
The Foundations for Scalable Multi-Core
Software in Intel® Threading Building BlocksInside the Intel® 10.1 Compilers: New Threadizer

and New Vectorizer for Intel® Core™2 Processors

Volume 11 Issue 04 Published, November 15, 2007 ISSN 1535-864X DOI: 10.1535/itj.1104

Multi-Core Software

Intel®

Journal

http://developer.intel.com/technology/itj/index.htm

This Intel Technology Journal (Volume 11, Issue 4, Q4 2007) focuses on multi-core software and takes a detailed and
comprehensive look at important tools and methodologies to successfully thread many types of applications.

Parallelization Made Easier with
Intel® Performance-Tuning Utility

Parallel Software Development with
Intel® Threading Analysis Tools

Intel® Performance Libraries: Multi-Core-Ready
Software for Numeric-Intensive Computation

Methodology, Tools, and Techniques to Parallelize
Large-Scale Applications: A Case Study

Future-Proof Data Parallel Algorithms and Software
on Intel® Multi-Core Architecture

Accelerating Video Feature Extractions in
CBVIR on Multi-Core Systems

Process Scheduling Challenges in the
Era of Multi-Core Processors

Volume 11 Issue 04 Published, November 15, 2007 ISSN 1535-864X DOI: 10.1535/itj.1104

Intel®
Multi-Core Software

Articles

Foreword v

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 263

Inside the Intel® 10.1 Compilers: New Threadizer and New
Vectorizer for Intel® Core�2 Processors

Xinmin Tian, Software and Solutions Group, Intel Corporation
Ernesto Su, Software and Solutions Group, Intel Corporation

David Kreitzer, Software and Solutions Group, Intel Corporation
Hideki Saito, Software and Solutions Group, Intel Corporation

Rakesh Krishnaiyer, Software and Solutions Group, Intel Corporation
Abhay Kanhere, Software and Solutions Group, Intel Corporation

John Ng, Software and Solutions Group, Intel Corporation
Chu-Cheow Lim, Mobility Group, Intel Corporation
Somnath Ghosh, Mobility Group, Intel Corporation

Index words: multi-core, optimizing compiler, threadization, vectorization, advanced optimization

ABSTRACT
The fast introduction of the Intel® Core�2 Duo and Quad
processors to the mass market has drawn attention to
threadization (a.k.a. parallelization) and vectorization of
the existing code in many application domains. In fact,
multi-core processor vendors are eager to enable their
users to exploit various levels of parallelism in order to
harness the additional compute resources of multi-core
processors. The Intel® C++/Fortran compiler provides an
essential tool for unleashing the power of Intel Core 2
Duo and Quad processors. This is accomplished by means
of high-level loop optimizations and scalar optimizations
to exploit multi-core processors and single-instruction-
multiple-data (SIMD) instructions, combined with
advanced code generation, that is built on an intimate
knowledge of micro-architectural performance aspects.

In this paper we outline the design and implementation of
a new threadizer and vectorizer inside the Intel® 10.1
compilers, and we also provide an overview of the
enhanced high-level loop optimizations and the low-level
code generation used to obtain higher performance on
platforms based on Intel Core 2 Duo and Quad processors.
Significant performance gains are shown using the SPEC
CPU2006* suite running on a system configured with two
Intel® quad-core processors.

INTRODUCTION
The aggressive delivery of Intel® multi-core processors to
the mass computer market shows that, as the performance

improvements from continuously increasing clock
frequencies start to taper off, other architectural advances
that reduce latency or increase memory bandwidth are
gaining importance [9]. In particular, since packaging
densities are still growing, integrating multiple processors
on a single die and using SIMD extensions are becoming
more widespread [1]. The Intel Core 2 Duo and Quad
processors are equipped with a rich set of micro-
architectural and architectural features to boost
performance:

dual-core or quad-core on a single chip
wider execution units for Streaming SIMD Extensions
(SSE, SSE2, SSE3)
a set of new instructions referred to as Supplemental
Streaming SIMD Extensions 3 (SSSE3)
advanced smart shared L2 cache among cores on the
same chip

Due to the complexity of modern processors, compiler
support has become an important part of obtaining higher
performance. Most importantly, to assist programmers in
leveraging all parallel capabilities of Intel�s new
processors, the Intel C++/Fortran compiler provides an
essential tool for unleashing the power of Intel multi-core
processors and SIMD instructions by means of high-level
optimizations and advanced code generation.

The Intel compilers perform automatic optimizations of
programs using threadization [10], vectorization [1, 2, 5],
classical loop transformations (e.g., distribution, unrolling,
interchange, fusion) [7, 11, 12], scalar optimizations such

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 264

as constant propagation, Partial Dead Store Elimination
(PDSE), Partial Redundancy Elimination (PRE), copy
propagation, Inter-Procedural Optimizations (IPO) [7],
and advanced machine code generation techniques that
together yield a significant performance gain compared to
the default level of optimization. The contributions of the
new threadizer and vectorizer are as follows:

The new threadizer yields up to 4.63x speedup (with
8 cores) by exploiting thread-level parallelism from a
serial program in the SPEC* CPU2006 benchmark
suites. Overall, the auto-threadization delivers a
15.45% gain (geomean with 8 cores) for SPEC
CFP2006 suite and a 12.17% gain (geomean with 8
cores) for SPEC CINT2006 suite.

The new vectorizer yields up to 1.28x performance
speedup by exploiting SIMD-type vector parallelism
from a serial program in the SPEC CPU2006 suites.
Overall, the auto-vectorization delivers a 5.11% gain
(geomean) for SPEC CFP2006 suite and a 2.01%
gain (geomean) for SPEC CINT2006 suite.

The rest of this paper is organized as follows. First, we
provide some basics on the Intel® Core� micro-
architecture. Then, we discuss the design and
implementation of the new threadizer and vectorizer,
respectively, inside the Intel 10.1 compilers.
Subsequently, we discuss the loop optimizations and
enhancements made to support efficient threadization and
vectorization. We also present an overview of advanced
code generation for the Intel Core 2 Duo and Quad
processors. Finally, we provide performance results using
the SPEC CPU2006 industry-standard benchmark suite
built with the Intel 10.1 C++ and FORTRAN compilers.

INTEL® CORE� MICRO-
ARCHITECTURE
Intel Core micro-architecture is the foundation for all new
Intel® architecture-based desktop, mobile, and server
multi-core processors. This state-of-the-art multi-core
processor with optimized micro-architecture delivers a
number of innovative features that have set new standards
for energy-efficient performance. In this section we
outline a few innovations relevant to this paper. A more
detailed description can be found in the Intel® literature
[4].

Figure 1: Quad-core processor schematic

Figure 1 shows a schematic of the Intel Core 2 Quad
processor. Two independent cores with their own private
L1 caches reside on a single die. Two shared Level 2 (L2)
caches, referred to as the Intel® Advanced Smart Cache,
work by sharing the L2 cache between cores so that data
are stored in one place accessible by the cores. Sharing the
L2 cache enables a core to dynamically use up to 100% of
the available L2 cache, thus optimizing cache resources.

The quad-core processor is equipped with Intel® Smart
Memory Access techniques that boost system performance
by optimizing available data bandwidth from the memory
subsystem and hiding the latency of memory accesses
through two techniques: memory disambiguation and an
instruction pointer-based prefetcher that fetches memory
contents to the shared L2 cache and then into each private
L1 cache before they are requested. The data prefetcher
can detect strided memory access patterns to make
accurate predictions about future load addresses.

Another key feature of Intel Core micro-architecture is the
Intel ®Advanced Digital Media Boost that can issue 128-
bit SSE instructions with a throughput of one per clock
cycle. Previous-generation Intel processors had a
sustained throughput of one instruction per two clock
cycles, typically one cycle for the lower 64 bits followed
by another cycle for the upper 64 bits. By widening
execution units to the full 128 bits, the Intel processor
effectively doubles the performance of a series of 128-bit
SSE instructions relative to previous-generation Intel
processors. In addition, the latency of various individual
128-bit SSE instructions has been reduced, and SSSE3 has
been added to extend the instruction set. As a result, more
overall performance improvements can be expected from
vectorization (i.e., transforming sequential code into
SIMD instructions).

REVAMPING THE THREADIZER
In this section, we present our new threadizer framework
that is highly integrated with our classical high-level loop
optimizations, and we describe its main components. The
strengths of the new threadizer include the following:

A new Abstract Thread Representation (ATR), based
on the concept of virtual threads, is designed to
bridge the semantic gap between high-level
representation and physical (hardware or OS) threads.
Better interaction with other high-level loop-related
optimizations gives better performance.
The new threadizer is moved downstream to take
advantage of scalar optimizations such as global
constant propagation and Single-Static-Assignment
(SSA) PRE, and some loop optimizations.
A table-driven cost model simplifies maintenance and
future extensibility.

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 265

Effective runtime threadization control and multiple
schedule types such as static, dynamic, guided, and
runtime are supported.

The threadizer in the Intel compiler serves as a single
module that covers different languages (C++ and Fortran),
architectures (IA-32, Intel® 64, and IA-64), and operating
systems (Microsoft Windows*, Linux*, and MacOS*).

Virtual Threads
Our new threadization framework is based on the concept
of virtual threads. A virtual thread is an abstraction
above physical threads provided by hardware threads or
OS threads. Virtual threads can consist of arbitrary code
blocks and have no nesting-level constraints as long as
they obey the specified program execution order.

A virtual thread denoted as a quadruple V(, s, e, d)
corresponds to a thread with instruction entry s,
instruction exit e, data environment d, and thread id that
are assigned at runtime. An important property of a virtual
thread is its lexical nesting level, which is denoted as
depth(V(, s, e, d)). The depth is computed recursively as
follows:

When V(, s, e, d) represents a thread at the outer-most
lexical nesting level of parallel constructs, we set its
nesting level to depth(V(, s, e, d)) = 0. When V(, s, e, d)
represents a thread at an inner lexical nesting level of
parallel constructs, we set its nesting level to depth(V(, s,
e, d)) = depth(parent(V(, s, e, d))) + 1.

This lexical nesting-level property is not to be confused
with the dynamic (runtime) nesting level of the physical
threads supported by the threading runtime library.
Another property of a virtual thread is its code block type
(a loop, a region, a section, or a task) that can distinguish
different threading semantics of a virtual thread and can
guide the compiler to generate threaded code according to
the definitions of the compiler-to-runtime interface. We
say that a virtual thread is mapped to a physical thread (or
a runtime thread) when the virtual thread is assigned a
unique thread identifier at runtime. Note that a virtual
thread can be mapped to a team of physical threads for a
parallel loop and region by assigning a unique thread
identifier for each mapping.

Threadization Framework
Figure 2 outlines the new framework. The first two phases
extract thread-level parallelism within different program
scopes to construct virtual threads. The next two phases
de-virtualize virtual threads progressively to match precise
threading runtime constraints. The final phase lowers a
virtual thread to threaded Intermediate Language (IL) by
emitting calls supported by the runtime library.

Phase I: Enabling transformations and loop analysis.
This phase enables loop transformations that can increase
thread-level parallelism, improve data locality, and
identify threadizable loops within a compilation unit (or
routine). This phase is enabled with Inter-Procedural
Optimization (IPO) as well. Therefore, it is not limited to
a single compilation unit, but rather allows whole-program
parallelism extraction.

Phase II: Virtual thread graph construction. This phase
extracts thread-level parallelism captured by parallel loops
and it constructs sibling/nesting relationships between
virtual threads. In addition, it also collects private,
firstprivate, lastprivate, and reduction variables to build
the data environment d for each virtual thread.

Phase III: Devirtualization via privatization. This phase
conducts transformations for all private, firstprivate,
lastprivate, and reduction variables that are captured by
the data environment d of virtual threads. For instance,
given firstprivate(x), a local clone thr_x of global variable
x is created on the stack and initialized with the value of x.
All memory references to x in the thread are then
substituted with thr_x.

Figure 2: The new threadization framework

Phase IV: Devirtualization via loop partition. This
phase partitions a loop using the thread identifier based
on a default schedule setting, or a scheduling type and
chunk size specified with
and options. The loop partition
is represented internally with the following format:

LPARTITION (tid, sched, cs, lv, glow, gup, gstride, vlow, vup)

where tid denotes the thread identifier, sched denotes the
loop scheduling type, cs denotes chunk size, lv denotes
whether the code for computing last value is needed or not
(FALSE means last-value is not needed), glow and gup
denote the original loop lower and upper bounds, and
gstride denotes the original loop stride. The parameters
vlow and vup denote the loop�s lower and upper bounds
after loop partitioning for the virtual thread, and they are

 Enabling transformations / loop analysis

 Thread virtualization

 De-virtualization via privatization

 De-virtualization via loop partition

 Thread code generation

 Virtual threads

 Physical threads

Transition

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 266

computed by an OpenMP runtime library routine to which
we pass in the other parameters in LPARTITION.

Phase V: Threaded-code generation. This phase maps a
virtual thread to the compiler�s intermediate code such as
IL statements or intrinsics, and to OpenMP runtime library
calls according to the target platform. These statements
and calls include (i) _fork_threads call that creates
physical threads; (ii) a loop partitioning call to compute
vlow, vup based on loop information captured in the
LPARTITION of each virtual thread node; (iii) a T-entry
and T-return pair of statements for the virtual thread based
on the MET technology presented in [10].

A distinct characteristic of the new framework is that the
threadization is carefully broken down into a sequence of
transformations, each of which gradually transforms a
virtual thread IL, without a thread identifier, to a virtual
thread IL parameterized by a unique symbolic thread
identifier. This process is clearly illustrated by the
evolution of data properties and code re-structuring
through each phase.

Loop Transformations for Threadization
Under the new framework, the compiler performs all
necessary loop transformations to achieve a good data
locality while preserving and enabling threadization
opportunities. Consider the following loops from the
subroutine in
436.cactusADM of the SPEC CPU2006 benchmarks.

In Phase I, the compiler analysis proves that there are no
loop-carried data dependencies for the loops, and no data
dependencies that prevent loop fusion. Thus, the actions
taken by the compiler are to fuse the two loops first, and
then to perform the steps described in the previous
section. When threadization is done, the compiler emits a
�FUSED LOOP WAS PARALLELIZED� diagnostic. In
this example, loop fusion increases the granularity of the

parallel loop, which is an effective loop transformation to
reduce thread forking and mapping overhead. After
threadization, the vectorization phase will operate on the
virtual thread code. In this example, the compiler
continues by distributing the -loop to restrict the number
of data streams per resulting loop, which favors write-
buffer combining, and then it vectorizes the resulting
smaller loops. The compiler emits two �PARTIAL LOOP
WAS VECTORIZED� diagnostics in this case. This
indicates that an effective interaction of loop
transformations, threadization, and vectorization can
leverage the full potential of the Intel Core 2 Duo and
Quad processor to achieve higher performance.

Cost Model for Threadization
Once a threadizable loop is identified in Phase I, Phase II
forms a region within which the virtual thread will be
constructed at compile time. Additionally, as the cost of
thread activation and synchronization in a real system is in
the range of hundreds of cycles on Intel Core 2 Duo and
Quad processors, a key criterion in selecting a proper
parallel loop candidate is to minimize the overhead of
thread management.

A complementary goal is to ensure that the virtual thread,
once invoked, runs for an adequate number of cycles in
order to amortize the thread activation cost. Therefore, it
is desirable to choose a loop that iterates a reasonably
large number of times. The cost estimation is done via a
table-driven technique based on the Intel Core 2 Duo and
Quad processor instruction latency information combined
with the profiling information of basic block execution
counts. This algorithm is effective, especially when
combined with function inlining.

Runtime Threadization Control
Statically, loops that incur a large number of instruction
cycles and no loop-carried data dependencies are
identified for threadization. However, selecting an
appropriate loop for threadization requires that loop
tripcount and number of cycles taken for each iteration are
known. Often, the loop�s lower and upper bounds are
unknown at compile time, so the compiler can not
compute the tripcount statically. In general, the static cost
analysis may not provide an accurate cost estimation to
guide and guard threadization in this case. To solve this
issue, the new threadizer generates symbolic runtime test
expressions and multi-versioned loops. Assume the
symbolic tripcount expression of loop L is Etripcount(L), the
estimated execution cycles of loop body of loop L is C(L).
The following runtime tests are generated to control the
threadization at runtime:

C(L) < Thresholdpar

Etripcount(L) × C(L) < Thresholdpar

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 267

Multi-versioning is necessary for runtime threadization
control. Consider, for example, the following sequential
loop in C:

This loop is selected as a candidate loop for threading
based on loop analysis. Then, static cost analysis finds that
C(L) < Thresholdpar; however, the loop�s upper bound
(representing size) and the tripcount in the IL below
are unknown at compile time. Hence, a runtime test code

 < Thresholdpar / C(L) is generated together with two-
versioned loops. The pseudo-threaded code generated is
sketched below.

In this example, if is less than 1363, the execution will
switch to serial loop to avoid threading overhead. The
runtime threadization control is a simple yet efficient way
for parallelizing loops with unknown bounds at compile
time. We obtained good speedup by emitting multi-
versioned serial and threaded code at compile time, and
using runtime tests to select the most beneficial version to
execute in some applications.

REVAMPING THE VECTORIZER
The new vectorizer is designed to be tightly integrated
with our existing enhanced high-level loop transformation

framework. The strengths of the new vectorizer include
the following:

A new Abstract Vector Representation (AVR) is
designed to bridge the semantic gap between high-
level representation and low-level instruction.

Better interaction with the new FP-model and other
loop optimizations produces better performance.

The new vectorizer is moved downstream to use SSA
and leverage global constant propagation and
Common Sub-expression Elimination (CSE).

Table-driven type selection and code generation with
a well-tuned cost model simplify maintenance and
future extensibility.

Essentially, the vectorizer converts sequential code into a
vector form that exploits all Streaming SIMD Extensions.
Consider, for example, the following sequential loop in C:

When compiled for a target architecture that supports
SSE2, the compiler generates a vectorized loop with the
following assembly code:

Here, the compiler first recognizes a vector loop with
idiomatic saturation arithmetic and proper alignment of all
access patterns and subsequently converts the code into
appropriate SIMD instructions with vector length 16. Due
to the removal of a conditional branch relative to a
sequential implementation of the loop, in this particular
case, vectorization typically exhibits a speedup that
exceeds the vector length.

Vectorization for Streaming SIMD Extensions strongly
resembles vectorization for traditional vector architectures
[1, 11], like a pipelined vector processor. There are a few
important differences as well [2], briefly described below:

A relatively short and fixed vector length requires a
sequential �cleanup� loop to deal with the remaining
iterations, but it also makes the vector instructions
more suitable for fine-grained parallelism, as was first
advocated in [2]. The shorter vector length can also
be exploited during data dependence analysis.

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 268

A strong sensitivity to natural alignment (typically 16-
byte) requires elaborate compiler support to select,
detect, or enforce a proper alignment on memory
references.

An idiomatic instruction set requires advanced idiom
recognition in the compiler, such as detecting the
saturation addition in the example above.

Since vector lengths increase for narrower data types,
compiler analysis is required to choose the narrowest
possible data type that preserves the original meaning,
such as recognizing that all 32-bit operations on variable

 can be done in 8-bit precision. An in-depth description
of vectorization technology in the Intel C++/Fortran
compiler is given in Reference [2]. For the remainder of
this section we focus on a few specifics for the Intel Core
2 Duo and Quad processors.

Alignment Optimization
In the Intel Core micro-architecture, SIMD performance is
still rather sensitive to natural alignment. Therefore, an
important aspect of effective vectorization in the compiler
is to select, detect, and enforce a favorable alignment on
memory references. For instance, the vector loop in the
previous section may only use the efficient to
load 16 bytes of data after the compiler has proven that
both the initial alignment (alignment on entry of the loop)
and the sustained alignment (alignment preserved during
execution of a loop)1 of the memory reference a[i] is 16-
byte aligned. The less efficient should have been
used if the memory reference had an unknown alignment
or was misaligned, because using aligned data movement
instructions on unaligned memory locations yields a
program fault. The Intel compiler uses a continuously
growing assortment of alignment optimizations, including
data layout optimization, inter- and intra-procedural
alignment propagation, and loop transformations such as
static and dynamic loop peeling and multi-versioning [1].

Alignment propagation resembles classical constant
propagation, but uses a more elaborate lattice of alignment
values <2n, o>, where o denotes a non-negative offset
relative to a base 2n and corresponding jump functions.
Using a lattice of bases combined with offsets, a method
described in [2], propagates more accurate information
than just bases and ultimately offers more opportunities
for optimizations, such as peeling off unfavorable
alignments or using specific instruction sequences for a
data movement that splits a cache line. The information is
associated with all variables, not just pointers, and has

1 A vector loop using SSE always sustains an initial 16-byte alignment
for unit stride memory references. For a scalar loop, the sustained
alignment depends on the data width of these memory references.

been proven empirically to improve the accuracy of the
computed results. A variety of alignment-related
optimizations can be found in [1, 3, 6, 8].

Vectorizer Support for SSSE3
The SIMD Extensions 3 [4] extend previous generations
of SIMD extensions with sixteen new instructions that can
operate on 128-bit operands or old-style 64-bit operands
of the MMX� technology. New instructions most
commonly used by automatic vectorization are listed in
Table 1.

Table 1: SSSE3 instructions used for auto-vectorization

Instruction Suffix Description
Packed align right

Packed negation based on sign

Packed absolute value

Packed horizontal add

Packed shuffle

The instruction is used to optimize multiple
unaligned loads with a statically known offset into aligned
loads that are subsequently rearranged into the appropriate
vector format. The idiomatic instruction is
recognized in programming constructs that negate data
elements based on the sign of other data elements. The
packed absolute value instruction provides a more
compact and efficient way of vectorizing this operation
than previously-used emulation sequences. Consider, as an
example, the following loop that computes the absolute
value of all elements in an array of type .

The generated assembly code for plain SSE2 as well as
SSSE3 is illustrated below. In this case, SSE2 shows a
~20x speedup, while SSSE3 shows a ~30x speedup.

Similarly, the instruction provides a more
compact way of summing up partial results after

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 269

vectorization sum reductions [1, 2]. However, the current
micro-architectural implementation does not provide any
latency reduction over the more elaborate instruction
sequences used formerly. Finally, the instruction
provides an efficient way to perform a wide variety of data
rearranging, as illustrated with the following loop that
operates on two arrays of type .

This conversion between a little-endian and big-endian
representation of 32-bit data elements (4 bytes) can be
vectorized effectively as follows.

Here, register is pre-loaded with the appropriate
4x4 reshuffling pattern. In fact, any reshuffling of 4
consecutive bytes, even allowing for repeats, can be
similarly implemented. The instruction is also used in a
peep-hole-like optimization of various data rearranging
sequences generated by the vectorizer.

ENHANCED LOOP OPTIMIZATIONS
Besides revamping the threadizer and vectorizer, in the
Intel 10.1 compilers, a single unified framework is
designed primarily to provide better interaction among
loop optimizations, threadizer, and vectorizer. The loop
optimizations target cache and memory optimizations that
are well known in the literature such as linear loop
transformations, distribution, fusion, blocking, unroll-jam,
loop-multi-versioning, and scalar replacement [7, 11, 12].
In order to derive the maximum possible performance for
programs with effective threadization and vectorization,
individual loop optimizations are enhanced and ordered in
such a way as to achieve the best memory-locality while
retaining the property that the innermost-loop can be
efficiently vectorized. Similarly, optimizations are applied
to a loop-nest to enable the threadization of the outer loop
wherever possible, thus increasing the granularity of
parallelism and reducing the overheads.

Loop Distribution Enhancements
Loop Distribution Pass-1 is invoked to generate more
coarse-grained threadizable loops with statement re-
ordering and grouping while preserving the correctness

and perfect nested loops that enable further loop
optimizations such as interchange.

Loop Distribution Pass-2 is invoked before vectorization.
For each distributed loop, this groups together memory-
references that have required stride, data-type, and
alignment. These properties ensure efficient vectorization
of each such loop (where vectorization is legal) making
good use of the available micro-architectural resources.
Loop distribution heuristics also trade off maximally
distributing for vectorization against improving cache
reuse for vectorized loops. Intel Core micro-architecture
features more write-combining buffers and larger data
caches with higher associativity than previous generations.
This enables better performance through vectorization
without excessive loop distribution, thereby reducing
vectorized loop overheads.

Loop Multi-versioning
The multi-versioning helps to deal with two potential
roadblocks that prevent a loop from being vectorized or
parallelized. The first roadblock is when the loop contains
references with cross-iteration data dependencies. The
second one is when the references� cross-iteration strides
are unknown, e.g., dope vector based arrays in Fortran90.
In either case, the multi-versioning module generates code
that checks whether �required conditions� hold during
runtime. It also generates different copies of the loop such
that each copy is guarded under a different condition, and
optimized according to the guarded condition.

For example, if a loop has references a(i) and b(i), and
data dependence cannot prove that a and b do not overlap,
there are two possible ways that multi-versioning can help.
If the compiler decides that vectorization is important,
versioning will generate a test to ensure that a(0) and b(0)
are at least 16 bytes apart. If this condition is tested true at
runtime, a version of the loop that has been vectorized will
be run. Otherwise, a non-vectorized version of the loop
will be run; the latter version may still be optimized in
other ways (e.g., unroll). Both loop versions and the
runtime test have been pre-generated into the executable
by the compiler. The multi-versioning module generates
the different loop versions, and it annotates their
properties with internal directives that are then used by the
vectorizer.

On the other hand, if threadization is more important,
versioning will generate a test to ensure that the arrays do
not overlap (using the initial addresses of a and b, and the
number of loop iterations). The loop version guarded by
this independence test can then be safely parallelized.

Similarly, if a loop has references to dope vector-based
arrays (e.g., assumed shape arrays), versioning can
generate checks to examine the stride value of the arrays

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 270

from the dope vectors during runtime. If the strides are all
one, the loop may then be efficiently vectorized (assuming
other vectorization conditions pass.)

The versioning uses a heuristic to decide on the number of
the tests and number of versions of the loops, to reduce
the impact on executable size.

Loop Blocking and Unrolling
The loop blocking and loop unrolling phases have been
improved for the Intel Core micro-architectures. Based on
our experience with application code, the enabling
decisions and the optimization parameters have been
modified to make the best use of the new cache
architecture. The phase ordering of the blocking phase has
also been modified with respect to the vectorization phase
to extract the maximum benefit possible from these
optimizations.

Vectorizer modifies simple inner loops to create vector
loops. This leads to complex loop structure that is not
amenable to blocking�there are several cases where
vectorization degrades performance when compared to
just loop blocking. Another loop-blocking phase has been
added before vectorization, so that blocking can make
better use of the cache, and later vectorization on the
innermost blocked loop can further improve parallelism
across loop iterations.

The loop blocking phase has also been enhanced in our
new unified framework to get the best out of the Intel
Core micro-architecture. Blocks or Tiles are used to hold
data in the cache and are the stride factors for the outer
block-controlling loops. Block or Tile-size selection
algorithms are also improved. Our primary focus now is to
improve cache locality at the L2 cache level. We try to
enable more register re-use by performing unroll-jam
(a.k.a register-blocking) of outer loops inside the inner
blocked loops.

The mechanism that controls the enabling or disabling of
the loop unrolling has been improved. Unrolling can lead
to register pressure resulting in poor code performance
due to register spills and fills. Besides the obvious cases,
it is hard to predict at compile-time whether loop unrolling
would help or degrade performance. Our implementation
makes this decision based on various program and
architectural parameters. Determination of loop unrolling
factors also needs to be aware of register pressure in the
inner loop. Our experience shows that small unroll factors
are effective in most cases.

Loop Fusion and Interchange
Loop fusion combines adjacent conforming nested loops
into a single nested loop. This optimization can improve
the cache context and increase the amount of computation,

thus increasing the granularity of threadization reduced
overheads. Loop interchange is done in such a way as to
improve threadization at the outer level, and at the same
time, keep the memory accesses in the innermost-loop
unit-strided to enable efficient vectorization.

ADVANCED CODE GENERATION
The Intel compiler uses its intimate knowledge of the Intel
micro-architecture to guide instruction selection tradeoffs.
The compiler takes advantage of efficient instructions and
instruction forms while avoiding inefficient instruction
sequences. In addition, a restricted instruction scheduling
form is used to enhance performance.

Instruction Selection
The bit test instruction was introduced in the i386�
processor. In some implementations, including the Intel
NetBurst® micro-architecture, the instruction has a high
latency. The Intel Core micro-architecture executes in
a single cycle, when the bit base operand is a register.
Therefore, the Intel C++/Fortran compiler uses the
instruction to implement a common bit test idiom when
optimizing for the Intel Core micro-architecture. The
optimized code runs about 20% faster than the generic
version on an Intel Core 2 Duo processor. Both of these
versions are shown below:

C source code

Generic code generation

Intel Core micro-architecture code generation

Variable-length instructions pose a challenge to the
processor�s instruction decoder, which must identify
where one instruction ends and the next begins. Some
instruction prefixes change the length of their instructions
and cause a significant decoder stall in the Intel Core
micro-architecture. Integer instructions that take
immediate arguments and use the operand size override
prefix suffer from this penalty, because the size of
the immediate operand is changed by the prefix. The
compiler avoids these instructions, as shown below:

C source code

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 271

Generic code generation

Intel Core micro-architecture code generation

The vector unpack low instructions are convenient for
gather and broadcast operations, which occur frequently in
vector code. With the exception of the 64-bit to 128-bit
instructions and , unpack
instructions are costly in the Intel Core micro-architecture
compared to alternative code sequences. The Intel
Fortran/C++ compiler favors alternative code sequences
when optimizing for the Intel Core micro-architecture.
Two examples are given below:

Example I: Broadcast the least-significant single-
precision floating-point vector element.

 Generic code generation

 Intel Core micro-architecture implementation

Example II: Gather four single-precision floating-point
elements from locations 128 bytes apart.

 Generic code generation

 Intel Core microarchitecture implementation

The conditional move instruction presents an
interesting dilemma for the compiler. It can achieve
dramatic performance improvements when replacing a
poorly predicted branch. On the other hand, replacing a
branch with may lengthen the critical path and
cause a slowdown in cases where the branch is well
predicted. Branch predictability is difficult to determine at
compile time, so the decision of whether to use a branch

or conditional move is made by rough heuristics that can
often yield poor results. The Intel Core micro-architecture
simplifies this tradeoff by providing a low-latency

 implementation compared to previous
generations. When optimizing for the Intel Core micro-
architecture, the Intel compiler more aggressively
eliminates branches in favor of . This strategy
yields a substantial speedup for some applications.

Instruction Scheduling
In a dynamically scheduled environment like the Intel
Core micro-architecture, the effectiveness of instruction
scheduling at compile time is greatly reduced. Using its
knowledge of machine internals, however, the Intel
C++/Fortran compiler is able to schedule instructions to
avoid micro-architectural pitfalls and to take advantage of
micro-architectural features.

As described earlier, the Intel Core micro-architecture
features a data prefetcher to speculatively load data into
the caches. The L2 to L1 cache prefetcher uses a 256-
entry table to map loads to load address predictors. This
table is indexed by the lower eight bits of the instruction
pointer (IP) address of the load. Since there is only one
table entry per index, two loads offset by a multiple of 256
bytes cannot both reside in the table. If a conflict occurs in
a loop and involves a predictable load, the effectiveness of
the data prefetcher can be drastically reduced. In a critical
loop, this can cause a significant reduction in overall
application performance.

The compiler attempts to avoid IP prefetch conflicts in
inner loops. It first identifies and classifies load
instructions, distinguishing between loads that are likely to
benefit from prefetching and those that are not. For
example, loads from constant addresses will not benefit
from prefetching. An IP prefetch conflict between two
such loads is unlikely to affect performance. After
identifying and classifying loads, the compiler inserts
padding such that each prefetchable load has a modulo-
256 address that is different from every other load in the
inner loop.

The Intel Core micro-architecture can combine an integer
compare () or test () instruction and a
subsequent conditional jump instruction (into a
single micro-operation through a process called macro-
fusion. For macro-fusion to occur between and ,
the jump condition must test only the carry and/or zero
flags, which is typically the case for unsigned integer
compare and jump operations. The Intel Fortran/C++
compiler takes advantages of the macro-fusion feature by
generating code that is likely to expose macro-fusion
opportunities by detecting compare and jump instructions
that are candidates for fusion. During scheduling, it forces
these compare and jump instructions to be adjacent. Note

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 272

that this strategy conflicts with a traditional latency-based
strategy, which tends to separate producers (the compare
in this case) from consumers (the conditional jump).

PERFORMANCE RESULTS
In this section we provide performance validation of the
new threadizer and vectorizer using the industry-
standardized computationally intensive benchmark suite
SPEC* CPU2006 in which the CINT2006 suite comprises
12 integer C and C++ benchmarks, and the CFP2006 suite
comprises 17 floating-point Fortran, C and C++
benchmarks, all derived from real-life applications that
have up to 932818 lines of code. The SPEC CPU2006
benchmarks are widely used and considered to be
representative of a wide spectrum of application domains.
The multi-core system used to measure performance is
configured with two 2.67 GHz Intel Core 2 Quad
processors with a 4M L2 cache, an 8 GB RAM, and
booted with an SuSE Linux OS.

Figure 3: SPEC CPU2006 speedup estimates with
auto-threadizer based on internal measurements

To evaluate the effectiveness of the new threadizer, we
first measured the baseline performance with the option
� (i.e.,

). Then, we added the switch to
measure the speedup over the fully optimized baseline
performance. The contributions from threadization are
shown in Figure 3, which shows the speedup of
benchmarks in the SPEC CFP2006 suite delivered by the
auto-threadizer. The 15.45% geomean gain of all
speedups is shown in the last column. Even though default
base optimizations already obtain acceptable performance,
auto-threadization of the Intel C++/Fortran compiler
further boosts the performance of a number of benchmarks
substantially, going up to a 2.52x speedup for a
436.cactusADM. No benchmark suffered a noticeable
slowdown due to the auto-threadizer.

Auto-converting a sequential program into threaded code
becomes an increasingly important technique to leverage
multi-core platforms in a transparent manner. Besides the
gain delivered for SPEC CFP2006 performance, the auto-
threadizer delivered a 12.17% gain (geomean) for SPEC
CINT2006 on top of fully optimized serial code by using

and options
that contributed to a 4.63x performance speedup for the
462.libquantum.

Figure 4: SPEC CPU2006 speedup estimates with
auto-vectorizer based on internal measurements

Vectorization also forms a significant part of performance
improvements. To evaluate the effectiveness of the new
vectorizer, we first measured the baseline performance
using � but with the vectorizer off (fast_xT_novec).
Then, we measured the performance with the vectorizer
enabled (fast_xT) to get the speedup over fast_xT_novec.
The contributions made by vectorization are shown in
Figure 4, which shows the speedup of benchmarks in the
SPEC CFP2006 suite delivered by the auto-vectorizer.
The 5.11% geomean gain is shown in the last column.
Even though baseline optimizations already provide high
performance, the auto-vectorizer of the Intel C++/Fortran
compiler further boosts the performance of a number of
benchmarks substantially, going up to a 1.29x speedup for
436.cactusADM. Albeit generally biased towards floating-
point applications, the advanced code generation makes a
noticeable contribution to integer applications: a 33.6%
gain. In other cases, experience shows that it makes
performance less sensitive to minor changes in the
generated code.

CONCLUSION
The Intel 10.1 C++/Fortran compiler features various
advanced compiler optimizations to leverage the enhanced
capabilities of Intel Core 2 Duo and Quad processors.
Threadization exploits thread-level parallelism in serial
programs; vectorization exploits SIMD-based vector-level
parallelism; and advanced code generation exploits

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 273

important micro-architectural features for gaining a higher
performance. This paper presented the implementation of
the new threadizer and vectorizer and an overview of
advanced code generation that specifically leverages the
Intel Core micro-architecture.

Performance validation was conducted with a large set of
real-life industry-standard benchmarks. It was shown that
advanced optimizations of the Intel C++/Fortran compiler
can obtain further improvements over optimized code,
with contributions from threadization, vectorization, loop
optimizations, and target-specific code generation.
Furthermore, these optimizations were added in a manner
that still allows for our overall goal of continuing to
generate code that runs well across all processors.

More information on Intel high-performance compilers for
Intel Architectures can be found at the Intel website
http://intel.com/software/products/.

ACKNOWLEDGMENTS
The authors thank Aart J.C. Bik, Peng Tu, Kannan
Narayanan, Sumesh Udayakumaran and all members of
the loop optimizer team in Intel Novosibirsk Compiler
Lab for their direct and indirect contributions and for their
productive collaboration throughout the new threadizer
and vectorizer development projects. Special thanks to
Aart J.C. Bik for his technical leadership as the vectorizer
architect in his tenure at Intel. We also appreciate the
opportunities and guidance from Kevin J. Smith, Suresh
K. Rao, Wei Li, Bill Savage, and other members of the
management of the Intel Compiler Lab. In addition, we
thank all members of the Intel C++/Fortran compiler
teams and the anonymous reviewers whose valuable
feedback has helped the authors greatly improve the
quality of this paper.

REFERENCES
[1] Aart J.C. Bik, David Kreitzer, Xinmin Tian,

�Compiler optimizations for the Intel® Core�2 Duo
Processor,� submitted to International J. of Parallel
Programming, April 2007.

[2] Aart J.C. Bik, The Software Vectorization Handbook,
Intel Press, Hillsboro, Oregon, 2004.

[3] A. Eichenberger, P. Wu, K. O�Brien, �Vectorization
for SIMD Architectures with Alignment Constraints,�
in Proceedings of the ACM SIGPLAN 2004
Conference on Prog. Lang. Design and
Implementation, 82-93, Washington DC, June 2004.

[4] Intel Corporation, Intel Architecture Software
Developer�s Manual, Volume 1: Basic Architecture,
Intel Corp. at http://developer.intel.com/, 2007.

[5] Andreas Krall and Sylvain Lelait, �Compilation
Techniques for Multi-media Processors,�
International Journal of Parallel Programming,
28(4):347�361, 2000.

[6] Samuel Larsen and Saman Amarasinghe, �Exploiting
Superword Level Parallelism with Multimedia
Instruction Sets,� in Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation, Vancouver, B.C., June 2000.

[7] Steven Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers, San
Mateo, California, 1997.

[8] Ivan Pryanishnikov, Andreas Krall and Nigel
Horspool, �Pointer Alignment Analysis for
Processors with SIMD Instructions,� in Proceedings
of the 5th Workshop on Media and Streaming
Processors, San Diego, CA, December 2003.

[9] John D. McCalpin, �Memory Bandwidth and
Machine Balance in Current High Performance
Computers,� IEEE Computer Society Technical
Committee on Computer Architecture TCCA,
Newsletter, December 1995.

[10] Xinmin Tian, Milind Gikar, Aart J.C. Bik, and Hideki
Saito, �Practical Compiler Techniques on Efficient
Multithreaded Code Generation for OpenMP
Programs,� The Computer Journal, Vol. 48, Issue 5,
pps. 558�601, 2005.

[11] Michael J. Wolfe, High Performance Compilers for
Parallel Computing, Addison-Wesley, Redwood
City, California, 1996.

[12] Somnath Ghosh, Abhay Kanhere, Rakesh
Krishnaiyer, Dattatraya Kulkami, Wei Li, Chu-Cheow
Lim, John Ng, �Integrating High-Level Optimizations
in a Production Compiler: Design and
Implementation Experience,� in Compiler
Construction, 12th International Conference, CC
2003: 303�319, Warsaw, Poland, April 2003.

AUTHORS� BIOGRAPHIES
Xinmin Tian is a Principal Engineer and Compiler
Architect with Intel�s Software and Solutions Group. He
leads parallelization, vectorization, OpenMP compiler and
transactional memory compiler development projects for
IA-32, Intel® 64 and IA-64 multi-core processors in the
Intel Compiler Lab. He holds a Ph.D. degree in Computer
Science from Tsinghua University. He joined Intel in
1999. His e-mail is xinmin.tian at intel.com.

Ernesto Su is a Senior Staff Engineer with Intel�s
Software and Solutions Group. He received a B.S. degree
from Columbia University and M.S. and Ph.D. degrees
from the University of Illinois at Urbana-Champaign, all

Intel Technology Journal, Volume 11, Issue 4, 2007

Inside the Intel® 10.1 Compilers: New Threadizer and New Vectorizer for Intel® Core�2 Processors 274

in Electrical Engineering. He joined Intel in 1997 and is
currently working on High-Performance Optimizations
including loop optimizations, parallelizing compilers, and
OpenMP. His e-mail is ernesto.su at intel.com.

David Kreitzer is a Senior Staff Engineer with Intel�s
Software and Solutions Group. He received his B.S.
degree in Electrical Engineering from the University of
Virginia in 1994 and his M.S. degree in Electrical and
Computer Engineering from Carnegie Mellon University
in 1996. He joined Intel as a rotation engineer in 1996 and
in 1997 began working on compilers for IA-32 processors.
He leads IA-32 and Intel 64 code generator development
projects in the Intel Compiler Lab. His e-mail is
david.l.kreitzer at intel.com.

Hideki Saito is a Staff Engineer with Intel�s Software and
Solutions Group. He received a B.E. degree in Information
Science in 1993 from Kyoto University, Japan and a M.S.
degree in Computer Science in 1998 from the University
of Illinois at Urbana-Champaign. Prior to joining Intel, he
was a Ph.D. candidate at UIUC. He is currently working
on vectorization, parallelization, performance analysis and
OpenMP. His e-mail is hideki.saito at intel.com.

Rakesh Krishnaiyer is a Senior Staff Engineer with
Intel's Software Solutions Group. He received his B.Tech.
degree in Computer Science and Engineering from IIT
Madras in 1993 and his M.S. and Ph.D. degrees from
Syracuse University in 1995 and 1998, respectively.
Currently, he leads the High-Level Optimizer project in
the Intel Compiler Lab. His e-mail is rakesh.krishnaiyer at
intel.com.

Abhay Kanhere is a Staff Engineer with Intel's Software
Solutions Group. He received a B.E. in Computer
Engineering from Gujarat University, India and a Master
of Science in Computer Science from the Indian Institute
of Science, India. He joined Intel in 2000 and has been
working on the high-level optimizer. He is currently a
Project Lead in Emerging Products Lab, targeting
compiler optimizations for Intel Architecture. His e-mail
is abhay.kanhere at intel.com.

John Ng is a Principal Engineer with Intel�s Software and
Solutions Group. Currently, he manages the High
Performance Optimizer and Interprocedural Optimizer
team. He received a B.S. degree in Mathematics from
Illinois State University and an M.S. degree in Computer
Science from Rutgers University. He joined Intel in 1996.
Prior to that, he worked on memory optimizations,
vectorization, parallelization, and threading libraries at
IBM for 15 years. His email is john.ng at intel.com

Chu-Cheow Lim is a Senior Staff Engineer with Intel�s
Mobility Group. He received a B.Sc. degree in
Mathematical and Computational Sciences, an M.Sc.

degree in Computer Science from Stanford University,
and a Ph.D. degree from the University of California at
Berkeley. He has worked on loop optimizations and the
Itanium code generator and also did research on
speculative parallel threading in Intel. He is currently
working on the graphics compiler for Intel�s next-
generation GPU. His e-mail is chu-cheow.lim at intel.com.

Somnath Ghosh is a Senior Staff Engineer with Intel�s
Mobility Group. He received his B.Tech. degree in
Computer Science and Engineering from IIT Kharagpur,
and his M.S. and Ph.D degrees in Electrical Engineering
from Princeton University. He is currently working on the
graphics compiler for Intel�s next-generation GPU. His
e-mail is somnath.ghosh at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

SPEC®, SPECint® and SPECfp® are registered trademarks
of the Standard Performance Evaluation Corporation. For
more information on SPEC benchmarks, please see
http://www.spec.org

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.
Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.
Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.
Copyright © 2007 Intel Corporation. All rights reserved.
This publication was downloaded from
http://www.intel.com.
Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Parallelization Made Easier with Intel® Performance-Tuning Utility 275

Parallelization Made Easier
with Intel® Performance-Tuning Utility

Alexei Alexandrov, Software and Solutions Group, Intel Corporation
Stanislav Bratanov, Software and Solutions Group, Intel Corporation

Julia Fedorova, Software and Solutions Group, Intel Corporation
Dr. David Levinthal, Software and Solutions Group, Intel Corporation

Igor Lopatin, Software and Solutions Group, Intel Corporation
Dmitry Ryabtsev, Software and Solutions Group, Intel Corporation

Index words: performance analysis, multi-core, parallelization, multi-threading, stack sampling, data
access analysis

ABSTRACT
While multi-core processors are all around us, their
effective use is made much easier with performance
analysis tools that enable the developer to identify parallel
execution opportunities and parallel execution
bottlenecks. In this paper we introduce the new profiling
capabilities available in the Intel® Performance Tuning
Utility. These include statistical call tree analysis based on
stack sampling, profile-guided loop detection, and event-
based sampling data access profiling. The coordinated use
of these features allows the developer to achieve better
multi-core application performance.

INTRODUCTION
Parallel processing has been in common use for decades,
but it�s only recently that it became available on virtually
every computer with the advent of multi-core processors.
Historically, mass performance analysis tools [1, 2, 3, 4]
have not generally had features designed to help identify
parallel execution opportunities nor many of the common
parallel execution bottlenecks. The Intel Performance
Tuning Utility (Intel PTU), externally available at [5], has
many of these features available in a single tool on Intel®

Architecture.

Building on the experience of the Intel VTune�
Performance Analyzer, Intel PTU was designed to
significantly improve on the data collection and display
features available and add capabilities needed for enabling
and analysis of parallel execution. Initially supported
instrumentation-based control flow analysis (Exact Call
Graph) suffers from excessive overhead and the resulting
data distortion. This was replaced with a statistical

approach to data collection based on call stack sampling
in Intel PTU. The new statistical call stack sampling is
supplemented with a precise call count data collection that
can be used when required. Binary analysis was added to
improve the disassembly displays through the use of basic
blocks as the underlying execution units and to generate a
control flow graph for the disassembly to simplify its
interpretation. The binary analysis also enables the
identification of loops, which, coupled with the
performance data, allow for the identification of parallel
execution opportunities. The full use of the Precise Event
Based Sampling (PEBS) mechanism, only available on
Intel® processors, enables simultaneous profiling by both
Instruction Pointer (IP) and by data address, and a
graphical filtering interface facilitates the analysis and
identification of performance bottlenecks due to data
access and layout issues.

All Intel PTU features are thread and CPU aware and can
display data specific to either. Intel PTU works on a wide
range of Windows* and Linux* operating system flavors
and provides the same look-and-feel on all of them. It can
be used from the command-line or from a GUI, which
integrates into the Eclipse* IDE.

In this paper, we first describe the new features of Intel
PTU in detail, as well as the analysis models facilitated by
those features. We then illustrate the process of parallel
software analysis and parallel execution discovery using
Intel PTU on real program examples. We continue with an
outline of areas for further development such as the
quality of analysis and data representation, and finally we
look at modern hardware performance monitoring
capabilities.

Intel Technology Journal, Volume 11, Issue 4, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 276

Reading this paper requires some experience in parallel
program design, as well as a certain knowledge of parallel
performance monitoring and analysis. The sections below
should not be viewed as providing a final recipe of
efficient parallel software development or as describing
methods of automated parallelization. Our goal, rather, is
to illustrate the information that may be of use when
dealing with parallel software and how that information
may be collected, presented, and best interpreted with
Intel PTU in order to ease the task of exploiting
parallelization opportunities and parallel performance
tuning.

NEW PERFORMANCE ANALYSIS
MODELS
Performance tuning is like debugging: you�d like to avoid
it but you cannot. And similar to the debugging process,
you cannot do anything effectively unless you have a
reliable tool that can save you a lot of time and effort. The
importance of good debuggers and performance analyzers
becomes critical as we move into the all-parallel world of
microprocessing.

Intel PTU is meant to become such a time-saving tool. We
do not pretend though that the tool can fully automate the
tuning process. We simply believe that it is more
important to put the burden of routine work on the tool,
and let engineers think about their performance problems
rather than about the tool itself.

To accomplish this, we focus on the following:

Provide an easy way to perform repetitive data
collection and analysis tasks.

Provide effective and reliable methods of data
collection and analysis that are relevant to both
sequential and parallel programs.

The rest of this section describes in detail how the above
goals are addressed by Intel PTU. We explicitly indicate
product features that are especially valuable in the case of
parallel analysis.

Projects, Configurations, and Experiments
To be effective in repetitive performance tuning tasks
Intel PTU introduces the concepts of project and profile
configurations.

Project contains information about the application,
working directory, input arguments, maximum data
collection time, etc. � in other words, it specifies what
should be analyzed.

Profile configurations are a means of organizing
collection methods into convenient and reusable shortcuts
that can be reused for any project. Configurations can be

predefined or user-defined. The predefined configurations
for Intel PTU are as follows:

Basic Statistical Call Graph

Basic Sampling

Basic Call Count

Basic Data Access Profiling

A single profile configuration can be defined for multiple
Intel processors, thereby generalizing its use. For
example, the predefined Basic Sampling configuration is
defined to collect two performance events corresponding
to the �number of cycles� and �instructions retired� events
mapped to different hardware events on different
processors.

Creating a project is the first thing a user does. Once it is
created, the predefined configurations list can be invoked
by a simple right-click on the project in the navigator,
floating the mouse over the �Profile As� option and
selecting one of the profiling options (Figure 1).

Figure 1: Launching a predefined data collection

Alternatively, right clicking on the project and selecting
the �Profile...� option will invoke the configuration editor
allowing users to select one of their own existing
configurations or to create and invoke a new one.

After a profile configuration is applied to a project, the
data are collected into an experiment. The basic
visualization of the experiment data in Intel PTU is a
tabular spreadsheet. The rows correspond to the currently
chosen aggregation unit: module, function, basic block, or
single address. The columns display the metrics for that
region. The granularity of the aggregation unit can be
selected through pull down menus (Figure 2).

Intel Technology Journal, Volume 11, Issue 4, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 277

Figure 2: Intel® PTU tabular data view

For parallel programs, Intel PTU includes the current
thread identifier (TID) and the CPU identifier in the
program state information so that for each collection point
it is clear which thread was executing on which processor
at that moment. It is possible to filter the data for a
specific thread, process, or CPU by using pull-down filter
menus. Specifically this is useful for analysis of thread- or
CPU-balancing.

Now, let�s discuss the predefined analysis methods Intel
PTU suggests.

Statistical Call Graph Analysis
Statistical Call Graph (a.k.a. Stack Sampling) collects its
data by interrupting the program execution periodically
(100 times per second) and capturing the current
instruction pointer (IP) and the call stack. Using the IP
value, it calculates how many samples occurred in a given
function. This number is called Self Samples, because it
corresponds to the number of samples that occurred in the
function itself, not in the functions called by this function
(callees). Places where a significant portion of samples
occur are called hotspots.

The sample data can be aggregated by different units:
function, module, basic block, or address. In the Intel
PTU GUI the aggregation unit concept is exposed as
�granularity.� The function granularity is still the most
popular, so it was made the default one in Hotspot view.
By default, functions (rows) are sorted by the number of
Self Samples, so the most active functions are displayed at
the top.

A second metric for each function, Total Samples, can be
defined as the number of samples in the function plus all
the samples that have the function in the call stack. Thus
Total Samples measures the time in the function and
everything the function calls.

To illustrate this we used a simple program:

The time spent in each function is proportional to the
iteration count of the loops. The loops in f1, f2, f3 and f4
are defined to split the total execution time of the
application and thus the expected numbers of samples, in
a known manner. 30% in f1, 20% in f2, 40% in f3, and
10% in f4, while main and foo are negligible.

Figure 3: Statistical Call Graph results

The top hotspot display shows that the self samples are in
the ratio of 4:3:2:1 (Figure 3). The call stack expanded
from f2 shows f1 and main as its callers. The four
hotspots are all highlighted and the total sample count for
them is shown below as 4124 samples. An important thing
to note is that 829 samples for main here does not mean
that we had 829 samples in the main() itself. It is all about
samples in f2: we had 829 samples in f2, and for all those
samples we had f1 and main as callers.

Note the pull down menus for process, thread, and module
filtering of the data displayed in the hotspot view. This
greatly simplifies use of the view. This technique is
common to hotspot displays for all the collection modes.

The four functions were highlighted, one by one, by
clicking the left mouse button and holding down the
CTRL key. As the last function selected was f1, it is
displayed in the Caller/Callee view. The call chain is
expanded in both directions around f1 with callers of f1
shown above it and its callees shown below it. The total
number of samples for f1 is equal to its self samples plus

int f3() {
 loop 40;
 foo();
}

void foo() {
 f4();
}

void f4() {
 loop 10;
}

int main() {
 f1();
}

int f1() {
 loop 30;
 f2();
 f3();
}

void f2() {
 loop 20;
}

Intel Technology Journal, Volume 11, Issue 4, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 278

the total number of samples for the functions it calls, f2
and f3. So we get 3703 total samples for f1 as 1230 plus
1644 plus 829. The total for f3 is equal to the total
number of self samples for f3 and f4. As main is the caller
of f1 it inherits the self and total times associated with f1.

Functions foo and main are not visible in the hotspot view
because no samples occurred within their code ranges.
Statistical Call Graph doesn�t capture every call the
program made. There is another collection technique
called Exact Call Graph that instruments all functions in
the program and can collect information about each call.
However, this method has a much higher overhead. It is
also very intrusive and distorts the execution of parallel
programs making it impossible to map the results of this
analysis to the behavior of the original program. Hence, it
has a limited scope of applicability and is not always
relevant for parallelization tasks. Exact Call Graph has the
advantage of providing function call counts; to provide
this useful information Intel PTU has a special Basic Call
Count configuration.

Profile-Guided Loop Analysis
An important step in program parallelization is deciding
which parts of the program should be parallelized. Since
loops are often good candidates for parallelization, Intel
PTU treats loops in a very special way.

Loops are identified by analysis of the binary. This
information is then used to generate entries in the hint
column. The hints tell you if there is a hot loop in the
function and if a hot function was called from a loop. Hot
functions called from a loop can be considered for
parallelization.

Event-based Sampling
Intel processors have a powerful performance monitoring
unit (PMU) that can count and interrupt execution for
sampling on a wide variety of performance critical signals
(e.g., CPU cycles, instructions retired, last-level cache
misses, etc.). Intel PTU has made it easier to use the
hundreds of performance events by displaying the
sampling data in a logical and convenient manner. The
event based sampling hotspot view shows an ordered
spreadsheet of all functions, in all modules and processes
by default. The spreadsheet can be sorted by any of the
collected events. The granularity can be set to module,
function (default), basic block, or instruction. A histogram
of samples vs. IP can be viewed for any event with a right
click option.

Figure 4: Source view in Intel® PTU

Double clicking on a row will open a source view display
that includes a source view spreadsheet and a disassembly
spreadsheet organized into units of basic blocks and a
control flow graph for the basic blocks (Figure 4). The
disassembly spreadsheet can be sorted by the sample
totals for the basic blocks to ease the identification of
hotspots. The disassembly view can be collapsed to only
show the basic block data summary rows for analysis of
large complex functions.

There is also the ability to compare two event-based
sampling experiments. This is particularly useful for
identifying the performance differences from two binaries
that have been compiled differently.

As there are hundreds of events, their use must be
organized into a methodology. An introduction to the use
of the Intel® Core�2 processor PMU is discussed in [6].
A detailed discussion of the cycle accounting
methodology on that processor is offered in [7]. The same
Web site [8] also contains a number of articles about the
use of the Itanium® processor PMU. There are a variety of
performance issues associated with parallel execution.
Their identification with the Intel Core 2 processor PMU
is discussed in [9].

Data Access Analysis
Data access tends to dominate application performance,
even in single-threaded execution. Parallel execution only
exacerbates this, as the number of execution units
available has increased faster than the memory access
capability. The actions of the processor, in response to
data access requests, can be monitored with performance
events counting last-level cache misses, bus traffic, and
the like. What has not been generally available is the
ability to analyze the application memory access behavior
in terms of the data address patterns.

Intel Technology Journal, Volume 11, Issue 4, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 279

To collect and present performance metrics for accessed
data addresses Intel PTU uses advanced features of Intel
processors. Intel Itanium processor CPU supports
capturing the data access address and access latency
directly. On Intel Core 2, Xeon® and Pentium® 4
processors the tool uses precise performance events that
allow the capture of the values of all the registers at a
known value of IP. When coupled with the disassembly of
the function, load and store operations can have their
target addresses reconstructed. This feature is unique for
mass-market CPUs, and for end users, the aspects of the
collection mechanism are abstracted by a predefined data
access configuration that is used the same way on any of
the supported processors. It is also possible to define
custom data access configurations using any combination
of memory-related events.

Some of the more obvious objectives of address profiling
would be identifying the following:

1. Cachelines that are only partially consumed,
increasing memory bandwidth and wasting cache
space for no benefit.

2. Cachelines shared by multiple threads unnecessarily
(false sharing).

3. Variables (and cachelines) that are being thrashed
during synchronization.

4. Arrays of structures that are not organized by usage,
resulting in 1 above.

5. Cachelines and variable access resulting in
disproportionate access latency.

Today data access analysis provides good help in
pinpointing items 2 and 5, while easy identification of the
rest of the items is still dependent on future development
of the technology.

For data access analysis, Intel PTU provides two hotspot
views in both IP and data address (Figure 5). The IP
hotspot view is similar to the other hotspot views but has
columns associated with data access metrics (average and
total latency, reference count, page access count, etc.).
The address hotspot view uses a granularity of 64 byte
aligned address ranges for IA-32 and Intel® 64
Architecture-based processors and 128 byte aligned
ranges on Itanium processors. These correspond to
cachelines even though we use virtual rather than physical
addresses. Similarly �pages� are usually defined as 4KB
aligned ranges and 8KB ranges per the architecture.

The address hotspots can be expanded to show which
offsets into the lines were accessed, and which threads and
functions accessed the offset. This easily identifies lines
that are falsely shared by multiple threads. As a result of
the automatic analysis, the tool highlights such lines in
pink (note those pink lines in the address hotspot view in
Figure 5). However, for now the false-positives are
possible, although we hope to minimize their number in
the future.

Figure 5: Data access analysis views

The two hotspot views (IP and data address) are coupled
and a selection in one can be used to filter the display of
the other (with control buttons indicated in Figure 5).
Thus the user can select a single function, identify which
lines it accesses heavily, select a set of those lines, and

then see which other functions also access those same
lines. This filtering extends down to the source views.

We went through the most important features of Intel
PTU. We learned the important concepts provided by the
tool (project, profile configuration, and experiment). We

Intel Technology Journal, Volume 11, Issue 3, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 280

found out which collection and analysis capabilities are
supported and identified which of them are specifically
applicable for parallelization tasks. Now it�s time to
discuss how what we learned can be applied to solving
real-world parallelization problems.

TUNING FOR DATA-LEVEL
PARALLELISM
In this section we provide a real tuning example to
highlight the capabilities of Intel PTU in real-world
software analysis. We start with discovering parallel
execution opportunities, and then we analyze the
efficiency of parallelization by locating thread interaction
and data layout issues. In the course of our analysis we
consider the data-level parallelism wherein different data
ranges are processed in parallel on a shared-memory
multi-processor.

SP Application and Environment
For our example we took the SP code from the NAS 2.3
Benchmark Suite (NPB2.3) [10]. We started by profiling
the serial version of SP, then took the OpenMP C
implementation, made by the OMNI compiler team [11,
12], analyzed, and tuned it.

SP is a simulated computational fluid dynamics
application. The finite difference solution is based on an
approximate factorization that decouples the x, y, and z
dimensions [13]. The data set we use is class A, for which
a problem size is equal to 64. The simulation is done in
400 high-level iterations over time. The main loop
contains the following calls:

Where x_solve calls lhsx and ninvr; y_solve � lhsy
and pinvr; z_solve � lhsz and tzetar.

At each iteration, SP re-calculates a number of three-
(64x64x64) and four-dimensional (5x64x64x64) arrays
consisting of double precision floating-point numbers and
consuming ~76 Mb of the memory space in total.

Our environment was Red Hat Linux* 3.0 Update 8
running on a 2.66 GHz Quad-Core Intel® Xeon® processor
53001 series system. This system had eight cores
configured in four paired CPUs, with two such pairs per
package. Each CPU had a 4Mb L2 cache. The application
was compiled using the Intel® Compiler 10.0 with options
�-O3 �openmp �g.�

Identifying Synchronization Overhead Using
Statistical Call Graph
We started with the Basic Statistical Call Graph and Loop
Analysis to understand the behavior of the serial version
of SP. As can be seen in Figure 6, the tool identified a
number of hotspot functions (most of the samples reside in
compute_rhs). These hotspots have significant numbers of
samples that fall in loops inside the hotspots (circled
arrow icons). In addition every hotspot is called from
within a loop (exclamation mark icons).

Figure 6: SP serial version hotspots in Statistical Call
Graph display

Inspection of the source for the hotspot functions suggests
that we cannot parallelize the program in question

1 Intel processor numbers are not a measure of
performance. Processor numbers differentiate features
within each processor family, not across different
processor families. See
www.intel.com/products/processor_number for details.

for (it=1; it<=niter; it++) {

 compute_rhs();

 txinrv();

 x_solve();

 y_solve();

 z_solve():

 add();

}

Intel Technology Journal, Volume 11, Issue 3, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 281

assigning a different thread to every time iteration (that is,
trying to multi-thread the loop surrounding the hotspot
calls), because every new time iteration depends on the
arrays produced by the previous iterations. Instead, we can
employ data decomposition and assign multiple threads to
different iterations of the loops inside the hotspots. For
such an approach, OpenMP [11] is the obvious choice.

The timing of the parallel version of SP from the OMNI
package [12] when running from two to eight threads is
shown in Table 1. The two-threaded version�s execution
time decreased from 130 seconds to 91 seconds.

Table 1: SP OpenMP execution time and relative
__kmpc_barrier contribution for different numbers of

threads

However, running the code with four threads or more
shows no additional performance gain. This clearly
indicates that there are some problems with SP OpenMP
implementation.

The Statistical Call Graph profile for the 4-thread
execution (Figure 7) shows that one of the main hotspots,
namely the __kmp_wait_sleep function, belongs to the
libguide library. Another substantial hotspot that belongs
to libguide is __kmp_x86_pause. These hotspots all have
the __kmpc_barrier function on their stacks.
__kmpc_barrier in turn is called from many SP functions.
This can be seen either from the expanded stack of the
__kmp_wait_sleep hotspot (Figure 7) or, in an
aggregated form, in the caller-callee view (Figure 8).
__kmpc_barrier is dominantly called from the lhsx,
lhsy and lhsz functions as the total number of samples
for these three functions clearly account for the majority
of the time (Figure 8).

Figure 7: Hotspots for SP OpenMP. Number of
threads = 4. The partial stack for the
__kmp_wait_sleep hotspot is shown.

Figure 8: Caller/callee view for SP OpenMP with
__kmpc_barrier as a target function. This view is

useful in evaluating an aggregated target contribution
and the relative contributions of its callers.

The data for the __kmpc_barrier itself and its callees
contribution are summarized in Table 1. The tables show
that the number of total samples for __kmpc_barrier
grows up to one quarter of the application�s total number
of samples when running with more than four threads. By
total samples we mean the self sample count plus the self
counts of all the functions down the call chain (callees).

The conclusion from the profiling session is that the initial
SP OpenMP implementation doesn�t scale because of a
significant synchronization overhead exposed as a
substantial number of total samples associated with the
__kmpc_barrier function.

#of threads 1 2 4 8

SP OpenMP execution
time (sec) 130 91 92 94

Total __kmpc_barrier (%) N/A 16 22 27

Intel Technology Journal, Volume 11, Issue 3, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 282

Note that Intel PTU significantly simplifies the
identification of the total contribution of a function by
automatically synchronizing views for the focus function.
Thus, the Caller/Callee view displays aggregated total
samples for a function selected in the Hotspot view.

To find the cause of the synchronization overhead, we
look at the lhs[*] functions code (Figure 9) and find where
the OpenMP �omp for� pragmas are applied. Instead of
being applied to the outer loops, they are applied to the
inner loop, decomposing the leading dimensions of the
multi-dimensional arrays and causing a considerable
overhead at an implicit barrier.

Figure 9: A code fragment from the lhsy function
causing barrier overhead

Figure 10: An optimized code fragment at the lhsy
function

Similar problems were observed in other functions where
the �omp for� pragmas were applied to the middle loop of
three nested loops. We modified the initial SP OpenMP
implementation by making changes to lhs* and *_solve
functions so that the �omp for� pragmas were properly

applied to the outermost loop. Further, we merged some
separate loops under one �omp for� pragma. We also had
to privatize several variables as part of the changes to
ensure the correctness of the program.

The improved version of the same non-optimal code
fragment (from Figure 9) is shown in Figure 10. We refer
to this version of the SP code as �SP OpenMP Opt.�

Data Layout Analysis Using Sampling and
Data Access Profiling
However, while the issue of the large barrier overhead was
fixed by these modifications, the overall performance and
scaling did not improve much beyond two threads (see
Table 2).

Table 2: Execution time for SP OpenMP initial version
and optimized version (time is in seconds)

Since the SP application uses ~76 Mb of data space and
our system has only 16 Mb of shared L2 cache, the
memory usage approach might be the reason for the poor
improvement in scaling. To prove this we launched
sampling, and we collected the
MEM_LOAD_RETIERED.L2_LINE_MISS event for SP
OpenMP Opt running with thread numbers 1 through 8.
The results (summarized in Table 3) clearly indicate that
the number of L2 cache line misses grows with the
increasing number of threads. Although for the code to be
scalable the number of cache misses should remain the
same or even decrease.

Profiling runs for four and eight threads reveal that
compute_rhs and z_solve functions are the main
hotspots, contributing ~28% and ~12% L2 cache line
misses, respectively, in both runs. The other main hotspots
are the x_solve and y_solve functions.

Table 3: Count of the
MEM_LOAD_RETIERED.L2_LINE_MISS event for

the SP OpenMP Opt code

The Data Profiling analysis for the four- and eight-thread
runs confirms the same functions as the memory access
bottlenecks. The Data Access Display shows that
compute_rhs, z_solve, y_solve and x_solve functions

of
threads 1 2 4 8

Event
count 3.5E+08 3.3E+08 4.1E+08 6.3E+08

#of threads 1 2 4 8

SP OpenMP initial 130 91 92 94

SP OpenMP Opt 130 91 78 72

Intel Technology Journal, Volume 11, Issue 3, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 283

are also hotspots in terms of Last Level Cache (LLC)
misses, Total Latency, and Cachelines accessed
(Figure 11).

Figure 11: Main hotspots for the SP OpenMP Opt 8
threads run in the Data Access Display. The figure also

illustrates how to filter the cachelines accessed by
selected functions.

The reason for the growing number of cache misses (refer
to Table 3) for four- and eight-thread runs might be
interfering data accesses. The data access profile allows us
to investigate if there are access contention issues for the
cachelines used in the hotspots compute_rhs, z_solve,
y_solve, and x_solve, particularly those caused by the
threads running on different cores but accessing the same
cachelines. This will show if there are any contentious
lines associated with high average latencies and accessed
by several threads.

To explore contention issues we ran the SP OpenMP Opt
version with eight threads, bounding each thread to a
distinct core using the KMP_AFFINITY environment
variable supported by the Intel Compiler OpenMP run-
time library. The execution time and hotspots do not
change with respect to the non-bound run.

In data access view we select the hotspot functions and
use the �Filter by Selection in Code Hotspots� button
(circled in Figure 11), to display only the cachelines
accessed by these functions.

A number of filtered cachelines are marked in pink as
likely suffering from false-sharing. But false-sharing (as
well as true-sharing) is a particular case of thread access
contention. Consequently, we sort cachelines by average
latency and select the high latency lines. We then filter
back either on a specific cacheline or a few of them to
identify the functions that are associated with the

contention. This is done by using the �Filter by Selection
in Data Hotspots� button (triangled in Figure 11).

We found a number of cases (one example is in Figure 12)
where the same cachelines were accessed from different
threads by the functions compute_rhs & x_solve,
x_solve & y_solve, y_solve & z_solve. Specifically,
Figure 12 demonstrates that the same highlighted
cacheline was accessed by the different threads in the
x_solve and y_solve functions. The second access (by
y_solve, as it called after x_solve in the code) is
associated with the high latency (250 cycles) equal to an
L2 miss penalty.

Figure 12: The IP hotspot view filtered by the selected
cacheline

We drill down from the filtered hotspot view to the source
view (now only displaying the filtered accesses) of the
functions, e.g., x_solve and y_solve ones, to identify the
source lines that generated the access contention.

The source code identified by the access counts on these
lines in turn identifies a number of cache contention
patterns. Figure 13 displays the typical one we discovered.

In this case the x_solve function writes to the elements of
the arrays rhs and lhs, and the y_solve function reads
from them. The �omp for� pragma is placed in such a way
that the data decomposition of these arrays is different in
these two function fragments. In x_solve the
decomposition, over the third index of rhs, causes
thread_1 to write into rhs[*][*][T1_range][*], thread_2
writes into rhs[*][*][T2_range][*] and so on. While in
y_solve, the decomposition is over the second index, so
thread_1 here reads from rhs[*][T1_range][*][*].

This results in multiple cores having to shuffle the
cachelines between themselves as they execute x_solve
and then y_solve. This in turn results in a large number
of load-driven cache misses and the resulting execution
stalls.

We didn�t go further with optimizing the SP code since
our purpose was just to demonstrate how an application
using data parallelism is analyzed and tuned with Intel
PTU.

Intel Technology Journal, Volume 11, Issue 3, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 284

Possible ways for further optimization could be code
transformations to make the �omp for� pragmas apply to
the outermost loops, iterating over the same dimension
indices. This would decrease the shuffling of the
cachelines between cores and thereby improve the
performance.

It would be also useful to consider decreasing some array
sizes (to apply data blocking optimization), as described
in [13]. This would bring an even bigger performance gain
due to a more efficient cache usage.

Figure 13: Code fragments causing cacheline
contention

In this section we have shown that Statistical Call Graph
analysis may be very helpful in the initial stages of parallel
code tuning. Proceeding with the analysis requires some
knowledge of the processor architecture to identify the
hardware events to collect and to interpret the collected
data. Advanced scalability estimations can hardly be
performed without the help of data access profiling whose
automatic analysis and flexible filtering interface enable
pinpointing of such problems as cache contention
(particularly false-sharing) and high latency loads at the
source code level.

CHALLENGES AND FUTURE
DIRECTIONS
Extensibility was among the primary design concepts of
the Intel PTU architecture, which may enable us to
integrate more advanced profiling techniques in the future,
many of which we can already define and describe.

The first step that we would like to take in the near future
is to extend the Statistical Call Graph (which is now time-
based in Intel PTU) to also use rich event-based sampling
capabilities. The major advantages of this are expected to
be as follows:

Increased sampling granularity (as the sampling
interval will no longer be limited by the operating
system timer resolution and task scheduler
properties).

Higher correlation of the sampled execution paths
with the architectural characteristics of a computer
system.

In data profiling, a unique problem is dealing with arrays
of large structures. Being able to display the access pattern
in terms of the structure size granularity allows the user to
split the structures by usage, reducing bandwidth and
increasing cache utilization efficiency.

Another important improvement and a major challenge
with regard to data access analysis is the need to operate
on the categories that are understandable by a
programmer. This means we need to switch from raw
addresses (which may mean anything) to the actual
variable names, allocation blocks, and so on.

A very promising technology that we are also going to
implement is the ability to handle the lowest-level
operating system task context switches. This should
enable the retrieval of information about thread
synchronization patterns, excessive synchronization,
overall processor utilization by multiple threads, thread
migration between processors, thread switch overhead,
and other characteristics that are vital for a detailed
analysis of heavily threaded, multi-component
applications.

The above described data collection challenges and
improvements necessitate changes in the visualization as
well. Thus, we would like to introduce a timeline view, the
natural representation of thread activity over time. The
timeline will reflect the state of threads, their location with
respect to processors and cores, and the actual
performance characteristics for each thread activity point
in time. The overtime representation is supposed to
facilitate intuitive understanding of the logic of a parallel
program and thread state transition patterns; and it may
help to determine distinct phases within the program�s
operation flow. Most importantly, the timeline is designed
to be fully integrated into the rest of the existing views to
simplify navigation, incorporate new cross-filtering
modes, and make it possible to quickly obtain aggregated
characteristics for each thread execution point, state, or
phase.

Intel Technology Journal, Volume 11, Issue 3, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 285

CONCLUSION
The performance analysis features available in the Intel
Performance Tuning Utility assist at virtually every stage
of both parallel and sequential software performance
tuning and may be extremely helpful at the preliminary
stages of determining parallelization strategies.

We discussed data-level decomposition strategy in real
program examples and illustrated how the efficiency of a
parallel implementation can be estimated, and which steps
should be performed to optimize a parallel program using
the Intel Performance Tuning Utility.

Being easy to use and powerful at the same time, Intel
PTU is growing its customer base inside Intel for solving
today�s problems and serving as a vehicle for exploring
new features for future commercial tools.

We plan on improving Intel PTU with newer performance
data-collection techniques and analysis models to keep
pace with user needs and modern processor architecture
developments. Intel PTU is available for an external
download from Whatif.intel.com Web site [5].

REFERENCES
[1] Intel VTune� Performance Analyzer, at

http://www3.intel.com/cd/software/products/asmo-
na/eng/vtune/239144.htm

[2] Sun Studio Performance Analyzer, at
http://developers.sun.com/sunstudio/

[3] Optimizing with Shark, at
http://developer.apple.com/tools/shark_optimize.ht
ml

[4] Gprof, at
http://www.gnu.org/software/binutils/binutils.html

[5] Intel® What If site, at http://Whatif.intel.com

[6] D. Levinthal, �Introduction to Performance
Analysis on Intel Core 2 Duo Processors,� at
http://www.devx.com/go-parallel/Link/33305

[7] D. Levinthal, �Execution-based Cycle Accounting
on Intel Core 2 Processors,� at
http://www.devx.com/go-parallel/Link/33315

[8] �Go Parallel Web Site,� at
http://www.devx.com/go-parallel/Door/32532

[9] D. Levinthal, �Analyzing and Resolving Multi-
Core Non Scaling on Intel Core 2 Processors,� at
http://www.devx.com/go-parallel/Link/34762

[10] �NAS Parallel Benchmarks,� at
http://www.nas.nasa.gov/Resources/Software/npb.html

[11] �Open MP standard,� at http://www.openmp.org

[12] �OpenMP C versions of NPB2.3,� at
http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html

[13] H. Jin, M. Frumkin, J. Yan, �The OpenMP
Implementation of NAS Parallel Benchmarks and
Its Performance,� at
http://www.nas.nasa.gov/News/Techreports/1999/P
DF/nas-99-011.pdf

AUTHORS� BIOGRAPHIES
Alexei Alexandrov is a Senior Software Engineer in the
Software and Solutions Group at Intel. His interests
include building and designing modern performance
analysis tools, large software development, CPU micro-
architecture, and performance analysis. Alexei has a Ph.D.
degree from the Saratov State Technical University. His
e-mail is alexei.alexandrov at intel.com.

Stanislav Bratanov is a Research Engineer in the
Software and Solutions Group at Intel. His research
interests include multi-processor software platforms,
operating system environments, software performance
monitoring and analysis systems, and platform-dependent
media data coding. He graduated from Nizhniy Novgorod
State University, Russia. His e-mail is stanislav.bratanov
at intel.com.

Julia Fedorova is a Senior Software Engineer in the
Software and Solutions Group at Intel. Her research
interests are performance analysis tools, tuning and
optimization, and data access analysis. Prior to Intel she
worked in the Russian Nuclear Center. Julia has an M. Sc.
degree in Computational Physics from the Moscow
Engineering-Physical Institute. Her e-mail is
julia.fedorova at intel.com.

David Levinthal is a Senior Software Engineer in the
Software and Solutions Group at Intel. His research
interests include hardware performance events, computer
architecture, and software optimization. He holds a
Physics degrees from the University of California at
Berkeley and Columbia University. He was a Professor of
Physics at Florida State University. He has been awarded
the DOE OJI award, the NSF PYI award, and a Sloan
Foundation Fellowship. His e-mail is david.a.levinthal at
intel.com.

Igor Lopatin is a Software Engineer in the Software and
Solutions Group at Intel. His research interests include
software for multi-core architectures and tools based on
dynamic binary instrumentation techniques. He graduated
from Nizhny Novgorod State University, Russia. His
e-mail is igor.loopatin at intel.com.

Dmitry Ryabtsev is a Senior Software Engineer in the
Software and Solutions Group at Intel. He has worked on
the VTune Performance Analyzer and currently is

Intel Technology Journal, Volume 11, Issue 3, 2007

Parallelization Made Easier with Intel® Performance-Tuning Utility 286

focusing on DAP for Intel PTU. He received his B.S. and
M.S. degrees from the Nizhny Novgorod State University,
Russia. His e-mail is dimitry.ryabtsev at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

�

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 299

Intel® Performance Libraries: Multi-Core-Ready Software
for Numeric-Intensive Computation

Ilya Burylov, Performance Library Lab, Intel Corporation
Michael Chuvelev, Performance Library Lab, Intel Corporation

Bruce Greer, Performance Library Lab, Intel Corporation
Greg Henry, Performance Library Lab, Intel Corporation

Sergey Kuznetsov, Performance Library Lab, Intel Corporation
Boris Sabanin, Performance Library Lab, Intel Corporation

Index words: mathematics, library, parallel software, multi-core, vector math, BLAS, LAPACK

ABSTRACT
In this paper we present the Intel® Math Kernel Library
(MKL) as a mathematical software package for scientific
and technical computation designed for ease of use in
environments that can vary greatly. Ease of use includes
the build environment (use with different compilers),
optimal performance on multiple platforms (automated
selection of code based on the end-user system), optimal
performance (optimization of an algorithm), interfaces to
other libraries (FFTW), and effective use of multi-core
processors through parallelization. We also discuss how
this concept of ease of use will be expanded to provide
more flexibility in the use of the library without greatly
expanding its size.

Much of the paper is devoted to the optimization and
parallelization of the library, critical in this era of multi-
core processors. We discuss some of the methods used to
improve performance that largely focus on cache
utilization and minimization of table look-aside buffer
(TLB) misses. Specifically, we look at the parallel
performance of Basic Linear Algebra Subroutines [3]
(BLAS), LAPACK [1], the Vector Math Library (VML),
and a sparse linear solver (PARDISO). We include a brief
section on a second application library, Integrated
Performance Primitives (IPP), which complements the
MKL in media applications.

INTRODUCTION
The Intel® Math Kernel Library (MKL) is a math library
for use in scientific and engineering applications
supporting a number of different mathematical areas:

Linear algebra. Basic Linear Algebra Subroutines
(BLAS), LAPACK, ScaLAPACK, sparse BLAS, iterative

sparse solvers, preconditioners, direct sparse solver
(PARDISO)

Signal processing. FFTs, cluster FFTs

Vector math. Vector Math Library

Statistics. Vector Statistics Library with random number
generators

PDEs. Poisson, Helmholtz solvers, trigonometric
transforms

Optimization. Trust region solvers

Other. Interval linear solvers, multi-precision integer
arithmetic

Among the key guidelines for the development of the
library are using optimized math software for
computationally demanding algorithms; threading and
parallelizing these algorithms to make full use of multi-
processor, multi-core [2], and multi-computer systems,
making the library easy to use, and maintaining a high
quality. Our focus in this paper is mostly on performance
but we also introduce the paper with a discussion on ease
of use.

A number of the features of the library do not relate to
math functionality but contribute to ease of use. Some of
these are:

Designing the library to be compiler-independent
eliminates the need for compiler-specific versions and
allows C language programs to link to the Fortran
portions of the library without the usual Fortran run-
time libraries. Perhaps it is more correct to state that
all compiler dependencies have been isolated (as will
be explained in the discussion of the layer model of
the library).

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 300

Providing competitive performance on non-Intel®

processors so software vendors can use a single
library in their products for Intel® architecture
computers.

Parallelizing those parts of the library where
parallelization makes sense. Most of the library
functions could be parallelized but would not improve
in performance if parallelized. Most of this paper
deals with parallel performance on multi-core
processors.

Using interface files to map FFTW to MKL FFTs,
other files to map older MKL FFTs to the more recent
FFTs as well as using Java interface examples for
various parts of the library.

To further enhance usability, future versions of MKL will
introduce a �layer model� (see Figure 1). This version will
have four layers: interface, threading, computational, and
run-time, or compiler-specific, library layer.

The first layer already exists for the 32-bit Windows*
version but will be ubiquitous in the library. This layer
allows MKL to accommodate different interfaces,
including, for instance, gfortran. This and some other
Fortran compilers handle complex return values
differently than the Intel compiler for the Intel® 64
Architecture-based processors on Linux*. This difference
can be dealt with through an interface file without
duplicating the rest of the library. Similarly, the basic
library for a 64-bit operating system (OS) will use 64-bit
integers going forward, but LP64 (32-bit integers for a 64-
bit OS) will be accommodated with a layer.

An area that has been problematic, and will be more
difficult going forward, has been the intermingling of user
threaded code with MKL, where the user�s program is
compiled with a non-Intel compiler. The second layer
deals with this mismatch. All MKL threading is function
based, so the threaded portion will be compiled with
different compilers (Intel and gfortran, for instance) and
the threaded portion provided as a layer. By turning
threading off during compilation of the threaded software,
a non-threaded layer will create a sequential version of the
library. By linking in the appropriate threaded layer,
multiple threading environments will be supported,
including a sequential version of the library, with just a
small increase in the size of the package.

The third layer is the computational layer. This layer does
all the computations and includes processor-specific code
that is chosen at run time.

The fourth layer contains support files such as libguide,
the threading library for Intel® compilers, and the BLACS,
which are specific to compilers and message passing
interface (MPI) versions.

Figure 1: Layer model for MKL

In the rest of this paper we focus on performance for
multi-core processors. Fortunately, many of the methods
needed to achieve scaling with multi-core processor
systems are similar to those used in shared memory
parallel systems, at least for many of the functions of
MKL. However, because of the shared caches of multi-
core processors there are additional opportunities for
threading functions such as VML, as explained in one of
the performance sections.

We discuss parallelization and optimization for several
different areas supported by the Intel® libraries in this
order: BLAS, LAPACK, sparse linear solvers, VML, and
codecs from IPP. Other key functions such as FFTs are
not discussed. Especially in the cases of the BLAS and
LAPACK, the contribution of the MKL developers is to
take extant code and optimize it, including parallelizing it
where that makes sense.

The fundamental problem for much mathematical software
is how to structure the problem in such a way that the
caches can be effectively used. Before looking at these
problems it is useful to look at the problem from a data
consumption versus data supply rate point of view.

Consider the Intel® Core�2 Duo processor, with a dual
core running at 3.0 GHz performing the dot product. If we
assume that one vector can be kept in cache, at what rate
must the memory system supply data to keep just one
dual-core processor busy? Each processor can do two
double-precision multiplies per clock or four multiplies
per clock, requiring 32 bytes (8 bytes per double precision
word) per clock. At 3 GHz, this is 96 GB/second. For a
dual-socket system (Woodcrest) the system must provide
192 GB/s to keep all four cores busy. On a Clovertown
system the number of cores doubles again and the
demand, at the same frequency, goes to 384 GB/s.

Layer Examples

Interface

Threading

Computation

Support

mkl_s, mkl_c,
lp-64

Intel, gfortran,
etc

BLAS,
LAPACK,

Libguide
BLACS

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 301

Choose any realistic memory bandwidth and divide it into
the rate at which the processor can consume the data and
you will have an estimate of the number of times a datum
must be used once it is in cache in order to keep all the
cores busy.

Much of the optimization efforts of MKL are centered on
how to get that reuse factor high as well as how to deal
with the many architectural complexity issues. In the
following sections we discuss some of the problems and
solutions for performance in MKL and briefly in IPP.

BLAS
Libraries are often an easy way to improve performance of
an application. In the Introduction, we discussed the broad
range of functionality that MKL offers as well as some of
the ways the design is intended to make its use easy.
Applications linked with MKL will see improvements in
performance, especially if run on multi-core systems,
through the many threaded functions of the library.

The real issue is how MKL takes advantage of
performance features such as SIMD hardware, and why
multi-core processing exacerbates performance-sensitive
issues. We start by describing single core performance
optimization and move onto parallelization. If the single-
core performance is far from optimal, it logically follows
that the multi-core performance may not be ideal either.

Were MKL limited to a single set of functions, that set
would be the BLAS because of its importance as a
building block for higher order linear algebra
functionality. The BLAS encapsulates several important
dense linear algebra kernels.

�Levels� is an important notion of the BLAS philosophy.
Examples of Level 1 algorithms include taking an inner
product of two vectors, or scaling a vector by a constant
multiplier. Level 2 algorithms are matrix-vector
multiplication or a single right-hand-side triangular solve.
Level 3 algorithms include dense matrix-matrix
multiplication. If we assume a vector is length N or a
matrix is order N, then the number of floating point
operations (flops) for a Level 1, Level 2, and Level 3
algorithm are O(N), O(N2), and O(N3), respectively. The
data movement, however, is O(N), O(N2), and O(N2),
respectively. This last fact is crucial for optimization and
threading performance. This makes the number of floating
point operations per data item moved O(1), O(1), and
O(N), respectively.

Memory performance is inadequate to directly support the
computational speed of the processor. This gap has
increased over the years and multi-core processors
accelerate the mismatch between memory system
performance and the data demands of the processor. To
deal with this discrepancy, processors use a memory

hierarchy. Each level of the memory hierarchy boasts a
different latency and bandwidth. We consider the highest
level machine registers. Register data movement keeps
pace with processor clock rates. The next level is the first-
level (L1) cache (small size) followed by the second-level
(L2) cache (larger). Some machines also have a third-level
(L3) cache (largest). Finally, at the bottom, there is the
machine memory. This is often pictured as a pyramid, as
shown in Figure 2.

Figure 2: Memory hierarchy pyramid

The closer to the top of the pyramid, the more valuable the
resource is and the greater its performance in terms of
bandwidth and reduced latency. The challenge for the
developer is to keep data in the fast memories long
enough to amortize the cost of getting the data there.
Blocking algorithms along with data organization ensure
that more work gets done at the faster top of the pyramid.
MKL blocks algorithms such as the Level 3 BLAS, where
the amount of work, O(N3), can be much greater than the
amount of data movement, O(N2).

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 302

Figure 3: Shared cache top of pyramid

While this situation has existed in architectures for many
years, the recent advent of multi-core processing merely
adds to the complexity of the problem both because
parallelism is not mandatory and because of the sharing of
caches between cores. If two or more cores share a
secondary cache, for instance, the familiar top of the
pyramid suddenly looks like Figure 3. The bottom of the
pyramid remains the same as in Figure 2.

What we typically see is a large cost for moving elements
from main memory, compared to the very fast capacities
of Figure 2. The complexity of the memory system�
mapping the memory onto the cache�includes the use of
an additional cache called the table look-aside buffer, or
TLB. Each memory page mapped to the cache has a TLB
entry.

When data are referenced, they may be in the L1 cache,
L2 cache, or in memory. In addition, the page may or may
not be in the TLB. Each miss�L1, L2, higher order
cache, TLB�is increasingly expensive to retrieve. While
the processor can hide some cache misses, TLB misses
will cause stalls while the page address for the data is
found and loaded.

In addition to the cache structure we have already
outlined, most caches have a given associativity set,
meaning how addresses are shared in their mapping to a
given cache line. There is also a dependency on the cache
replacement policies that determines when cache lines are
evicted from the cache. There are other features of caches
that will affect the performance of the processor: bank
structure, how and when data are written back to memory,
and so on.

All of these issues are accounted for either explicitly (by
design) or implicitly (by automated searches through

design space) for key MKL functions such as the BLAS.
The result is code that is tuned for a single core. Now we
need to parallelize the code.

One of the most important considerations is where to
thread an application. If an algorithm from LAPACK calls
the Level 3 BLAS, there is now a choice of where to
thread. One can parallelize at the LAPACK level, the
BLAS level, or both. We have consistently found it to be
the case where parallelizing at the LAPACK level yields
the greatest advantage.

Figure 4 illustrates this for the LAPACK function
DGETRF, which performs LU factorization and is the
basis for the LINPACK benchmark. The chart shows the
ratios of performance for threading at the LAPACK and
BLAS levels, with the BLAS-level performance being 1.0.
Problem sizes are 1,000 times the abscissa values.

As the figure shows, for smaller sizes, the higher-level
threading is up to 80% faster. But even at 30,000
equations, the LAPACK-level threading is nearly 10%
faster on eight threads and 5% faster on two and four
threads.

LAPACK
In the previous section we discussed the factors that go
into the optimization of functions and showed how
choosing the right level for parallelization can have a
substantial impact on parallel performance as the number
of cores increases, using LU factorization (DGETRF) as
an example. The MKL has threaded and optimized many
of the most important LAPACK functions. The problem is
usually the same: how to feed the arithmetic units, which
translates into how to get data into the caches and then to
reuse them sufficiently to accommodate the substantial

Registers Registers Registers Registers

1st Level Cache 1st Level Cache 1st Level Cache 1st Level Cache

2nd Level Cache

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 303

differences in the rate of consumption by the floating
point hardware and the rate of supply by the memory
subsystem.

Figure 4: LAPACK vs. BLAS-level threading

LAPACK largely replaced LINPACK and employs
blocked algorithms instead of the vector algorithms of
LINPACK, making it much better suited for cache-based
architectures. However, there are many areas where
LAPACK code can further employ Level 3 BLAS [4]
instead of the lower-level functions, which can improve
cache usage. That, in turn, improves parallel performance,
including performance on multi-core systems. We provide
several examples of how increasing the use of higher-level
BLAS substantially improves the performance of the
MKL implementation of LAPACK over the reference
implementation.

One of the important linear algebra applications is double-
sided decompositions like singular value decomposition
(SVD) or Symmetric Eigenvalue Decomposition. In MKL
we block the chains of plane rotations using Level 3
BLAS, resulting in remarkable improvements in
performance of up to about 18x. Figure 5 compares the
resulting threaded symmetric solver DSYEV against the
reference implementation, with performance
improvements of up to approximately 18x. In this chart,

the MKL performance1 is threaded using eight threads,
computing all eigenvectors.

A second example employing a blocking algorithm
implementation that allows the use of higher-order BLAS
are the routines operating on packed storage format. This
optimization requires the allocation of additional
workspace of size N*NB (where N is the size of the
problem, and NB is the block size, usually around 64).
Use of workspace is common in other LAPACK functions
and the cost, in terms of memory usage, is small.

Figure 5: DSYEV improvements via Level 3 BLAS

In the case of the Cholesky solver performance on packed
storage format, the performance improvement again is
around 18x on the same system as for DSYEV, as shown
in Figure 6.

While restructuring of the LAPACK code to use Level 3
BLAS improves performance markedly, more advanced
techniques must be employed to minimize dependencies
on the sequential code that remain after employing Level
3 BLAS.

1 2.4 GHz, Dual-socket, Quad-Core Intel® Xeon®

processor 5300 Series 1067 MHz front-side bus. 2x4 MB
L2 cache.

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 304

Figure 6: Packed-format Cholesky factorization

Figure 7: DGETRF-level versus BLAS-level threading

In such functions as LU and QR factorization [5], a look-
ahead technique is used that allows the next block
factorization to begin before the matrix has been fully
updated, which increases concurrency. Figure 7 looks at
DGETRF performance on an 8-core system comparing
MKL versus netlib performance. As the chart shows, there
are optimizations in MKL that improve the performance
even on one thread vis-à-vis the reference implementation.

VECTOR MATH LIBRARY (VML)
As we suggested earlier, the main issue in threading
various math functions is not so much whether they can be
threaded (are operations separable) but rather whether
there are sufficient operations on the data once they are in
cache to permit other cores/processors to also get data to
work on. In other words, this all comes down to a memory
bandwidth issue.

The transcendental functions of VML typically require 10-
50 cycles per element (CPE), typically with one input and
one output value per element. Taking this into
consideration we can roughly estimate the break-even
point of threading by the following inequality:

S/T+O < S N*CPE/T+O < N*CPE N > O * T /
(CPE * (T-1)),

where S = CPE*N and N is the vector length � is the
number of cycles to execute a particular function in serial
mode, O is the number of clocks for overhead for starting
threads (it really depends on T, the total number of threads
used) and CPE which is the cpe of the function in serial
case. One can see that with increasing CPE (more
complex functions) the shorter vectors can be effectively
parallelized. The greatest difficulty here is to make an
estimation of O.

Our computations show that O, measured in cycles,
depends mostly on the number of sockets, the number of
cores, and whether hyperthreading is turned on or off.
This inequality, estimation of O, and a table of CPE
values for each function are used in order to choose the
number of threads for a particular function call during
runtime.

Figure 8 shows the speedups for three VML functions on
a Woodcrest system (dual socket, dual core) compared to
single-thread performance on the same processor.

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 305

Figure 8: VML scaling on selected functions

Though VML can choose some particular number of
threads it is difficult to do this accurately:

Performance is often data dependent. For example,
the dCbrt function (cubic root for double precision
vectors) has 27.96 cpe for uniformly distributed data
on the interval [-10000;10000], but 15.00 cpe if the
vector is all zeros.

Data location. If the input/output vectors are in
cache, scaling and performance will be much better
than if the data are in memory.

When several different successive vector functions
work with the same vectors, a different number of
threads can be chosen, and as a result data might stay
in the wrong cache if the cache is not shared.

The influence of overhead might be significantly
lowered by using threading at a higher level (i.e., if
the user calls the VML functions from a threaded
application).

In summary, for VML, multi-core shared cache
architectures have opened opportunities for threading that
did not exist previously, but the performance is dependent
on factors the VML developer can only partly control. It is
likely that in most cases calling VML functions from a
threaded application will result in better performance than
invoking the threaded VML.

SPARSE LINEAR ALGEBRA
Solving large sparse linear systems of equations is often a
stumbling block in many scientific problems. MKL offers
several approaches for solving such problems. The
PARDISO solver is a sparse direct supernodal solver that
is thread-safe, high-performing, and memory-efficient.
Using this tool, you can solve symmetric and non-
symmetric sparse linear systems of equations on shared-
memory multi-processors. However, there is a point where
the memory requirements for large systems can become
prohibitively high, and the PARDISO/DSS (direct sparse
solver) will not work. This is where MKL iterative sparse
solvers come in: these solvers can provide a remedy,
because only a few working vectors and the primary data
need be stored.

MKL iterative solvers are based on a reverse
communication interface (RCI) scheme that makes the
user responsible for providing certain operations for the
solver (for example, matrix-vector multiplications). To
simplify the usage of MKL iterative solvers and gain
additional performance, MKL offers sparse BLAS
functions, which is a set of functions that perform a
number of common vector and matrix operations for the
most popular sparse storage schemes: compressed sparse
row (CSR), compressed sparse column (CSC), diagonal,
coordinate (COO), skyline, and block sparse row formats.
Most MKL sparse BLAS routines are threaded using
OpenMP. As in the case of the VML, for instance,
performance on sparse BLAS is improved when the data
are in the common cache for the cores and those BLAS
are threaded.

Like dense matrices, the performance of MKL
PARDISO/DSS and MKL sparse BLAS depends on the
details of the machine architectures, but unlike dense
problems, the performance of these components also
depends on the structure of the matrix, because the
distribution of the nonzero elements in a sparse matrix
determines the memory access patterns. However, many
physical problems expose a well-behaved sparse structure,
or the rows can be re-ordered to yield a better structure.
PARDISO uses approximate minimum degree ordering
and METIS reordering techniques for getting
permutations to minimize fill-in and the associated
memory requirements. Internal storage for the matrix
factors in PARDISO is a block format. Most of the
computations are done with the help of MKL Level 3
BLAS and LAPACK. The usage of Level 3 BLAS and
supernode pivoting coupled with supernode partitioning
and synchronous computations allows PARDISO to
achieve high-gigaflop rates and nearly linear speedup on
multi-core platforms.

There are differences in optimization of Level 2 and Level
3 sparse BLAS on many core platforms, and some

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 306

optimization problems are similar to the problems of
dense Level 2 and Level 3 BLAS (e.g., low locality in
Level 2 routines). For Level 3 sparse BLAS, reorganizing
the computations to perform the entire set of
multiplications as a single operation produces significantly
better performance. It is natural to expect that
performance and scalability of Level 3 sparse BLAS are
better than those of Level 2 sparse BLAS. MKL sparse
BLAS routines for the block sparse row format that
exploit the benefits of data blocking have better data
locality and vector instructions: for example, the SSE2
instruction set can be applied even for Level 2 sparse
BLAS in this case. Similar optimizations are done for the
diagonal and skyline format, because the elements of the
source vector as well as destination vector are accessed
sequentially. The Level 2 sparse BLAS operations for
point entry sparse formats, such as the compressed sparse
row (CSR) or coordinate formats (COO), are the most
difficult area for optimization, because the elements of the
source vector are accessed in a discontinuous way that
leads to poor temporal locality. However, it appeared that
even Level 2 sparse BLAS can be threaded effectively at
least on the latest Intel® multi-core platforms. In addition,
many well-known methods have been used for
optimization of MKL Sparse BLAS. Among these are
blocking, prefetching, OpenMP, etc., which allow for
better performance of Sparse BLAS on multi-core
architectures.

INTEGRATED PERFORMANCE
PRIMITIVES (IPP)
IPP is a multi-functional library highly optimized for Intel
architecture. IPP covers 15 functional domains that can be
recognized by a suffix in the library file names. For
example, functions with IPPs in their names are signal
processing functions, note suffix �s.� There are more than
two-thousand functions processing 1D signals/data of
different data types: real and complex, signed and
unsigned, floating point, and integer. The other libraries in
IPP are image processing �i,� JPEG primitives �j,� audio
coding �ac,� color conversion �cc,� string processing
�ch,� cryptography �cp,� computer vision �cv,� data
compression �dc,� small matrix operations �m,� realistic
rendering �r,� speech coding �sc,� speech recognition
primitives �sr,� video coding �vc,� vector math �vm.�

IPP is optimized for several Intel architectures: IA32,
IA64, Intel 64, and IXP. Within each architecture are
optimizations for specific processors. For instance, within
IA32 architecture there are specific optimizations for the
Pentium® 4 and Intel Core 2 Duo processors, among
others.

IPP is optimized at three levels: algorithmic, effective use
of SIMD instructions (SSE2, SSE3), and parallelization at
both the primitive and component levels. Primitive-level
threading is the threading implemented in IPP functions.
Not every function in IPP is parallelized because of the
overhead added by threading. However, the good news
here is that IPP is by design a set of build blocks and
applications that developers can easily use to thread their
application by calling the primitives on different threads.

Component-level threading is threading provided in such
components as video codecs, the H264 encoder and
decoder; the jpeg viewer, and the IPP implementation of
well-known data compression libraries, ZLIB and GZIP.
These components, as well as others, are shipped with IPP
as IPP samples given in their source codes.

An example of algorithm optimization is the median filter
in the Signal and Image processing domains. Table 1, for
instance, illustrates the results, in clocks-per-element, of
IPP optimization of the median filter compared with the
LEADtools library.

Table 1: IPP compared to LEADtools
on median filter

Spatial filter
with mask 5x5

Function cpe

LEADtools L_MedianFilterBitmap 345
IPP ippiFilterMedian_16s_C3R 35

CPU optimization with the SIMD instruction set, which is
done for many functions in IPP, also gives a performance
gain that can be measured by comparing the performance
ratio numbers of the C version of the library to the CPU
specific library, such as optimizing for the Intel Core 2
Duo processor. Table 2 illustrates the performance
advantage of multi-core threading on MPEG4 decoding.

Table 2: Speedup on threaded MPEG4

Stream2 Resolution Frames Bitrate
MB/s

FPS
1T

FPS
2T

Ratio

1 1280x720 IPB 4.0 199 328 1.65
2 720x576 IP 4.7 298 411 1.38
3 640x476 IP 2.2 671 841 1.25
4 640x480 IP,

OBMC
1.0 650 650 1.6

2 Stream 1: preakness_59.94fps_Xvid_4Mbs_CBR.avi;
Stream 2: Boss.avi; Stream 3: Taxi.avi; Stream 4:
Term2.divx

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 307

SUMMARY
The Intel MKL is part of a suite of tools offered by Intel
to help developers create software efficiently and to
achieve high performance. For MKL, the goal has been to
provide an easy-to-use software package to aid in the
development of mathematical software. Achieving that
goal has a number of facets, some of which we have
touched on in this paper: functionality, compiler
independence, performance, and the most recent efforts in
performance, focusing on helping the user get the full
benefits available from Intel multi-core systems. We have
discussed in general terms some of the approaches taken
by library developers to achieve the performance goals
including threading at a higher level of functionality
(LAPACK) and improving the locality of reference for
data in LAPACK codes through more effective use of the
Level 3 BLAS, and so on.

As the complexity and core counts for microprocessors
continue to grow, MKL (and IPP) will optimize functions
that impact performance in key application areas ensuring
full and effective use of those processor developments.

ACKNOWLEDGEMENTS
Neither MKL nor IPP would be possible without the
creative and disciplined efforts of the teams that develop
these software packages. We acknowledge their
contributions that make these features, functions, and
performance possible. Both libraries have been largely
created by groups of developers with strong backgrounds
in computer science and mathematics in Russia.

REFERENCES
[1] Anderson, E., Bai, Z., Bischof, C., Blackford, L. S.,

Demmel, J., Dongarra, J., DuCroz, J., Greenbaum, A.,
Hammarling, S., McKenny, A., and Sorenson, D.,
LAPACK User�s Guide. 3rd ed., SIAM, Philadelphia,
PA., 1999.

[2] Buttari1, A., Dongarra, J., Kurzak, J., Langou, J.,
Luszczek, P. and Tomov, S., �The Impact of Multicore
on Math Software,� at
http://icl.cs.utk.edu/projectsfiles/sans/pubs/para-
multicore-2006.pdf

[3] Dongarra, J., DuCroz, J., Duff, I. Hammarling, S., �A
set of Level 3 Basic Linear Algebra Subprograms,�
Technical Report, ANL-MCS-TM-88, Argonne
National Laboratory, Argonne, ILL, 1988.

[4] Lang, B, �Using Level 3 BLAS in Rotation-Based
Algorithms,� SIAM Journal on Scientific Computing,
Volume 19, Number 2, pp. 626�634, 1998.

[5] Starzdins, P., �A comparison of lookahead and
algorithmic blocking techniques for matrix

factorization,� TR-CS-98-07, The Australian National
University, July 1998.

AUTHORS� BIOGRAPHIES
Ilya Burylov is a Software Engineer in the Performance
Library Lab of the Intel Software and Solutions Group.
His interests include multi-core threading technologies,
numerical analysis, and partial differential equations in
hydrodynamics. He received his M.S. degree from the
Perm State Technical University. His e-mail is
ilya.burylov at intel.com.

Michael Chuvelev is a Senior Software Engineer in the
Performance Library Lab of the Intel Software and
Solutions Group. He graduated from Moscow Institute of
Physics and Technology with an M.S. degree in Applied
Mathematics. At Intel he has specialized on code
parallelization and linear algebra software optimization,
particularly of LAPACK, ScaLAPACK, and sparse
solvers. He is currently focusing on LAPACK
optimization on SMP systems, especially on multi-core
systems. His e-mail is michael.chuvelev at intel.com.

Bruce Greer is a Principal Engineer in the MKL team in
the Developer Products Division of the Software
Solutions Group. He was manager of MKL from 1995
until May of this year. He received an M.S. degree in
Physics from Georgia Tech. His professional interests are
in code optimization. Despite his handicap, he has a
passion for golf. His e-mail address is bruce.s.greer at
intel.com.

Greg Henry is a Principal Engineer in the MKL team in
the Developer Products Division of the Software
Solutions Group. His research interests are linear algebra,
parallel computing, numerical analysis, scientific
computing, and all things relevant to MKL. He received
his Ph.D. degree from Cornell University in Applied
Mathematics and started working at Intel in August 1993.
Greg has three children and a wonderful wife, and writes
novels as a hobby. His e-mail is greg.henry at intel.com.

Sergey Kuznetsov is a Senior Software Engineer in the
Performance Library Lab of the Intel Software and
Solutions Group. His research interests include parallel
numerical linear algebra, sparse matrix computations,
parallel algorithms and eigenvalue problems. He received
his Ph.D. degree from the Novosibirsk State University,
Russia. His e-mail is sergey.v.kuznetsov at intel.com.

Boris Sabanin is a Principal Engineer and the
Engineering manager of the Intel Integrated Performance
Primitives library in the Intel Systems and Solutions
Group. He is focusing on the design, development and
optimization of signal processing functions. His e-mail is
boris.sabanin at intel.com.

Intel Technology Journal, Volume 11, Issue 4, 2007

Intel® Performance Libraries: Multi-Core-Ready Software for Numeric-Intensive Computation 308

GLOSSARY
BLACS: Basic Linear Algebra Communication
Subprograms � a set of functions developed for
ScaLAPACK which isolate the communications used by
the software from the communication layer such as MPI.
Used throughout MKL cluster software.

BLAS: Basic Linear Algebra Subprograms � a set of
dense vector, vector matrix and matrix math functions
useful in creating higher level functions such as solvers.

CODEC: COder/DECoder � used for encoding or
decoding digital data streams such as video or audio.

DSS: Direct Sparse Solver � solves a system of equations
in an a priori known number of operations in contrast to
iterative sparse solvers for which the number of operations
is data dependent.

FFT: Fast Fourier Transform � algorithms to convert, for
instance, a time series into a frequency series in an
efficient way.

FFTW: Fastest FFT in the West � a publicly available
software package to create highly optimal FFTS. See
http://www.fftw.org.

IMSL � A large commercial math software package. See
http://www.vni.com

LAPACK: Linear Algebra PACKage � a set of solvers for
systems of equations, eigensolvers, etc, using blocked
algorithms that make effective use of the Level 3 BLAS.

LINPACK � Predates LAPACK and based on vector
operations. Also a benchmark solving systems of linear
equations.

METIS � A set of programs for partitioning unstructured
graphs. See http://glaros.dtc.umn.edu/gkhome/views/metis

MPI: Message Passing Interface � A widely used
distributed memory (cluster) communication package.

NAGLIB � A large math software package similar to
IMSL. See http://www.nag.com

NETLIB � A repository of software packages such as
BLAS, BLACS, LAPACK, LINPACK, ScaLAPACK and
others. See http://www.netlib.org

PARDISO: PARallel DIrect SOlver � A parallel direct
solver from University of Basel and licensed by MKL.
See http://www.pardiso-project.org

PDE � Partial Differential Equation.

ScaLAPACK: Scalable LAPACK � cluster versions of
much of LAPACK.

SIMD: Single Instruction Multiple Data � hardware to
perform multiple arithmetic operations simultaneously on

a single instruction, such as the SSE2 and SSE3
instructions.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 309

The Foundations for Scalable Multi-core Software in
Intel® Threading Building Blocks

Alexey Kukanov, Performance, Analysis and Threading Lab, Intel Corporation
Michael J. Voss, Performance, Analysis and Threading Lab, Intel Corporation

Index words: threading building blocks, threading, scalability, parallelism, software

ABSTRACT
This paper describes two features of Intel® Threading
Building Blocks (Intel® TBB) [1] that provide the
foundation for its robust performance: a work-stealing
task scheduler and a scalable memory allocator.

Work-stealing task schedulers efficiently balance load
while maintaining the natural data locality found in many
applications. The Intel TBB task scheduler is available to
users directly through an API and is also used in the
implementation of the algorithms included in the library.

In this paper, we provide an overview of the TBB task
scheduler and discuss three manual optimizations that
users can make to improve its performance: continuation
passing, scheduler bypass, and task recycling. In the
Experimental Results section of this paper, we provide
performance results for several benchmarks that
demonstrate the potential scalability of applications
threaded with TBB, as well as the positive impact of these
manual optimizations on the performance of fine-grain
tasks.

The task scheduler is complemented by the Intel TBB
scalable memory allocator. Memory allocation can often
be a limiting bottleneck in parallel applications. Using the
TBB scalable memory allocator eliminates this bottleneck
and also improves cache behavior. We discuss details of
the design and implementation of the TBB scalable
allocator and evaluate its performance relative to several
commercial and non-commercial allocators, showing that
the TBB allocator is competitive with these other
allocators.

INTRODUCTION
Performance-oriented developers now face the daunting
task of threading their applications. Introducing
parallelism into an application is a large investment. It is
therefore imperative to implement a scalable solution, one

that continues to increase performance, as the number of
available cores and threads increases.

Intel TBB is a C++ template library that is designed to
assist developers in porting their applications to multi-
core platforms. The TBB library provides generic parallel
algorithms [18] and concurrent containers [19] that enable
users to write parallel programs without directly creating
and managing threads. These algorithms are tested and
tuned for the current generation of multi-core processors,
and they are designed to scale as the core count continues
to increase.

To provide efficient performance today and continued
scalability tomorrow, the library is designed to support
fine-grain parallelism through tasks. Tasks are user-level
objects that are scheduled for execution by the TBB task
scheduler. The task scheduler maintains a pool of native
threads and a set of per-thread ready pools of tasks. At
initialization, the TBB scheduler creates an appropriate
number of threads in the pool (by default, 1 per hardware
thread) and maintains the ready pools using a randomized
work-stealing algorithm [2, 3].

In this paper, we describe the design of the TBB task
scheduler and several scheduling optimizations users can
keep in mind while coding their applications. In the
Results section, we explore the scalability of TBB
applications and highlight the impact of these scheduling
optimizations on performance.

The task scheduler is complemented by the Intel TBB
scalable memory allocator. In this paper, we provide an
overview of its design and look at the tradeoffs. We
compare its performance to several other commercial and
non-commercial allocators.

RELATED WORK
The Intel TBB task scheduler is inspired by the early Cilk
scheduler [2, 3]. Cilk is a parallel extension of the C
programming language that defines additional keywords

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 310

and constructs. The Cilk project was a descendant of the
Parallel Continuation Machine (PCM)/Threaded-C [13].

Both Cilk and the Intel TBB schedule lightweight tasks
onto user threads. The Chare Kernel [14] is a portable set
of functions that allows users to express parallelism in
terms of small tasks (chares) with the runtime
transparently managing resources. Unlike Intel TBB and
Cilk, however, the Chare Kernel is targeted toward
message passing machines.

Mainstream languages, such as those supported by the
.NET CLR also recognize the need for thread pools,
where users can submit tasks without the need to explicitly
manage threads [15]. However, in the .NET CLR these
thread pools are targeted at general-purpose applications
and are not tuned for compute-intensive applications.

The McRT research program at Intel presented a software
prototype of an integrated runtime library for large-scale
chip-level multiprocessing (CMP) platforms [17],
including a highly configurable, user-level scheduler. It
can be used to realize a variety of co-operative scheduling
strategies, including work stealing.

The design of the Intel TBB scalable allocator is based on
contemporary research in scalable memory allocation [8,
9] and utilizes best-known design solutions; it has
common roots with Hoard [8], LFMalloc, Vam [10],
Streamflow [11] and other state-of-the-art concurrent and
sequential allocators. The TBB scalable allocator is a
productization of the scalable memory allocator
developed as part of the McRT research program [7, 17].

THE TBB TASK SCHEDULER
The Intel TBB task scheduler is a work-stealing
scheduler. The design of the TBB scheduler is inspired by
the early Cilk scheduler, which Blumofe and Leiserson [2,
3] proved has optimal space, time, and communication
bounds for well-structured (�fully strict�) programs.

In a system that uses work-stealing, each thread maintains
a local pool of tasks that are ready to run. Using local
pools avoids the contention that may arise with the use of
a global task queue. When executed, a task performs work
and also may create additional tasks that are placed in the
local pool. If a thread�s pool becomes empty, it attempts
to steal a task from another random thread�s pool. This
approach is in contrast to static scheduling methods where
threads are assigned work up-front and from other
dynamic scheduling methods where a central pool of tasks
(or iterations) is maintained.

Blumofe and Leiserson [2, 3] showed that the expected
parallel runtime of applications scheduled by the Cilk
scheduler is)(][1 TPTOTE P , where 1T is the

�work� or sequential time of the application, and T is
the critical path length. This optimal bound shows that as
P , the expected time is only limited by the critical
path length (the sequential part) of the application.

To achieve these same optimal bounds, the TBB task
scheduler also uses a randomized work-stealing algorithm.
An overview of its implementation is provided in the
following section.

An Overview of the Task Scheduler Design
The TBB task scheduler evaluates task graphs. A task
graph is a directed graph where nodes are tasks, and each
node points to its parent, which is another task that is
waiting on it to complete, or NULL. Each task has a
refcount that counts the number of tasks that have it as
their parent. Each task also has a depth, which is usually
one more than the depth of its parent. The work of the task
is performed by a user-defined function that is
encapsulated within the task object.

To assist in providing an overview of the Intel TBB task
scheduler, we use calculation of the nth Fibonacci number
as a running example. A serial implementation of our
Fibonacci example is shown below:

The function , shown below, uses the TBB
task API to construct the root node of a task graph, an
object of type . When this task�s function

 is called, it will create two child tasks, also of
type . Child will calculate fibonacci(n-1) and
child will calculate fibonacci(n-2). When each of these
tasks is executed, they will in turn recursively spawn child
tasks as follows:

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 311

For performance reasons, TBB requires users to set task
refcounts explicitly with the call,
instead of atomically incrementing it in

 The refcount should be set for a task
before spawning any of its children.

Each task that spawns children waits at the
 call until all of its children

complete. An additional guard reference is required for
this as shown in the above example by using the refcount
of 3, while there are only 2 child tasks. A thread that
enters a is free to execute
other ready tasks while it waits.

In after completing the wait call, the
results of the child tasks are summed and returned. When

 no additional child tasks are created and
instead the leaf task will directly call SerialFib.

Figure 1 shows a snapshot of a task graph that might be
created by an execution of ParallelFib. Tasks with non-
zero reference counts (A, B, and C) must wait for their
child tasks to complete before proceeding. The leaf tasks
are ready to run.

As mentioned previously, the TBB library maintains a
pool of threads, each of which has its own pool of ready
tasks. Each per-thread task pool is implemented as an
array of lists of tasks. A task goes into a pool only when it
is deemed ready to run, i.e., it has been spawned and has a
refcount of 0. Figure 2 shows a snapshot of a pool that
corresponds to the task graph in Figure 1. Tasks A, B, and
C do not appear in the pool because they have non-zero
refcounts and therefore are not ready to run.

Figure 1: Intermediate task graph for the Fibonacci example

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 312

task G

task F

task E task D deepest

shallowest

Figure 2: A pool of ready tasks that
corresponds to the graph in Figure 1

Breadth-First Theft and Depth-First Work
The TBB task scheduler�s fundamental strategy is
�breadth-first theft and depth-first work.� The breadth-
first theft rule raises parallelism sufficiently to keep
threads busy. The depth-first work rule keeps each thread
operating efficiently once it has sufficient work to do.

A depth-first execution of a graph is the most efficient
when performing a sequential execution because it
provides better temporal locality and limits the space
required for storing tasks. The deepest tasks are the most
recently created tasks, and therefore are hottest in cache.
When they complete, their parents can then execute, and
although the parents are not hot in the cache, they�re
warmer than the tasks above them. A depth-first execution
also limits the space required for storing tasks. When
executing a node, only the nodes that lie along the path
from the root to that node need to exist in memory.

Depth-first execution of a graph, however, limits
parallelism. In contrast, always executing the shallowest
tasks first leads to a breadth-first unfolding of the tree.
This creates an exponential number of nodes that coexist
simultaneously, providing ample tasks to steal but also
excessively consuming memory.

To balance efficient execution and parallelism, the TBB
scheduler therefore uses the �breadth-first theft and depth-
first work� rule.

Each thread in the TBB thread pool executes a worker
routine that actively looks for ready tasks to execute. A
thread will first take the task at the front of the deepest list
of its own pool1. If there are no ready tasks in its own pool
and there is at least one non-empty task pool, it will then
steal from the front of the shallowest list of another

1 Optimizations will be discussed later that allow tasks to
directly return a next task to execute, bypassing the task
scheduler.

randomly chosen pool. If the chosen pool is empty, the
thread tries to steal from another randomly selected thread
until it succeeds.

Scheduling Trade-offs and Optimizations
The Intel TBB task scheduler was inspired by the Cilk
scheduler. Cilk is a parallel extension of the C
programming language that defines additional keywords
and constructs. Since Cilk requires a modified C compiler,
it can rely on the compiler to perform Cilk-specific
transformations and optimizations.

TBB on the other hand is a C++ template library and can
be compiled using any standard-compliant C++ compiler.
While this makes TBB more portable, it also means that
correctness and performance cannot depend on any TBB-
specific compiler passes. The TBB task API has therefore
been designed to allow users to perform certain
scheduling optimizations �manually� to achieve increased
performance when necessary. The most important of these
optimization opportunities are discussed below and their
impact is evaluated in the Experimental Results section.

Minimizing Stack Use with Continuation Tasks
As mentioned before, TBB uses a �breadth-first theft and
depth-first work� approach. However, this approach can
sometimes cause the processor stack to overflow.

For example, consider the case when a task enters a
 The task cannot continue

until all of its children complete. On entering the wait, the
calling thread is released to execute or steal other tasks. If
it steals the shallowest task from another thread, it then
begins a depth-first execution of this stolen tree.

However, the initial task that entered the
 is kept on the processor

stack to maintain its local storage and instruction pointer.
The newly stolen tree then begins to unfold on top of the
waiting subtree on the processor stack. This situation
could occur repeatedly, causing the stack to overflow.

To avoid this situation, the TBB task scheduler forces a
thread to only steal tasks that are deeper than any waiting
task. While this limits stack growth, it also limits the
choice of tasks to steal and therefore might limit
parallelism.

To avoid restricting the choice of tasks to steal while at
the same time limiting stack space growth, the TBB task
interface allows developers to specify continuation tasks.
A task can replace itself in the graph with a continuation
task and then return, freeing up its stack space. When the
children complete, the continuation task is spawned to
finish the work delegated to it by the parent.

To use a continuation task , the children of a task are
allocated as children of and not the task itself. Like

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 313

other tasks, becomes ready to run when its children
complete and will only then be spawned. The code for
spawning children using �continuation-passing� for our
Fibonacci example is shown below:

The implementation of (not
shown) inherits from , and sums and

 into in its function. The benefit of this
approach is that after spawning children tasks in FibTask,
the function returns, removing itself from the
stack. Only the tasks that are actively executing are on the
processor stack.

While there are benefits to the use of continuation tasks,
there are also downsides. When using continuation tasks,
all live state passed from parent to child cannot reside in
the parent or its stack frame, since the parent
may be destroyed before the child completes. Therefore
additional care may be needed to properly encapsulate the
live state of the computation. Also continuation passing
requires the creation of an additional task object. In fine-
grain tasks, this additional runtime overhead of task
creation might be noticeable.

Reducing Overheads: Scheduler Bypass and Task
Recycling
Luckily once an algorithm is using continuation tasks, it
can also make use of two other overhead reducing
techniques: scheduler bypass and task recycling.

With scheduler bypass, a task�s function
explicitly returns the next task to execute. Since the next
task is known, the more complex logic to select a task is
avoided in the scheduler�s code. To use scheduler bypass
in our Fibonacci example, the child task is not spawned
but is instead returned as shown below:

Once continuation passing and scheduler bypass are in
use, it also becomes possible to recycle task objects.
Normally when a task returns from its function,
the task object is automatically deallocated. However, a

user can choose to recycle a task object, making it live
beyond the return and avoiding the repeated allocation
and deallocation of task objects. Recycling a task as one
of its own children is shown below for Fibonacci:

As shown in the Experimental Results section, scheduler
bypass and task recycling often more than make up for the
extra overhead added from the allocation of a continuation
task.

SCALABLE MEMORY ALLOCATION
Until recently, mainstream client applications have
targeted single-processor PCs. Therefore state-of-the-art
general-purpose memory allocators such as Doug Lea�s
dlmalloc [4] have evolved to optimize for the sequential
case. They were designed with two main principles in
mind: efficient use of memory space and minimization of
CPU overhead. Unfortunately, design decisions made to
achieve these principles often hinder these allocators from
providing good parallel performance.

Even the best sequential allocator can easily become a
performance bottleneck in a parallel application. To
ensure correctness, access to its heap must be properly
protected. Using a single global lock for protection would
amount to serializing all allocations. Detlefs et al. [5]
showed that real applications spend up to 20% of
execution time in memory allocator routines (even more
with inefficient allocators). According to Amdahl�s law
[6], an application that is 20% sequential can never
achieve more than a 5x speedup, even when using an
infinite number of cores. Serializing allocations is
therefore clearly not a scalable solution. Though more
advanced schemas were developed to adapt dlmalloc for
multi-threaded applications [12, 16], their scalability is
also limited [8, 9, 12].

In addition, while space and CPU efficiency remain
considerations in the design of a scalable memory
allocator, they are not as important as before. The larger
memory sizes available in the average PC and the growing
speed gap between CPU and memory bring other

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 314

considerations to the forefront, such as cache locality and
prevention of false sharing.

Unfortunately, malloc implementations supplied by widely
used C runtime libraries such as glibc and the Microsoft
Visual C++* RTL still do not provide proper scalability
for multi-threaded applications. As Intel TBB aims to ease
the development of efficient and scalable parallel
applications, it is unable to rely on these by-default
allocators, and therefore provides its own scalable
memory allocation library.

The TBB Scalable Allocator
The TBB scalable allocator is a productization of the
scalable memory allocator developed as part of the McRT
research program at Intel [7, 17].

In TBB, we improved the McRT code for better
portability (for example, we had to rework the parts
depending on other components of the McRT library) and
addressed the performance of some corner case situations
that were ignored by the research project. However, the
major structure of the TBB scalable allocator is the same
as the McRT design.

Figure 3 shows the high-level design of the TBB scalable
allocator.

OS virtual memory

An application

The global heap of
free blocks

Global lists of
abandoned blocks

Thread-private heap: size-segregated
bins organized as lists of memory blocks

large objects small objects

OS virtual memory

An application

The global heap of
free blocks

Global lists of
abandoned blocks

Thread-private heap: size-segregated
bins organized as lists of memory blocks

large objects small objects

Figure 3: High-level design of the scalable allocator

The allocator requests memory from the OS in 1MB
chunks and divides each chunk into 16K-byte aligned
blocks2. These blocks are initially placed in the global
heap of free blocks. Currently, requested memory is never
returned to OS (except for large allocations as described
below), so the allocator carefully ensures that memory is
reused. New blocks are only requested when a thread
can�t find any free objects in the blocks of its own heap
and there are no available blocks in the global heap.

2 Following the authors of the McRT malloc [7], we will
use terms �object� and �block�; in other literature, they
can be called �block� and �superblock,� respectively.

As in some other allocators, requests for large objects are
redirected straight to OS virtual memory services. In the
TBB allocator, the border between large and �regular�
sizes lies slightly below 8K. However, we found that for
better competitiveness, memory pieces of 8K to ~64K size
should also be cached; explicitly managing these sizes is
part of the future work for TBB.

Like many other widely used concurrent allocators, the
TBB allocator uses thread-private heaps. Such a design
has proven to cut down on the amount of code that
requires synchronization, and reduce false sharing, thus
providing better scalability. Each thread allocates its own
copy of heap structures and accesses it via thread-specific
data (TSD) using corresponding system APIs.

The heaps are segregated, i.e., they use different storage
bins to allocate objects of different sizes. A memory
request size is rounded up to the nearest object size. This
technique provides better locality for similarly-sized
objects that are often used together (for example, imagine
an application traversing over a list or a tree). In the TBB
allocator, the difference between consecutive object sizes
in general does not exceed 25%, so internal fragmentation
remains reasonable.

Figure 4 illustrates the internal design of a bin. A bin only
holds objects of a particular size, and it is organized as a
double-linked list of blocks. At each moment, there is at
most one active block used to fulfill allocation requests for
a given object size. Once the active block has no more
free objects, the bin is switched to use another block.

�Empty
enough�

block

Active
block �Full�

block

TLS variable Bins[0] 32 �

�Full�
block

Global heap / abandoned blocks

Returning
unused blocks

Moving �empty enough�
blocks

Changing the active block

�mailbox�

active block ptr

Inserting
new blocks

Blocks with objects
to repatriate

�Empty
enough�

block

Active
block �Full�

block

TLS variable Bins[0] 32 �

�Full�
block

Global heap / abandoned blocks

Returning
unused blocks

Moving �empty enough�
blocks

Changing the active block

�mailbox�

active block ptr

Inserting
new blocks

Blocks with objects
to repatriate

Figure 4: Design of a storage bin in a
thread-private heap

Unlike in other allocators, the active block may be located
in the middle of the list; empty enough3 blocks are placed
before it, and full blocks are placed after it. This design

3 A block counts as �empty enough� if the share of
allocated objects drops below the predefined threshold.

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 315

minimizes the time to search for a new block if the active
one is full. When enough objects are freed in a block, the
block is moved right before the active block and thus
becomes available for further allocation. A block with all
its objects freed returns back to the global heap; new
blocks are taken from there as required.

The design decisions made at higher levels allow certain
optimization techniques for object allocation. With thread-
local heaps, the common allocation path does not contain
synchronization apart from the TSD access managed by
the OS; the same is true for deallocation of a thread�s own
objects, as shown below.

Size segregation and aligned blocks have made per-object
headers needless; all information required to free an
object can be easily obtained via the block header. As a
result, objects are tightly packed in the block (as shown in
Figure 5), which leads to a potentially smaller memory
footprint and better cache locality.

Bump pointer Private free list

Public free list

Double-linked
list of blocks

Bump pointer Private free list

Public free list

Double-linked
list of blocks

Figure 5: Structure of a memory block containing
allocation objects of a specific size

Berger et al. [8] proved that allocators with pure private
heaps cause unbounded memory blowup in producer-
consumer applications. To avoid this, memory should be
returned to the heap it was allocated from. In the TBB
scalable allocator, an object is naturally returned to its
enclosing block. However doing so means that a foreign
thread4 can interfere with operations of the owning thread,
possibly leading to slowdown. To avoid that, two separate
free lists are used for objects returned by the owner and by
foreign threads.

Allocation requests are usually served from the private
free list and so do not require synchronization; only when
the request cannot be satisfied this way are the public free
lists inspected. Unlike in McRT malloc [7], we do not
make repatriation of objects completely non-blocking due
to portability restrictions and stricter requirements; we use
fine-grained locks that are distributed as much as possible.

4 A thread returning a memory object to the block owned
by another thread.

EXPERIMENTAL RESULTS
In this section, we present performance data to evaluate
the performance of both the Intel TBB task scheduler and
the scalable memory allocator. All results were collected
on a server system with two Quad-Core Intel® Xeon®

processors X53555 running Red Hat Enterprise Linux 4
(update 4). We present data using 1 through 8 threads to
show performance on both a small number of cores as
well as to show the scalability beyond the number of cores
available in a single multi-core processor today.

Performance of the Task Scheduler
In this section, we present the scalability of several
benchmarks, highlighting the impact of continuation
passing, scheduler bypass, and task recycling on the
performance of each application.

Methodology
To evaluate the performance of the TBB scheduler as well
as the impact of the manual optimization described above,
we show results for applications using TBB without
scheduling optimization (TBB); using only continuation
passing (TBB+C); using continuation passing and
scheduler bypass (TBB+CB); and using continuation
passing, scheduler bypass, and task recycling
(TBB+CBR). For each benchmark we show the speedups
relative to an optimized serial implementation that does
not use TBB.

Benchmark Descriptions
We use four applications to evaluate the performance of
the task scheduler:

fibonacci. The Fibonacci benchmark corresponds to
the running example provided above in the
description of the task scheduler. In our benchmark
runs, we calculate the 50th Fibonacci number, with
serial cutoffs of 12 and 20.

parallel_for. This microbenchmark uses an Intel
TBB parallel_for algorithm to iterate over a range of
100 million integers applying an empty loop body to
each element. In the TBB library, all three scheduling
optimizations are used by default. To allow the
performance impact of the various optimizations to be

5 Intel processor numbers are not a measure of
performance. Processor numbers differentiate features
within each processor family, not across different
processor families. See
www.intel.com/products/processor_number for details.

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 316

measured, the implementation of parallel_for was
modified to allow the selective disabling of specific
optimizations.

sub_string_finder. This benchmark is an example
that is provided with the TBB library. The application
calculates, for each position in a string, the location of
the largest substring found elsewhere in the string that
matches a string starting at the current position. The
code uses the modified parallel_for described above
to isolate the impact of the scheduling optimizations.

tacheon. Tacheon is a 3D ray tracer that is distributed
as another example with the TBB library. The code
also uses the parallel_for algorithm modified to allow
selective disabling of optimizations.

Benchmark Results
Figure 6 shows the performance of the Fibonacci example
when executed on 1 through 8 threads on the
aforementioned server. In the tests we used serial cutoffs
of 12 and 20. When calculating the 50th Fibonacci
number, the overhead of task creation is small when using
a cutoff of 20, as shown by the speedup of 1 when using 1
thread. The scalability for this case is also excellent, with
a speedup of nearly 8 on 8 threads.

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

12 20

TBB
TBB+C
TBB+CB
TBB+CBR

Average of Speedup

Cutoff Threads

Opt

Figure 6: The speedup of the Fibonacci example when
using different scheduling optimizations and serial

cutoff values. The performance on 1 through 8 threads
is reported for each configuration.

With a cutoff of 12, however, finer-grain tasks are created
resulting in a noticeable scheduling overhead and
a speedup of only 0.93 on 1 thread. With measurable
overheads, the impact of the scheduling optimizations can
also be seen. As discussed above, the use of continuation
passing may provide additional opportunities for stealing
but requires the allocation of additional task objects, often
resulting in a slowdown. This effect is clearly seen in the
TBB+C bars in Figure 6. However continuation passing
also enables the scheduler bypass and task recycling
optimizations, which when combined, result in speedups

beyond the simple TBB case. On 8 threads, the speedup
increases from 7.2 with no optimizations to 7.4 with all
optimizations, an increase of approximately 3%.

The performance of the parallel_for microbenchmark is
shown in Figure 7. The parallel_for algorithm creates
tasks that apply a user-provided body to subranges of the
user-provided range. When using the parallel_for
algorithm, developers may explicitly specify a grainsize or
choose to use the auto_partitioner. If a grainsize is
specified, the default parallel_for algorithm recursively
divides the provide range until the subranges are less than
the grainsize. Tasks are created that apply the body to
these subranges. If the auto_partitioner is used, the library
adaptively tries to select a good partitioning of the range.

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

100 10000000 AUTO

TBB
TBB+C
TBB+CB
TBB+CBR

Average of Speedup

Grainsize Threads

Opts

Figure 7: The speedup of the parallel_for benchmark
when using different scheduling optimizations and

grainsizes. The AUTO configurations use the
auto_partitioner to divide the loop iterations; the
other configurations use the provided grainsize

parameter with the simple_paritioner. The
performance is reported on 1 through 8 threads.

In Figure 7, results for a grainsize of 100, a grainsize of
10,000,000, and the auto_partitioner are shown. Again,
for a large grainsize (and the correspondingly large-grain
tasks) the overhead of the scheduler is negligible and the
speedup on 8 threads is close to 8. Interestingly, the lack
of available parallelism limits speedup even for large
tasks, as demonstrated by the speedup increase with
continuation passing over the base unoptimized case.

The fine-grain tasks, of only 100 iterations of an empty
loop body, show high overhead (a speedup of 0.15 on 1
thread and 1.19 on 8 threads). Again because of the
visibility of overheads, the impact of scheduler bypass and
task recycling is clear on 1 through 8 threads. The
speedup of 1.19 on 8 threads is improved to 1.34 when all
three optimizations are applied.

Figures 8 and 9 present the performance of two larger,
more realistic benchmarks. In both of these benchmarks,
the performance using the default grainsize of 100 for

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 317

sub_string_finder and of 50 for tacheon is measured as
well as a grainsize of 1. In both applications, the
scheduling overhead shown in the 1-thread case is small
even when a grainsize of 1 is used. The scalability of both
applications is also good, with a speedup of close to 8 for
sub_string_finder and a speedup of 7.7 for tacheon.

0
1
2
3
4
5
6
7
8
9

1 2 4 8 1 2 4 8

1 100

TBB
TBB+C
TBB+CB
TBB+CBR

Average of Speedup

Grainsize Threads

Opts

Figure 8: The speedup of the sub_string_finder
example using different scheduling optimizations and
grainsize parameters. The performance on 1, 2, 4, and

8 threads is presented.

0
1
2
3
4
5
6
7
8
9

1 2 4 8 1 2 4 8

1 50

TBB
TBB+C
TBB+CB
TBB+CBR

Average of Speedup

Grainsize Threads

Opts

Figure 9: The speedup of the tacheon example using
different scheduling optimizations and grainsize

parameters. The performance on 1, 2, 4, and 8 threads
is presented.

In summary, the scalability of the TBB scheduler is shown
to allow linear speedups for several small benchmarks.6 It
is also clear that the overhead of the TBB scheduler is
seen for fine-grain tasks (for example 100 iterations of an
empty loop). When these overheads are visible,
continuation passing alone often leads to a slowdown

6 The speedup of other applications will vary depending
on application characteristics.

relative to the unoptimized case. However, continuation
passing can be applied to enable scheduler bypass and
task recycling, which are consistently shown to improve
performance when scheduling fine-grain tasks.

Performance of Memory Allocation
In this section, we present the comparative performance
data for the TBB scalable allocator and five other
commercial and non-commercial memory allocators.

Memory Allocators being Compared
The TBB scalable memory allocator binaries were
obtained from tbb20_010oss_lin.tar.gz package available
at http://www.threadingbuildingblocks.org.

Other allocators in the comparison are these:

The default memory allocator of GNU C runtime
library (glibc) v2.3.4.

Google�s TCMalloc (google-perftools v0.92) from
http://code.google.com/p/google-perftools built by
gcc 3.4.6.

Hoard v3.6.2 taken from http://www.hoard.org, also
built by gcc 3.4.6.

Memory Tuning System* (MTS) binaries provided
by NewCode Technologies, Inc.,
http://www.newcodeinc.com.

SmartHeap* for SMP binaries provided by
MicroQuill, http://www.microquill.com.

Benchmark Description
When comparing memory allocators, it makes sense to use
different tests that exercise different aspects of memory
allocation routines. We used four benchmarks in our
study: the Larson benchmark, the MTS demo test, and two
internally developed microbenchmarks, speed-cross and
false-sharing.

The false-sharing micro-benchmark was developed to
check for the performance penalty due to false sharing
induced by an allocator. Each thread repeatedly allocates a
small object of a given size, then writes and reads every
byte in the object many times in a loop and measures the
time of the loop. The result is reported for every thread. If
objects allocated by different threads share the same cache
line, there should be a significant time penalty.

The speed-cross micro-benchmark was developed as a
stress-test of the multi-threaded behavior of an allocator.
Each thread repeatedly allocates a chunk of memory
objects, touches each one by reading and writing a few
bytes, and then transmits these objects in equal proportion
to all other threads. Then each thread deallocates the
objects it just received. Thus all objects are freed by
foreign threads, and all subsequent allocations potentially

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 318

reuse these objects. The test reports average allocation
and deallocation time per 1,000 objects.

Unlike the microbenchmarks intended to check specific
aspects of memory allocation, the other two tests try to
exercise memory in a more or less realistic way.

The MTS demo test was obtained from the MTS
evaluation package. It attempts to mimic typical allocation
behavior of applications by requesting few large objects,
more medium-size objects, and significantly more small
objects. The test measures elapsed time in seconds.

The Larson benchmark was originally developed by
Larson and Krishnan [12] to model the allocation
behavior of a multi-threaded server and test its throughput
as the number of malloc and free pair operations per
second. We took the benchmark from
http://www.hoard.org.

Benchmark Results
The internal micro-benchmark data presented below were
collected for objects of the machine word size, i.e., eight
bytes on our test server.

The false-sharing benchmark demonstrates that of all the
tested allocators, only the glibc allocator induces false
sharing. Figure 10 shows execution time for various
numbers of running threads as the percent of difference
from the single-threaded run. While the test slowed down
by 40-50% when executed with the default allocator, the
difference is within 10% for all of the other allocators.

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

1 2 4 8

threads

glibc
Google
Hoard
MTS
SmartHeap
TBB allocator

Figure 10: The difference in execution time of the
false-sharing benchmark, running on 2, 4, and 8

threads, to the time of the single-threaded run, for
various memory allocators

In addition, the test was faster with multiple threads which
is especially well observed for eight threads. This effect
could be possibly explained by decreased thread migration
between cores when the number of active threads
increases.

The speed-cross benchmark heavily stresses the allocators
by freeing every object in a thread other than the one it

was allocated; it�s truly a worst-case test. In Figure 11, the
summary time7 of malloc and cross-thread free operations
is shown for various numbers of threads. For allocators
returning memory pieces to the heap of the allocating
thread, the internal contention increases with the growing
number of threads. The chart demonstrates that the TBB
scalable allocator keeps being faster than the others with a
growing number of threads and increasing contention.

0.01

0.1

1

10

100

1 2 4 8

threads

glibc
Google
Hoard
MTS
SmartHeap
TBB allocator

Figure 11: The average time to allocate and free 1,000
objects in the speed-cross benchmark is presented for
1, 2, 4, and 8 threads. The chart uses logarithmic scale.

Figure 12 demonstrates the elapsed time to run as reported
by the MTS demo test.

0

1

2

3

4

5

6

7

1 2 4 8

threads

 glibc
 Google
 Hoard
 MTS
 SmartHeap
 TBB allocator

Figure 12: The elapsed time of the MTS demo test
running on 1, 2, 4, and 8 threads, for various memory

allocators

It is clearly seen that the test slows down as the number of
threads increases for both the glibc malloc and Google�s
allocator; obviously their performance does not scale in
this test. Other allocators scale well enough, though the
test performance drops faster with the TBB allocator than
with Hoard and the two commercial allocators. We are

7 Due to nature of the benchmark, it separately collects
data for malloc and free, then sums them up.

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 319

currently investigating the source of this performance
drop.

The Larson benchmark results are shown in Figure 13.
The benchmark parameters were set to allocate small size
objects of 8 to 100 bytes. The TBB allocator scales
linearly in this test with the best speedup slope. With 8
threads, it provides a 6x increase in throughput. Also note
that the glibc malloc experienced a drop in throughput
with multiple threads running. As in the other tests before,
the Larson benchmark gives additional proof that the
default glibc allocator can be a bottleneck in parallel code.

00E+0

5E+6

10E+6

15E+6

20E+6

25E+6

30E+6

35E+6

40E+6

1 2 3 4 5 6 7 8

threads

glibc
Google
Hoard
MTS
SmartHeap
TBB allocator

Figure 13: The throughput, in allocations per second,
of the Larson benchmark running on 1 through 8

threads for various memory allocators

To summarize, all examined allocators except the glibc
malloc showed their eligibility for parallel applications,
and there is no single winner. While not always the best,
the TBB scalable allocator performed competitively in all
our tests.

Combined Performance of the Task
Scheduler and the Scalable Allocator
In this section, we show the impact of the scalable
allocator combined with an analysis of the impact of the
task-scheduling optimizations. For this analysis, we use
the tree sum example application provided in the TBB
library distribution.

The tree sum application first generates a binary tree that
contains nodes each holding a float value. It then performs
a summation of the values in the tree. Both phases are
done in parallel using TBB tasks, with a serial cutoff value
below which the subtrees are allocated or summed
sequentially.

Figure 14 shows the performance of the tree allocation
phase of the benchmark when using both the scalable
allocator and the default malloc implementation. Results
are provided for a serial cutoff of both 100 nodes and
10,000 nodes.

First, it is clear that the allocation phase scales as
additional threads are used only when the scalable
allocator is employed. The performance of the standard
malloc version degrades as additional threads are used.

Second, the impact of the scheduling optimizations is
again demonstrated by the finer grained tasks (a cutoff of
10 nodes). There is an initial loss for employing
continuation passing, but this loss is mitigated by the
additional application of scheduler bypass and task
recycling. And as expected, the larger tasks of 10,000
nodes show negligible impact from the optimizations.

0
1
2
3
4
5
6
7
8

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10 10000 10 10000

scalable stdmalloc

TBB
TBB+C
TBB+CB
TBB+CBR

Average of Creation Speedup

Allocator Cutoff Threads

Opt

Figure 14: The speedup of the tree allocation phase of
the tree_sum example using the scalable allocator and
the default malloc implementation. The impact of the
various scheduling optimizations is also shown. The
performance on 1, 2, 4, and 8 threads is shown when

using a serial cutoff of 10 and 10,000.

Figure 15 shows the performance of the summation phase
of tree sum. Because of the locality and false-sharing
benefits of the scalable allocator, the performance and
scalability of the computation are also better than with the
standard malloc implementation. The impact of the
manual scheduling optimizations is also seen here for fine-
grain tasks, and it is negligible for large-grain tasks.

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 320

0
1
2
3
4
5
6
7
8

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

10 10000 10 10000

scalable stdmalloc

TBB
TBB+C
TBB+CB
TBB+CBR

Average of Summation Speedup

Allocator Cutoff Threads

Opt

Figure 15: The speedup of the tree summation phase of
the tree_sum example using the scalable allocator and
the default malloc implementation. The impact of the
various scheduling optimizations is also shown. The
performance on 1, 2, 4, and 8 threads is shown when

using a serial cutoff of 10 and 10,000.

CONCLUSION
Intel Threading Building Blocks is a C++ template library
designed to raise the level of abstraction for parallelism as
developers port their code to multi-core platforms.
Starting with the 2.0 version, Intel TBB is also provided at
www.threadingbuildingblocks.org as an open-source
project licensed under the GNU Public License.

Two key features of the library are its work-stealing task
scheduler and scalable memory allocator. Both of these
systems reduce the need of users to understand the many
complex issues related to multi-core performance and
scalability.

In the TBB Task Scheduler section, we provided an
overview of the task scheduler design and outlined several
manual optimizations that users can perform to improve
the performance of the scheduler when executing fine-
grain tasks.

In the Scalable Memory Allocation section, we described
the motivation for and implementation of the scalable
memory allocator, highlighting the design characteristics
that decrease synchronization, increase locality, and avoid
false sharing.

In the Experimental Results section, we explored the
performance of a number of benchmarks on a server with
two Quad-Core Intel Xeon processors. We showed that
the overhead of work stealing is low for large-grain tasks,
and that the manual optimizations described in this paper
offer a small but noticeable improvement when scheduling
fine-grain tasks.

In our evaluation of scalable memory allocators, the TBB
scalable allocator was shown to be competitive with
several commercial and research allocators.

In an analysis of an example that studied the combined
effects of the scheduling optimizations and the scalable
allocator, the use of the scalable allocator showed a large
impact for both small- and large-grain tasks. The
scheduling optimizations were shown to have a small
performance impact for the small-grain tasks and a
negligible impact on the scheduling of the larger-grain
tasks. This confirms the assertion that memory allocation
can sometimes be a limiting factor in the scalability of
parallel applications and that a scalable allocator can
remove this bottleneck.

With the growing availability of multi-core platforms, it is
becoming imperative for performance-oriented developers
to thread their code. Intel TBB, built on its work-stealing
task scheduler and scalable memory allocator, offers an
exciting solution to ease the burden of this transition.

ACKNOWLEDGMENTS
We first must acknowledge the architect of Intel
Threading Building Blocks, Arch Robison, who did much
of the background research and design of the task
scheduler. We also acknowledge the other members of the
TBB development team: Elena Gavrina, Chris Huson,
Anton Malakhov, Andrey Marochko, Alexey Murashov,
Anton Pegushin, Vladimir Polin, and Dave Poulsen. As
mentioned in the paper, the TBB scalable allocator is a
productization of the McRT allocator, so we acknowledge
the contributions of Richard Hudson, Bratin Saha, Ali-
Reza Adl-Tabatabai, and Benjamin C. Hertzberg. We
thank NewCode Technologies, Inc. and MicroQuill for
providing evaluation copies of their memory allocators.
We also thank the reviewers of this paper for their many
useful and insightful comments.

REFERENCES
[1] James Reinders, Intel Threading Building Blocks,

O�Reilly Media, Inc, Sebastopol, CA, 2007.

[2] Robert D. Blumofe and Charles E. Leiserson,
�Scheduling Multithreaded Computations by Work-
Stealing,� in Proceedings of the 35th Annual IEEE
Conference on Foundations of Computer Science,
Sante Fe, New Mexico, November 20�22, 1994.

[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall
and Yuli Zhou, �Cilk: An Efficient Multithreaded
Runtime System,� in Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP �95), Santa Barbara,
California, July 19�21, 1995.

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 321

[4] Doug Lea, �A Memory Allocator,� at
http://gee.cs.oswego.edu/dl/html/malloc.html

[5] David Detlefs, Al Dosser, and Benjamin Zorn,
�Memory Allocation Costs in Large C and C++
Programs,� Software Practice and Experience, 24(6),
pp. 527�542, June 1994.

[6] Gene Amdahl, �Validity of the Single Processor
Approach to Achieving Large-Scale Computing
Capabilities,� AFIPS Conference Proceedings, (30),
pp. 483�485, 1967.

[7] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-
Tabatabai, and Benjamin C. Hertzberg, �McRT-
Malloc � A Scalable Transactional Memory
Allocator,� in Proceedings of the 2006 ACM
SIGPLAN International Symposium on Memory
Management, pp. 74�83, Ottawa, Canada, June 2006.

[8] Emery D. Berger, Kathryn S. McKinley, Robert D.
Blumofe, and Paul R. Wilson, �Hoard: A scalable
memory allocator for multithreaded applications,� in
Proceedings of the 9th International Conference on
Architectural Support for Programming Languages
and Operating Systems, pp. 117�128, November
2000.

[9] Maged M. Michael, �Scalable Lock-free Dynamic
Memory Allocation,� in Proceedings of the
ACMSIGPLAN 2004 Conference on Programming
Language Design and Implementation, pp. 35�46,
Washington, D.C., June 2004.

[10] Yi Feng and Emery D. Berger, �A Locality-
Improving Dynamic Memory Allocator,� in
Proceedings of the Third Annual ACM SIGPLAN
Workshop on Memory Systems Performance, pp. 68�
77, Chicago, IL, June 2005.

[11] Scott Schneider, Christos D. Antonopoulos, and
Dimitrios S. Nikolopoulos, �Scalable Locality-
Conscious Multithreaded Memory Allocation,� in
Proceedings of the 2006 ACM SIGPLAN
International Symposium on Memory Management,
pp. 84�94, Ottawa, Canada, June 2006.

[12] Paul Larson and Murali Krishnan, �Memory
Allocation for Long-Running Server Applications,� in
Proceedings of the First International Symposium on
Memory Management, pp. 176�185, Vancouver, BC,
October 1998.

[13] Michael Halbherr, Yuli Zhou and Christopher F.
Joerg, �MIMD-style parallel programming with
continuation-passing threads,� in Proceedings of the
2nd International Workshop on Massive Parallelism:
Hardware, Software and Applications, Capri, Italy,
September 1994.

[14] W. Shu and L. V. Kale, �Chare Kernel � A Runtime
Support System for Parallel Computations,� Journal
of Parallel and Distributed Computing, 11(3),
Academic Press, pp. 198�211, 1991.

[15] Jeffrey Richter, �.NET: The CLRs Thread Pool,�
msdn Magazine, 18(6), June 2003.

[16] Wolfram Gloger, �Dynamic Memory Allocator
Implementations in Linux System Libraries,� at
http://www.dent.med.uni-
muenchen.de/~wmglo/malloc-slides.html

[17] Bratin Saha et al., �Enabling scalability and
performance in a large scale CMP environment,� in
Proceedings of the 2007 conference on EuroSys, pp.
73�86, Lisbon, Portugal, March 2007.

[18] Michael Voss, �Demystify Scalable Parallelism with
Intel Threading Building Block�s Generic Parallel
Algorithms,� DevX.com, Jupiter Media, October
2006, at http://www.devx.com/cplus/Article/32935.

[19] Michael Voss, �Enable Safe, Scalable Parallelism
with Intel Threading Building Block�s Cocurrent
Containers,� DevX.com, Jupiter Media, December
2006, at http://www.devx.com/cplus/Article/33334.

AUTHORS� BIOGRAPHIES
Alexey Kukanov is a Senior Software Engineer in Intel�s
Performance Analysis and Threading Lab. Since joining
Intel in 2000, he worked on a few software products.
Finally, his interests in C++, library development and
multi-threading have been happily combined in the TBB
project where he is now one of leading developers. Alexey
received an M.S. equivalent degree in Applied Math from
Nizhny Novgorod State University. When he has some
free time he likes playing billiards and volleyball. His
e-mail is alexey.kukanov at intel.com.

Michael Voss is a Senior Staff Software Engineer in
Intel�s Performance Analysis and Threading Lab, where
he is currently one of the lead developers of Intel
Threading Building Blocks. Michael is also an adjunct
professor in the Department of Electrical and Computer
Engineering at the University of Toronto, where he taught
from 2001�2005. His interests include languages, tools,
and compilers for parallel computing. Michael received
his Ph.D. and M.S.E.E degrees in Electrical Engineering
from Purdue University in 2001 and 1997, respectively.
His e-mail is michael.j.voss at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,

Intel Technology Journal, Volume 11, Issue 4, 2007

The Foundations for Scalable Multi-core Software in Intel® Threading Building Blocks 322

IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 323

Methodology, Tools, and Techniques to
Parallelize Large-Scale Applications: A Case Study

Knud J. Kirkegaard, Software and Solutions Group, Intel Corporation
Mohammad R. Haghighat, Software and Solutions Group, Intel Corporation

Ravi Narayanaswamy, Software and Solutions Group, Intel Corporation
Bhanu Shankar, Software and Solutions Group, Intel Corporation

Neil Faiman, Software and Solutions Group, Intel Corporation
David C. Sehr, Software and Solutions Group, Intel Corporation

Index words: multi-core, parallelism, threading, data dependence, privatization

ABSTRACT
Multi-core processors are now mainstream, while many-
core architectures are arriving. Yet getting general-
purpose software ready to take full advantage of the
available hardware parallelism remains a challenge. There
are, in fact, very few success stories of semi-automatic
parallelization of large-scale integer applications outside
the high-performance computing (HPC) and transaction
processing domains. In this paper, we report on such a
success story: threading the Intel® C++ Compiler [3]
which resulted in an average 2x speedup in compiling a
range of CPU2000 benchmarks. We present the
methodology and tools that enabled us to achieve this
success. We believe our approach is generally applicable
to threading a large class of applications.

INTRODUCTION
In this paper we focus primarily on the techniques used to
parallelize an application, the tools that facilitate the
parallelization, and the new insights this approach yielded.
Techniques that proved helpful in our work are at the core
of a comprehensive solution suite Intel is developing to
assist software developers discover and exploit parallelism
in their applications. The generally applicable source
changes necessary to make the compiler thread safe are
also categorized and described. As expected, good
software engineering principles such as modularization,
data abstraction, and information hiding ease the process
of threading an application. We also describe how we
automated repetitive source changes. To make it feasible
to apply all the source changes necessary for an
application of this size, where the threaded loop spans
hundreds of modules covering hundreds of thousands of

lines of code with extensive use of macros, semi-
automated script tools were developed. It is easy to get
overwhelmed by the data dependence complexity and size
when starting to thread existing serial applications, but as
we hope to illustrate in this case study, with the help of
Intel�s threading tools and a systematic approach, it is
possible to achieve large application threading with a
reasonable amount of effort and time.

The threading effort, involving a small team over a
relatively short period of time, successfully yielded a
working parallelized compiler. Although work remains to
be done in tuning the resulting application, we also
discuss in this paper the impact of different thread
scheduling algorithms and the speedups achieved. We also
briefly discuss the issues involved in maintaining a thread-
safe application.

DESCRIPTION OF THE APPLICATION
The Intel Compiler is a large non-numeric application that
compiles C/C++ and Fortran applications for a variety of
Intel® platforms including the IA-32 architecture, the
Intel® 64 Architecture, and the Itanium® processor.
Despite having evolved over the years to target new Intel®

processors and platforms, parallelization of the compiler
itself was not an initial design goal. As such, the compiler
has characteristics similar to other large integer
applications that need to be parallelized in order to take
full advantage of multi-core platforms. At the Intel
Compiler Lab, we parallelized the Intel Compiler and
achieved great performance results. One of our goals was
to fully understand the issues that application developers
encounter when parallelizing a large-scale application.

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 324

We chose to thread the Intel C++ Compiler for a number
of reasons.

First, we had detailed knowledge about the application.
We strongly believe that to thread an application
successfully, it is important to involve the application
architects as they tend to know what to parallelize and
what not to parallelize. Moreover, an in-depth knowledge
of the application global data is crucial.

Second, the compiler has evolved over the years and
therefore is a good proxy for real-world, legacy product
applications. It is a mature integer application that was not
initially designed to be thread safe.

Third, by choosing a non-numeric application outside the
traditional high-performance computing (HPC) domain,
we strived to address the challenges other application
developers would encounter when undertaking a similar
task. A particularly interesting challenge is that the
potential parallel region spans hundreds of source
modules containing millions of lines of code. In contrast,
in typical HPC applications, the parallel loops are
contained within one module or even just one function.

Finally, there is an inherent scalable parallelism in what
compilers do. By using performance analysis tools and
built-in timers in the application itself, we found that the
region we intended to parallelize accounts for up to 80%
of the application time in compiling a number of
benchmarks. With infinite parallelism there is a theoretical
speedup of 5x as dictated by Amdahl�s law. If S is the
fraction of the program that is serial and N is the number
of available processors, the speedup through parallelism is
1/(S + ((1-S)/N)), and the theoretical speedup limit is 1/S.
For example, if 80% of the application time is in the
parallel region, then S equals 0.20, and assuming N ,
we get at best a 5x speedup through threading.

Figure 1: Serial execution of the compiler driver loop

The basic flow of the compiler is shown in Figure 1. After
the front-end parses the input program into an
intermediate representation, the compiler iterates over the
functions of each module. At each iteration, the compiler
translates the code of the corresponding function, applies
a series of optimizations to the intermediate
representation, and finally generates code for the function.
We observe that each routine compilation is logically
independent of each other; that is, we can change the
order in which routines are compiled without affecting the
correctness of the program and therefore it is legal to
parallelize the loop that compiles each individual routine.
This loop spans almost 200 source modules containing
roughly half a million lines of mostly C source code. The
flow of the parallelized compiler is shown in Figure 2.

Compiler Routine Driver

Compile Routine

Analysis 1

Optimization 1

Analysis N

Optimization N

Code Generation
.obj

Figure 2: Parallel execution of the compiler driver loop

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 325

Table 1: The execution profile of the compiler across its loop hierarchy

%Ticks Ticks Entry Exit File:Line:Col Function:Line
51.7 675952724 1 1 ip/placement.c:657:39 compiler_driver:276

18.0 235966016 14782 14782 fe/lexical.c:9589:8 get_token:9509

16.1 211070764 1 1 fe/decls.c:14518:7 translation_unit:14480

6.5 84369904 1 1 intrin/intrin.c:1536:5 intrin_process:1517

4.7 61261408 2 2 fe/code.c:3474:3 dump_routines:3423

 4.5 59420636 87 87 il/verify.c:3014:5 verify:3011

4.2 54363924 217 217 fe/preproc.c:460:5 skip_endif:442

4.1 54079124 4228 4228 fe/lexical.c:6706:8 skip_space:6661

3.9 51635388 27 27 fe/lexical.c:4449:5 search_input:4416

Of course, we could have parallelized the compiler at a
higher or a lower level. The highest level would simply be
to compile the modules of an application in parallel, as
with a parallel make file. This scheme is very simple to
implement. However, it can easily run into load-balancing
problems when the application�s modules have widely
varying sizes. It also fails when the build uses �link time
compilation,� an important feature of our compiler. Link
time compilation pre-compiles the individual modules of
the application into intermediate representations and then
processes all the intermediate representations at once in a
single execution of the compiler, making it possible to
obtain the benefits of inter-procedural optimizations
across the entire application.

At a lower level, we could have looked at smaller
potential parallel regions, such as individual optimization
phases. It might be easier to parallelize these phases than
to parallelize the entire compiler driver loop, but any one
piece would have accounted for only a small fraction of
the total compilation time. Therefore, it would have been
necessary to parallelize many smaller pieces to get any
significant benefit from threading. Furthermore, working
with the outermost driver loop allowed us to learn more
about the problems of threading very large applications.

THE THREADING METHODOLOGY
We followed a threading methodology that consists of the
following four basic steps:

1. Discovering parallelism

2. Expressing parallelism

3. Debugging the threaded code

4. Tuning the threaded code

In the first step, the application architect needs to discover
the parallelism that is available in the application. Tools
that provide loop-profiling capabilities can be used. One
would need to know the execution profile of the
application across its loops. This includes both the loops
in the program control-flow graph as well as the loops in
its call graph. In our case, a significant majority of the
execution time of the compiler, as explained before, is
spent in the body of the compiler driver loop. As
contributing architects of the compiler, we knew where
that loop was, but we found a loop profiling capability of
the compiler generally helpful for threading. Through an
option, the compiler instruments the generated binaries
with timing instructions before and after program loops
and functions. The execution time profile of the compiler
across its loop graph is shown in Table 1. This option may
also be provided through dynamic instrumentation tools
such as the Intel VTune� Performance Analyzer [5]. The
application architect can go through the application loops
in a top-down fashion ordered by the total contribution of
the loop to the execution of the application. If, intuitively,
the loop has parallelism potential, then the architect would
need to know how many data dependence violations
would be violated should that loop be parallelized.

Data Dependence
The notion of data dependence captures the most
important properties of a program for parallel execution at
all levels [1, 6]. At the loop level, the dependence relation
is defined in three categories as follows.

1. If an iteration of a loop writes to a memory location
that is later read in another iteration of the loop, we
say that the second iteration is flow-dependent on the
first iteration.

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 326

S1: x = �
S2: � = x

2. If the first iteration reads from a location that is later
modified in another iteration of the loop, we say that
the second iteration is anti-dependent on the first
iteration.

S1: � = x
S2: x = �

3. Two iterations of a loop are output-dependent on
each other if both write to the same memory location.

S1: x = �
S2: x = �

Data dependence relations are often called hazards or
data races. Flow dependence, anti-dependence, and
output dependence relations are equivalent to Read-After-
Write (RAW), Write-After-Read (WAR), and Write-
After-Write (WAW), respectively.

A loop that contains no dependence relations can be
parallelized. On the other hand, parallelizing a loop that
contains any of these dependence relations may cause
invalid results. However, it can be shown that if a loop
contains only anti- and output-dependence relations, it can
be parallelized with the proper code change [1].

Therefore, in order to parallelize an application, the
application architect needs a tool to identify the
dependence relations between its possible threads of
execution such as various iterations of its loops. In our
threading experience, we used the Intel® Thread Checker
[2, 4], a software tool that helps developers detect the race
conditions [7, 8] in their threaded applications. Among its
many features, Thread Checker has a mode of operation,
called projection mode, which is particularly helpful for
parallelization. In this mode, the user can mark a
sequential loop as a parallel loop. Thread Checker will run
the code sequentially, but with some additional
bookkeeping to reveal the race conditions that would
occur should that loop actually run in parallel. This mode
is extremely helpful in parallelization as it allows the
sequential application to run to completion while the
information about its possible threaded execution is being
collected. More specifically, in spite of the data
dependence violations in the parallel execution of the
application, Thread Checker�s projection mode does not
crash due to such violations. We marked the compiler
driver loop as a parallel loop and ran it under the control
of Thread Checker on a small test program that included a
single file with a few functions, conditional statements,
and loops.

Figure 3: Progress of elimination of dependence
violations over time

We also used the Intel Compiler code-coverage tool to
make sure that our simple test resulted in reasonably good
coverage of the compiler source code. In particular, we
made sure that most of the critical components of the
compiler including its various optimizations were
exercised when compiling our test program. One should
note that dynamic analysis tools, such as Thread Checker,
typically provide information only about what occurs in a
particular instance of program execution as opposed to
static tools that may be able to provide information about
what can possibly happen in the program execution in the
general case. Thus, the lack of dynamic dependence
violations does not necessarily imply thread correctness.
The use of the code-coverage tool alleviates this problem
to some extent. If one does not observe any dependence
violation in a piece of code, and the coverage information
reveals that the code was not in fact executed, then
nothing can be inferred about the possible dependence
relations in that piece of code. The first run of our

Data Dependence Violations

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

output anti flow total

Data Dependence Violations

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 327

instrumented compiler under Thread Checker took several
hours to complete and resulted in about 300,000 data-
dependence violations. Such an error size is well above
the comfort zone of most of the available race-detection
tools.

Managing the Size Problem
The key to managing the large dependence problem size is
controlling the precision of the generated analysis data. In
the early phases of the threading effort, one may not need
all the details about every individual dependence violation
that is detected, including information about the source
position of the two memory accesses that are involved and
the call stack of each of them. At a later point, however,
such information may actually be crucial to figure out the
exact conditions under which the violation occurs.

Thread Checker already supported several useful filtering
capabilities, such as filtering based on file names, variable
names, and so on. It also summarizes the violations that
have identical first memory access source position and
base, and those that have identical second memory access
source position and base. This filter effectively groups the
violations that occur when processing the data in a given
array in a single loop with the same dependence distance.
In addition to the existing filters that Thread Checker

supports, we developed a new filter that proved very
effective at grouping the violations that map to different
source files and functions and thus reduced the problem
size dramatically. In this filter, we grouped together the
violations whose base addresses were identical,
irrespective of their source file positions and functions.
One can think of this heuristic as projecting the
dependence information based on its data structure as
opposed to based on the code. We then picked the source
position of the first such violation as the representative of
that group of violations and summed all the violations in
that group. Using this technique, we immediately realized
that approximately 65% of the violations corresponded to
the compiler memory pool data structure. What we lost in
this filter is all the details about every individual violation,
but what we learned was sufficient to guide us to make the
pool thread safe and eliminate almost 200,000 dependence
violations with a small number of changes to the source
code. After fixing this problem, the subsequent
instrumented runs not only have a much smaller problem
size but also a much shorter turnaround time. The reason
for this is that the runtime overhead of race detection
depends on the number of violations, and by eliminating
the violations in a prioritized fashion, we constantly
speedup the process of the next iteration. Figure 3 shows
the number of dependence violations over time.

Figure 4: Flow of the iterative process of dependence-violation elimination

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 328

The interactive development environment we created to
assist us in the parallelization effort is illustrated in Figure
4. The main components of this platform are Intel Thread
Checker, Intel Compiler, and Intel Compiler�s code-
coverage tool. In this framework the dynamic dependence
diagnostics produced by the Intel Thread Checker and the
dynamic code-coverage information generated by the
instrumented binaries are combined with the static
information provided by the Intel compiler to collectively
assist the parallelization effort. The communication of
information between these components is facilitated by
means of well-defined APIs. The collected information is
then assimilated by our Threading-Assistant analyzer to
produce a compact set of dependence violation
diagnostics and threading hints to the developers. The
parallelization process is iterative and may require several
iterations before all the dependence violations are
eliminated and thread-safe code is obtained.

Making the Application Thread Safe
After identifying the loop to be parallelized in the
Discover step of the threading methodology the
application must be made thread safe with respect to that
loop. Identifying all the global data with dependence
relations and effectively privatizing them was by far the
largest part of our effort and is a challenge for an
application of this type. We spent about 10 person months
to achieve thread safety for the compiler at the
optimization levels chosen for our prototype project. In
order to achieve this goal in the given project time frame,
we not only relied on threading tools but also developed
scripting tools to assist us in applying the needed source-
code changes semi-automatically. Looking at the global
data dependence violations and knowing the modular
structure of the compiler, we found it useful to categorize
statically allocated global data, as opposed to heap
allocated global data, into three categories. For each
category of global data we have a method for making the
data thread safe:

Global Data with Dependence Relations
Initially, we attempt to rewrite the code in these data to
eliminate the data dependence, and if that is not possible
we have to apply locks to synchronize the access to the
global data.

Global Data Defined Outside the Loop
This category includes global data that are defined outside
the parallel loop and only read inside the loop. This is a
thread-safe usage of global data and doesn�t require any
rewrite. The main issue is to ensure that the usage of the
global data remains thread safe.

Global Data with Restricted Scope
This category consists of global data that could have been
declared as constant or as stack variables. If it is possible
to rewrite global data to be constant or as stack variables
they become thread safe automatically. This, furthermore,
improves the software engineering aspect of the
application.

In the first category, where we have flow-dependence
relations, we found there were many false flow-
dependence relations that can be eliminated by privatizing
the data and thereby improving the software engineering.
One example is global data shared across loop iterations
where the data need to be reset to proper initial values for
each iteration of the loop. We found it useful to categorize
the global data with data dependence relations into four
sub categories:

1. Synchronized

2. Mutable

3. Persistent

4. Transient

The synchronized category includes the global data that
require locks for controlled synchronized accesses. It is
not possible to privatize such data without extensive
changes. Examples of global data that require
synchronization are input/output operation and heap
allocation management.

The mutable category contains the global data that
generally are defined before the parallelized loop, but they
may be modified by an iteration of the loop (only to be
reset to the original value before the next iteration).
Mutable data are privatized by creating a thread-private
copy of the data for each of the iterations. This has the
additional advantage that there is no longer a need to
restore values for the next loop iteration, if data were
modified. Furthermore, this helps improve maintainability
of the code by eliminating the code necessary to restore
values.

The persistent category comprises the global data that are
defined and used in each thread but do not have any cross
iteration dependence relations. In the case of the compiler,
examples of data in the persistent category include the
intermediate representations for routine statements,
expressions, symbol tables, control flow graphs, etc. The
lifetime of the global data in the persistent category spans
the entire thread. They are allocated and initialized after
thread creation and freed before thread termination.
Allocated persistent data are assigned and accessed
through a thread-private pointer. In object-oriented terms,
the state object is constructed after thread creation and
destroyed before thread termination.

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 329

Figure 5: Breakdown of the global data

The transient category consists of the global data that are
defined and used only within a certain phase of the
threaded region, for example global data that are used to
do constant propagation. Global data in the transient
category are allocated on entry to a phase and freed on
exit from that phase. In general, the transient state is
allocated on the stack and is assigned and accessed
through a thread-private pointer.

We chose to have a thread-private pointer for the
persistent state as well as for each transient state for
several reasons. First, on some systems there is a limit to
the size of thread local storage; therefore, all the state
objects could not be made thread-local. Furthermore, to
make the source code changes manageable, it is
convenient to have a thread-local pointer instead of adding
state arguments to each routine to pass around persistent
and transient state objects.

The compiler uses a lot of global state either as file-scope
static variables or external global objects. In our case,
global variable references are generally direct. Our semi-
automatic source transformation tool takes a compiler-
generated listing of global variables defined in each
module and from that creates structures for transient and
persistent state objects. The tool also automatically
redefines those global variables as macros with the proper
implementations; that is, a dereference through a thread-
local pointer to a field in a state object. This relieves us
from the tedious and error-prone task of manually
modifying all references to those variables.

By creating persistent and transient state objects as
structures, we also help improve software engineering by
organizing global data into logical objects that have well-
defined lifetimes.

Of all the global data that needed to be privatized we only
had to create synchronized access for about 3% of the
global data. The breakdown of the classification of the
remaining global data is illustrated in Figure 5.

Another major task in working with data-race detection
tools is training them to understand customized memory
pool operations that behave like and . It is
common to allocate a memory block and use it in an
iteration and free it in the same iteration. When a
subsequent iteration allocates memory, it may get part or
all of the freed block. If the data-race detection tool is not
able to recognize the malloc-free pattern, it may report a
large number of false dependence violations. The Intel
Thread Checker recognizes a class of such operations. It
also provides a mechanism through which the user can
communicate this information with its runtime. This is
achieved by means of an API call that passes a starting
memory address and by the number of bytes to be
considered as newly allocated memory chunks. In this
way, the application architect asserts that the dependence
relations across the specified barrier can safely be ignored.
This is a simple mechanism; yet, it is capable of handling
very complicated memory pool management systems.

PERFORMANCE RESULTS
After our compiler was successfully threaded and
debugged, we spent some time in tuning its performance.
Of particular importance was the choice of thread
scheduling. We conducted many experiments with various
parallel-loop scheduling policies. From the parallel-loop
scheduling schemes supported by OpenMP*, self-
scheduling provided the best performance. In addition, we
implemented a scheduling policy that consistently
outperformed self scheduling. The policy took advantage
of the information that the compiler has about the
functions it needs to compile. As part of parsing the input
file and creating the intermediate language, the compiler
has a substantial amount of information about the structure
and the size of each function. We used this information as
a static estimate of the time it would take to compile each
function. We then grouped together functions in as many
chunks as the number of threads or available cores in such
a way that the workload of each chunk is almost the same.
Through this technique we avoided the load imbalance
problem. Figure 6 shows the parallel speedup we achieved
in comparison to the theoretical speedup limit. The results
are based on our experiments on a 4-socket dual-core
system�a total of eight processors. We also spent some
time in making sure lock contention was reduced by
proper choice of locking. We were pleased with the final
parallel performance of the threaded compiler as it
approached the theoretical limit of parallel performance as
dictated by Amdahl�s law. Figure 6 shows the speedup of
the threaded compiler compared to the original sequential

3% 18%

14%
1%

25%

20%

19%

Global data that requires synchronization
Global data that is loop invariant
Global data that can be converted to const
Global data that can become automatics
Mutable state
Persistent state
Transient state

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 330

compiler when compiling the SPEC CPU2000
benchmarks.

Figure 6: Parallel speedups of compiling CPU2000 benchmarks

CONCLUSION
We conclude that advancements in threading analysis
tools have made parallelization of complex applications
an easier task than what it was a decade or two ago. The
overhead of the required instrumentation to perform the
dynamic dependence checking has become affordable on
modern microprocessors. Effective summarization and
filtering of data dependence violations play a key role in
managing the large problem size. We also found that
semi-automatic mechanisms provide crucial help in
accomplishing the repetitive and error-prone task of
source code changes. Moreover, we found that good
software engineering practices make threading easier.

ACKNOWLEDGEMENTS
We thank Zhiqiang Ma, Paul Petersen, and Victoria
Gromova for their help with using and enhancing the Intel
threading tools. Thanks also to Diana King, Sergey
Kozhukhov, Suriya Madras-Subramanian, Xinmin Tian,
and Ravi Ayyagari for their help with the static
instrumentation of the Intel compiler. Throughout the
entire project, we benefited from the mentorship of Kevin
J. Smith.

REFERENCES
[1] Allen, R., and Kennedy, K., Optimizing Compilers for

Modern Architectures, Morgan Kaufmann, San
Francisco, CA, 2002.

[2] Banerjee, U., Bliss. B., Ma, Z., and Petersen, P.,
�Unraveling Data Race Detection in the Intel®

Thread Checker,� presented at the First Workshop
on Software Tools for Multi-core Systems (STMCS),
in conjunction with IEEE/ACM International
Symposium on Code Generation and Optimization
(CGO), March 26, 2006, Manhattan, New York,
NY.

[3] Intel® Compilers
 http://www3.intel.com/cd/software/products/asmo-
na/eng/compilers/284132.htm

[4] Intel® Threading Analysis Tools
 http://www3.intel.com/cd/software/products/asmo-
na/eng/threading/219785.htm

[5] Intel VTune� Performance Analyzer
http://www3.intel.com/cd/software/products/asmo-
na/eng/vtune/239144.htm

[6] Kuck, D.J., R.H. Kuhn, B. Leasure, D.A. Padua, and
M. Wolfe, �Dependence Graphs and Compiler
Optimizations,� 8th annual ACM Symposium on

Parallel Speedups

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Threaded Compiler Theoretical Limit

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 331

Principles of Programming Languages, pp. 207�
218, Jan. 26-28, 1981.

[7] Lamport, L., �Time, Clocks, and the Ordering of
events in a Distributed System,� Communications of
the ACM, Vol. 21, No. 7, July 1978, pp. 558�565

[8] Lee, E. A., �The Problem with Threads,� IEEE
Computer Society, Computer, May 2006, Volume
39, Number 5.

AUTHORS� BIOGRAPHIES
Knud J. Kirkegaard is a Principal Engineer in the Intel
Compiler Laboratory. He currently works on compiler
optimizations for the Intel architectures. Since he joined
Intel, he has worked on scalar optimizations,
interprocedural optimizations, and profile guided
optimizations for IA-32, Intel 64, and the Itanium
processor family. His current interests are in optimized
C++ code, compiler architecture, and thread-safe
applications. He has an M.S. degree in Information and
Control Systems Engineering from Aalborg University,
Denmark. His e-mail is knud.j.kirkegaard at intel.com.

Mohammad Reza Haghighat is a Principal Engineer at
Intel and the architect of Intel Compiler's code-coverage
and test-prioritization tools. He is a threading expert and
the author of Symbolic Analysis for Parallelizing
Compilers, a book based on his pioneering Ph.D. research
at the University of Illinois at Urbana-Champaign in the
early 90s. Mohammad was the lead developer of one of
the first Java JIT-Compilers and also has extensive
experience in the performance aspects of database
systems. More recently, he has been doing advanced
development in the emerging Web 2.0 technologies such
as AJAX and PHP. His e-mail is mohammad.r.haghighat
at intel.com.

Ravi Narayanaswamy is a Senior Staff Engineer in the
Intel Compiler Lab. He is currently working on software
transaction memory support in the compiler. His previous
role at Intel included porting of the compiler to various
platforms. He was also involved in various optimizations
in the compiler. He has an M.S. degree in Environmental
Engineering and in Computer Science, both from Southern
Illinois University, Carbondale. His e-mail is
ravi.narayanaswamy at intel.com.

Bhanu Shankar is a Staff Engineer at Intel�s
Performance, Analysis and Threading Lab. His primary
areas of interest include compilers, performance tools for
HPC, and multi-threaded architectures. Bhanu received
his Ph.D. degree from Colorado State University. His
e-mail is bhanu.shankar at intel.com.

Neil Faiman is a Senior Staff Software Engineer in the
Intel Compiler Lab, working on the development of tools

to help assist users with threading their applications. Neil
has been with Intel for five years. He came to Intel from
Compaq, where he was the Intermediate Language
architect for the GEM compiler project. Neil has B.S. and
M.S. degrees from Michigan State University. His e-mail
is neil.faiman at intel.com.

David Sehr heads the Advanced Tools team in the
Software and Solutions Group at Intel. He was named a
Senior Principal Engineer in 2003. At the time this work
was done, David was the compiler architect and leader of
the advanced development team in the Intel Compiler Lab.
David received his Ph.D. degree from the University of
Illinois at Urbana-Champaign in 1992, working under the
direction of David Padua and Laxmikant Kale. His
interests include threading, performance tools, language
implementation and compilation, and static analysis. His
e-mail is sehr at google.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Intel Technology Journal, Volume 11, Issue 4, 2007

Methodology, Tools, and Techniques to Parallelize Large-Scale Applications: A Case Study 332

THIS PAGE INTENTIONALLY LEFT BLANK

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 333

Future-Proof Data Parallel Algorithms and Software
 on Intel® Multi-Core Architecture

Anwar Ghuloum, Corporate Technology Group, Intel Corporation
Terry Smith, Corporate Technology Group, Intel Corporation
Gansha Wu, Corporate Technology Group, Intel Corporation
Xin Zhou, Corporate Technology Group, Intel Corporation
Jesse Fang, Corporate Technology Group, Intel Corporation
Peng Guo, Corporate Technology Group, Intel Corporation

Byoungro So, Corporate Technology Group, Intel Corporation
Mohan Rajagopalan, Corporate Technology Group, Intel Corporation

Yongjian Chen, Corporate Technology Group, Intel Corporation
Biao Chen, Corporate Technology Group, Intel Corporation

Index words: parallel programming, data parallelism, forward scalability

ABSTRACT
Developers face new challenges with multi-core software
development. The first of these challenges is a significant
productivity burden particular to parallel programming. A
big contributor to this burden is the relative difficulty of
tracking down data races, which manifest non-
deterministically. The second challenge is parallelizing
applications so that they effectively scale with new core
counts and the inevitable enhancement and evolution of
the instruction set. This is a new and subtle change to the
benefit of backwards compatibility inherent in Intel®

Architecture (IA): performance may not scale forward
with new micro-architectures and, in some cases, may
regress. We assert that forward-scaling is an essential
requirement for new programming models, tools, and
methodologies intended for multi-core software
development.

We are implementing a programming model called the Ct
API that leverages the strengths of data parallel
programming to help address these challenges of multi-
core software development. In this paper we describe how
Ct is designed for minimal effort by the developer, while
providing forward scaling on multi-core IA. We describe
how Ct�s design and implementation evolved from the
initial prototype, based on co-traveler feedback, and we
provide examples of how Ct can be used. We demonstrate
how a sampling of key application spaces can be easily
written using Ct to achieve high performance. Finally, we

discuss how these ideas can be transitioned into
mainstream software development tools.

INTRODUCTION
The data parallel style of programming [3][9][10][15] is
best encapsulated in programming models in which
collections of data elements are operated on en masse
using various operators. For example, if a programmer
wishes to sum the elements of two vectors (or matrices,
trees, or sets) together, she simply writes an expression
that adds these collections free of the bookkeeping and
overhead typically associated with threaded programming
(i.e., A = B + C).

Lately, data parallelism has (re-)emerged as an important
topic in multi-core application development for a number
of important technical reasons. First, many algorithms,
including much of what is considered �low-hanging fruit,�
are appropriately characterized as data parallel in nature.
Second, data parallel programming models offer the
elusive, yet highly desirable, property of determinism,
which effectively eliminates data races as a class of
programmer errors. Put simply, this means that the
programmer writes code that behaves the same way
regardless of the number of cores on which it is executed.
Third, data parallel programming models are generally
highly portable, offering the possibility of building
parallel applications that adapt to new micro-architectures.

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 334

Another highly prized characteristic of data parallel
programming models is a predictable and relatively simple
performance model. This allows the programmer to
consider performance in software design without focusing
on the specifics of the underlying architecture. A related
consequence of this characteristic is that data parallel
algorithms provide a means to future-proof applications.
As previously mentioned, a significant challenge to
programming for multi-core architectures is forward-
scaling performance in applications on evolving multi-
core architecture. The performance of parallel
applications is very sensitive to core count, vector ISA
width (e.g., SSE), core-to-core latencies, memory
hierarchy design, and synchronization costs 1 . Software
development tools must abstract these variations so that
software performance continues to reap the benefits of
Moore�s law. The built-in performance model of data
parallel programming naturally accomplishes this. Figure
1 illustrates how a compiled Ct binary can dynamically be
reoptimized for these changing parameters.

Ct
Binary

Ct
Binary

Figure 1: Forward scaling with Ct

An important goal of Ct is to extend the benefits of data
parallel programming to less structured task parallel
programming. We also aim to address highly object-
oriented application designs. Because of this, we have
developed a set of technologies to go well beyond basic
data parallelism. For example, the underlying model of
parallelism used by Ct is a sophisticated implementation
of fine-grained concurrency and synchronization that we
can progressively expose through the evolving Ct API.

In the next section of our paper we describe key factors
and trends driving modern software development and how
they are impacted by multi-core programming. Following
that, we describe parallel programming models and show

1 These are not necessarily orthogonal parameters.

where data parallelism lives from a taxonomic point of
view. We then describe the Ct API and its implementation
in detail and conclude with examples of Ct in action for
typical algorithms.

SOFTWARE DEVELOPMENT DRIVERS
Software development takes fundamentally different
processes and paths in different market segments. We
believe that it is essential to understand these variations to
adequately solve multi-core development challenges.

These are the key factors driving the adoption of parallel
programming for multi-core architecture:

Productivity: In most market segments, programmer
productivity is a major factor in adopting new
methodologies for programming, regardless of the
benefits. Programmer productivity directly impacts
cost and time-to-market, the latter of which is often
driven by seasonal milestones. Productivity is
adversely impacted by (newly introduced)
parallelism-related bugs, performance tuning, and
porting to increasingly parallel architectures.

Performance. Raw performance, as measured directly
by frame rate in a game or indirectly as new features
enabled, is a first-order concern for most ISVs.
However, there is frequently (though not always)
tradeoffs against productivity-driven metrics like
time-to-market.

Incremental adoption. It is probably unreasonable to
expect a company with an investment in several
hundreds of thousands (or even millions) of lines of
code to rewrite this code completely for parallelism.
Rather, incremental adoption of parallelism features
is the most likely scenario for the typical software
developer. This carries with it several interoperability
burdens: legacy binary libraries, existing code, and
legacy threading APIs. For example, many developers
use OpenMP or MPI to parallelize their code. It is
paramount that new bridging technologies for parallel
computing work well with these components.

Object-oriented design methodologies: These can be
viewed as another legacy interoperability issue, but
their uniqueness and pervasiveness warrants separate
consideration. In the last couple of decades, highly
abstracted, objected-oriented programming styles
have prevailed in the general software engineering
community. The reasons are obvious: increasing
abstraction levels facilitate more generic
programming methods that increase code reusability.
In many instances (C++, for example), programmers
have found unexpected ways to use highly abstracted
libraries through template meta-programming (Ct

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 335

itself leverages this!). This trend, however, runs
counter to what the compiler and performance
optimizer needs to see to generate high-performance
parallel code: i.e., well-defined regions (typically,
loops) of compute intensive execution. Any
mainstream parallelism features must integrate
smoothly into these programming methodologies.

This all boils down to the following seemingly untenable
requirement: Developers want a useful high-level
programming model that introduces no parallelism-
related bugs, yields high performance, and interoperates
smoothly within the designs of their existing code base.

In the next section, we describe how to characterize
programming models in a way that serves this
requirement.

DATA PARALLELISM BASICS
Parallel programming takes on many flavors.
Traditionally, parallel programming models have been
compared using dimensions such as message passing
versus shared memory, or task (or control) versus data
parallelism. However, the portability and expressive
power of a particular manifestation of a programming
model can transcend these issues. For example, some
programming models are amenable to implementation on
both shared memory and message passing systems. Also,
many algorithms can be equally expressed using either
task or data parallelism.

Despite the numerous formal and informal attempts to
classify parallel programming models in this vein, we
have chosen to measure success by specifically addressing
the issues we raised in the previous sections. Our goal is
to demonstrate all of these characteristics in our design:

Expressive power. This is the ability to succinctly
express different parallel algorithms in a model. For
example, task parallel models support data parallel
algorithms, though data parallel models cannot easily
express some forms of task parallel algorithms. For a
given application class, one style of programming
model is likely to be prevalent.

Determinism. A deterministic model has no
possibility of data races introduced by the
programmer, eliminating this new class of bugs. This
directly impacts programmer productivity, though
tools may mitigate this.

Performance transparency. At the lexical level, it is
possible to predict performance to varying degrees of
accuracy. This often has a greater impact on
programmer productivity, as it requires significant
effort and low-level architectural understanding to
tune performance on highly parallel architectures.

Portability. Architectural portability is closely related
to the requirements for forward-scaling multi-core
applications. As the core count is scaled in multi-core
architectures and new ISA enhancements are
introduced, portable models are necessary to reliably
leverage these features.

Expressive Power
Data parallel programming models allow the programmer
to specify parallelism implicitly as operators on
collections of data. For example, if a programmer wants to
add to arrays of data in element-wise fashion, a data
parallel programming model would be able to find
parallelism roughly proportional to the amount of data in
each array. So, if the arrays have 1,000 elements each, this
comprises 1,000 independent (and potentially parallel)
operations. To perform this computation, the data parallel
model�s implementation may choose to use parallel
threads or tasks and vector instructions at its discretion.2

In the early days (the 60s and 70s) of parallel computing,
this style of data parallelism was prevalent in languages
like APL [3][15] and in the loop-y programming styles of
Fortran (where the compiler did the heavy lifting with
little guidance from the programmer).

The typical base data type in a data parallel programming
model is an array or vector. Sometimes, these can be
multi-dimensional. This has been the cornerstone of most
models, but it can limit expressiveness. For example, flat
or multi-dimensional vector-based models were most
readily useful for dense linear algebra and signal or image
processing applications. Moreover, complex computation
patterns, like recursive subdivision or divide-and-conquer,
were severely constrained in these models. Still, a large
swath of applications found these models useful.

The key to broadening the applicability of data parallel
models is to become more generically �collection-
oriented.� That is, by adding more types of collections
that are supportable, the model becomes more expressive.
For example, in the late 80s and early 90s, APL2 [4][14]
and Nesl [11][18] added support for segmented vectors
(see also [17] for a latter day example), which allowed the
programmer to represent both irregular data structures and
control flow. Per the former, sparse linear algebra was
productively programmed using Nesl. Per the latter,
divide-and-conquer algorithms like quicksort and
quickhull were easily programmed. Paralation Lisp [19]
and CM-Lisp [12][13] added support for indexed vectors,

2 This computation can also be expressed as a task parallel
computation, where we would �spawn� tasks for each of
the 1,000 additions, followed by a synchronization to
ensure that the computation is completed.

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 336

allowing even more complex data structures (including
additional sparse representations) to be represented. Ct
builds on these algorithms.

There are limitations to the applicability of the data
parallel model. For example, applications that require
tasks that make asynchronous updates to shared data will
generally not map well onto this model. A Web server is a
very good example of such an application. It is important
to note that most applications require a variety of parallel
programming models, so despite the prevalence of data
parallelism for these applications, other flavors of
parallelism are often required.

Determinism
The data parallel model generally relies on a compiler
and/or runtime to manage task creation and usage of
vector instruction; there is no explicit thread spawning or
synchronization necessary, so data races are non-existent
as far as the programmer is concerned. Though the data
parallel model can provide fairly sophisticated data
movement and communication primitives, it preserves this
model.

For example, Ct provides many collective communication
primitives, including the ability to perform a sum
reduction on a vector. This entails summing all elements
of the vector in parallel, which requires re-associating the
computation. However, the programmer need only specify
the reduction operator and leave the necessary threading
and synchronization to the runtime. When considering
nested or indexed vectors, the semantics of the operator
are much more complex, but the programmer�s view is as
simple as a flat vector reduction.

Performance Transparency
Though the data parallel model constrains expressiveness
somewhat, this property and its high-level abstraction
bespeak a relatively predictable performance model.
When programming with threads and lower-level
synchronization constructs, it is difficult to predict when
serialization (intended and unintended) will happen.
Moreover, it is extremely difficult to predict memory-
related performance issues, since predicting the volume of
data accessed and any potential conflicts between threads
is often rendered intractable by the high level of
abstraction used in modern software.

Operations on collections have the desirable properties
that the programmer can predict relative performance
behaviors based on collection size and operation
complexity. For example, a 1,000 by 1,000 element 2
dimensional matrix generally introduces up to 1,000,000-
way parallelism, meaning that for up to thousands of
hardware threads, the computation is likely to be able to
profitably scale. Furthermore, a collective communication

primitive is likely to engender more synchronization than
an element-wise operation (which often optimizes away to
no synchronization). Though the exact performance is still
difficult to predict, these higher-level tradeoffs allow the
programmer to make good algorithmic choices.

Portability
Data parallel models have been mapped to a wide range of
architectures, from massively parallel distributed memory
architectures, to shared memory multi-processors, to
deeply pipelined vector supercomputers, to GPUs. This
portability is critical to the matching software
requirements for evolving multi-core architecture.

This evolution is following several paths. First, the core
count will increase, requiring ever increasing amounts of
parallelism. Second, non-uniformity of memory access
time between cores is increasing, meaning that typical
memory access latencies will exhibit high variance to
predict unless data partitioning is done carefully.
Somewhat related to these two considerations, relative
core-to-core synchronization costs will change, requiring
re-optimization of code to make the best hide-related
latencies. Third, we expect the instruction set
improvements to continue, requiring quick adaptation to
these enhancements.

The resiliency of data parallel models in many different
operating environments is evidence of its ability to adapt
to these changes. In particular, the programmer can expect
that an algorithm written in a data parallel style will scale
across generations of multi-core architectures, using ever-
more cores and leveraging newer and wider vector ISAs
while avoiding the pitfalls of unintended serialization
through the memory hierarchy.

CT

Brief Ct Overview
Ct is a data parallel programming environment with
predictable syntax based on C++ that provides distinct
semantics and performance [6].

Unique among commercial data parallel programming
models, Ct implements a nested data parallel model based
on work on Nesl [18] and Paralation Lisp [19]. Ct�s nested
data parallelism enables a far broader set of collections to
be represented. For example, sparse matrices and trees are
very difficult to represent in flat data parallel or streaming
models. However, these fall out naturally in a nested data
parallel model. Also, common divide-and-conquer
algorithms, for example, KD-tree construction and sorting,
are very difficult to express using flat data parallel and
streaming models. These are readily expressed using
nested data parallelism. Nested data parallel computations

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 337

generally do not port efficiently to GPUs and streaming
architectures, but they run efficiently on multi-core IA.

Unlike many of its data-parallel brethren, Ct also supports
deterministic task parallelism on multi-core IA (inspired
by [16]). Determinism guarantees that program behavior
is identical, on one core or many cores. This essentially
eliminates an entire class of programmer errors�data
races.

TVECs
The basic type in Ct is a generic vector type, called
TVEC. TVECs are allocated and managed in a segregated
memory space that is accessible only by Ct operators, to
ensure the safety of parallel operation on vectors. TVEC
is polymorphic in terms of its base types and shapes.

The base types of TVECs are drawn from a set of typical
pre-defined scalar (or value) types. Examples of base
types include (32-bit integer), (64-bit integer),

 (Float), (Double), and (Boolean). In future,
Ct will also support the type and user-defined base
types, for example, C struct-like base type, , and
the C array-like base type, , for more complicated
application scenarios.

A TVEC may be declared as follows:

The TVEC constructor copies data explicitly from the
unmanaged C/C++ memory to the managed vector space,
in the form of either plain element-wise copy, or the
strided memory copy (in the example above takes one
byte from every four of the data stream). There are also
exceptional cases when it is not preferable to copy the
data all at once (because of long latency) or we do not
want to copy at all. Thus, there are several TVEC traits
that may be applied, including for copying data in
a streaming fashion, or for not copying.

Constant TVECs may also be constructed by factory
methods. For example, an identity matrix, in the form of
TVEC2D (a TVEC derivative for matrices), may be
created as follows:

Nested data parallelism is a distinguished property for
programming irregular data structures and algorithms.
TVECs assume a number of shapes, including flat, multi-
dimensional, irregular nested, and indexed forms. For
example, a matrix TVEC could be constructed as follows:

TVECs may also be associated with certain accuracy
attributes, which may allow experienced programmers to
influence the compiler�s code generation. For example:

The above TVEC declaration specifies 2 ulp (units-in-the-
last-place) as the tolerable accuracy threshold, which
gives a hint to the compiler that the square root operator
may be translated into a simpler code sequence with
lower-order polynomials and less fix-up code. However, if
0.5 ulp is specified, the compiler may generate a more
complicated code sequence that might be up to 60+%
slower on some architectures.

When the computation on TVECs is completed, the
computed results may be transferred back to the
unmanaged space through the primitive.

Ct Operators
The only operators allowed on TVECs are Ct operators.
Ct operators are functionally pure (free of side effects).
That is, TVECs are passed around by value, and each Ct
operator logically returns a new TVEC. For example:

This property guarantees the safety of parallelism and the
aggressive optimizations that make parallelism efficient.

The Ct API provides a broad range of Ct operators with
rich functionalities. Operator overloading is used
extensively to support a programming style, based on
C++, particularly for the arithmetic, bitwise, and
logical/comparison operators. For example, the �*�
operator in the above example is overloaded to the TVEC
multiply operator.

Basically Ct operators can be categorized into element-
wise/vector-scalar, collective communication, and
permutation operators.

Element-wise/vector-scalar operators are typically
referred to as �embarrassingly� parallel, requiring no
interactions between the computations on each vector
element. An example of an element-wise operation is the
addition of two vectors:

Note that this code generically performs an element-wise
addition of two vectors, regardless of the �shape� of the
two vectors (i.e., their length, dimensionality, irregularity).

Collective communication operators tend to provide
distilled computations over entire vectors and are highly

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 338

coordinated 3 . While they have a high degree of
interference, they can be structured so that there is
parallelism in colliding writes, and they typically scale in
performance linearly with processor count, with little or
no hardware support.

There are two kinds of collective communication
primitives in general, namely reductions and prefix-sums
(also called scans). Reductions apply an operator over an
entire vector to compute a distilled value (or values,
depending on the type of vector). Prefix-sums perform a
similar operation, but return a partial result for each vector
element. For example, an sums over all the
elements of a vector if the vector is flat. More concretely,

 yields .
Likewise, yields

.

A permutation operator in Ct is any operator that requires
moving data from its original position to a different
position. An example is the operation, which uses
an index array to collect values of a vector in a particular
order; and the scatter operator does the reverse.
Permutations run the gamut, from arbitrary permutations
with arbitrary collisions (occurring when two values want
to reside in the same location) to well-structured and
predictable permutations where no collisions can occur.
For collisions, it is recommended that programmers make
use of the collective communication operators. An
example of a well-structured (and efficient) permutation
operator is , which uses a flag vector to select values
from a vector in the source vector order. With proper
hardware support on multi-core IA, these operators can be
implemented fairly efficiently. In contrast, these operators
could not be implemented efficiently on constrained
architectures (for example, most GPUs do not efficiently
support scatter operations).

Besides these built-in operators, Ct also supports generic
user-defined operators through Ct functions. As implied
by their name, Ct functions define a block of code that is
applicable to a collection of vectors, which allows
programmers to define new generic operators or functions
for repeated application (mitigating compilation
overhead). The following code defines a Ct function that
performs a fused multiply-add:

3 These operators are called collective communication
operators in MPI and reductions in OpenMP, though
neither provides the rich set of operations that Ct does. In
functional languages, these are termed fold operations or
list homomorphisms.

We use a map operator that takes as arguments the Ct
function pointer and three vector arguments to apply this
function in an element-wise manner:

The implementation of the map operator employs
compile-time type inference to prevent programmers from
specifying improper arguments, such as TVEC<I32>
(which is not conformant to this function�s definition), or
wrong numbers of arguments. Just like C/C++ routines, Ct
functions are composable, greatly extending Ct�s
expressiveness.

Nested Vectors
Ct�s support for nested vectors is a generalization that
allows a greater degree of flexibility than is otherwise
found in most data parallel models. TVECs may be flat
vectors or regular multi-dimensional vectors. They also
may be nested vectors of varying length, which allows for
very expressive coding of irregular algorithms, such as
other variants of sparse matrix representations, or
byproducts of divide-and-conquer algorithms.

C/C++
Compiler

C++

Ct-based Data
Structures/Algorithms

Ct API

Ct apps

Tera-scale

Image processing

Linear Algebra
Physics Simulation

�

Ct App
Libraries

Memory Manager

Parallel Runtime

JIT Compiler

Memory Manager

Parallel Runtime

JIT Compiler

Ct Dynamic Engine

2

0 0

0 5

0 6

0 3

0 0

0 0

4 7

1 2 5

63

4

7

2

0 0

0 5

0 6

0 3

0 0

0 0

4 7

1 2 5

63

4

7

Figure 2: The usage and implementation of Ct

The vector value is a flat (or 1-
dimensional) vector. The vector holds
the same element values, but is a vector of two vectors of
lengths 2 and 4. The second vector might represent a
partitioning of the first vector�s data based on certain
criteria (e.g., the relationship to a pivot value in a
quicksort). Practically, the nested format enables a lot of
irregular data structures and algorithms. Figure 2 gives a
few such examples.

All Ct operators work on nested TVECs generically. The
behavior of element-wise operators is the same for nested
TVECs as for flat vectors. For example,

 yields
.

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 339

The power of nested versus flat TVECs is primarily
differentiated through the behavior of collective
communication and permutation primitives. Collective
communication primitives applied to nested TVECs
�respect the boundaries� of the subvectors by applying the
operator to each subvector independently. For example,

 yields the singleton vector
, while

yields the two-element vector .

IMPLEMENTING CT FOR FORWARD-
SCALING
Figure 2 also illustrates the Ct execution model. The core
of Ct-enabled applications is the use of Ct-based data
structures and algorithms. In addition, Ct Application
Libraries are a set of well-optimized higher-level APIs
aiming to boost programmers� productivity for Tera-scale
applications such as image processing, linear algebra, and
physics simulation. The Ct libraries can be compiled by
stock C++ compilers, such as Visual C++, Intel® C/C++,
and Gnu C/C++ compilers, into an IA binary that is able
to run on all multi-core IA platforms. This binary
comprises of either IA32 or Intel® 64 Architecture
instructions, which also include calls to the Ct Dynamic
Engine. During the execution of the binary, the Ct
Dynamic Engine is launched and provides the services
essential to performance and forward-scaling. More
specifically, the three major services are the Threading
Runtime (TRT), Memory Manager (MM), and Just-In-
Time (JIT) compiler. In particular, the TRT and JIT
(especially the vector abstraction we will introduce called
VIP) provide the basis for forward scaling across IA.

The Threading Runtime
The first key to forward-scaling is to dynamically adapt to
new architectural characteristics. Threading and
synchronization overhead is likely to change between
processor generations, necessitating an ability to both
select the task granularity and synchronization method
dynamically. In fact, our approach is to isolate the
architecture-dependent components of the Ct runtime to
dynamically loaded libraries. Another aspect of forward-
scaling is that data set sizes are likely to scale in the long
run, but are generally unpredictable in phases of
computation, especially for client applications such as
games. In this case, the amount of data being processed is
highly scene and gameplay dependent. As such, the
runtime must be able to adapt its threading strategy to
variable data sets.

The TRT provides a fine-grained threading model that is
used to implement both data parallel and task parallel
constructs. The underlying building block for this model is
a future, which under the runtime semantics may represent

a suspended closure or thunk (i.e., a function pointer and
an argument list representing a potentially parallel
function application), a thunk computation in flight, or a
computed value (representing a successfully evaluated
thunk). A handle to a future essentially represents a
dependency on that suspended thunk�s evaluation. This is
inspired by the techniques for expressing and managing
parallelism presented in [7][8]. Using this mechanism,
many complex fine-grained synchronization patterns may
be expressed; however, the TRT facilitates fine-grained
synchronizations via a building block called a join. A join
can be used to express a range of logical combinations of
synchronization dependencies.

The TRT uses additional primitives called bulkspawns
and bulkjoins, which essentially represent mapped future
spawns and joins on collection-oriented arguments.
Bulkspawn operations dynamically partition the collection
into the right number of fine-grained tasks interlinked
with fine-grained synchronizations. This is key to adapting
to the core count and utilization, as well as cache
footprint.

The Memory Manager
The Ct MM automatically manages the segregated Ct
vector space. As such, it provides a set of lock-free
memory allocation interfaces, as well as a reference-
counting-based garbage collector to reclaim dead vectors
automatically. The MM is responsible for allocated data
format and, in conjunction with the TRT, partitions
vectors for parallel operations (i.e., the TRT bulkspawn
operations).

The Compiler
The Ct compiler has a slightly unconventional structure,
notably in its dynamic nature. When executing Ct API
calls, the dynamic engine constructs intermediate
representations of the computation, deferring actual
execution (and further optimization) until later. �Later� is
bounded by the necessity to copy values back into native
C/C++ space, though the engine may decide to compile
code at intermediate steps, such as when back edges in
control flow (i.e., loops) are detected. This intermediate
representation (IR) building is the default mode of Ct code
execution for new paths in the program. Otherwise,
cached code is executed if the path followed is in the
�Code Cache,� or a cached IR is augmented.

Once the compiler is invoked, several phases with distinct
objectives are invoked: the High-Level Optimizer (HLO),
the Low-Level Optimizer (LLO), and the VIP Code
Generator (VCG).

The HLO phase [5] performs architecture- and runtime-
independent optimizations, such as sub-primitive
decomposition (breaking up data parallel operators into

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 340

more primitive patterns of parallelism), fusion (essential
to coarsening the fine-grained concurrency of the Ct
model as much as possible), scalarization, common sub-
expression elimination, and copy propagation. These
optimizations are all possible without introducing the
details of run-time memory allocation and shape checks.
This is left to LLO.

The LLO phase is still architecture independent, but
unlike HLO, LLO does runtime-dependent optimizations.
It has three primary objectives: 1) generate parallelized
kernels using the TRT; 2) translate the optimized kernels
(spawned in the TRT) into proper vectorized code; 3)
generate architecture-independent representations, which
we call the Virtual Intel® Platform, or VIP. Much of the
difficulty of implementing and optimizing collective
communication [1] and segmented operators [2] is
deferred to this phase. VIP is an abstract instruction set
that is based on IA32/Intel 64 Architecture, but that uses a
generalized vector ISA to defer binding to a particular
generation of SSE as late as possible.

One of the challenges we face for forward-scaling is the
near certainty of SSE extensions and enhancements.
Figure 3 shows the evolution of Intel SIMD ISA. The
number of instructions has been increasing at the pace of
30 instructions per year on average since the introduction
of MMX� technology in 1996. Meanwhile, the data
width of vector registers was also increased from 64 bits
to 128 bits, and it can be reasonably expected to increase
further at some point in the future. This is driven by the
need to increase performance in the most power efficient
way and extending SIMD ISA is one such mechanism.
VIP, as a virtual ISA of the Ct Dynamic Engine, is
designed to hide changes in SIMD ISA, and, via VCG,
provide future-proof performance to Ct applications.

SIMD on IA

56
70

144

75
47

13
32

113

0

40

80

120

160

200

0

256

512

768

1024
#inst
data width (bits)

z

Figure 3: The evolution of IA SIMD ISA vs. Ct

The VCG phase is a state-of-the-art backend for VIP that
dynamically selects the appropriate target ISA. When new
SSE extensions are introduced, a new dynamically linked
library can be made available that supports both legacy

and new SSE extensions. No recompilation with a static
compiler is necessary. In this way, applications can
forward scale through vector ISA with the adaptivity of
the VCG backend. VCG does classic loop-based
optimizations, such as loop fusion, loop interchange, and
array contraction. VCG also does architecture-dependent
optimizations, such as register allocation and instruction
scheduling.

By carefully layering architecture and run-time dependent
optimizations in the Ct compiler, we can retarget the
entire dynamic engine with great agility, including for the
purposes of evaluating new micro-architectures (i.e.,
considering in-order architectures and evaluating new,
throughput-oriented ISA extensions). This was done
deliberately with forward-scaling in mind.

The dynamic compilation approach, especially the VIP
layer, provides smooth migration paths to future SSE and
IA-based SIMD instruction sets.

CT IN ACTION
In this section, we walk through some examples to
demonstrate how Ct boosts the productivity and
performance for a variety of application domains. We take
a step-by-step approach, to make clear some guidelines for
porting to Ct. In particular, we provide rules of thumb for
translating sequential code to Ct code.

Black-Scholes
Option pricing is a computation-hungry, important
application in modern financial engineering. Black-
Scholes is a well-accepted analytical model for European
option pricing. We use it here as an exemplar for C/C++
to Ct migration. The code below shows the sequential C
code.

The code below shows its Ct counterpart. The two pieces
of code are very similar (lines 4-9).

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 341

The only differences are these:

Ct needs to include the header file (line 0).

Ct adds the TVEC declarations (line 3).

Ct exempts programmers from having to manipulate
arrays with loops and subscripts (lines 3-9).

The Ct version co-exists well with C++�s parametric
polymorphism, allowing the code to be instantiated
with different types .

The desirable tradeoff here is that the coding overhead is
small when migrating to Ct, but you get highly efficient
vectorized, parallelized, and forward-scaling code. In
contrast, a manually vectorized version using MMX/SSE
intrinsics has 51 lines of code, and the manual
parallelization using threads requires an additional 20+
lines of code. When the underlying hardware or OS
changes, you may need to modify the code to use new
instrinsics and change the number of threads or the
threading primitives (e.g., pthreads).

The code below shows how a Cumulative Normal
Distribution function, CND, is implemented in C and Ct,
respectively. Though the C code can be translated into Ct
easily, we use a Ct Application Library function,

, to accelerate the polynomial
evaluation. Our data show that for a 5th-order polynomial,
the optimized Ct library yields ~3X speedup over the
naïve implementation with negligible precision loss.

Rule of Thumb I:

Convolution
Convolution is a widely used function in many application
domains ranging from signal/image processing to
statistics, to geophysics. Compared with the very parallel
Black-Scholes, the computation pattern of Convolution is
slightly trickier. In particular, programmers have several
mechanisms at their disposal and we will explore the
tradeoffs between these approaches.

y
x
y
x

y
x

� �

Figure 4: Convolution algorithm
illustration (1 dimensional)

Figure 4 is a typical 1D convolution algorithm, where is
a data set, and is a kernel sliding through the data set.
The code below gives the C implementation 4 . As
compared to Figure 4, you may find this loop structure is
more complicated and the array access pattern is more
irregular (particularly on Line 5).

Our first question is how to map the two-level loops to
TVECs. Obviously we want to abstract the data set, , to
be a TVEC. In this regard, we peel the outer loop and
change all the occurrences of to , as shown below.

4 The example is just for illustration purposes, and we
omitted some code for checking boundary conditions.

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 342

The second question is how to represent in Ct.
Because is a loop induction variable incremented by a
step value 1, we map it to an identity vector, , which
results in . Ct�s C++ front-end reinterprets the
operator into a gather operator, gathering values from
according to an index vector, .

This porting is straightforward but we can�t claim this
solution is ideal for performance, because the gather
operator is expensive on most architectures. Experienced
Ct programmers, when understanding the algorithm, may
resort to a more lightweight operator, . If
you look at Figure 4 from a different perspective, that is,
the kernel is fixed while the data set is sliding
leftward, the result is equivalent. The optimized
implementation is shown in the code below.

It is worthwhile to mention that the Ct implementation can
be extended to 2D convolutions with minimal effort.

Rule of Thumb II:

Sparse Matrix Vector Product (SMVP)
Linear algebra, particularly matrix operations, is quite
common in high-performance computing, physics
simulation, aspects of machine learning, and many
Recognition, Mining, and Synthesis (RMS) applications.
Sparse matrices are extremely useful for cases where the
particular algebraic formulation of a problem sparsely
populates elements in the matrix with meaningful values.

An example is large-scale physics simulations. In such
cases, the logical size of a dense matrix might be 100s of
megabytes, where a sparse matrix representation that only
stores non-zero matrix elements would perhaps only hold
1 megabyte of data. Unlike dense matrices, whose control
paths and data access patterns are highly predictable,
sparse matrices are much more hard in terms of the
diversity of data structures and the irregularity of
algorithms. In this section, we use a common kernel in
gaming and RMS applications, Sparse Matrix Vector
Product (SMVP), to demonstrate how a sparse matrix
multiplied by a vector is implemented with Ct.

We use a Compressed Sparse Column (CSC) format. The
basic idea of CSC is to only store the non-zero elements of

the matrix in the column order, and with each non-zero
element, the programmer also stores the row index.
Consider the sparse matrix below.

The matrix is stored as three arrays:

: the nonzero values, in column major order.

: the row indices for nonzero values.

: the column pointers. tell the
values of the i-th column start from which index into
the array).

The schema for computing the SMVP is shown below.

It is worth observing some of the computing patterns to
comprehend the implications for porting to Ct:

The two-level loops are more irregular than the
aforementioned examples. Typically this kind of loop
structure can be mapped to a two-level nested vector,
as shown below

In the inner loop, is used for
 times, which can be viewed as a

special kind of gather operation. In Ct, we have a
dedicated operator, , to replicate values of
a vector for certain numbers of times specified by
another vector.

The expression implies
that we are performing what is called a combining-
send, or alternatively a multi-reduction or combining-
scatter.

By comprehending the patterns, we have the Ct
implementation presented below:

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 343

Rule of Thumb III:

Rule of Thumb IV:

Experimental Results
We measured the performance of Ct and sequential C
implementations of representative data parallel operators
and a set of real-world applications on an Intel® Xeon®

processor E5345 5 platform (two 2.33GHz quad-core
processors, 4GB memory), and plotted the speedup of Ct
over C in Figure 5 and Figure 6. To present the benefits
from the JIT compiler optimizations and the TRT
separately, we configured Ct to run with different numbers
of cores. The C implementations are compiled with Visual
C++ 2005 compiler.

Figure 5 compares Ct�s performance vs. C (compiled with
O3-level optimizations on the Intel C Compiler) for a few
key operators. These are common building blocks in
many-core applications, though their use and mix is
varied. It provides a reasonable baseline for assessing
scalability based on the mix of Ct operators in your
application. These operators can be categorized into two
classes: , , , and belong to element-wise
operators, while and are collective
communication operators.

The Ct implementations of almost all element-wise
operators achieve 7-8X scalability when adding the

5 Intel processor numbers are not a measure of
performance. Processor numbers differentiate features
within each processor family, not across different
processor families. See
www.intel.com/products/processor_number for details.

number of cores from 1 to 8. When considering only one
core, the Ct Compiler�s aggressive vectorization also
makes significant difference:

For , Ct generated code achieves 2X speedup
against a scalar implementation. Given SSE�s vector
width is 4, and the vectorized code is mixed with a lot
of scalar code, the speedup is quite reasonable.

For , the Ct implementation takes advantage of
SSE�s instructions, however, the C version uses
control flow (e.g.,) that are more
challenging to vectorize. Thus the speedup reaches up
to 11X.

For , Ct generated code leverages SSE�s
instruction, while the C code relies on slow C runtime
library implementation. As such, the Ct
implementation achieves a significant speedup of 42X.

SSE doesn�t have direct support for . However, Ct
still generates highly efficient SSE code sequence,
based on a look-up table and interpolation-based
method that outperforms the C runtime library-based
implementation by 15X.

Unlike element-wise operators that are embarrassingly
parallel, collective communication operators have more
complicated inter-thread communication patterns. In the
meantime, the collective operators also impose challenges
on local code vectorization.

The operator performs the summation of
all elements of a vector. The Ct implementation
achieves totally 93X speedup over the scalar
implementation, where 12X comes from vectorization.

The operator requires more complicated
communication patterns. Again, the speedup achieved
by our optimized code is as high as 31X, where 5X is
from code vectorization.

In the future, Ct�s adaptive compilation strategy will play
an even more important role when new, throughput-
oriented ISA extensions emerge (such as mask,
cast/conversion, swizzle/shuffle, and gather/scatter).

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 344

2
11

42

15 12 5 4
15

72

93

31 31

106

-10

10

30

50

70

90

110

130

150
Ct (1 thread) Ct (8 threads)320

Figure 5: Performance of select Ct primitives vs. C
compiled with optimizations

The applications being studied are listed in the table
below. These span applications from high-performance
computing, financial computing, image processing,
through physics simulation. Black-Scholes, Binomial Tree,
and Monte Carlo Simulation are three widely used option
pricing models, 2D Convolution is a typical signal
processing kernel, and the Narrow-Phase Collision
Detection is a compute-intensive component of gaming
physics.

Table 1: Applications characterized under Ct

Program Description

Black Scholes European Option Pricing (financial analytics)

Binomial Tree American Option Pricing (financial analytics)

Monte Carlo Asian Option Pricing (financial analytics)

Convolution 2D Convolution kernel (signal processing)

Collision
Detection

Narrow-phase collision detection (game
physics)

Figure 6 shows Ct�s performance on Core 2 Quad
machines, as compared to plain C code and hand-compiler
tuned SSE code (using SSE intrinsics). The figure also
indicates that Ct code has good scalability when
increasing the number of cores from 1 to 8.

1.1
4.6

7.7 5.8
1.4

10

3.7

15.5

4.7
1.6

36.3

12.4

29

0

5
10

15

20
25

30

35

40
45

50

Black
Scholes

Binomial
Tree

MonteCarlo Convolution Collision
Detection

SSE Ct-1C Ct-8C
11477

Figure 6: Application scaling with Ct

For single-thread performance, Ct achieves a speedup as
high as 10X for Black-Scholes. Black-Scholes relies
heavily on the performance of transcendental functions,
namely , , and . SSE does provide
efficient support for and , while lacking support
for and . Typically, programmers fall back to a
scalar loop and call corresponding C runtime functions for
each element. Even though the rest of the program is well
vectorized, the overall speedup of SSE over C is only
1.1X. Ct�s 10X speedup is mainly attributed to JIT�s use
of vectorized implementation of such transcendental
functions.

Monte Carlo Simulation has a 15.5X Ct-over-C speedup.
Two factors contribute to the 8X speedup: first, Ct has a
very fast, vectorized implementation of random number
generator, while C has to resort to the C runtime function,

; second, Monte Carlo Simulation heavily uses two
transcendental functions, and , where Ct also has
very efficient SSE-based implementations. Consequently,
the speedup achieved by SSE is only 7.7X.

Single threaded Ct for Binomial Tree and Convolution
achieve only 3.7X and 4.7X speedup, respectively, which
is not surprising given that the two applications are not
arithmetic intensive. Their SSE versions are slightly faster
because the Visual C++ compiler uses a static compilation
strategy that makes more aggressive optimizations
affordable. An interesting note is that Binomial Tree
suffers from many floating point underflow exceptions. Ct
allows specifying lower numerical precision requirements.
This enables the Ct Compiler to generate code under
�flush-to-zero� mode, which speeds up the performance
further by 3-4X. For cases when lower accuracy is not
tolerable, we may specify (namely) as the base
type of . Although the SIMD data width is reduced to
half, the underflow exceptions are totally removed, which
speeds up the performance of the version by
2.5X. It is trivial for Ct programmers to get the speedup
because only TVEC declarations are changed (i.e., they do
not have to change a single line of code).

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 345

Note that this graph shows the performance when running
the same Ct binary with different hardware configurations.
Looking forward, Ct provides nice forward scalability.
Note that relatively inexperienced C/C++ programmers
can get these performance benefits (nearly) for free on
stock machines. Porting C implementations to their Ct
counterparts takes minor effort, and the Lines-of-Code of
the two implementations are almost 1:1.

CONCLUSION
Future-proofing algorithms for multi-core architectures is
an important way to continue to reap the performance
benefits of Moore�s Law scaling. Data parallel
programming models offer a promising abstraction to use
for forward-scaling, but it is often limited by too-narrowly
defined types and operators. This severely limits the scope
of applicability for such models. In Ct, we are attempting
to build a system that delivers a more general data parallel
(indeed, a deterministic task parallel) model while
providing the essential framework for forward-scaling.

A serious challenge is acknowledging the realities of
modern software development methods and assuring
compatibility with legacy code and programming
methodologies. We believe that using the Ct Dynamic
Engine�s particular flavor of adaptive compilation and
run-time is the most effective way to extract chains of
performance code without seriously compromising the
language design or the large software investment by
developers. More radical language redesigns are likely to
appear at some point, but we view this more incremental
approach as a flexible and highly productive way to
leverage multi-core architectures while developing the
basic parallel algorithms and design methods. In fact, we
expect that future languages will almost certainly
encompass some form (if not the exact form) of the ideas
in Ct.

ACKNOWLEDGEMENTS
We thank other members in the Ct team, namely Zhanglin
Liu, Dan Zhang, Jane Liu, Zhaohui Du, Josh Fryman, and
Zhigang Wang for their significant and indispensable
contributions to the work presented in this paper. We also
wish to thank Joe Schutz, Shekhar Borkar, Jerry Bautista,
and Justin Rattner for their support in this work.

REFERENCES
[1] Allan L. Fisher , Anwar M. Ghuloum, �Parallelizing

complex scans and reductions� in Proceedings of the
ACM SIGPLAN 1994 conference on Programming
language design and implementation, pp. 135�146,
June 20-24, 1994, Orlando, Florida, United States.

[2] Anwar M. Ghuloum, Allan L. Fisher, �Flattening and
parallelizing irregular, recurrent loop nests,� ACM
SIGPLAN Notices, v.30 n.8, pp. 58�67, August
1995.

[3] �APL: A Programming Language,� at
http://www.users.cloud9.net/~bradmcc/APL.html

[4] �APL2,� at
http://www.ibm.com/software/awdtools/apl/

[5] Byoungro So, Anwar Ghuloum, Youfeng Wu,
�Optimizing data parallel operations on many-core
platforms,� First Workshop on Software Tools for
Multi-Core Systems (STMCS), Manhattan, NY,
2006, pp. 66�70.

[6] �Ct: A Flexible Parallel Pprogramming Model for
Tera-scale Architectures,� at
http://techresearch.intel.com/UserFiles/en-us/File/terasc
ale/Whitepaper-Ct.pdf

[7] Daniel P. Friedman and David S. Wise, �Aspects of
applicative programming for parallel processing,�
IEEE Transactions on Computers, C-27(4):289�296,
April 1978.

[8] David A. Krantz, Robert H. Halstead, Jr., and Eric
Mohr, �Mul-T: a high-performance parallel lisp,� in
Proceedings of the SIGPLAN �89 Conference on
Programming Language Design and
Implementation, pp. 81�90, 1989.

[9] Guy Blelloch, �Vector Models for Data-Parallel
Computing,� MIT Press. ISBN 0-262-02313-X.
1990.

[10] Guy E. Blelloch and Gary W. Sabot, �Compiling
Collection-oriented Languages onto Massively
Parallel Computers,� Journal of Parallel and
Distributed Computing, Vol. 8, Issue 2, pp. 119�134,
1990.

[11] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C.
Hardwick, Jay Sipelstein, and Marco Zagha,
�Implementation of a Portable Nested Data-Parallel
Language,� Journal of Parallel and Distributed
Computing (JPDC), 21(1), April 1994.

[12] Guy L. Steele and W. Daniel Hillis, �Connection
Machine LISP: Fine-grained Parallel Symbolic
Processing,� in Proceedings 1986 ACM Conference
on Lisp and Functional Programming, Cambridge,
MA, August 1986.

[13] Guy L. Steele, �CM-Lisp Technical Report,�
Thinking Machines Corporation, 1986.

[14] �IBM, APL2 Programming: Language Reference,�
first ed., August 1984.

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 346

[15] Kenneth E. Iverson, A Programming Language,
John Wiley & Sons, Inc., New York, 1962.

[16] Leslie G. Valiant, �A bridging model for parallel
computation,� Communications of the ACM,
33(8):103�111, August 1990.

[17] Manuel M. T. Chakravarty, Gabriele Keller, Roman
Lechtchinsky and Wolf Pfannenstiel, �Nepal �
nested data parallelism in Haskell,� in Proceedings
7th International Euro-Par Conference, volume
2150 of Lecture Notes in Computer Science, pp.
524�534, Springer-Verlag, Manchester, UK, 2001.

[18] �NESL: A Parallel Programming Language,� at
http://www.cs.cmu.edu/~scandal/nesl.html

[19] �Paralation LISP�Embeds the paralation model in
Common LISP,� Available from MIT Press,
(800)356-0343.

AUTHORS� BIOGRAPHIES
Anwar Ghuloum is a Principal Engineer with Intel�s
Microprocessor Technology Lab, working on diverse
topics such as parallel language and compiler design,
parallel architecture evaluation, optimizing memory
system performance, and multimedia applications. Anwar
received a B.S. degree in Computer Science and
Engineering from the University of California, Los
Angeles and a Ph.D. degree in Computer Science from
Carnegie Mellon University's School of Computer Science
in 1996. Before joining Intel, he co-founded and was the
CTO of a fab-less semiconductor startup that designed
parallel image and video processors for the consumer
electronics market. Prior to that, Anwar developed novel
predictive drug design software for early lead optimization
using 3D surface pattern recognition techniques for a
biotech startup. A recurring theme in Anwar's work has
been to bridge high-level application knowledge and low-
level parallel architecture constraints with careful parallel
language and compiler design to achieve the optimal
tradeoffs in productivity and performance. His e-mail is
anwar.ghuloum at intel.com.

Terry Smith is a Business Development Manager within
Intel's Corporate Technology Group. In his ten years with
Intel he has focused on the management of emerging
technologies, strategic marketing, and business
development. His background includes the Executive
MBA Program at the University of Texas-Austin and a
B.S. degree in Math/CS from the University of Illinois.

Gansha Wu is a researcher with Intel�s Corporate
Technology Group. He leads a team researching advanced
compiler and runtime technology for future Intel
architectures. Gansha has been with Intel for seven years.
His e-mail address is gansha.wu at intel.com.

Xin Zhou is a researcher with Intel�s Corporate
Technology Group. He leads a Ct programmability and
workload study. Xin has been with Intel for five years. His
e-mail address is xin.zhou at intel.com.

Jesse Fang is the Director and Chief Scientist of the
Programming System Lab at Intel/CTG/MTL (Corp.
Technology Group/Microprocessor Technology Lab).
Before joining Intel in 1995, Jesse was manager of the
Hewlett-Packet Research Lab compiler team for Itanium®

Architecture. Before that, he was the manager of
parallel/vector compilers at Convex and Concurrent
Computer Corporation in 1989 and 1986, respectively.
Jesse received his Ph.D. degree in Computer Science from
the University of Nebraska-Lincoln before he did a post-
Doctorate at the University of Illinois, Urbana-
Champaign. Jesse received his B.S. degree in Math from
Fudan University in Shanghai.

Peng Guo is an engineer in Intel�s Corporate Technology
Group and works on dynamic compilers. His research
interests include dynamic compiler optimizations, and
compiler/runtime interactions. He received his Masters
degree in Computer Science from the Beijing University
of Aeronautics and Astronautics. His e-mail address is
peng.guo at intel.com.

Byoungro So is a Senior Research Scientist in Intel�s
Corporate Technology Group. His research interests
include program analysis, high-performance computing,
adaptive computing, parallelizing compilers, and
performance optimizations. Before joining Intel, he
worked for IBM T.J. Watson research center where he
developed the Cell compiler and runtime. He received
both his M.S. and Ph.D. degrees in Computer Science
from the University of Southern California in 1998 and
2003, respectively. His email address is byoungro.so at
intel.com.

Mohan Rajagopalan is a Research Scientist in Intel�s
Programming Systems Lab and leads the parallel runtime
research for Ct. His current interests include runtime
technologies for forward-scaling on emerging multi-core
platforms, new programming models such as for reusable
and incremental computation, and whole system
optimization. Mohan received his Ph.D. degree from the
University of Arizona in 2006. He was the recipient of the
2005 IEEE/IFIP Willam C. Carter Dissertation Award.
His e-mail is mohan.rajagopalan at intel.com.

Yongjian Chen is an Engineer in Intel�s Corporate
Technology Group and works on dynamic compilers. His
research interests include parallel language design,
compiler/runtime technology to support parallel
computation, and parallel architectures. He received his
Ph.D. degree from Tsinghua University. His e-mail is
yongjian.chen at intel.com.

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 347

Biao Chen is an Engineer in Intel�s Corporate
Technology Group and works on Ct memory management
and Ct workload study. His research interests include
emerging workloads and memory management. He
received his Masters degree in Computer Science from the
Beijing University of Aeronautics and Astronautics. His
e-mail is biao.chen at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 11, Issue 4, 2007

Future-Proof Data Parallel Algorithms and Software on Intel® Multi-Core Architecture 348

THIS PAGE INTENTIONALLY LEFT BLANK

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 349

Accelerating Video Feature Extractions in CBVIR
 on Multi-core Systems

Yurong Chen, Corporation Technology Group, Intel Corporation
Eric Li, Corporation Technology Group, Intel Corporation

Jianguo Li, Corporation Technology Group, Intel Corporation
Yimin Zhang, Corporation Technology Group, Intel Corporation

Index words: contend-based video information retrieval, multi-core, optimization, parallel computing,
performance analysis

ABSTRACT
With the explosive increase in video data, automatic
video management (search/retrieval) is becoming a mass
market application, and Content-Based Video
Information Retrieval (CBVIR) is one of the best
solutions. Most CBVIR systems are based on low-level
feature extractions guided by the MPEG-7 standard for
high-level semantic concept indexing. It is well known
that CBVIR is a very compute-intensive task, and the
low-level visual feature extractions are the most time-
consuming components in CBVIR. Nowadays, with the
multi-core processor becoming mainstream, CBVIR can
be accelerated by fully utilizing the computing power of
available multi-core processors.

In this paper, we optimize and parallelize a set of typical
visual feature extraction applications in CBVIR. The
underlying optimization and parallel techniques are
representative of those used in video-analysis
applications and can be further used in other
applications to maximally improve their performance on
multi-core systems. We conduct a detailed performance
analysis of these parallel applications on a dual-socket,
quad-core system. The analysis helps us identify
possible causes of bottlenecks, and we suggest avenues
for scalability improvement to make those applications
more powerful in real-time performance.

INTRODUCTION
Nowadays, with advances in video capture and storage
techniques, the sheer amount of video data has exploded
not only in enterprises but also in our homes.
Concomitantly, there is an increasing demand for a
system that can help end users to index massive amounts
of video data for further search, browse, and

management tasks. Digital home-usage media centers
are coming into being for this very purpose. Most of
these centers consist of two key ingredients: the
Content-Based Video Information Retrieval (CBVIR)
module and the computing platform.

CBVIR is a computational technique to index
unstructured video information in terms of low-level
audio/visual features [1]. MPEG-7 is an experimental
standard acting as a guideline for low-level audio/visual
feature extractions [2]. It includes a set of visual color,
texture, shape, and motion descriptors. Since low-level
visual feature extraction is the most time-consuming
part in CBVIR applications, these applications are much
more compute intensive than traditional video
decoding/encoding applications. Although typically the
indexing can be done in off-line mode, there are many
more emerging scenarios that require a real-time or even
super-real-time processing capability in a CBVIR
system. With the boom in multi-core processors, we can
take full advantage of the computing power of today�s
multi-core platform to accelerate the use of CBVIR
applications [3].

In this paper, we optimize and parallelize a set of typical
feature extraction applications on a multi-core system.
Our results show most of them are much slower than
real-time in their original implementations. After serial
optimization, however, they become 3.3x faster, and
only five of them are still slower than real-time. After
the tailored parallelization, the six most compute-
intensive applications obtain up to a 7.6x speedup on a
dual-socket, quad-core system, which enables them to
achieve super-real-time performance.

This paper is organized as follows. First, we briefly
review several low-level visual descriptors under the

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 350

guidelines of the MPEG-7 experimental standard. Next,
we present our optimization and parallelization
methodology for low-level visual feature extractions.
Then, we show the performance analysis results of the
typical feature extraction workloads.

CBVIR AND LOW-LEVEL VISUAL
DESCRIPTORS
Video information differs from conventional text or
numerical data in that video data require a large amount
of memory and special processing operations. Video
retrieval is based on how the contents of a sequence of
images can be represented. Computational techniques
that pursue the goals of indexing the unstructured visual
information are called CBVIR [1, 4]. Generally, a
typical CBVIR system includes two ingredients: the
back-end for video indexing and the front-end for
retrieval query processing. The back-end extracts low-
level audio/visual features for video data indexing,
while the front-end is a query engine that returns
retrieval results based on the similarity between query
example and indexed video data [4]. A typical system
framework is illustrated in Figure 1.

Figure 1: Framework of a typical CBVIR system

The well-known maxim �Garbage in, garbage out�
means that good features will greatly improve the
retrieval performance of a CBVIR system. Based on this
point, the MPEG-7 standard, formally known as the
�Multimedia Content Description Interface,� is
proposed to guide content retrieval and feature
extraction from video data. It includes a set of low-level
color descriptors, texture descriptors, shape descriptors,
and motion descriptors [2]. Since MPEG-7 is an
experimental standard currently, the descriptors are only
at the conceptual level. Therefore, in practice, most
CBVIR systems just use MPEG-7 as a guideline for

low-level feature extractions [1, 5]. In our experiments,
we also use MPEG-7 as a guideline, and we briefly
introduce the most-widely used visual features. In each
category, we also select one or two typical features with
detailed descriptions. These features are widely adopted
and have very good retrieval performance [6].

Color Descriptors
Because of its expressive power, color is one of the first
attributes used in image description, similarity, and
retrieval tasks [7]. MPEG-7 divides color descriptors
into several sub-categories: scalable color, color
structure, color layout and so on [2]. In practice, there
are four widely used color descriptors: Color Histogram,
Color Moments, Color Coherence Vector (CCV), and
Color Correlogram. The first two can be viewed as scale
color descriptors, and the latter two can be viewed as
structure color descriptors. In color histograms, overall
color distribution can be captured in terms of histogram
or low-order moments, but color histograms do not
capture any spatial relationships among colors. The
CCV is an extension of color histograms, in that it
partitions pixels falling in each color histogram bin into
coherent pixels and non-coherent pixels.

Color Correlogram is proposed to characterize how the
spatial correlation of pairs of colors is changing with the
distance [8]. It provides much better performance than
color histograms, color moments, and the CCV [6, 8]
and has been widely used in CBVIR systems [1, 5].
Color Correlogram extends the co-occurrence matrix
method in texture analysis to the color domain. In short,
a correlogram is a squared table where the entry at (i, j)
specifies the probability of finding a pixel of color jc at

a fixed distance from a given pixel of color ic . To catch
more local spatial information, the co-occurrence can
also be defined by banded neighborhoods: this leads to
the banded color correlogram. In practice, {0, 1, 3, 5, 7}
are the most popularly used banded distances.

Texture Descriptors
The textural features describe local arrangements of
image signals in the spatial domain or the frequency
domain by some spectral transforms. There are many
kinds of texture features, such as the Gray-Level Co-
occurrence Matrix (GLCM), edge histogram features,
multi-resolution simultaneous autoregressive models
(MRSAR), wavelet coefficients, and Gabor textures.
Specifically, the GLCM is the sufficient statistics of
Markov random fields with multiple pairwise pixel
interactions. The Edge histogram feature is used to
characterize non-homogeneous texture regions. The
MRSAR is a random field texture model that
characterizes the geometric structure and the

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 351

quantitative strength of interactions among neighbors.
At present, most promising features for texture retrieval
are multi-resolution features obtained from orthogonal
wavelet transforms or from Gabor transforms in the
frequency domain [7].

MPEG-7 has three texture descriptors: homogeneous
texture, texture browsing, and edge histograms. The first
two are based on the Gabor transform [2]. The Gabor
transform offers the best simultaneous localization of
spatial and frequency information. It emerges as an
important visual primitive, and it is widely applied in
tasks like edge detection, invariant object recognition,
and compression [9, 10]. The 2-dimensional (2D) Gabor
filters are defined as a series of multi-scale and multi-
orientation cosine modulated Gaussian kernels. The
Gabor texture representation of images is derived by
convolving the image with the Gabor filters and
implementing the convolved image efficiently by using
Fast Fourier Transform (FFT). The MPEG-7 standard
suggests using 6-orientation and 5-scale Gabor filters
for the homogeneous texture descriptor and the texture
browsing descriptor, which yields one forward 2D FFT
for the image and 30 inverse 2D FFTs for the frequency-
domain results.

MRSAR is another texture feature studied in this paper,
that models the texture as second-order, non-causal
Markov random fields [15]. MRSAR uses a 21x21
window sliding across the input image with fixed pixel
steps (seven pixels in our experiments) in three
resolutions. The least squares estimations are carried out
at each resolution independently. Together with the
standard deviation of the error term, five parameters are
estimated for each resolution and concatenated for a 15-
dimensional feature vector. The final feature is the mean
and covariance matrix of the 15-dimensional feature on
all sliding windows.

Shape Descriptors
The object's shape plays a critical role in searching for
similar image objects (e.g., texts or trademarks in binary
images or specific boundaries of target objects in
images, etc.). In image/video retrieval, one expects that
the shape description is invariant to scaling, rotation,
and translation of the object. Shape features are less
developed than their color and texture counterparts
because of the inherent complexity of representing
shapes. MPEG-7 supports region-based and contour-
based shape descriptors [2]. However, these kinds of
shape descriptors rely on the shape quality of shape
extraction processes.

Recently, shape context has been proposed as a global
shape descriptor, and it has demonstrated great success
in image matching, recognition, and retrieval [11, 12]. It

contains two steps: shape extraction and feature
formulation. In practice, the shape can be provided by
boundary detector, edge detector, or segmentation
boundary. Our implementation adopts the simplest
Canny edge detector. For each shape point p, it
calculates the distance r and orientation between the
point p and other shape points, and then it quantizes the
pair (r,) into nine bins of a log-polar coordinate as
shown in Figure 2. The 9-bin histogram is used to
represent features at point p. Finally, the histogram of
each selected key point is flattened and concatenated to
form the context description of the shape.

Figure 2: An example of shape context for the
reference point

Localization Descriptors
Local descriptors for regions of interest have proved to
be very successful in applications such as object
recognition, image/video retrieval, and matching
different views of object and scene [12]. They are
distinctive, robust to occlusion, and do not require
segmentation. The idea is to detect image regions that
are covariant to a class of transformations, and these
regions are then used as support regions to compute
invariant descriptors. MPEG-7 contains a region locator
and spatial-temporal locators [2]. In this paper we only
discuss one of the most widely used localization
descriptors: the scale-invariant feature transform (SIFT),
which is a known invariant to changes in illumination,
image noise, scaling, and small changes in viewpoint
[13].

SIFT feature detection can be divided into four steps.
The first step detects local extrema in scale-space. SIFT
progressively blurs the input image with the Gaussian
kernel, resulting in a series of blurred images. Then,
each blurred image is subtracted from its direct
neighbors (called scale space) to produce a new series
of difference of Gaussian (DoG) images. Thereafter, a
specific blob detection is conducted at each pixel in the
image by comparing the pixel to its eight direct
neighbor pixels and 18 neighbor pixels from direct
neighbored blur images in the scale space. The second
step localizes key points from the extrema in scale space
by removing some lower-contrast and noise points. The
third step assigns orientation for each key point, and

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 352

computes histograms of gradient directions in a 16x16
window at each key point. The fourth step formulates
the key point descriptor, which is a 128-dimensional
vector of the normalized histogram.

Motion Descriptors
There are four motion descriptors: camera motion,
motion trajectory, parametric motion, and motion
activity in MPEG-7, which characterize 3-D camera
motion parameters, temporal evolution of key points,
the motion of regions, and the intensity or pace of
motion, respectively [2]. Some MPEG video
compression methods already encode macro-block level
motion vectors. However, when the pixel-level or
object-level motion estimation is required, we must
resort to other techniques such as optical flow.

As motion can be represented as vectors originating or
terminating at pixels in a digital image sequence, optical
flow denotes a vector field defined across the image
plane that can wrap images from previous to the next
[14]. Estimating the optical flow is very useful in pattern
recognition, computer vision, and other image-
processing applications. In this work, we study the
Lucas-Kanade method, which is known as the most
popular two-frame differential method for optical flow
estimation. This method tries to calculate the motion
between two image frames that are taken at times t and
t+ t at every pixel position. As a pixel at location (x, y,
t) with intensity I(x, y, t) will have moved by x, y, and
t between the two frames, optical flow assumes that

parts of the objects are the same at the two time slices,
i.e.,),,(),,(tyxIttyyxxI . With first-
order Taylor expansion of the left side, and omitting
higher-order terms, we have the basic constraint

0tyyxx IVIVI . The Lucas-Kanade method
assumes that the flow),(yx VV is constant in a small
window with n pixels, and then it yields n linear
equations when taking the n pixels into the basic
constraint. Since there are more equations than unknown
variables (i.e., n>2), the system is over-determined and
can be solved by the least squares method.

OPTIMIZATION AND
PARALLELIZATION METHODOLOGY
In this section, we present an optimization and
parallelization methodology, characterize different
schemes and issues in parallelization, and provide some
insights on how to parallelize these video analysis
features on a multi-core processor.

Serial Performance Optimization
Before diving into the parallelization study, we first
describe several optimization techniques to improve the
application�s performance. Some optimization can
improve both serial and parallel performance. Following
we show some widely used techniques we used in a
CBVIR application optimization:

Generic optimization techniques, like loop
optimizations, etc.

SIMD optimization to leverage the data-level
parallelism (DLP) architecture features provided by
the modern processor.

Cache-conscious optimization to improve data
locality. This is more pronounced for the parallel
program due to a reduction of last-level cache
misses as well as off-chip bandwidth demands.

Besides manual code optimization, we also extensively
use Intel® performance libraries to improve performance.
The libraries include the Intel® Performance Primitives
(IPP) [16] and the Intel® Math Kernel Library (MKL)
[17]. For example, Gabor features use the function
fftwf_execute to execute discrete Fourier transform for
Gabor filters. To achieve better performance we modify
the linked library from the open sourced FFTW library
to the Intel MKL. The FFTs in the MKL are highly
optimized for the latest Intel dual-core and quad-core
processors and can provide significant performance
gains over alternative libraries for medium and large
transform sizes.

Parallelism and Parallel Scheme Study
Usually, thread-level parallelism can be exploited in
different ways. There are two primary decomposition
methods in the design of a parallel program, i.e., data
decomposition and task decomposition methods. The
former divides the computations among multiple threads
based on the different sections of data. The latter
operates on a set of tasks that can run in parallel. Both
types of parallelism can be used in the same program
and no one method is always better than the other.
However, in a CBVIR system, the majority of the work
is conducted on 2-D images, which have abundant data
parallelism at the picture-level, row-level, and even
pixel-level. The selection of data parallelism is a natural
choice to make use of the inherent parallelism. Further,
to meet the real-time processing capability for these on-
line video applications, it is important to extract the
fine-grained parallelism within each image instead of
exploiting the coarse-grained parallelism at the frame
level.

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 353

We perform a detailed analysis on these visual features,
and we restructure the data and code in order to
facilitate the use of threading models. In the following
section, we use several examples to demonstrate how to
design proper parallel schemes for CBVIR applications.

The major work of the color correlogram consists of
counting the color histograms for each pixel. The most
straightforward way to do this is to partition the image
into several tiles and have each tile accumulate the color
data individually. To mitigate the lock contention
overhead, in contrast to maintaining only a single
histogram buffer, each thread is allocated a local
histogram buffer to store the counting data individually.
At the end of the parallel region, a reduction operation
is conducted to accumulate the private data in each
thread. To replicate the thread-private local buffers, we
need an additional 20KB of memory per thread. In this
way, we reduce the synchronization overhead and
achieve better scalability performance. The pseudo code
is shown in Figure 3:

Figure 3: The color correlogram code example

As shown in Figure 4, the parallelization of Gabor can
be conducted at different granularities, such as filter
level and FFT level. As we need to convolute images
with multiple filters and transform them into frequency
domains, the most straightforward way to do this is to
perform coarse-grained-level parallelization on these
independent filters. The filter-level parallelization
scheme can make full use of the underlying processing
capabilities with minimal effort. However, it has to
prepare local buffers and construct an FFT plan for each
filter. This leads to much larger memory consumption,
however, and its working set cannot fit well into the
last-level cache on a multi-core processor. In addition,
the parallelism is also limited by the number of filters,
e.g., in Gabor we only have 30 (5x6) filters: when the
thread number goes beyond 16, it will incur significant
load imbalance. Therefore, exploiting fine-grained
parallelism within each filter is also equally important to
better express the inherent parallelism. There are three
kernels: convolution process, inverse FFT transform,
and magnitude computing within each filter iteration.

They can all be parallelized in a fine-grained fashion. As
depicted in Figure 4, the parallelization of the
convolution and magnitude computing kernels is
straightforward. The FFT procedure is also internally
parallelized by the MKL. The FFT-level parallelization
holds a smaller working set by maintaining only one
data copy for all the filters, which greatly improves the
cache locality performance and reduces the off-chip
memory bandwidth requirements. However, it suffers
from fine-grained parallelization overhead and some
non-parallel regions, e.g., the preparation stage in the
FFT kernel. These will hurt the overall scaling
performance. Therefore, we make a detailed comparison
between these two parallel schemes, and we choose the
one which has the best scaling performance in the final
experiments.

Figure 4: Gabor parallelism selection

When designing a proper parallel scheme for an
application, the best parallel scheme may not come from
the best optimized serial algorithm. OpticalFlow (LK
method [14], in OpenCV), uses a round-robin buffer to
store seven rows of image data and traverses the image
in a top-down manner. It has a very good data locality
performance. However, the effort for parallelization is
not trivial because the data in the buffer written by one
thread will be used by another thread. We, therefore,

 Filter level parallelization
#pragma omp parallel for dynamic
for(int i=0; i<filter_number; i++)
{
 for(int k=0; k<image_size; k++)
 convolution(i,k);

 fftwf_execute(inverse_FFT_plans[i]);
 for(int k=0; k<image_size; k++)
 compute_magnitude(i,k);
}
 FFT level parallelization
for(int i=0; i<filter_number; i++)
{

#pragma omp parallel for schedule(static)
 for(int k=0; k<image_size; k++)
 convolution(k);

 // fftwf_execute is parallelized in the Intel MKL
 fftwf_execute(inverse_FFT_plan);

#pragma omp parallel for schedule(static)
 for(int k=0; k<image_size; k++)
 compute_magnitude(k);
}

malloc_local_histogram_array();
#pragma omp parallel
{
 #pragma omp for schedule(dynamic) nowait
 for(int y=0; y<height; y++)
 for(int x=0; x<width; x++)
 calc_correlogram(y, x);
}
merge_result_to_global_ histogram_array();
free_local_histogram_array();

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 354

need to use locks to protect this buffer. Frequent use of
locks deteriorates the scaling performance. To break the
data dependency among the threads, we use the original
algorithm without employing an intermediate buffer for
serial program acceleration. It turns out that we achieve
much better scaling performance by simply performing
parallelization at the row level.

To summarize, to obtain the desired parallel
performance, the optimum parallelism depends on the
decomposition method used and whether it resulted in
the highest scalability performance, and it also depends
on the data manipulation techniques and whether they
efficiently improve the cache and memory utilizations.
In addition, when a serial algorithm is not easy to
parallelize in a straightforward way, we may resort to
other ways to change the data structure and the control
flow, or even modify the algorithm to make it more
amenable to parallelization.

Parallel Performance Optimization
After studying the parallelism in the CBVIR
applications, we further enhance their performance on
multi-core processors. We use several Intel® software
tools to analyze the parallel programs. For instance, we
specify parallelism using OpenMP directives and
compile using the Intel compilers. We use the Intel®

Thread Checker [18] to test the correctness of the
program, and the Intel® Thread Profiler [18] to collect
parallel metrics for bottleneck identification.
Furthermore, to understand the cache behavior, we use
the Intel VTune� Performance Analyzer [19] to collect
different levels of cache data.

In parallelizing the CBVIR applications, we identify the
parallel bottlenecks and classify them into three
categories:

Load imbalance. Load imbalance in a parallel
section is a function of the variability of the size of
the tasks and the number of tasks. For moderate
multi-core processors, it is essential to keep all the
cores busy by load balancing the tasks and
minimizing overhead. If one core spends more time
than the other cores working, the unbalanced load
becomes a limiting factor for performance. In
CBVIR, we use several techniques to improve the
load balance performance, e.g., in MRSAR, a 2-
dimension loop is merged into one dimension to
enlarge the independent tasks. For almost all the
workloads, we use a dynamic scheduling policy to
minimize the load imbalance. Particularly, in SIFT,
we manually use a �guided� scheduling policy, and
the task size is chosen depending on the tasks
within each parallelization loop. Since the tasks
vary greatly in each iteration when the image in

SIFT is downscaled, a guided scheduling policy
helps to balance the size of tasks and scheduling
overhead.

Synchronization overhead. Often threads are not
totally independent, which forces the program to
add synchronization to guarantee the execution
order of the threads. The frequent synchronization
calls and the associated waiting operations will
degrade the scaling performance on multi-core
processors. Generally the synchronization is present
in the form of critical section, lock, and barrier in
the OpenMP implementation. In CBVIR, we largely
eliminate the locks by carefully selecting the proper
parallelism, e.g., we design a lock-free mechanism
in the color correlogram to reduce the
synchronization overhead. The shared histogram
buffer is replicated into several private data copies.
Each thread operates on each local data copy non-
exclusively to avoid the mutual access of the shared
histogram buffer. In addition, we make careful use
of buffer manipulation for each thread, since
frequent memory allocation/deallocation operations
will cause severe lock contentions in the heap, and
these requests are essentially run in serial in a
parallel region.

Cache efficiency and memory bandwidth. Good
cache efficiency becomes even more important
when using multi-core processors, since the
maximum bus bandwidth remains unchanged. All
cores collectively share a fixed-memory bandwidth;
thus, it is important to design algorithms that are
cache-conscious and can efficiently utilize the
multi-core processing capability. In CBVIR, we
designed the parallel programs with the cache
performance in mind. We choose the most
favorable granularity in terms of cache performance,
where fine-grained threads are more cache-friendly
than the coarse-grained ones, because more often
they can make full use of data sharing instead of
replicating buffers for each thread. In MRSAR,
sometimes the data access patterns for a 2-D matrix
is in column major rather than in row major. This
breaks the spatial data locality when accessing the
elements in the next row: the data are no longer
contiguous. We manually transpose the 2-D matrix
and selectively traverse the data according to the
data access pattern. Furthermore, we use cache
blocking techniques to improve the temporal data
locality. We segment the whole data set into several
tiles. This subset of data which can fit in cache is
operated on all at once before moving on to the
next set. Since the block of data can be processed
several times before moving on to the next block,

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 355

this can significantly improve the cache locality
performance.

Besides these general parallel-performance-limiting
factors, we also investigate a few more issues specific to
multi-core processing.

False sharing is a common pitfall in shared memory
parallel processing. It occurs when two or more
cores/processors are updating different bytes of memory
that happen to be located on the same cache line. Since
multiple cores cannot cache the same line of memory at
the same time, when one thread writes to this cache line,
the same cache line referenced by the other thread is
invalidated. Any new references to data in this cache
line by the second thread results in a cache miss and
potentially huge memory latencies. Therefore, it is
important to make sure that the memory references by
the individual threads are to different non-shared cache
lines. We manually resolve false sharing issues in two
kernels of CBVIR, i.e., Shape Context and SIFT, by
padding each thread�s data element to ensure that
elements owned by different threads all lie on separate
cache lines. False sharing problems can also be
identified during the tuning stage using the VTune
Performance Analyzer, either through looking at some
specific performance counters or identifying unexpected
sharp increases in last-level cache misses.

Another specific performance-tuning technique is using
a thread affinity mechanism to improve the cache
performance. This minimizes the thread migration and
context switches among cores. It also improves the data
locality performance and mitigates the impact of
maintaining the cache coherency among the
cores/processors. Since multi-core processors are likely
to have a non-uniform cache architecture (NUCA), the
communication latency between different cores varies
depending on its memory hierarchy. We use different
thread scheduling policies to address this problem.
When we find that a group of threads has high data
sharing behavior, we can schedule these threads to the
same cluster to utilize the shared cache for data transfer.
(A cluster is a collection of closely coupled cores, e.g.,
two cores sharing the same L2 cache in an Intel®

Core�2 Quad processor is termed a cluster.) On the
other hand, for applications with high bandwidth
demands, we prefer to schedule the threads on different
clusters to utilize aggregated bandwidth. For instance, in
SIFT, after the row-based parallelization, the image
chunk assigned to one thread/core will be used by the
other threads. Significant coherence traffic occurs when
the image data do not reside in cores sharing the same
last-level cache. Therefore, thread scheduling in the
same cluster will mitigate the data transfer between

loosely coupled cores that do not reside in the same
cluster.

PERFORMANCE ANALYSIS ON
MULTI-CORE SYSTEMS
In this section we first show twelve typical visual feature
extraction workloads, which are accelerated by serial
optimization. Then we parallelize six of the most
compute-intensive workloads with the methodology
introduced in the previous section. We evaluate the
performance of these workloads on an 8-core system,
which is a dual-socket, quad-core machine, with two
Intel Core 2 Quad processors running at 2.33GHz. Each
socket has four cores, and each core is equipped with a
32KB L1 data cache and a 32KB L1 instruction cache.
The two cores on one chip share a 4MB L2 unified
cache. The maximum FSB bandwidth is 21GB/s.

For the workloads studied in this work, we carefully
choose the data sets to represent realistic scenarios. All
the experiments are based on the TRECVID 2005 [20]
developing data sets. The 141st and 142nd video
sequences are chosen to evaluate the performance,
which consists of around one hour of MPEG-1
(352x240 in resolution) videos and 791 key frames. The
evaluations are directly performed on the extracted key
frames.

Serial Performance Improvement
As shown in Figure 5, more than half of the workloads
are formerly slower than real-time, i.e., 30 frames per
second (FPS), in the serial performance on an 8-core
system. After a series of optimizations, these kernels
achieved an average of 3.3x speedup, about 60% of
which came from using the Intel highly optimized
libraries and the SIMD optimization. Even so, five
workloads, Correlogram, MRSAR, Gabor, SIFT, and
OpticalFlow, are still slower than real time. To harness
the power provided by a multi-core system through
exploiting thread-level parallelism, we further
parallelized these workloads and analyzed their
performance on an 8-core system. In addition, to make
our work more comprehensive, we also included a
representative shape descriptor, Shape Context, in the
parallelization study.

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 356

Figure 5: Serial processing speed (FPS) of CBVIR
workloads on an 8-core system

Performance Scalability Analysis
These six workloads scale very well as the number of
threads increases, as shown in Figure 6. Four of them
exhibit almost linear speedups and two achieve quite
respectable speedups. That is, CBVIR workloads can
efficiently use the computational power provided by
multi-core processors.

0

1

2

3

4

5

6

7

8

1T 2T 4T 8T

Correlogram MRSAR
Gabor ShapeContext
SIFT OpticalFlow

Figure 6: Scalability of parallel CBVIR workloads
on an 8-core system

To fully understand the scaling limiting factors on an 8-
core system, we characterize the parallel performance
from the high-level general parallel overheads, e.g.,
synchronization penalties, load imbalance, and
sequential regions, to the detailed memory hierarchy
behavior, e.g., cache miss rates and FSB bandwidth.

We profile them with the Intel Thread Profiler to see
their general parallel limiting factors. From Figure 7, we
can see that the parallel region dominates in the
execution time breakdown, which suggests these
CBVIR workloads expose good parallel performance
metrics. However, some workloads, especially SIFT,
suffer a lot from load imbalance when the number of
threads increases to four and eight, which leads to the
poor speedup of SIFT. If we assume the parallel region
can scale perfectly, Gabor and SIFT should achieve
theoretical speedups of 7.6 and 6.2, respectively, on

eight cores. The theoretical speedups are much higher
than the practical results shown in Figure 6. Therefore,
we believe the scalability of our workloads is also
limited by some other factors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1T 2T 4T 8T 1T 2T 4T 8T 1T 2T 4T 8T 1T 2T 4T 8T 1T 2T 4T 8T 1T 2T 4T 8T

Correlogram MRSAR Gabor ShapeContext SIFT OpticalFlow

Parallel Sequential Imbalance Synchronization Parallel overheads

Figure 7: Execution time breakdown

Besides the general scalability performance factors, the
memory subsystem also plays an important role in
identifying the scaling performance bottlenecks. For
further assurance, we get the memory-hierarchy micro-
architectural statistics with the Intel VTune Performance
Analyzer as shown in Figure 8. The figure shows that
L1 cache miss rates vary little with the number of
threads, while for some workloads L2 cache
performance varies a lot when scaling the thread count.
The L2 cache misses for most workloads is reduced
when the number of threads increases to four or eight,
because the system offers a larger size L2 cache from
4M to 8M and 16M. Since SIFT has a hierarchical
parallel decomposition method, the downscale image
has to be broadcast to all the private L2 caches after one
iteration, thereby incurring significant cache coherency
misses when we scale to four and eight cores.

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 357

1T 2T 4T 8T

Correlogram MRSAR Gabor
ShapeContext SIFT OpticalFlow

0%

2%

4%

6%

8%

10%

12%

1T 2T 4T 8T

Correlogram MRSAR Gabor
ShapeContext SIFT OpticalFlow

Figure 8: L1/L2 cache miss rates

Generally speaking, memory bandwidth is a key factor
that may potentially limit the speedup on multi-core
systems. Figure 9 shows how the average FSB
bandwidth utilization varies with the number of threads.
The bandwidth usages of all workloads are far below the
saturated FSB bandwidth capacity supported by the
system. This seems to indicate bus bandwidth does not
limit the scalability of our workloads on an 8-core
system. However, the scalability is limited by the
instantaneous bandwidth usage for some workloads,
such as Gabor. We perform interval sampling of the
memory subsystem behavior over time. Figure 10 shows
a representative phase of the bandwidth usage over time
for this workload on eight cores. Several modules in this
workload have higher bandwidth requirements than the
saturated bandwidth provided by the system.

0

0.5

1

1.5

2

2.5

3

1T 2T 4T 8T

Correlogram MRSAR
Gabor ShapeContext
SIFT OpticalFlow

Figure 9: Average FSB bandwidth utilization vs.
number of threads

0

2

4

6

8

10

12

2 10 18 26 34 42 50 58 66 74 82 90 98
Execution time (ms)

Figure 10: Bandwidth usage over time for eight-
threaded Gabor workload

In addition to studying the memory sub-system
performance, we also use different thread-scheduling
mechanisms to further improve their performance on a
multi-core system. As mentioned earlier, there are three
scheduling policies: �clustered,� �non-clustered� and
�os.� The �clustered� policy tries as much as possible to
schedule all the threads to the closely-coupled cores;
e.g., it schedules two threads to two cores residing in
one chip. In contrast, the �non-clustered� policy tries to
schedule the threads to the loosely coupled cores; e.g., it
schedules two threads to two cores on two chips instead
of one chip. The �os� is the default scheduling policy of
the operating system, and it is non-aware of the
hardware architecture.

Our results show that some workloads are sensitive to
the scheduling policy. Figure 11 shows the scaling
performance of Gabor and SIFT using different
scheduling policies on an 8-core system. Gabor has
better performance with the �non-clustered� policy,
while SIFT has better performance with the �clustered�
policy. This is because Gabor has a higher bandwidth
requirement as shown in Figure 9. The �non-clustered�
policy can make full use of the available L2 cache
capacity and bandwidth, resulting in better cache
performance as depicted in Figure 12. SIFT has better
performance with the �clustered� policy because the
data can reside in the same L2 cache all the while
between several consecutive parallel regions. Otherwise,
the data generated by one thread have to be transferred
to another core that does not reside in the same L2
cache, yielding significant cache coherency traffic and
slowing down the program. As shown in Figure 12, the
�clustered� policy in SIFT has far fewer L2 cache
misses and a lower FSB bandwidth utilization compared
to the �non-clustered� policy. Hence, all the
experimental results in the previous sections are
obtained by choosing the best policy for each individual
workload.

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 358

1

1.5

2

2.5

3

3.5

4

2T 4T 2T 4T

Gabor SIFT

non-clustered clustered os

Figure 11: Effects of thread scheduling for two
feature extraction workloads on an 8-core system

0%
1%
2%
3%
4%

5%
6%
7%
8%

2T 4T 2T 4T 2T 4T 2T 4T

Gabor SIFT Gabor SIFT

L2 miss rate FSB utilization rate

clustered non-clustered

Figure 12: Effects of thread scheduling on L2 miss
rate and FSB utilization rate for two feature

extraction workloads on an 8-core system

CONCLUSION
CBVIR is becoming one of the best solutions to retrieve
useful information from today�s massive amount of
video data. To accelerate CBVIR on multi-core systems,
we optimize and parallelize a set of representative visual
feature extraction workloads in CBVIR. We analyze
their scalability and memory performance on an 8-core
system and draw several conclusions.

Firstly, we choose appropriate parallel schemes for the
applications in CBVIR. Exploring different levels of
parallelism and choosing the most favorable are
necessary to enable optimal performance on multi-core
systems. Secondly, we incrementally optimize the
parallel performance by mitigating the parallel
performance limiting factors, e.g., load imbalance
removal, designing cache-friendly data structures, using
different thread-scheduling policies, etc. Thirdly, we
find most of the CBVIR applications have very good
scaling performance. The main scalability limiting
factors for SIFT and Gabor are load imbalance and the
amount of available system bandwidth. Finally, the
CBVIR system is significantly accelerated on multi-core
systems and offers enhanced performance to satisfy user
requirements.

ACKNOWLEDGMENTS
We acknowledge the encouragement and help that we
received from Dr. Bob Liang, Director of the
Applications Research Lab. Our thanks go to Prof.
Jianming Li and Prof. Bo Zhang from Tsinghua
University for collaborating with us on the TRECVID
evaluation and for providing some original source code
for our analysis. We also acknowledge Qi Zhang for his
contribution to this work during his internship with Intel.
We also thank the reviewers for their valuable
comments.

REFERENCES
[1] Michael L., Nicu, S., Chabane, D., and Jain, R.,

�Content-based Multimedia Information Retrieval:
State of the Art and Challenges,� ACM Trans. on
Multimedia Computing, Communications, and
Applications, 2006, pp. 1�19.

[2] MPEG-7 Overview, ISO/IEC/JTC1/SC29/WG11,
N6828, 2004.

[3] Zhang, Q., Chen, Y., Li, J., and Zhang, Y.,
�Parallelization and performance analysis of video
feature extractions on multi-core based systems,� in
Proceedings of the 36th International Conference on
Parallel Processing, 2007.

[4] Yoshitaka, A. and Ichikawa, T., �A survey on
content-based retrieval for multimedia databases,�
IEEE Trans. On Knowledge and Data Engineering,
11(1), 1999, pp. 81�93.

[5] Smeaton, A. F., Over, P. and Kraaij, W.,
�Evaluation campaigns and TRECVid,� in
Proceedings of the 8th ACM International
Workshop on Multimedia Information Retrieval
(MIR'06), pp. 321�330, 2006.

[6] Ma, W-Y, and Zhang, H-J, �Benchmarking of image
features for content-based retrieval,� IEEE
Conference on Signals, Systems & Computers, 1998.

[7] Manjunath, B. S., Ohm, J.-R., Vasudevan, V., and
Yamada, A., �Color and texture descriptors,� IEEE
Trans on Circuits and Systems for Video
Technology, 11(6), pp. 703�715, 2001.

[8] Huang, J., Kumar, S. R., Mitra, M., Zhu, W.J., and
Zabih, R., �Spatial Color Indexing and
Applications,� International Journal of Computer
Vision, 35(3), pp. 245�268, 1999.

[9] Lee, T. S., �Image representation using 2D Gabor
wavelets, IEEE Trans. PAMI, 18(10), pp. 959�971,
1996.

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 359

[10] Manjunath, B. S., and Ma, W-Y, �Texture features
for browsing and retrieval of image data,� IEEE
Trans. PAMI, 18 (8), pp. 837�842, 1996.

[11] Belongie, S., Malik, J., and Puzicha, J., �Shape
Matching and Object Recognition Using Shape
Contexts,� IEEE Trans. PAMI, 24(4), pp. 509�522,
2002.

[12] Mikolajczyk, K. and Schmid, C., �A performance
evaluation of local descriptors,� IEEE Trans. PAMI,
27(10), pp. 1615�1630, 2005.

[13] Lowe, D. G., �Distinctive Image Features from
Scale-Invariant Keypoints,� International Journal of
Computer Vision, 60(2), pp. 91�110, 2004.

[14] Lucas B. and Kanade T., �An iterative image
registration technique with an application to stereo
vision,� in Proceedings of Imaging understanding
workshop, 1981.

[15] Mao, J. and Jain, A.K., �Texture classification and
segmentation using multi-resolution simultaneous
autoregressive models,� Pattern Recognition, 25(2),
pp. 173�188, 1992.

[16] �Intel® Integrated Performance Primitives,� at
http://www.intel.com/software/products/IPP

[17] �Intel® Math Kernel Library,� at
http://www.intel.com/software/products/MKL

[18] �Intel® Threading Analysis Tools,� at
http://www.intel.com/software/products/Threading

[19] �Intel VTune� Performance Analyzer,� at
http://www.intel.com/software/products/VTune

[20] �NIST, TREC Video Retrieval Evaluation,� at
http://www-nlpir.nist.gov/projects/trecvid/

AUTHORS� BIOGRAPHIES
Yurong Chen is a researcher at the Microprocessor
Technology Lab, Beijing. Currently, he conducts
research on parallel processing of emerging applications,
scalable workloads, benchmarking, and performance
analysis for next-generation microprocessors/platforms.
He joined Intel in 2004. Before that he did two years�
postdoctoral research on large-scale scientific
computing in the Institute of Software, Chinese
Academy of Sciences. He received his Ph.D. degree
from Tsinghua University in 2002. His e-mail is
yurong.chen at intel.com.

Eric Li is a researcher in the Microprocessor
Technology Lab, Beijing. Currently, he is working on
media-mining technology development and performance
analysis on multi-core architecture. Prior to this, he was

involved in several projects related to bioinformatics,
multimedia, and parallel computing. He received his
M.S. degree from Tsinghua University in 2002 and
joined Intel that same year. His e-mail is eric.q.li at
intel.com.

Jianguo Li is a researcher in the Microprocessor
Technology Lab, Beijing. Currently, he works on
multimedia mining and parallel algorithm design and
implementation. He has been involved in several
projects related to sports video analysis and content-
based media mining. He received his Ph.D. degree from
Tsinghua University in June 2006 and joined Intel after
graduation. His e-mail is jianguo.li at intel.com.

Yimin Zhang is a researcher in the Microprocessor
Technology Lab, Beijing. He leads a team of
researchers working on various statistical computing
techniques and their scalability analysis, recently
focusing on media mining, data mining, etc. He joined
Intel in 2000. At Intel, he has been involved in several
projects related to natural language processing and
speech recognition, especially focusing on Chinese-
named entity extraction and DBN-based speech
recognition. He received his B.A. degree from Fudan
University in 1993, his M.S. degree from Shanghai
Maritime University in 1996, and his Ph.D. degree from
Shanghai Jiao Tong University in 1999, all in Computer
Science. His e-mail is yimin.zhang at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The
Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other
countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the
property of others.

Intel Technology Journal, Volume 11, Issue 4, 2007

Accelerating Video Feature Extractions in CBVIR on Multi-core Systems 360

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and
used by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Process Scheduling Challenges in the Era of Multi-core Processors 361

Process Scheduling Challenges in the Era of Multi-core
Processors

Suresh Siddha, Software Solutions Group, Intel Corporation
Venkatesh Pallipadi, Software Solutions Group, Intel Corporation

 Asit Mallick, Software Solutions Group, Intel Corporation

Index words: multi-core, chip multi-processors, process scheduling, power management

ABSTRACT
In this era of computing, each processor package has
multiple execution cores. Each of these execution cores is
perceived as a discrete logical processor by the software.
Any operating system that is optimized for Symmetric
Multi Processing (SMP) and that scales well with the
increase in processor count can instantaneously benefit
from these multiple execution cores.

Design innovations in multi-core processor architectures
bring new optimization opportunities and challenges for
the system software. Addressing these challenges will
further enhance system performance. The process (task)
scheduler, in particular, one of the critical components of
system software, is garnering great interest.

In this paper, we look at how the different multi-core
topologies and the associated processor power
management technologies bring new optimization
opportunities to the process scheduler. We look into
different scheduling mechanisms and the associated
tradeoffs. Using the Linux* Operating System as an
example, we also look into how some of these scheduling
mechanisms are currently implemented.

As the multi-core platform is evolving, some portions of
the hardware and software are being reshaped to take
maximum advantage of the platform resources. We close
this paper with a look at where future efforts in this
technology are heading.

INTRODUCTION
In multi-core processor packages, each processor package
contains two or more execution cores, with each core
having its own resources (registers, execution units, some
or all levels of caches, etc.). Even if the applications are
not multi-threaded, multi-tasking environments will
benefit from multi-core processors.

Design innovations of multi-core processor architectures
mainly span the area of shared resources (caches, power
management, etc.) between cores, core topologies
(number of cores in a package, relationship between them,
etc.), and platform topology (relation between cores in
different packages, etc.). These innovations bring new
opportunities and challenges to the system software. To
exploit optimal performance, components such as the
process scheduler need to be aware of the multi-core
topologies and the task characteristics.

We start with a brief look at how the traditional process
scheduler works and how the earlier challenges in the
Symmetric Multi Processing (SMP), Non Uniform
Memory Access (NUMA), and Simultaneous Multi-
Threading (SMT) environments were addressed. We look
at multi-core topologies with respect to core, cache, power
management, and platform topologies. In the current
generation of mainstream multi-core processors, the
execution cores in a given processor package are
symmetric and our focus in this paper is on such
processors. Asymmetric multi-core processors are beyond
the scope of this paper. We examine the need for a multi-
core-aware process scheduler and look into the
opportunities in this area. We examine different
scheduling mechanisms for multi-core platforms under
different load scenarios and the associated tradeoffs. With
Linux as an example, we examine how some of these
scheduling mechanisms are currently implemented.
Finally, we close this paper with a look at current and
future research in this field.

PROCESS SCHEDULER
The process scheduler, which is a critical piece of the
operating system software, manages the CPU resource
allocation to tasks. The process scheduler typically strives

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 362

Figure 1: Process scheduling domain topology setup in the Linux kernel

for maximizing system throughput, minimizing response
time, and ensuring fairness among the running tasks in the
system.

Process priority determines the allotted time (time-slice)
on a CPU and when to run on a CPU. In SMP, the process
scheduler is also responsible for distributing the process
load to different CPUs in the system.

In NUMA platforms, memory access time is not uniform
across all the CPUs in the system and depends on the
memory location relative to a processor. System software
tries to minimize the access times, by allocating the
process memory on the node that is closest to the CPU
that the process is running on. As such, the cost associated
with the process migration from one NUMA node to
another is big. As a result, the process scheduler needs to
be aware of NUMA topology. NUMA schedulers use
some heuristics (such as tolerating more load imbalances
between nodes and tracking the home node of each
process, where the majority of process memory resides) to
minimize the migrations and costs associated with the
migrations.

In SMT (for example, Intel® Hyper Threading
Technology), most of the core execution resources are
shared by more than one logical processor. The process
scheduler needs to be aware of the SMT topology and
avoid situations where more than one thread sibling on
one core is busy, while all the thread siblings on another
core are completely idle. This will minimize the resource
contention, maximize the utilization of CPU resources,
and thus maximize system throughput. As the logical
thread siblings are very close to each other, process
migration between them is very cheap and as such,
process load balancing between them can be done very
often.

The process scheduler needs to consider all these
topological differences while balancing process loads
across different CPUs in the system. For example, the 2.6
Linux kernel process scheduler introduced a concept
called scheduling domains [8] to incorporate the platform
topology information into the process scheduler. The
hierarchical scheduler domains are constructed
dynamically depending on the CPU platform topology in
the system. Each scheduler domain contains a list of
scheduler groups having a common property. The load
balancer runs at each domain level, and domain properties
dictate the balancing that happens between the scheduling
groups in that domain. On a high-end NUMA system with
SMT capable processors, there are three scheduling
domains, one each for SMT, SMP, and NUMA, as shown
in Figure 1.

MULTI-CORE TOPOLOGIES
In most of the multi-core implementations, to make the
best use of the resources and to make inter-core
communication efficient, cores in a physical package
share some of the resources. For example, the Intel®

Core�2 Duo processor has two CPU cores sharing the
Level 2 (L2) cache (Intel® Advanced Smart Cache), as
shown in Figure 2. The Intel® Core�2 Quad processor
has four cores in a physical package with two last-level
(L2) caches. Each of the L2 caches is shared by two cores.
Going forward, as more and more logic gets integrated
into the processor package; more resources will be shared
between the cores on the die.

If only one of the cores in the package is active, a thread
running on that core gets to use all the shared resources,
resulting in maximum resource utilization and peak
performance for that single thread. If multiple threads or

Socket 0 Socket 1

 NUMA Node 0

System
NUMA Domain

SMP Domains

HT Domains
Socket 1 Socket 0

NUMA Node 1

Domain Group CPU

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 363

processes run on different cores of the same physical
package and if they share data that fit in the cache, then
the shared last-level cache between cores will minimize
the data duplication. This sharing, therefore, results in
more efficient inter-thread communication.

Multi-core Power Management
In typical multi-core configurations, all cores in one
physical package reside in the same power domain
(voltage and frequency). As a result, the processor
performance state (P-state) transitions for all the cores
need to happen at the same time. If one core is busy
running a task at P0, this coordination will ensure that
other cores in that package can't enter low-power P-states,
resulting in the complete package at the highest power P0
state for optimal performance.

Figure 2: Dual-core package with shared resources

Since each execution core operates independently, each
core block can independently enter a processor power
state (C-state). For example, one core can enter lower
power C1 or C2 while the other executes code in the
active power state C0. The common block will always
reside in the numerically lowest (highest power) C-state of
all the cores. For example, if one core is in C2 and another
core is in C0, the shared block will reside in C0.

Intel Dynamic Acceleration Technology
Intel® Dynamic Acceleration Technology [7], available in
the current Intel Core 2 processor family, increases the
performance of single-threaded applications. If one core is
in deep C-state, some of the power normally available to
that idle core can be applied to the active core while still
staying within the thermal design power specification for
the processor. This increases the speed at which a single-
threaded application can be executed, thereby improving
the performance of the application.

MULTI-CORE SCHEDULING
Shared resource topologies in multi-core platforms pose
interesting challenges and opportunities to the system
software. Shared resources between cores like shared
cache hierarchy, provide good resource utilization and

make inter-core communication efficient. However,
heterogeneous data access patterns of memory-intensive
tasks running on the cores sharing caches can lead to
cache contention and sub-optimal performance.
Contention and its impact on performance depend on the
resources shared, the number of active tasks, and the
access patterns of the individual tasks. A fair amount of
CPU time allocated to each task by the process scheduler
will not essentially translate into efficient and fair usage of
the shared resources. The main challenge before the
process scheduler is to identify and predict the resource
needs of each task and schedule them in a fashion that will
minimize shared resource contention, maximize shared
resource utilization, and exploit the advantage of shared
resources between cores. To achieve this, the process
scheduler needs to be aware of multi-core, shared resource
topology, resource requirements of tasks, and the inter-
relationships between the tasks.

In the following sections, we describe some of the multi-
core scheduling mechanisms; challenges in exploiting
optimal performance, and power savings in the SMP
platform. We analyze the impact of Intel Dynamic
Acceleration Technology and processor power
management technologies on these scheduling
mechanisms. We also look into some of the heuristics that
today�s system software can exploit to minimize the
shared resource contention among the cores sharing
resources.

Experimental Setup
For our experiments and analysis, we primarily considered
a dual-package SMP platform, with each package having
two cores sharing a 4MB last-level cache. Different
workloads such as SPECjbb2000, SPECjbb2005,
SPECfp_rate of CPU2000, and an in-memory database
search (IMDS) are considered for our analysis. These
workloads are widely known except for the IMDS one.
The IMDS workload is a non-standard workload
simulating CPU and memory behavior of a typical
database search algorithm. This workload is considered
because of its high cycles per instruction (CPI)
characteristic when compared to the other workloads used
in our experiments. Run to run variations of these
workloads are within 1%. Each of these workloads was
run three times and the middle number was used for the
performance comparisons.

Some of these workloads (SPECjbb2000, IMDS, for
example) spawn threads sharing a process address space
and some (like SPECfp_rate) spawn different processes,
each having its own address space. Platform under test is
run at 3GHz processor frequency unless otherwise stated
and doesn�t support Intel Dynamic Acceleration
Technology.

Core-0

PPrroocceessssoorr PPaacckkaaggee

Shared Resources

Core-1

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 364

Scheduling on Cores Sharing Resources vs.
Not Sharing
In this workload scenario, all the considered workloads
were run in a 2-task configuration. For example, the
SPECjbb workload was run in two warehouse
configurations (where each warehouse is represented by a
user-level thread), and the SPECfp rate was run in the
base configuration with two users (where each user is
represented by an individual process). Similarly, the
IMDS workload used two threads (belonging to the same
process) to process the database queries.

Table 1: Performance difference between scheduling
two tasks running on two cores using different last-

level cache vs. scheduling on cores sharing same last-
level cache. The higher % means that scheduling on

cores with different caches is better.

Workloads

% Performance improvement
with scheduling on different
last-level caches when
compared to scheduling on
same last-level caches

SPECjbb2005 13.22
SPECjbb2000 5.19
SPECfp_rate
(base2000) 16
IMDS 1

With two running threads on a dual-core, dual-package
SMP platform, the main choices before the process
scheduler are to schedule the two running threads on the
cores in the different (Option 1) or same (Option 2)
packages. Option 1 will result in maximum resource
utilization, and as the other core in each package is idle,
there is no shared resource contention. Option 2 will result
in one busy package (with both the cores busy running the
tasks), and the other package being completely idle. While
this is not the best solution from the resource utilization
and shared resource contention (tasks running in one
package may contend for shared resources between cores)
perspective, this mechanism will take advantage of the
data sharing between tasks, if any.

Table 1 shows the results of different workloads with
different scheduling mechanisms on a dual-core, dual-
package SMP platform. As shown in the table, all the
workloads benefited from distributing the load to two
different packages. This indicates that the considered
workloads take advantage of the increased available cache
and the shared resource (primarily last-level cache)
contention is playing a significant role when both the tasks
run on the same package. Moreover, the contention is
present whether the running tasks belong to the same
process (where there is some data sharing, for example,

SPECjbb) or different processes (for example,
SPECfp_rate of cpu2000). Among the workloads, the
IMDS workload in fact performs almost the same,
irrespective of the threads running on cores sharing the
same or different packages. This is primarily because the
workload doesn�t exhibit good locality of memory
references and as such doesn�t get affected much by
sharing the last-level cache between two threads.

Last-level Cache Size Influence on Shared Resource
Contentions
Hardware designers and researchers are looking into
different options (like optimum size, layout of shared
resources, design and management of these shared
resources) and solutions for maximizing resource
utilization and at the same time minimizing the resource
contention. Moore's law [6] is dictating the cache size
increase on Intel® platforms from generation to
generation. The current x86 generation of 65nm
processors features up to 4MB of L2 cache in the dual-
core version and up to 8MB in the quad-core version, and
the leading-edge 45nm generation [1] of x86 processors
sports up to 6MB of L2 cache in the dual-core version and
up to 12MB in the quad-core version. The degree of cache
associativity is increasing with the increase in cache size,
leading to hit rate improvement and better utilization.

Figure 3 shows the impact of the last-level cache size on
the process scheduling mechanisms for the workloads we
considered in Table 1. While the platforms considered for
this experiment are quite different from each other
(different characteristics and properties), each of the
platforms under test is configured to work as dual-core,
dual-package platforms. Each of these platforms has a
different last-level cache size shared by two cores that
reside in the processor package.

The data in Figure 3 show that for the given task load (two
tasks in our experiments), as the shared resources among
the cores increases, one can expect that the amount of
shared resource contention will decrease accordingly. For
example, SPECfp_rate of CPU2000 was performing the
same whether the two tasks were running in the same
package or in different packages with 16MB of last-level
cache. The impact of last-level cache size is fairly
negligible for the two threaded IMDS workloads. As
noticed before, this is primarily because of the poor
locality of memory references.

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 365

0
2
4
6
8

10
12
14
16
18

4MB 6MB 16MB

Last level cache size
SPECjbb2005 SPECjbb2000
CFP2000 IMDS

Figure 3: Impact of last-level cache size on the
performance differences between scenarios doing

scheduling on cores using same vs. different last-level
cache. The smaller number indicates less resource

contention in the scenarios when tasks run on cores
sharing last-level cache.

Influence of Intel Dynamic Acceleration Technology
Intel Dynamic Acceleration Technology is currently
available in Intel Core 2 Duo mobile processors. Let us
look into the influence of this technology on process
scheduling, if this support is available in the future for the
server platforms supporting multiple processor packages.

Using the Linux kernel CPUfreq subsystem, we simulated
the concept of Intel Dynamic Acceleration Technology in
today�s mainstream dual-package platform based on Intel
Core 2 Duo processors. With the help of CPUfreq
subsystem, the processor frequency can be changed to a
specific value that the processor supports. Using this
infrastructure, 3GHz-capable processors were run at
2.66GHz (a bin down) in the mode when the process
scheduler schedules the two running tasks on two cores
belonging to the same package. In the mode when the
scheduler selects two different packages for running the
two tasks, processors were run at 3GHz (as Intel Dynamic
Acceleration Technology will enhance the speed of the
active core, while one or more cores in the same package
are idle). Figure 4 shows the performance numbers, which
include the effects of running on different caches and at
improved processor speeds as a result of dynamic
acceleration.

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3

A B C

Scheduling scenarios
SPECjbb2005 SPECjbb2000
CFP2000 IMDS

Figure 4: Performance difference between running
two tasks on a) cores running at 2.66GHz, sharing
last-level cache vs. b) cores running at 2.66GHz,

different last-level cache vs. c) cores running at 3GHz,
different last-level cache

Figure 4 shows that the dynamic acceleration favors the
scheduling policy of distributing the load among the
available processor packages for optimal performance. In
the presence of dynamic acceleration, IMDS workloads
also benefited when the two IMDS threads were run on
different packages.

Scheduling for Optimal Power Savings
Consider the same dual-package experimental system that
we looked at before. If we have two runnable tasks, as
observed in the previous sub sections, resource contention
will be minimized when these two tasks are scheduled on
different packages. But, because of the P-state
coordination in the current generation of multi-core
platforms, we are restricting other idle cores in both
packages to run at higher power P-state
(voltage/frequency pair). Similarly, the shared block in
both packages will reside in higher power C0 state
(because of one busy core). This will result in a non-
optimal solution from a power-savings perspective.
Instead, if the scheduler picks the same package for both
tasks, other packages with all cores being idle, will
transition into the lowest-power P and C-state, resulting in
more power savings. For optimal power savings, the
number of physical packages carrying the load needs to be
minimized. But as the cores share resources (like last-level
cache) as seen in previous sections, scheduling both tasks

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 366

to the same package may or may not lead to optimal
behavior from a performance perspective.

Task Group Scheduling
In the workload scenario where all the shared resources
and packages are busy, the main challenge for the process
scheduler is to schedule the tasks in such a way that will
minimize the shared resource contention and take
maximum advantage of the shared resources between
cores.

If all the running tasks are resource intensive, the
challenge before the process scheduler is to identify the
tasks that share data and schedule them on the cores
sharing the last-level cache. This will help minimize the
shared resource contentions and shared data duplication.
This will also result in efficient data communication
between the tasks that share data. The system software has
some inherent knowledge about data sharing between
tasks. For example, threads belonging to a process share
the same address space and as such share everything (text,
data, heap, etc.). Similarly, processes attached to the same
shared memory segment will share the data in that
segment. The process scheduler can do optimizations such
as grouping threads belonging to a process or grouping
processes attached to the same shared memory segment
and co-schedule them in the cores sharing the package
resources. To highlight the group-scheduling potential, we
ran two instances of the SPECjbb workload, with each
instance having two warehouses (each warehouse
represented by a thread) on the dual-core, dual-package
platform, considered before. Table 2 shows that grouping
the threads belonging to a process onto the same package
takes advantage of shared resources between cores and
helps minimize the shared resource contentions.

Table 2: Performance improvement seen when threads
belonging to a process scheduled to two cores residing
on same package when compared to scheduling them
on different packages. Workload considered is with
two instances of SPECjbb in a two warehouse (two

processes with two threads each) configuration.

Workloads % Throughput improvement

SPECjbb2005 10
SPECjbb2000 7.5

Scheduling Challenges
For exploiting optimal performance, the process scheduler
needs to schedule tasks in such a way that all the platform
resources are used effectively. And this effective
mechanism varies with workload, processor, platform
topology, and system load.

Some workloads will exploit optimal benefit when the
tasks are scheduled on the cores that share resources. For
example, the IMDS workload performed the same,
whether the tasks were run on cores sharing resources or
not. For such workloads, in the presence of idle packages,
by scheduling the tasks on the cores residing in a package,
optimal performance and power-savings will be achieved.
Similarly, workloads that share data and take maximum
advantage of the shared resources between cores will
achieve optimal performance when run on cores that are
closer. For example, if the data shared between the tasks
are modified and exchanged often or if one executing task
prefetches data for the other task, optimal performance
will be achieved when the tasks are scheduled closer to
each other.

For some workloads, even in the presence of data sharing,
distributing the load among the available idle packages
will lead to optimal performance. This distribution will
lead to shared data duplication in the caches of the
packages carrying the load. If the shared data are mostly
read-only, this data duplication still may be better than
leaving the shared resources idle. In this scenario, tasks
can take advantage of the increased shared resources
(caches in our considered setup) that are available and can
cache more shared data and/or task private data.

The presence of technologies, like dynamic acceleration,
influence the process scheduling mechanisms for some
workloads in the presence of idle cores and packages. As
seen in Figure 4, when the load is uniformly distributed
among the available packages, the resulting core speed
increases, resulting from dynamic acceleration, helped
achieve optimal performance. For some workloads, even
in the presence of dynamic acceleration, running on the
cores sharing caches may give optimal performance.

In future, as more cores are integrated into the processor
package, the available shared resources will also increase
accordingly. As such, the amount of shared resource
contention will be minimal when few of the available
cores in the package are busy (similar to what we see in
Figure 3). The challenge for the process scheduler is to
track the shared resource usages and the associated
contentions. In such a scenario, the scheduler can
minimize the processor packages carrying load, and when
there is a contention for the shared resources, the
scheduler can distribute the load to minimize resource
contentions. To address the challenge, the process
scheduler needs to track the micro-architectural
information like the task�s cycles per instruction (CPI) and
how the task�s CPI is affected by the co-running tasks in
the other cores sharing resources. An individual task�s CPI
will also help the process scheduler in making decisions
such as which tasks benefit most from the increased core
speed that the dynamic acceleration technology brings in.

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 367

In a scenario where all the shared resources and packages
are busy, the process scheduler needs to minimize the
resource contention for exploiting optimal performance.
For example, grouping CPU-intensive and memory-
intensive tasks onto the cores sharing the same last-level
cache will result in minimized cache contention. Task
characteristics and behavior can be predicted using the
micro-architectural history of a task by using performance
counters. In the absence of such micro-architectural
information, the system software can also use some
heuristics to estimate the resource requirements. For
example, one can use the number of physical pages that
are accessed (using the Accessed bit in the page tables that
manage virtual to physical address translation in x86
architecture) for certain intervals or use the tasks memory
Resident Set Size (RSS). The process scheduler can use
this information and group schedule tasks on the cores
residing in a physical package with the goal of minimizing
shared resource contention.

MULTI-CORE AWARE LINUX* PROCESS
SCHEDULER
In this section, we consider the Linux operating system as
an example and see how some of these scheduling
challenges are addressed. A new scheduler domain
representing multi-core characteristics has been added to
the domain hierarchy of the Linux process scheduler. This
scheduler domain helps identify cores sharing the same
package and sharing resources, and it paves the way for
the multi-core scheduler enhancements.

Figure 5: Scheduling mechanism showing four running
tasks scheduled on four L2s on a dual package with

Intel Core 2 Quad processors

By default, the current Linux kernel scheduler distributes
the running tasks equally among the available last-level
caches in an SMP domain. Within logical CPUs that share
the last-level cache, the scheduler distributes the load
equally, first among the available CPU cores and then

among the available logical thread siblings. For example,
consider a dual package SMP platform with Intel Core 2
quad processors with four running tasks. The multi-core-
aware Linux process scheduler distributes these four
running tasks among the four L2�s that are available in the
system as shown in Figure 5. This scheduling mechanism
will lead to maximized resource utilization and minimized
resource contention. And as observed in the previous
sections, this will lead to optimal performance for most of
the workloads. On platforms with dynamic acceleration
technology, this mechanism will also result in optimal
performance by making the cores run faster.

Figure 6: Scheduling mechanism showing four running
tasks scheduled on four cores in one single package on

a dual package with Intel Core 2 Quad processors

For optimal power savings or for workloads that benefit
most by running the tasks on the cores sharing resources,
the Linux kernel provides a tunable that can be set by an
administrator. When this tunable is set, the process
scheduler will try to minimize the packages in an SMP
domain that carry the load. It will first try to load all the
logical threads and cores in the package before
distributing the load to another package. This policy is
referred to as a power-savings policy. For example,
consider the same four-task scenario on a dual package
SMP platform with Intel Core 2 Quad processors. With
the power-savings tunable set, all the four tasks will be run
on the four cores residing in a single package as shown in
Figure 6. Minimizing the number of packages that are
active will lead to optimal power savings. As seen before,
in the absence of dynamic acceleration support, this
scheduling mechanism will not have any impact on
performance for workloads such as the IMDS workload
considered in Table 1.

Scheduling policy decisions are left to the administrator in
the hope that the target workloads will be analyzed offline
and the tunable will be set based on optimal performance
and/or power-savings requirements. By default, the

Non Idle Idle

PPaacckkaaggee -- 11

1 2

L2

3 4

L2

PPaacckkaaggee -- 22

1 2

L2

3 4

L2

Non Idle Idle

PPaacckkaaggee -- 11

1 2

L2

3 4

L2

PPaacckkaaggee -- 22

1 2

L2

3 4

L2

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 368

process scheduler takes a non-aggressive approach when
distributing the load among the available shared resources.

RESEARCH WORK
Quite a bit of recent research in the process scheduler area
is to do with trying to address multi-core scheduling
challenges. For example, Micro Architectural Scheduling
Assist [2] talks about tracking the shared resource usage
with performance-monitoring counters and using this
information for effective distribution of shared resource
load. Another body of work in this area is the cache-fair
algorithm [4] that tries to address the application
performance variability that depends on the other co-
scheduled threads in the same multi-core package. This
algorithm uses an analytical model to estimate the L2
cache miss rate a thread would have if the cache were
shared equally among all the threads, i.e., the fair miss
rate. The algorithm then adjusts the thread�s share of CPU
cycles in proportion to its deviation from its fair miss rate.
This algorithm showed a reduction of the effect of the
schedule-dependent miss rate variability on the thread�s
runtime. The L2-conscious scheduling algorithm [5]
separates all runnable threads into groups, such that the
combined working set of each group fits in the cache. By
scheduling a group at a time and making sure that the
working set of each scheduled group fits in the cache, this
algorithm reduces the cache miss ratios.

While the research shows promising results, it is far from
being implementation ready and from inclusion in
commercial operating systems. The main challenges of
these algorithms include the dependency of the
performance-monitoring counters (which are not designed
primarily for process scheduling and which vary from
processor generation to processor generation), the
different algorithm phases (data collection phase and
usage phase), applicability of mathematical models to
wide heterogeneous workloads, and above all,
incorporating this knowledge into the traditional process
scheduler that works across wide multi-core topologies
and platforms. One of the current focus areas is to turn
this research into reality.

Most of the software algorithms exploit the differences in
the individual task characteristics and their resource
usages. Scenarios such as those in which all the tasks in
the system have similar characteristics and resource
requirements cannot be addressed by software alone with
the current generation of multi-core hardware. CQoS [3]
presents a new cache management framework for
improving shared cache efficiency and improving system
performance. It proposes options for priority
classification, priority assignment, and priority
enforcement to heterogeneous memory access streams.
Hardware solutions like these help maximize resource

utilization and minimize the impact on performance in the
presence of shared resource contention.

As more logic gets integrated into the processor die, future
work in this area will focus on the increasing shared
resources between cores on the die and their interactions
with the system software; the process scheduler in
particular. In the area of multi-core processor power
management, one of the areas that is making rapid
progress is the reduction of idle processor power. In future
platforms, as the power consumed by idle cores decreases
and becomes independent of the busy cores in the
packages, scheduling mechanisms for power savings need
to be revisited.

CONCLUSION
In this paper, we showed that optimal performance can be
exploited by making the process scheduler aware of the
multi-core topologies and the task characteristics. Multi-
core scheduling mechanisms and challenges are analyzed
in an SMP environment. We looked at the impact of Intel
Dynamic Acceleration Technology on these workload
scenarios. Some of the group-scheduling heuristics that
can enhance optimal performance are presented. We
looked at how some of these multi-core scheduling
mechanisms are implemented in the Linux operating
system.

In future, one can expect the process scheduler to be
micro-architectural aware for exploiting optimal
performance. Similarly, one can expect that the research
proposals and solutions in this area will drive future
hardware and platform designs that will minimize the
effects of shared resource contention and also assist the
software in making and enforcing the right decisions.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback.
We thank David Levinthal for his mentoring support.

REFERENCES
[1] �Introducing the 45nm Next-Generation Intel® Core�

Microarchitecture,� at
http://www.intel.com/technology/architecture-
silicon/intel64/45nm-core2_whitepaper.pdf

[2] Nakajima, Jun and Pallipadi, Venkatesh,
�Enhancements for Hyper-Threading Technology in
the Operating System�Seeking the Optimal
Scheduling,� Workshop on Industrial Experiences
with Systems Software, Boston, MA, Dec. 2002.

[3] R. Iyer, �CQoS: A Framework for Enabling QoS in
Shared Caches of CMP Platforms,� 18th International

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 369

Conference on Supercomputing (ICS), San Malo,
France, June 2004.

[4] Alexandra Fedorova, Margo Seltzer, Christopher
Small and Daniel Nussbaum, �Performance Of
Multithreaded Chip Multiprocessors and Implications
For OS Design,� in Proceedings of the USENIX 2005
Annual Technical Conference, Anaheim, CA, April
2005.

[5] Alexandra Fedorova, �Improving Performance
Isolation on Chip Multiprocessors via an OS
Scheduler,� at
http://www.eecs.harvard.edu/~fedorova/papers/fairsched.pdf

[6] �Moore�s Law,� at
http://www.intel.com/technology/mooreslaw/index.htm

[7] �Intel® Centrino® Duo Processor Technology,� at
http://www.intel.com/products/centrino/duo/description.htm

[8] �Scheduling Domains,� at
http://lwn.net/Articles/80911/

AUTHORS� BIOGRAPHIES
Suresh Siddha is a Senior Staff Software Engineer in
Intel's Open Source Technology Center. Suresh joined
Intel in 2001 and works on enabling various Intel
processor and platform features in the Linux kernel. His
current focus is on multi-core technologies, the process
scheduler, and system software scalability. His e-mail
address is suresh.b.siddha at intel.com.

Venkatesh Pallipadi is a Senior Staff Software Engineer
in Intel�s Open Source Technology Center. He joined Intel
in 2001 and works on enabling various core features in the
Linux kernel across all Intel architectures. His current
focus is on processor and platform power management.
Prior to joining Intel, Venkatesh received his ME degree
in Computer Science and Engineering from the Indian
Institute of Science in Bangalore, India. His e-mail is
venkatesh.pallipadi at intel.com.

Asit Mallick is a Senior Principal Engineer leading the
system software architecture in the Intel Open Source
Technology Center. He joined Intel in 1992 and has
worked on the development and porting of numerous
operating systems to Intel architecture. Prior to joining
Intel, he worked in Wipro Infotech, India on the
development of networking software. Asit earned his
Masters degree in Engineering from the Indian Institute of
Science, India. His e-mail address is asit.k.mallick at
intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

Intel�s trademarks may be used publicly with permission
only from Intel. Fair use of Intel�s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Intel Technology Journal, Volume 11, Issue 4, 2007

Process Scheduling Challenges in the Era of Multi-core Processors 370

THIS PAGE INTENTIONALLY LEFT BLANK

For further information visit:

Copyright 2007 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit:

