

Integration Challenges and Tradeoffs for Tera-scale Architectures 173

Integration Challenges and Tradeoffs for Tera-scale
Architectures

Mani Azimi, Corporate Technology Group, Intel Corporation
Naveen Cherukuri, Corporate Technology Group, Intel Corporation
D. N. Jayasimha, Corporate Technology Group, Intel Corporation
Akhilesh Kumar, Corporate Technology Group, Intel Corporation

Partha Kundu, Corporate Technology Group, Intel Corporation
Seungjoon Park, Corporate Technology Group, Intel Corporation
Ioannis Schoinas, Corporate Technology Group, Intel Corporation

Aniruddha S. Vaidya, Corporate Technology Group, Intel Corporation

Index words: tiled architecture, on-die interconnect, cache hierarchy, communication protocol

ABSTRACT
Tera-scale processors promise to offer an unprecedented
concentration of computing power and enable novel
usages and applications. The computing power may be
provided by a combination of general-purpose cores and
special-purpose (fixed or programmable) computing
engines. Further, Moore’s law enables the integration of
additional system resources to the processor die.
However, the realization of tera-scale architecture is
challenged by on-die power dissipation, wire delays,
off-chip memory bandwidth, process variations, and
higher failure rates. These challenges create opportunities
for architectural innovation. One of the ways to address
these challenges is through the use of a “tiled”
architecture: the die is divided into a large number of
identical or close-to-identical, tiles that are interconnected
using a scalable and energy-efficient interconnect. This
modular approach enables ease of layout and rapid
integration of different blocks. Limited off-chip memory
bandwidth requires innovations in the cache hierarchy,
memory subsystem, and coherence protocol. We present
an architectural vision for the tera-scale processors and
discuss the performance, scalability, and manufacturability
aspects of the uncore. We articulate key challenges and
point to candidate solutions for these challenges.

INTRODUCTION
Over the last few years, dual-core processors have
become mainstream in desktop, mobile, and server
platforms due to their ability to deliver higher system

performance more efficiently than single-core processors.
The trend towards higher core counts is continuing strong
with quad-core processors establishing an increasing
presence across all market segments.

Industry experience with small-scale shared memory
multiprocessors enabled a relatively effortless integration
of a small number of processors into a single die. Moving
beyond a small number to tens or hundreds of processor
cores at the same time as other platform ingredients such
as memory controllers, I/O bridges, and graphics engines
find their way to the processor die, introduces significant
challenges to the infrastructure that ties all these together.
This infrastructure includes the on-die interconnect, the
cache hierarchy, the memory, the I/O, and system
interfaces. In this paper we use the term uncore to
collectively refer to all the elements in the processor die
that are not computing engines.

The tera-scale architecture uncore must be capable of
satisfying the communication requirements of a large
number of cores, fixed function computing engines, and
the external memory and I/O system. In order to scale
effectively, the uncore must find ways to keep the off-die
bandwidth manageable and within the constraints of
cost, power, and high-speed signaling technology.
The uncore must be able to offer significant flexibility
to assign computing resources to concurrently solve
different problems. It must include mechanisms to enable
high-volume manufacturing by enhancing reliability in
the presence of increasing architectural complexity and

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 174

decreasing silicon geometries. Moreover, it must perform
its functions within a constrained power envelope.

This paper is organized as follows. First, we describe the
architectural vision for tera-scale processors. Second, we
focus on the challenges and opportunities imposed by the
tera-scale architecture in the key uncore elements such as
the on-die interconnect, cache hierarchy, and memory
architecture. We conclude with a summary of the key
challenges, opportunities, and directions outlined in
this paper.

ARCHITECTURAL VISION
The tera-scale architectural vision, as shown in Figure 1,
takes the integration trend to its logical progression by
consolidating not only a large number of general-purpose
computing cores but also special-purpose computing
engines (e.g., texture units, shader units, fixed function
units), and platform elements, such as memory and I/O
controllers, in a single die. A tera-scale processor may
also include a system interface to allow multiple such
processors to connect with each other and with other
system peripherals.

FFU: Fixed Function Unit, Mem C: Memory Controller,
PCI-E C: PCI-based Controller, R: Router, Sys I/F:

System Interface

Figure 1: Tera-scale architecture: high-level block
diagram

The tera-scale architecture uncore consists of the
following key elements:

A scalable high-bandwidth, low-latency, and
power-efficient interconnect to connect the computing
and platform elements together and allow them to

exchange information with each other, access memory,
and communicate with the rest of the system.

A cache hierarchy that allows the multiple computing
elements to effectively utilize and share the on-die
memory resources.

A scalable, high-bandwidth memory architecture
that can effectively feed the large number of
computing elements.

We expect tera-scale processors to be highly optimized
for specific market segments through variations in the
number of computing engines, by having different types
of fixed function blocks, and having a different type and
number of memory and I/O resources. Not all building
blocks require the high bandwidth and low latency
offered by the scalable interconnect. We expect blocks
that are not candidates for integration into the main
interconnect and cache hierarchy to be attached to
auxiliary interconnects suitable for specific needs.

ON-DIE INTERCONNECT

The on-die interconnect is the primary “meeting ground” for
various elements of the tiled architecture in Figure 1. Given its
central nature, there are certain basic requirements for the
on-die interconnect:

Scalability: Given the requirements of a large
number of nodes (agents) on the interconnect
(high tens to low hundreds), we realistically desire
a) a sub-linear growth in average distance with
number of nodes, b) a relatively low per-hop
latency through each switch under no-load
conditions, and c) manageable growth in latency
under loaded conditions.

Partitionability: The topology, with appropriate
routing support, should enable the tera-scale
architecture to be dynamically partitioned to achieve
both performance and fault isolation.

Fault tolerance: The tera-scale architecture with its
tiled structure has the potential for a graceful
degradation under faults. Further, with the expected
impact of variations on process technology, there is a
greater susceptibility to “performance” faults
(discussed in the next section). Hence, the topology,
with appropriate support, should support routing
around faults.

Validation and testing: The interconnect should
provide support for testing and validation, which is
critical for high-volume manufacturing. For example,
an interconnect that uses a deadlock-free routing
approach is easier to test and validate compared to
one using deadlock-recovery based routing.

PCI-E C

Core +
Cache

Core +
Cache

Core +
Cache

Core +
Cache

FFU3

Core +
Cache

Core +
Cache

Core +
Cache

Core +
Cache

Core +
Cache

R

Core +
Cache

Core +
Cache

Core +
Cache

Core +
Cache

FFU3
Core +
Cache

Core +
Cache

FF
U1

FF
U2

MemC

S
y
s

FFU3

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 175

Regularity: In order to make the design of the
tera-scale chip tractable, it is imperative that the
layout, planning, and design of each tile be done in
such a way as to make the tile physically symmetric.
Thus integration may be achieved largely through
abutment of tiles. To that end, each “tile” needs to
plan its global wiring tracks.

Flexibility and design friendliness:

- Designs should facilitate “choppability” so that
with minimal redesign effort, a range of market
segments can be satisfied.

- Furthermore, the basic router design should not
change as the underlying parameter, for example,
as the number of processors, changes with each
process generation.

- The tiled architecture will have different-sized
tiles arising possibly from the need for
heterogeneous cores (e.g., some suited for
throughput and others suited for single-thread
performance), specialized engines, fixed
function units, etc. The on-die interconnect
design needs to incorporate the needs of each by,
for example, clustering multiple low-bandwidth
engines into a single routing agent.

Candidate Topologies

Figure 2: 2D embedding of a 64-node 3D-mesh
network

In off-chip networks, both the number of links (which has
a bearing on the topology) and the link widths are
determined by pin-out limitations. In on-chip networks,
this limitation is absent. The topology choices (apart from
the number of routing agents that need to be supported)
are determined by the wiring density and router
complexity in terms of area and power. The wiring
density is in turn determined by the number of metal
layers available and the directionality constraints
(uniform availability of horizontal and vertical metal
layers), as well as the need for the topology to be
embedded in 2D space. The latter point implies that for
higher (greater than 2D) dimensional networks,
topological adjacency does not lead to spatial adjacency

[14]. This has significant implications both on the wire
delay and on the wiring density. Consider the embedding
of the 3D mesh in Figure 2. For the longest hop, the
topological distance is 9, but three of these hops span
half the length of the die. Hence, the distance in tile span
units is 18!

Considering wiring density, router complexity, and design
friendliness, tera-scale architecture topologies will be
fixed-degree and will have a low dimension (1–2) in the
foreseeable future. Thus, ring and 2D torus/mesh
networks and their many variants [2] will be candidate
topologies.

In the rest of this section, we use the 2D mesh as an
example topology for illustrative purposes only.

Interconnect Microarchitecture
The main challenge in on-die networks is to achieve the
required bandwidth and latency under the constraints of
power and area. While topological choices, as mentioned
above, help with bandwidth scaling and keep latencies
manageable, they come at increasing power costs.

Wang et al. [28] show that the router power is almost 2x
the power of the wires in the MIT-RAW [25] chip.
Further decomposition shows that the power is roughly
spent as much in the switch (crossbar) as in the buffers.

Wang et al. also propose segmented and cut-through
crossbars as possible solutions to reduce crossbar power.
Meanwhile Nicopoulos et al. [21] reduce buffer
power through careful microarchitectural techniques to
minimize the number of buffers required for the same
network throughput.

Kumar et al. [16] observe that certain paths in a 2D mesh
are common for a number of flows (between different
source/destination pairs), and thus traffic traveling on these
trunks could be aggregated and switched together—thus
avoiding the need for packets to stop and be buffered at
intermediate nodes. This in turn saves buffer power and
reduces contention on network resources—the latter
helping to improve the throughput and thus eventually the
energy characteristics of the network.

Traffic Classes
Emerging workloads [10] may see different classes of
traffic overlaid on the on-die network. Taylor et al. [25]
and Gratz et al. [11] use a network fabric to route
operands between different clusters of functional units. It
is conceivable that the different cores of the tera-scale
processor may be used to realize a virtual superscalar
microarchitecture [29], thus necessitating fine-grained
communication of operands and control, in addition to the
cache coherent and message-based communication in the
cache-memory subsystem.

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 176

Furthermore, as media applications become a dominant
consumer of compute capacity on a chip, they will place
hard real-time constraints on different shared resources
such as cache and interconnect. In addition, running
disparate applications on the same multi-core is likely to
result in bandwidth over-subscription by some
applications at the cost of starvation of some others.
Careful rationing of bandwidth while providing latency
guarantees to the necessary applications will require
careful architecture definition and design of the fabric.

Resiliency
The need for fault tolerance arises from both an increased
susceptibility to faults and the opportunity to gracefully
degrade in a tera-scale environment.

Future process technology trends are likely to adversely
affect the resilience of a tera-scale processor chip. Such
trends might include process variations becoming a more
significant determinant of overall performance and
insufficient burn-in time to weed out infant mortality.
Consequently, there is a higher probability of in-field
failures and accelerated degradation potentially
shortening the expected lifetime of the product [6].

Interconnect Fault-tolerance Approaches
The following mechanisms can be adopted for addressing
resilience in a tera-scale processor interconnect. These
approaches can be used either to address true faults
or performance faults (i.e., when underperforming or
“out-of-spec” tiles are treated as failed tiles).

Sparing: Spare processor tiles paired with network
interfaces and switches can potentially solve a multiplicity of
fault scenarios including increased possibility of in-field
failures. Upon detection of failures in some tile components,
spare tiles are activated after the interconnection network is
reconfigured as shown in Figure 3.

fault-free w/
spare column

some faulty
nodes

logically
similar
to fault-free
after-remap

remap col w/
faulty nodes
by
spare column

= failed= spare

fault-free w/
spare column
fault-free w/
spare column

some faulty
nodes
some faulty
nodes

logically
similar
to fault-free
after-remap

logically
similar
to fault-free
after-remap

remap col w/
faulty nodes
by
spare column

remap col w/
faulty nodes
by
spare column

= failed= failed= spare= spare

Figure 3: Illustrating use of spare tiles that maintain
original topology

Fault-tolerant Routing
Fault-tolerant routing support is required in the
interconnect to enable reconfiguration of the system
components in the presences of failed tiles and routers.
Upon system reset/initialization, a fault and topology
discovery algorithm is run to determine the
location/identity of failed components and to mark them
in the interconnect. Other regions also need to be marked
safe or unsafe from a deadlock-free routing perspective.
A fault-tolerant routing algorithm is then configured to
route around faulty and unsafe regions. Figure 4 shows
faulty (dead) nodes in the interconnect. A few additional
nodes are marked unsafe so as to form rectangular fault
regions. After the fault-tolerant routing algorithm (such as
in [5]) is configured, all working (and spare nodes, if
sparing is used) tiles in the fabric can communicate with
each other.

Figure 4: Illustrating need for fault-tolerant routing

The fault-tolerant routing algorithm should be simple to
implement, deadlock free, and be able to handle a wide
variety of faults. It is also desirable for the routing
algorithm to adaptively respond to congestion that may
occur in the network due to the additional effort needed to
route around fault regions.

Partitioning for Performance Isolation
We expect several partitions to be supported on a
tera-scale processor—each partition with a fraction of the
total number of processing units, special-purpose units,
and other platform elements. There may be several
different usage models for a partitioned tera-scale
processor including multiple server partitions in a
consolidated “server on chip” or, for example, multiple
virtual appliances on a home server.

It is desirable that the performance of each of the multiple
partitions on a tera-scale processor be unaffected by the
performance of other partitions. Some partitions may
be more sensitive to performance perturbations from

w o r k in g d e a d u n s a f e ,
f o r c e d d e a d

w o r k in g d e a d u n s a f e ,
f o r c e d d e a d

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 177

other partitions or may have stricter Quality of Service
(QoS) requirements.

Performance isolation: Performance isolation relies on
confining intra-partition communication of a given QoS
sensitive partition to physically distinct components of the
on-die interconnect from that of other partitions. Figure 5
shows a configuration with three isolated partitions where
traffic generated in one partition does not interfere with
traffic from another partition.

Figure 5: Performance isolation in a 2D mesh with
rectangular partitions

Virtualization of Network Interfaces
In order to better realize a uniform interface that can
comprehend the diverse needs of accelerators, fixed
function units, general-purpose processor cores, cache
blocks, etc., it is desirable to formalize and possibly even
export the interconnect as an abstraction to the application
programmer and/or the run-time system. Thus, one could
envision a programmer fine-tuning an application’s
inter-processor communication requirements, based
specifically on that application. For example, a media
application requiring little support for cache coherence
may be better served in power and performance through a
direct send/receive interface. Similarly, the programmer
may want to commandeer different levels of resources of
the interconnects, i.e., number of buffers, switching
priority, or bandwidth, and leave the rest of the hardware
for use by another application.

A network interface that can allow this level of control
and flexibility, yet can achieve good performance would
be powerful. In addition, such a network makes for easy
and rapid integration of multiple IP blocks that conform
to the same interface.

CACHE HIERARCHY AND COHERENCE
PROTOCOL
Diversity of workloads and concentration of compute
resources in the tera-scale architecture put tremendous
demands on the cache hierarchy and coherency protocol.
This requires a flexible cache organization that can adapt
to workload demands and puts minimal restrictions on the
software to fully realize the performance potential. The
associated coherency protocol needs to be efficient and

scalable. It should also be flexible in terms of the
requirements it imposes on the building blocks of
the tera-scale architecture. In this section we highlight the
challenges and tradeoffs associated with the cache
hierarchy and protocol and point out potential directions
for tera-scale architecture.

Developing parallel applications to harness and
effectively use the massively parallel tera-scale processors
is likely to be the key challenge for tera-scale computing.
Many parallel programming models and languages have
been deployed in different contexts over the last few
decades and in fact, parallel programming remains an
area of active research. A clear lesson, however, that
we can draw from the history of parallel computing to
date, is that hardware shared memory has proven to
be a particularly successful programming model for
general-purpose systems. Accordingly, tera-scale
architecture should include first-class hardware support
for shared memory. Industry and academic experience
with coherence protocols for large-scale, hardware-shared
memory machines has demonstrated that shared
memory machines scaling to hundreds of processors
can be successfully built. In fact, implementing a
message-passing library such as the Message Passing
Interface (MPI) over hardware-shared memory often
results in higher bandwidth and lower latency than
equivalent implementations using specialized low-latency
cluster networks [19]. In addition, hardware support for
shared memory will allow tera-scale processors to support
common operating systems assuming that such operating
systems overcome any existing scalability bottlenecks to
harness the capabilities of tera-scale architecture.

A cache hierarchy should efficiently support a wide range
of programming models and workloads. These are some
important classes:

Multiprogrammed workloads where there is no
communication and data sharing among the processes
running in different cores.

Workloads with a mix of scalar and parallel sections.
The performance of these workloads on tera-scale
architecture is limited by the performance of the
scalar section as indicated by Amdahl’s law.

Highly parallel workloads, where most of the
computations can be parallelized. These workloads
may exhibit one or more of the types of parralelism
as described below:

- Thread parallelism: Each thread may be similar
or very different from each other and may or
may not share data with other threads. Threads
are created based on the granularities exposed by
the application and then scheduled on available
hardware contexts through task queues or other

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 178

constructs. Examples of this programming model
can be found in transaction processing and
Web applications.

- Data parallelism: A similar task is performed on
different data sets, where some data may be
shared between tasks. Applications are more
structured, and algorithms are typically modified
to fit the underlying cache organization. The
number of threads used in this model is typically
the same or less than the number of hardware
contexts available. Examples of this
programming model can be found in media,
numerical analysis, and data-mining workloads.

- Streams: Programs are structured as kernels
where input data are processed and output
data are fed into other kernels. In this model
threads (or kernels) are statically scheduled
to hardware contexts. Within each kernel,
thread- or data-level parallelism constructs can
be applied to break tasks into ever finer sizes.
Examples of this programming model can be
found in media and graphics applications.

Cache Organization
A combination of different workloads and different types of
parallelisms within these workloads presents unique
architectural and design challenges for the cache hierarchy
of tera-scale architecture. Architectural challenges center on
the organization and policies associated with the cache
hierarchy to meet performance, scalability, and
energy-efficiency goals. Cache organization deals with the
number of levels in the cache hierarchy, and with the size,
associativity, latency, and bandwidth parameters at each
level. Cache policies determine accessibility, allocation,
and eviction policies to effectively utilize on-chip
cache resources.

The objective of a cache hierarchy is to minimize the
latency to frequently accessed data. In a traditional
uniprocessor cache hierarchy, we move cache blocks
closer and closer to the core through the levels in the
cache hierarchy, based on access frequency. The same
principle applies to multi-core cache hierarchies, but we
have to take into account whether cores have to share a
given level in the cache hierarchy or whether a level is
implemented as a single physical block or as multiple
physically distributed banks with non-uniform access
latency to each bank.

In multi-core processors released over the last few years,
the first one or two levels in the cache hierarchy are
private to each core. However, different designs have
pursued a range of options in sharing the last-level cache.
In some designs such as those described in [20], the
last-level cache is private to a core. In others, such as

those described in [18, 23], the last-level cache is shared
among multiple cores.

In CMPs with only a few cores, the last-level cache is
being implemented as a single physical block with
uniform access latency to the entirety of the cache by all
the cores sharing it. As the number of cores and cache
banks increase, physically distributed caches become
attractive from a physical design perspective [15].
Moreover, by collocating a portion of the cache with a
subset of the cores, there is an opportunity to reduce
access latency to a portion of the cache, instead of
offering equally high latency to all the cache. Figure 6
summarizes different multi-core cache organizations
according to their suitability for the types of workloads,
assuming a distributed multibank last-level cache.

Figure 6: Cache organization options for multi-core
architectures

In a tera-scale processor with a last-level cache physically
distributed across multiple tiles, private and shared caches
introduce distinct tradeoffs. A shared cache design
increases effective cache capacity because only a single
copy of a block shared by multiple cores resides in the
cache. The downside is that any given block, whether
private or shared, may be placed in a tile arbitrarily and
be far away from the core(s) using it. In contrast, a private
cache design will have all blocks used by a specific core
on its local tile. However, since read-shared blocks will
be replicated in multiple tiles, the effective cache capacity
is reduced, and off-die traffic may increase.

Recent work suggests that other hybrid alternatives are
possible: these combine the advantages of private and
shared caches while avoiding their shortcomings. The key
observation is that in a physically distributed cache design
where some cache banks are closer to a specific core than
others, one can optimize cache performance by
optimizing the placement of blocks in the cache banks so
that they are closer to the point of use. A number of
approaches in the literature have been proposed to
achieve this [4, 9, 30, 31]. Such approaches are beneficial
in any multi-core processor with differential access

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 179

latency to a given portion of a shared cache, but are
particularly effective in a tera-scale processor where there
is large variation in the latency to access the cache in
different tiles.

Fundamentally, all approaches have the following key
policies to set: initial placement, read-shared block
replication, block migration, and eviction. The initial
placement policy defines where a block is placed in the
cache hierarchy when it is fetched from memory. The
replication policy determines whether multiple copies of a
read-shared block can coexist in different cache banks.
The block migration policy determines whether a block
will move between tiles in response to processor accesses.
Finally, the eviction policy determines what happens to a
block evicted from a cache bank. Private and shared
cache designs represent the end points in the design space
with regard to these specific policies. For example, in a
private design, a block is initially placed in the cache of
the requesting core, while in a shared design, a block is
placed in a cache bank determined by the physical address
of the block (home tile). Hybrid approaches combine
policies from private and shared design or introduce new
policies to perform better than either private or shared
designs, or they even dynamically switch between
competing policies based on application demands. For
example, the Adaptive Selective Replication (ASR) [4]
determines the replication level within the context of a
private cache design based on program behavior.

The enormous computing power available in tera-scale
design implies that many applications (or applications
consisting of many concurrent functions with distinct
caching behavior) will be running concurrently (e.g.,
games physics with game AI and graphics rendering).
Accordingly, when a level in the cache hierarchy is
shared among multiple cores in the presence of diverse
per-core access patterns and working sets, destructive
interference can occur. One of the causes of destructive
interference is the suboptimal behavior of the least
recently used (LRU) replacement policy, typically
implemented in processor caches, when the application
workload exceeds the cache capacity. Sharing a cache
level among multiple threads can further exacerbate the
problem. This is a well known issue for any shared cache,
including page disk and file system caches. Recent
work in this area, however, shows some promise of
success [22].

In its generalized version, the tera-scale architecture is a
collection of modular and heterogeneous building blocks
with well defined interfaces. Such a heterogeneous
collection of elements puts its own unique requirements
on the cache hierarchy, and meeting these with a single
set of caching policies and a single cache hierarchy
is quite challenging. For example, if an incarnation

of tera-scale architecture is a collection of several
general-purpose processors, some graphics coprocessors,
a few network accelerators, a security coprocessor and so
on, each of these processors exhibit very different data
footprints and locality characteristics. Satisfying their
needs through a unified cache hierarchy is challenging
and requires further exploration.

Cache Coherency
The cache coherency protocol for tera-scale architecture
must be scalable to a large number of caching agents and
must enable efficient utilization of on-chip resources. The
choice of a coherency protocol is closely linked to the
cache organization and the interconnect. For example, a
protocol designed for cache organization without any
shared caches may be designed to keep precise
information about the lines present in private caches, such
that off-chip reads and writes are minimal. A snoop
broadcast protocol is suitable when there is a broadcast
interconnect, but it cannot be scaled.

On-chip interconnects are capable of providing an order
of magnitude smaller latency and an order of magnitude
higher bandwidth than off-chip socket-to-socket
interconnects. Therefore, latency and bandwidth
optimizations may not seem to be the primary goals for an
on-chip coherency protocol. However, since tera-scale
processors are expected to have a concentrated density of
computing throughput, they do impose tremendously high
bandwidth demands on the interconnect. Since the power
delivery, cooling, and off-chip bandwidth available to
each chip is not scaling with process technology, the
protocol must enable improved utilization of on-chip
cache structures, and the interconnect overhead, because
of the protocol, must be kept to a minimum to gain the
maximum performance under these limits.

Directory-based protocols have been widely used in
large-scale, multichip multiprocessors [7, 8, 17, 24],
where a directory is used to keep track of copies of blocks
in different caches. The same concept can be applied to
on-chip cache coherence protocols in tera-scale
architecture with some modification. As illustrated in
Figure 7, a directory consists of entries corresponding to
lines in caches where each entry has a state field and a
field to store the identities (indicated as pointers in the
directory structure in Figure 7) of the caches with a copy
of the block. The state field indicates if a block may be
present in one of the caches and the possible states the
cached copies could be in. For a directory that is inclusive
of all the on-chip caches, a directory miss or a state of I
(invalid) in the directory indicates that none of the caches
have a copy of the block; a state of S (shared) indicates
that some caches may have copies of the block in Shared
state; and a state of X (exclusive) indicates that one of the
caches may have a copy in either Modified, Exclusive, or

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 180

Shared state. When a directory entry is in S or X state, the
identity field identifies the cache(s) with a copy of the
memory block. The identity information can be stored in
various ways, either as a set of bits with 1 bit for each
cache (called full bit map), 1 bit for a group of caches
(called coarse bit map) or a limited set of explicit cache
identities with a mechanism to handle overflows. The cost
of a full bit map directory may be acceptable for the
first few generations of tera-scale architecture; however,
a more compact representation may be desirable for
further scalability.

Figure 7: Directory structure to track cache lines

Since the purpose of the directory is to keep track of
copies of a cache line in different private caches, the size,
associativity, and replacement policy of the directory
needs to provide adequate coverage for the total capacity
of the private caches. Some designs combine the directory
information in the same structure as the cache at the
higher level in the hierarchy (if there is one), which may
reduce complexity and area at the expense of some
performance disadvantage due to conflicting policy
requirements on the directory and cache. The cost and
scalability or directory structures may start becoming a
problem when the number of entities being tracked
becomes very large. At that point, mechanisms to reduce
directory size [8] or distributed directory [12]
implementations may have to be considered.

The enormous amount of computing resources in a
tera-scale platform enable a richer set of interactions
between the computer and the end user than previously
was possible. These include speech, motion and gesture
recognition, enhanced visual effects, etc. often within
virtual worlds where multiple users directly interact with
each other. Interactions with the physical world introduce
real-time considerations, and the tera-scale architecture
must properly address them. Caches, however, interact in
unpredictable ways with real-time applications. For this
reason, processors targeted to interactive applications
often include hardware mechanisms to allow applications

to control the caching behavior to the point where one can
reason about their expected performance [1].
Accordingly, the tera-scale cache hierarchy should
include support in the form of locking primitives or
similar mechanisms to allow applications to keep critical
data in the caches. The exact form of such support is an
area of active research.

Tera-scale architecture may also require much tighter
integration of off-chip memory and I/O interfaces to take
full advantage of its compute capabilities. Therefore, the
on-chip protocol must enable optimizations for efficiently
accessing local memory and for interacting with other
auxiliary engines such as special-purpose co-processors
and I/O controllers.

FEEDING THE BEAST: MEMORY
ARCHITECTURE
With substantial increases in the computation power on a
single die, one faces the challenge of feeding it with
enough data bandwidth. For a small class of applications
where the memory footprint is small, the memory
accesses will mainly be exercising the on-die caches. For
the majority of applications, a major increase in off-chip
memory bandwidth is required. This manifests itself in
two ways: (1) providing power-efficient high-speed
off-die I/O; (2) providing power-efficient high bandwidth
DRAM access. The former has seen steady progress in
the past decade, but not at the required pace. The latter
may require a new look at DRAM core and I/O design.

The first step to addressing the memory bandwidth
challenge can be more efficient storage or improved
management of the on-die storage. For example, embedded
DRAM [3] helps to increase the density of on-die storage
compared to SRAM. Efficient management of on-die
storage by avoiding duplication of data in the cache
hierarchy, as discussed in the previous section, is another
step in increasing the effective capacity of on-die storage.

Integration of DRAM, e.g., GDDR memory, inside the
processor package can offer more control over the I/O
channel and thus allow a higher bandwidth, compared to
crossing of package to motherboard-connector-DIMM
path. Recent works have demonstrated methods of
using 3D stacked SRAM to offer a low capacity
high-bandwidth option, e.g., Intel’s tera-scale prototype
[13] and IBM’s work on 3-D integrated circuits [26]. The
freedom in the footprint design of such SRAM devices
enables power-efficient solutions; however, limited
capacity of such devices limit their application. 3D
stacking of multiple DRAM dies can improve the memory
capacity, but requires dense Through Silicon Vias (TSVs)
to allow the required concurrency of accesses to
independent DRAM banks.

State Pointers

Directory Private cache
states

I Nul
l

I I I I I I I I
0 1 2 3 4 5 6 7

State Pointers

X 3 I I I M/E/S/
I

I I I I
0 1 2 3 4 5 6 7

State Pointers

S 3 I I I S/
I

I I I I
0 1 2 3 4 5 6 7

State Pointers

S 3, 6 I I I S/
I

I I S/
I

I
0 1 2 3 4 5 6 7

State Pointers

S 3, 6,
0

S/
I

I I S/
I

I I S/
I

I
0 1 2 3 4 5 6 7

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 181

Tera-scale Architecture Prototype
The Intel® Teraflop processor [27] is a prototype of some
of the elements of tera-scale architecture. The Teraflop
processor realizes an 80-core prototype with a 2D-mesh
interconnect architecture that reaches more than 1Tflops
of performance dissipating less than 100W of power.
This illustrates the potential of the tera-scale architecture
and validates the efficacy of some of the architectural
building blocks.

SUMMARY
Tera-scale architecture presents tremendous challenges
and opportunities to take advantage of Moore’s Law. As
discussed in this paper, the architectural and design
tradeoffs for tera-scale architecture are unique to this
architecture. A very high level of integration and the
presence of heterogeneous building blocks necessitate a
modular and scalable on-chip interconnect. Based on the
organization, architectural building blocks, and physical
design constraints, we expect ring, 2D-mesh, or similar
topologies to be an attractive option. Interconnects with
switches, such as 2D-mesh, though better in utilizing
wiring tracks, bring their own challenges in terms of
achieving aggressive latency targets within an acceptable
power budget.

With shrinking device geometries and resulting increases
in process variability and device failure rates, careful
consideration needs to be given to get maximum
performance without excessive cost through overly
conservative designs. A flexible on-chip interconnect can
play a role in dealing with variability and in-field failures
by adapting to an optimal operating configuration through
provisioning for fault-tolerant routing. A flexible
interconnect can also be used to provide additional
functionality, such as improved quality of service and
performance isolation, to make tera-scale architectures
more useful.

Providing adequate memory and I/O bandwidth to satisfy
the needs of large numbers of compute engines in
tera-scale architecture is a major challenge. Some of these
can be addressed through using on-chip caches more
effectively such that the needs of off-chip memory
bandwidth are reduced. A higher integration of system
components on tera-scale architecture also reduces pressure
on memory bandwidth by avoiding the need for I/O
controllers and compute engines to exchange data through
the caches rather than memory. Technological approaches
to improve the available memory bandwidth are also an
active area of exploration, ranging from 3D stacked
memory to higher speed memory interfaces, but they do
have their own challenges, such as limited memory capacity
and higher power consumptions, respectively.

In conclusion, tera-scale architecture is definitely in the
not-too-distant future of mainstream computer
architecture. Its realization, however, poses some
challenges and a rich set of problems for researchers both
in academia and industry. Problems and some solution
strategies related to the “uncore” have been presented in
this paper.

ACKNOWLEDGMENTS
We thank Yatin Hoskote, Dennis Brzezinski, David
James, Mani Ayyar, Ching-Tsun Chou, Rama Menon,
Saikat (Roy) Saharoy, Theodore Tabe, Hari Thantry, and
Jianping (Jane) Xu for their contributions to material
presented in this paper.

REFERENCES
[1] J. Andrews and N. Baker, “XBOX 360 System

Architecture,” IEEE Micro, March–April 2006.

[2] J. Balfour and W. J. Dally, “Design Tradeoffs for
Tiled CMP On-Chip Networks,” International
Conference on Supercomputing, June 2006.

[3] J. Barth et al., “A 500MHz Random Cycle 1.5ns-
Latency, SOI Embedded DRAM Macro Featuring a
3T Micro Sense Amplifier,” IEEE International
Solid-State Circuits Conference, Feb. 2007.

[4] B. M. Beckman, M. R. Marty and D. A. Wood, “ASR:
Adaptive Selective Replication for CMP Caches,”
in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture
(Micro), Orlando, FL, December 2006.

[5] R.V. Bopanna and S. Chalasani, “Fault-Tolerant
Wormhole Routing Algorithms for Mesh
Networks,” IEEE Trans. Computers, vol. 44, no. 7,
pp. 848–864, July 1995.

[6] S. Borkar, “Challenges in Reliable System Design
 in the Presence of Transistor Variability and
Degradation,” IEEE Micro, vol. 25, n. 6, pp.
10–16 Nov.–Dec. 2005.

[7] F. Briggs et. al., “Intel 870: A Building Block for
Cost-Effective Scalable Servers,” IEEE Micro,
March–April 2002, pp. 36–47.

[8] D. Chaiken, C. Fields, K. Kurihara, A. Agarwal,
“Directory-based cache coherence in large-scale
multiprocessors,” IEEE Computer, June 1990,
pp. 49–58.

[9] J. Chang and G. S. Sohi, “Cooperative Caching for
Chip Multiprocessors,” in Proceedings of the 33rd

International Symposium on Computer
Architecture, Boston, MA, June 2006.

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 182

[10] “Compute-Intensive, Highly Parallel Applications
and Uses,” Intel Technology Journal, Volume 09
Issue 02, May 2005.

[11] P. Gratz, K. Sankaralingam, H. Hanson, P.
Shivakumar, R. McDonald, S. Keckler, D. Burger,
“Implementation and Evaluation of a Dynamically
Routed Processor Operand Network,” IEEE/ACM
International Symposium on Networks-on-Chips
(NOCS), May 2007.

[12] “IEEE standard for Scalable Coherent Interface
(SCI),” IEEE P1596, August 1993.

[13] Intel News Release, “Intel Develops Tera-Scale
Research Chips,” Sept 26, 2006, at
http://www.intel.com/pressroom/archive/releases/2
0060926corp_b.htm.

[14] D. N. Jayasimha, B. Zafar, Y. Hoskote, “On-die
Interconnection Networks: Why They are Different
and How to Compare Them,” Technical Report,
Microprocessor Technology Lab, Corporate
Technology Group, Intel Corp.

[15] C. Kim, D. Burger, and S. W. Keckler, “An
Adaptive, Non-Uniform Cache Structure for
Wire-Delay Dominated On-Chip Caches,” in
Proceedings of the 10th International Conference
on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[16] A. Kumar, L-S. Peh, P. Kundu, N. Jha, “Express
Virtual Channels: Towards the Ideal
Interconnection Fabric,” in Proceedings 34th

Annual International Symposium on Computer
Architecture (ISCA’07), pp. 150–161, June 2007.

[17] D. Lenoski, J. Laudon, T. Joe, D Nakahira, L
Stevens, A. Gupta, and J. Hennessy, “The DASH
Prototype: Implementation and Performance,” In
Proceedings19th International Symposium on
Computer Architecture, pp. 92–103, Gold Coast,
Australia, May 1992.

[18] A. S. Leon, et al., “A power-efficient high-
throughput 32-thread SPARC processor,” IEEE
International Solid-State Circuits Conference,
Feb. 2006.

[19] “MPI Performance Measurements” at
http://www.llnl.gov/computing/mpi/mpi_benchmar
ks.html.*

[20] C. McNairy and R. Bhatia, “Montecito: A
dual-core, dual-threaded Itanium® processor,”
IEEE Micro, March–April, 2005.

[21] C.A. Nicopoulos, D. Park, J. Kim, N.
Vijaykrishnan, M. S. Yousif, C.R. Das, “ViChaR:

A Dynamic Virtual Channel Regulator for
Network-on-Chip Routers,” International
Symposium On Microarchitecture (MICRO’06)
pp. 333–346, Dec. 2006.

[22] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely
Jr., J. Emer, “Adaptive Insertion Policies for High
Performance Caching,” International Symposium
on Computer Arachitecture, June 2007.

[23] N. Sakran, et al., “The Implementation of the
65nm Dual-Core 64b Merom Processor,” IEEE
International Solid-State Circuits Conference,
Feb. 2007.

[24] P. Stenstrom, “A survey of cache coherence
schemes for multiprocessors,” IEEE Computer,
pp. 12–24, June 1990.

[25] M. B. Taylor, W. Lee, S. Amarasinghe, A.
Agarwal, “Scalar Operand Networks: On-chip
Interconnect for ILP in Partitioned Architectures,”
International Symposium on High Performance
Computer Architecture, February 2003.

[26] A. W. Topol et al., “Three-dimensional integrated
circuits,” IBM Journal of Research and
Development, vol. 50, no. 4/5, 2006, pp. 491–506.

[27] S. Vangal et al., “An 80-Tile 1.28TFLOPS
Network-on-Chip in 65nm CMOS,” IEEE
International Solid-State Circuits Conference,
Feb. 2007.

[28] H-S. Wang, L-S. Peh, N. Jha, “Power-driven
design of router microarchitectures in on-chip
networks,” International Symposium On
Microarchitecture (MICRO’03), pp. 105–116,
Nov. 2003.

[29] P. Wu, A. E. Eichenberger, A. Wang, P. Zhao,
“An integrated simdization framework using virtual
vectors,” International Conference on
Supercomputing, pp. 169–178, June 2005.

[30] M. Zhang and K. Asanovic, “Victim Migration:
Dynamically Adapting Between Private and Shared
CMP Caches,” MIT CSAIL Technical Report,
MIT-CSAIL-TR-2005-064, Cambridge, MA,
October 2005.

[31] M. Zhang and K. Asanovic, “Victim Replication:
Maximizing Capacity while Hiding Wire Delay in
Tiled Chip Multiprocessors,” in Proceedings 32nd

International Symposium on Computer
Architecture, Madison, WI, June 2005.

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 183

AUTHORS’ BIOGRAPHIES
Mani Azimi is a Senior Principal Engineer and Director
of the Platform Architecture Research team in the
Microprocessor Technology Laboratory in Intel’s
Corporate Technology Group. He received his Ph.D.
degree from Purdue University. He joined Intel in 1990
and has worked on a wide range of platform architecture
topics including system protocol, processor interface, MP
cache controller architecture, and performance
modeling/analysis. He is currently focusing on tera-scale
computer architecture challenges. His e-mail is
mani.azimi at intel.com.

Naveen Cherukuri is a Research Scientist within Intel’s
Microprocessor Technology Labs (MTL) in Santa Clara,
California. At Intel, he has worked on the Itanium®

processor design and performance analysis. His current
research focuses on the cache organization for tera-scale
architecture. He has an MSEE degree from the University
of Arizona, Tucson. His e-mail is naveen.cherukuri at
intel.com.

D. N. Jayasimha is a Principal Engineer in the Corporate
Technology Group at Intel Corporation with research
interests in multiprocessor architectures, interconnects,
and performance analysis. Prior to joining Intel he was a
faculty member in Computer Science at the Ohio State
University. He received his Ph.D. degree from the
University of Illinois at Urbana Champaign. His e-mail is
jay.jayasimha at intel.com

Akhilesh Kumar is a Principal Engineer in Intel’s
Corporate Technology Group and leads the definition of
protocols for on-chip and off-chip system interconnects.
His research interests include cache organization, on-chip
and off-chip interconnects, and interface protocols. He
received his Ph.D. degree in Computer Science from
Texas A&M University. His e-mail is akhilesh.kumar at
intel.com.

Partha Kundu is a Senior Staff Research Scientist within
Intel’s Microprocessor Technology Labs (MTL) in Santa
Clara, California. He was an architect of the Intel®

Itanium® architecture and a Principal Architect on a
DEC/Alpha microprocessor. His research interests
include on-chip networks, memory system design,
transactional memory, and performance simulation. He
holds an M.S. degree from the State University of New
York, Stony Brook. His e-mail is partha.kundu at
intel.com.

Seungjoon Park is a Research Scientist within Intel’s
Microprocessor Technology Labs (MTL) in Santa Clara,
California. At Intel, he has contributed to the definition
and formal verification of off-die and on-die cache
coherence and system interface protocols. Prior to Intel,
he worked at NASA Ames Research Center with the

High-Assurance Software Design Research team on Java
PathFinder, a system to verify executable Java bytecode
programs. He received his Ph.D. degree in Electrical
Engineering with a Minor in Computer Science from
Stanford University, where he investigated the cache
coherence protocol of the Stanford FLASH
multiprocessor and developed operational memory
models of SPARC V9 architecture. His e-mail is
seungjoon.park at intel.com.

Ioannis (Yannis) Schoinas is a Principal Engineer in
Intel’s Corporate Technology Group. He received
his B.S. and M.S. degrees from the University of
Crete-Heraclion and his Ph.D. degree from the University
of Wisconsin-Madison. At Intel he has worked on a wide
range of platform architecture topics including coherence
protocol, memory RAS, system partitioning,
configuration management, system security, and
virtualization. He is currently focusing on tera-scale
computer architecture challenges. His e-mail is
ioannis.t.schoinas at intel.com.

Aniruddha S. Vaidya. is a Research Scientist at Intel’s
Microprocessor Technology Labs (MTL) in Santa Clara,
California. His contributions at Intel include workload
characterization, performance analysis, and architecture
of server platforms. His current focus is on router and
interconnection network architecture for Intel’s tera-scale
computing initiative. Ani has B.Tech and M.Sc. (Engg.)
degrees from Banaras Hindu University and the Indian
Institute of Science, and a Ph.D. degree in Computer
Science and Engineering from the Pennsylvania State
University. His e-mail is aniruddha.vaidya at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The
Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Intel Technology Journal, Volume 11, Issue 3, 2007

Integration Challenges and Tradeoffs for Tera-scale Architectures 184

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Accelerator Exoskeleton 185

Accelerator Exoskeleton

Perry Wang, Corporate Technology Group, Intel Corporation
Jamison Collins, Corporate Technology Group, Intel Corporation
Gautham Chinya, Corporate Technology Group, Intel Corporation

Hong Jiang, Mobility Group, Intel Corporation
Xinmin Tian, Software Solutions Group, Intel Corporation
Milind Girkar, Software Solutions Group, Intel Corporation

Lisa Pearce, Mobility Group, Intel Corporation
Guei-Yuan Lueh, Mobility Group, Intel Corporation

Sergey Yakoushkin, Corporate Technology Group, Intel Corporation
Hong Wang, Corporate Technology Group, Intel Corporation

ABSTRACT
To maximize performance and power efficiency, future
multi-core architectures may be heterogeneous,
incorporating some accelerator cores alongside the IA
cores. Accelerator Exoskeletons provide a shared virtual
memory heterogeneous multi-threaded programming
paradigm for these accelerators using novel CPU
instruction set extensions and software tool chains with an
Intel® Architecture (IA) look-n-feel. Firstly, we introduce
the proposed architectural extensions known as the
Exoskeleton Sequencer (EXO), which represents
heterogeneous accelerators as ISA-based MIMD
architecture resources, and a shared virtual memory
heterogeneous multi-threaded program execution model
that tightly couples specialized accelerator cores with
general-purpose CPU cores. Then we introduce the C for
Heterogeneous Integration (CHI) programming
environment that includes a compiler, runtime, debugger,
and performance-analysis tools. The CHI compiler
extends the OpenMP pragma for heterogeneous
multi-threading programming, and it produces a single fat
binary with code sections corresponding to different
instruction sets. The runtime can judiciously spread
parallel computation across the heterogeneous cores to
optimize performance and power.

INTRODUCTION
The relentless pace of Moore’s Law will lead to mainstream
multi-core microprocessor designs with extensive on-die
integration of a large number of cores [11]. Fundamentally,
to scale multi-core processor designs to incorporate a large
number of cores, ultra low Energy Per Instruction (EPI)
cores are essential [6]. One approach to improving EPI by
an order of magnitude is through heterogeneous multi-core

design, in which some cores vary in functionality,
instruction set (ISA), performance, power, and energy
efficiency [14]. The key challenge then becomes how to
accomplish such heterogeneous integration and achieve
high performance while still maintaining the look-n-feel of
the classic mainstream IA-based programming models and
software ecosystem.

In this paper we present an overview of EXOCHI:
Exoskeleton Sequencer (EXO), an architecture proposal to
represent heterogeneous accelerators as ISA-based MIMD
architectural resources, and C for Heterogeneous Integration
(CHI), a programming environment that supports tightly
coupled integration of heterogeneous cores. The EXO
architecture supports the familiar POSIX shared virtual
memory multi-threaded programming model for
heterogeneous cores. Architecturally, the heterogeneous
cores are exposed to the programmer as a new form
of sequencer resource. They can be regarded as
application-level MIMD functional units on which user-level
threads, or shreds, encoded in the accelerator-specific ISA
can execute. Having a shared virtual address space between
the IA sequencer and accelerator sequencers facilitates code
and data sharing and harmonizes cooperation between the
concurrent shreds of different ISAs. Such a program is said
to be multi-shredded.

The CHI integrated programming environment
allows an application developer to inline blocks of
accelerator-specific assembly or domain-specific language
with traditional C/C++ code. The CHI compiler produces
a single fat binary consisting of executable code sections
corresponding to the different ISAs. CHI further extends
the OpenMP pragmas [21, 23, 26] to allow the
programmer to express thread-level parallelism by
demarcating parallel regions of code targeting

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 186

heterogeneous accelerators. The CHI extensions to
OpenMP support both fork-join and producer-consumer
parallelism among the accelerator shreds and between the
IA shreds and the accelerator shreds. The CHI runtime
can judiciously spread the shreds across the
heterogeneous sequencers dynamically to maximize
throughput performance while minimizing power.

The rest of the paper is organized as follows. We first
briefly review related work. We then introduce the EXO
architecture that supports a shared virtual memory
heterogeneous multi-threaded programming model. We
then present an overview of the CHI integrated
programming environment that extends the Intel® C++
Compiler, runtime, and tool chains to provide the familiar
IA look-n-feel to program heterogeneous cores. To
prototype the EXO architecture, we describe potential
heterogeneous multi-core processors which combine an
Intel® Core™2 Duo processor [27] and two possible
accelerators: an 8-core 32-thread Intel® Graphics Media
Accelerator (GMA) X3000 [10] or the Datastream
Processing Engine (DPE) from a research Scalable
Communication Core (SCC) prototype [8]. We
demonstrate code examples and evaluate performance.

Figure 1: Alternate programming environments

RELATED WORK
There has been a rich body of research on heterogeneous
acceleration. In most published work, the execution
models usually fall into two classifications: (category 1)
an ISA-based tightly coupled approach or (category 2), a
device driver-based loosely coupled execution model.
An example of the tightly coupled approach is the
Software-configurable Processor (SCP) architecture [4] in
which a custom ISA extension represents the operations
implemented by a hardware accelerator attached to the
CPU. The CPU is then responsible for sequencing,
decoding, and dispatching each co-processor instruction,
stalling until the co-processor execution completes. This
approach resembles the classic x87 escape-wait style
co-processor instruction execution where the co-processor

does not sequence instructions independently from
the CPU.

Examples of the second category include most known
GPGPU infrastructures [1, 3, 5, 13, 15, 16, 17, 18, 19, 20,
22, 24, 25, 28]. As depicted in Figure 1(a), the CPU
resources (cores and memory) are managed by the
operating system (OS), and the GPU resources are
separately managed by vender-supplied device drivers.
Applications and device drivers run in separate address
spaces, and consequently, data communication and
synchronization between them is usually carried out in
coarse granularity through explicit data copying via
device driver APIs. In the EXOCHI framework depicted
in Figure 1(b), the EXO architecture supports an
execution model with a shared virtual address space and a
POSIX multi-threaded programming model for the
OS-managed IA sequencer and application-managed
non-IA accelerator sequencers.

EXO differs from the existing tightly coupled approaches
(category 1) by allowing independent sequencing and
concurrent execution of multiple instruction streams on
multiple sequencers within a single OS thread context.
EXO also differs from the loosely coupled, driver-based
approaches (category 2) by directly exposing the
heterogeneous sequencers to application programs and by
supporting a shared virtual address space amongst these
sequencers. EXOCHI’s user-level runtime can be used to
schedule shreds and coordinate light-weight inter-shred
data communication efficiently through shared virtual
memory.

In addition, by supporting the shared virtual memory
heterogeneous multi-threaded execution model, the CHI
integrated programming environment enables the
application developer to inline blocks of accelerator
specific assembly or domain-specific languages within
traditional C/C++ code. This allows performance
sensitive parts of an algorithm to be optimized for the
accelerator ISA just as Intel’s SSE ISA extensions are
traditionally used in implementing a high-performance
math library. CHI’s extensions to OpenMP allow
programmers to express the underlying thread-level
parallelism in a familiar parallel programming
environment.

EXO ARCHITECTURE
Architecturally, EXO extends the Multiple Instruction
Stream Processor (MISP) architecture [7] in three
significant ways: (1) MISP exoskeleton (2) Address
Translation Remapping (ATR), and (3) Collaborative
Exception Handling (CEH). With this architectural
support, EXO fundamentally enables a powerful shared
virtual memory heterogeneous multi-threaded

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 187

programming model, despite ISA differences between the
IA sequencer and the exo-sequencers.

MISP Exoskeleton
EXO provides a minimal architectural “wrapper,” or
exoskeleton, to make a non-IA heterogeneous accelerator
sequencer conform to the MISP inter-sequencer signaling
mechanism. With this exoskeleton, the accelerator
sequencer can be exposed as an application-managed
sequencer, even though it has a different ISA from the IA
sequencers. To distinguish from an application-managed
IA sequencer, we call such heterogeneous accelerator
sequencers exo-sequencers. The exoskeleton supports
interaction with the OS-managed IA sequencer through
either initiating or responding to inter-sequencer
user-level interrupts. With this enhancement, the code on
an OS-managed IA sequencer can use MISP’s SIGNAL
instruction to dispatch shreds of a non-IA ISA to run on
the exo-sequencers. This demands no additional OS
support beyond MISP’s requirements.

Figure 2: ATR and CEH between heterogeneous
sequencers

Microarchitecture Support

To support shared virtual memory between the
OS-managed IA sequencer and the exo-sequencers, EXO
provides an ATR mechanism to allow the IA sequencer to
handle page faults on behalf of the exo-sequencers.

Maintaining a shared virtual address space between two
sequencers requires the same virtual address to be
resolved to the same physical memory address on both
sequencers. Among sequencers of the same architecture,
this is accomplished by having the sequencers utilize the
same page table for address translation. In a
heterogeneous multi-core with IA sequencers and non-IA
exo-sequencers, however, the page table format
understood by each sequencer may differ. Directly
accessing the IA page table is not an option for the
exo-sequencers in such a case.

EXO solves this problem with its ATR mechanism. With
ATR, when an exo-sequencer incurs a translation miss, it
suspends shred execution and signals the IA sequencer to
request proxy execution in order to service that
Translation Lookaside Buffer (TLB) miss or page fault.
Like MISP, upon receiving the proxy request as a
user-level interrupt, the IA shred transfers control to a
proxy handler that will touch the virtual address on behalf
of the exo-sequencer. Once the page fault is serviced on
the IA sequencer, however, unlike MISP, ATR will
transcode the IA page table entry to the format of the
exo-sequencer’s page table entry before inserting the
entry into the exo-sequencer’s TLB. The exo-sequencer’s
TLB then points to the same physical page as the IA’s
TLB and can directly access the needed data. The
exo-sequencer then resumes execution. As shown in
Figure 2, an address translation remapping mechanism is
responsible for remapping the IA page entry to the native
format on the accelerator.

The shared virtual memory space for heterogeneous
sequencers provides many benefits over the alternative
approaches. It provides the essential architectural
foundation to extend the classic shared memory
multithreaded programming paradigm to heterogeneous
multi-core processors. With a shared virtual address
space, shreds from a single memory image executable
running on IA sequencers and exo-sequencers can
perform data communication and synchronization in
familiar and efficient ways, e.g., without having to
resort to explicit data copying as is necessary in the
loosely-coupled approach.

It is important to note that even though ATR provides the
necessary architectural support for a shared virtual
address space, ATR by itself does not guarantee or
require cache coherence between the IA sequencer and an
exo-sequencer. In the absence of hardware support for
cache coherence between the IA sequencer and an
exo-sequencer, it is the responsibility of the programmer
to use critical sections to protect other IA shreds from
reading or writing the data being processed by shreds on
the exo-sequencers. When an IA shred hands off a shared
data structure to a shred on an exo-sequencer to process,
the IA shred must first commit any dirty lines to main
memory. Similarly, when the exo-sequencer shred
completes its computation, it also needs to flush its cache
before releasing a semaphore to the IA sequencer.

Clearly, with full cache coherence support between the IA
sequencer and the exo-sequencer the programmer’s work
can be greatly eased. In particular, there is no need to use
critical sections to ensure mutual exclusion on reads to the
shared working set. This enables more concurrency
between shreds on the IA sequencer and the
exo-sequencer.

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 188

As with page faults, execution on the exo-sequencers
could potentially incur exceptions or faults that require
OS services. In conventional MISP, if an exception
occurs on an application-managed sequencer, the
instruction causing the exception can be replayed on
the OS-managed sequencer through proxy execution.
However, when the exception occurs on a non-IA
exo-sequencer, the faulting instruction cannot simply be
replayed on the IA CPU sequencer. Because the exo-
sequencer uses a different ISA, the faulting instruction
might have a data type that is not supported by IA ISA
directly, or the exo-sequencer may require a different
exception handling convention. To address this, EXO
adds hardware support for CEH and a software-based
exception handling mechanism, which allows faults or
exceptions that occur on the exo-sequencer to be handled
by the OS by proxy on the OS-managed IA sequencer.

Through CEH, an exception is handled in a similar
fashion to a TLB miss. For example, as shown in
Figure 2, when a double precision floating point vector
instruction on an exo-sequencer incurs an exception, the
exo-sequencer first signals the IA sequencer, as it does
with ATR. The IA sequencer then functions as the proxy
for the exo-sequencer by invoking an application-level
handler to emulate the faulting vector instruction or use
an OS service such as Structured Exception Handling
(SEH) to provide full IEEE-compliant handling of the
exception on the particular excepting scalar element.
Once the exception is handled on the IA sequencer, CEH
ensures the result is updated on the exo-sequencer before
resuming execution.

Accelerator Exo-Sequencer: Two Examples
Media Accelerator
One example of an exo-sequencer accelerator is the
integrated Intel Graphics Media Accelerator X3000 from
the Intel® 965G Express chipset [9]. Figure 3 shows a
high-level view of the GMA X3000 hardware. The GMA
X3000 contains eight programmable, general-purpose
graphics media accelerator cores, called Execution Units
(EU), each of which supports four hardware thread
contexts. From the programmer’s perspective, 32
exo-sequencers are available. We use a custom emulation
firmware that uses an IA CPU core as the OS-managed
sequencer and uses the 32 GMA X3000 sequencers as
exo-sequencers. The firmware implements all essential
architectural extensions required by the EXO architecture,
including MISP exoskeleton, ATR, and CEH.

A shred for the GMA X3000 exo-sequencer can be
created either by an IA shred or spawned from another
GMA X3000 shred. Once created, GMA X3000 shreds
are scheduled in a software work queue in shared virtual

memory like POSIX threads. The work queue can have a
far greater number of shreds than the number of GMA
X3000 exo-sequencers. The emulation firmware is
responsible for translating a shred descriptor, which
includes shred continuation information like instruction
and data pointers to the shared memory, into
implementation-specific hardware commands that the
GMA X3000 exo-sequencers can consume and execute.
The emulation layer hides all device-specific hardware
details from the programmer.

Figure 3: High-level view of the Intel GMA X3000

Communication Accelerator
Another example of the exo-sequencer accelerator is the
Scalable Communication Cores (SCC) [8]. SCC is a
research prototype designed for a reconfigurable radio
baseband that is capable of processing several wireless
standard protocols, such as WiFi, WiMax [12], or cellular
infrastructure, with a common set of hardware. The SCC
system architecture consists of a heterogeneous set of
coarse-grained, highly optimized baseband Processing
Elements (PEs).

One type of PE is the Data Processing Element (DPE)
core, which performs computationally intensive
operations, such as the Fast Fourier Transform (FFT) that
is commonly used in many standard protocols. The DPE
core structure consists of control and computation units
and several memory blocks. DPE cores are connected via
flexible interconnect matrices. Asynchronous data-path
swap units support commutations from any of four inputs
to any of four outputs. Reconfiguration of the data-path
can be done dynamically with interconnection
information and operation parameters stored in the
configuration cache.

Inside DPE, there is a configuration (CFG) queue that is
part of a special task scheduling mechanism. Each task
pointer that is pushed onto the CFG queue will be fetched
by the core engine. Each launched task becomes an
exo-sequencer running on DPE. The DPE can be
configured to use multiple CFG queues, thus implying a
multi-threaded implementation. This allows multiple
exo-sequencers to run concurrently on the DPE engine.

Command

Dispatcher

8 cores, 4 hw threads/core

(32 exo-sequencers)

Fixed

Function

units

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 189

CHI PROGRAMMING ENVIRONMENT
C for Heterogeneous Integration (CHI) is designed to
provide an IA look-n-feel programming environment
to support user-level multi-shredding on heterogeneous
sequencers. In the CHI infrastructure, we enhance the
Intel C++ Compiler to support accelerator-specific inline
assembly within the C/C++ source. In addition, we extend
OpenMP pragmas to support heterogeneous multi-
shredding and provide the related runtime support. The
runtime library is responsible for judiciously scheduling
heterogeneous shreds across the exo-sequencers. The
compiler can also embed debugging information for
different ISAs in a single binary. Such information can be
used by an enhanced version of the Intel Debugger (IDB)
to enable source-level debugging for both C/C++ code
on the IA CPU target and the accelerator-specific code on
the accelerator target. Figure 4 depicts the overall CHI
compilation infrastructure. Three new capabilities are
provided in the CHI compiler to allow programmers to
express multi-shredded computation for the
heterogeneous exo-sequencers in the C/C++ source code:

A method to specify a region of accelerator-specific
computation in either inline assembly or domain-
specific language.

A method to specify fork-join or producer-consumer
style shred-level parallel execution for the inline
accelerator-specific code region with OpenMP
pragmas.

A method to specify input and output memory
regions and live-in values for the accelerator-specific
code region.

Inline Accelerator Assembly Support
C/C++ provides a facility to inline assembly code blocks
directly within the high-level source code. This capability
provides programmers access to new instructions or
processor features not exposed through the compiler and
allows the most performance-critical parts of a program to
be custom optimized in assembly. This inline assembly
construct can be naturally extended to provide
accelerator-specific inline assembly support.

Many variants of keyword and syntax exist. In CHI
we adopt the Microsoft MASM syntax, i.e.,

asm_statements;

where brackets are used to enclose the assembly
statements. is the keyword that indicates the
enclosed block of code is a special assembly block written
specifically for the given accelerator ISA. The
asm_statements enclosed in the ensuing brackets are
compiled into an accelerator-specific executable binary.
The target ISA for the asm_statements is specified

through the enclosing OpenMP pragma with the
clause, which is described in this paper in the section
entitled “OpenMP Parallel Pragma Extension.” As shown
in Figure 4, a separate accelerator-specific assembler is
dynamically linked with the Intel compiler. Figure 5
shows an example of C code using the extended OpenMP
pragmas and CHI runtime APIs for a heterogeneous target
consisting of an IA32 sequencer and GMA X3000 exo-
sequencers.

Figure 4: CHI compilation flow

Similar to traditional inline assembly, this accelerator-
specific assembler generates code for the target ISA by
translating the inline assembly instructions enclosed in the
brackets into binary code and resolving symbolic names
for memory locations and other entities referenced within
the assembly block. After the assembler compiles the
assembly block, the resulting binary code is embedded in
a special code section of the executable indexed with a
unique identifier. The final executable is a fat binary,
consisting of binary code sections corresponding to
different ISAs.

Domain-specific Language Support
In addition to supporting accelerator-specific inline
assembly, the capability of the C/C++ compiler can
be further extended to provide a facility to inline
domain-specific language blocks directly within the high-
level source code. These domain-specific languages are
designed to utilize the accelerator-specific features not
exposed through the general C/C++ programming
environment. Therefore, the programmers can take
advantage of the full capability of the underlying

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 190

accelerators without programming the exo-sequencer
directly in assembly language.

To provide a uniform programming interface to
programmers, we adopt the format similar to that of the

 syntax, i.e.,

domain-specific
language statements;

where brackets are used to enclose the domain-specific
language statements. can
be any language that is supported by CHI. Upon parsing
the particular language keyword, the C/C++ compiler
invokes the corresponding domain-specific compiler
plug-ins to generate the accelerator-specific binary,
similar to how it is done with the inline assembly support
as described in the section entitled “Inline Accelerator
Assembly Support.”

Figure 6 shows an example of the domain-specific
language support to the Data-stream Programming
Language (DPL) that is specifically designed for the
retargetable SCC-DPE accelerator. DPL provides
essential high-level functions to exploit the inner
microarchitecture of the DPE systolic arrays. The
programmers can embed DPL code within the brackets
preceded by the __dpl keyword.

OpenMP Parallel Pragma Extension
CHI extends the OpenMP pragma. The
construct for generating heterogeneous shreds of an
accelerator-specific instruction set is outlined in
Figure 7(a). The clause specifies the particular
accelerator instruction set used within the parallel region.
The compiler inserts appropriate calls to the CHI runtime
layer to enable judicious dynamic shred scheduling and
dispatching onto the targeted exo-sequencers. When the

main IA shred encounters an accelerator-specific
 construct with the

clause, the IA shred spawns a team of
heterogeneous shreds for the parallel region, where each
shred eventually executes the enclosed assembly block on
an exo-sequencer.

Figure 6: Example inline DPL code using CH

By default, the main IA shred waits at the end of
the construct until it is notified by the CHI runtime of the
completion of all heterogeneous shreds. Similar to
the traditional clause, an optional

 clause allows the main IA shred to
continue execution past the construct after spawning the
team of heterogeneous shreds, without having to wait for
their completion. This allows concurrent execution on
both the IA sequencer and its exo-sequencers. The CHI
runtime is responsible for asynchronously notifying the
IA sequencer of the eventual completion of all
heterogeneous shreds.

OpenMP Work-Queuing Extension
In order to support concurrent threads with intricate
dynamic inter-thread dependencies (e.g., due to the use of
irregular data structures), the Intel C++ Compiler supports
irregular parallelism through two special OpenMP
pragmas, and [23]. In CHI, we further
enhance the compiler and runtime to support inter-shred
dependencies among heterogeneous shreds using these
pragmas. The construct and the

 construct for an exo-sequencer are outlined in
Figure 7(b) and Figure 7(c).

int *A = malloc(n);
 int *B = malloc(n);
 int *C = malloc(n);

 A_desc = chi_alloc_surface(A, X3000_INPUT, n, 1);
 B_desc = chi_alloc_surface(B, X3000_INPUT, n, 1);
 C_desc = chi_alloc_surface(C, X3000_OUTPUT, n, 1);
 #pragma omp parallel target(x3000) shared(A,B,C)
 descriptor(A_desc,B_desc,C_desc) private(i)
 {
 for (i=0; i<n/8; i++)
 __asm
 {

shl.1.w vr1 = i, 3
 ld.8.dw [vr2..vr9] = (A, vr1, 0)
 ld.8.dw [vr10..vr17] = (B, vr1, 0)
 add.8.dw [vr18..r25] = [vr2..vr9], [vr10..vr17]
 st.8.dw (C, vr1, 0) = [vr18..vr25]
 }
 }
 #pragma omp parallel for shared(D,E,F) private(i)
 {
 for (i=0; i<n; i++)
 F[i] = D[i] + E[i];
 }

Figure 5: Example GMA X3000 inline assembly
i C

float Vin[4];
float Vout[4];

void *in_desc = (void *)chi_alloc_buffer_desc
 (DPE_INPUT_BUFFER, Vin, 4, 1);
void *out_desc = (void *)chi_alloc_buffer_desc
 (DPE_OUTPUT_BUFFER, Vout, 4, 1);

#pragma omp parallel target(dpe)
 shared(Vin,Vout)
descriptor(in_desc,out_desc)
{
 __dpl {
 configuration[1] cfgMult(vector val[1],
 vector coeff[1])
 {
 result bs(mull(val, coeff), 13);
 }
 flow[4] multiFlow(vector vec[4],
 vector coeffs[4])
 {
 vector ret[4]; result out;
 selector[iter : 4] sel[1] = {{ iter }};
 selector[iter : 4] selRev[1] = {{ 3 - iter
}};
 ret[sel] = cfgMult(vec[sel], coeffs[selRev]);
 }
 vector cf[4] = { 0.5 + I * 0.0 };
 program dlMain()
 {
 Vout = multiFlow(Vin, cf);
 }
 }
}

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 191

Figure 7: CHI extensions to OpenMP pragmas

CHI Runtime Support
The CHI runtime is a software library that translates the
programmer-specified OpenMP directives into primitives
to create and manage shreds that can carry out parallel
execution on the heterogeneous multi-core target. Like
conventional OpenMP runtimes, the CHI runtime layer
provides a layer of abstraction that hides the details of
managing the exo-sequencers from the programmer.

In order to allow the accelerator more efficient access to
the C/C++ variables specified by the data
clause, programmers can use the CHI runtime APIs to
convey accelerator-specific access information through
data structures known as descriptors. Descriptors are used
by the accelerator to interpret the attributes of the

 variables that are accessed by the shreds.

EXOCHI PROTOTYPE
The EXOCHI framework described in this paper has
already been deployed within Intel for successful
development of production-quality, GMA X3000
media-processing kernels and other workloads of growing
importance [2]. Figures 8 and 9 provide examples of the
use of how an IA look-n-feel allows familiar development
tools and environments to be used in writing
heterogeneous multi-shredded code. Figure 8 shows the
use of familiar legacy development tools (Microsoft
Visual Studio*) for development and debugging of

heterogeneous multi-shredded code. Figure 9 illustrates
the compilation and execution of such a program.

Figure 8: IA Look-n-Feel IDE (Microsoft Visual
Studio) for application development

Figure 9: IA Look-n-Feel compilation and execution

Performance Evaluation
To evaluate the performance of our EXOCHI prototype
we select a representative subset of the kernels that have
been developed. These kernels exhibit a significant
amount of data- and thread-level parallelism and thus,
readily lend themselves to efficient execution on the
GMA X3000 exo-sequencers.

Implementation of these kernels is made easy due to
special GMA X3000 ISA features optimized for media
processing. The key ISA features include wide SIMD
instructions, predication support, and a large register file
of 64 to 128 vector registers for each GMA X3000
exo-sequencer. With CHI, programmers can directly use
the GMA X3000 ISA features via inline assembly in
C/C++ code as if they are traditional ISA extensions to
IA, such as SSE. By providing such IA look-n-feel, CHI
enables highly productive development of heterogeneous
multi-shredded code.

All benchmarks are compiled with the enhanced version
of the Intel C++ Compiler using the most aggressive
optimization settings (–fast –Qprof_use). These compiler
optimizations include auto-vectorization, profile-guided
optimization, and tune specifically for the Intel Core 2
Duo processor used in the EXO prototype system.

, and make use of
the optimized and SSE-enhanced Intel IPP library, and
the other benchmarks were manually tuned and
SSE-optimized. Performance results measure the wall
clock execution time.

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 192

Figure 10: Speedup from execution on GMA X3000
exo-sequencers over IA sequence

Performance Speedup on GMA X3000 Exo-
sequencers over IA Sequencer
Figure 10 shows the speedup achieved over IA sequencer
execution by executing media kernels on the GMA
X3000 exo-sequencers. Significant speedup is achieved,
ranging from 1.41X for up to 10.97X for .
Two factors are crucial in achieving this high throughput
performance on the GMA X3000 exo-sequencers. Most
important is the availability of abundant shred-level
parallelism. As each GMA X3000 exo-sequencer
supports only in-order execution within a shred, the
accelerator relies on the presence of multiple concurrent
shreds to cover up stalls incurred in one shred by
switching to another shred. A second, but related issue, is
the need to maximize cache hit rate and memory
bandwidth utilization. The GMA X3000 supports
simultaneous execution of 32 hardware threads, each of
which might be reading and writing multiple data streams.
The CHI runtime allows programmers to carefully
orchestrate shred scheduling to ensure shreds accessing
adjacent or overlapping macroblocks are ordered closely
together in the work queue so as to take advantage of
spatial and temporal localities.

Other than support for thread-level parallelism, the GMA
X3000 ISA also provides strong support for data-level
parallelism. It features significantly wider SIMD
operations (8- to 16-wide vector) than the SSE on today’s
IA CPU.

Figure 11: Impact of shared virtual memory

Impact of Data Copying Versus Shared
Virtual Address Space
In general, the performance improvement achieved by
using an accelerator is determined not only by the
accelerator architecture but also by the overhead of data
communication between the CPU and accelerator. This
overhead varies greatly depending on the memory model
between the CPU and the accelerator. Figure 11 shows
overall performance improvement achieved with a cache
coherent shared virtual memory model between the IA
sequencer and the GMA X3000 exo-sequencers. In the
absence of cache coherence or shared memory, the data
communication overhead can significantly degrade the
speedup achieved from accelerating the computation. In
Figure 11 we contrast performance impacts for three
memory model configurations.

The first configuration, Data Copy, assumes a model
without shared virtual memory and no cache coherence
between the IA sequencer and the GMA X3000 exo-
sequencers. Consequently, data communication between
IA shred and GMA X3000 shreds requires explicit data
copying, for which we assume a 3.1GB/s data copy rate.
This corresponds to an aggressive data copy rate using an
SSE-enhanced memory copy routine when copying data
from a cacheable memory source to a destination region
marked as uncacheable, write-combining memory. The
Intel Core 2 Duo processor features special write-
combining buffers that allow aggressive burst mode
transfers when copying from cacheable memory to write-
combining memory. Due to the lack of shared virtual
memory, the inter-shred communication between the IA
shred and GMA X3000 shreds resembles that of
traditional message passing communication between
processes from different address spaces.

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 193

The second configuration, Non-CC Shared, assumes a
shared virtual address space but without cache coherency
between the IA sequencer an the GMA X3000
exo-sequencers. Data copying can be avoided in this case as
both the IA sequencer and GMA X3000 exo-sequencers can
access the identical physical memory location for the same
virtual address. Memory writes performed by the IA
sequencer or the GMA X3000 exo-sequencers may not be
visible to the other until after a cache flush operation, which
forces any dirty cache lines to be written back to main
memory. However, data communication can still be
accomplished by passing a pointer to a shared data structure
between the IA sequencer and a GMA X3000
exo-sequencer as long as cache flush operations are
appropriately invoked. Due to the lack of cache coherence,
the IA shred and the GMA X3000 shreds need to use critical
sections to enforce mutually exclusive access to shared data
structures. The semaphore on the critical section will not be
released until the GMA X3000 exo-sequencers completely
flush the dirty lines to memory.

The first configuration, Data Copy, assumes a model
without shared virtual memory and no cache coherence
between the IA sequencer and the GMA X3000
exo-sequencers. Consequently, data communication
between IA shred and GMA X3000 shreds requires
explicit data copying, for which we assume a 3.1GB/s
data copy rate. This corresponds to an aggressive data
copy rate using an SSE-enhanced memory copy routine
when copying data from a cacheable memory source to
a destination region marked as uncacheable,
write-combining memory. The Intel Core 2 Duo
processor features special write-combining buffers that
allow aggressive burst mode transfers when copying from
cacheable memory to write-combining memory. Due to
the lack of shared virtual memory, the inter-shred
communication between the IA shred and GMA X3000
shreds resembles that of traditional message passing
communication between processes from different
address spaces.

The third configuration, CC Shared, models a
cache-coherent shared virtual address space, which is the
configuration assumed in Figure 10. In this model, data
communication between the IA shred and the GMA
X3000 shreds becomes much more efficient. Similarly,
the synchronization on mutual access to shared data
structure is also made much easier for programmers. For
example, while critical sections are still necessary to
provide mutual exclusion on writes to a shared variable,
one shred can always read the shared variables that are
updated by the other shreds. This allows more execution
concurrency between shreds.

The performance data in Figure 11 demonstrate the
benefits of a shared virtual address space compared to

data copying. While significant performance
improvement is still possible even with data copying, for
computationally intensive kernels (e.g., and

), the gains are significantly reduced from the
original CC Shared configuration in cases such as

 and . For benchmarks in which the
GMA X3000 performs little computation on the loaded
input data, the time to copy data between separate address
spaces represents a significant fraction of the processing
time. Even with a highly optimized implementation on the
latest IA Intel Core 2 Duo processor, the data copying
achieves only 70.5% of that seen for a coherent shared
virtual address space.

The cost of copying data can be ameliorated if the IA
sequencer and the GMA X3000 exo-sequencers operate
within a shared virtual address space, even if cache
coherency is not supported. The time required to flush
caches is still nontrivial, however, and the lack of
coherency (Non-CC Shared) still yields 85.3% of the
performance achieved with full cache coherency. Support
for cache coherence improves performance because the
cache flush operation is not needed to synchronize
memory accesses.

For the Non-CC Shared configuration, when an IA shred
spawns GMA X3000 shreds, it may appear necessary to
flush the IA sequencer’s cache fully before any GMA
X3000 shred can be launched. In reality the majority of
the cache flush operation on the IA sequencer can be
overlapped with parallel shred execution on the GMA
X3000 exo-sequencers if cache flush operations and shred
launches can be interleaved. As each exo-sequencer shred
only reads and writes a tiny portion of each data buffer
(e.g., a 16 pixel by 16 pixel macroblock), as long as those
data have been flushed back to memory by the IA
producer shred, the exo-sequencer consumer shred for
that macroblock can be launched and can execute safely.
Additional cache flush operations can then proceed in
parallel with useful work being performed in parallel on
the exo-sequencers.

CONCLUSION
In this paper we present the EXO MIMD extension to
the IA ISA to expose heterogeneous cores as application-
level architecture resources and provide shared virtual
memory to support the classic multi-shredded
programming model for heterogeneous multi-core
processors. The EXO architecture allows application
programs to directly use heterogeneous hardware as
MIMD functional units while requiring minimal
additional dependency on the existing OS ecosystem. In
addition, in order to take advantage of the rich ecosystem
legacy for IA software development, the CHI
programming environment provides an IA look-n-feel by

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 194

extending the Intel C++ Compiler, OpenMP runtime, and
debugger toolchains to support user-level heterogeneous
multi-shredding. Since its development, EXOCHI has
been used in Intel’s production media kernel
development. Based on extensive feedback from
developers, there is strong evidence that the IA
look-n-feel of the programming environment has
significantly improved productivity over prior device
driver-based development environments.

ACKNOWLEDGMENTS
We thank Nick Yang, Porus Khajotia, Prasoonkumar
Surti, Bob Dreyer, Sang-hee Lee, Katen Shah, Mike
Dwyer, Yi-jen Chiu, Lian Tang, Igor Kozintsev, Xintian
Wu, Bevin Brett, Susan Macchia, Ping Liu, Nenad
Ukropina, Todd Schwartz, Jenny Nieh, David Sehr, Wei
Li, and Sanjiv Shah for the productive collaboration
throughout the EXOCHI project. We also appreciate the
support from Shekhar Borkar, Joe Schutz, Tom Piazza,
Justin Rattner, Jim Held, Steve Pawlowski, Kevin J.
Smith, Bill Savage, Ketan Paranjape, Raj Hazra, Alan
Crouch, Bryant Bigbee, Wilf Pinfold, Dave Shinsel, Ajay
Bhatt, Doug Carmean, Per Hammarlund, Dion Rodgers,
Steve Whalley, Avi Mendelson, and Prashant Sethi. In
addition, we thank Anne Bracy, Ethan Schuchman, Ankur
Khandelwal, Marian Lacey, and the anonymous reviewers
whose valuable feedback has helped the authors greatly
improve the quality of this paper.

REFERENCES
[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.

Houston, and P. Hanrahan, “Brook for GPUs: Stream
Computing on Graphics Hardware,” in ACM Transactions
on Graphics, 23(3): 777–786, 2004.

[2] P. Dubey, “Recognition, Mining and Synthesis
Moves Computers to the Era of Tera,”
Technology@Intel Magazine, February 2005.

[3] GLSL–OpenGL Shading Language, in
www.wikipedia.org/wiki/GLSL*

[4] R. Gonzalez, “A Software-configurable Processor
Architecture,” IEEE Micro, Sept./Oct. 2006, pp. 42–51.

[5] GPGPU: General Purpose Computation using
Graphics Hardware, at www.gpgpu.org*

[6] E. Grochowski, M. Annavaram, “Energy per
Instruction Trends,” in Intel® Microprocessors.
Technology@Intel Magazine, March 2006, at
http://www.intel.com/technology/magazine/research/
energy-per-instruction-0306.pdf

[7] R. Hankins, G. Chinya, J. Collins, P. Wang, R.
Rakvic, H. Wang and J. Shen, “Multiple Instruction
Stream Processor, in Proceedings of the 33rd

International Symposium on Computer Architecture,
June 2006.

[8] J. Hoffman, D. A. Ilitzky, A. Chun, A. Chapyzhenka,
“Architecture of Scalable Communication Core,” in First
International Symposium on Networks-on-Chip, 2007.

[9] Intel Corp., Intel G965 Express Chipset, at
http://www.intel.com/products/chipsets/g965/prod_brief.pdf

[10] Intel Corp., “Intel’s Next Generation Integrated
Graphics Architecture – Intel Graphics Media
Accelerator X3000 and 3000,” White Paper, 2006.

[11] Intel Corp., “Tera-scale Research Prototype:
Connecting 80 Simple Sores on a Single Test Chip,”
ftp://download.intel.com/research/platform/tera-
scale/tera-scaleresearchprototypebackgrounder.pdf

[12] Intel Corp., “WiMAX,” in Intel Technology Journal
Vol. 8 Issue 3, at
ftp://download.intel.com/technology/itj/2004/volume
08issue03/vol8_iss03.pdf.

[13] U. Kapasi, S. Rixner, W. Dally, B. Khailany, J. Ahn,
P. Mattson and J. Owens, “Programmable Stream
Processors,” in IEEE Computer, 2003.

[14] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi,
and K. Farkas, “Single-ISA Heterogeneous Multi-
Core Architectures for Multi-threaded Workload
Performance,” in Proceedings of the 31st

International Symposium on Computer Architecture,
June 2004.

[15] F. Labonte, P Mattson, W. Thies, I. Buck, C.
Kozyrakis, and M. Horowitz, “The Stream Virtual
Machine,” in Proceedings of the 13th International
Conference on Parallel Architectures and
Compilation Techniques, 2004.

[16] W. Mark, R. Glanville, K. Akeley, and M. Kilgard,
“Cg: A System for Programming Graphics Hardware
in a C-like Language,” ACM Transactions on
Graphics 22, 3, 896–907.

[17] M. McCool and S. Toit, Metaprogramming GPUs
with Sh, A K Peters, Ltd., Wellesley, MA, 2004.

[18] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, A. Lefohn, and T. Purcell, “A Survey of
General-Purpose Computation on Graphics
Hardware,” Eurographics, August 2005.

[19] PeakStream Inc., “The PeakStream Platform: High
Productivity Software Development for Multi-core
Processors,” White Paper, 2006.

[20] RapidMind Inc., “Performance Evaluation of GPUs
using the RapidMind Development Platform,”
Supercomputing’06.

[21] S. Shah, G. Haab, P. Petersen, J. Throop, “Flexible
control structures for parallelism in OpenMP,” in

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 195

Proceedings of the First European Workshop on
OpenMP, Sept. 1999.

[22] M. Segal and M. Peercy, “A Performance-Oriented
Data Parallel Virtual Machine for GPUs,”
SIGGRAPH, 2006.

[23] E. Su, X. Tian, M. Girkar, G. Haab, S. Shah, and P.
Petersen, “Compiler Support of the Workqueuing
Execution Model for Intel SMP Architectures,” in
EWOMP, 2002.

[24] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator:
Using Data Parallelism to Program GPUs for
General-Purpose Uses,” in Proceedings of the
Twelfth International Conference on Architectural
Support for Programming Languages and Operating
Systems, Oct. 2006.

[25] W. Thies, M. Karczmarek, and S.
Amarasinghe,“StreamIt: A Language for Streaming
Applications,” CC, 2002.

[26] X. Tian, M. Girkar, S. Shah, D. Armstrong, E. Su,
and P. Petersen, “Compiler and Runtime Support for
Running OpenMP Programs on Pentium- and
Itanium-Architectures,” in Proceedings of the 17th

International Symposium on Parallel and Distributed
Processing, April 2003.

[27] O. Wechsler, “Inside Intel Core Microarchitecture:
Setting New Standards for Energy-efficient
Performance,” Technology@Intel Magazine, 2006.

[28] D. Zhang, Z Li, H. Song, and L. Liu, “A
Programming Model for an Embedded Media
Processing Architecture,” SAMOS, 2005.

AUTHORS’ BIOGRAPHIES
Perry Wang is a Senior Staff Engineer with Intel’s
Corporate Technology Group. His work involves research
on processor architecture, microarchitecture and compiler
optimization techniques. Perry has been with Intel for 12
years and holds a master’s degree in Computer
Engineering from the University of Michigan.

Jamison Collins is a Staff Engineer with Intel’s
Corporate Technology Group. His work involves
exploring and prototyping future Intel processor
architecture and microarchitecture. Jamison has been with
Intel for four years and holds a Ph.D. degree in Computer
Science and Engineering from UC San Diego.

Gautham Chinya is a Senior Staff Engineer with Intel’s
Corporate Technology Group. His work involves
exploring future processor system architecture and
interaction with operating systems. Gautham has been
with Intel for eight years and holds a master’s degree in
Computer Engineering from Purdue University.

Hong Jiang is a Senior Principal Engineer with Intel’s
Mobility Group. He is Intel’s lead architect specializing in
video technology. Hong has been with Intel for ten years
and holds a Ph.D. degree in Electrical Engineering from
the University of Illinois at Urbana-Champaign.

Xinmin Tian is a Principal Engineer with Intel’s
Software Solutions Group. He is Intel’s lead compiler
architect specializing in compiler parallelization,
OpenMP, vectorization, and transactional memory
compiler development projects. Xinmin has been with
Intel for eight years and holds a Ph.D. degree in
Computer Science from Tsinghua University.

Milind Girkar is a Principal Engineer with Intel’s
Software Solutions Group. He is Intel’s lead compiler
architect specializing in compiler parallelization and is
responsible for planning the compiler requirements
for future Intel processors. Milind has been with Intel for
twelve years and holds a Ph.D. degree in Computer
Science from the University of Illinois at Urbana-
Champaign.

Lisa Pearce is the software engineering manager with
Intel’s Mobility Group responsible for media
development and content protection for all Intel integrated
graphics solutions. Lisa has been with Intel for ten years
and holds a bachelor’s degree in Computer Science from
Virginia Tech.

Guei-yuan Lueh is a Principal Engineer with Intel’s
Mobility Group. He leads the development of advanced
compiler and runtime technology for Intel graphics
solutions. Guei-yuan has been with Intel for 10 years and
holds a Ph.D. degree in Computer Science from Carnegie
Mellon University.

Sergey Yakoushkin is a Software Engineer in the Intel
Corporate Technology Group. His work involves the
development of software tools for emerging embedded
platforms for communication acceleration, hardware-
software co-design, and language design for data-
streaming processing systems. Sergey has been with Intel
for two years and holds an honours MS degree in
Computer Science from St. Petersburg State University.

Hong Wang is a Senior Principal Engineer with Intel’s
Corporate Technology Group. His work involves research
on future processor architecture and microarchitecture.
Hong has been with Intel for twelve years and holds a
Ph.D. degree in Electrical Engineering from the
University of Rhode Island.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo,

Intel Technology Journal, Volume 11, Issue 3, 2007

Accelerator Exoskeleton 196

Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash,
Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive,
PDCharm, Pentium, Pentium Inside, skoool, Sound Mark,
The Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Runtime Environment for Tera-scale Platforms 207

Runtime Environment for Tera-scale Platforms

Bratin Saha, Programming Systems Lab, CTG
Ali-Reza Adl-Tabatabai, Programming Systems Lab, CTG

 Richard L. Hudson, Programming Systems Lab, CTG
Vijay Menon, Programming Systems Lab, CTG

Tatiana Shpeisman, Programming Systems Lab, CTG
Mohan Rajagopalan, Programming Systems Lab, CTG

Anwar Ghuloum, Programming Systems Lab, CTG
Eric Sprangle, Visual Computing Group, DEG

Anwar Rohillah, Visual Computing Group, DEG
Doug Carmean, Visual Computing Group, DEG

Index words: runtime environment, scalable user level services, tera-scale platform

ABSTRACT
This paper presents the design and implementation of a
runtime environment for tera-scale platforms. System
software stacks currently view tera-scale platforms as an
“SMP (symmetric multiprocessor) on a die.” We show
that there are fundamental differences between tera-scale
and SMP systems that require that the software (SW)
stack be re-architected. In particular, the SW stack needs
to provide (1) support for efficient fine-grain parallelism,
(2) programmability enhancements such as transactional
memory, and (3) support for heterogeneous platforms
and applications.

We discuss the design and implementation of a
Many-Core RunTime (McRT) environment—a prototype
tera-scale runtime environment—and show how it
addresses the challenges of a tera-scale runtime. We also
present simulation results from a tera-scale simulator
to show that McRT enables excellent scalability on
tera-scale platforms.

INTRODUCTION
System software tends to view a tera-scale chip
multiprocessor (hereafter called TS-CMP) as a large-scale
“symmetric multiprocessor (SMP) on a die”; yet, tera-
scale CMPs have several characteristics that are
fundamentally different from those of SMPs. It is critical
to address these differences in order to implement a
scalable and effective software stack. In particular it is
important for the software stack to support (1) efficient

fine-grain parallelism, (2) new concurrency abstractions
that make parallel programming easier, and (3) platform
and application heterogeneity.

Supporting Fine-grain Parallelism
TS-CMP has a very different compute-to-cache ratio than
a traditional SMP. A 32-way SMP system typically has
more than 100 MBs of aggregate cache size, while a
32-core TS-CMP has less than 10 MBs of cache. Thus a
TS-CMP application needs to be threaded at a much finer
granularity to reduce its working set. For example,
MPEG4 encoding could be parallelized on a large-way
SMP by encoding several frames in parallel. On a
TS-CMP the encoding of an individual frame needs to be
parallelized since the platform will not be able to cache
multiple high-definition frames. Finally, many tera-scale
applications benefit from fine-grain nested data
parallelism rather than from coarse-grain task parallelism.

On the other hand, a TS-CMP enables fine-grain
parallelism since inter-core communication is much
easier—core-core bandwidth is of the order of
terabytes/sec as opposed to gigabytes/sec for an SMP, and
core-core latency is in the low tens of cycles (say 20
cycles) as opposed to hundreds of cycles in an SMP.
Moreover, the effective core-core latency is much
smaller, since the high degree of threading in a TS-CMP
core allows some other thread (within the same core) to
fully utilize the core resources if one thread is blocked on
a cache miss.

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 208

Supporting New Concurrency Abstractions
Due to their high cost, large-way SMP systems have been
restricted to niche markets, running applications written
by sophisticated programmers whereas TS-CMP
processors are targeted at mainstream price points and
will bring parallelism to the average programmer. The
success of TS-CMP processors and the applications that
run on them depends on mainstream programmers
embracing parallelism aggressively. Thus, the system SW
stack should include new higher-level concurrency
abstractions that make it easier for the average
programmer to deal with parallelism.

Supporting Heterogeneity
Unlike SMPs, a TS-CMP software stack must
comprehend heterogeneity at multiple levels. At the
application level, TS-CMP processors will run a more
diverse set of applications because they are targeted at a
much broader market. At the hardware level, the TS-CMP
platform may be heterogeneous with a combination
of high-performance scalar cores, an array of
high-throughput cores, and fixed function units. The
system software stack must comprehend this
heterogeneity. It needs to support configurable policies,
for example, configurable scheduling policies, to adapt to
different applications, and it needs to schedule
applications according to their hardware requirements.

In this paper we present the design and implementation of
McRT, a runtime environment for tera-scale platforms.
McRT provides a configurable runtime framework that
addresses the key tera-scale runtime requirements in the
following ways:

Fine-grain parallelism: McRT implements a
significant fraction of threading services such as
thread creation, synchronization, memory
management, etc. at the user level. It also provides
efficient user-level abstractions such as futures
that make it easier to program and extract
fine-grain parallelism.

Concurrency abstractions: McRT includes a high-
performance transactional memory library that
supports an atomic construct in both C/C++ and Java.
Transactional memory [15] provides a number of
software engineering benefits compared to locks for
managing access to shared data.

Heterogeneity: McRT supports a number of
configurable runtime policies that can be adapted for
a particular application. In addition, McRT also
supports multiple scheduling domains. Different
hardware (HW) units can be mapped to different
scheduling domains, and applications can be
scheduled independently within each domain.

We show McRT’s scalability using media encoding and
Recognition, Mining, Synthesis (RMS) applications [11]
on a tera-scale simulator. The results show that McRT’s
efficient threading primitives enable the applications to
scale almost linearly up to 64 HW threads. We show that
transactional memory can significantly ease parallel
programming. Applications can use coarse-grain atomic
blocks to synchronize access to shared data; yet they can
achieve the performance of fine-grain locking. We also
show a prototype implementation of a heterogeneous HW
platform that leverages the support for scheduling
domains in McRT.

McRT ARCHITECTURE
At its core, McRT contains a set of user-level threading
primitives including a scheduler, memory manager,
synchronization primitives, and a set of threading
abstractions. We implemented these traditional operating
system (OS) services as user-level primitives to improve
efficiency by avoiding the expensive transitions between
the user level and OS level making fine-grain
parallelism more tractable. The McRT architecture is
shown in Figure 1.

Figure 1: McRT architecture

McRT provides two user-level threading abstractions,
threads and futures. The threads are similar to POSIX
threads in functionality, while the futures are more
lightweight and intended to support a concurrency idiom
found in some languages such as MultiLisp [14] and
CILK [8]. Futures provide a serial execution semantic,
but can be executed in parallel if there are additional
hardware resources.

The user-level scheduler is implemented as a task queue.
An application can configure the number of task queues,
e.g., specifying a single task queue for each processor.
The application can also specify the scheduling policy,
e.g., it can ask for a work-sharing policy where new tasks

Simulator Bare metal
(sequestered)

Windows
Linux

pthreads Java,ORP OpenMP

Threading Abstractions
Scheduler

Synchronizatio

Memory Manager
T.M

Core McRT

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 209

are distributed among the task queues, or a work-stealing
policy where idle processors search different queues for
the next available task.

McRT uses a cooperative scheduling policy as opposed to
the preemptive scheduling policy used predominantly in
software stacks for SMPs. In an SMP system, the
processing resource is expensive. Therefore the system
software tries to timeshare the processing resource across
multiple application threads by using preemptive
scheduling. In a TS-CMP platform (say a platform with
128 cores), the processing resource is both inexpensive
and abundant, which led us to use cooperative scheduling.
This in turn addresses scalability bottlenecks, such as
convoying, since an application can control when a thread
gets preempted.

McRT includes a user-level synchronization library that
includes different scalable algorithms such as MCS [24]
locks and CLH [22] queues. It also includes a user-level
memory allocator [16] that uses per-thread private
allocation blocks. The allocator uses a completely
non-blocking implementation that allows it to scale even
with large oversubscription where the number of software
threads is much greater than the number of
hardware processors.

Finally, McRT includes a number of client adaptors that
translate existing popular paradigms such as OpenMP and
pthreads to the core McRT API. The OpenMP adaptor
implements the API used by the Intel® C compiler, while
the pthreads adaptor translates the POSIX API.

The core services in McRT are modularized and can be
used as standalone services. For example, the memory
manager ships as part of the Threading Building Blocks,
while the transactional memory module has been tightly
integrated into several compilers including the Intel C
compiler, the StarJIT compiler [1], and the Harmony
JITtrino compiler [5].

Evaluating Support for Fine-Grain
Parallelism
We used a number of micro-benchmarks to evaluate the
efficiency of the McRT threading primitives and hence its
support for fine-grain parallelism. Figure 2 shows the
results: the first row compares the cost of creating 255
threads; the second row compares the cost of 1000
consecutive lock acquire and release operations; and the
final row compares the cost of 1000 context switches. In
each case the gettimeofday() system call was used for the
measurements. All the experiments were run on a 2.8GHz
Intel® Xeon® processor. Column 2 reports the
measurements observed by using native threads on Linux*

2.4.9, while Column 3 reports the measurements from

using native threads on RedHat Enterprise* Linux
2.6.9-22ELsmp (NPTL 0.60).

 Native
threads on
Linux 2.4.9

µsec

Native
threads on
Linux 2.6.9

µsec

McRT

 µsec

Thread create

(255 iterations)

21294 8960 1841

Mutex
lock/release

(1000 iterations)

120 82 81

Context switch

(1000 iterations)

2927 3600 748

Figure 2: Micro-benchmark evaluation

We also measured the scalability of our threading
primitives. Figure 3 compares the cost of creating
thousands of threads on McRT and on Linux (2.6.9). Note
that the efficiency of thread creation in McRT does not
degrade even with thousands of threads.

Figure 3: Scalability of thread creation

As mentioned before, McRT also implements futures to
provide a lighter weight concurrency mechanism. Figure
4 compares the overhead of McRT futures to that of using
McRT threads. For this, we created batches of futures and
threads whose executable code simply returned
immediately. We compared the time to complete such a
batch using both threads and futures. Figure 4 compares
the ratio of the execution time for threads and futures with
futures being 40 to 100 times more efficient than threads.
Obviously, futures can provide very good support for
fine-grain parallelism.

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 210

0

20

40

60

80

100

120

140

0 8 16 24 32 40 48 56 64

threads

Figure 4: Thread vs. future creation overhead

NEW CONCURRENCY ABSTRACTION:
TRANSACTIONAL MEMORY
Parallel programming poses many new challenges to the
developer. A major one is synchronizing access to shared
data between multiple threads. Traditionally,
programmers have used locks for synchronization, but
this method has well-known pitfalls such as deadlock and
lack of composition. Transactional memory provides a
new language construct that avoids the pitfalls of lock-
based synchronization and eases concurrency control.

The McRT core services include a Transactional Memory
(TM) library that supports the implementation of TM for
C/C++ (unmanaged) and Java (managed). The TM library
uses 2-phase locking to implement pessimistic write
concurrency, and it uses versioning to implement
optimistic read concurrency [27]. Every datum that may
be accessed inside a transaction is associated with a
transaction record—a pointer-sized word that mediates
access to the shared datum. On a write, the TM library
acquires exclusive ownership of the transaction record,
performs an in-place update, and records the old value
and the version number in an internal undo-log. On a
read, the TM library records the version number of the
transaction record (corresponding to the data address) in
an internal read log. Before committing, the TM library
validates a transaction by checking that the version
numbers of the transaction records in the read set have not
been changed. Upon committing, the lock is released and
the version number is incremented. On an abort, the
library uses the values in the undo-log to roll back the
updates.

The TM library is also integrated with other runtime
services such as memory management [16]. For example
if a transaction allocates memory during its execution, the
memory is automatically freed when the transaction
aborts. Using a language-neutral API, we integrated the

TM library with the Intel C/C++ compiler v10 and the
StarJIT and JITtrino compilers for Java. These compilers
take language-level transactional code blocks and insert
calls to the appropriate runtime functions for every shared
memory access inside the code block. This allows
programmers to directly use TM rather than locks for
concurrency control.

Figure 5: Transactions vs. locks on a hashmap

Figure 5 compares the performance of locks and
transactions on a hashmap data structure. It measures the
time taken to complete a set of insert, delete, and update
operations on lock-based and transactional versions of the
hashmap [2] on a 16-way SMP machine. The
transactional version of the hashmap was obtained by
replacing the critical sections in the coarse-grain
synchronization version with atomic sections. As
expected, coarse-grained locking (Sync(coarse)) does not
scale, but both the transactional and the fine-grain version
scale comparably, even though the transactional version
uses coarse-grain synchronization.

Figure 6: Transactions vs. locks on FMM (SPLASH2)

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 211

Figure 6 shows a similar result on the FMM benchmark,
which is part of the SPLASH2 suite. The transactional
version of the benchmark was obtained by replacing the
coarse-grain critical sections with transactions. Again,
the transactional version scales as well as the fine-grain
version even though it uses coarse-grain synchronization.

These results show that McRT allows a programmer to
leverage the software engineering benefits of
transactional memory, such as composability and coarse-
grain reasoning, while getting the performance of fine-
grain locking. We expect this to be a key enabler in
promoting multithreaded programming for tera-scale
platforms.

SUPPORTING HETEROGENEITY
McRT uses multiple scheduling domains to support
platform heterogeneity. Each domain can represent a set
of hardware units with specific features such as good
scalar performance, good throughput, special instruction
sets, and so on. McRT extends the task queue mechanism
to support scheduling domains. To create a domain Dk
consisting of logical processors Pi to Pj a client creates a
task queue Qk that is accessed only by the processors Pi to
Pj. New tasks created at these processors are only added
to Qk. The scheduler also exports an API that allows a
task to yield its current logical processor and enqueue
itself on a different task queue. A task executing in a
domain Dk can switch to a different domain D’k by
enqueing itself on to the task queue Q’k at which point it
will get executed by the processors in D’k . Applications,
or even different parts of the same application, can be
scheduled on different hardware units based on their
requirements.

We prototyped a heterogeneous hardware platform on an
8-way SMP system. One processor (referred to as the OS
processor) in the system boots up Windows* Server 2003,
while the remaining seven processors (referred to as the
sequestered processors) use McRT for all the threading
services, without using the OS. The sequestered
processors use a lightweight executive for interrupt
handling. Thus, the sequestered processors emulate an
attached compute engine, with the OS processor
emulating a host CPU. Internally, McRT creates two
scheduling domains, one representing the sequestered
processors and the other representing the OS processor.
The system configuration is shown in Figure 7.

We ran Equake* using the standard Spec input on the
sequestered system. At the beginning the application is
serial and reads the input. It then forks off a number of
threads to perform the computation. McRT scheduled
the serial part on the OS core and the parallel part on the
sequestered cores.

Figure 7: Sequestered system

Figure 8 shows the performance of Equake on the
sequestered system. We first ran the benchmark on
the 8-way SMP system with Windows running on all the
processors. These numbers are reported as “Native” and
“McRT-OS”: “Native” refers to the performance from the
Intel OpenMP* implementation (referred to as KAI in
the figure), and “McRT-OS” refers to the performance
from running McRT on top of Windows on the 8-way
SMP. “McRT-Sequestered” refers to the performance on
the sequestered system with one OS processor and seven
sequestered processors. All speedups are reported with
respect to the single thread “Native” execution time.

Figure 8: Equake on sequestered system

Equake performs much better on the sequestered system,
mainly due to the fact that the software stack is much
more lightweight and is not interrupted as often. Another
reason is that in the sequestered mode, the application
reserves and locks down enough memory at initialization
so that it does not encounter page faults during execution.

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 212

RESULTS
We used a cycle-accurate simulator to evaluate McRT’s
performance on a TS-CMP processor. The simulated
platform consists of an array of up to 16 in-order cores,
each of which has four threads. Each core will select a
different thread each cycle, round-robin, unless the thread
is stalled due to, for example, a cache miss, being in the
sleep state. The memory system consists of a 32 KB L1
data cache that is shared by all four threads in the core, a
2MB L2 cache that is shared by all the cores, and an
off-chip 4MB L3 cache. All caches were simulated with
an 8-way set associative configuration. The L1 cache
access time is 3 cycles, the L2 cache access time is 12
cycles, and the L3 cache access time is 40 cycles. The
simulator performs a cycle accurate simulation of the
execution pipeline for all the HW threads, the different
caches, the coherence protocol, the bandwidth for data
transfer between different parts of the memory system,
and the interconnect to the external memory.

We ported McRT to run directly on the simulator. Thus,
the results reflect true execution driven simulation and
accurately account for inter-thread synchronization. The
simulator was modified to support system calls, while
McRT provided all the threading services required by
the application.

We used the popular open source MPEG4 encoder XviD
(www.xvid.org*) and a set of RMS kernels [11] for
Singular Value Decomposition (SVD) and Self
Organizing Maps (SOM) as our workloads. The XviD
encoder is used mainly on frames of 1920x1080 to
correspond with frame sizes in emerging high-definition
video. We show the performance for encoding the P
frames since these (along with the B frames) happen to be
the computationally intensive parts of the encoding. The
simulated cache size does not allow multiple frames to be
encoded in parallel; therefore, we had to parallelize the
encoding of a single frame. A frame is partitioned into
“k” sub-blocks, where “k” is the number of logical
processors used for encoding. Thus, the scalability of
MPEG4 encoding is a good test of the efficiency of
McRT’s fine-grain threading support.

SVD has numerous applications in the areas of
data-mining and feature extraction, signal processing, and
automated control; this workload uses the Jacobi method.
An SOM is an unsupervised learning method represented
by a two-layer neural network. Typically, it is used to
map N dimensional data to two dimensions to discern
patterns. It is extensively applied in text and feature
mining, pattern recognition, and medical diagnostics.

Figure 9: XviD speedup

Figure 9 shows the speedup of encoding a single frame as
we increase the number of processors. The x-axis shows
the number of cores. Note that for k cores, the number of
HW processors is k*4. The graph uses the execution time
on a single core (4 threads) as the baseline. Even at 16
cores (64 threads) we get almost a linear speedup (the
“Linear” line in the graph represents speedup expected if
the application was completely parallelized). The speedup
on the 1080P (1920x1080) frame is slightly higher than
on the 768P (1024x768) frame since the sub-block sizes
are larger, and hence the cost of threading gets amortized.

Figure 10 shows the speedup for the RMS workloads.
(The x-axis represents the number of cores, and the
baseline is the execution time on a single core.) Both
SVD and SOM scale almost perfectly up to 64 HW
threads.

Figure 10: RMS speedup

RELATED WORK
Our work was inspired by previous projects in the areas
of language systems, operating systems design, and
high-performance computing. Several operating systems

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 213

have explored issues related to SMP scalability [3, 4, 17,
23, 26]. Disco [9] and K42 [18] have explored the design
of scalable operating systems. Currently, operating
systems such as Linux and MS Windows treat CMP
architectures as an SMP on a chip. While the McRT
framework arose out of our experience of these projects,
this paper shows why we still need to rethink the system
design to fully enable a scalable tera-scale environment.

The threading and synchronization primitives provided by
McRT are similar to those seen in traditional user-level
threading packages such as pthreads [19], NGPT [25],
NPTL [10] and Capriccio [6]. The McRT scheduler is
comparable to user-level schedulers that have been
explored in the context of kernels such as L4 [20],
Exokernel [12], Flux [13], and SPIN [7], but it is more
lightweight and configurable. The McRT runtime is also
comparable to language runtimes such as CILK [8]
and OpenMP [21], but unlike these runtimes it is
platform-neutral.

Finally, the specific mechanisms used in the McRT-STM
[27] and the McRT memory manager [16] are described
elsewhere, while the compiler integration is discussed in
[2, 28].

CONCLUSION
A tera-scale platform has a number of fundamental
differences from a traditional SMP system, which
requires that the system software stack be redesigned to
provide an effective and scalable runtime environment. In
particular, the runtime environment must provide good
support for fine-grain parallelism, support new
concurrency abstractions that ease parallel programming,
and support heterogeneous platforms and applications.

This paper described how McRT addresses the challenges
of a many-core environment. To enable efficient
fine-grain parallelism, McRT replaces many of the
OS-level services with user-level primitives. Our results
show that this enables a very scalable runtime stack that
scales to more than 64 HW threads.

To ease parallel programming, McRT provides
a high-performance TM library that supports a
language-level atomic construct. TM provides several
software engineering benefits compared to locks such as
deadlock freedom, scalable composition, and failure
atomicity. Additionally, our results show that transactions
achieve the performance of fine-grain locking, yet allow
coarse-grain synchronization.

McRT supports heterogeneity by dividing the platform
into independent scheduling domains. These domains can
be mapped to different hardware resources, and
applications can be scheduled on the domain that best fits
their requirements. In addition, McRT also supports a

number of configurable runtime policies that allow it to
adapt to different applications.

ACKNOWLEDGMENTS
We thank Leaf Petersen who provided the futures
implementation in McRT and Cheng Wang who helped to
implement the transactional memory support in the Intel
C compiler. We also thank Jesse Fang who provided
unstinted support and guidance for this work.

REFERENCES
[1] A. Adl-Tabatabai, J. Bharadwaj , D. Chen, A.

Ghuloum, V. S, Menon, B. R. Murphy, M. Serrano,
T. Shpeisman, “The StarJIT compiler: a dynamic
compiler for managed runtime environments,” Intel
Technology Journal, Feb. 2003.

[2] A. Adl-Tabatabai, B.T. Lewis, V.S. Menon, B.M.
Murphy, B. Saha, T. Shpeisman, “Compiler and
runtime support for efficient software transactional
memory,” PLDI, 2006.

[3] T. E. Anderson, D. E. Lazowska, and H. M. Levy,
“The Performance Implications of Thread
Management Alternatives for Shared-Memory
Multiprocessors,” IEEE Trans. on Comp., Dec.
1989.

[4] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and
H.M. Levy, “Scheduler Activations: Effective
Kernel Support for the User-Level Management of
Parallelism.,”ACM ToCS, Feb. 1992

[5] Apache Harmony Project at
http://harmony.apache.org/*

[6] R. von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. Brewer, “Capriccio: Scalable threads for
internet services,” in Proceedings SOSP-19, 2003.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. Gün Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, S. J.
Eggers, “Extensibility, Safety and Performance in
the SPIN Operating System,” SOSP, 1995.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk, “An
Efficient Multithreaded Runtime System,” PPoPP,
1995.

[9] E. Bugnion, S. Devine, and M. Rosenblum, “Disco:
running commodity operating systems on scalable
multiprocessors,” In Proceedings SOSP-16, 1997.

[10] U. Drepper and I. Molnar, “The native POSIX
thread library for Linux, “January 2003, at
http://people.redhat.com/drepper/nptl-design.pdf*.

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 214

[11] P. Dubey, “Recognition, Mining, and Synthesis
moves computers to the era of tera,”
Technology@Intel, February 2005.

[12] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr.,
“Exokernel: an operating system architecture for
application-specific resource management,” SOSP-
15, 1995.

[13] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin,
and O. Shivers, “The Flux OSKit: A Substrate for
Kernel and Language Research,” SOSP-16, 1997.

[14] R. Halstead, “Multilisp: A Language for
Concurrent Symbolic Computation,” in ACM
Transactions on Programming Languages and
Systems, October 1985.

[15] M. Herlihy, and J. E. B. Moss, “Transactional
memory: architectural support for lock-free data
structures,” ISCA, 1993.

[16] R. Hudson, B. Saha, A. Adl-Tabatabai, B.
Hertzberg, “McRT-Malloc: A Scalable Transaction
Aware Memory Allocator,” ISMM, 2006.

[17] M. B. Jones, R. F. Rashid, “Mach and
Matchmaker: Kernel and Language Support for
Object-Oriented Distributed Systems,” OOPSLA,
1986.

[18] The K42 project, IBM Research, at
http://www.research.ibm.com/k42/*

[19] B. Lewis and D. J. Berg, Multithreaded
Programming with Pthreads, Prentice Hall, New
Jersey, 1998.

[20] J. Liedtke, “On micro-Kernel Construction,”
SOSP-15, 1995.

[21] H. Lu, Y. C. Hu, and W. Zwaenepoel, “OpenMP
on networks of workstations,” in Supercomputing,
November 1998.

[22] P. Magnussen, A. Landin, and E. Hagersten,
“Queue locks on cache coherent multiprocessors,”
8th Intl. Parallel Processing Symposium, Cancun,
Mexico, April 1994.

[23] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.
Markatos, “Firstclass user-level threads,” in
Proceedings SOSP-13, October 1991.

[24] J. M. Mellor-Crummey and M. L. Scott,
“Algorithms for scalable synchronization on
shared-memory multiprocessors,” ACM
Transactions on Computer Systems, 9(1):21–65,
1991.

[25] Next Generation POSIX Threading
 at http://www-124.ibm.com/pthreads/*

[26] J. Ousterhout, A. Cherenson, F. Douglis, M.
Nelson, and B. Welch, “The Sprite network
operating system,” IEEE Computer, 21(2):23–36,
February 1988.

[27] B. Saha, A. Adl-Tabatabai, R. Hudson, C. Minh,
B. Hertzberg, “McRT-STM: A High Performance
Software Transactional Memory System For A
Multi-Core Runtime,” PPoPP, 2006.

[28] C. Wang, W. Chen, Y. Wu, B. Saha, A. Adl-
Tabatabai, “Code Generation and Optimization for
Transactional Memory Constructs in an
Unmanaged Language,” CGO, 2007.

AUTHORS’ BIOGRAPHIES
Bratin Saha is a Senior Staff Researcher in Intel’s
Programming Systems Lab. His current research is
focused on the design and implementation of modern
concurrency abstractions, such as transactional memory,
and highly concurrent runtime environments. He was one
of the architects of locking and synchronization in the
Nehalem processor. Bratin received his M.S. and Ph.D
degrees in Computer Science from Yale University, and
his B.S. degree in Computer Science and Engineering
from the Indian Institute of Technology, Kharagpur. His
e-mail is bratin.saha at intel.com.

Ali-Reza Adl-Tabatabai is a Senior Principal Engineer
in Intel’s Programming Systems Lab. He leads a team of
researchers working on compilers and scalable runtimes
for future Intel® Architectures. Ali has spent most of his
career building high-performance programming language
implementations, including static and dynamic optimizing
compilers and language runtime systems. His current
research concentrates on language features, that make it
easier for the mainstream developer to build reliable and
scalable parallel programs for future multi-core
architectures, and on architectural support for those
features. Ali has published over 20 papers in leading
conferences and journals. He received his Ph.D. degree in
Computer Science from Carnegie Mellon University.

Richard L. Hudson is best known for his work in
memory management including the invention of both the
Train Algorithm and the Sapphire Algorithm. Richard
joined Intel in 1998 where he has worked on concurrency
related issues. He went to Shortridge and holds a B.A.
degree from Hampshire College and an M.S. degree from
the University of Massachusetts. His e-mail is rick.hudson
at intel.com.

Vijay Menon is a Senior Research Scientist in the
Programming Systems Lab at Intel investigating new
programming technologies for multi-core systems. His
primary areas of a research include compilers, managed
runtimes, and transactional memory. Vijay holds a Ph.D.

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 215

degree in Computer Science from Cornell University and
a B.S. degree in Electrical Engineering and Computer
Science from the University of California at Berkeley.

Tatiana Shpeisman received her B.S. degree in Applied
Mathematics from Leningrad Electrical Engineering
Institute. She got her M.S. and Ph.D. degrees in
Computer Science from the University of Maryland,
College Park. Currently, she is a Senior Software
Engineer working at the Intel Microprocessor
Technology Lab. She is a member of ACM. Her e-mail is
Tatiana.shpeisman at intel.com.

Mohan Rajagopalan’s current research focuses on
parallel runtime technologies for emerging many-core
platforms. Mohan received his M.S. and Ph.D degrees
from the University of Arizona in 2001 and 2006,
respectively. His dissertation explored the application of
language and compiler techniques to optimize overall
systems design for automatically improving aspects such
as security and dependability in addition to performance.
His e-mail is mohan.rajagopalan at intel.com.

Anwar Ghuloum is a Principal Engineer with Intel’s
Microprocessor Technology Lab, working on diverse
topics such as parallel language and compiler design,
parallel architecture evaluation, optimizing memory
system performance, and multimedia applications. Anwar
received a B.S. degree in Computer Science and
Engineering from the University of California, Los
Angeles and a Ph.D. degree in Computer Science from
Carnegie Mellon University’s School of Computer
Science in 1996. Before joining Intel, he co-founded and
was the CTO of a fab-less semiconductor startup that
designed parallel image and video processors for the
consumer electronics market. Prior to that, Anwar
developed novel predictive drug design software for early
lead optimization using 3D surface pattern recognition
techniques for a biotech startup. A recurring theme in
Anwar’s work has been to bridge high-level application
knowledge and low-level parallel architecture constraints
with careful parallel language and compiler design to
achieve the optimal tradeoffs in productivity and
performance. His e-mail is anwar.ghuloum at intel.com.

Eric Sprangle is a Principal Engineer with Intel’s Visual
Computing Group in Austin. Eric has been with Intel for
eight years, working on the Intel® Pentium® 4 processor
family, and he is currently one of the lead architects on
the Larrabee project. Prior to joining Intel, Eric worked at
ROSS Technology. Eric enjoys training for and racing in
triathlons. His e-mail address is eric.sprangle at intel.com.

Anwar Rohillah is currently working as a VCG architect
focusing on performance analysis and simulation. He has
also worked on the Intel Pentium 4 processor family
developing hardware prefetchers and doing performance

analysis. Anwar obtained his B.A.Sc. degree in Computer
Engineering from the University of Waterloo and joined
Intel in 1999. His e-mail is anwar.rohillah at intel.com

Doug Carmean is a Senior Principal Engineer with
Intel’s Visual Computing Group in Oregon. Doug was
one of the key architects responsible for definition of the
Intel Pentium 4 processor. He has been with Intel for 18
years, working on IA-32 processors from the 80486 to the
Intel Pentium 4 processor and beyond. Doug is currently
the Larrabee Chief Architect. Prior to joining Intel, Doug
worked at ROSS Technology, Sun Microsystems,
Cypress Semiconductor and Lattice Semiconductor. Doug
enjoys fast cars and scary, Italian motorcycles. His e-mail
address is douglas.m.carmean at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst,
Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States
and other countries.

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Intel Technology Journal, Volume 11, Issue 3, 2007

Runtime Environment for Tera-scale Platforms 216

THIS PAGE INTENTIONALLY LEFT BLANK

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 217

Architectural Support for Fine-Grained Parallelism
on Multi-core Architectures

Sanjeev Kumar, Corporate Technology Group, Intel Corporation
Christopher J. Hughes, Corporate Technology Group, Intel Corporation

Anthony Nguyen, Corporate Technology Group, Intel Corporation

Index words: multi-core, loop and task parallelism, architectural support

ABSTRACT
In order to harness the additional compute resources of
future Multi-core Architectures (MCAs) with many cores,
applications must expose their thread-level parallelism
to the hardware. One common approach to doing this is to
decompose a program into parallel “tasks” and allow an
underlying software layer to schedule these tasks on
different threads. Software task scheduling can provide
good parallel performance as long as tasks are large
compared to the software overhead. We examine a set of
Recognition, Mining, and Synthesis (RMS) applications
and find that a significant number have small tasks for
which software task schedulers achieve only limited
parallel speedups.

We propose a hardware technique to accelerate dynamic
task scheduling on MCAs with many cores. We compare
this hardware to highly tuned software task schedulers for
a set of RMS benchmarks with small tasks. The proposed
hardware delivers significant performance improvements
over the best software scheduler: for 64 cores, it is 88%
faster on a set of loop-parallel benchmarks and 98% faster
on a set of task-parallel benchmarks.

INTRODUCTION
Multi-core Architectures (MCAs) provide applications
with an opportunity to achieve much higher performance
than uniprocessor systems. Furthermore, the number of
cores on MCAs is likely to continue growing, increasing
the performance potential of MCAs. However, realizing
this performance potential in an application requires
the application to expose a significant amount of
thread-level parallelism.

A common approach to exploiting thread-level
parallelism is to decompose each parallel section into a
set of tasks. At runtime, an underlying library or run-time
environment distributes (schedules) these tasks to the
software threads [2, 3, 4]. To achieve maximum

performance, especially in systems with many cores, it is
desirable to create many more tasks than cores and to
dynamically schedule the tasks. This allows for much
better load balancing across the cores.

We examine a set of benchmarks from an important
emerging application domain: Recognition, Mining, and
Synthesis (RMS) [1]. Many RMS applications have very
high compute demands and can therefore benefit from a
large amount of acceleration. Further, they often have
abundant thread-level parallelism. Thus, they are
excellent targets for running on MCAs with many cores.

For previously studied applications and architectures, the
overhead of software dynamic task schedulers is small
compared to the size of the tasks, and therefore, enables
sufficient scalability. However, we find that a significant
number of RMS applications are dominated by parallel
sections with small tasks. These tasks can complete
execution in as few as 50 processor clock cycles. For
these, the overhead of software dynamic task scheduling
is large enough to limit parallel speedups.

We therefore propose a hardware technique to accelerate
dynamic task scheduling on scalable MCAs. It consists of
two components: (1) a set of hardware queues that cache
tasks and implement task scheduling policies, and (2)
per-core task prefetchers that hide the latency of
accessing these hardware queues. This hardware is
relatively simple, scalable, and delivers performance close
to optimal.

We compare our hardware proposal to highly tuned
software task schedulers, and also to an idealized
hardware implementation of a dynamic task scheduler
(i.e., operations are instantaneous). On a set of RMS
benchmarks with small tasks, it provides large
performance benefits over the software schedulers
and gives performance very similar to the
idealized implementation.

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 218

 8 Tasks
4X speedup
On 4 cores

8X speedup
On 8 cores

4X speedup
On 6 cores

4X speedup
On 4 cores

8X speedup
On 8 cores

5.3X speedup
On 6 cores

 32 Tasks

Figure 1: Impact of multiprogramming

Our contributions are as follows:

1. We make the case for efficient support for
fine-grained parallelism on MCAs. Parallel tasks can
be as fine as 50 processor clock cycles.

2. We propose a hardware scheme that provides
architectural support for fine-grained parallelism. Our
proposed solution has low hardware complexity
and is fairly insensitive to access latency to the
hardware queues.

3. We demonstrate that the proposed architectural
support has significant performance benefits. First, it
delivers much better performance than optimized
software implementations: 88% and 98% faster on
average for 64 cores on a set of loop-parallel and
task-parallel RMS benchmarks, respectively. In
addition, it delivers performance close to (about 3%
on average) an idealized hardware implementation
of a dynamic task scheduler (i.e., operations
are instantaneous).

A CASE FOR FINE-GRAINED
PARALLELISM
Previous work on dynamic load balancing targeted
coarse-grained parallelism, i.e., parallel sections with
either large tasks, a large number of tasks, or both. The

target was primarily scientific applications for which this
assumption is valid. For these applications, an optimized
software implementation delivers good load balancing
with an acceptable performance overhead.

The widespread trend towards an increasing number of
cores becoming available on mainstream computers—
both at homes and at server farms—motivates efficient
support for fine-grained parallelism. Parallel applications
for the mainstream are fundamentally different from
parallel scientific applications that run on supercomputers
and clusters in a number of aspects. We discuss these
differences in detail in this section.

Architecture
Reduced communication overhead: MCAs dramatically
reduce communication latency and increase bandwidth
between cores. This allows parallelization of modules that
could not previously be profitably parallelized.

Usage scenarios: These architectures are designed to be
used with virtualization technologies as well as
multiprogramming. In both these instances, the number of
cores assigned to an application can change during the
course of its execution. Maximizing the available
parallelism under these conditions requires exploiting
fine-grained parallelism.

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 219

Consider the example shown in Figure 1 that illustrates
this using an 8-core MCA. It presents two scenarios
where the parallel section is broken down into 8 and 32
equal-sized tasks (represented by green boxes). In a
parallel section, if a core finishes its tasks before all other
cores have finished their tasks, it has to wait. This results
in wasted compute resources (shown in red). In each of
the two scenarios, it shows the performance when varying
number of cores are assigned to this parallel section. In
both scenarios, with 4 and 8 cores, all the assigned cores
are fully utilized. However, when 6 cores are assigned to
the application, the first scenario wastes significant
compute resources. In fact, it achieves the same speedup
as when it was assigned 4 cores. In the second scenario,
there are many fewer wasted compute resources because
the parallel section was broken into finer-grained tasks.

This problem worsens when the number of cores
increases. Figure 2 shows the maximum potential speedup
on a 64-core MCA for a varying number of tasks. The
ideal situation would be if the graph was linear, implying
that each additional core would deliver additional
performance. When only 64 tasks are used, the
application would see no performance improvement even
when the number of cores assigned to an application was
increased from 32 to 63. To approach the ideal situation,
one needs a much larger number of tasks (say 1024).

Performance portability across platforms: Parallel
scientific computing applications are often optimized for
a specific supercomputer to achieve the best possible
performance. However, for mainstream parallel programs,
it is much more important for the application to get good
performance on a variety of platforms and configurations.
This has a number of implications that require exposing
parallelism at a finer granularity.

Figure 2: Theoretical scalability

First, the number of cores varies from platform to
platform. For reasons similar to that for
virtualization/multiprogramming, finer-granularity tasks
are necessary.

Second, MCAs are likely to be asymmetric for a number
of reasons including heterogeneous cores, Hyper-
Threaded (HT) cores, Non-Uniform Cache Architecture

(NUCA), and Non-Uniform Memory Architecture
(NUMA). This means that the different threads on the
core might progress at different rates. For instance, two
threads sharing a core run at a different rate than
two threads running on two different cores.

Figure 3 illustrates the impact of asymmetry with an
example. Consider an application that breaks its parallel
section into tasks that represent equal amounts of work
(shown in green). However, asymmetry in architecture
results in each task taking a different amount of time to
complete. The result is wasted compute cycles (shown in
red). This example shows that to ensure good
performance in the presence of hardware asymmetry, it is
best to expose parallelism at a fine grain.

Workloads
To understand emerging applications for multi-core
architectures, we have parallelized and analyzed emerging
applications (referred to as RMS [1]) from a wide range
of areas including physical simulation for computer
games as well as for movies, raytracing, computer vision,
financial analytics, and image processing. These
applications exhibit diverse characteristics. On the one
hand, a number of modules in these applications have
coarse-grained parallelism and are insensitive to a task
queuing overhead. On the other hand, a significant
number of modules have to be parallelized at a fine
granularity to achieve reasonable performance scaling.

Recall that Amdahl’s law dictates that the parallel scaling
of an application is bounded by the serial portion. For
instance, if 99% of an application is parallelized, the
remaining 1% that is executed serially will limit
the maximum scaling to around 39X on 64 threads.

This means that even small modules need to be
parallelized to ensure good overall application scaling.

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 220

On 8-core MCA
32 Tasks

On 8-core MCA
8 Tasks

Figure 3: Impact of asymmetry in architecture

Ease of Programming
The use of modularity will continue to be very important
for mainstream applications for several reasons.
Modularity is essential to developing and maintaining
complex software. In addition, applications are
increasingly composed of software components from
multiple vendors. These include middleware as well as
libraries optimized for specific platforms.

Modular programs require writers of individual modules
to make decisions about how best to parallelize that
module. Consider a simple example where an application
is composed of two modules: the main program and an
optimized math library. Suppose that parallelizing either
the library or the main program is sufficient to exploit all
the parallel computing resources on the machine.
However, modularity dictates that one module does not
make assumptions about another module. This requires
that for the best performance on a variety of platforms,
both modules be parallelized in cases where the other
module is not parallelized. The net result will be a finer
granularity of parallelism in the application.

ARCHITECTURAL SUPPORT FOR FINE-
GRAINED PARALLELISM
Software implementations of task queues incur an
overhead (e.g., for enqueues and dequeues). This
overhead grows with an increasing number of threads due
to increased contention on shared data structures in the
software implementation. Thus, if the tasks are small,
the overhead can be a significant fraction of application
execution time. This limits how fine-grained the tasks can

be made and still achieve performance benefits with a
large number of cores.

Therefore, we investigate adding hardware for MCAs that
accelerates task queues. This hardware operates under the
covers (i.e., is not visible to application writers) to
accelerate the task queue operations that are key to high
performance on many-core architectures. In particular, it
provides very fast access to the storage for tasks. This
includes performing fast task scheduling (i.e., determining
which task a core should execute next). Its task
scheduling is based on work stealing—a well-known
scheduling algorithm.

Using the Proposed Hardware
Applications interface to the proposed hardware via a
software library. This allows programmers to use the
same intuitive API that they use for software
implementations of task queues. Since the software
library hides the proposed hardware from applications,
only the library needs to directly interact with this
hardware. Besides initialization and termination, the only
operations that the library needs to perform are task
enqueues and dequeues.

In current software task queue implementations, each task
is represented as a tuple, a set of associated items, as
shown in Figure 5. Typically, the tuple entries will be
function pointers, jump labels, pointers to shared data,
pointers to task-specific data, and iteration bounds, but
they could be anything. An enqueue places a tuple into a
software data structure for storage, and a dequeue
retrieves a tuple from the data structure.

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 221

Our proposed hardware is primarily intended to accelerate
enqueue and dequeue operations. Thus, the hardware
stores tuples on enqueue operations and delivers tuples on
dequeue operations. It does not interpret the contents of
the tuples. This provides flexibility to the software library
in that the library determines the meaning of each entry in
a tuple. This flexibility allows the library writer to
optimize for applications with different needs.

Our Proposed Hardware
We consider an MCA chip where the cores are connected
to a cache hierarchy by an on-die network. The proposed
hardware consists of two separate hardware components:
a Local Task Unit (LTU) per core, and a single Global
Task Unit (GTU). This is illustrated in Figure 4.

Figure 4: Our proposed hardware in a MCA chip with cores (Ci) and parts of the last-level shared cache ($i)

Global Task Unit (GTU)
The GTU holds enqueued tasks in a set of hardware
queues. There is one hardware queue per logical core in
the chip. This allows the use of the distributed task
scheduling algorithm. The GTU also includes logic for
implementing this algorithm. Since the hardware queues
are physically close to each other, the proposed scheme
can quickly determine which queues are empty and which
are not. This makes stealing tasks much faster than for
software implementations of distributed task scheduling.
It also allows the hardware to quickly detect when all
tasks are complete. This is important so that the main
thread can start executing the serial code following the
parallel section as quickly as possible.

Function
pointer

Parameter
1

Parameter
2

Parameter
3

Figure 5: An example task tuple format

The GTU is physically centralized on the chip.
Communication between the GTU and the cores is via
the same on-die interconnect as the cache subsystem. The
downside of a physically centralized GTU is that as
the number of cores on a chip increases, the average
communication latency between a core and the GTU also

increases. This latency, if not hidden, could impact
performance. Therefore, we address this with task
prefetchers at each core, as described below.

The size of the queues in the GTU is bounded. When the
queues are full, the hardware generates an exception.
The exception handler can move some of the tasks from
the hardware queues into memory creating room for
future task enqueues. An underflow mechanism is used to
move the overflown tasks back into hardware queues at
a later point [2].

Multiprogramming is also supported by the hardware by
using the same overflow and underflow mechanism to
move tasks from hardware into memory, and vice versa,
on context switches [2].

Local Task Unit (LTU)
Each core has a small piece of hardware to interface with
the GTU, called the LTU. In addition to hardware for
interfacing with the GTU, the LTU also contains a task
prefetcher and small buffer to hide the latency of
accessing the GTU. Hiding this latency can significantly
improve performance. While a typical enqueue operation
from a thread can be almost entirely overlapped with
useful work, a dequeue operation is on a thread’s critical
path. If a logical core were to wait to contact the GTU

Task Scheduling
Logic

GTUC1

$1
C2

C7

Cn
$m

$5

Core

L1
$ GTU

LTU
On-Die

Interconnect

Enqueue/Dequeue
Logic

Task
Prefetcher

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 222

until the thread running on it finished its current task, the
thread would have to stall for the entire GTU access
latency. If the latency is significant compared to the size
of a task, this can take up a significant fraction of an
application’s execution time. Therefore, the LTU tries to
hide the dequeue latency. It does this by trying to keep at
least one task in the LTU’s buffer at all times. A dequeue
is able to grab such a task very quickly. The LTU
operates as follows.

On a dequeue, if there is a task in the LTU’s buffer,
that task is returned to the thread and a prefetch for
the next available task is sent to the GTU. When the
GTU receives a prefetch request, it treats it as a
regular dequeue, and will steal a task from another
logical core’s queue if necessary.

On an enqueue, the task is placed in the LTU’s
buffer. Since the proposed hardware uses a LIFO
ordering of tasks for a given thread, if the buffer is
already full, the oldest task in the buffer is sent to the
GTU.

In our experience, the LTU’s buffer only needs to hold a
single task to hide the GTU access latency. If this latency
grows in the future, the buffer could be made larger.
However, there is a cost: tasks in an LTU’s buffer cannot
be stolen since they are not visible to the GTU. This could
hurt performance if there are only a few tasks available at
a time.

Table 1: Loop-level benchmarks and their inputs

Benchmark Data set

Gauss-Seidel 128x128, 256x256, 512x512

Dense Matrix-Matrix Multiply (MMM) 64x64, 128x128, 256x256

Dense Matrix-Vector Multiply (MVM) 64x64, 128x128, 256x256, 512x512

Sparse Matrix-Vector Multiply (MVM) 4 data sets

Scaled Vector Add 512, 1024, 4096, 16384 elements

Table 2: Task-level benchmarks and their inputs

Benchmark Data set

Game Physics Constraint Solver 4 Models

Binomial Tree 512, 1024, 2048, 4096

Canny Edge Detection cars, costumes, camera2, camera4

Cholesky Factorization 4 data sets

Forward Solve 4 data sets

Backward Solve 4 data sets

EXPERIMENTAL EVALUATION

Benchmarks
We evaluate our proposed hardware on benchmarks from
a key emerging application domain: RMS. All
benchmarks were parallelized within our lab. Table 1 and
Table 2 give the benchmarks and their data sets.

Loop-level parallelism: We use primitive matrix
operations and Gauss-Seidel as a set of benchmarks with
loop-level parallelism since these are both very common
in RMS applications and very useful for a wide range of
problem sizes. Most of these benchmarks are standard
operations and require little explanation. The sparse
matrices are encoded in compressed row format.
Gauss-Seidel iteratively solves a boundary value problem

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 223

with finite differencing using a red-black Gauss-Seidel
algorithm. These benchmarks are straightforward to
parallelize; each parallel loop simply specifies a range of
indices and the granularity of tasks. We evaluate each
benchmark with several problem sizes to show the
sensitivity of performance to problem sizes.

Task-level parallelism: We use modules from full RMS
applications as a set of benchmarks with task-level
parallelism. Task-level parallelism is more general than
loop-level parallelism where each parallel section starts
with a set of initial tasks and any task may enqueue other
tasks. These benchmarks represent a set of common
modules across the RMS domain. Some of the
benchmarks are based on publicly available code, and
the remaining ones are based on well-known algorithms.
These benchmarks are as follows:

1. The Binomial Tree uses a 1D binomial tree to price a
single option. Given a tree of asset prices, the
algorithm derives the value of an option at time 0
(that is, now) by starting at time T (that is, the
expiration date) and iteratively stepping “backward”
toward t=0 in a discrete number of time steps, N. At
each time step t, it computes the corresponding value
of the option Vi at each node of the tree i. The
number of exposed tasks (i.e., nodes) is small at any
time step and the task size is small. Hence, task
queue overhead must be small to effectively exploit
the available parallelism.

2. The Game Physics constraint solver iteratively solves
a set of force equations in a game physics constraint
solver. For inputs that have few bodies and
constraints, the amount of parallelism is limited,
especially for a large number of cores.

3. Cholesky, Backward Solve, and Forward Solve are
operations on sparse matrices. Cholesky performs
Cholesky factorization. Backward Solve and Forward
Solve perform backward and forward triangular solve
on a sparse matrix, respectively. These solvers use a
data structure called elimination tree that encodes the
dependency between tasks. The irregularity in sparse
matrices results in high variation of task size.
Therefore, we need very efficient task management
to achieve good load balancing.

4. The Canny Edge Detection computes an edge mask
for an image using the Canny edge detection
algorithm. It first finds a group of edge candidates
and determines whether their neighbors are likely to
be edges. If so, the algorithm adds them to the
candidate list and recursively checks their neighbors
for candidacy. The number of tasks correlates
directly to the number of candidates and tends to be
small. Further, the amount of work in checking for
candidacy is also very small.

Figure 6: Performance of loop-level benchmarks

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 224

Figure 7: Performance of task-level benchmarks

Results
Figures 6 and 7 show the performance benefit of our
proposed hardware for the loop-level and the task-level
benchmarks, respectively, when running with 64 cores. In
particular, the hardware proposal is compared with the
best optimized software implementations and an idealized
implementation (Ideal) in which tasks bypass the LTUs
and are sent directly to/from GTU with zero interconnect
latency. Additionally, the GTU processes these tasks
instantly without any latency. The optimized software
implementation uses a combination of widely used state
of the art techniques [2, 3] that deliver the best
performance.

The graphs represent the speedup over the one-thread
execution using the Ideal implementation. For each
benchmark, they show multiple bars. Each bar corresponds
to a different data set shown in Tables 1 and 2.

For the loop-level benchmarks in Figure 6, the proposed
hardware executes 88% faster on average than the
optimized software implementation and only 3% slower
than Ideal.

For the task-level benchmarks in Figure 7, on average the
proposed hardware is 98% faster compared to the best
software version and is within 2.7% of Ideal. For Game
Physics with one data set, and Forward Solve with
another data set, the amount of parallelism available is
very limited. In the software implementations, the cores
contend with each other to grab the few available tasks,
which adversely impacts performance.

CONCLUSION
MCAs provide an opportunity to greatly accelerate
applications. However, in order to harness the quickly
growing compute resources of MCAs, applications must
expose their thread-level parallelism to the hardware.
We explore one common approach to doing this for
large-scale multiprocessor systems: decomposing parallel
sections of programs into many tasks, and letting a task
scheduler dynamically assign tasks to threads.

Previous work has proposed software implementations of
dynamic task schedulers, which we examine in the
context of a key emerging application domain, RMS. We
find that a significant number of RMS applications
achieve poor parallel speedups using software dynamic
task scheduling. This is because the overheads of the
scheduler are large for some applications.

To enable good parallel scaling even for applications with
very small tasks, we propose a hardware scheme to
accelerate dynamic task scheduling. It consists of
relatively simple hardware and is tolerant to growing
on-die latencies; therefore, it is a good solution for
scalable MCAs.

We compare the proposed hardware to optimized
software task schedulers and to an idealized hardware
task scheduler. For the RMS benchmarks we study, our
hardware gives large performance benefits over the
software schedulers, and it comes very close to
the idealized hardware scheduler.

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 225

ACKNOWLEDGMENTS
We thank Trista Chen, Jatin Chhugani, Daehyun Kim,
Victor Lee, Skip Macy, and Mikhail Smelyanskiy who
provided the benchmarks. We thank Pradeep Dubey
who encouraged us to look into this problem. We also
thank the other members of Intel’s Applications Research
Lab for numerous discussions and feedback.

REFERENCES
[1] Pradeep Dubey, “Recognition, Mining and Synthesis

Moves Computers to the Era of Tera,”
Technology@Intel Magazine, February 2005.

[2] Sanjeev Kumar, Christopher Hughes, Anthony
Nguyen, “Carbon: Architectural Support for Fine-
Grained Parallelism on Chip Multiprocessors,” in
Proceedings of 34th International Symposium on
Computer Architecture, June 2007.

[3] Intel® Thread Building Blocks Reference, 2006.
Version 1.3.

[4] OpenMP Application Program Interface, May 2005.
Version 2.5.

AUTHORS’ BIOGRAPHIES
Sanjeev Kumar is a Staff Researcher in the Corporate
Technology Group. His research interests are parallel
architectures, software, and workloads especially in the
context of chip-multiprocessors. He received his Ph.D.
degree from Princeton University. His e-mail is
sanjeev.kumar at intel.com.

Christopher J. Hughes is a Staff Researcher in the
Corporate Technology Group. His research interests are
emerging workloads and computer architectures, with a
current focus on parallel architectures and memory
hierarchies. He received his Ph.D. degree from the
University of Illinois at Urbana-Champaign. His e-mail is
christopher.j.hughes at intel.com.

Anthony D. Nguyen is a Senior Research Scientist in the
Corporate Technology Group. His research interests
include developing emerging applications for architecture
research and designing the next-generation
chip-multiprocessor systems. He received his Ph.D. degree
from the University of Illinois, Urbana-Champaign.
Hise-mail is anthony.d.nguyen at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino
logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel.
Leap ahead., Intel. Leap ahead. logo, Intel NetBurst,
Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro,
Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
Oplus, OverDrive, PDCharm, Pentium, Pentium Inside,
skoool, Sound Mark, The Journey Inside, VTune, Xeon,
and Xeon Inside are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and
other countries.

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Intel Technology Journal, Volume 11, Issue 3, 2007

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 226

THIS PAGE INTENTIONALLY LEFT BLANK

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 227

Datacenter-on-Chip Architectures:
Tera-scale Opportunities and Challenges

Ravi Iyer, Corporate Technology Group, Intel Corporation
Ramesh Illikkal, Corporate Technology Group, Intel Corporation

Li Zhao, Corporate Technology Group, Intel Corporation
Srihari Makineni, Corporate Technology Group, Intel Corporation

Don Newell, Corporate Technology Group, Intel Corporation
Jaideep Moses, Corporate Technology Group, Intel Corporation

Padma Apparao, Corporate Technology Group, Intel Corporation

Index words: chip multiprocessors, datacenters, tera-scale, QoS, cache, memory, platforms

ABSTRACT
We have entered an era of chip multiprocessor (CMP)
platforms, where performance is delivered with the
integration of more and more cores on a die. Tera-scale
CMP architectures, consisting of several tens of physical
cores and hundreds of hardware threads, are highly
suitable for throughput computing especially in the
server market place. In this paper, we start by
highlighting tera-scale potential in datacenter
environments. We show how a multi-tier datacenter
workload that required tens (to hundreds) of platforms
in the past can potentially map on to one (or a few)
single-socket tera-scale CMP platforms running Virtual
Machines (VMs) and thereby creating Datacenter-on-
Chip (DoC) architectures.

Having introduced tera-scale DoC architectures, we then
describe key challenges involved in providing high
degrees of performance, scalability, and adaptability.
Performance and scalability challenges point to the need
for efficient handling of cache/memory/IO requirements
when a large number of cores are actively running many
workloads. Adaptability challenges highlight the need
for dynamically allocating cache, memory, and I/O
resources amongst the simultaneously running VMs in
order to enable Quality of Service (QoS). To address
scalability and adaptability challenges, we then propose
and evaluate important tera-scale architectural features:
(a) hierarchy of shared caches and large DRAM caches
for better cache/memory scalability and performance,
and (b) cache/memory QoS techniques to form Virtual
Platform Architectures (VPAs). Based on a detailed

evaluation, we show that these architectural features are
highly beneficial for DoC tera-scale architectures.

INTRODUCTION
We have entered the era of CMP platforms with Intel’s
dual-core and quad-core processors [5, 8] flourishing in
the mobile, desktop, and server marketplace. Within a
decade, we expect to integrate more and more cores
on-die and create tera-scale architectures consisting of
several tens of physical cores and hundreds of hardware
threads. Such tera-scale architectures are highly suitable
for high-performance throughput computing especially
in the server marketplace.

A decade ago, datacenters employed tens to hundreds of
dual-processor and quad-processor server platforms
(each running a single application) on an Ethernet
fabric. However, recent trends show that most
datacenters have started employing virtualization [21,
23, 31, 32] to consolidate multiple applications onto the
same platform in order to improve efficiency,
manageability, and overall cost [6]. With tera-scale
architectures [7] comes the potential to accelerate the
consolidation trend and potentially even enable small
datacenters to run on a single (or a few) platforms, thus
the term “Datacenter-on-Chip” (or DoC) architectures.
In this paper, we use an e-commerce benchmark,
TPC-W [29], to illustrate this by showing how an earlier
configuration (with 60+ server platforms) can now
potentially run on a single tera-scale DoC platform with
32 cores and 128 threads (4 threads per core).

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 228

Homogenous Apps
Non-Cooperative

Homogeneous Apps
Cooperative

Heterogeneous Apps
Non-Cooperative

Heterogeneous Apps
Cooperative

Execution
Domain
Execution
Domain

OS

OLTP

Execution
Domain
Execution
Domain

OS

OLTP

Execution
Domain
Execution
Domain

OS

OLTP
…

Many-Core CPU

IPC IPC

Core Core Core CoreCore Core …

Execution
Domain
Execution
Domain

OS

OLTP

Execution
Domain
Execution
Domain

OS

OLTP

Execution
Domain
Execution
Domain

OS

OLTP
…

Many-Core CPU

IPC IPC

Core Core Core CoreCore Core …

Execution
Domain
Execution
Domain

OS

App Server

Execution
Domain
Execution
Domain

OS

OLTP

Execution
Domain
Execution
Domain

OS

Front-end
…

Many-Core CPU

IPC IPC

Core Core Core CoreCore Core …

Execution
Domain
Execution
Domain

OS

App Server

Execution
Domain
Execution
Domain

OS

OLTP

Execution
Domain
Execution
Domain

OS

Front-end
…

Many-Core CPU

IPC IPC

Core Core Core CoreCore Core …

Execution
Domain
Execution
Domain

OS

Mail Server

Execution
Domain
Execution
Domain

OS

IT app server

Execution
Domain
Execution
Domain

OS

Web Server
…

Many-Core CPU

Core Core Core CoreCore Core …

Execution
Domain
Execution
Domain

OS

Mail Server

Execution
Domain
Execution
Domain

OS

IT app server

Execution
Domain
Execution
Domain

OS

Web Server
…

Many-Core CPU

Core Core Core CoreCore Core …

Figure 1: Datacenter-on-chip usage models: classification and examples

With tera-scale DoC architectures comes the challenge of
designing a balanced platform with sufficient resources to
sustain the large number of cores actively running VMs.
In this paper, we evaluate the cache, memory, and I/O
requirements as well as the behavior of the DoC
architecture. We accomplish this by analyzing the TPC-W
configuration as well as running detailed platform
simulations that mimic multiple VMs running Online
Transaction Processing (OLTP) workloads, Java*

application server workloads, and even enterprise
resource planning workloads simultaneously. To address
the cache/memory scalability requirements, we show that
(a) a hierarchy of shared caches is most suitable for DoC
architectures since it maximizes performance and area
efficiency when running virtualized server workloads and
(b) integrating a large-capacity DRAM cache can
significantly reduce the memory bandwidth requirements
and thereby improve performance and scalability.

Another critical challenge in DoC architectures is that the
performance of each VM can be highly non-deterministic
since it depends heavily on the other VMs running
simultaneously. Since an abundant number of cores is
provided in tera-scale DoC architectures, the source of
this non-determinism comes from interference in shared
platform resources such as cache and memory. Through
detailed simulations of simultaneously running VMs, we
quantify the impact of this interference and the lack of
QoS provided to each individual workload. Since
datacenters typically provide service-level agreements, it
is important to incorporate QoS hooks in the platform
resources such as cache and memory. In this paper, we
describe potential platform QoS mechanisms and evaluate
the effectiveness of these mechanisms in improving the
performance isolation provided to each VM.

DATACENTER-ON-CHIP USAGE
MODELS AND TERA-SCALE
ARCHITECTURES
In this section, we start by describing four classes of DoC
usage models and then focus on one of them to highlight
the potential of tera-scale architecture and describe the
key challenges.

Datacenter-on-Chip Usage Models
Virtualization techniques make it possible to consolidate
multiple server applications onto a single system. This
usage model has been gaining momentum in enterprise
datacenters because it improves resource sharing and
usage, improves manageability, and reduces cost. We
expect this trend to continue growing significantly in the
coming years especially with the integration of more and
more cores on the die. DoC essentially refers to the
potential of multiple datacenter applications running
simultaneously on a single-chip server platform. DoC
usage scenarios can be classified into four broad
categories based on (a) the types of applications being
consolidated and (b) the level of communication
and cooperation between the applications. Figure 1
illustrates the four DoC usage models that are explained
further below.

Homogeneous/Non-Cooperating: In this type of
consolidation, multiple server applications of the same
type are consolidated onto a single platform. However,
these applications are independent in nature and no
significant communication is required between the
applications. A good example is the consolidation of a
farm of Web servers that are serving Web pages and
are load balanced. For the most part, these different

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 229

Web servers run on their own without having to
communicate with each other.
Heterogeneous/Non-cooperating: In this type of
server consolidation, multiple different server
applications are consolidated onto a single system. It is
often the case in enterprise datacenters that servers are
under utilized for a significant portion of the time when
running a single application. The main motivation for
this type of consolidation is to achieve maximum
resource usage by consolidating multiple applications
onto the same platform. In this type of consolidation,
the applications being consolidated are still quite
independent and do not need to communicate with
each other. One example is that of consolidating an
email server, file and print server, and user
authentication server.
Homogeneous/Cooperating: This type of
consolidation occurs when a clustered application (e.g.,
database cluster) is consolidated onto a single system.
Clusters use some sort of message passing either on a
regular network fabric like Ethernet or on a more
specialized fabric to communicate with each other. This
communication turns into inter-VM communication
once consolidated onto the same platform.
Heterogeneous/Cooperating: This type of usage
model occurs when multiple heterogeneous workloads
that need to communicate with each other are
consolidated. A good example of this type is where a
multitiered application, like in TPC-W, is consolidated
onto a single system. Here various tiers need to
communicate with each other while servicing user
requests. Hence inter-VM communication can be a
significant factor, and handling this can be a challenge
in virtualized environments, as we will see in the later
part of this paper.

Mapping to Tera-scale Architectures
The DoC usage models described above can take
advantage of more and more cores on-die since they have
many applications (potentially multi-threaded) running
simultaneously on a single platform. As a result, a
tera-scale architecture with several tens of physical cores
and hundreds of hardware threads integrated on the die is
highly suitable for DoC usage. To illustrate the potential
of tera-scale and highlight the challenges, we now focus
on a case study of an e-commerce environment based on
the TPC-W benchmark.

TPC-W [29] is a benchmark representative of an
e-Commerce datacenter environment defined by the
Transaction Processing Performance Council (TPC). The
performance metric reported by TPC-W is the number of
Web interactions processed per second (WIPS). Multiple
Web interactions are used to simulate the activity of a
retail store, and each interaction is subject to a response
time constraint. The TPC-W benchmark is now obsolete;

however, the e-Commerce workload that it represents is
very relevant and important. A typical TPC-W setup
contains several different application components (as
shown in Figure 2):

Web Servers process incoming HTTP requests and
prepare responses to be sent to the clients.

Web Cache Servers cache static and dynamic
content for fast access to data.

Image Servers serve static images that are part of the
response Web pages.

Application Servers provide the e-Commerce
functionality and are responsible for processing
customer orders and payments for goods, among
other things.

Database Servers hold inventory of product,
description, availability, pricing and other
information.

Load Balancer and other Infrastructure Servers
distribute processing load among different Web and
image servers equally by directing incoming HTTP
requests to the server with the least load.

Figure 2: Mapping datacenter workloads to tera-scale

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 230

Table 1: Compute/cache/memory capacity data from TPC-W setup (example based on TPC-W publication [30])
Server Type Oses Num servers Total Procs Frequency (GHz) Memory (MB) Total Cache (KCPU Util
Web server Win 2K Server 26 52 1.26 19968 26624 80%
Web server/Other software Win 2K Server 1 2 1.26 768 1024 80%
Image server Win 2K Server 20 40 1.26 10240 20480
Image server/Load Balancer Win 2K Server 1 2 1.26 512 1024
Database server MS .NET EE 1 8 1.6 8192 8192 45%
Web cache Win 2K Server 9 18 1.26 4608 9216 70%
Web cache Win 2K Server 3 6 1.26 2304 3072 70%
Web cache Volera 2 2 1.26 4096 1024 55%
Total 63 130 50688 70656

Figure 2 shows how these different components are
interconnected in a typical TPC-W setup of the past.
TPC-W is a perfect example of understanding the
requirements and behavior of consolidating multiple tiers
(heterogeneous/cooperating) of a datacenter on a
tera-scale CMP platform (bottom of Figure 2). Table 2
summarizes the number of systems, compute cores, cache
and memory in an example configuration roughly based
on a high-performing 2002 TPC-W publication [30]. As
shown in the figure as well as the table, there are
63 systems employed in the example TPC-W
configuration. Except for the database server, which
employed four processors, all other systems consisted of
two processors (without multi-threading). As a result, the
total number of processors in the configuration was about
130. In a tera-scale CMP platform, we expect that a single
processor socket could contain 32 cores each with 4
threads (SMT). As a result, the entire TPC-W example
configuration can be potentially consolidated onto such a
32-core, 128-thread single-socket platform.

However, it is also critical that we take into account the
amount of platform resources that are needed to support
the execution of simultaneously running VMs of this
nature. For example, Table 2 shows that the total cache
capacity available in the TPC-W configuration adds up to
70MB in size. Given the area constraints and the fact that
32 cores will be integrated onto the die, our previous
work [36] has shown that the amount of cache space
available is likely to be less than 32MB. As a result,
architectural techniques that enhance cache/memory
scalability and performance need to be incorporated into
the platform. We discuss these further in the next section.

Another key challenge in running heterogeneous VMs of
this nature on the same platform is that they will contend
for platform resources and interfere with each other.
Given that these VMs are likely to get very different
utility benefits from platform resources, and that the VMs
are likely to be different in importance to the overall
performance of the datacenter, it is important that we
incorporate adaptability techniques in the platform so that
resource usage can be dynamically controlled to provide
performance isolation or QoS for DoC platforms. In the
following section, we describe adaptability challenges and
solutions to address these in tera-scale architectures.

Last but not least, it is also important to consider the
overheads of virtualization on the DoC performance. In
addition to the basic overhead of handling system calls,
context switches, and interrupts for VMs, one primary
concern in virtualized platforms is the overhead of I/O
virtualization. For example, Figure 3 shows the overheads
of virtualization for (a) transmitting network data to
external platforms, (b) receiving network data from
external platforms, and (c) inter-VM communication
between VMs. The data shown in Figure 3 are based on
measurements done on a recent Intel® Xeon® dual-core
processor (3GHz) dual-socket platform [8] running the
Xen hypervisor [3, 33]. The measurements show that (a)
receiving network data at 1Gbps and processing requires
75% of CPU utilization under virtualization, (b)
transmitting 1Gbps externally requires about 50% of CPU
processing, and (c) communicating 1Gbps between VMs
on the same platform requires about 70% of CPU
utilization. Further, it should be noted that these compute
cores are large out-of-order cores without multiple
threads sharing the pipeline. As we design tera-scale
processors, the use of smaller in-order cores with multiple
threads sharing the pipeline may increase the associated
processing overhead. However, since most of the cores in
the example TPC-W configuration were underutilized
(last column in Table 1), there is likely some headroom
available to accommodate this extra I/O processing
overhead. Extensions to techniques (such as Intel’s I/O
Acceleration Technology [14, 22]) are needed to
minimize this overhead for a virtualized DoC
environment. However, this is not covered in this paper.

CPU utilization (1Gbps while virtualized)

0%

20%

40%

60%

80%

VM-Rx-Inbound VM-Tx-Outbound VM-to-VM

Network Load

Figure 3: CPU overheads for network I/O
virtualization

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 231

SCALABILITY CHALLENGES AND
SOLUTIONS
As described in the previous section, the tera-scale
architecture offers a high compute density (large number
of cores and threads) that is attractive for DoC usage
models. However, in order to provide high performance
and scalability, it is important to carefully design a
balanced platform with sufficient resources (cache,
memory, I/O, etc.). In this section, we present the DoC
scalability considerations and discuss potential solutions
that address the key challenges.

The first challenge is that of providing sufficient cache
space in order to reduce memory stalls and minimize
memory bandwidth bottlenecks. Previous work [36] has
shown that die area and cost will significantly restrict the
amount of cache space that can be provided in tera-scale
processors. In DoC usage models, the fact that several
multi-threaded server applications will run simultaneously
poses two potential considerations for cache hierarchy
design: (a) since the threads within each server
application tend to share code as well as data, cache space
efficiency can be improved if these threads are allowed to
share cache space, (b) since the cache space usage of each
of the server applications can be quite different at
different times in the execution, better utilization can be
achieved if the cache space is shared. To take advantage
of both of these sharing properties, we propose and
evaluate a hierarchy of shared caches for tera-scale
DoC platforms.

Figure 4 illustrates a three-level hierarchy of shared
caches in a tera-scale platform. The hierarchy of
shared caches starts an L1 (16K to 64K) that is private to
the core but shared between the multiple threads within
the core. The L2 (256K to 1M, mid-level) cache is also
shared by multiple cores within a “node.” The node forms
the basic building block for the architecture. The L3 (8 to
32M, last-level) cache is logically shared by all of the
nodes in the socket. However, since the L3 cache is quite
large, it is physically distributed around the die in smaller
“slices.” A scalable interconnect connects all the L3 cache
slices and the nodes. The benefits of sharing at each level
is best explained with an example. Figure 5 compares the
cache performance of private and shared L2 caches for an
OLTP workload (based on the TPC-C [28]). As shown in
the figure, a shared cache organization (e.g., 512K shared
by four cores) is equivalent in cache performance to a
private cache organization (four cores each with a 256K
private L2 cache). This essentially shows a potential of
2X space efficiency with a shared cache organization.
Similar benefits were found for other server workloads as
well as for other levels of the hierarchy.

Having defined a cache hierarchy, the next major
challenge is that of providing sufficient memory

bandwidth to sustain the misses from the last-level cache.
Figure 6 shows the cache scaling behavior of a
consolidated server workload running on a last-level
cache. These data were obtained from trace-driven
simulations of four (8-threaded) workloads based on
TPC-C [28], SPECjbb2005 [26], SPECjappserver2004
[25], and SAP SD/2T [24] running simultaneously on 32
single-threaded cores. The data show that consolidation
workloads have good cache scaling behavior from 4MB
all the way to 128MB of cache shared between the
32 cores.

Figure 4: Tera-scale DoC hierarchy of shared caches

L2 / MLC Performance

0

0.01

0.02

0.03

0.04

0.05

128K
x4

256K
x4

512K
x4

512k 1M 2M

Private
Shared

dataMPI
codeMPI

L2 / MLC Performance

0

0.01

0.02

0.03

0.04

0.05

128K
x4

256K
x4

512K
x4

512k 1M 2M

Private
Shared

dataMPI
codeMPI

Figure 5: Tera-scale shared L2 cache benefits

Cache Peformance of DoC Workloads

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32 64 128

Cache size (MB)

Figure 6: Tera-scale DoC L3 cache scaling behavior

L30

On-Die Interconnect

L31 L3N-1

C0 C1 C2 C3
L1 L1 L1 L1

Mid-Level Cache

C0 C1 C2 C3
L1 L1 L1 L1

Mid-Level Cache

Node0 NodeN-1

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 232

To understand the memory bandwidth requirements of
tera-scale DoC platforms, let us now consider the
simulation configuration with 8MB L3 cache and
32 cores. In this configuration, we estimated that the
bandwidth requirements can be as high as 20GB/s. Given
that tera-scale processors may contain as many as
128 threads, the overall bandwidth requirements can be
100GB/s or higher. This in turn requires that a
proportional number of memory channels be supported on
the socket. Alternate solutions to solving the memory
bandwidth bottleneck for tera-scale platforms could be
the use of large capacity L4 caches. As shown in
Figure 7, large capacity L4 caches can be implemented
either as an additional package on the package (in a
multi-chip package) or stacked (using 3D stacking
technologies [1]). To understand the potential of large
capacity L4 DRAM caches that can provide as much as
twice the bandwidth at as little as one-third of the
memory latency, we conducted simulations of a 32-core,
8MB L3 cache configuration with and without a 32MB or
64MB L4 cache. We found that significant performance
benefits (from 10 to 40%) can be achieved depending on
the organization of the DRAM cache, the exact
bandwidth capability, and the latency benefits as
compared to main memory latency. However, the key
benefit is that of providing sufficient headroom in
external memory so that the number of channels that is
implemented can be reduced without affecting the
performance.

Figure 7: Tera-scale DoC L3 cache scaling behavior

Having addressed the cache/memory scalability
challenges for tera-scale DoC architectures (using a
hierarchy of shared caches and large L4 caches), we next
turn our attention to adaptability concerns and solutions.

ADAPTABILITY CHALLENGES AND
SOLUTIONS
Flexible and dynamic management of platform resources
is important in DoC tera-scale architectures since multiple
VMs will be running simultaneously. Traditionally, the
execution environment (a virtual machine monitor
(VMM) or hypervisor in DoC) attempts to control the
visible resources (number of cores and memory capacity
for instance). However, this alone will not suffice for
CMP platforms where more cores might be available to
run the virtualized applications simultaneously, but they
end up contending for other (invisible) shared resources

that have first-order performance impact [2, 4, 10, 16, 18,
34]. Key among these invisible resources are cache space
and memory bandwidth. In addition to cache and
memory, other resources that are shared include
interconnects, micro-architectural resources in the core
(shared between hardware threads), and power.

While sharing resources is generally the most efficient
approach to maximize resource utilization, having no
control over management of these resources can lead to
loss of determinism, lack of performance isolation, and an
overall lack of the notion of QoS provided to an
individual application running on the platform. This has a
very direct impact on the datacenter consolidation
environments where more and more heterogeneous
workloads are consolidated into a single platform
contending for the shared hardware resources. Another
important aspect to consider when managing shared
resources is the relative importance of each of the
consolidated applications. Not all applications
consolidated may be of equal importance. The difference
in priority could be based purely on the service level
agreement provided to the customer or could be based on
the relative throughput requirements of each of the
consolidated applications. It could also be decided by the
VMM layer based on the workload behavior (cache
friendly, IOVM, etc.).

Impact of Consolidation on
Individual Cache Performance

164%

196%

231%

100%

307%

22%33%41%47%

0%

50%

100%

150%

200%

250%

300%

TPCC
Alone

TPCC
+SJAS

TPCC
+SAP/SD

TPCC
+SJBB

TPCC
+ALL

Miss Ratio

Occupancy

Figure 8: OLTP cache performance under
consolidation

We start by studying the extent to which contention for
shared cache space affects an individual OLTP
application when running with one or more other
consolidated applications. We performed a trace-driven
simulation [9] of a 32-core processor with 8MB of
last-level cache running (a) an 8-threaded OLTP
application (based on TPC-C) running alone, (b) OLTP
consolidated with an 8-threaded J2EE application server
workload (based on SPECjappserver2004), (c) OLTP
running consolidated with an 8-threaded ERP application
(based on SAP SD/2T), (d) OLTP consolidated with a

Proc DRAM $Proc DRAM $

Proc

DRAM $

Proc

DRAM $

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 233

8-threaded Java workload (based on SPECjbb2005), and
(e) OLTP consolidated with all of the three above
applications. Figure 8 shows the impact of consolidation
on OLTP cache occupancy as well as OLTP miss rate. As
the occupancy is reduced from 100% when running alone
to as low as 20% when running with all other workloads,
the miss rate goes up significantly (by as much as 3X). It
should be noted that even though the compute resources
available to the OLTP application remain the same when
running alone and running in consolidated mode, the
performance will be significantly affected due to the
increase in miss rate.

QoS and Virtual Platform Architectures
Managing the allocation of shared resources in the
platform is key to addressing the contention effects shown
above and to providing performance differentiation,
performance isolation, and the overall notion of QoS.
Today, Intel and other processor manufacturers, support
hardware virtualization features. While these features
support functionally isolated VMs, they do not offer the
ability to provide performance isolation. Our goal is to
define mechanisms that allow VMs to transform into
Virtual Platform Architectures (VPAs). A VPA is defined
as a collection of virtual resources (i.e., some fraction of
each of the physical shared resources) that a VM is
provided. In this section we introduce our Platform QoS
research that enables QoS-aware platforms and VPAs.

Software
Domain

Hardware
Domain

SW
Policies

(primary)

HW
Policies
(secondary)

Resource
Monitoring

Resource
Enforcement

QoS
Exposure

Feedback
QoS Hints via
Architectural Interface

Figure 9: Platform QoS approach

Platform QoS
For DoC tera-scale architectures, there are three key
questions that the Platform QoS research attempts to
answer: (a) how much of each shared resource is an
application or VM using (b) how can the resource
allocation be modified to improve individual QoS or
overall performance, and (c) what are the most
appropriate interfaces and mechanisms needed between
hardware and software to achieve QoS and VPAs?

The Platform QoS approach attempts to address these
questions by enabling three major components:
(a) monitoring, (b) enforcement, and (c) exposure. Figure
9 shows the components and their relationship in terms of
information flow. The monitoring and enforcement
components are implemented in hardware, whereas the

QoS policies and exposure can either be guided by
software or by hardware. The monitoring component
keeps track of shared resource usage on a per-application
or per-VM basis. The resource monitoring ability allows
the platform to pass back information to the execution
environment (VMM or hypervisor in DoC) to determine
the VPA that each VM ends up with in a platform. In
addition, providing this information back to the software
domain allows the VMM to optimize scheduling
decisions or pass down hints for resource enforcement.
The monitoring ability may also be useful to the system
administrator to determine (a) whether a VM should be
migrated to a different platform (if it is getting too few
resources consistently), (b) what QoS hints should be
passed down to the platform to modify resource
allocation, or (c) what the end-customer should be
charged based on resource usage. Alternatively, the
administrator may be able to set up a QoS policy that
performs one or more of the above dynamically, based on
monitoring data.

The resource enforcement component implements shared
resource partitioning based on software guidance. This
requires an architectural interface to be exposed to the
execution environment that allows the specification of
resource allocation requirements on a per-VM basis.
While we expect QoS policies to be determined primarily
by software, it is also important to allow a path for future
platform optimizations that dynamically manage
resources entirely in hardware. The resource enforcement
component enables the VMM to create VPAs with a
user-specified amount of resources. To achieve a scalable
low-cost QoS solution, we propose resource partitioning
and QoS exposure on a class of service basis instead of a
per-VM basis. This is sufficient since it is unlikely that all
of the VMs running on the platform need performance
isolation simultaneously. Instead, one or more VMs can
be mapped to a single class of service as specified by the
VMM, and a smaller number of classes of service can be
supported by the platform. In this paper, we use the terms
“priority class,” “priority level” and “class of service”
interchangeably.

To help clearly describe the Platform QoS approach and
mechanisms required, we now present a case study using
the shared cache as the platform resource.

QoS Case Study Using Shared Caches
Since contention to shared cache (e.g., last-level) is a key
issue, we now describe the implementation considerations
for shared cache monitoring, enforcement, and exposure
(highlighted in Figure 10).

In the case of cache monitoring, the goal is to keep track
of cache space consumed on a per-application or per-VM
basis. In order to do so, the VMM needs to pass down a

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 234

unique identity (ID) to the platform for each running VM.
This can be easily done by writing the ID to a new
register, a Platform QoS Register (PQR), that is part of
the processor architectural state. Since the ID is finite, it
should be noted that the ID might have to be recycled
amongst VMs (when the number of VMs is larger than
the number of IDs). Once the ID is passed down, each
load/store generated by the CPU is tagged with the ID so
that it is passed down to the last-level cache. In the
last-level cache, each cache line is tagged with the ID,
and a global cache occupancy counter is also maintained
per ID. When a line is evicted from the core, the
appropriate cache occupancy counter is decremented.
When a new line is allocated into the cache, the
appropriate cache occupancy counter is incremented. The
implementation can be optimized for area by employing
set sampling techniques [37] if so desired.

QoS Exposure:
QoS Aware OS/VMM
Platform QoS Register

Low
Priority

OSOS

High
Priority

Set Application’s

QOS
Interface

Application
Platform
Priority

App
State

App
State

App
State

App
State

Resource
Monitoring:

Monitor cache
utilization per app
or priority class

- Tag cache requests
- Keep track of usage

Resource
Enforcement:
Enforce cache
utilization for
priority class

- Way Partitioning
- Capacity Partitioning

Core 0 Core 1

Platform QOS
Register

Requests tagged
with Priority Class

Expose QoS
Interface

Cache

Figure 10: Cache QoS architecture and techniques

For cache enforcement, we are investigating the use of
several forms of capacity partitioning. One potential
approach attempts to limit the number of cache lines in
the entire cache used by a certain class of service. Since
the class of service is also associated with each cache line,
this enforcement is accomplished by modifying the cache
replacement policy to pick the next victim from a class
that is currently exceeding its assigned cache quota.

For cache QoS exposure, we introduce the PQR. The
PQR allows software to specify (a) the VM ID, (b) the
class of service (also referred to as priority level or
priority class) that this VM should be mapped to, and
(c) an optional resource allocation target for that class of
service. As described above, the VM ID is used by the
platform to monitor cache occupancy per application. The
class of service is used to guide the QoS-aware
replacement decision.

To study the potential benefits of cache QoS enforcement
we extended our trace-based cache simulations to
implement cache enforcement. We conducted
performance simulations of various consolidation
scenarios where we limited the amount of cache space
available to the low priority VM, but allowed
high-priority VMs to allocate anywhere in the cache. In
our example, we chose the OLTP application as the
high-priority VM (with access to 100% of shared cache)
and the three other consolidated applications as the
low-priority VMs (limited to X% of the cache space).
Figure 11 shows the OLTP miss rate as a function of X%
(on the x-axis). As expected, reducing X from 100% to
12.5% improves the cache performance of the
high-priority OLTP application significantly. It may be
noted that this will negatively impact the performance of
the low priority VMs, but that is expected as an outcome
of performance differentiation and QoS.

Impact of QoS on Cache Performance

37%41%

54%
100%

0%

20%

40%

60%

80%

100%

120%

100% 50% 25% 12.5%
LLC capacity threshold for all low-priority applications

OLTP Cache Occupancy Occupancy o f Low-P riority Normalized OLTP M isses

Figure 11: Case study of cache QoS benefits

In the previous sections, we focused on the cache-sharing
impact and cache QoS implementations. However, the
implications are similar for other shared platform
resources. For example, memory bandwidth is another
resource that has a direct impact on application
performance. Memory QoS [11] can be achieved by
implementing priority queues in the controller or enabling
rate control of the request stream. Once all shared
resources are enabled with QoS support, we could
provide differentiated service to the individual VMs
running on top of these resources. This combined with
hardware-supported virtualization provides a complete
VPA where functional and performance isolation is
provided to VMs in a DoC architecture.

CONCLUSION
In this paper, we introduced DoC architectures and
showed the potential of tera-scale platforms for DoC
environments. The opportunity for more and more
applications currently running on dedicated platforms to
run on a tera-scale platform is tremendous, but it also

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 235

introduces some significant scalability and adaptability
challenges that we need to address.

In this paper, we presented the scalability challenges for
DoC in tera-scale platforms and described two important
potential architectural features: (a) hierarchy of shared
caches and (b) large-capacity L4 caches. We showed that
enabling sharing at each level of the hierarchy can
significantly maximize the space efficiency (e.g., sharing
the mid-level L2 cache between multiple cores within a
node provided a 2X better area efficiency as compared to
private L2 caches). In addition, we also showed that
large-capacity L4 caches (enabled either by 3D-stacking
or a multi-chip package) can mitigate the memory
bandwidth challenges for tera-scale platforms.

Last, but not least, we presented the adaptability
challenges for DoC tera-scale environments. DoC
environments suffer from the lack of performance
isolation and performance differentiation since multiple
simultaneously running VMs are contending for critical
shared platform resources. We described our Platform
QoS research that is investigating QoS techniques for
resource monitoring and enforcement to enable
performance isolation and differentiation. We showed
how these QoS techniques allow us to transform VMs
into VPAs. The end goal is to provide better QoS in
tera-scale platforms for DoC environments.

Future work in this area is as follows. Research work
along the lines of scalable cache/memory hierarchies [12,
27, 35, 19] and adaptable QoS techniques [4, 10, 11, 13,
15, 16, 17, 18, 20, 37] is a great start, but more and more
emphasis on DoC usage models will be needed in
the future.

REFERENCES
[1] B. Black et al., “Die Stacking (3D)

Microarchitecture,” 39th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO, 2006.

[2] D. Chandra, F. Guo, S. Kim, and Y. Solihin,
”Predicting inter-thread cache contention on a chip
multiprocessor architecture,” 11th International
Symposium on High Performance Computer
Architecture (HPCA), Feb. 2005.

[3] “Xen Virtualization Technology,” Xen Source, at
http://www.xensource.com/xen/xen/*

[4] L. Hsu, S. Reinhardt, R. Iyer and S. Makineni,
“Communist, Utilitarian, and Capitalist Policies on
CMPs: Caches as a Shared Resource,” Int’l
Conference on Parallel Architectures and
Compilation Techniques (PACT), 2006.

[5] Intel Corporation, “Intel Dual-Core Processors,” at
http://www.intel.com/technology/computing/dual-
core/.

[6] Intel Corporation, “Multiply Virtualization
Maximize Server Harmony,” at
http://www.intel.com/business/technologies/virtuali
zation.htm?iid=servproc+marquee_virtualization

[7] Intel Corporation, “Tera-scale Computing,” at
http://techresearch.intel.com/articles/Tera-
Scale/1421.htm

[8] Intel Corporation, “Intel® Xeon® Processor 5000
Sequence,” at
http://www.intel.com/products/processor/xeon5000
/index.htm?iid=servproc+body_xeon5000

[9] R. Iyer, “On Modeling and Analyzing Cache
Performance using CASPER,” Int’l Symposium on
Modeling, Analysis and Simulation of Computer &
Telecom Systems, Oct. 2003.

[10] R. Iyer, “CQoS: A Framework for Enabling QoS in
Shared Caches of CMP Platforms,” 18th Annual
International Conference on Supercomputing
(ICS’04), July 2004.

[11] R. Iyer, L. Zhao, et al., “QoS Policies and
Architecture for Cache/Memory in CMP
Platforms,” SIGMETRICS, 2007.

[12] C. Kim, D. Burger, S. W. Keckler, “Nonuniform
Cache Architectures for Wire-Delay Dominated
On-Chip Caches,” IEEE Micro 23(6), pp. 99–107,
2003.

[13] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture,” 13th Int’l Conf. on Parallel Arch. &
Complication Techniques (PACT), Sept. 2004.

[14] K. Lauritzen, T. Sawicki, et al., “Intel® I/O
Acceleration Technology Improves Network
Performance, Reliability and Efficiently,”
Technology@Intel Magazine, at
http://www.intel.com/technology/magazine/commu
nications/intel-ioat-0305.htm

[15] C. Liu, A. Sivasubramaniam, and M. Kandemir,
“Organizing the Last Line of Defense before
Hitting the Memory Wall for CMPs,” 10th IEEE
Symposium on High-Performance Computer
Architecture, Feb. 2004.

[16] K. Nesbit, et al., “Fair Queuing Memory Systems,”
in Proceedings. of Annual International Symposium
on Microarchitecture (MICRO), June 2006.

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 236

[17] K. Nesbit, et al., “Virtual Private Caches,”
International Symposium on Computer
Architecture (ISCA), June 2007.

[18] M. K. Qureshi and Y. N. Patt, “Utility-Based
Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to
Partition Shared Caches,” Int’l Symposium on
Microarchitecture (MICRO), June 2006.

[19] M. Qureshi, A. Jaleel, et al., “Adaptive Insertion
Policies for High Performance Caching,”
International Symposium on Computer
Architecture (ISCA), June 2007.

[20] N. Rafique, W.T. Lim and M. Thottethodi,
“Architectural Support for Operating System-
Driven CMP Cache Management,” Int’l
Conference on Parallel Architectures and
Compilation Technology (PACT 2006), Sept. 2006.

[21] P. Ranganathan and N. Jouppi, “Enterprise IT
Trends and Implications on Architecture Research,”
11th Int’l Symp. on High Performance Computer
Architecture (HPCA), 2005.

[22] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, et al.,
“TCP Onloading for Datacenter Servers,” IEEE
Computer, 2004.

[23] M. Rosenblum and T. Garfinkel, “Virtual Machine
Monitors: Current Technology and Future Trends,”
IEEE Transactions on Computers, 2005.

[24] Sap America Inc., “SAP Standard Benchmarks,” at
http://www.sap.com/solutions/benchmark/index.epx*

[25] SPECjAppServer2004, at
http://www.spec.org/jAppServer/*

[26] SPECjbb2005, at http://www.spec.org/jbb2005/*

[27] E. Speight, H. Shafi, L. Zhang, R. Rajamony,
“Adaptive Mechanisms and Policies for Managing
Cache Hierarchies in Chip Multiprocessors,” 32nd

International Symposium on Computer
Architecture (ISCA), June 2005.

[28] TPC-C Benchmark, at www.tpc.org/tpcc/

[29] TPC-W Benchmark, at www.tpc.org/tpcw/*

[30] TPC-W Publication, at
http://www.tpc.org/results/FDR/tpcw/ibm.x440.w.f
dr.02091201.pdf*

[31] VMware Corporation, Server Consolidation and
Containment with VMware Virtual Infrastructure,
at
http://www.vmware.com/pdf/server_consolidation.
pdf*

[32] R. Uhlig, et al., “Intel Virtualization Technology,”
IEEE Transactions on Computers, 2005.

[33] T. Deshane, D. Dimatos, et al., “Performance
Isolation of a Misbehaving Virtual Machine with
Xen, VMware and Solaris,” at
http://people.clarkson.edu/~jnm/publications/isolati
onOfMisbehavingVMs.pdf

[34] T. Y. Yeh and G. Reinman, “Fast and Fair: Data-
stream Quality of Service,” Int’l Conf. of
Compilers, Architecture and System For Embedded
Systems (CASES), July 2004.

[35] M. Zhang and K. Asanovic, “Victim Replication:
Maximizing Capacity while Hiding Wire Delay in
Tiled Chip Multiprocessors, 32nd International
Symposium on Computer Architecture (ISCA-32),
Madison, 2005.

[36] L. Zhao, R. Iyer, et al., “Performance, Area and
Bandwidth Implications on Large-Scale CMP
Cache Design,” Workshop on Chip Multiprocessor
Memory Systems and Interconnects (CMP-MSI),
Feb. 2007.

[37] L. Zhao, R. Iyer, et al., “CacheScouts: Fine-Grain
Monitoring of Shared Caches in CMP Platforms,”
to appear in 16th International Conference on
Parallel Architectures and Compilation Techniques
(PACT), Sept. 2007.

AUTHORS’ BIOGRAPHIES
Ravi Iyer is a Principal Engineer with the Systems
Technology Lab in Intel’s Corporate Technology Group.
His current research focus is on large-scale CMP
architectures and technologies. Before joining STL, he
held positions in the Communications Technology Lab
(working on IO acceleration research) and in the
Enterprise Products Group (working on server
architecture and performance). He received his Ph.D.
degree in Computer Science from Texas A&M
University. He has filed 20+ patent applications and
published 70+ papers in the areas of computer
architecture, server design, network
protocols/acceleration, workload characterization, and
performance evaluation. He has held program committee
member positions in various conferences and workshops
(HPCA 2006, PACT 2007, IISWC 2007, etc.). He is also
an Associate Editor for IEEE Transactions on Parallel
and Distributed Systems (IEEE TPDS) and is currently
guest co-editor for a special issue on CMP architectures.
His e-mail is ravishankar.iyer at intel.com.

Ramesh Illikkal is a Senior Researcher in the Systems
Technology Lab at Intel. His research interests are in
CMP, server architectures, virtualization, and memory

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 237

hierarchies. He received his Masters degree in Electronics
from Cochin University of Science and Technology. His
e-mail is ramesh.g.illikkal at intel.com.

Li Zhao received her Ph.D. degree in Computer Science
from the University of California, Riverside. She is
currently a Senior Engineer in the Systems Technology
Laboratory at Intel. Her research interests include
computer architecture, network computing, and
performance evaluation. She is a member of the IEEE.
Her e-mail is li.zhao at intel.com.

Srihari Makineni is a Senior Researcher in the Systems
Technology Lab at Intel. He has been working at Intel for
more than 11 years. His research interests include
cache/memory subsystems, interconnects, networking,
and large-scale CMP architectures. Makineni received an
M.S. degree in Electrical and Computer Engineering from
Lamar University, Texas. His e-mail is srihari.makineni at
intel.com.

Don Newell is a Senior Principal Engineer in the Systems
Technology Lab at Intel. His research interests include
server architecture, networking, and I/O acceleration.
Newell received a B.S. degree in Computer Science from
the University of Oregon. His e-mail is donald.newell at
intel.com.

Jaideep Moses is a Senior Engineer in the Systems
Technology Lab at Intel. Prior to this, Jaideep worked in
the Communication Technology Lab on I/O acceleration
research. He also worked in the former Enterprise
Products Group focusing on modeling, simulation, and
analysis of platform architecture and design including
simulation-based verification of a coherence protocol. His
current research focus is on large-scale CMP platform
architecture analysis and design. Jaideep received his
M.S. degree in Computer Science from the University of
Texas at El Paso. His e-mail is jaideep.moses at intel.com.

Padma Apparao is a Senior Researcher in the Systems
Technology Lab at Intel. Padma received her Ph.D.
degree from the University of Florida and has been
working on performance analysis of server workloads.
Her current research interest is in the areas of
virtualization and large-scale CMP architecture analysis.
Her e-mail is padmashree.k.apparao at intel.com.

Note: The use of SPEC or TPC benchmark configurations
and traces in this paper is purely for analysis and
illustration. They are not intended to provide any
indication of performance of a specific platform.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The
Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Intel Technology Journal, Volume 11, Issue 3, 2007

Datacenter-on-Chip Architectures: Tera-scale Opportunities and Challenges 238

THIS PAGE INTENTIONALLY LEFT BLANK

Media Mining—Emerging Tera-scale Computing Applications 239

Media Mining—Emerging Tera-scale Computing
Applications

Yurong Chen, Corporation Technology Group, Intel Corporation
Eric Li, Corporation Technology Group, Intel Corporation

Wenlong Li, Corporation Technology Group, Intel Corporation
Tao Wang, Corporation Technology Group, Intel Corporation
Jianguo Li, Corporation Technology Group, Intel Corporation

Xiaofeng Tong, Corporation Technology Group, Intel Corporation
Patricia Wang, Corporation Technology Group, Intel Corporation

Wei Hu, Corporation Technology Group, Intel Corporation
Yimin Zhang, Corporation Technology Group, Intel Corporation

Yen-Kuang Chen, Corporation Technology Group, Intel Corporation

Index words: tera-scale computing, media mining, video processing, parallel computing, performance
analysis

ABSTRACT
With the exponential increase in media data on personal
computers and the Internet, it is critical for end users to
efficiently manage metadata to find the information they
are looking for. Media mining refers to a technique
whereby a user can retrieve, organize, and manage media
data. However, most media-mining applications are
compute intensive, and they require tera-operations
per second. This paper focuses on how tera-scale
computing enables new usage models with media-mining
techniques. Several representative media-mining usage
examples are explored in detail.

First, we look at how these new usage models are enabled
by a different kind of parallelism. For maximum
performance, we provide a general parallel framework to
abstract various parallelisms. We also present a detailed
architectural performance analysis of several
representative workloads on a dual-socket, quad-core
system and on a 32-core Chip Multiprocessor (CMP)
simulator. The results indicate that these media-mining
applications have no obvious limits on concurrency and
are amenable to future large-scale, multi-core
architectures. They can take full advantage of tera-scale
computing power in the form of thread-level parallelism
to meet users’ needs.

Because the underlying techniques and fundamental
algorithms in media mining are widely used in other
applications, many of our findings are applicable to other
emerging applications as well.

INTRODUCTION
Rapid advances in the hardware technology of media
capture, storage, and computation power have contributed
to an amazing growth in digital media content. As content
generation and dissemination grows, extracting
meaningful knowledge from large amounts of multimedia
data becomes increasingly important. Media mining is a
kind of technology that helps end users search, browse,
and manage large amounts of multimedia data [1]. It
yields a wide range of emerging applications with various
mass-market segments, e.g., image/video retrieval, video
summarization, scene understanding, visual surveillance,
digital home entertainment, smart health care, etc. Most
of these applications are very complicated and have
real-time or even super-real-time processing demands,
which require tera-scale computing power to make them
usable.

In this paper, we present several media-mining
applications that require target architectures capable of
delivering tera-scale computing. Our study shows that
today’s single-core processor system performance is
10x–1000x slower for acceptable human interactions. To
accelerate these compute-intensive applications, we
exploit the inherent data and function parallelism of these
workloads. Our experiments show that with proper
parallelization, these workloads can scale well, achieving
a speedup of up to 7.5x on a 2-socket, quad-core machine
and a speedup of up to 30x on a 32-core CMP simulator.

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 240

This paper is organized as follows. First, we explore
several media-mining usage models and their key
techniques. Next, we present several different parallel
schemes and a general parallel video-mining framework.
Then, we show our performance analysis results of the
parallelized workloads.

MEDIA-MINING APPLICATIONS
Media mining has a huge number of emerging
applications with different usage models. We highlight
three typical usage models developed at Intel.

Media-Mining Usage Models
Sports video analysis: Broadcast sports videos are
very popular on television. Using highlights
detection, consumers can quickly retrieve specific
video clips without having to browse through the
whole video. Sports video analytics can be viewed
from the perspective of an editor. Based on a
predefined semantic intention, an editor combines
certain multimedia content elements and their
temporal layout to achieve the desired highlighted
events. Hence, detecting highlighted events is similar
to a reverse process of authoring. The system
framework consists of three levels: low-level
audio/visual feature extraction, mid-level semantic
keywords generation, and high-level event detection
[8]. To minimize the semantic gap between low-level
features and high-level events, we use mid-level
semantic “keywords” followed by a classifier to infer
events of interest. Our sports video analysis system
can work with a multitude of sports including soccer,
hockey, badminton, tennis, and diving. Given a video
in a specific domain with predefined semantic
intentions, the system can extract the desired events
and features and interpret a summarization output
video in terms of high-level semantics.

Personal video editing: Home videos are
increasingly popular as digital video cameras become
more user friendly and portable. However, because
home videos for the most part are shot by amateurs,
shaking, blurring, under-exposure artifacts, and
redundant content are always present. Therefore, the
demand for an automated home video editing system
[2] is high. Such a system has to be able to recognize
how many people and how many scenes are involved,
mine the relationship between various people and
scenes, and synthesize a short artistic video clip from
a long raw video. A typical personal video editing
system includes three key modules: intelligent
analysis, adaptive selection, and seamless
composition. The first module extracts the
multi-modal and multi-level audio-visual features;
the second module selects the most interesting,

important, and informative content; and the third
module produces a near-professional story with
incidental music. The overall automated home video
editing system must be easily extended to the
personal video recorder and digital home
entertainment system.

Personal video retrieval: A personal video retrieval
system is a desktop application that works much like
the Google desktop search to help end users manage
more and more personal multimedia data from all
kinds of mobility digital camera devices. In response
to a user query, the personal video retrieval
application finds the relevant video clips from a large
video database such as from movies, TV, sports
games, and home videos. Generally, a retrieval
system first extracts low-level audio/visual features
from videos, and then detects semantic concepts
(keywords) to represent the video content. Finally, a
query engine returns retrieval results based on the
user’s query and on a similarity model. The query
can be text keywords, image examples, hand-drawn
sketches, or short video clips, and the output is
relevant video clips ranked not only by their content
similarity to the query, but also by their importance,
according to a concept-link relationship analysis. To
gradually improve system performance during the
query procedure, the system provides user-friendly
relevant feedback and active learning modules.

Key Media-Mining Techniques
Although the above usage models are quite different from
one another, the underlying technologies are common and
can be extended to a broad range of media-mining
applications. In this paper, four key techniques are
extracted from previous usage models to show how
media-mining applications are built.

Sports keyword detection: The mid-level module
generates semantic “keywords” from the previously
described low-level extraction. Listed below are
some keywords in sports video analysis. These
keywords are used as input for high-level event
detection.

- View type: Based on color histograms of each
frame, we can obtain the dominant color to
segment the playing field region. We then
classify each frame as a global view, medium
view, close-up view, and out of view [5].

- Play-field: A Hough transform from digital
image processing is used to detect field
boundaries and penalty box sections. Then a
decision-tree-based classifier determines the play

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 241

position according to the slope and position of
the lines.

- Replay: In broadcast sports videos, to capture clues
for significant events, there typically is a replay
following an important event. At the beginning and
end of each replay, there is generally a logo flying
in high speed. We detect logos to identify replays
by discovering repeat video segments through
dynamic programming [6].

- Audio keywords: There are two types of audio
keywords: commentator’s excited speech and
referee’s whistle: these have a strong correlation
to key events in the game such as a foul, a goal,
or player entanglements. A Gauss Mixture
Model (GMM) is used to detect keywords from
low-level audio features including Mel
frequency Cepstral coefficients (MFCC), energy,
and pitch [7].

Human detection and tracking: Human detection
and tracking is a significant and challenging task in
many application scenarios. Different from rigid
objects, humans are articulated and jointed by several
human-parts, which may lead to pose variance,
self-occlusion, etc. In human detection, the first
problem is to select the proper features to
characterize human regions/parts: Haar wavelets [3]
and orientation histograms are mostly used to do this.
The second problem with human detection is to use a
discriminator to determine whether there are humans
and where they are if they are present. The Boosting
learning-based detector is preferred [3]. It is an
aggressive learning algorithm that produces a strong
classifier by choosing features in a family of simple
classifiers and combining them linearly. Then a
cascaded structure is introduced in order to quickly
reject the background regions. Human tracking is
essentially finding body regions or parts that
correspond with successive frames by using data
association and occlusion inference techniques.

Face detection and tracking: Face detection and
face tracking have been an important technology and
pre-requirement for many person-analysis relevant
applications, such as face recognition/identification,
emotion analysis, and cast indexing. Face detection
has been studied for many years. Viola and
Jones Boosting learning-based detection algorithms
are the most successful algorithm to date [2].
Recently, some improvements are proposed to enable
the algorithm to handle multi-view faces more
efficiently for high-quality videos [12]. Generally,
Boosting-based face detection characterizes image
regions by very simple Haar wavelet features, and it
learns cascade detection from a training set to

separate a face set from a non-face set. In the
detection phase, the learned detector will slide by a
window over the image to detect whether the window
contains a face or not. Face tracking [13] is an
extension of face detection technology, which can
detect a person’s continuous faces from a video
sequence. Spatial and temporal constraints are
employed to avoid much unnecessary calculation.
Since it detects faces only in predicted face image
regions, it doesn’t waste time scanning all the
positions of every frame.

Concept ontology indexing: Concept ontology
indexing represents multimedia data by large-scale
concept ontology for indexing and fast retrieval.
There are several concept lexicons for multimedia:
large-scale ontology for multimedia (LSCOM) [9] is
the most popular. LSCOM currently contains about
1000 concepts that are relevant to objects, people,
locations, scenes, and events. LSCOM has been
successfully used by the TREC video retrieval
evaluation (TRECVID) hosted by NIST [10].
Concepts are detected from more than 20 low-level
MPEG-7 compatible audio/visual features, e.g., color
histogram, Gabor texture, shape context, edge
histogram, motion, and MFCC audio features, etc.
Given these low-level features, a supervised classifier
(such as an SVM) is learnt for each concept from a
training set to identify whether the concept exists or
not in each video shot [11]. Employing all of the
concept detectors, a video shot is therefore
represented and indexed by the semantic concept
ontology that makes next-stage search similar to
text retrieval.

Common Characteristics in Media Mining
Three attributes of media-mining applications can be
summarized as follows:

First, a media-mining system is basically a bottom-up
framework as shown in Figure 1. The framework is a
three-layer architecture, i.e., low-level feature
extraction, mid-level semantic keywords detection,
and high-level concept detection. In processing,
low-level visual/audio/textual features are extracted
from raw media data. Then in the second layer,
mid-level features or keyword concepts are detected
from low-level features to bridge the semantic gap
between low-level features and high-level concepts.
Finally, high-level modules infer the desired concepts
in the semantic keyword spaces.

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 242

audio featurevisual feature

keyword stream

multimodal features

prediction result

Figure 1: General video-mining framework

Second, media mining is a hybrid technique of
computer vision, pattern recognition, machine
learning, and data mining. For example, human
detection/tracking techniques involve Haar and HoG
feature extraction from video frames, Boosting
(cascade learning) training-based candidate detection,
and associate rule learning from quite large examples
to identify relationships between articulations. In
these techniques, Haar and HoG features are
essentially computer vision methods; Boosting is a
famous machine-learning algorithm; and associate
rule learning is a typical data-mining method.

Third, media-mining applications usually combine
multiple components. For example, in the automatic
home video editing application, the application needs
to recognize people, mine the relationship between
people, and synthesize a short artistic video clip from
a long raw video.

Media mining has mass-market potential and is therefore
quite a suitable and important proxy not only for
workload analysis on future architectures, but also
for developing parallel programming models for
multimedia applications. Furthermore, due to its similar
framework for different usage models, we only use one
technique as an example to study its computational
requirements.

Computational Requirement: a Case Study

Figure 2: Flowchart of player detection, tracking and
classification

In the sports domain, we look at multiple player detection,
tracking, and classification in broadcast soccer video for
our example. Its flowchart is shown in Figure 2 [4]. To
make the algorithm robust and adaptive, we construct the
background (playfield) color model and three player
appearance models (Team A, Team B, and Referee)
through unsupervised learning procedures. In the learning
phase, the background color model is obtained by
accumulating color histograms over hundreds of frames in
the video in HSV color space. Player appearance models
are learned by player sample collection with a boosted
player detector, color histogram representation, and
clustering. In the testing phase, we first perform
background segmentation, playfield extraction, and
view-type classification. Only global views are selected
for player detection. We then apply a boosted cascade of
Haar features for player detection on each foreground
pixel within the playfield. Multiple detections will usually
occur around each player after scanning the image. We
merge adjacent detected rectangles and get final
detections with proper scale and position. In the player
classification procedure, each player sample is
represented by the learned codebook histogram. We
calculate the Bhattacharyya distance between the
histogram and each sub-model. The player sample is
assigned the sub-model’s label by the nearest neighbor
rule. With this procedure, players are labeled as Team A,
Team B, Referee, or Outlier (if the minimum distance is
larger than a threshold). Player tracking is performed by
efficient forward and backward nearest neighbor data
association. We take both binary mask overlap and color
histogram intersections in player upper-body as
observations within a certain spatial displacement range
to find the optimal player regions correspondence, and we
generate players’ trajectories across frames.

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 243

Figure 3 is an example of player tracking results, in which
white ellipses and rectangles indicate two teams’ players
and a black rectangle is the referee.

Figure 3: Player tracking results on soccer video

Player detection is achieved by background elimination
and a boosted cascade of Haar features. In this paper, we
only show the detailed detection procedure since this
procedure is most compute intensive compared to
tracking and classification. The cascade detector with
multiple stages has the capability of quickly rejecting the
regions and focus on the harder-to-classify windows. The
number of features selected in each stage is different
depending on the expected performance and sampling
criterion. Therefore, increasingly complex classifiers are
combined sequentially. This improves both the detection
speed and efficiency.

Input: image frame, background model
Playfield elimination and view-type classification
Player detection
For each scale

Scan each point to be detected
For each point

Evaluate its response with cascaded stages
Calculate normalized constant
For each stage

Evaluate the response
For each selected Haar feature

Calculate Haar feature response
Normalize Haar feature response
Get weak classifier response

Accumulate all Haar response
If verified by the threshold, begin next stage;
else, label the point as negative, break;

If pass all stages, label the point as positive
Post-processing to merge adjacent detection instances
Output: vector of player regions (rectangles)

Based on the above description, one can easily infer its
computation complexity, which is proportional to the size

of the video frame, the number of weak classifiers, and
the number of scales. For player tracking between two
adjacent frames, it is proportional to the number of
players and player size. For player classification, it is
linear to the number of players, player size, size of
codebook, and size of sub-model. For an MPEG-2 video,
the frame size is 720x576; we use about 1000 weak
classifiers and three different scales. Thus, one minute of
MPEG-2 video will need 1.86 tera-operations. Its serial
processing speed on today’s processors is about 3 frames
per second, which is 10x slower than real-time.

MEDIA-MINING PARALLEL
FRAMEWORK
With the boom in multi-core processors and the
prevalence of shared memory processing, it is important
to exploit thread-level parallelism within applications to
take advantage of next-generation microprocessor
capability. In this section, we present the parallelization
methodology, characterize different parallel schemes, and
provide insights for parallelizing these media-mining
applications on future multi/many-core systems. Besides
the parallelization study, we also made intensive
optimizations, e.g., genetic loop-level optimization,
SIMD acceleration, and cache-conscious optimizations, to
provide a fully optimized baseline for further workload
parallelization and analysis.

Video-Mining Parallelism
Most video-mining applications can be partitioned into
three modules: video decoding, feature extraction, and
post processing. We use an MPEG-2 video decoder to
divide the input video stream into a number of
consecutive decoded frames. Then we use a feature
extraction module to extract a set of visual features from
these decoded frames. This process continues until all the
frames are processed. Finally, all the feature results are
fed into a post-process module to detect the final visual
information. The breakdown of execution time indicates
that the video decoding and image processing modules
are the most time consuming. The post-processing
module is extremely fast and is therefore not the focus of
this paper.

We use a top-down analysis methodology to analyze the
coarse-grained parallelism in each module and the whole
application. In general, people tend to use data-domain
decomposition rather than functional-domain
decomposition to take advantage of the inherent
parallelism in multimedia applications. Though
fine-grained parallelism within each module is of interest,
we don’t explore this kind of parallelism as it’s not
profitable because of serial regions and insufficient
parallelism in these modules. Therefore, we choose

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 244

coarse-grained parallelism to explore both functional
domain decomposition and data domain decomposition
within each task with the goal of load balancing, and we
examine the issue of scalability when using a large
number of processors.

A task-level parallel scheme uses the producer-consumer
model, where the video decoder works as a producer,
generating a sequence of video frames, while the image
processing modules act as a consumer, operating on
decoded frames to obtain the corresponding visual feature
information for each frame. This multi-threading scheme is
very similar to the task queue model provided by the Intel®
OpenMP extension [14], which provides an efficient way
to exploit functional-domain decomposition. The video
decoder serves as the task producer to encapsulate the
decoded frame as a task and conceptually put it in the task
queue, and all the other worker threads will wait until the
task is available. Though this parallel scheme is
straightforward, it may experience limited scalability
performance on a large number of processors when the
ratio between feature extraction modules and video
decoders is not sufficiently high.

A static data slicing parallel scheme slices the raw data
into several video bit-stream chunks. Each thread
performs a similar routine to that of a sequential
application: decoding the bit-stream chunk and extracting
features from the decoded frames. Because the raw video
stream is split manually, each thread has to find the new
sequence synchronization position. Therefore, there is an
explicit synchronization between two adjacent threads to
guarantee no excess or loss of decoded frames. In
addition, the static data-slicing scheme may experience a
load imbalance problem when the work is not evenly
distributed across threads.

To take advantage of both task-level and data-level
parallel schemes, a dynamic hybrid parallelization
approach is proposed to combine these two schemes. At
first, we decompose the video stream into several chunks
to exploit the data-domain decomposition, and then we
exploit the functional-domain decomposition on each
particular chunk of data as previously mentioned. In this
parallel scheme, there are multiple queues to buffer tasks.
Master threads are responsible for video decoding and for
enqueueing the feature extraction tasks in different
queues. Worker threads fetch tasks from their associated
queue and execute the tasks. Further, in order to reduce
load imbalance, we use the work stealing strategy. When
one queue is empty, it will steal tasks from other
non-empty queues and execute the tasks on the idle
physical processor. With work stealing enabled, the load
imbalance disappears. In addition, due to reduced
contention on the access to each queue, the
synchronization overhead is reduced significantly.

Figure 4 illustrates the hybrid task-stealing scheme. The
whole video is partitioned into four chunks and assigned
to four thread groups. Within each thread group, a task
queue is implemented with one master thread and three
worker threads. The task will not be migrated to other
queues unless its private task queue is out of tasks.

Video
Chunk

Video
Chunk

Video
Chunk

Video
Chunk

Video
Decode

Extract
task

Extract
task

Extract
task

Video
Decode

Extract
task

Extract
task

Extract
task

Video
Decode

Extract
task

Extract
task

Extract
task

Video
Decode

Extract
task

Extract
task

Extract
task

Feature Extraction and Detection

Decoder

Figure 4: Dynamic hybrid task-stealing scheme

In summary, the dynamic hybrid parallelization scheme
has several advantages. First, it significantly improves
performance by manipulating multiple queues of video
data in parallel, which reduces the competition for shared
resources. Second, it solves the load imbalance issue by
enabling dynamic task scheduling and stealing. Finally,
the hybrid scheme provides enough flexibility by
specifying the number of decoding and worker threads to
maximize system resources utilization and deliver good
scalability. However, from the perspective of
programming, this dynamic hybrid parallelization
approach is the most difficult of the three parallel
schemes to build.

Parallel Pattern in Video Mining
Applications
Because of the difficulty of parallelization in these
media-mining applications, we construct a universal
parallel video-mining framework to encapsulate the
parallel scheme and provide an ease-of-use interface to
the programmer.

The video-mining parallel framework [15] is built in C++,
and OpenMP is the default parallel language. It includes
the parallel implementation, an abstract interface, and a
set of configuration parameters. There are four primary
components in this framework:

An image-processing engine that serves as the
interface to invoke the user codes in the library and

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 245

perform feature extraction functionalities for each
decoded frame.

A video-decoding engine that acts as an interface
to enable most video codec standards with
parallel support.

A portal video-mining function that serves as an
interface to link the user codes with the framework.

Configuration parameters and core image data
structures.

The parallel video-mining framework has several
advantages. It provides a unified parallel computing
environment for video-mining applications. Programs
written in this framework can be automatically
parallelized and efficiently executed on a multi-core
architecture. The run-time library takes care of the details.
Furthermore, this framework is easily extensible and
maintainable. The programmer can extend it to meet
new requirements.

To summarize, video-mining workloads have abundant
parallelism. The dynamic hybrid parallelization approach
that combines both functional-domain decomposition and
data-domain decomposition can achieve optimal parallel
performance. In addition, the particular execution pattern
of video-mining applications can be abstracted into a
parallel video-processing framework to help programmers
easily construct a parallelized video-mining application.

PERFORMANCE ANALYSIS ON
MULTI-CORE SYSTEMS
In this section we analyze three typical media-mining
workloads (Player, Face and Shot detection), which are
parallelized via our video-mining parallel framework. To
generate best-performing executable codes, the Intel 9.1
OpenMP compiler tool chain and highly optimized
OpenCV and IPP library [16] are used. Furthermore, we
also use the Intel VTune™ Performance Analyzer [17] to
identify the hotspots in functional profiling and guide the
optimizations. To characterize the parallel performance,
the Intel® Thread Profiler is used to quantify the parallel
performance metrics, i.e., synchronization, locks, load
imbalance, etc.

We evaluate the scaling performance of these parallel
media-mining workloads on a real multi-core machine
and a large-scale CMP simulator. The multi-core platform
is a dual-socket, quad-core machine, with two Intel®

Core™2 Quad processors running at 2.33GHz. Each
socket has four cores, and each core is equipped with a
32KB L1 data cache and a 32KB L1 instruction cache.
The two cores on one chip share a 4MB L2 unified
cache. The maximum Front-Side-Bus (FSB) bandwidth is
21GB/s. In addition to the existing multi-core system, we

further study these media-mining applications’
performance on a large-scale CMP simulator with
cycle-accurate simulation to see how they will scale with
the increasing number of cores. We assume a very high
main memory bandwidth so that we do not artificially
limit the scalability of the modules.

For the workloads studied in this experiment, we choose
application parameters and datasets so as to represent
realistic executions. For Player detection, we used a
30-minute MPEG-2 soccer video as the input. For Face
and Shot detection, we used a 10-minute MPEG-2 movie
video as the input.

Performance Scalability Analysis
Our video-mining workloads scale very well as the
number of threads increases, as shown in Figures 5 and 7.
That is, media-mining applications can efficiently use the
computational power provided by multi-core processors.

0

2

4

6

8

0 2 4 6 8
Number of Threads

Player Detection
Face Detection
Shot Detection

Figure 5: Scalability of parallel video-mining
workloads on an 8-core system

However, as also shown in Figure 5, our workloads,
in particular, Shot detection, do not have linear scaling
on the 8-core system. To fully understand the
scaling-limiting factors on an 8-core system, we
characterize the parallel performance from the perspective
of the high-level parallelization overhead, e.g.,
synchronization penalties, load imbalance, and sequential
regions, and from the detailed memory behavior,
e.g., cache miss rates and FSB bandwidth.

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 246

90%

92%

94%

96%

98%

100%

1T 2T 4T 8T 1T 2T 4T 8T 1T 2T 4T 8T

Player Detection Face Detection Shot Detection

Parallel Sequential Imbalance Synchronization Parallel overheads

Figure 6: Execution time breakdown

In general, our parallelized workloads expose good
parallel performance metrics. Figure 6 depicts the parallel
profiling metrics for these three workloads. The higher
the parallel region, the better speedup can be achieved on
highly threaded architectures. Shot detection has slightly
more load imbalance than other workloads. Because of
frame dependency, it is more challenging to implement
two-level task queues in Shot detection than in other
workloads. In Shot detection, we use the static scheduling
scheme, which leads to a slightly higher load imbalance.
Nonetheless, the profiling information suggests these
parallel video-mining workloads expose good parallel
performance metrics. If we assume the parallel region can
scale perfectly, the three workloads should achieve the
theoretical speedups of 7.95, 7.93, and 7.56, respectively,
on eight cores. They are higher than the results shown in
Figure 5. Therefore, we believe the scalability of our
workloads is limited by some other factors that are
discussed in the next subsection.

On the simulated 32-core CMP system with a huge
amount of memory bandwidth, two selected parallel
video-mining workloads have very good scalability, as
depicted in Figure 7. First, the size of the serial sections
in the applications is reasonably small—the serial code
accounts for much less than 1% of the execution time for
the one-thread runs. Second, there is little contention on
the locks: the locking overhead does not increase with the
thread number due to coarse-grained parallelism. Third,
the load imbalance is not a major issue; most of our
video-mining workloads adopt a dynamic hybrid
parallelization scheme. In short, when we assume a very
high main memory bandwidth so that we do not
artificially limit the scalability of the workloads, these
applications scale very well.

0

4

8

12

16

20

24

28

32

1 2 4 8 16 32
Number of Threads

Figure 7: Scalability of two video-mining workloads
on a 32-core CMP simulator

Memory Behavior Analysis
Besides the general parallel performance metrics, the
memory subsystem also plays an important role in
scalability. As shown earlier in Figure 6, our workloads
with good parallel performance metrics should achieve
the theoretical speedup of 7.6–7.9x on 8 cores, if the
parallel region can scale perfectly. We now investigate
why these workloads cannot achieve this perfect scaling
performance from the perspective of the memory
subsystem. We use the Intel VTune Performance
Analyzer and a command-line tool for hardware-based
performance counter sampling to further analyze
the memory behavior of the applications on the real
system, e.g., system memory bandwidth and L1/L2 cache
miss rates.

Our first observation is that average bus bandwidth is not
limiting the scalability of these workloads on the 8-core
system. Figure 8 shows how the average FSB bandwidth
utilization varies with the number of threads. The
bandwidth usages of all workloads are far below the
21GB/s capacity supported by the system. This seems to
indicate bus bandwidth does not limit the scalability of
our workloads on the 8-core system.

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 247

Figure 8: Average FSB bandwidth utilization vs.
number of cores

Although workloads are not bounded by the average
bandwidth usage, the scalability is limited by the
instantaneous bandwidth usage. We perform interval
sampling of the memory subsystem behavior over time.
Figure 9 shows a representative phase of the bandwidth
usage over time for the single-threaded Shot detection
workload on a single core. It goes without saying that
there are some bursty memory access behaviors—the
instantaneous bandwidth usage is much higher than the
average bandwidth usage. In particular, one of the
modules demands about 7x more bandwidth over the
average bandwidth. When the bandwidth demand of the
module is higher than the system’s capability, its speedup
from 8 cores is less than 3x, and it becomes the bottleneck
of scalability. In short, the workload is not able to scale
perfectly when the instantaneous bandwidth usage is
higher than the system’s capability. This is what limits
the scalability.

0

100

200

300

400

500

600

1000 1040 1080 1120 1160 1200

Wall Clock Time (ms)

Figure 9: Bandwidth usage over time for
single-threaded Shot detection workload

Additionally, there is a significant increase in bandwidth
usage from four threads to eight threads for Shot
detection. Figure 10 shows that L1 cache miss rates vary
little with the number of threads, while L2 cache
performance deteriorates when scaling the thread count.
In particular, the external memory access rate for Shot
detection increases from 0.05 bytes per instruction for a
single thread to 0.30 bytes per instruction for eight
threads. Because we exploit coarse-grained parallelism
for these three workloads, each thread operates on a large
private working set, about 32MB per thread for Player
detection, 8MB per thread for Face detection, and 4MB
per thread for Shot detection. As the total working set size
increases with the number of threads, there are more L2
cache misses for more threads. For Shot detection, while
the working set of four threads fits well into 16MB L2
caches, the working set of eight threads cannot fit. This
explains the significant increase in cache misses from
four threads to eight threads. Together with the
instantaneously high bandwidth usage, the speedup of
Shot detection from four threads to eight threads is much
slower than the speedup from two threads to four threads.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

1T 2T 4T 8T

Number of Threads

Player Detection Face Detection Shot Detection

0%

2%

4%

6%

8%

10%

12%

1T 2T 4T 8T

Number of Threads

Player Detection Face Detection Shot Detection

Figure 10: L1/L2 cache miss rates

To summarize, most of the video-mining workloads
demonstrate fairly good parallel performance on both
existing multi-core systems and future large-scale CMP
platforms. As most of them can be partitioned into a large

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 248

number of parallel tasks, they have little lock overhead
and serial region. Since the workloads are parallelized in
coarse-grain fashion, which exposes a huge working set
with the increase in thread numbers, large cache size and
sufficient memory bandwidth will be necessary to enable
large-scale, video-mining computing. To reduce the
working set sizes and the external bandwidth usage in
the future, we may need to exploit fine-grain parallelism.
This could be a tradeoff between memory subsystem
performance and parallelism overheads.

CONCLUSION
Media mining can help us retrieve, organize, and manage
the exponentially growing media data easily. We explored
several usage models in media mining and showed that
most applications require tera-scale computing. To
efficiently use the processing power provided by
multi-core processors, we studied common parallelization
schemes and proposed a general parallel framework for
these media-mining applications. Furthermore, we
conducted a performance analysis of several
representative media-mining workloads on an 8-core
system and a 32-core CMP simulator. Our analysis shows
they have no obvious limits on parallelism. With a proper
parallelization scheme, future large-scale CMP systems
can deliver real-time performance for these media
applications. Taking advantage of next-generation
tera-scale computing platforms, new usage models in
media mining will be enabled.

ACKNOWLEDGMENTS

We acknowledge the encouragement and help that we
have received from Dr. Bob Liang, Director of the
Applications Research Lab. Our thanks also go to Prof.
Haizhou Ai, Prof. Jianming Li, Prof. Zhijian Ou,
Prof. Lifeng Sun, Prof. Shiqiang Yang, and Prof. Bo
Zhang from Tsinghua University for collaborating with us
on the media-mining project and providing some original
source code for our analysis. We also thank the reviewers
for their valuable comments.

REFERENCES
[1] Chabane Djeraba, Multimedia Mining: A Highway to

Intelligent Multimedia Documents, Kluwer, Norwell,
2002.

[2] X.S. Hua, L. Lu, and H.J. Zhang, “AVE - automated
home video editing,” ACM Multimedia, 2003.

[3] P. Viola and M. Jones, “Rapid object detection using a
boosted cascade of simple features,” IEEE Int’l Conf.
on Computer Vision and Pattern Recognition
(CVPR), 2001.

[4] J. Liu, X. Tong, W. Li, T. Wang, and Y. Zhang,
“Automatic player detection, labeling and tracking in
broadcast soccer video,” accepted by BMVC 2007.

[5] A. Ekin, A.M. Tekalp, and R. Mehrotr, “Automatic
soccer video analysis and summarization,” IEEE
Trans. on Image Processing, 12(7), July 2003, pp.
796–807.

[6] H. Bai, W. Hu, T. Wang, X. Tong, and Y. Zhang, “A
novel sports video logo detector based on motion
analysis,” International Conference on Neural
Information Processing (ICONIP), 2006.

[7] M. Xu, N. Maddage, C. Xu, M. Kankanhalli, and
Q.Tian, “Creating audio keywords for event detection
in soccer video,” IEEE International Conference on
Multimedia & Expo (ICME), 2003.

[8] J. Li, T. Wang, W. Hu, M. Sun, and Y. Zhang, “Two-
dependence Bayesian network for soccer highlight
detection,” IEEE International Conference on
Multimedia & Expo (ICME), 2006.

[9] L. Kennedy, “LSCOM lexicon definitions and
annotations (version 1.0),” DTO Challenge Workshop
on Large Scale Concept Ontology for Multimedia,
Columbia University ADVENT Technical Report
#217-2006-3, March 2006.

[10] NIST, TREC Video Retrieval Evaluation, at
http://www-nlpir.nist.gov/projects/trecvid/*

[11] J. Cao, Y. Lan et al., “Intelligent multimedia group
of Tsinghua University at TRECVID 2006,” in
Proceedings TRECVID, 2006.

[12] C. Huang, H. Ai, et al., “Vector boosting for rotation
invariant multi-view face detection,” IEEE
International Conference on Computer Vision
(ICCV), 2005.

[13] Y. Li, H. Ai, C. Huang, and S.H. Lao, “Robust head
tracking with particles based on multiple cues fusion,”
HCI/ECCV 2006, LNCS 3979, pp.29–39.

[14]E. Su, X. Tian, M. Girkar, et al., “Compiler support
of the workqueuing execution model for Intel SMP
architectures,” 4th European workshop on OpenMP
(EWOMP), 2002.

[15]E. Li, W. Li, C. Dulong et al., “User transparent
parallel video mining library,” PMUP workshop,
2006.

[16]Intel® Integrated Performance Primitives, at
http://www.intel.com/software/products/IPP

[17] Intel® VTune™ Performance Analyzer, at
http://www.intel.com/software/products/VTune

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 249

AUTHORS’ BIOGRAPHIES
Yurong Chen is a researcher at the Microprocessor
Technology Lab, Beijing. Currently, he conducts research
on parallel processing of emerging applications, scalable
workloads, and benchmarking and performance analysis
for next-generation microprocessors/platforms. He joined
Intel in 2004. Before that he did two years’ postdoctoral
research on large-scale scientific computing in the
Institute of Software, Chinese Academy of Sciences. He
received his Ph.D. degree from Tsinghua University in
2002. His e-mail is yurong.chen at intel.com.

Eric Li is a researcher in the Microprocessor Technology
Lab, Beijing. Currently, he is working on media-mining
technology development and performance analysis on
multi-core architecture. Prior to this, he was involved in
several projects related to bioinformatics, multimedia, and
parallel computing. He received his M.S. degree from
Tsinghua University in 2002 and joined Intel that same
year. His e-mail is eric.q.li at intel.com.

Wenlong Li is a researcher in the Microprocessor
Technology Lab, Beijing. Currently he is working on
algorithmic and workload analysis on data-mining
applications. Before this, he did research in loop
compilation techniques for IPF architecture. He received
his Ph.D. degree from Tsinghua University in 2005 and
joined Intel that same year. His e-mail is wenlong.li at
intel.com.

Tao Wang is a researcher in the Microprocessor
Technology Lab, Beijing. Currently, he conducts research
on video-mining, computer-vision, and machine-learning
techniques. At Intel, he has been involved in several
projects related to visual tracking, bioinformatics, soccer
highlights detection, cast indexing, video summarization,
and concept detection, etc. He received his Ph.D. degree
in Computer Science from Tsinghua University in 2003
and joined Intel the same year. His e-mail is tao.wang at
intel.com.

Jianguo Li is a researcher in the Microprocessor
Technology Lab, Beijing. Currently, he works on
multimedia mining and parallel algorithm design and
implementation. He has been involved in several projects
related to sports video analysis and content-based media
mining/retrieval. He received his Ph.D. degree from
Tsinghua University in June 2006 and joined Intel after
graduation. His e-mail is jianguo.li at intel.com.

Xiaofeng Tong is a researcher in the Microprocessor
Technology Lab, Beijing. His work is on personal
desktop multimedia applications. His technical interests
include computer vision and pattern recognition. He
received his Ph.D. degree in Computer Science from the
Institute of Automation, Chinese Academy of Sciences in
2006. His e-mail is xiaofeng.tong at intel.com.

Patricia P. Wang is a researcher in the Microprocessor
Technology Lab, Beijing. Her current research focuses on
video mining, machine learning, and pattern recognition.
She joined Intel in July 2006. She received her Ph.D. and
B.S. degrees from the Department of Computer Science
and Technology, Tsinghua University, China, in 2006 and
2001, respectively. Her e-mail is patricia.p.wang at
intel.com.

Wei Hu is a researcher in the Microprocessor Technology
Lab, Beijing. His research interests include many areas of
artificial intelligence, computer vision, and data mining.
He is currently working on video-mining projects, such as
commercial detection in TV programs and automatic
speaker recognition in videos. Before joining Intel, he
was a Research Associate for the Department of EEE at
the University of Hong Kong (1998-1999). He received
his Ph.D. degree from the Institute of Computing
Technology, Chinese Academy of Sciences in 1998. His
e-mail is wei.hu at intel.com.

Yimin Zhang is a researcher in the Microprocessor
Technology Lab, Beijing. He leads a team of researchers
working on various statistical computing techniques and
their scalability analysis, recently focusing on media
mining, data mining, etc. He joined Intel in 2000. At
Intel, he has been involved in several projects related to
natural language processing and speech recognition,
especially focusing on Chinese-named entity extraction
and DBN-based speech recognition. He received his B.A.
degree from Fudan University in 1993, his M.S. degree
from Shanghai Maritime University in 1996, and his
Ph.D. degree from Shanghai Jiao Tong University in
1999, all in Computer Science. His e-mail is yimin.zhang
at intel.com.

Yen-Kuang Chen is a Principal Engineer in the
Microprocessor Technology Lab at Santa Clara,
California. His research interests include developing
innovative multimedia applications, studying the
performance bottleneck in current architectures, and
designing next-generation microprocessors/platforms. He
has 10+ US patents, 25+ pending patent applications, and
75+ technical publications. He is one of the key
contributors to Supplemental Streaming SIMD Extension
3 in Intel Core 2 processor family. He received his Ph.D.
degree from Princeton University. His e-mail is yen-
kuang.chen at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,

Intel Technology Journal, Volume 11, Issue 3, 2007

Media Mining—Emerging Tera-scale Computing Applications 250

IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The
Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 251

High-Performance Physical Simulations on Next-Generation
Architecture with Many Cores

Yen-Kuang Chen, Corporate Technology Group, Intel Corporation
Jatin Chhugani, Corporate Technology Group, Intel Corporation

Christopher J. Hughes, Corporate Technology Group, Intel Corporation
Daehyun Kim, Corporate Technology Group, Intel Corporation

Sanjeev Kumar, Corporate Technology Group, Intel Corporation
Victor Lee, Corporate Technology Group, Intel Corporation
Albert Lin, Corporate Technology Group, Intel Corporation

Anthony D. Nguyen, Corporate Technology Group, Intel Corporation
Eftychios Sifakis, Corporate Technology Group, Intel Corporation

Mikhail Smelyanskiy, Corporate Technology Group, Intel Corporation

Index words: Physical simulations, chip multiprocessor, many cores, parallel scalability,
memory bandwidth

ABSTRACT
Physical simulation applications model and simulate
complex natural phenomena. The computational
complexity of real-time physical simulations far exceeds
the capabilities of modern unicore microprocessors,
which are limited to only tens of billions floating-point
operations per second (FLOPS). However, the advent of
multi-core architectures promises to soon make
processors with trillions of FLOPS available. Such
processors are also known as tera-scale processors.
Physical simulations can exploit this huge increase in
computational capability to increase realism, enable
interactivity, and enrich a user’s visual experience.

In this work, we study physical simulation applications in
two broad categories: production physics and game
physics. After parallelization, the benchmark applications
achieve parallel scalabilities of 30 –60 on a simulated
chip-multiprocessor with 64 cores.

We examine the memory requirements of physical
simulation applications and find that they require cache
sizes in excess of 128MB and main memory bandwidths
in excess of hundreds of GB/s for real-time performance.
A radical re-design of the memory hierarchy may be
necessary for the multi-core tera-scale era to provide good
scaling for this type of application.

INTRODUCTION
The booming computer games and visual effects
industries continue to drive the graphics community’s
seemingly insatiable desire for increased realism,
believability, and speed. In the past decade, physical
simulation has become a key to achieving the realism
expected by audiences of games and movies. Physical
simulation models the laws of physics to simulate life-like
movement and interaction among objects, such as rigid
and deformable bodies, human faces, cloth, and water.

Physical simulation can be used in a variety of settings
such as weather prediction, movie special effects, and
computer games. Complex natural phenomena such as
ocean waves crashing on a shore, a flag waving in the
wind, or bricks falling from a collapsing tower are
modeled by means of numerical simulation of physical
laws. Modeling different natural phenomena requires a
diverse set of techniques, algorithms, and data structures,
making physical simulation both complex and general.
Computation and memory requirements are extremely
demanding. This makes the workloads a challenging
target for current as well as future architectures.

In this paper, we examine applications involving physical
simulation for production environments and for gaming.
For production physical simulation, we study the
PhysBAM package from Stanford University [5, 11],
which is used by several special-effects and film
production companies, including Pixar and Industrial

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 252

Light and Magic. The goal is to recreate the visual
experience of a human observing a natural phenomenon.
For gaming physical simulation, we study the open source
ODE package [13]. This package provides similar
functionality to the widely used commercial Havok Effect
package from Havok. The goal of physical simulation in
gaming is to make real-time interactions between objects
as accurate as possible. The difference in goals for the
two physical simulation domains leads to different
choices for algorithms and data structures. However,
these two domains do have many similar characteristics.

One common characteristic of production and gaming
physical simulation is a need for significant acceleration.
On a 4-way Intel® Xeon® processor 3.0GHz system, with
16GB of DDR2-3200 and three levels of cache on each
processor (16KB L1, 1MB L2, and 8MB L3), the
production physics workloads take 5 to 188 seconds to
process a single frame. These workloads have hundreds
of thousands to a few million entities (tetrahedra/grid
cells) interacting with each other. In contrast, for game
physics workloads, only a thousand objects can currently
interact in real time. Acceleration by an order of
magnitude or more will allow improved accuracy,
modeling of new effects, and even interactive or real-time
production applications. Multi-core processors are now
common, and we expect the number of cores to increase
steadily for the foreseeable future, so that multi-core
processors capable of executing applications tens of times
faster than today’s processors are on the horizon. Such
processors would improve the speed and realism of
production-quality or real-time game physical simulation
applications. However, for an application to harness the
computational power of such a multi-core processor, it
must effectively utilize multiple threads. Parallelization of
a large code base as used by production or game physics
applications is not trivial, especially when the target
parallel scalability is tens of threads.

Another similarity in requirements for the two categories
of physical simulation applications is high-bandwidth
requirements. The size of the data scales with increasing
resolution or number of objects in the simulation. Input
sizes are often millions of volume elements or tens of
thousands of objects. This leads to memory footprints that
are tens of megabytes (i.e., larger than typical caches).
These applications therefore require either much larger
caches or a large main memory bandwidth.

Our contributions are as follows:

We have parallelized six state-of-the-art physical
simulation applications (fluid dynamics [4], human
face simulation [12], and cloth simulation [2] for
production physics and convex body collision [1, 3],
game cloth [7], and game fluids [9] for game
physics). In parallelizing these workloads, we

employed various techniques which include
parallelizing loops/graph operations and using
alternative algorithms for better scalability.

We simulated and analyzed the scalability of these
applications using cycle-accurate simulation of a
chip-multiprocessor with 64 cores. The workloads
studied achieved a parallel scaling of 30 to 60 for
64 cores.

We perform a detailed analysis of the memory
requirements of these applications. Our study finds
that future physical simulation workloads demand
cache sizes close to 100 megabytes or physical main
memory bandwidths in the hundreds of GB/s.

PHYSICS SIMULATION PIPELINE

Compute forces, torques,
pressures, etc

Time Stepping

Collision &
constraint
processing

State (time=tn)

State (time=tn+1)

External
control

Figure 1: Overview of physical simulation

Figure 1 shows a typical time step in a physical
simulation application. For each time step of a simulation,
a physical simulation application takes as input the state
of the simulated scene (e.g., positions, orientations, and
velocities of all objects), as well as external control
information (e.g., what the player is doing in a game).
The application then computes the physical processes that
potentially lead to an updated state (e.g., force, torque, or
pressure generation). Depending on the scheme used, this
information will be used to advance the state forward in
time (e.g., time integration of the laws of motion),
yielding a new candidate state. Should phenomena such
as collisions or other constraints be triggered, the state
may be updated in response to this collision or constraint,
and the force computation/time stepping phases will be
repeated, possibly with a smaller time step.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 253

While game and production physics share the same
iterative process, they exhibit important differences.
These differences stem from the execution time
requirements of their domains. Production physics is
primarily used for special effects in movies and other
off-line simulations. The execution time limit for these
environments is typically a few minutes per frame in
order to simulate the complete effect in a reasonable
amount of time (e.g., less than a day). Game physics, on
the other hand, is concerned with real-time simulation
used in computer games. Thus, the execution time limit
is at most tens of milliseconds per frame. Both areas
of physical simulation have the goal of providing
maximum visual plausibility within their execution
time requirements.

We now describe how we model some specific phenomena.

Fluid Simulation
Production physics: Simulated water volumes are key
elements in an increasing number of feature films, making
fluid simulation (a.k.a., Computational Fluid Dynamics,
or CFD) very common in the special effects industry
today. Our production-quality fluid simulation application
models a body of water with a free surface (as opposed to
water flowing in a pipe or other airtight container). The
application uses a combination of a three-dimensional
grid and a set of particles [4]. The simulation tracks the
velocity and pressure of the water in each grid cell. It
computes how velocity and pressure change at each time
step using incompressible Navier-Stokes equations. This
is very computationally expensive, and it becomes much
more so as the number of grid cells goes up.
Unfortunately, unless prohibitively large grid resolutions
are to be used, the grid cannot accurately represent
intricate geometrical features of the water surface (such as
thin sheets and droplets). Therefore, particles are
sprinkled around the surface and advected along with
the fluid. The updated positions and velocities of
these particles are used to enhance the resolution of the
water surface.

Game Physics: While CFD is the method of choice for
high-fidelity simulation of fluids, its high computational
requirements necessitate off-line rendering. Game physics
therefore uses much faster, although less accurate,
techniques. Smoothed Particle Hydrodynamics (SPH) has
recently emerged as a popular technique for interactive
simulation of fluids [9]. The SPH method represents a
fluid as a set of discrete particles and models a resistance
to density changes: when particles get too close to one
another, a repulsive force separates them; when they get
too far from each other, an attractive force brings them
together. If a pair of particles is far enough apart, no
forces act between them. SPH discretizes the Navier-
Stokes equations and samples its solution at a finite

number of such particles in space and time. While in the
grid-based method the position of these sample points is
fixed, in the SPH the particles are free to move around.
This difference fundamentally changes the way the
Navier-Stokes equations are solved and generally leads to
much smaller complexity and ease of implementation,
making SPH more suitable for interactive environments.

Cloth Simulation
Production physics: Cloth simulation models a cloth
surface that can deform under the influence of external
forces such as gravity or forced stretching, and internal
forces such as the elastic response to tensile stress,
shearing, and bending [2]. This application also models
collisions of the piece of cloth with itself and other
elements in the environment. The deformable cloth is
modeled as a set of mass particles connected to form a
triangle mesh. The mesh is endowed with a network of
spring elements aligned with all triangle edges and
altitudes, as well as between adjacent triangles. These
springs model the cloth’s resistance to various forms of
deformation. Collision detection and resolution is a key
part of this application. After the velocities and positions
of the cloth particles are updated, collisions are detected.
If the collisions cannot be resolved, the application
undoes the updates from this iteration and re-executes it
with a smaller time step.

Game Physics: Similar to production physics, game
physics models a cloth object as a set of particles [7].
Each particle is subject to external forces, such as gravity,
wind and drag, as well as various constraints. These
constraints are used to maintain the overall shape of the
object (spring constraints), and to prevent interpenetration
with the environment (collision constraints). The
particle’s equation of motion resulting from applying the
external forces is integrated using explicit Verlet
integration. The above-mentioned constraints create a
system of equations linking the particles’ positions
together. This system is solved at each simulation time
step by relaxation, that is, by enforcing the constraints
one after another for a fixed number of iterations. This
method is less accurate but faster than the Conjugate
Gradient solver [7] used in production physics, which
enables the game cloth to simulate in real time. In
addition, self-collisions are typically ignored.

Face Simulation
Production physics: Face simulation animates a model of
a human face to provide an anatomically correct
visualization of a person speaking or making facial
expressions [12]. The application we examine assumes
that inertia has a negligible effect on human faces in
typical situations, and it therefore models facial motion as
a sequence of steady states. Each state is defined by facial

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 254

muscle activation and the position of the cranium and
jawbone. The face is modeled as a tetrahedral mesh,
which is driven by the facial musculature and the motion
of the jawbone. The application takes as input a time
sequence of muscle activation values and kinematics
parameters for the jaw motion. The finite element method
is used to define the forces (elastic deformation resistance
and active muscle contraction) that act on the face and
determine its shape.

Rigid Body Simulation
Game Physics: Rigid body dynamics [3] simulates
motion and interaction of non-deformable objects when
forces and torques are present in the system. Rigid body
dynamics is the most commonly used physical simulation
in video games today. Examples of rigid bodies in games
are vehicles, rag dolls, cranes, barrels, crates, and even
whole buildings. The traditional approach solves a system
of ordinary differential equations, which represent
Newton’s second law of motion, F=ma, where m is the
mass of an object, a is its acceleration, and F is the
applied force. The applied force determines the
acceleration of the object, so velocity and position are
obtained by integration of the above equation. The main
computational challenge comes from the fact that rigid
bodies’ motion is constrained due to their interaction with
the environment. For example, consider a destructive
environment in a video game where 1000s of rigid objects
explode, collapse, and collide, resulting in 100,000s of
interactive contacts. To realistically simulate such a scene
requires determination of collisions, calculation of
collision contact points, and physically correct
computation of the contact forces that result from these
contacts. To accelerate collision detection relies on spatial
partitioning data structures, such as grids or bounding
volume hierarchies. To determine contact forces that
result from collision contact, we model the contact as a
linear complementary problem [1].

Rigid body simulation in games today assumes that rigid
bodies cannot break. In general, this assumption is not
true in production physics. Today’s films use animation
of elasticity and fracture. However, these techniques are
too slow for interactive use.

PARALLELIZATION METHODOLOGY
The applications we study are all computationally
demanding—on a 4-way Intel Xeon processor 3.0GHz
system, with 16GB of DDR2-3200 and three levels of
cache on each processor (16KB L1, 1MB L2, and 8MB
L3), they take on average 188, 14, and 5 seconds
to process a single frame for production fluid, face,
and cloth simulations, respectively. Similarly,
high-complexity scenes in game rigid body dynamics,
fluid and cloth take on average 1, 0.4, and 0.1 seconds to

process a single frame. While game physics performance
may seem much better than production physics, one needs
to perform at least 30 frames per second for real-time
interactive experiences. Since they will all benefit from a
large performance boost, we parallelize the applications,
targeting a multi-core processor with tens of cores.

We took the conventional approach to parallelizing large
code bases. We first profiled each application to
determine the most expensive modules in a serial
execution. After that, we prioritize the modules of
each application and parallelize them in decreasing order
of importance.

The applications were parallelized using the fork-join
model in which the program consists of alternating serial
and parallel sections. This model is attractive because it
allows one to start with a serial program and selectively
parallelize the most profitable portions of the program
until satisfactory performance is achieved. We use a
standard task queue technique [8], similar to Intel Thread
Building Blocks (TBB) [6] and OpenMP [10], to
parallelize all modules.

In the rest of this section, we discuss how the various
modules were parallelized to scale to a large number
of cores.

Parallelizing Loops
The majority of modules were parallelized via loop
parallelization. These modules typically involve
operations on arrays of elements, such as grid cells of a
3D grid (production fluid), an array of particles (game
fluid), vertices of a triangle mesh (production cloth), and
contact constraints (game rigid bodies).

In most of the cases, the iterations of the loops are
independent of each other. For instance, computing the
aggregate force on a vertex of the triangular mesh
(production cloth) requires simply adding all the forces on
that vertex. These loops are parallelized by partitioning
the iterations of the loop among the cores. In a few
instances, multiple iterations update the same piece of
data. However, even in these instances, the final result is
independent of the ordering of the iterations. These loops
are also parallelized by splitting iterations among cores
while using fine-grained locking to guard updates on the
shared data.

Parallelizing Graph Operations
A few modules have more complex forms of parallelism
and typically incur more parallelization overheads.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 255

b3

b2 b4
C2 C3

b1
C1 C4

Figure 2: Scene configuration

Bodies

C4C4

C3C3

C2C2

C1C1

b4b3b2b1

C4C4

C3C3

C2C2

C1C1

b4b3b2b1

Figure 3: Constraints between various objects

Time 1

Time 2 C4C4

C3C3

C2C2

C1C1

b4b3b2b1

Figure 4: Reordered constraints into two batches to
expose parallel computation

0

16

32

48

64

0 16 32 48 64
of cores

No Reorder Reorder

Figure 5: Relative speedups for the constraint solver
with and without reordering of the constraints

An example of this is the broad-phase in collision
detection. Collision detection requires checking every pair
of objects for collisions. Since only a small fraction of the
objects actually collide at any given instant, collision
detection is performed in two phases: a broad-phase that

performs quick checks to rule out a large fraction of the
object pairs, and a narrow-phase that performs the exact
(and more computationally expensive) check on the
remaining pairs. A standard technique to accelerate
the broad-phase is to build a bounding volume hierarchy
(a tree) containing the objects. A leaf node of this tree
consists of a single object. The computation starts at the
root and traverses down. At each step, it checks pairs of
nodes of the tree. If the bounding volumes at the two
nodes do not overlap, then none of the objects in the first
subtree can possibly collide with any object in the second
subtree. Otherwise, more checks have to be performed
using the children of the two subtrees. Each of these pairs
of subtrees represents independent computation and
can be performed in parallel. Consequently, in the
broad-phase, each unit of parallel work can spawn off
more parallel work.

Using Alternative Algorithms
Sometimes, the best serial algorithm has poor parallel
scalability. In such cases, we often use an alternative
algorithm whose serial version is not as efficient as the
original, but whose parallel version scales much better.
Sometimes, we use an additional phase to reorder data
and expose more parallelism. In this section, we describe
two specific examples in detail.

The first example is from rigid-body dynamics from game
physics. During the execution of the physical simulation
pipeline, the collision detection phase computes the pairs
of colliding bodies, which are used as inputs to the
constraint solving phase. The physics solver operates on
these pairs and computes the separating contact forces,
which keep the bodies from inter-penetrating each other.
In Figure 2, we show one such case involving four bodies
(three boxes and one ground plane), where the
corresponding pairs of colliding bodies are listed in
Figure 3. The resulting constraints C1, C2, C3, and C4
need to be resolved to update the body positions.

To parallelize this phase, we would ideally like to
distribute the constraints amongst the available threads
and resolve them in parallel. However, there is often an
inherent dependency between consecutive constraints. In
our example, constraints C1 and C2 both involve body b2
and thus cannot be resolved in parallel. These
dependencies can force a significant serialization of the
computation. However, we can reorder the constraints
into different batches such that there are no conflicting
constraints in each batch. That is, each batch will contain
at most one constraint that refers to any given body.

Reordering algorithms traverse the constraints,
maintaining an ordered list of partially filled batches.
Each constraint is assigned to the earliest batch with no
conflicting constraints. As a result, all constraints within a

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 256

batch can be processed in parallel, while the different
batches have to be processed sequentially.

For example, we reorder the constraints in Figure 3 and
obtain two batches, (C1, C3) and (C4, C2), as shown in
Figure 4. Note that C1 and C3 from the first batch do not
refer to any body more than once and can be resolved in
parallel. A similar observation holds for C4 and C2. As a
result C1 and C3 in the first batch are solved in parallel
and the results are fed as part of the input to the second
batch. The bottom curve in Figure 5 shows the speedup of
the physics solver using the original order of the
constraints relative to the serial version for up to 64 cores.
The top curve shows the speedup using reordered
constraints. We see that without reordering, the speedup
is limited to 4 on 64 cores. However, reordering
the constraints enables a speedup of 35 , including the
overhead for reordering. This example highlights the case
where some extra computation needs to be performed to
expose the parallelism.

The second example of the need for alternative algorithms
is from fluid simulation for production physics. Our fluid
simulation application implicitly tracks the interface
(boundary) between the air and the fluid. For each grid
cell in the modeled space, it computes the distance to the
interface. The most common technique to do this is
the Fast Marching Method (FMM), which iteratively
advances the wave front. For each iteration, it finds and
updates the closest grid cell to the front that is not already
on or behind the front (Figure 6). This is inherently serial.
However, these distance values are required only for a
narrow band around the interface. Thus, we parallelize
FMM by dividing the grid into overlapping blocks,
padded by the width of the narrow band, and working on
each block independently (Figure 7). This works well for
a small number of threads. However, the total overlap
region becomes large quickly as the number of blocks
increases. As a result, the application scales relatively
poorly, achieving a scaling of around 21 on 64 threads.

We instead use an alternative scheme known as the Fast
Sweeping Method (FSM) [5] (Figure 8). FSM traverses
the grid cells in all eight possible combinations of the X,
Y, and Z directions. Each “sweep” updates the distance of
a cell from the distances computed for its neighbors in the
previous sweeps. We obtain the correct distance for each
cell after completing all eight sweeps. We parallelize
FSM in a similar manner to FMM (i.e., with overlapping
blocks). The serial version of FSM is around 30% slower
than the serial version of FMM. However, FSM has more
parallelism since the sweeps are independent. Thus, we
achieve scaling of around 55 on 64 threads. In Figure 9,
we compare the speedup of FSM relative to FMM. Up to
16 cores, FMM provides higher performance, but beyond

16 cores, FSM is better, giving about 2 the performance
of FMM on 64 cores.

Advancing the front

Initial Fluid-air
interface

Figure 6: Fast Marching Method (FMM) advances the
front to incrementally compute the signed distance of

nodes from the interface
Regions shared by two or more cells where extra

computation is done

Figure 7: Parallelizing the algorithm by dividing the
region into overlapping cells

Sweep along the grid nodes and
update the distance

Figure 8: Fast Sweeping Method (FSM) traverses the
grid nodes and incrementally updates the minimum

distance to the interface

PARALLEL SCALABILITY RESULTS
Figure 10 shows the parallel scalability for our
applications for up to 64 cores. Since no large-scale CMP
is available for us to experiment with, we use
cycle-accurate simulation to measure performance and
characterize the parallelized workloads. Details of our
simulator can be found in [5]. We assume a very high
main memory bandwidth so that we do not artificially
limit scalability. The speedups are obtained against the

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 257

one thread version of the parallelized code. On 64 cores,
we achieve 30 to 56 speedup for production physics
and 36 to 61 speedup for game physics.

0

16

32

48

64

0 16 32 48 64
of cores

Fast marching method Fast sweeping method

Figure 9: Speedup of FSM relative to FMM

0

16

32

48

64

0 16 32 48 64
Number of Cores

Production Physics Fluid
Production Physics Face
Production Physics Cloth
Game Physics SPH Fluid
Game Physics Cloth
Game Physics Rigid Body

Figure 10: Parallel scalability of production physics
and game physics

Next, we discuss important issues regarding scalability.
Amdahl’s law determines the theoretical maximum
scalability. Load balancing and synchronization overheads
impact how close we can be to the theoretical limit.

Serial Sections: Amdahl’s law dictates that the parallel
scalability is limited by the size of the serial sections. In
most of the production and game physics modules, the
serial section accounts for much less than 1% of
execution time for one core. As a result, it does not
significantly impact the parallel scalability in our study of
up to 64 cores. However, as the number of cores
increases, more aggressive parallelization will be needed
to keep serial code from limiting parallel scalability.

Load Imbalance: The load imbalance is a function of the
variability of task size as well as the number of tasks. The
lower the variability, the fewer tasks are needed to obtain
good load balance. Unfortunately, some modules exhibit
high variability, which requires many tasks for good load
balance, resulting in high parallelization overhead.

Therefore, we should make a tradeoff between good load
balance and low parallelization overhead. Under certain
instances (e.g., Figure 7), we are forced to minimize the
number of tasks to keep the amount of replication and
redundant computation at an acceptable level. However,
this comes at a cost of significant load imbalance that may
limit parallel scaling.

Task Queuing: We implement a task queue to distribute
parallel tasks across the cores. For some modules, the task
queue overhead becomes a bottleneck for the scalability.
In our implementation of task queues, all tasks are
enqueued before we enter the parallel section. Therefore,
if the number of tasks is large and/or the parallel section
is small, the enqueue overhead becomes significant. Note
that an alternative implementation of task queues might
solve the problem, one of which is discussed in [8].

Locking: Grabbing and releasing locks incurs
synchronization overhead. However, we observe that the
locking overhead does not increase with the number of
threads. Since there is little contention on the locks,
locking does not significantly limit scalability.
Nevertheless, accessing an uncontended lock still incurs
parallelization overhead as it is extra work that is not
required in a serial code.

In addition to the reasons listed above, parallel scaling is
also affected by the memory behavior, which is covered
in detail in the next section.

IMPLICATIONS FOR THE MEMORY
SUBSYSTEM
Memory bandwidth requirements grow proportionally to
the number of cores on a multi-core chip. Furthermore, as
applications and workloads evolve, memory bandwidth
requirements are expected to grow. Current server
memory bandwidth projections are mostly based on
traditional benchmarks such as TPC-C, SPECjAppServer
(SJAS), and SPECjbb (SJBB). Unfortunately, these
benchmarks do not accurately reflect future important
workloads such as our physical simulation applications.

Figure 11 shows the projected external memory
bandwidth requirements for five different sizes of
last-level cache (the other caches are assumed to be small
and inclusive). The projection is based on running the
workloads at 64 giga-instructions-per-second (GIPS). We
analyze the bandwidth requirements for all important
modules and compare them to TPC-C, SJAS, and SJBB.
For each cache size, the modules are sorted according to
their bandwidth requirements. The bandwidth
requirements for the traditional benchmarks are
highlighted for comparison.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 258

-

50

100

150

200

250

Modules in physics simulations TPCC, SJAS, SJBB

32MB 64MB 128MB16MB8MB

Figure 11: Projection of external memory bandwidth requirements (GB/s) for a given last-level on-die cache size

The results show the following behaviors:

(1) If we have less than 128MB of last-level cache,
modules in physical simulation have a wide range of
bandwidth requirements, ranging from a few
gigabytes per second to over 200GB/s. The
bandwidth usage of traditional benchmarks, on the
other hand, is much lower than that (maximum of
40GB/s, even if we have only 8MB of cache).

(2) To put the results into context, we compare the
requirements to projected available bandwidth in
2010. Memory bandwidth typically grows at 30%
per year, so we expect the available bandwidth to be
about 48GB/s in 2010. Workloads with bandwidth
requirements greater than this will suffer
performance-wise. Some of our modules have
bandwidth requirements that greatly exceed 48GB/s
unless the last-level cache is at least 64MB.

(3) The average bandwidth usage for each of the
applications is significantly lower than the peak
bandwidth usage. This is because each application is
made up of modules with different bandwidth

requirements. The scalability of the module with
the highest bandwidth requirement often limits the
scalability of the entire application.

(4) Our physical simulation modules benefit significantly
more than traditional benchmarks do from a large
last-level cache. When an application’s entire
working set fits into cache, the external memory
bandwidth usage becomes minimal. For our
applications, this happens when the cache is 128MB.

(5) One of our most memory-intensive modules is the
incomplete Cholesky Preconditioned Conjugate
Gradient (PCG) method from production fluid
simulation. PCG is used to solve a system of
equations arising from the discretization of the
Poisson Equation.1 It consists of a number of

1 PCG is one of the most popular approaches for solving
large symmetric positive-definite systems of equations
because it is more robust than direct solvers and
converges fast. As such, PCG is of great importance
beyond the study of this application.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 259

operations performed sequentially on a set of two
matrices and a number of vectors. The solver iterates
tens of times until the solution converges. During each
iteration, both matrices (which occupy about 40MB
each) are streamed over. Thus, we see a huge
bandwidth requirement when the last-level cache
cannot hold the matrices. When the last-level cache is
big enough to hold both matrices (and all the vectors),
the bandwidth requirement is greatly reduced.

CONCLUSION
We consider two broad categories of physical simulation
applications: production physics and game physics.
Production physics is used by movie studios for creating
special effects that may take many minutes to process a
single frame. In contrast, game physics is used by the
gaming industry and has a more stringent real-time
requirement of about 30-60 frames per second. The
difference in execution time requirements affects the
choice and design of algorithms for the two categories of
physical simulation.

We have parallelized applications in both categories and
achieve parallel scalability of 30-60 on a cycle-accurate
simulator of a multi-core chip with 64 cores. Many
modules of these applications require extensive effort to
achieve good performance scaling. In some cases, the best
serial algorithms have poor parallel scalability. For these,
we use alternative algorithms which are slower on one
core, but have more parallelism. In other cases, we
modify the algorithm to expose more parallelism. The
overhead of exposing the parallelism is often small
compared to the benefits of improved scaling.

While our applications scale well, some modules are far
from the theoretical maximum scaling. This is primarily
due to overheads in the task queues and to imperfect
load balancing.

Some modules also have significant overheads from
locking, but these overheads do not grow with the number
of cores (i.e., the locks have low contention), and
therefore do not impact scalability. However, the cost of
locking still has a significant impact on the overall
performance of the parallelized application.

We find that future physics workloads will require large
last-level caches (i.e., 128MB) or main memory
bandwidths in excess of 100GB/s. This is due to the
applications’ use of streaming access patterns combined
with large data sets (e.g., tens of thousands of objects for
game physics and hundreds of thousands to a few million
objects for production physics).

We also find that physical simulation applications have
very different memory characteristics than traditional
benchmarks such as TPC-C, SPECjAppServer, and

SPECjbb. These traditional benchmarks do not get a big
boost from a large last-level cache since their working
sets are extremely large. However, physical simulation
applications benefit greatly from a 128MB cache since it
can fit the whole working set of all application modules.

ACKNOWLEDGMENTS
We thank Radek Grzeszczuk, Matthew J. Holliman,
Richard Lee, Andrew P. Selle, and Jason Sewall for
their contributions to the project. We also thank Pradeep
Dubey who encouraged us to look into this problem.

REFERENCES
[1] D. Baraff, “Physically Based Modeling: Principals

and Practice,” Online Course Notes, SIGGRAPH,
1997.

[2] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of
Clothing with Folds and Wrinkles,” in Proceedings
of the Eurographics Symposium on Computer
Animation, 2003.

[3] D. H. Eberly, Game Physics, Morgan
Kaufmann/Elsevier, San Francisco, 2003.

[4] D. P. Enright, S. R. Marschner, and R. P. Fedkiw,
“Animation and Rendering of Complex Water
Surfaces,” ACM Transactions on Graphics,
21(3):736–744, July 2002.

[5] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S.
Kumar, A. P. Selle, J. Chhugani, M. Holliman, and
Y.-K. Chen, “Physical Simulation for Animation and
Visual Effects: Parallelization and Characterization
for Chip Multiprocessors,” in Proceedings of the 34th

International Symposium on Computer Architecture,
June 2007.

[6] Intel® Thread Building Blocks Reference, 2006,
Version 1.3.

[7] T. Jacobsen, “Advanced Character Physics,”
Game Developers Conference, 2001.

[8] S. Kumar, C. J. Hughes, A. Nguyen, “Carbon:
Architectural Support for Fine-Grained Parallelism
on Chip Multiprocessors,” in Proceedings of the 34th

International Symposium on Computer Architecture,
June 2007.

[9] M. Muller, D. Charypar, and Markus Gross,
“Particle-based fluid simulation for interactive
applications,” in Proceedings of the Eurographics
Symposium on Computer Animation, 2003.

[10] OpenMP Application Program Interface, May 2005,
Version 2.5.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 260

[11] PhysBAM physical simulation package, at
http://graphics.stanford.edu/~fedkiw*

[12]E. Sifakis, A. Selle, A. Robinson-Mosher, and
R. Fedkiw, “Simulating Speech with a Physics-Based
Facial Muscle Model,” in Proceedings of the
Eurographics Symposium on Computer Animation,
2006.

[13]R. Smith, “Open Dynamics Engine, at
http://www.ode.org*

AUTHORS’ BIOGRAPHIES
Yen-Kuang Chen is a Principal Engineer in the Corporate
Technology Group. His research interests include
developing innovative multimedia applications, studying the
performance bottleneck in current architectures, and
designing next-generation microprocessors/platforms. He is
one of the key contributors to Supplemental Streaming
SIMD Extension 3 in the Intel® Core™2 processor family.
He received his Ph.D. degree from Princeton University. His
e-mail is yen-kuang.chen at intel.com.

Jatin Chhugani is a Staff Researcher in the Corporate
Technology Group. His research interests include
developing algorithms for interactive computer graphics,
parallel architectures, and image processing. He received
his Ph.D. degree from The Johns Hopkins University,
Baltimore, MD. His e-mail is jatin.chhugani at intel.com.

Christopher J. Hughes is a Staff Researcher in the
Corporate Technology Group. His research interests are
emerging workloads and computer architectures, with a
current focus on parallel architectures and memory
hierarchies. He received his Ph.D. degree from the
University of Illinois at Urbana-Champaign. His e-mail is
christopher.j.hughes at intel.com.

Daehyun Kim is a Senior Research Scientist in the
Corporate Technology Group. His research interests
include parallel computer architecture, intelligent memory
systems, and emerging workloads. He received his Ph.D.
degree from Cornell University. His e-mail is
daehyun.kim at intel.com.

Sanjeev Kumar is a Staff Researcher in the Corporate
Technology Group. His research interests are parallel
architectures, software, and workloads especially in the
context of chip-multiprocessors. He received his Ph.D.
degree from Princeton University. His e-mail is
sanjeev.kumar at intel.com.

Victor Lee is a Senior Staff Research Scientist in the
Corporate Technology Group. His research interests are
computer architecture and emerging workloads. He
is currently involved in defining next-generation
chip-multiprocessor architecture. He received his S.M.

degree from the Massachusetts Institute of Technology.
His e-mail is victor.w.lee at intel.com.

Albert Lin is a graduate intern in the Corporate
Technology Group. His work is primarily in memory
systems for future processors with many cores. He
received his B.S. and M.Eng. degrees in Electrical
Engineering and Computer Science from the
Massachusetts Institute of Technology. While at MIT, he
was a recipient of the Siebel Scholar Fellowship and a
student member of the American Academy of
Achievement. He is currently an Electrical Engineering
doctoral candidate at Stanford University. His e-mail is
albert.c.lin at intel.com.

Anthony D. Nguyen is a Senior Research Scientist in the
Corporate Technology Group. His research interests
include developing emerging applications for architecture
research and designing the next-generation
chip-multiprocessor systems. He received his Ph.D.
degree from the University of Illinois, Urbana-
Champaign. His e-mail is anthony.d.nguyen at intel.com.

Eftychios Sifakis is a visiting researcher in the Corporate
Technology Group. He received B.Sc. degrees in
Computer Science and Mathematics from the University
of Crete, Greece in 2000 and 2002, respectively, and he
received his Ph.D. degree in Computer Science from
Stanford University in 2007. His research focuses on
simulation and analysis of human body and face motion
and simulation algorithms for deformable solids. He has
been working with Intel since 2005 on the mapping of
physics-based simulation on chip-multiprocessors. His
e-mail is eftychios.d.sifakis at intel.com.

Mikhail Smelyanskiy is a Senior Research Scientist in
the Corporate Technology Group. His research focus is
on building and analyzing parallel emerging workloads to
drive the design of the next-generation parallel
architectures. He received his Ph.D. degree from the
University of Michigan, Ann Arbor. His e-mail address is
mikhail.smelyanskiy at intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino,
Centrino logo, Core Inside, FlashFile, i960, InstantIP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside
logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium
Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The
Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 261

Intel’s trademarks may be used publicly with permission
only from Intel. Fair use of Intel’s trademarks in
advertising and promotion of Intel products requires
proper acknowledgement.

*Other names and brands may be claimed as the property
of others.

Microsoft, Windows, and the Windows logo are
trademarks, or registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Bluetooth is a trademark owned by its proprietor and used
by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under
license from Palm, Inc.

Copyright © 2007 Intel Corporation. All rights reserved.

This publication was downloaded from
http://www.intel.com.

Additional legal notices at:
http://www.intel.com/sites/corporate/tradmarx.htm.

Intel Technology Journal, Volume 11, Issue 3, 2007

High-Performance Physical Simulations on Next-Generation Architecture with Many Cores 262

THIS PAGE INTENTIONALLY LEFT BLANK

