that a scalable allocator can 
remove this bottleneck. 

With the growing availability of multi-core platforms, it is 
becoming imperative for performance-oriented developers 
to thread their code. Intel TBB, built on its work-stealing 
task scheduler and scalable memory allocator, offers an 
exciting solution to ease the burden of this transition. 
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ABSTRACT 
Multi-core processors are now mainstream, while many-
core architectures are arriving. Yet getting general-
purpose software ready to take full advantage of the 
available hardware parallelism remains a challenge. There 
are, in fact, very few success stories of semi-automatic 
parallelization of large-scale integer applications outside 
the high-performance computing (HPC) and transaction 
processing domains. In this paper, we report on such a 
success story: threading the Intel® C++ Compiler [3] 
which resulted in an average 2x speedup in compiling a 
range of CPU2000 benchmarks. We present the 
methodology and tools that enabled us to achieve this 
success. We believe our approach is generally applicable 
to threading a large class of applications.   

INTRODUCTION  
In this paper we focus primarily on the techniques used to 
parallelize an application, the tools that facilitate the 
parallelization, and the new insights this approach yielded. 
Techniques that proved helpful in our work are at the core 
of a comprehensive solution suite Intel is developing to 
assist software developers discover and exploit parallelism 
in their applications. The generally applicable source 
changes necessary to make the compiler thread safe are 
also categorized and described. As expected, good 
software engineering principles such as modularization, 
data abstraction, and information hiding ease the process 
of threading an application. We also describe how we 
automated repetitive source changes. To make it feasible 
to apply all the source changes necessary for an 
application of this size, where the threaded loop spans 
hundreds of modules covering hundreds of thousands of 

lines of code with extensive use of macros, semi-
automated script tools were developed. It is easy to get 
overwhelmed by the data dependence complexity and size 
when starting to thread existing serial applications, but as 
we hope to illustrate in this case study, with the help of 
Intel�s threading tools and a systematic approach, it is 
possible to achieve large application threading with a 
reasonable amount of effort and time.  

The threading effort, involving a small team over a 
relatively short period of time, successfully yielded a 
working parallelized compiler. Although work remains to 
be done in tuning the resulting application, we also 
discuss in this paper the impact of different thread 
scheduling algorithms and the speedups achieved. We also 
briefly discuss the issues involved in maintaining a thread-
safe application.  

DESCRIPTION OF THE APPLICATION 
The Intel Compiler is a large non-numeric application that 
compiles C/C++ and Fortran applications for a variety of 
Intel® platforms including the IA-32 architecture, the 
Intel® 64 Architecture, and the Itanium® processor. 
Despite having evolved over the years to target new Intel®

processors and platforms, parallelization of the compiler 
itself was not an initial design goal. As such, the compiler 
has characteristics similar to other large integer 
applications that need to be parallelized in order to take 
full advantage of multi-core platforms. At the Intel 
Compiler Lab, we parallelized the Intel Compiler and 
achieved great performance results. One of our goals was 
to fully understand the issues that application developers 
encounter when parallelizing a large-scale application. 
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We chose to thread the Intel C++ Compiler for a number 
of reasons.  

First, we had detailed knowledge about the application. 
We strongly believe that to thread an application 
successfully, it is important to involve the application 
architects as they tend to know what to parallelize and 
what not to parallelize. Moreover, an in-depth knowledge 
of the application global data is crucial. 

Second, the compiler has evolved over the years and 
therefore is a good proxy for real-world, legacy product 
applications. It is a mature integer application that was not 
initially designed to be thread safe.  

Third, by choosing a non-numeric application outside the 
traditional high-performance computing (HPC) domain, 
we strived to address the challenges other application 
developers would encounter when undertaking a similar 
task. A particularly interesting challenge is that the 
potential parallel region spans hundreds of source 
modules containing millions of lines of code. In contrast, 
in typical HPC applications, the parallel loops are 
contained within one module or even just one function.  

Finally, there is an inherent scalable parallelism in what 
compilers do. By using performance analysis tools and 
built-in timers in the application itself, we found that the 
region we intended to parallelize accounts for up to 80% 
of the application time in compiling a number of 
benchmarks. With infinite parallelism there is a theoretical 
speedup of 5x as dictated by Amdahl�s law. If S is the 
fraction of the program that is serial and N is the number 
of available processors, the speedup through parallelism is 
1/(S + ((1-S)/N)), and the theoretical speedup limit is 1/S. 
For example, if 80% of the application time is in the 
parallel region, then S equals 0.20, and assuming N , 
we get at best a 5x speedup through threading. 

Figure 1: Serial execution of the compiler driver loop 

The basic flow of the compiler is shown in Figure 1. After 
the front-end parses the input program into an 
intermediate representation, the compiler iterates over the 
functions of each module. At each iteration, the compiler 
translates the code of the corresponding function, applies 
a series of optimizations to the intermediate 
representation, and finally generates code for the function. 
We observe that each routine compilation is logically 
independent of each other; that is, we can change the 
order in which routines are compiled without affecting the 
correctness of the program and therefore it is legal to 
parallelize the loop that compiles each individual routine. 
This loop spans almost 200 source modules containing 
roughly half a million lines of mostly C source code. The 
flow of the parallelized compiler is shown in Figure 2. 

Compiler Routine Driver 

Compile Routine

Analysis 1

Optimization 1

Analysis N

Optimization N

Code Generation
.obj 

Figure 2: Parallel execution of the compiler driver loop 
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Table 1: The execution profile of the compiler across its loop hierarchy 

%Ticks Ticks  Entry   Exit File:Line:Col  Function:Line  
51.7 675952724 1 1 ip/placement.c:657:39 compiler_driver:276 

18.0 235966016 14782 14782 fe/lexical.c:9589:8 get_token:9509 

16.1 211070764 1 1 fe/decls.c:14518:7 translation_unit:14480 

6.5 84369904 1 1 intrin/intrin.c:1536:5 intrin_process:1517 

4.7 61261408 2 2 fe/code.c:3474:3 dump_routines:3423 

 4.5 59420636 87 87 il/verify.c:3014:5 verify:3011 

4.2 54363924 217 217 fe/preproc.c:460:5 skip_endif:442 

4.1 54079124 4228 4228 fe/lexical.c:6706:8 skip_space:6661 

3.9 51635388 27 27 fe/lexical.c:4449:5 search_input:4416 

Of course, we could have parallelized the compiler at a 
higher or a lower level. The highest level would simply be 
to compile the modules of an application in parallel, as 
with a parallel make file. This scheme is very simple to 
implement. However, it can easily run into load-balancing 
problems when the application�s modules have widely 
varying sizes. It also fails when the build uses �link time 
compilation,� an important feature of our compiler. Link 
time compilation pre-compiles the individual modules of 
the application into intermediate representations and then 
processes all the intermediate representations at once in a 
single execution of the compiler, making it possible to 
obtain the benefits of inter-procedural optimizations 
across the entire application. 

At a lower level, we could have looked at smaller 
potential parallel regions, such as individual optimization 
phases. It might be easier to parallelize these phases than 
to parallelize the entire compiler driver loop, but any one 
piece would have accounted for only a small fraction of 
the total compilation time. Therefore, it would have been 
necessary to parallelize many smaller pieces to get any 
significant benefit from threading. Furthermore, working 
with the outermost driver loop allowed us to learn more 
about the problems of threading very large applications. 

THE THREADING METHODOLOGY 
We followed a threading methodology that consists of the 
following four basic steps: 

1. Discovering parallelism 

2. Expressing parallelism 

3. Debugging the threaded code 

4. Tuning the threaded code 

In the first step, the application architect needs to discover 
the parallelism that is available in the application. Tools 
that provide loop-profiling capabilities can be used. One 
would need to know the execution profile of the 
application across its loops. This includes both the loops 
in the program control-flow graph as well as the loops in 
its call graph. In our case, a significant majority of the 
execution time of the compiler, as explained before, is 
spent in the body of the compiler driver loop. As 
contributing architects of the compiler, we knew where 
that loop was, but we found a loop profiling capability of 
the compiler generally helpful for threading. Through an 
option, the compiler instruments the generated binaries 
with timing instructions before and after program loops 
and functions. The execution time profile of the compiler 
across its loop graph is shown in Table 1. This option may 
also be provided through dynamic instrumentation tools 
such as the Intel VTune� Performance Analyzer [5]. The 
application architect can go through the application loops 
in a top-down fashion ordered by the total contribution of 
the loop to the execution of the application. If, intuitively, 
the loop has parallelism potential, then the architect would 
need to know how many data dependence violations 
would be violated should that loop be parallelized.  

Data Dependence 
The notion of data dependence captures the most 
important properties of a program for parallel execution at 
all levels [1, 6]. At the loop level, the dependence relation 
is defined in three categories as follows.  

1. If an iteration of a loop writes to a memory location 
that is later read in another iteration of the loop, we 
say that the second iteration is flow-dependent on the 
first iteration.  
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S1:    x = � 
S2:    � = x 

2. If the first iteration reads from a location that is later 
modified in another iteration of the loop, we say that 
the second iteration is anti-dependent on the first 
iteration.  

S1:    � = x 
S2:    x = �  

3. Two iterations of a loop are output-dependent on 
each other if both write to the same memory location.  

S1:    x = � 
S2:    x = � 

Data dependence relations are often called hazards or 
data races. Flow dependence, anti-dependence, and 
output dependence relations are equivalent to Read-After-
Write (RAW), Write-After-Read (WAR), and Write-
After-Write (WAW), respectively. 

A loop that contains no dependence relations can be 
parallelized. On the other hand, parallelizing a loop that 
contains any of these dependence relations may cause 
invalid results. However, it can be shown that if a loop 
contains only anti- and output-dependence relations, it can 
be parallelized with the proper code change [1].   

Therefore, in order to parallelize an application, the 
application architect needs a tool to identify the 
dependence relations between its possible threads of 
execution such as various iterations of its loops. In our 
threading experience, we used the Intel® Thread Checker 
[2, 4], a software tool that helps developers detect the race 
conditions [7, 8] in their threaded applications. Among its 
many features, Thread Checker has a mode of operation, 
called projection mode, which is particularly helpful for 
parallelization. In this mode, the user can mark a 
sequential loop as a parallel loop. Thread Checker will run 
the code sequentially, but with some additional 
bookkeeping to reveal the race conditions that would 
occur should that loop actually run in parallel. This mode 
is extremely helpful in parallelization as it allows the 
sequential application to run to completion while the 
information about its possible threaded execution is being 
collected. More specifically, in spite of the data 
dependence violations in the parallel execution of the 
application, Thread Checker�s projection mode does not 
crash due to such violations. We marked the compiler 
driver loop as a parallel loop and ran it under the control 
of Thread Checker on a small test program that included a 
single file with a few functions, conditional statements, 
and loops.  

Figure 3: Progress of elimination of dependence 
violations over time 

We also used the Intel Compiler code-coverage tool to 
make sure that our simple test resulted in reasonably good 
coverage of the compiler source code. In particular, we 
made sure that most of the critical components of the 
compiler including its various optimizations were 
exercised when compiling our test program. One should 
note that dynamic analysis tools, such as Thread Checker, 
typically provide information only about what occurs in a 
particular instance of program execution as opposed to 
static tools that may be able to provide information about 
what can possibly happen in the program execution in the 
general case. Thus, the lack of dynamic dependence 
violations does not necessarily imply thread correctness. 
The use of the code-coverage tool alleviates this problem 
to some extent. If one does not observe any dependence 
violation in a piece of code, and the coverage information 
reveals that the code was not in fact executed, then 
nothing can be inferred about the possible dependence 
relations in that piece of code. The first run of our 
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instrumented compiler under Thread Checker took several 
hours to complete and resulted in about 300,000 data-
dependence violations. Such an error size is well above 
the comfort zone of most of the available race-detection 
tools.  

Managing the Size Problem  
The key to managing the large dependence problem size is 
controlling the precision of the generated analysis data. In 
the early phases of the threading effort, one may not need 
all the details about every individual dependence violation 
that is detected, including information about the source 
position of the two memory accesses that are involved and 
the call stack of each of them. At a later point, however, 
such information may actually be crucial to figure out the 
exact conditions under which the violation occurs. 

Thread Checker already supported several useful filtering 
capabilities, such as filtering based on file names, variable 
names, and so on. It also summarizes the violations that 
have identical first memory access source position and 
base, and those that have identical second memory access 
source position and base. This filter effectively groups the 
violations that occur when processing the data in a given 
array in a single loop with the same dependence distance. 
In addition to the existing filters that Thread Checker 

supports, we developed a new filter that proved very 
effective at grouping the violations that map to different 
source files and functions and thus reduced the problem 
size dramatically. In this filter, we grouped together the 
violations whose base addresses were identical, 
irrespective of their source file positions and functions. 
One can think of this heuristic as projecting the 
dependence information based on its data structure as 
opposed to based on the code. We then picked the source 
position of the first such violation as the representative of 
that group of violations and summed all the violations in 
that group. Using this technique, we immediately realized 
that approximately 65% of the violations corresponded to 
the compiler memory pool data structure. What we lost in 
this filter is all the details about every individual violation, 
but what we learned was sufficient to guide us to make the 
pool thread safe and eliminate almost 200,000 dependence 
violations with a small number of changes to the source 
code. After fixing this problem, the subsequent 
instrumented runs not only have a much smaller problem 
size but also a much shorter turnaround time. The reason 
for this is that the runtime overhead of race detection 
depends on the number of violations, and by eliminating 
the violations in a prioritized fashion, we constantly 
speedup the process of the next iteration. Figure 3 shows 
the number of dependence violations over time. 

Figure 4: Flow of the iterative process of dependence-violation elimination
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The interactive development environment we created to 
assist us in the parallelization effort is illustrated in Figure 
4. The main components of this platform are Intel Thread 
Checker, Intel Compiler, and Intel Compiler�s code-
coverage tool. In this framework the dynamic dependence 
diagnostics produced by the Intel Thread Checker and the 
dynamic code-coverage information generated by the 
instrumented binaries are combined with the static 
information provided by the Intel compiler to collectively 
assist the parallelization effort. The communication of 
information between these components is facilitated by 
means of well-defined APIs. The collected information is 
then assimilated by our Threading-Assistant analyzer to 
produce a compact set of dependence violation 
diagnostics and threading hints to the developers. The 
parallelization process is iterative and may require several 
iterations before all the dependence violations are 
eliminated and thread-safe code is obtained.  

Making the Application Thread Safe 
After identifying the loop to be parallelized in the 
Discover step of the threading methodology the 
application must be made thread safe with respect to that 
loop. Identifying all the global data with dependence 
relations and effectively privatizing them was by far the 
largest part of our effort and is a challenge for an 
application of this type. We spent about 10 person months 
to achieve thread safety for the compiler at the 
optimization levels chosen for our prototype project. In 
order to achieve this goal in the given project time frame, 
we not only relied on threading tools but also developed 
scripting tools to assist us in applying the needed source- 
code changes semi-automatically. Looking at the global 
data dependence violations and knowing the modular 
structure of the compiler, we found it useful to categorize 
statically allocated global data, as opposed to heap 
allocated global data, into three categories. For each 
category of global data we have a method for making the 
data thread safe:  

Global Data with Dependence Relations  
Initially, we attempt to rewrite the code in these data to 
eliminate the data dependence, and if that is not possible 
we have to apply locks to synchronize the access to the 
global data.  

Global Data Defined Outside the Loop 
This category includes global data that are defined outside 
the parallel loop and only read inside the loop. This is a 
thread-safe usage of global data and doesn�t require any 
rewrite. The main issue is to ensure that the usage of the 
global data remains thread safe. 

Global Data with Restricted Scope 
This category consists of global data that could have been 
declared as constant or as stack variables. If it is possible 
to rewrite global data to be constant or as stack variables 
they become thread safe automatically. This, furthermore, 
improves the software engineering aspect of the 
application.  

In the first category, where we have flow-dependence 
relations, we found there were many false flow-
dependence relations that can be eliminated by privatizing 
the data and thereby improving the software engineering. 
One example is global data shared across loop iterations 
where the data need to be reset to proper initial values for 
each iteration of the loop. We found it useful to categorize 
the global data with data dependence relations into four 
sub categories:  

1. Synchronized  

2. Mutable  

3. Persistent  

4. Transient  

The synchronized category includes the global data that 
require locks for controlled synchronized accesses. It is 
not possible to privatize such data without extensive 
changes. Examples of global data that require 
synchronization are input/output operation and heap 
allocation management. 

The mutable category contains the global data that 
generally are defined before the parallelized loop, but they 
may be modified by an iteration of the loop (only to be 
reset to the original value before the next iteration). 
Mutable data are privatized by creating a thread-private 
copy of the data for each of the iterations. This has the 
additional advantage that there is no longer a need to 
restore values for the next loop iteration, if data were 
modified. Furthermore, this helps improve maintainability 
of the code by eliminating the code necessary to restore 
values. 

The persistent category comprises the global data that are 
defined and used in each thread but do not have any cross 
iteration dependence relations. In the case of the compiler, 
examples of data in the persistent category include the 
intermediate representations for routine statements, 
expressions, symbol tables, control flow graphs, etc. The 
lifetime of the global data in the persistent category spans 
the entire thread. They are allocated and initialized after 
thread creation and freed before thread termination. 
Allocated persistent data are assigned and accessed 
through a thread-private pointer. In object-oriented terms, 
the state object is constructed after thread creation and 
destroyed before thread termination. 
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Figure 5: Breakdown of the global data 

The transient category consists of the global data that are 
defined and used only within a certain phase of the 
threaded region, for example global data that are used to 
do constant propagation. Global data in the transient 
category are allocated on entry to a phase and freed on 
exit from that phase. In general, the transient state is 
allocated on the stack and is assigned and accessed 
through a thread-private pointer. 

We chose to have a thread-private pointer for the 
persistent state as well as for each transient state for 
several reasons. First, on some systems there is a limit to 
the size of thread local storage; therefore, all the state 
objects could not be made thread-local. Furthermore, to 
make the source code changes manageable, it is 
convenient to have a thread-local pointer instead of adding 
state arguments to each routine to pass around persistent 
and transient state objects. 

The compiler uses a lot of global state either as file-scope 
static variables or external global objects. In our case, 
global variable references are generally direct. Our semi-
automatic source transformation tool takes a compiler-
generated listing of global variables defined in each 
module and from that creates structures for transient and 
persistent state objects. The tool also automatically 
redefines those global variables as macros with the proper 
implementations; that is, a dereference through a thread-
local pointer to a field in a state object. This relieves us 
from the tedious and error-prone task of manually 
modifying all references to those variables. 

By creating persistent and transient state objects as 
structures, we also help improve software engineering by 
organizing global data into logical objects that have well-
defined lifetimes.   

Of all the global data that needed to be privatized we only 
had to create synchronized access for about 3% of the 
global data. The breakdown of the classification of the 
remaining global data is illustrated in Figure 5.   

Another major task in working with data-race detection 
tools is training them to understand customized memory 
pool operations that behave like  and . It is 
common to allocate a memory block and use it in an 
iteration and free it in the same iteration. When a 
subsequent iteration allocates memory, it may get part or 
all of the freed block. If the data-race detection tool is not 
able to recognize the malloc-free pattern, it may report a 
large number of false dependence violations. The Intel 
Thread Checker recognizes a class of such operations. It 
also provides a mechanism through which the user can 
communicate this information with its runtime. This is 
achieved by means of an API call that passes a starting 
memory address and by the number of bytes to be 
considered as newly allocated memory chunks. In this 
way, the application architect asserts that the dependence 
relations across the specified barrier can safely be ignored. 
This is a simple mechanism; yet, it is capable of handling 
very complicated memory pool management systems. 

PERFORMANCE RESULTS 
After our compiler was successfully threaded and 
debugged, we spent some time in tuning its performance. 
Of particular importance was the choice of thread 
scheduling. We conducted many experiments with various 
parallel-loop scheduling policies. From the parallel-loop 
scheduling schemes supported by OpenMP*, self-
scheduling provided the best performance. In addition, we 
implemented a scheduling policy that consistently 
outperformed self scheduling. The policy took advantage 
of the information that the compiler has about the 
functions it needs to compile. As part of parsing the input 
file and creating the intermediate language, the compiler 
has a substantial amount of information about the structure 
and the size of each function. We used this information as 
a static estimate of the time it would take to compile each 
function. We then grouped together functions in as many 
chunks as the number of threads or available cores in such 
a way that the workload of each chunk is almost the same. 
Through this technique we avoided the load imbalance 
problem. Figure 6 shows the parallel speedup we achieved 
in comparison to the theoretical speedup limit. The results 
are based on our experiments on a 4-socket dual-core 
system�a total of eight processors. We also spent some 
time in making sure lock contention was reduced by 
proper choice of locking. We were pleased with the final 
parallel performance of the threaded compiler as it 
approached the theoretical limit of parallel performance as 
dictated by Amdahl�s law. Figure 6 shows the speedup of 
the threaded compiler compared to the original sequential 
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compiler when compiling the SPEC CPU2000 
benchmarks. 

Figure 6: Parallel speedups of compiling CPU2000 benchmarks 

CONCLUSION 
We conclude that advancements in threading analysis 
tools have made parallelization of complex applications 
an easier task than what it was a decade or two ago. The 
overhead of the required instrumentation to perform the 
dynamic dependence checking has become affordable on 
modern microprocessors. Effective summarization and 
filtering of data dependence violations play a key role in 
managing the large problem size. We also found that 
semi-automatic mechanisms provide crucial help in 
accomplishing the repetitive and error-prone task of 
source code changes. Moreover, we found that good 
software engineering practices make threading easier. 
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ABSTRACT 
Developers face new challenges with multi-core software 
development. The first of these challenges is a significant 
productivity burden particular to parallel programming. A 
big contributor to this burden is the relative difficulty of 
tracking down data races, which manifest non-
deterministically. The second challenge is parallelizing 
applications so that they effectively scale with new core 
counts and the inevitable enhancement and evolution of 
the instruction set. This is a new and subtle change to the 
benefit of backwards compatibility inherent in Intel®

Architecture (IA): performance may not scale forward 
with new micro-architectures and, in some cases, may 
regress. We assert that forward-scaling is an essential 
requirement for new programming models, tools, and 
methodologies intended for multi-core software 
development. 

We are implementing a programming model called the Ct 
API that leverages the strengths of data parallel 
programming to help address these challenges of multi-
core software development. In this paper we describe how 
Ct is designed for minimal effort by the developer, while 
providing forward scaling on multi-core IA. We describe 
how Ct�s design and implementation evolved from the 
initial prototype, based on co-traveler feedback, and we 
provide examples of how Ct can be used. We demonstrate 
how a sampling of key application spaces can be easily 
written using Ct to achieve high performance. Finally, we 

discuss how these ideas can be transitioned into 
mainstream software development tools. 

INTRODUCTION 
The data parallel style of programming [3][9][10][15] is 
best encapsulated in programming models in which 
collections of data elements are operated on en masse 
using various operators. For example, if a programmer 
wishes to sum the elements of two vectors (or matrices, 
trees, or sets) together, she simply writes an expression 
that adds these collections free of the bookkeeping and 
overhead typically associated with threaded programming 
(i.e., A = B + C).  

Lately, data parallelism has (re-)emerged as an important 
topic in multi-core application development for a number 
of important technical reasons. First, many algorithms, 
including much of what is considered �low-hanging fruit,� 
are appropriately characterized as data parallel in nature. 
Second, data parallel programming models offer the 
elusive, yet highly desirable, property of determinism, 
which effectively eliminates data races as a class of 
programmer errors. Put simply, this means that the 
programmer writes code that behaves the same way 
regardless of the number of cores on which it is executed. 
Third, data parallel programming models are generally 
highly portable, offering the possibility of building 
parallel applications that adapt to new micro-architectures. 
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Another highly prized characteristic of data parallel 
programming models is a predictable and relatively simple 
performance model. This allows the programmer to 
consider performance in software design without focusing 
on the specifics of the underlying architecture. A related 
consequence of this characteristic is that data parallel 
algorithms provide a means to future-proof applications. 
As previously mentioned, a significant challenge to 
programming for multi-core architectures is forward-
scaling performance in applications on evolving multi-
core architecture. The performance of parallel 
applications is very sensitive to core count, vector ISA 
width (e.g., SSE), core-to-core latencies, memory 
hierarchy design, and synchronization costs 1 . Software 
development tools must abstract these variations so that 
software performance continues to reap the benefits of 
Moore�s law. The built-in performance model of data 
parallel programming naturally accomplishes this. Figure 
1 illustrates how a compiled Ct binary can dynamically be 
reoptimized for these changing parameters. 

Ct 
Binary

Ct 
Binary

Figure 1: Forward scaling with Ct 

An important goal of Ct is to extend the benefits of data 
parallel programming to less structured task parallel 
programming. We also aim to address highly object-
oriented application designs. Because of this, we have 
developed a set of technologies to go well beyond basic 
data parallelism. For example, the underlying model of 
parallelism used by Ct is a sophisticated implementation 
of fine-grained concurrency and synchronization that we 
can progressively expose through the evolving Ct API. 

In the next section of our paper we describe key factors 
and trends driving modern software development and how 
they are impacted by multi-core programming. Following 
that, we describe parallel programming models and show 

1 These are not necessarily orthogonal parameters. 

where data parallelism lives from a taxonomic point of 
view. We then describe the Ct API and its implementation 
in detail and conclude with examples of Ct in action for 
typical algorithms. 

SOFTWARE DEVELOPMENT DRIVERS 
Software development takes fundamentally different 
processes and paths in different market segments. We 
believe that it is essential to understand these variations to 
adequately solve multi-core development challenges. 

These are the key factors driving the adoption of parallel 
programming for multi-core architecture: 

Productivity: In most market segments, programmer 
productivity is a major factor in adopting new 
methodologies for programming, regardless of the 
benefits. Programmer productivity directly impacts 
cost and time-to-market, the latter of which is often 
driven by seasonal milestones. Productivity is 
adversely impacted by (newly introduced) 
parallelism-related bugs, performance tuning, and 
porting to increasingly parallel architectures. 

Performance. Raw performance, as measured directly 
by frame rate in a game or indirectly as new features 
enabled, is a first-order concern for most ISVs. 
However, there is frequently (though not always) 
tradeoffs against productivity-driven metrics like 
time-to-market.  

Incremental adoption. It is probably unreasonable to 
expect a company with an investment in several 
hundreds of thousands (or even millions) of lines of 
code to rewrite this code completely for parallelism. 
Rather, incremental adoption of parallelism features 
is the most likely scenario for the typical software 
developer. This carries with it several interoperability 
burdens: legacy binary libraries, existing code, and 
legacy threading APIs. For example, many developers 
use OpenMP or MPI to parallelize their code. It is 
paramount that new bridging technologies for parallel 
computing work well with these components. 

Object-oriented design methodologies: These can be 
viewed as another legacy interoperability issue, but 
their uniqueness and pervasiveness warrants separate 
consideration. In the last couple of decades, highly 
abstracted, objected-oriented programming styles 
have prevailed in the general software engineering 
community. The reasons are obvious: increasing 
abstraction levels facilitate more generic 
programming methods that increase code reusability. 
In many instances (C++, for example), programmers 
have found unexpected ways to use highly abstracted 
libraries through template meta-programming (Ct 
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itself leverages this!). This trend, however, runs 
counter to what the compiler and performance 
optimizer needs to see to generate high-performance 
parallel code: i.e., well-defined regions (typically, 
loops) of compute intensive execution. Any 
mainstream parallelism features must integrate 
smoothly into these programming methodologies. 

This all boils down to the following seemingly untenable 
requirement: Developers want a useful high-level 
programming model that introduces no parallelism-
related bugs, yields high performance, and interoperates 
smoothly within the designs of their existing code base.

In the next section, we describe how to characterize 
programming models in a way that serves this 
requirement. 

DATA PARALLELISM BASICS 
Parallel programming takes on many flavors. 
Traditionally, parallel programming models have been 
compared using dimensions such as message passing 
versus shared memory, or task (or control) versus data 
parallelism. However, the portability and expressive 
power of a particular manifestation of a programming 
model can transcend these issues. For example, some 
programming models are amenable to implementation on 
both shared memory and message passing systems. Also, 
many algorithms can be equally expressed using either 
task or data parallelism. 

Despite the numerous formal and informal attempts to 
classify parallel programming models in this vein, we 
have chosen to measure success by specifically addressing 
the issues we raised in the previous sections. Our goal is 
to demonstrate all of these characteristics in our design: 

Expressive power. This is the ability to succinctly 
express different parallel algorithms in a model. For 
example, task parallel models support data parallel 
algorithms, though data parallel models cannot easily 
express some forms of task parallel algorithms. For a 
given application class, one style of programming 
model is likely to be prevalent. 

Determinism. A deterministic model has no 
possibility of data races introduced by the 
programmer, eliminating this new class of bugs. This 
directly impacts programmer productivity, though 
tools may mitigate this. 

Performance transparency. At the lexical level, it is 
possible to predict performance to varying degrees of 
accuracy. This often has a greater impact on 
programmer productivity, as it requires significant 
effort and low-level architectural understanding to 
tune performance on highly parallel architectures. 

Portability. Architectural portability is closely related 
to the requirements for forward-scaling multi-core 
applications. As the core count is scaled in multi-core 
architectures and new ISA enhancements are 
introduced, portable models are necessary to reliably 
leverage these features. 

Expressive Power 
Data parallel programming models allow the programmer 
to specify parallelism implicitly as operators on 
collections of data. For example, if a programmer wants to 
add to arrays of data in element-wise fashion, a data 
parallel programming model would be able to find 
parallelism roughly proportional to the amount of data in 
each array. So, if the arrays have 1,000 elements each, this 
comprises 1,000 independent (and potentially parallel) 
operations. To perform this computation, the data parallel 
model�s implementation may choose to use parallel 
threads or tasks and vector instructions at its discretion.2

In the early days (the 60s and 70s) of parallel computing, 
this style of data parallelism was prevalent in languages 
like APL [3][15] and in the loop-y programming styles of 
Fortran (where the compiler did the heavy lifting with 
little guidance from the programmer). 

The typical base data type in a data parallel programming 
model is an array or vector. Sometimes, these can be 
multi-dimensional. This has been the cornerstone of most 
models, but it can limit expressiveness. For example, flat 
or multi-dimensional vector-based models were most 
readily useful for dense linear algebra and signal or image 
processing applications. Moreover, complex computation 
patterns, like recursive subdivision or divide-and-conquer, 
were severely constrained in these models. Still, a large 
swath of applications found these models useful.  

The key to broadening the applicability of data parallel 
models is to become more generically �collection-
oriented.� That is, by adding more types of collections 
that are supportable, the model becomes more expressive. 
For example, in the late 80s and early 90s, APL2 [4][14] 
and Nesl [11][18] added support for segmented vectors 
(see also [17] for a latter day example), which allowed the 
programmer to represent both irregular data structures and 
control flow. Per the former, sparse linear algebra was 
productively programmed using Nesl. Per the latter, 
divide-and-conquer algorithms like quicksort and 
quickhull were easily programmed. Paralation Lisp [19] 
and CM-Lisp [12][13] added support for indexed vectors, 

2 This computation can also be expressed as a task parallel 
computation, where we would �spawn� tasks for each of 
the 1,000 additions, followed by a synchronization to 
ensure that the computation is completed. 
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allowing even more complex data structures (including 
additional sparse representations) to be represented. Ct 
builds on these algorithms. 

There are limitations to the applicability of the data 
parallel model. For example, applications that require 
tasks that make asynchronous updates to shared data will 
generally not map well onto this model. A Web server is a 
very good example of such an application. It is important 
to note that most applications require a variety of parallel 
programming models, so despite the prevalence of data 
parallelism for these applications, other flavors of 
parallelism are often required. 

Determinism 
The data parallel model generally relies on a compiler 
and/or runtime to manage task creation and usage of 
vector instruction; there is no explicit thread spawning or 
synchronization necessary, so data races are non-existent 
as far as the programmer is concerned. Though the data 
parallel model can provide fairly sophisticated data 
movement and communication primitives, it preserves this 
model.  

For example, Ct provides many collective communication
primitives, including the ability to perform a sum 
reduction on a vector. This entails summing all elements 
of the vector in parallel, which requires re-associating the 
computation. However, the programmer need only specify 
the reduction operator and leave the necessary threading 
and synchronization to the runtime. When considering 
nested or indexed vectors, the semantics of the operator 
are much more complex, but the programmer�s view is as 
simple as a flat vector reduction. 

Performance Transparency 
Though the data parallel model constrains expressiveness 
somewhat, this property and its high-level abstraction 
bespeak a relatively predictable performance model. 
When programming with threads and lower-level 
synchronization constructs, it is difficult to predict when 
serialization (intended and unintended) will happen. 
Moreover, it is extremely difficult to predict memory-
related performance issues, since predicting the volume of 
data accessed and any potential conflicts between threads 
is often rendered intractable by the high level of 
abstraction used in modern software. 

Operations on collections have the desirable properties 
that the programmer can predict relative performance 
behaviors based on collection size and operation 
complexity. For example, a 1,000 by 1,000 element 2 
dimensional matrix generally introduces up to 1,000,000-
way parallelism, meaning that for up to thousands of 
hardware threads, the computation is likely to be able to 
profitably scale. Furthermore, a collective communication 

primitive is likely to engender more synchronization than 
an element-wise operation (which often optimizes away to 
no synchronization). Though the exact performance is still 
difficult to predict, these higher-level tradeoffs allow the 
programmer to make good algorithmic choices. 

Portability 
Data parallel models have been mapped to a wide range of 
architectures, from massively parallel distributed memory 
architectures, to shared memory multi-processors, to 
deeply pipelined vector supercomputers, to GPUs. This 
portability is critical to the matching software 
requirements for evolving multi-core architecture.  

This evolution is following several paths. First, the core 
count will increase, requiring ever increasing amounts of 
parallelism. Second, non-uniformity of memory access 
time between cores is increasing, meaning that typical 
memory access latencies will exhibit high variance to 
predict unless data partitioning is done carefully. 
Somewhat related to these two considerations, relative 
core-to-core synchronization costs will change, requiring 
re-optimization of code to make the best hide-related 
latencies. Third, we expect the instruction set 
improvements to continue, requiring quick adaptation to 
these enhancements.  

The resiliency of data parallel models in many different 
operating environments is evidence of its ability to adapt 
to these changes. In particular, the programmer can expect 
that an algorithm written in a data parallel style will scale 
across generations of multi-core architectures, using ever-
more cores and leveraging newer and wider vector ISAs 
while avoiding the pitfalls of unintended serialization 
through the memory hierarchy. 

CT 

Brief Ct Overview 
Ct is a data parallel programming environment with 
predictable syntax based on C++ that provides distinct 
semantics and performance [6].  

Unique among commercial data parallel programming 
models, Ct implements a nested data parallel model based 
on work on Nesl [18] and Paralation Lisp [19]. Ct�s nested 
data parallelism enables a far broader set of collections to 
be represented. For example, sparse matrices and trees are 
very difficult to represent in flat data parallel or streaming 
models. However, these fall out naturally in a nested data 
parallel model. Also, common divide-and-conquer 
algorithms, for example, KD-tree construction and sorting, 
are very difficult to express using flat data parallel and 
streaming models. These are readily expressed using 
nested data parallelism. Nested data parallel computations 
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generally do not port efficiently to GPUs and streaming 
architectures, but they run efficiently on multi-core IA. 

Unlike many of its data-parallel brethren, Ct also supports 
deterministic task parallelism on multi-core IA (inspired 
by [16]). Determinism guarantees that program behavior 
is identical, on one core or many cores. This essentially 
eliminates an entire class of programmer errors�data 
races.  

TVECs 
The basic type in Ct is a generic vector type, called 
TVEC. TVECs are allocated and managed in a segregated 
memory space that is accessible only by Ct operators, to 
ensure the safety of parallel operation on vectors. TVEC 
is polymorphic in terms of its base types and shapes.  

The base types of TVECs are drawn from a set of typical 
pre-defined scalar (or value) types. Examples of base 
types include  (32-bit integer),  (64-bit integer), 

 (Float),  (Double), and  (Boolean). In future, 
Ct will also support the  type and user-defined base 
types, for example, C struct-like base type, , and 
the C array-like base type, , for more complicated 
application scenarios.  

A TVEC may be declared as follows:  

The TVEC constructor copies data explicitly from the 
unmanaged C/C++ memory to the managed vector space, 
in the form of either plain element-wise copy, or the 
strided memory copy (  in the example above takes one 
byte from every four of the data stream). There are also 
exceptional cases when it is not preferable to copy the 
data all at once (because of long latency) or we do not 
want to copy at all. Thus, there are several TVEC traits 
that may be applied, including  for copying data in 
a streaming fashion, or  for not copying. 

Constant TVECs may also be constructed by factory 
methods. For example, an identity matrix, in the form of 
TVEC2D (a TVEC derivative for matrices), may be 
created as follows: 

Nested data parallelism is a distinguished property for 
programming irregular data structures and algorithms. 
TVECs assume a number of shapes, including flat, multi-
dimensional, irregular nested, and indexed forms. For 
example, a matrix TVEC could be constructed as follows: 

TVECs may also be associated with certain accuracy 
attributes, which may allow experienced programmers to 
influence the compiler�s code generation. For example: 

The above TVEC declaration specifies 2 ulp (units-in-the-
last-place) as the tolerable accuracy threshold, which 
gives a hint to the compiler that the square root operator 
may be translated into a simpler code sequence with 
lower-order polynomials and less fix-up code. However, if 
0.5 ulp is specified, the compiler may generate a more 
complicated code sequence that might be up to 60+% 
slower on some architectures. 

When the computation on TVECs is completed, the 
computed results may be transferred back to the 
unmanaged space through the  primitive.  

Ct Operators 
The only operators allowed on TVECs are Ct operators. 
Ct operators are functionally pure (free of side effects). 
That is, TVECs are passed around by value, and each Ct 
operator logically returns a new TVEC. For example: 

This property guarantees the safety of parallelism and the 
aggressive optimizations that make parallelism efficient.  

The Ct API provides a broad range of Ct operators with 
rich functionalities. Operator overloading is used 
extensively to support a programming style, based on 
C++, particularly for the arithmetic, bitwise, and 
logical/comparison operators. For example, the �*� 
operator in the above example is overloaded to the TVEC 
multiply operator.  

Basically Ct operators can be categorized into element-
wise/vector-scalar, collective communication, and 
permutation operators. 

Element-wise/vector-scalar operators are typically 
referred to as �embarrassingly� parallel, requiring no 
interactions between the computations on each vector 
element. An example of an element-wise operation is the 
addition of two vectors: 

Note that this code generically performs an element-wise 
addition of two vectors, regardless of the �shape� of the 
two vectors (i.e., their length, dimensionality, irregularity). 

Collective communication operators tend to provide 
distilled computations over entire vectors and are highly 
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coordinated 3 . While they have a high degree of 
interference, they can be structured so that there is 
parallelism in colliding writes, and they typically scale in 
performance linearly with processor count, with little or 
no hardware support.  

There are two kinds of collective communication 
primitives in general, namely reductions and prefix-sums 
(also called scans). Reductions apply an operator over an 
entire vector to compute a distilled value (or values, 
depending on the type of vector). Prefix-sums perform a 
similar operation, but return a partial result for each vector 
element. For example, an  sums over all the 
elements of a vector if the vector is flat. More concretely, 

 yields . 
Likewise,  yields 

. 

A permutation operator in Ct is any operator that requires 
moving data from its original position to a different 
position. An example is the  operation, which uses 
an index array to collect values of a vector in a particular 
order; and the scatter operator does the reverse. 
Permutations run the gamut, from arbitrary permutations 
with arbitrary collisions (occurring when two values want 
to reside in the same location) to well-structured and 
predictable permutations where no collisions can occur. 
For collisions, it is recommended that programmers make 
use of the collective communication operators. An 
example of a well-structured (and efficient) permutation 
operator is , which uses a flag vector to select values 
from a vector in the source vector order. With proper 
hardware support on multi-core IA, these operators can be 
implemented fairly efficiently. In contrast, these operators 
could not be implemented efficiently on constrained 
architectures (for example, most GPUs do not efficiently 
support scatter operations). 

Besides these built-in operators, Ct also supports generic 
user-defined operators through Ct functions. As implied 
by their name, Ct functions define a block of code that is 
applicable to a collection of vectors, which allows 
programmers to define new generic operators or functions 
for repeated application (mitigating compilation 
overhead). The following code defines a Ct function that 
performs a fused multiply-add:  

3  These operators are called collective communication 
operators in MPI and reductions in OpenMP, though 
neither provides the rich set of operations that Ct does. In 
functional languages, these are termed fold operations or 
list homomorphisms. 

We use a map operator that takes as arguments the Ct 
function pointer and three vector arguments to apply this 
function in an element-wise manner: 

The implementation of the map operator employs 
compile-time type inference to prevent programmers from 
specifying improper arguments, such as TVEC<I32> 
(which is not conformant to this function�s definition), or 
wrong numbers of arguments. Just like C/C++ routines, Ct 
functions are composable, greatly extending Ct�s 
expressiveness. 

Nested Vectors 
Ct�s support for nested vectors is a generalization that 
allows a greater degree of flexibility than is otherwise 
found in most data parallel models. TVECs may be flat 
vectors or regular multi-dimensional vectors. They also 
may be nested vectors of varying length, which allows for 
very expressive coding of irregular algorithms, such as 
other variants of sparse matrix representations, or 
byproducts of divide-and-conquer algorithms.  
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Figure 2: The usage and implementation of Ct 

The vector value  is a flat (or 1-
dimensional) vector. The vector  holds 
the same element values, but is a vector of two vectors of 
lengths 2 and 4. The second vector might represent a 
partitioning of the first vector�s data based on certain 
criteria (e.g., the relationship to a pivot value in a 
quicksort). Practically, the nested format enables a lot of 
irregular data structures and algorithms. Figure 2 gives a 
few such examples. 

All Ct operators work on nested TVECs generically. The 
behavior of element-wise operators is the same for nested 
TVECs as for flat vectors. For example, 

 yields 
.  
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The power of nested versus flat TVECs is primarily 
differentiated through the behavior of collective 
communication and permutation primitives. Collective 
communication primitives applied to nested TVECs 
�respect the boundaries� of the subvectors by applying the 
operator to each subvector independently. For example, 

 yields the singleton vector 
, while 

yields the two-element vector .  

IMPLEMENTING CT FOR FORWARD-
SCALING 
Figure 2 also illustrates the Ct execution model. The core 
of Ct-enabled applications is the use of Ct-based data 
structures and algorithms. In addition, Ct Application 
Libraries are a set of well-optimized higher-level APIs 
aiming to boost programmers� productivity for Tera-scale 
applications such as image processing, linear algebra, and 
physics simulation. The Ct libraries can be compiled by 
stock C++ compilers, such as Visual C++, Intel® C/C++, 
and Gnu C/C++ compilers, into an IA binary that is able 
to run on all multi-core IA platforms. This binary 
comprises of either IA32 or Intel® 64 Architecture 
instructions, which also include calls to the Ct Dynamic 
Engine. During the execution of the binary, the Ct 
Dynamic Engine is launched and provides the services 
essential to performance and forward-scaling. More 
specifically, the three major services are the Threading 
Runtime (TRT), Memory Manager (MM), and Just-In-
Time (JIT) compiler. In particular, the TRT and JIT 
(especially the vector abstraction we will introduce called 
VIP) provide the basis for forward scaling across IA. 

The Threading Runtime 
The first key to forward-scaling is to dynamically adapt to 
new architectural characteristics. Threading and 
synchronization overhead is likely to change between 
processor generations, necessitating an ability to both 
select the task granularity and synchronization method 
dynamically. In fact, our approach is to isolate the 
architecture-dependent components of the Ct runtime to 
dynamically loaded libraries. Another aspect of forward-
scaling is that data set sizes are likely to scale in the long 
run, but are generally unpredictable in phases of 
computation, especially for client applications such as 
games. In this case, the amount of data being processed is 
highly scene and gameplay dependent. As such, the 
runtime must be able to adapt its threading strategy to 
variable data sets. 

The TRT provides a fine-grained threading model that is 
used to implement both data parallel and task parallel 
constructs. The underlying building block for this model is 
a future, which under the runtime semantics may represent 

a suspended closure or thunk (i.e., a function pointer and 
an argument list representing a potentially parallel 
function application), a thunk computation in flight, or a 
computed value (representing a successfully evaluated 
thunk). A handle to a future essentially represents a 
dependency on that suspended thunk�s evaluation. This is 
inspired by the techniques for expressing and managing 
parallelism presented in [7][8]. Using this mechanism, 
many complex fine-grained synchronization patterns may 
be expressed; however, the TRT facilitates fine-grained 
synchronizations via a building block called a join. A join 
can be used to express a range of logical combinations of 
synchronization dependencies.  

The TRT uses additional primitives called bulkspawns 
and bulkjoins, which essentially represent mapped future 
spawns and joins on collection-oriented arguments. 
Bulkspawn operations dynamically partition the collection 
into the right number of fine-grained tasks interlinked 
with fine-grained synchronizations. This is key to adapting 
to the core count and utilization, as well as cache 
footprint. 

The Memory Manager 
The Ct MM automatically manages the segregated Ct 
vector space. As such, it provides a set of lock-free 
memory allocation interfaces, as well as a reference-
counting-based garbage collector to reclaim dead vectors 
automatically. The MM is responsible for allocated data 
format and, in conjunction with the TRT, partitions 
vectors for parallel operations (i.e., the TRT bulkspawn 
operations).  

The Compiler 
The Ct compiler has a slightly unconventional structure, 
notably in its dynamic nature. When executing Ct API 
calls, the dynamic engine constructs intermediate 
representations of the computation, deferring actual 
execution (and further optimization) until later. �Later� is 
bounded by the necessity to copy values back into native 
C/C++ space, though the engine may decide to compile 
code at intermediate steps, such as when back edges in 
control flow (i.e., loops) are detected. This intermediate 
representation (IR) building is the default mode of Ct code 
execution for new paths in the program. Otherwise, 
cached code is executed if the path followed is in the 
�Code Cache,� or a cached IR is augmented. 

Once the compiler is invoked, several phases with distinct 
objectives are invoked: the High-Level Optimizer (HLO), 
the Low-Level Optimizer (LLO), and the VIP Code 
Generator (VCG).  

The HLO phase [5] performs architecture- and runtime-
independent optimizations, such as sub-primitive 
decomposition (breaking up data parallel operators into 
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more primitive patterns of parallelism), fusion (essential 
to coarsening the fine-grained concurrency of the Ct 
model as much as possible), scalarization, common sub-
expression elimination, and copy propagation. These 
optimizations are all possible without introducing the 
details of run-time memory allocation and shape checks. 
This is left to LLO. 

The LLO phase is still architecture independent, but 
unlike HLO, LLO does runtime-dependent optimizations. 
It has three primary objectives: 1) generate parallelized 
kernels using the TRT; 2) translate the optimized kernels 
(spawned in the TRT) into proper vectorized code; 3) 
generate architecture-independent representations, which 
we call the Virtual Intel® Platform, or VIP. Much of the 
difficulty of implementing and optimizing collective 
communication [1] and segmented operators [2] is 
deferred to this phase. VIP is an abstract instruction set 
that is based on IA32/Intel 64 Architecture, but that uses a 
generalized vector ISA to defer binding to a particular 
generation of SSE as late as possible.  

One of the challenges we face for forward-scaling is the 
near certainty of SSE extensions and enhancements. 
Figure 3 shows the evolution of Intel SIMD ISA. The 
number of instructions has been increasing at the pace of 
30 instructions per year on average since the introduction 
of MMX� technology in 1996. Meanwhile, the data 
width of vector registers was also increased from 64 bits 
to 128 bits, and it can be reasonably expected to increase 
further at some point in the future. This is driven by the 
need to increase performance in the most power efficient 
way and extending SIMD ISA is one such mechanism. 
VIP, as a virtual ISA of the Ct Dynamic Engine, is 
designed to hide changes in SIMD ISA, and, via VCG, 
provide future-proof performance to Ct applications. 

SIMD on IA
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Figure 3: The evolution of IA SIMD ISA vs. Ct 

The VCG phase is a state-of-the-art backend for VIP that 
dynamically selects the appropriate target ISA. When new 
SSE extensions are introduced, a new dynamically linked 
library can be made available that supports both legacy 

and new SSE extensions. No recompilation with a static 
compiler is necessary. In this way, applications can 
forward scale through vector ISA with the adaptivity of 
the VCG backend. VCG does classic loop-based 
optimizations, such as loop fusion, loop interchange, and 
array contraction. VCG also does architecture-dependent 
optimizations, such as register allocation and instruction 
scheduling. 

By carefully layering architecture and run-time dependent 
optimizations in the Ct compiler, we can retarget the 
entire dynamic engine with great agility, including for the 
purposes of evaluating new micro-architectures (i.e., 
considering in-order architectures and evaluating new, 
throughput-oriented ISA extensions). This was done 
deliberately with forward-scaling in mind.  

The dynamic compilation approach, especially the VIP 
layer, provides smooth migration paths to future SSE and 
IA-based SIMD instruction sets.  

CT IN ACTION 
In this section, we walk through some examples to 
demonstrate how Ct boosts the productivity and 
performance for a variety of application domains. We take 
a step-by-step approach, to make clear some guidelines for 
porting to Ct. In particular, we provide rules of thumb for 
translating sequential code to Ct code. 

Black-Scholes 
Option pricing is a computation-hungry, important 
application in modern financial engineering. Black-
Scholes is a well-accepted analytical model for European 
option pricing. We use it here as an exemplar for C/C++ 
to Ct migration. The code below shows the sequential C 
code. 

The code below shows its Ct counterpart. The two pieces 
of code are very similar (lines 4-9).  
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The only differences are these:  

Ct needs to include the  header file (line 0). 

Ct adds the TVEC declarations (line 3). 

Ct exempts programmers from having to manipulate 
arrays with loops and subscripts (lines 3-9). 

The Ct version co-exists well with C++�s parametric 
polymorphism, allowing the code to be instantiated 
with different types .  

The desirable tradeoff here is that the coding overhead is 
small when migrating to Ct, but you get highly efficient 
vectorized, parallelized, and forward-scaling code. In 
contrast, a manually vectorized version using MMX/SSE 
intrinsics has 51 lines of code, and the manual 
parallelization using threads requires an additional 20+ 
lines of code. When the underlying hardware or OS 
changes, you may need to modify the code to use new 
instrinsics and change the number of threads or the 
threading primitives (e.g., pthreads). 

The code below shows how a Cumulative Normal 
Distribution function, CND, is implemented in C and Ct, 
respectively. Though the C code can be translated into Ct 
easily, we use a Ct Application Library function, 

, to accelerate the polynomial 
evaluation. Our data show that for a 5th-order polynomial, 
the optimized Ct library yields ~3X speedup over the 
naïve implementation with negligible precision loss. 

Rule of Thumb I: 

Convolution 
Convolution is a widely used function in many application 
domains ranging from signal/image processing to 
statistics, to geophysics. Compared with the very parallel 
Black-Scholes, the computation pattern of Convolution is 
slightly trickier. In particular, programmers have several 
mechanisms at their disposal and we will explore the 
tradeoffs between these approaches. 

y
x
y
x

y
x

� �

Figure 4: Convolution algorithm  
illustration (1 dimensional) 

Figure 4 is a typical 1D convolution algorithm, where  is 
a data set, and  is a kernel sliding through the data set. 
The code below gives the C implementation 4 . As 
compared to Figure 4, you may find this loop structure is 
more complicated and the array access pattern is more 
irregular (particularly  on Line 5).  

Our first question is how to map the two-level loops to 
TVECs. Obviously we want to abstract the data set, , to 
be a TVEC. In this regard, we peel the outer loop and 
change all the occurrences of  to , as shown below. 

4 The example is just for illustration purposes, and we 
omitted some code for checking boundary conditions. 
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The second question is how to represent  in Ct. 
Because  is a loop induction variable incremented by a 
step value 1, we map it to an identity vector, , which 
results in . Ct�s C++ front-end reinterprets the 
operator into a gather operator, gathering values from 
according to an index vector, .  

This porting is straightforward but we can�t claim this 
solution is ideal for performance, because the gather 
operator is expensive on most architectures. Experienced 
Ct programmers, when understanding the algorithm, may 
resort to a more lightweight operator, . If 
you look at Figure 4 from a different perspective, that is, 
the kernel  is fixed while the data set  is sliding 
leftward, the result is equivalent. The optimized 
implementation is shown in the code below.  

It is worthwhile to mention that the Ct implementation can 
be extended to 2D convolutions with minimal effort.  

Rule of Thumb II: 

Sparse Matrix Vector Product (SMVP) 
Linear algebra, particularly matrix operations, is quite 
common in high-performance computing, physics 
simulation, aspects of machine learning, and many 
Recognition, Mining, and Synthesis (RMS) applications. 
Sparse matrices are extremely useful for cases where the 
particular algebraic formulation of a problem sparsely 
populates elements in the matrix with meaningful values.  

An example is large-scale physics simulations. In such 
cases, the logical size of a dense matrix might be 100s of 
megabytes, where a sparse matrix representation that only 
stores non-zero matrix elements would perhaps only hold 
1 megabyte of data. Unlike dense matrices, whose control 
paths and data access patterns are highly predictable, 
sparse matrices are much more hard in terms of the 
diversity of data structures and the irregularity of 
algorithms. In this section, we use a common kernel in 
gaming and RMS applications, Sparse Matrix Vector 
Product (SMVP), to demonstrate how a sparse matrix 
multiplied by a vector is implemented with Ct. 

We use a Compressed Sparse Column (CSC) format. The 
basic idea of CSC is to only store the non-zero elements of 

the matrix in the column order, and with each non-zero 
element, the programmer also stores the row index. 
Consider the sparse matrix below. 

The matrix is stored as three arrays: 

: the nonzero values, in column major order. 

: the row indices for nonzero values. 

: the column pointers.  tell the 
values of the i-th column start from which index into 
the  array).  

The schema for computing the SMVP is shown below.  

It is worth observing some of the computing patterns to 
comprehend the implications for porting to Ct: 

The two-level loops are more irregular than the 
aforementioned examples. Typically this kind of loop 
structure can be mapped to a two-level nested vector, 
as shown below 

In the inner loop,  is used for 
 times, which can be viewed as a 

special kind of gather operation. In Ct, we have a 
dedicated operator, , to replicate values of 
a vector for certain numbers of times specified by 
another vector. 

The expression  implies 
that we are performing what is called a combining-
send, or alternatively a multi-reduction or combining-
scatter. 

By comprehending the patterns, we have the Ct 
implementation presented below: 
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Rule of Thumb III: 

Rule of Thumb IV: 

Experimental Results 
We measured the performance of Ct and sequential C 
implementations of representative data parallel operators 
and a set of real-world applications on an Intel® Xeon®

processor E5345 5  platform (two 2.33GHz quad-core 
processors, 4GB memory), and plotted the speedup of Ct 
over C in Figure 5 and Figure 6. To present the benefits 
from the JIT compiler optimizations and the TRT 
separately, we configured Ct to run with different numbers 
of cores. The C implementations are compiled with Visual 
C++ 2005 compiler. 

Figure 5 compares Ct�s performance vs. C (compiled with 
O3-level optimizations on the Intel C Compiler) for a few 
key operators. These are common building blocks in 
many-core applications, though their use and mix is 
varied. It provides a reasonable baseline for assessing 
scalability based on the mix of Ct operators in your 
application. These operators can be categorized into two 
classes: , , , and  belong to element-wise 
operators, while  and  are collective 
communication operators. 

The Ct implementations of almost all element-wise 
operators achieve 7-8X scalability when adding the 

5  Intel processor numbers are not a measure of 
performance. Processor numbers differentiate features 
within each processor family, not across different 
processor families. See 
www.intel.com/products/processor_number for details. 

number of cores from 1 to 8. When considering only one 
core, the Ct Compiler�s aggressive vectorization also 
makes significant difference: 

For , Ct generated code achieves 2X speedup 
against a scalar implementation. Given SSE�s vector 
width is 4, and the vectorized code is mixed with a lot 
of scalar code, the speedup is quite reasonable. 

For , the Ct implementation takes advantage of 
SSE�s  instructions, however, the C version uses 
control flow (e.g., ) that are more 
challenging to vectorize. Thus the speedup reaches up 
to 11X. 

For , Ct generated code leverages SSE�s 
instruction, while the C code relies on slow C runtime 
library implementation. As such, the Ct 
implementation achieves a significant speedup of 42X. 

SSE doesn�t have direct support for . However, Ct 
still generates highly efficient SSE code sequence, 
based on a look-up table and interpolation-based 
method that outperforms the C runtime library-based 
implementation by 15X. 

Unlike element-wise operators that are embarrassingly 
parallel, collective communication operators have more 
complicated inter-thread communication patterns. In the 
meantime, the collective operators also impose challenges 
on local code vectorization.  

The  operator performs the summation of 
all elements of a vector. The Ct implementation 
achieves totally 93X speedup over the scalar 
implementation, where 12X comes from vectorization.  

The  operator requires more complicated 
communication patterns. Again, the speedup achieved 
by our optimized code is as high as 31X, where 5X is 
from code vectorization. 

In the future, Ct�s adaptive compilation strategy will play 
an even more important role when new, throughput-
oriented ISA extensions emerge (such as mask, 
cast/conversion, swizzle/shuffle, and gather/scatter). 
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Figure 5: Performance of select Ct primitives vs. C 
compiled with optimizations 

The applications being studied are listed in the table 
below. These span applications from high-performance 
computing, financial computing, image processing, 
through physics simulation. Black-Scholes, Binomial Tree, 
and Monte Carlo Simulation are three widely used option 
pricing models, 2D Convolution is a typical signal 
processing kernel, and the Narrow-Phase Collision 
Detection is a compute-intensive component of gaming 
physics. 

Table 1: Applications characterized under Ct 

Program Description 

Black Scholes European Option Pricing (financial analytics) 

Binomial Tree American Option Pricing (financial analytics) 

Monte Carlo  Asian Option Pricing (financial analytics) 

Convolution 2D Convolution kernel (signal processing) 

Collision 
Detection 

Narrow-phase collision detection (game 
physics) 

Figure 6 shows Ct�s performance on Core 2 Quad 
machines, as compared to plain C code and hand-compiler 
tuned SSE code (using SSE intrinsics). The figure also 
indicates that Ct code has good scalability when 
increasing the number of cores from 1 to 8.  
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Figure 6: Application scaling with Ct 

For single-thread performance, Ct achieves a speedup as 
high as 10X for Black-Scholes. Black-Scholes relies 
heavily on the performance of transcendental functions, 
namely , ,  and . SSE does provide 
efficient support for  and , while lacking support 
for  and . Typically, programmers fall back to a 
scalar loop and call corresponding C runtime functions for 
each element. Even though the rest of the program is well 
vectorized, the overall speedup of SSE over C is only 
1.1X. Ct�s 10X speedup is mainly attributed to JIT�s use 
of vectorized implementation of such transcendental 
functions. 

Monte Carlo Simulation has a 15.5X Ct-over-C speedup. 
Two factors contribute to the 8X speedup: first, Ct has a 
very fast, vectorized implementation of random number 
generator, while C has to resort to the C runtime function, 

; second, Monte Carlo Simulation heavily uses two 
transcendental functions,  and , where Ct also has 
very efficient SSE-based implementations. Consequently, 
the speedup achieved by SSE is only 7.7X. 

Single threaded Ct for Binomial Tree and Convolution 
achieve only 3.7X and 4.7X speedup, respectively, which 
is not surprising given that the two applications are not 
arithmetic intensive. Their SSE versions are slightly faster 
because the Visual C++ compiler uses a static compilation 
strategy that makes more aggressive optimizations 
affordable. An interesting note is that Binomial Tree 
suffers from many floating point underflow exceptions. Ct 
allows specifying lower numerical precision requirements. 
This enables the Ct Compiler to generate code under 
�flush-to-zero� mode, which speeds up the performance 
further by 3-4X. For cases when lower accuracy is not 
tolerable, we may specify  (namely ) as the base 
type of . Although the SIMD data width is reduced to 
half, the underflow exceptions are totally removed, which 
speeds up the performance of the  version by 
2.5X. It is trivial for Ct programmers to get the speedup 
because only TVEC declarations are changed (i.e., they do 
not have to change a single line of code). 
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Note that this graph shows the performance when running 
the same Ct binary with different hardware configurations. 
Looking forward, Ct provides nice forward scalability. 
Note that relatively inexperienced C/C++ programmers 
can get these performance benefits (nearly) for free on 
stock machines. Porting C implementations to their Ct 
counterparts takes minor effort, and the Lines-of-Code of 
the two implementations are almost 1:1. 

CONCLUSION 
Future-proofing algorithms for multi-core architectures is 
an important way to continue to reap the performance 
benefits of Moore�s Law scaling. Data parallel 
programming models offer a promising abstraction to use 
for forward-scaling, but it is often limited by too-narrowly 
defined types and operators. This severely limits the scope 
of applicability for such models. In Ct, we are attempting 
to build a system that delivers a more general data parallel 
(indeed, a deterministic task parallel) model while 
providing the essential framework for forward-scaling.  

A serious challenge is acknowledging the realities of 
modern software development methods and assuring 
compatibility with legacy code and programming 
methodologies. We believe that using the Ct Dynamic 
Engine�s particular flavor of adaptive compilation and 
run-time is the most effective way to extract chains of 
performance code without seriously compromising the 
language design or the large software investment by 
developers. More radical language redesigns are likely to 
appear at some point, but we view this more incremental 
approach as a flexible and highly productive way to 
leverage multi-core architectures while developing the 
basic parallel algorithms and design methods. In fact, we 
expect that future languages will almost certainly 
encompass some form (if not the exact form) of the ideas 
in Ct. 
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ABSTRACT 
With the explosive increase in video data, automatic 
video management (search/retrieval) is becoming a mass 
market application, and Content-Based Video 
Information Retrieval (CBVIR) is one of the best 
solutions. Most CBVIR systems are based on low-level 
feature extractions guided by the MPEG-7 standard for 
high-level semantic concept indexing. It is well known 
that CBVIR is a very compute-intensive task, and the 
low-level visual feature extractions are the most time-
consuming components in CBVIR. Nowadays, with the 
multi-core processor becoming mainstream, CBVIR can 
be accelerated by fully utilizing the computing power of 
available multi-core processors.  

In this paper, we optimize and parallelize a set of typical 
visual feature extraction applications in CBVIR. The 
underlying optimization and parallel techniques are 
representative of those used in video-analysis 
applications and can be further used in other 
applications to maximally improve their performance on 
multi-core systems. We conduct a detailed performance 
analysis of these parallel applications on a dual-socket, 
quad-core system. The analysis helps us identify 
possible causes of bottlenecks, and we suggest avenues 
for scalability improvement to make those applications 
more powerful in real-time performance.  

INTRODUCTION 
Nowadays, with advances in video capture and storage 
techniques, the sheer amount of video data has exploded 
not only in enterprises but also in our homes. 
Concomitantly, there is an increasing demand for a 
system that can help end users to index massive amounts 
of video data for further search, browse, and 

management tasks. Digital home-usage media centers 
are coming into being for this very purpose. Most of 
these centers consist of two key ingredients: the 
Content-Based Video Information Retrieval (CBVIR) 
module and the computing platform. 

CBVIR is a computational technique to index 
unstructured video information in terms of low-level 
audio/visual features [1]. MPEG-7 is an experimental 
standard acting as a guideline for low-level audio/visual 
feature extractions [2]. It includes a set of visual color, 
texture, shape, and motion descriptors. Since low-level 
visual feature extraction is the most time-consuming 
part in CBVIR applications, these applications are much 
more compute intensive than traditional video 
decoding/encoding applications. Although typically the 
indexing can be done in off-line mode, there are many 
more emerging scenarios that require a real-time or even 
super-real-time processing capability in a CBVIR 
system. With the boom in multi-core processors, we can 
take full advantage of the computing power of today�s 
multi-core platform to accelerate the use of CBVIR 
applications [3]. 

In this paper, we optimize and parallelize a set of typical 
feature extraction applications on a multi-core system. 
Our results show most of them are much slower than 
real-time in their original implementations. After serial 
optimization, however, they become 3.3x faster, and 
only five of them are still slower than real-time. After 
the tailored parallelization, the six most compute-
intensive applications obtain up to a 7.6x speedup on a 
dual-socket, quad-core system, which enables them to 
achieve super-real-time performance.  

This paper is organized as follows. First, we briefly 
review several low-level visual descriptors under the 
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guidelines of the MPEG-7 experimental standard. Next, 
we present our optimization and parallelization 
methodology for low-level visual feature extractions. 
Then, we show the performance analysis results of the 
typical feature extraction workloads. 

CBVIR AND LOW-LEVEL VISUAL 
DESCRIPTORS 
Video information differs from conventional text or 
numerical data in that video data require a large amount 
of memory and special processing operations. Video 
retrieval is based on how the contents of a sequence of 
images can be represented. Computational techniques 
that pursue the goals of indexing the unstructured visual 
information are called CBVIR [1, 4]. Generally, a 
typical CBVIR system includes two ingredients: the 
back-end for video indexing and the front-end for 
retrieval query processing. The back-end extracts low-
level audio/visual features for video data indexing, 
while the front-end is a query engine that returns 
retrieval results based on the similarity between query 
example and indexed video data [4]. A typical system 
framework is illustrated in Figure 1.  

Figure 1: Framework of a typical CBVIR system 

The well-known maxim �Garbage in, garbage out� 
means that good features will greatly improve the 
retrieval performance of a CBVIR system. Based on this 
point, the MPEG-7 standard, formally known as the 
�Multimedia Content Description Interface,� is 
proposed to guide content retrieval and feature 
extraction from video data. It includes a set of low-level 
color descriptors, texture descriptors, shape descriptors, 
and motion descriptors [2]. Since MPEG-7 is an 
experimental standard currently, the descriptors are only 
at the conceptual level. Therefore, in practice, most 
CBVIR systems just use MPEG-7 as a guideline for 

low-level feature extractions [1, 5]. In our experiments, 
we also use MPEG-7 as a guideline, and we briefly 
introduce the most-widely used visual features. In each 
category, we also select one or two typical features with 
detailed descriptions. These features are widely adopted 
and have very good retrieval performance [6].  

Color Descriptors 
Because of its expressive power, color is one of the first 
attributes used in image description, similarity, and 
retrieval tasks [7]. MPEG-7 divides color descriptors 
into several sub-categories: scalable color, color 
structure, color layout and so on [2]. In practice, there 
are four widely used color descriptors: Color Histogram, 
Color Moments, Color Coherence Vector (CCV), and 
Color Correlogram. The first two can be viewed as scale 
color descriptors, and the latter two can be viewed as 
structure color descriptors. In color histograms, overall 
color distribution can be captured in terms of histogram 
or low-order moments, but color histograms do not 
capture any spatial relationships among colors. The 
CCV is an extension of color histograms, in that it 
partitions pixels falling in each color histogram bin into 
coherent pixels and non-coherent pixels.  

Color Correlogram is proposed to characterize how the 
spatial correlation of pairs of colors is changing with the 
distance [8]. It provides much better performance than 
color histograms, color moments, and the CCV [6, 8] 
and has been widely used in CBVIR systems [1, 5]. 
Color Correlogram extends the co-occurrence matrix 
method in texture analysis to the color domain. In short, 
a correlogram is a squared table where the entry at (i, j) 
specifies the probability of finding a pixel of color jc  at 

a fixed distance from a given pixel of color ic . To catch 
more local spatial information, the co-occurrence can 
also be defined by banded neighborhoods: this leads to 
the banded color correlogram. In practice, {0, 1, 3, 5, 7} 
are the most popularly used banded distances. 

Texture Descriptors 
The textural features describe local arrangements of 
image signals in the spatial domain or the frequency 
domain by some spectral transforms. There are many 
kinds of texture features, such as the Gray-Level Co-
occurrence Matrix (GLCM), edge histogram features, 
multi-resolution simultaneous autoregressive models 
(MRSAR), wavelet coefficients, and Gabor textures. 
Specifically, the GLCM is the sufficient statistics of 
Markov random fields with multiple pairwise pixel 
interactions. The Edge histogram feature is used to 
characterize non-homogeneous texture regions. The 
MRSAR is a random field texture model that 
characterizes the geometric structure and the 
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quantitative strength of interactions among neighbors. 
At present, most promising features for texture retrieval 
are multi-resolution features obtained from orthogonal 
wavelet transforms or from Gabor transforms in the 
frequency domain [7].  

MPEG-7 has three texture descriptors: homogeneous 
texture, texture browsing, and edge histograms. The first 
two are based on the Gabor transform [2]. The Gabor 
transform offers the best simultaneous localization of 
spatial and frequency information. It emerges as an 
important visual primitive, and it is widely applied in 
tasks like edge detection, invariant object recognition, 
and compression [9, 10]. The 2-dimensional (2D) Gabor 
filters are defined as a series of multi-scale and multi-
orientation cosine modulated Gaussian kernels. The 
Gabor texture representation of images is derived by 
convolving the image with the Gabor filters and 
implementing the convolved image efficiently by using 
Fast Fourier Transform (FFT). The MPEG-7 standard 
suggests using 6-orientation and 5-scale Gabor filters 
for the homogeneous texture descriptor and the texture 
browsing descriptor, which yields one forward 2D FFT 
for the image and 30 inverse 2D FFTs for the frequency-
domain results.  

MRSAR is another texture feature studied in this paper, 
that models the texture as second-order, non-causal 
Markov random fields [15]. MRSAR uses a 21x21 
window sliding across the input image with fixed pixel 
steps (seven pixels in our experiments) in three 
resolutions. The least squares estimations are carried out 
at each resolution independently. Together with the 
standard deviation of the error term, five parameters are 
estimated for each resolution and concatenated for a 15-
dimensional feature vector. The final feature is the mean 
and covariance matrix of the 15-dimensional feature on 
all sliding windows. 

Shape Descriptors 
The object's shape plays a critical role in searching for 
similar image objects (e.g., texts or trademarks in binary 
images or specific boundaries of target objects in 
images, etc.). In image/video retrieval, one expects that 
the shape description is invariant to scaling, rotation, 
and translation of the object. Shape features are less 
developed than their color and texture counterparts 
because of the inherent complexity of representing 
shapes. MPEG-7 supports region-based and contour-
based shape descriptors [2]. However, these kinds of 
shape descriptors rely on the shape quality of shape 
extraction processes.  

Recently, shape context has been proposed as a global 
shape descriptor, and it has demonstrated great success 
in image matching, recognition, and retrieval [11, 12]. It 

contains two steps: shape extraction and feature 
formulation. In practice, the shape can be provided by 
boundary detector, edge detector, or segmentation 
boundary. Our implementation adopts the simplest 
Canny edge detector. For each shape point p, it 
calculates the distance r and orientation  between the 
point p and other shape points, and then it quantizes the 
pair (r, ) into nine bins of a log-polar coordinate as 
shown in Figure 2. The 9-bin histogram is used to 
represent features at point p. Finally, the histogram of 
each selected key point is flattened and concatenated to 
form the context description of the shape.  

Figure 2: An example of shape context for the 
reference point  

Localization Descriptors 
Local descriptors for regions of interest have proved to 
be very successful in applications such as object 
recognition, image/video retrieval, and matching 
different views of object and scene [12]. They are 
distinctive, robust to occlusion, and do not require 
segmentation. The idea is to detect image regions that 
are covariant to a class of transformations, and these 
regions are then used as support regions to compute 
invariant descriptors. MPEG-7 contains a region locator 
and spatial-temporal locators [2]. In this paper we only 
discuss one of the most widely used localization 
descriptors: the scale-invariant feature transform (SIFT), 
which is a known invariant to changes in illumination, 
image noise, scaling, and small changes in viewpoint 
[13].  

SIFT feature detection can be divided into four steps. 
The first step detects local extrema in scale-space. SIFT 
progressively blurs the input image with the Gaussian 
kernel, resulting in a series of blurred images. Then, 
each blurred image is subtracted from its direct 
neighbors (called scale space) to produce a new series 
of difference of Gaussian (DoG) images. Thereafter, a 
specific blob detection is conducted at each pixel in the 
image by comparing the pixel to its eight direct 
neighbor pixels and 18 neighbor pixels from direct 
neighbored blur images in the scale space. The second 
step localizes key points from the extrema in scale space 
by removing some lower-contrast and noise points. The 
third step assigns orientation for each key point, and 
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computes histograms of gradient directions in a 16x16 
window at each key point. The fourth step formulates 
the key point descriptor, which is a 128-dimensional 
vector of the normalized histogram. 

Motion Descriptors 
There are four motion descriptors: camera motion, 
motion trajectory, parametric motion, and motion 
activity in MPEG-7, which characterize 3-D camera 
motion parameters, temporal evolution of key points, 
the motion of regions, and the intensity or pace of 
motion, respectively [2]. Some MPEG video 
compression methods already encode macro-block level 
motion vectors. However, when the pixel-level or 
object-level motion estimation is required, we must 
resort to other techniques such as optical flow. 

As motion can be represented as vectors originating or 
terminating at pixels in a digital image sequence, optical 
flow denotes a vector field defined across the image 
plane that can wrap images from previous to the next 
[14]. Estimating the optical flow is very useful in pattern 
recognition, computer vision, and other image-
processing applications. In this work, we study the 
Lucas-Kanade method, which is known as the most 
popular two-frame differential method for optical flow 
estimation. This method tries to calculate the motion 
between two image frames that are taken at times t and 
t+ t at every pixel position. As a pixel at location (x, y, 
t) with intensity I(x, y, t) will have moved by x, y, and 
t between the two frames, optical flow assumes that 

parts of the objects are the same at the two time slices, 
i.e., ),,(),,( tyxIttyyxxI . With first-
order Taylor expansion of the left side, and omitting 
higher-order terms, we have the basic constraint 

0tyyxx IVIVI . The Lucas-Kanade method 
assumes that the flow ),( yx VV  is constant in a small 
window with n pixels, and then it yields n linear 
equations when taking the n pixels into the basic 
constraint. Since there are more equations than unknown 
variables (i.e., n>2), the system is over-determined and 
can be solved by the least squares method.  

OPTIMIZATION AND 
PARALLELIZATION METHODOLOGY 
In this section, we present an optimization and 
parallelization methodology, characterize different 
schemes and issues in parallelization, and provide some 
insights on how to parallelize these video analysis 
features on a multi-core processor. 

Serial Performance Optimization 
Before diving into the parallelization study, we first 
describe several optimization techniques to improve the 
application�s performance. Some optimization can 
improve both serial and parallel performance. Following 
we show some widely used techniques we used in a 
CBVIR application optimization: 

Generic optimization techniques, like loop 
optimizations, etc. 

SIMD optimization to leverage the data-level 
parallelism (DLP) architecture features provided by 
the modern processor. 

Cache-conscious optimization to improve data 
locality. This is more pronounced for the parallel 
program due to a reduction of last-level cache 
misses as well as off-chip bandwidth demands. 

Besides manual code optimization, we also extensively 
use Intel® performance libraries to improve performance. 
The libraries include the Intel® Performance Primitives 
(IPP) [16] and the Intel® Math Kernel Library (MKL) 
[17]. For example, Gabor features use the function 
fftwf_execute to execute discrete Fourier transform for 
Gabor filters. To achieve better performance we modify 
the linked library from the open sourced FFTW library 
to the Intel MKL. The FFTs in the MKL are highly 
optimized for the latest Intel dual-core and quad-core 
processors and can provide significant performance 
gains over alternative libraries for medium and large 
transform sizes. 

Parallelism and Parallel Scheme Study 
Usually, thread-level parallelism can be exploited in 
different ways. There are two primary decomposition 
methods in the design of a parallel program, i.e., data 
decomposition and task decomposition methods. The 
former divides the computations among multiple threads 
based on the different sections of data. The latter 
operates on a set of tasks that can run in parallel. Both 
types of parallelism can be used in the same program 
and no one method is always better than the other. 
However, in a CBVIR system, the majority of the work 
is conducted on 2-D images, which have abundant data 
parallelism at the picture-level, row-level, and even 
pixel-level. The selection of data parallelism is a natural 
choice to make use of the inherent parallelism. Further, 
to meet the real-time processing capability for these on-
line video applications, it is important to extract the 
fine-grained parallelism within each image instead of 
exploiting the coarse-grained parallelism at the frame 
level. 
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We perform a detailed analysis on these visual features, 
and we restructure the data and code in order to 
facilitate the use of threading models. In the following 
section, we use several examples to demonstrate how to 
design proper parallel schemes for CBVIR applications.  

The major work of the color correlogram consists of 
counting the color histograms for each pixel. The most 
straightforward way to do this is to partition the image 
into several tiles and have each tile accumulate the color 
data individually. To mitigate the lock contention 
overhead, in contrast to maintaining only a single 
histogram buffer, each thread is allocated a local 
histogram buffer to store the counting data individually. 
At the end of the parallel region, a reduction operation 
is conducted to accumulate the private data in each 
thread. To replicate the thread-private local buffers, we 
need an additional 20KB of memory per thread. In this 
way, we reduce the synchronization overhead and 
achieve better scalability performance. The pseudo code 
is shown in Figure 3: 

Figure 3: The color correlogram code example 

As shown in Figure 4, the parallelization of Gabor can 
be conducted at different granularities, such as filter 
level and FFT level. As we need to convolute images 
with multiple filters and transform them into frequency 
domains, the most straightforward way to do this is to 
perform coarse-grained-level parallelization on these 
independent filters. The filter-level parallelization 
scheme can make full use of the underlying processing 
capabilities with minimal effort. However, it has to 
prepare local buffers and construct an FFT plan for each 
filter. This leads to much larger memory consumption, 
however, and its working set cannot fit well into the 
last-level cache on a multi-core processor. In addition, 
the parallelism is also limited by the number of filters, 
e.g., in Gabor we only have 30 (5x6) filters: when the 
thread number goes beyond 16, it will incur significant 
load imbalance. Therefore, exploiting fine-grained 
parallelism within each filter is also equally important to 
better express the inherent parallelism. There are three 
kernels: convolution process, inverse FFT transform, 
and magnitude computing within each filter iteration. 

They can all be parallelized in a fine-grained fashion. As 
depicted in Figure 4, the parallelization of the 
convolution and magnitude computing kernels is 
straightforward. The FFT procedure is also internally 
parallelized by the MKL. The FFT-level parallelization 
holds a smaller working set by maintaining only one 
data copy for all the filters, which greatly improves the 
cache locality performance and reduces the off-chip 
memory bandwidth requirements. However, it suffers 
from fine-grained parallelization overhead and some 
non-parallel regions, e.g., the preparation stage in the 
FFT kernel. These will hurt the overall scaling 
performance. Therefore, we make a detailed comparison 
between these two parallel schemes, and we choose the 
one which has the best scaling performance in the final 
experiments. 

Figure 4: Gabor parallelism selection 

When designing a proper parallel scheme for an 
application, the best parallel scheme may not come from 
the best optimized serial algorithm. OpticalFlow (LK 
method [14], in OpenCV), uses a round-robin buffer to 
store seven rows of image data and traverses the image 
in a top-down manner. It has a very good data locality 
performance. However, the effort for parallelization is 
not trivial because the data in the buffer written by one 
thread will be used by another thread. We, therefore, 

 Filter level parallelization
#pragma omp parallel for dynamic 
for(int i=0; i<filter_number; i++) 
{ 
    for(int k=0; k<image_size; k++) 
        convolution(i,k); 

    fftwf_execute(inverse_FFT_plans[i]); 
    for(int k=0; k<image_size; k++) 
        compute_magnitude(i,k); 
} 
 FFT level parallelization
for(int i=0; i<filter_number; i++) 
{ 

#pragma omp parallel for schedule(static) 
    for(int k=0; k<image_size; k++) 
        convolution(k); 

    // fftwf_execute is parallelized in the Intel  MKL 
    fftwf_execute(inverse_FFT_plan); 

#pragma omp parallel for schedule(static) 
    for(int k=0; k<image_size; k++) 
        compute_magnitude(k); 
} 

malloc_local_histogram_array(); 
#pragma omp parallel 
{ 
    #pragma omp for schedule(dynamic) nowait 
    for(int y=0; y<height; y++) 
        for(int x=0; x<width; x++) 
     calc_correlogram(y, x); 
} 
merge_result_to_global_ histogram_array(); 
free_local_histogram_array(); 
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need to use locks to protect this buffer. Frequent use of 
locks deteriorates the scaling performance. To break the 
data dependency among the threads, we use the original 
algorithm without employing an intermediate buffer for 
serial program acceleration. It turns out that we achieve 
much better scaling performance by simply performing 
parallelization at the row level. 

To summarize, to obtain the desired parallel 
performance, the optimum parallelism depends on the 
decomposition method used and whether it resulted in 
the highest scalability performance, and it also depends 
on the data manipulation techniques and whether they 
efficiently improve the cache and memory utilizations. 
In addition, when a serial algorithm is not easy to 
parallelize in a straightforward way, we may resort to 
other ways to change the data structure and the control 
flow, or even modify the algorithm to make it more 
amenable to parallelization. 

Parallel Performance Optimization 
After studying the parallelism in the CBVIR 
applications, we further enhance their performance on 
multi-core processors. We use several Intel® software 
tools to analyze the parallel programs. For instance, we 
specify parallelism using OpenMP directives and 
compile using the Intel compilers. We use the Intel®

Thread Checker [18] to test the correctness of the 
program, and the Intel® Thread Profiler [18] to collect 
parallel metrics for bottleneck identification. 
Furthermore, to understand the cache behavior, we use 
the Intel VTune� Performance Analyzer [19] to collect 
different levels of cache data. 

In parallelizing the CBVIR applications, we identify the 
parallel bottlenecks and classify them into three 
categories: 

Load imbalance. Load imbalance in a parallel 
section is a function of the variability of the size of 
the tasks and the number of tasks. For moderate 
multi-core processors, it is essential to keep all the 
cores busy by load balancing the tasks and 
minimizing overhead. If one core spends more time 
than the other cores working, the unbalanced load 
becomes a limiting factor for performance. In 
CBVIR, we use several techniques to improve the 
load balance performance, e.g., in MRSAR, a 2-
dimension loop is merged into one dimension to 
enlarge the independent tasks. For almost all the 
workloads, we use a dynamic scheduling policy to 
minimize the load imbalance. Particularly, in SIFT, 
we manually use a �guided� scheduling policy, and 
the task size is chosen depending on the tasks 
within each parallelization loop. Since the tasks 
vary greatly in each iteration when the image in 

SIFT is downscaled, a guided scheduling policy 
helps to balance the size of tasks and scheduling 
overhead. 

Synchronization overhead. Often threads are not 
totally independent, which forces the program to 
add synchronization to guarantee the execution 
order of the threads. The frequent synchronization 
calls and the associated waiting operations will 
degrade the scaling performance on multi-core 
processors. Generally the synchronization is present 
in the form of critical section, lock, and barrier in 
the OpenMP implementation. In CBVIR, we largely 
eliminate the locks by carefully selecting the proper 
parallelism, e.g., we design a lock-free mechanism 
in the color correlogram to reduce the 
synchronization overhead. The shared histogram 
buffer is replicated into several private data copies. 
Each thread operates on each local data copy non-
exclusively to avoid the mutual access of the shared 
histogram buffer. In addition, we make careful use 
of buffer manipulation for each thread, since 
frequent memory allocation/deallocation operations 
will cause severe lock contentions in the heap, and 
these requests are essentially run in serial in a 
parallel region. 

Cache efficiency and memory bandwidth. Good 
cache efficiency becomes even more important 
when using multi-core processors, since the 
maximum bus bandwidth remains unchanged. All 
cores collectively share a fixed-memory bandwidth; 
thus, it is important to design algorithms that are 
cache-conscious and can efficiently utilize the 
multi-core processing capability. In CBVIR, we 
designed the parallel programs with the cache 
performance in mind. We choose the most 
favorable granularity in terms of cache performance, 
where fine-grained threads are more cache-friendly 
than the coarse-grained ones, because more often 
they can make full use of data sharing instead of 
replicating buffers for each thread. In MRSAR, 
sometimes the data access patterns for a 2-D matrix 
is in column major rather than in row major. This 
breaks the spatial data locality when accessing the 
elements in the next row: the data are no longer 
contiguous. We manually transpose the 2-D matrix 
and selectively traverse the data according to the 
data access pattern. Furthermore, we use cache 
blocking techniques to improve the temporal data 
locality. We segment the whole data set into several 
tiles. This subset of data which can fit in cache is 
operated on all at once before moving on to the 
next set. Since the block of data can be processed 
several times before moving on to the next block, 
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this can significantly improve the cache locality 
performance. 

Besides these general parallel-performance-limiting 
factors, we also investigate a few more issues specific to 
multi-core processing. 

False sharing is a common pitfall in shared memory 
parallel processing. It occurs when two or more 
cores/processors are updating different bytes of memory 
that happen to be located on the same cache line. Since 
multiple cores cannot cache the same line of memory at 
the same time, when one thread writes to this cache line, 
the same cache line referenced by the other thread is 
invalidated. Any new references to data in this cache 
line by the second thread results in a cache miss and 
potentially huge memory latencies. Therefore, it is 
important to make sure that the memory references by 
the individual threads are to different non-shared cache 
lines. We manually resolve false sharing issues in two 
kernels of CBVIR, i.e., Shape Context and SIFT, by 
padding each thread�s data element to ensure that 
elements owned by different threads all lie on separate 
cache lines. False sharing problems can also be 
identified during the tuning stage using the VTune 
Performance Analyzer, either through looking at some 
specific performance counters or identifying unexpected 
sharp increases in last-level cache misses. 

Another specific performance-tuning technique is using 
a thread affinity mechanism to improve the cache 
performance. This minimizes the thread migration and 
context switches among cores. It also improves the data 
locality performance and mitigates the impact of 
maintaining the cache coherency among the 
cores/processors. Since multi-core processors are likely 
to have a non-uniform cache architecture (NUCA), the 
communication latency between different cores varies 
depending on its memory hierarchy. We use different 
thread scheduling policies to address this problem. 
When we find that a group of threads has high data 
sharing behavior, we can schedule these threads to the 
same cluster to utilize the shared cache for data transfer. 
(A cluster is a collection of closely coupled cores, e.g., 
two cores sharing the same L2 cache in an Intel®

Core�2 Quad processor is termed a cluster.) On the 
other hand, for applications with high bandwidth 
demands, we prefer to schedule the threads on different 
clusters to utilize aggregated bandwidth. For instance, in 
SIFT, after the row-based parallelization, the image 
chunk assigned to one thread/core will be used by the 
other threads. Significant coherence traffic occurs when 
the image data do not reside in cores sharing the same 
last-level cache. Therefore, thread scheduling in the 
same cluster will mitigate the data transfer between 

loosely coupled cores that do not reside in the same 
cluster. 

PERFORMANCE ANALYSIS ON 
MULTI-CORE SYSTEMS 
In this section we first show twelve typical visual feature 
extraction workloads, which are accelerated by serial 
optimization. Then we parallelize six of the most 
compute-intensive workloads with the methodology 
introduced in the previous section. We evaluate the 
performance of these workloads on an 8-core system, 
which is a dual-socket, quad-core machine, with two 
Intel Core 2 Quad processors running at 2.33GHz. Each 
socket has four cores, and each core is equipped with a 
32KB L1 data cache and a 32KB L1 instruction cache. 
The two cores on one chip share a 4MB L2 unified 
cache. The maximum FSB bandwidth is 21GB/s. 

For the workloads studied in this work, we carefully 
choose the data sets to represent realistic scenarios. All 
the experiments are based on the TRECVID 2005 [20] 
developing data sets. The 141st and 142nd video 
sequences are chosen to evaluate the performance, 
which consists of around one hour of MPEG-1 
(352x240 in resolution) videos and 791 key frames. The 
evaluations are directly performed on the extracted key 
frames. 

Serial Performance Improvement 
As shown in Figure 5, more than half of the workloads 
are formerly slower than real-time, i.e., 30 frames per 
second (FPS), in the serial performance on an 8-core 
system. After a series of optimizations, these kernels 
achieved an average of 3.3x speedup, about 60% of 
which came from using the Intel highly optimized 
libraries and the SIMD optimization. Even so, five 
workloads, Correlogram, MRSAR, Gabor, SIFT, and 
OpticalFlow, are still slower than real time. To harness 
the power provided by a multi-core system through 
exploiting thread-level parallelism, we further 
parallelized these workloads and analyzed their 
performance on an 8-core system. In addition, to make 
our work more comprehensive, we also included a 
representative shape descriptor, Shape Context, in the 
parallelization study. 
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Figure 5: Serial processing speed (FPS) of CBVIR 
workloads on an 8-core system 

Performance Scalability Analysis 
These six workloads scale very well as the number of 
threads increases, as shown in Figure 6. Four of them 
exhibit almost linear speedups and two achieve quite 
respectable speedups. That is, CBVIR workloads can 
efficiently use the computational power provided by 
multi-core processors. 
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Figure 6: Scalability of parallel CBVIR workloads 
on an 8-core system 

To fully understand the scaling limiting factors on an 8-
core system, we characterize the parallel performance 
from the high-level general parallel overheads, e.g., 
synchronization penalties, load imbalance, and 
sequential regions, to the detailed memory hierarchy 
behavior, e.g., cache miss rates and FSB bandwidth. 

We profile them with the Intel Thread Profiler to see 
their general parallel limiting factors. From Figure 7, we 
can see that the parallel region dominates in the 
execution time breakdown, which suggests these 
CBVIR workloads expose good parallel performance 
metrics. However, some workloads, especially SIFT, 
suffer a lot from load imbalance when the number of 
threads increases to four and eight, which leads to the 
poor speedup of SIFT. If we assume the parallel region 
can scale perfectly, Gabor and SIFT should achieve 
theoretical speedups of 7.6 and 6.2, respectively, on 

eight cores. The theoretical speedups are much higher 
than the practical results shown in Figure 6. Therefore, 
we believe the scalability of our workloads is also 
limited by some other factors. 
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Figure 7: Execution time breakdown 

Besides the general scalability performance factors, the 
memory subsystem also plays an important role in 
identifying the scaling performance bottlenecks. For 
further assurance, we get the memory-hierarchy micro-
architectural statistics with the Intel VTune Performance 
Analyzer as shown in Figure 8. The figure shows that 
L1 cache miss rates vary little with the number of 
threads, while for some workloads L2 cache 
performance varies a lot when scaling the thread count. 
The L2 cache misses for most workloads is reduced 
when the number of threads increases to four or eight, 
because the system offers a larger size L2 cache from 
4M to 8M and 16M. Since SIFT has a hierarchical 
parallel decomposition method, the downscale image 
has to be broadcast to all the private L2 caches after one 
iteration, thereby incurring significant cache coherency 
misses when we scale to four and eight cores.   



Intel Technology Journal, Volume 11, Issue 4, 2007 

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 357 

1T 2T 4T 8T

Correlogram MRSAR Gabor
ShapeContext SIFT OpticalFlow

0%

2%

4%

6%

8%

10%

12%

1T 2T 4T 8T

Correlogram MRSAR Gabor
ShapeContext SIFT OpticalFlow

Figure 8: L1/L2 cache miss rates 

Generally speaking, memory bandwidth is a key factor 
that may potentially limit the speedup on multi-core 
systems. Figure 9 shows how the average FSB 
bandwidth utilization varies with the number of threads. 
The bandwidth usages of all workloads are far below the 
saturated FSB bandwidth capacity supported by the 
system. This seems to indicate bus bandwidth does not 
limit the scalability of our workloads on an 8-core 
system. However, the scalability is limited by the 
instantaneous bandwidth usage for some workloads, 
such as Gabor. We perform interval sampling of the 
memory subsystem behavior over time. Figure 10 shows 
a representative phase of the bandwidth usage over time 
for this workload on eight cores. Several modules in this 
workload have higher bandwidth requirements than the 
saturated bandwidth provided by the system.  
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Figure 9: Average FSB bandwidth utilization vs. 
number of threads 
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Figure 10: Bandwidth usage over time for eight-
threaded Gabor workload 

In addition to studying the memory sub-system 
performance, we also use different thread-scheduling 
mechanisms to further improve their performance on a 
multi-core system. As mentioned earlier, there are three 
scheduling policies: �clustered,� �non-clustered� and 
�os.� The �clustered� policy tries as much as possible to 
schedule all the threads to the closely-coupled cores; 
e.g., it schedules two threads to two cores residing in 
one chip. In contrast, the �non-clustered� policy tries to 
schedule the threads to the loosely coupled cores; e.g., it 
schedules two threads to two cores on two chips instead 
of one chip. The �os� is the default scheduling policy of 
the operating system, and it is non-aware of the 
hardware architecture. 

Our results show that some workloads are sensitive to 
the scheduling policy. Figure 11 shows the scaling 
performance of Gabor and SIFT using different 
scheduling policies on an 8-core system. Gabor has 
better performance with the �non-clustered� policy, 
while SIFT has better performance with the �clustered� 
policy. This is because Gabor has a higher bandwidth 
requirement as shown in Figure 9. The �non-clustered� 
policy can make full use of the available L2 cache 
capacity and bandwidth, resulting in better cache 
performance as depicted in Figure 12. SIFT has better 
performance with the �clustered� policy because the 
data can reside in the same L2 cache all the while 
between several consecutive parallel regions. Otherwise, 
the data generated by one thread have to be transferred 
to another core that does not reside in the same L2 
cache, yielding significant cache coherency traffic and 
slowing down the program. As shown in Figure 12, the 
�clustered� policy in SIFT has far fewer L2 cache 
misses and a lower FSB bandwidth utilization compared 
to the �non-clustered� policy. Hence, all the 
experimental results in the previous sections are 
obtained by choosing the best policy for each individual 
workload. 
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Figure 11: Effects of thread scheduling for two 
feature extraction workloads on an 8-core system 
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CONCLUSION 
CBVIR is becoming one of the best solutions to retrieve 
useful information from today�s massive amount of 
video data. To accelerate CBVIR on multi-core systems, 
we optimize and parallelize a set of representative visual 
feature extraction workloads in CBVIR. We analyze 
their scalability and memory performance on an 8-core 
system and draw several conclusions.  

Firstly, we choose appropriate parallel schemes for the 
applications in CBVIR. Exploring different levels of 
parallelism and choosing the most favorable are 
necessary to enable optimal performance on multi-core 
systems. Secondly, we incrementally optimize the 
parallel performance by mitigating the parallel 
performance limiting factors, e.g., load imbalance 
removal, designing cache-friendly data structures, using 
different thread-scheduling policies, etc. Thirdly, we 
find most of the CBVIR applications have very good 
scaling performance. The main scalability limiting 
factors for SIFT and Gabor are load imbalance and the 
amount of available system bandwidth. Finally, the 
CBVIR system is significantly accelerated on multi-core 
systems and offers enhanced performance to satisfy user 
requirements. 
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ABSTRACT 
In this era of computing, each processor package has 
multiple execution cores. Each of these execution cores is 
perceived as a discrete logical processor by the software. 
Any operating system that is optimized for Symmetric 
Multi Processing (SMP) and that scales well with the 
increase in processor count can instantaneously benefit 
from these multiple execution cores. 

Design innovations in multi-core processor architectures 
bring new optimization opportunities and challenges for 
the system software. Addressing these challenges will 
further enhance system performance. The process (task) 
scheduler, in particular, one of the critical components of 
system software, is garnering great interest. 

In this paper, we look at how the different multi-core 
topologies and the associated processor power 
management technologies bring new optimization 
opportunities to the process scheduler. We look into 
different scheduling mechanisms and the associated 
tradeoffs. Using the Linux* Operating System as an 
example, we also look into how some of these scheduling 
mechanisms are currently implemented. 

As the multi-core platform is evolving, some portions of 
the hardware and software are being reshaped to take 
maximum advantage of the platform resources. We close 
this paper with a look at where future efforts in this 
technology are heading. 

INTRODUCTION 
In multi-core processor packages, each processor package 
contains two or more execution cores, with each core 
having its own resources (registers, execution units, some 
or all levels of caches, etc.). Even if the applications are 
not multi-threaded, multi-tasking environments will 
benefit from multi-core processors. 

Design innovations of multi-core processor architectures 
mainly span the area of shared resources (caches, power 
management, etc.) between cores, core topologies 
(number of cores in a package, relationship between them, 
etc.), and platform topology (relation between cores in 
different packages, etc.). These innovations bring new 
opportunities and challenges to the system software. To 
exploit optimal performance, components such as the 
process scheduler need to be aware of the multi-core 
topologies and the task characteristics. 

We start with a brief look at how the traditional process 
scheduler works and how the earlier challenges in the 
Symmetric Multi Processing (SMP), Non Uniform 
Memory Access (NUMA), and Simultaneous Multi- 
Threading (SMT) environments were addressed. We look 
at multi-core topologies with respect to core, cache, power 
management, and platform topologies. In the current 
generation of mainstream multi-core processors, the 
execution cores in a given processor package are 
symmetric and our focus in this paper is on such 
processors. Asymmetric multi-core processors are beyond 
the scope of this paper. We examine the need for a multi-
core-aware process scheduler and look into the 
opportunities in this area. We examine different 
scheduling mechanisms for multi-core platforms under 
different load scenarios and the associated tradeoffs. With 
Linux as an example, we examine how some of these 
scheduling mechanisms are currently implemented. 
Finally, we close this paper with a look at current and 
future research in this field. 

PROCESS SCHEDULER 
The process scheduler, which is a critical piece of the 
operating system software, manages the CPU resource 
allocation to tasks. The process scheduler typically strives
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Figure 1: Process scheduling domain topology setup in the Linux kernel 

for maximizing system throughput, minimizing response 
time, and ensuring fairness among the running tasks in the 
system. 

Process priority determines the allotted time (time-slice) 
on a CPU and when to run on a CPU. In SMP, the process 
scheduler is also responsible for distributing the process 
load to different CPUs in the system. 

In NUMA platforms, memory access time is not uniform 
across all the CPUs in the system and depends on the 
memory location relative to a processor. System software 
tries to minimize the access times, by allocating the 
process memory on the node that is closest to the CPU 
that the process is running on. As such, the cost associated 
with the process migration from one NUMA node to 
another is big. As a result, the process scheduler needs to 
be aware of NUMA topology. NUMA schedulers use 
some heuristics (such as tolerating more load imbalances 
between nodes and tracking the home node of each 
process, where the majority of process memory resides) to 
minimize the migrations and costs associated with the 
migrations. 

In SMT (for example, Intel® Hyper Threading 
Technology), most of the core execution resources are 
shared by more than one logical processor. The process 
scheduler needs to be aware of the SMT topology and 
avoid situations where more than one thread sibling on 
one core is busy, while all the thread siblings on another 
core are completely idle. This will minimize the resource 
contention, maximize the utilization of CPU resources, 
and thus maximize system throughput. As the logical 
thread siblings are very close to each other, process 
migration between them is very cheap and as such, 
process load balancing between them can be done very 
often. 

The process scheduler needs to consider all these 
topological differences while balancing process loads 
across different CPUs in the system. For example, the 2.6 
Linux kernel process scheduler introduced a concept 
called scheduling domains [8] to incorporate the platform 
topology information into the process scheduler. The 
hierarchical scheduler domains are constructed 
dynamically depending on the CPU platform topology in 
the system. Each scheduler domain contains a list of 
scheduler groups having a common property. The load 
balancer runs at each domain level, and domain properties 
dictate the balancing that happens between the scheduling 
groups in that domain. On a high-end NUMA system with 
SMT capable processors, there are three scheduling 
domains, one each for SMT, SMP, and NUMA, as shown 
in Figure 1. 

MULTI-CORE TOPOLOGIES 
In most of the multi-core implementations, to make the 
best use of the resources and to make inter-core 
communication efficient, cores in a physical package 
share some of the resources. For example, the Intel®

Core�2 Duo processor has two CPU cores sharing the 
Level 2 (L2) cache (Intel® Advanced Smart Cache), as 
shown in Figure 2. The Intel® Core�2 Quad processor 
has four cores in a physical package with two last-level 
(L2) caches. Each of the L2 caches is shared by two cores. 
Going forward, as more and more logic gets integrated 
into the processor package; more resources will be shared 
between the cores on the die. 

If only one of the cores in the package is active, a thread 
running on that core gets to use all the shared resources, 
resulting in maximum resource utilization and peak 
performance for that single thread. If multiple threads or 
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processes run on different cores of the same physical 
package and if they share data that fit in the cache, then 
the shared last-level cache between cores will minimize 
the data duplication. This sharing, therefore, results in 
more efficient inter-thread communication. 

Multi-core Power Management 
In typical multi-core configurations, all cores in one 
physical package reside in the same power domain 
(voltage and frequency). As a result, the processor 
performance state (P-state) transitions for all the cores 
need to happen at the same time. If one core is busy 
running a task at P0, this coordination will ensure that 
other cores in that package can't enter low-power P-states, 
resulting in the complete package at the highest power P0 
state for optimal performance. 

Figure 2: Dual-core package with shared resources 

Since each execution core operates independently, each 
core block can independently enter a processor power 
state (C-state). For example, one core can enter lower 
power C1 or C2 while the other executes code in the 
active power state C0. The common block will always 
reside in the numerically lowest (highest power) C-state of 
all the cores. For example, if one core is in C2 and another 
core is in C0, the shared block will reside in C0. 

Intel Dynamic Acceleration Technology 
Intel® Dynamic Acceleration Technology [7], available in 
the current Intel Core 2 processor family, increases the 
performance of single-threaded applications. If one core is 
in deep C-state, some of the power normally available to 
that idle core can be applied to the active core while still 
staying within the thermal design power specification for 
the processor. This increases the speed at which a single-
threaded application can be executed, thereby improving 
the performance of the application. 

MULTI-CORE SCHEDULING 
Shared resource topologies in multi-core platforms pose 
interesting challenges and opportunities to the system 
software. Shared resources between cores like shared 
cache hierarchy, provide good resource utilization and 

make inter-core communication efficient. However, 
heterogeneous data access patterns of memory-intensive 
tasks running on the cores sharing caches can lead to 
cache contention and sub-optimal performance. 
Contention and its impact on performance depend on the 
resources shared, the number of active tasks, and the 
access patterns of the individual tasks. A fair amount of 
CPU time allocated to each task by the process scheduler 
will not essentially translate into efficient and fair usage of 
the shared resources. The main challenge before the 
process scheduler is to identify and predict the resource 
needs of each task and schedule them in a fashion that will 
minimize shared resource contention, maximize shared 
resource utilization, and exploit the advantage of shared 
resources between cores. To achieve this, the process 
scheduler needs to be aware of multi-core, shared resource 
topology, resource requirements of tasks, and the inter-
relationships between the tasks. 

In the following sections, we describe some of the multi-
core scheduling mechanisms; challenges in exploiting 
optimal performance, and power savings in the SMP 
platform. We analyze the impact of Intel Dynamic 
Acceleration Technology and processor power 
management technologies on these scheduling 
mechanisms. We also look into some of the heuristics that 
today�s system software can exploit to minimize the 
shared resource contention among the cores sharing 
resources. 

Experimental Setup 
For our experiments and analysis, we primarily considered 
a dual-package SMP platform, with each package having 
two cores sharing a 4MB last-level cache. Different 
workloads such as SPECjbb2000, SPECjbb2005, 
SPECfp_rate of CPU2000, and an in-memory database 
search (IMDS) are considered for our analysis. These 
workloads are widely known except for the IMDS one. 
The IMDS workload is a non-standard workload 
simulating CPU and memory behavior of a typical 
database search algorithm. This workload is considered 
because of its high cycles per instruction (CPI) 
characteristic when compared to the other workloads used 
in our experiments. Run to run variations of these 
workloads are within 1%. Each of these workloads was 
run three times and the middle number was used for the 
performance comparisons. 

Some of these workloads (SPECjbb2000, IMDS, for 
example) spawn threads sharing a process address space 
and some (like SPECfp_rate) spawn different processes, 
each having its own address space. Platform under test is 
run at 3GHz processor frequency unless otherwise stated 
and doesn�t support Intel Dynamic Acceleration 
Technology. 
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Scheduling on Cores Sharing Resources vs. 
Not Sharing 
In this workload scenario, all the considered workloads 
were run in a 2-task configuration. For example, the 
SPECjbb workload was run in two warehouse 
configurations (where each warehouse is represented by a 
user-level thread), and the SPECfp rate was run in the 
base configuration with two users (where each user is 
represented by an individual process). Similarly, the 
IMDS workload used two threads (belonging to the same 
process) to process the database queries. 

Table 1: Performance difference between scheduling 
two tasks running on two cores using different last-

level cache vs. scheduling on cores sharing same last-
level cache. The higher % means that scheduling on 

cores with different caches is better. 

Workloads 

% Performance improvement 
with scheduling on different 
last-level caches when 
compared to scheduling on 
same last-level caches 

SPECjbb2005 13.22 
SPECjbb2000 5.19 
SPECfp_rate 
(base2000) 16 
IMDS 1 

With two running threads on a dual-core, dual-package 
SMP platform, the main choices before the process 
scheduler are to schedule the two running threads on the 
cores in the different (Option 1) or same (Option 2) 
packages. Option 1 will result in maximum resource 
utilization, and as the other core in each package is idle, 
there is no shared resource contention. Option 2 will result 
in one busy package (with both the cores busy running the 
tasks), and the other package being completely idle. While 
this is not the best solution from the resource utilization 
and shared resource contention (tasks running in one 
package may contend for shared resources between cores) 
perspective, this mechanism will take advantage of the 
data sharing between tasks, if any. 

Table 1 shows the results of different workloads with 
different scheduling mechanisms on a dual-core, dual-
package SMP platform. As shown in the table, all the 
workloads benefited from distributing the load to two 
different packages. This indicates that the considered 
workloads take advantage of the increased available cache 
and the shared resource (primarily last-level cache) 
contention is playing a significant role when both the tasks 
run on the same package. Moreover, the contention is 
present whether the running tasks belong to the same 
process (where there is some data sharing, for example, 

SPECjbb) or different processes (for example, 
SPECfp_rate of cpu2000). Among the workloads, the 
IMDS workload in fact performs almost the same, 
irrespective of the threads running on cores sharing the 
same or different packages. This is primarily because the 
workload doesn�t exhibit good locality of memory 
references and as such doesn�t get affected much by 
sharing the last-level cache between two threads. 

Last-level Cache Size Influence on Shared Resource 
Contentions 
Hardware designers and researchers are looking into 
different options (like optimum size, layout of shared 
resources, design and management of these shared 
resources) and solutions for maximizing resource 
utilization and at the same time minimizing the resource 
contention. Moore's law [6] is dictating the cache size 
increase on Intel® platforms from generation to 
generation. The current x86 generation of 65nm 
processors features up to 4MB of L2 cache in the dual-
core version and up to 8MB in the quad-core version, and 
the leading-edge 45nm generation [1] of x86 processors 
sports up to 6MB of L2 cache in the dual-core version and 
up to 12MB in the quad-core version. The degree of cache 
associativity is increasing with the increase in cache size, 
leading to hit rate improvement and better utilization. 

Figure 3 shows the impact of the last-level cache size on 
the process scheduling mechanisms for the workloads we 
considered in Table 1. While the platforms considered for 
this experiment are quite different from each other 
(different characteristics and properties), each of the 
platforms under test is configured to work as dual-core, 
dual-package platforms. Each of these platforms has a 
different last-level cache size shared by two cores that 
reside in the processor package. 

The data in Figure 3 show that for the given task load (two 
tasks in our experiments), as the shared resources among 
the cores increases, one can expect that the amount of 
shared resource contention will decrease accordingly. For 
example, SPECfp_rate of CPU2000 was performing the 
same whether the two tasks were running in the same 
package or in different packages with 16MB of last-level 
cache. The impact of last-level cache size is fairly 
negligible for the two threaded IMDS workloads. As 
noticed before, this is primarily because of the poor 
locality of memory references. 
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Figure 3: Impact of last-level cache size on the 
performance differences between scenarios doing 

scheduling on cores using same vs. different last-level 
cache. The smaller number indicates less resource 

contention in the scenarios when tasks run on cores 
sharing last-level cache. 

Influence of Intel Dynamic Acceleration Technology 
Intel Dynamic Acceleration Technology is currently 
available in Intel Core 2 Duo mobile processors. Let us 
look into the influence of this technology on process 
scheduling, if this support is available in the future for the 
server platforms supporting multiple processor packages. 

Using the Linux kernel CPUfreq subsystem, we simulated 
the concept of Intel Dynamic Acceleration Technology in 
today�s mainstream dual-package platform based on Intel 
Core 2 Duo processors. With the help of CPUfreq 
subsystem, the processor frequency can be changed to a 
specific value that the processor supports. Using this 
infrastructure, 3GHz-capable processors were run at 
2.66GHz (a bin down) in the mode when the process 
scheduler schedules the two running tasks on two cores 
belonging to the same package. In the mode when the 
scheduler selects two different packages for running the 
two tasks, processors were run at 3GHz (as Intel Dynamic 
Acceleration Technology will enhance the speed of the 
active core, while one or more cores in the same package 
are idle). Figure 4 shows the performance numbers, which 
include the effects of running on different caches and at 
improved processor speeds as a result of dynamic 
acceleration. 
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Figure 4: Performance difference between running 
two tasks on a) cores running at 2.66GHz, sharing 
last-level cache vs. b) cores running at 2.66GHz, 

different last-level cache vs. c) cores running at 3GHz, 
different last-level cache 

Figure 4 shows that the dynamic acceleration favors the 
scheduling policy of distributing the load among the 
available processor packages for optimal performance. In 
the presence of dynamic acceleration, IMDS workloads 
also benefited when the two IMDS threads were run on 
different packages. 

Scheduling for Optimal Power Savings 
Consider the same dual-package experimental system that 
we looked at before. If we have two runnable tasks, as 
observed in the previous sub sections, resource contention 
will be minimized when these two tasks are scheduled on 
different packages. But, because of the P-state 
coordination in the current generation of multi-core 
platforms, we are restricting other idle cores in both 
packages to run at higher power P-state 
(voltage/frequency pair). Similarly, the shared block in 
both packages will reside in higher power C0 state 
(because of one busy core). This will result in a non-
optimal solution from a power-savings perspective. 
Instead, if the scheduler picks the same package for both 
tasks, other packages with all cores being idle, will 
transition into the lowest-power P and C-state, resulting in 
more power savings. For optimal power savings, the 
number of physical packages carrying the load needs to be 
minimized. But as the cores share resources (like last-level 
cache) as seen in previous sections, scheduling both tasks 
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to the same package may or may not lead to optimal 
behavior from a performance perspective. 

Task Group Scheduling 
In the workload scenario where all the shared resources 
and packages are busy, the main challenge for the process 
scheduler is to schedule the tasks in such a way that will 
minimize the shared resource contention and take 
maximum advantage of the shared resources between 
cores. 

If all the running tasks are resource intensive, the 
challenge before the process scheduler is to identify the 
tasks that share data and schedule them on the cores 
sharing the last-level cache. This will help minimize the 
shared resource contentions and shared data duplication. 
This will also result in efficient data communication 
between the tasks that share data. The system software has 
some inherent knowledge about data sharing between 
tasks. For example, threads belonging to a process share 
the same address space and as such share everything (text, 
data, heap, etc.). Similarly, processes attached to the same 
shared memory segment will share the data in that 
segment. The process scheduler can do optimizations such 
as grouping threads belonging to a process or grouping 
processes attached to the same shared memory segment 
and co-schedule them in the cores sharing the package 
resources. To highlight the group-scheduling potential, we 
ran two instances of the SPECjbb workload, with each 
instance having two warehouses (each warehouse 
represented by a thread) on the dual-core, dual-package 
platform, considered before. Table 2 shows that grouping 
the threads belonging to a process onto the same package 
takes advantage of shared resources between cores and 
helps minimize the shared resource contentions. 

Table 2: Performance improvement seen when threads 
belonging to a process scheduled to two cores residing 
on same package when compared to scheduling them 
on different packages. Workload considered is with 
two instances of SPECjbb in a two warehouse (two 

processes with two threads each) configuration. 

Workloads % Throughput improvement 

SPECjbb2005 10 
SPECjbb2000 7.5 

Scheduling Challenges 
For exploiting optimal performance, the process scheduler 
needs to schedule tasks in such a way that all the platform 
resources are used effectively. And this effective 
mechanism varies with workload, processor, platform 
topology, and system load. 

Some workloads will exploit optimal benefit when the 
tasks are scheduled on the cores that share resources. For 
example, the IMDS workload performed the same, 
whether the tasks were run on cores sharing resources or 
not. For such workloads, in the presence of idle packages, 
by scheduling the tasks on the cores residing in a package, 
optimal performance and power-savings will be achieved. 
Similarly, workloads that share data and take maximum 
advantage of the shared resources between cores will 
achieve optimal performance when run on cores that are 
closer. For example, if the data shared between the tasks 
are modified and exchanged often or if one executing task 
prefetches data for the other task, optimal performance 
will be achieved when the tasks are scheduled closer to 
each other. 

For some workloads, even in the presence of data sharing, 
distributing the load among the available idle packages 
will lead to optimal performance. This distribution will 
lead to shared data duplication in the caches of the 
packages carrying the load. If the shared data are mostly 
read-only, this data duplication still may be better than 
leaving the shared resources idle. In this scenario, tasks 
can take advantage of the increased shared resources 
(caches in our considered setup) that are available and can 
cache more shared data and/or task private data. 

The presence of technologies, like dynamic acceleration, 
influence the process scheduling mechanisms for some 
workloads in the presence of idle cores and packages. As 
seen in Figure 4, when the load is uniformly distributed 
among the available packages, the resulting core speed 
increases, resulting from dynamic acceleration, helped 
achieve optimal performance. For some workloads, even 
in the presence of dynamic acceleration, running on the 
cores sharing caches may give optimal performance. 

In future, as more cores are integrated into the processor 
package, the available shared resources will also increase 
accordingly. As such, the amount of shared resource 
contention will be minimal when few of the available 
cores in the package are busy (similar to what we see in 
Figure 3). The challenge for the process scheduler is to 
track the shared resource usages and the associated 
contentions. In such a scenario, the scheduler can 
minimize the processor packages carrying load, and when 
there is a contention for the shared resources, the 
scheduler can distribute the load to minimize resource 
contentions. To address the challenge, the process 
scheduler needs to track the micro-architectural 
information like the task�s cycles per instruction (CPI) and 
how the task�s CPI is affected by the co-running tasks in 
the other cores sharing resources. An individual task�s CPI 
will also help the process scheduler in making decisions 
such as which tasks benefit most from the increased core 
speed that the dynamic acceleration technology brings in. 
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In a scenario where all the shared resources and packages 
are busy, the process scheduler needs to minimize the 
resource contention for exploiting optimal performance. 
For example, grouping CPU-intensive and memory-
intensive tasks onto the cores sharing the same last-level 
cache will result in minimized cache contention. Task 
characteristics and behavior can be predicted using the 
micro-architectural history of a task by using performance 
counters. In the absence of such micro-architectural 
information, the system software can also use some 
heuristics to estimate the resource requirements. For 
example, one can use the number of physical pages that 
are accessed (using the Accessed bit in the page tables that 
manage virtual to physical address translation in x86 
architecture) for certain intervals or use the tasks memory 
Resident Set Size (RSS). The process scheduler can use 
this information and group schedule tasks on the cores 
residing in a physical package with the goal of minimizing 
shared resource contention. 

MULTI-CORE AWARE LINUX* PROCESS 
SCHEDULER 
In this section, we consider the Linux operating system as 
an example and see how some of these scheduling 
challenges are addressed. A new scheduler domain 
representing multi-core characteristics has been added to 
the domain hierarchy of the Linux process scheduler. This 
scheduler domain helps identify cores sharing the same 
package and sharing resources, and it paves the way for 
the multi-core scheduler enhancements. 

Figure 5: Scheduling mechanism showing four running 
tasks scheduled on four L2s on a dual package with 

Intel Core 2 Quad processors 

By default, the current Linux kernel scheduler distributes 
the running tasks equally among the available last-level 
caches in an SMP domain. Within logical CPUs that share 
the last-level cache, the scheduler distributes the load 
equally, first among the available CPU cores and then 

among the available logical thread siblings. For example, 
consider a dual package SMP platform with Intel Core 2 
quad processors with four running tasks. The multi-core-
aware Linux process scheduler distributes these four 
running tasks among the four L2�s that are available in the 
system as shown in Figure 5. This scheduling mechanism 
will lead to maximized resource utilization and minimized 
resource contention. And as observed in the previous 
sections, this will lead to optimal performance for most of 
the workloads. On platforms with dynamic acceleration 
technology, this mechanism will also result in optimal 
performance by making the cores run faster. 

Figure 6: Scheduling mechanism showing four running 
tasks scheduled on four cores in one single package on 

a dual package with Intel Core 2 Quad processors 

For optimal power savings or for workloads that benefit 
most by running the tasks on the cores sharing resources, 
the Linux kernel provides a tunable that can be set by an 
administrator. When this tunable is set, the process 
scheduler will try to minimize the packages in an SMP 
domain that carry the load. It will first try to load all the 
logical threads and cores in the package before 
distributing the load to another package. This policy is 
referred to as a power-savings policy. For example, 
consider the same four-task scenario on a dual package 
SMP platform with Intel Core 2 Quad processors. With 
the power-savings tunable set, all the four tasks will be run 
on the four cores residing in a single package as shown in 
Figure 6. Minimizing the number of packages that are 
active will lead to optimal power savings. As seen before, 
in the absence of dynamic acceleration support, this 
scheduling mechanism will not have any impact on 
performance for workloads such as the IMDS workload 
considered in Table 1. 

Scheduling policy decisions are left to the administrator in 
the hope that the target workloads will be analyzed offline 
and the tunable will be set based on optimal performance 
and/or power-savings requirements. By default, the 
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process scheduler takes a non-aggressive approach when 
distributing the load among the available shared resources. 

RESEARCH WORK 
Quite a bit of recent research in the process scheduler area 
is to do with trying to address multi-core scheduling 
challenges. For example, Micro Architectural Scheduling 
Assist [2] talks about tracking the shared resource usage 
with performance-monitoring counters and using this 
information for effective distribution of shared resource 
load. Another body of work in this area is the cache-fair 
algorithm [4] that tries to address the application 
performance variability that depends on the other co-
scheduled threads in the same multi-core package. This 
algorithm uses an analytical model to estimate the L2 
cache miss rate a thread would have if the cache were 
shared equally among all the threads, i.e., the fair miss 
rate. The algorithm then adjusts the thread�s share of CPU 
cycles in proportion to its deviation from its fair miss rate. 
This algorithm showed a reduction of the effect of the 
schedule-dependent miss rate variability on the thread�s 
runtime. The L2-conscious scheduling algorithm [5] 
separates all runnable threads into groups, such that the 
combined working set of each group fits in the cache. By 
scheduling a group at a time and making sure that the 
working set of each scheduled group fits in the cache, this 
algorithm reduces the cache miss ratios. 

While the research shows promising results, it is far from 
being implementation ready and from inclusion in 
commercial operating systems. The main challenges of 
these algorithms include the dependency of the 
performance-monitoring counters (which are not designed 
primarily for process scheduling and which vary from 
processor generation to processor generation), the 
different algorithm phases (data collection phase and 
usage phase), applicability of mathematical models to 
wide heterogeneous workloads, and above all, 
incorporating this knowledge into the traditional process 
scheduler that works across wide multi-core topologies 
and platforms. One of the current focus areas is to turn 
this research into reality. 

Most of the software algorithms exploit the differences in 
the individual task characteristics and their resource 
usages. Scenarios such as those in which all the tasks in 
the system have similar characteristics and resource 
requirements cannot be addressed by software alone with 
the current generation of multi-core hardware. CQoS [3] 
presents a new cache management framework for 
improving shared cache efficiency and improving system 
performance. It proposes options for priority 
classification, priority assignment, and priority 
enforcement to heterogeneous memory access streams. 
Hardware solutions like these help maximize resource 

utilization and minimize the impact on performance in the 
presence of shared resource contention. 

As more logic gets integrated into the processor die, future 
work in this area will focus on the increasing shared 
resources between cores on the die and their interactions 
with the system software; the process scheduler in 
particular. In the area of multi-core processor power 
management, one of the areas that is making rapid 
progress is the reduction of idle processor power. In future 
platforms, as the power consumed by idle cores decreases 
and becomes independent of the busy cores in the 
packages, scheduling mechanisms for power savings need 
to be revisited. 

CONCLUSION 
In this paper, we showed that optimal performance can be 
exploited by making the process scheduler aware of the 
multi-core topologies and the task characteristics. Multi-
core scheduling mechanisms and challenges are analyzed 
in an SMP environment. We looked at the impact of Intel 
Dynamic Acceleration Technology on these workload 
scenarios. Some of the group-scheduling heuristics that 
can enhance optimal performance are presented. We 
looked at how some of these multi-core scheduling 
mechanisms are implemented in the Linux operating 
system. 

In future, one can expect the process scheduler to be 
micro-architectural aware for exploiting optimal 
performance. Similarly, one can expect that the research 
proposals and solutions in this area will drive future 
hardware and platform designs that will minimize the 
effects of shared resource contention and also assist the 
software in making and enforcing the right decisions. 
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