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ABSTRACT
Tera-scale processors promise to offer an unprecedented 
concentration of computing power and enable novel 
usages and applications. The computing power may be 
provided by a combination of general-purpose cores and 
special-purpose (fixed or programmable) computing 
engines. Further, Moore’s law enables the integration of 
additional system resources to the processor die. 
However, the realization of tera-scale architecture is 
challenged by on-die power dissipation, wire delays,  
off-chip memory bandwidth, process variations, and 
higher failure rates. These challenges create opportunities 
for architectural innovation. One of the ways to address 
these challenges is through the use of a “tiled” 
architecture: the die is divided into a large number of 
identical or close-to-identical, tiles that are interconnected 
using a scalable and energy-efficient interconnect. This 
modular approach enables ease of layout and rapid 
integration of different blocks. Limited off-chip memory 
bandwidth requires innovations in the cache hierarchy, 
memory subsystem, and coherence protocol. We present 
an architectural vision for the tera-scale processors and 
discuss the performance, scalability, and manufacturability 
aspects of the uncore. We articulate key challenges and 
point to candidate solutions for these challenges. 

INTRODUCTION
Over the last few years, dual-core processors have 
become mainstream in desktop, mobile, and server 
platforms due to their ability to deliver higher system 

performance more efficiently than single-core processors. 
The trend towards higher core counts is continuing strong 
with quad-core processors establishing an increasing 
presence across all market segments.  

Industry experience with small-scale shared memory 
multiprocessors enabled a relatively effortless integration 
of a small number of processors into a single die. Moving 
beyond a small number to tens or hundreds of processor 
cores at the same time as other platform ingredients such 
as memory controllers, I/O bridges, and graphics engines 
find their way to the processor die, introduces significant 
challenges to the infrastructure that ties all these together. 
This infrastructure includes the on-die interconnect, the 
cache hierarchy, the memory, the I/O, and system 
interfaces. In this paper we use the term uncore to 
collectively refer to all the elements in the processor die 
that are not computing engines.  

The tera-scale architecture uncore must be capable of 
satisfying the communication requirements of a large 
number of cores, fixed function computing engines, and 
the external memory and I/O system. In order to scale 
effectively, the uncore must find ways to keep the off-die 
bandwidth manageable and within the constraints of  
cost, power, and high-speed signaling technology.  
The uncore must be able to offer significant flexibility  
to assign computing resources to concurrently solve 
different problems. It must include mechanisms to enable 
high-volume manufacturing by enhancing reliability in 
the presence of increasing architectural complexity and 
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decreasing silicon geometries. Moreover, it must perform 
its functions within a constrained power envelope.  

This paper is organized as follows. First, we describe the 
architectural vision for tera-scale processors. Second, we 
focus on the challenges and opportunities imposed by the 
tera-scale architecture in the key uncore elements such as 
the on-die interconnect, cache hierarchy, and memory 
architecture. We conclude with a summary of the key 
challenges, opportunities, and directions outlined in  
this paper. 

ARCHITECTURAL VISION
The tera-scale architectural vision, as shown in Figure 1, 
takes the integration trend to its logical progression by 
consolidating not only a large number of general-purpose 
computing cores but also special-purpose computing 
engines (e.g., texture units, shader units, fixed function 
units), and platform elements, such as memory and I/O 
controllers, in a single die. A tera-scale processor may 
also include a system interface to allow multiple such 
processors to connect with each other and with other 
system peripherals.   

FFU: Fixed Function Unit, Mem C: Memory Controller,
PCI-E C: PCI-based Controller, R: Router, Sys I/F: 

System Interface

Figure 1: Tera-scale architecture: high-level block 
diagram 

The tera-scale architecture uncore consists of the 
following key elements: 

A scalable high-bandwidth, low-latency, and  
power-efficient interconnect to connect the computing 
and platform elements together and allow them to 

exchange information with each other, access memory, 
and communicate with the rest of the system.  

A cache hierarchy that allows the multiple computing 
elements to effectively utilize and share the on-die 
memory resources.  

A scalable, high-bandwidth memory architecture  
that can effectively feed the large number of 
computing elements. 

We expect tera-scale processors to be highly optimized 
for specific market segments through variations in the 
number of computing engines, by having different types 
of fixed function blocks, and having a different type and 
number of memory and I/O resources. Not all building 
blocks require the high bandwidth and low latency 
offered by the scalable interconnect. We expect blocks 
that are not candidates for integration into the main 
interconnect and cache hierarchy to be attached to 
auxiliary interconnects suitable for specific needs. 

ON-DIE INTERCONNECT

The on-die interconnect is the primary “meeting ground” for 
various elements of the tiled architecture in Figure 1. Given its 
central nature, there are certain basic requirements for the  
on-die interconnect: 

Scalability: Given the requirements of a large 
number of nodes (agents) on the interconnect  
(high tens to low hundreds), we realistically desire  
a) a sub-linear growth in average distance with 
number of nodes, b) a relatively low per-hop  
latency through each switch under no-load 
conditions, and c) manageable growth in latency 
under loaded conditions.

Partitionability: The topology, with appropriate 
routing support, should enable the tera-scale 
architecture to be dynamically partitioned to achieve 
both performance and fault isolation. 

Fault tolerance: The tera-scale architecture with its 
tiled structure has the potential for a graceful 
degradation under faults. Further, with the expected 
impact of variations on process technology, there is a 
greater susceptibility to “performance” faults 
(discussed in the next section). Hence, the topology, 
with appropriate support, should support routing 
around faults. 

Validation and testing: The interconnect should 
provide support for testing and validation, which is 
critical for high-volume manufacturing. For example, 
an interconnect that uses a deadlock-free routing 
approach is easier to test and validate compared to 
one using deadlock-recovery based routing. 
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Regularity: In order to make the design of the  
tera-scale chip tractable, it is imperative that the 
layout, planning, and design of each tile be done in 
such a way as to make the tile physically symmetric. 
Thus integration may be achieved largely through 
abutment of tiles. To that end, each “tile” needs to 
plan its global wiring tracks. 

Flexibility and design friendliness:

- Designs should facilitate “choppability” so that 
with minimal redesign effort, a range of market 
segments can be satisfied. 

- Furthermore, the basic router design should not 
change as the underlying parameter, for example, 
as the number of processors, changes with each 
process generation. 

- The tiled architecture will have different-sized 
tiles arising possibly from the need for 
heterogeneous cores (e.g., some suited for 
throughput and others suited for single-thread 
performance), specialized engines, fixed 
function units, etc. The on-die interconnect 
design needs to incorporate the needs of each by, 
for example, clustering multiple low-bandwidth 
engines into a single routing agent.  

Candidate Topologies

Figure 2: 2D embedding of a 64-node 3D-mesh 
network

In off-chip networks, both the number of links (which has 
a bearing on the topology) and the link widths are 
determined by pin-out limitations. In on-chip networks, 
this limitation is absent. The topology choices (apart from 
the number of routing agents that need to be supported) 
are determined by the wiring density and router 
complexity in terms of area and power. The wiring 
density is in turn determined by the number of metal 
layers available and the directionality constraints 
(uniform availability of horizontal and vertical metal 
layers), as well as the need for the topology to be 
embedded in 2D space. The latter point implies that for 
higher (greater than 2D) dimensional networks, 
topological adjacency does not lead to spatial adjacency

[14]. This has significant implications both on the wire 
delay and on the wiring density. Consider the embedding 
of the 3D mesh in Figure 2. For the longest hop, the 
topological distance is 9, but three of these hops span  
half the length of the die. Hence, the distance in tile span 
units is 18!  

Considering wiring density, router complexity, and design 
friendliness, tera-scale architecture topologies will be 
fixed-degree and will have a low dimension (1–2) in the 
foreseeable future. Thus, ring and 2D torus/mesh 
networks and their many variants [2] will be candidate 
topologies. 

In the rest of this section, we use the 2D mesh as an 
example topology for illustrative purposes only.

Interconnect Microarchitecture 
The main challenge in on-die networks is to achieve the 
required bandwidth and latency under the constraints of 
power and area. While topological choices, as mentioned 
above, help with bandwidth scaling and keep latencies 
manageable, they come at increasing power costs.  

Wang et al. [28] show that the router power is almost 2x 
the power of the wires in the MIT-RAW [25] chip. 
Further decomposition shows that the power is roughly 
spent as much in the switch (crossbar) as in the buffers.  

Wang et al. also propose segmented and cut-through 
crossbars as possible solutions to reduce crossbar power. 
Meanwhile Nicopoulos et al. [21] reduce buffer  
power through careful microarchitectural techniques to 
minimize the number of buffers required for the same 
network throughput. 

Kumar et al. [16] observe that certain paths in a 2D mesh 
are common for a number of flows (between different 
source/destination pairs), and thus traffic traveling on these 
trunks could be aggregated and switched together—thus 
avoiding the need for packets to stop and be buffered at 
intermediate nodes. This in turn saves buffer power and 
reduces contention on network resources—the latter 
helping to improve the throughput and thus eventually the 
energy characteristics of the network. 

Traffic Classes
Emerging workloads [10] may see different classes of 
traffic overlaid on the on-die network. Taylor et al. [25] 
and Gratz et al. [11] use a network fabric to route 
operands between different clusters of functional units. It 
is conceivable that the different cores of the tera-scale 
processor may be used to realize a virtual superscalar 
microarchitecture [29], thus necessitating fine-grained 
communication of operands and control, in addition to the 
cache coherent and message-based communication in the 
cache-memory subsystem.  
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Furthermore, as media applications become a dominant 
consumer of compute capacity on a chip, they will place 
hard real-time constraints on different shared resources 
such as cache and interconnect. In addition, running 
disparate applications on the same multi-core is likely to 
result in bandwidth over-subscription by some 
applications at the cost of starvation of some others. 
Careful rationing of bandwidth while providing latency 
guarantees to the necessary applications will require 
careful architecture definition and design of the fabric.    

Resiliency
The need for fault tolerance arises from both an increased 
susceptibility to faults and the opportunity to gracefully 
degrade in a tera-scale environment. 

Future process technology trends are likely to adversely 
affect the resilience of a tera-scale processor chip. Such 
trends might include process variations becoming a more 
significant determinant of overall performance and 
insufficient burn-in time to weed out infant mortality. 
Consequently, there is a higher probability of in-field 
failures and accelerated degradation potentially 
shortening the expected lifetime of the product [6]. 

Interconnect Fault-tolerance Approaches 
The following mechanisms can be adopted for addressing 
resilience in a tera-scale processor interconnect. These 
approaches can be used either to address true faults  
or performance faults (i.e., when underperforming or  
“out-of-spec” tiles are treated as failed tiles).

Sparing: Spare processor tiles paired with network 
interfaces and switches can potentially solve a multiplicity of 
fault scenarios including increased possibility of in-field 
failures. Upon detection of failures in some tile components, 
spare tiles are activated after the interconnection network is 
reconfigured as shown in Figure 3. 

fault-free w/ 
spare column

some faulty
nodes

logically 
similar
to fault-free 
after-remap

remap col w/
faulty nodes 
by
spare column

= failed= spare

fault-free w/ 
spare column
fault-free w/ 
spare column

some faulty
nodes
some faulty
nodes

logically 
similar
to fault-free 
after-remap

logically 
similar
to fault-free 
after-remap

remap col w/
faulty nodes 
by
spare column

remap col w/
faulty nodes 
by
spare column

= failed= failed= spare= spare

Figure 3: Illustrating use of spare tiles that maintain 
original topology 

Fault-tolerant Routing 
Fault-tolerant routing support is required in the 
interconnect to enable reconfiguration of the system 
components in the presences of failed tiles and routers. 
Upon system reset/initialization, a fault and topology 
discovery algorithm is run to determine the 
location/identity of failed components and to mark them 
in the interconnect. Other regions also need to be marked 
safe or unsafe from a deadlock-free routing perspective. 
A fault-tolerant routing algorithm is then configured to 
route around faulty and unsafe regions. Figure 4 shows 
faulty (dead) nodes in the interconnect. A few additional 
nodes are marked unsafe so as to form rectangular fault 
regions. After the fault-tolerant routing algorithm (such as 
in [5]) is configured, all working (and spare nodes, if 
sparing is used) tiles in the fabric can communicate with 
each other. 

Figure 4: Illustrating need for fault-tolerant routing 

The fault-tolerant routing algorithm should be simple to 
implement, deadlock free, and be able to handle a wide 
variety of faults. It is also desirable for the routing 
algorithm to adaptively respond to congestion that may 
occur in the network due to the additional effort needed to 
route around fault regions. 

Partitioning for Performance Isolation 
We expect several partitions to be supported on a  
tera-scale processor—each partition with a fraction of the 
total number of processing units, special-purpose units, 
and other platform elements. There may be several 
different usage models for a partitioned tera-scale 
processor including multiple server partitions in a 
consolidated “server on chip” or, for example, multiple 
virtual appliances on a home server. 

It is desirable that the performance of each of the multiple 
partitions on a tera-scale processor be unaffected by the 
performance of other partitions. Some partitions may  
be more sensitive to performance perturbations from  

w o r k in g d e a d u n s a f e ,
f o r c e d  d e a d

w o r k in g d e a d u n s a f e ,
f o r c e d  d e a d
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other partitions or may have stricter Quality of Service 
(QoS) requirements. 

Performance isolation: Performance isolation relies on 
confining intra-partition communication of a given QoS 
sensitive partition to physically distinct components of the 
on-die interconnect from that of other partitions. Figure 5 
shows a configuration with three isolated partitions where 
traffic generated in one partition does not interfere with 
traffic from another partition. 

Figure 5: Performance isolation in a 2D mesh with 
rectangular partitions 

Virtualization of Network Interfaces 
In order to better realize a uniform interface that can 
comprehend the diverse needs of accelerators, fixed 
function units, general-purpose processor cores, cache 
blocks, etc., it is desirable to formalize and possibly even 
export the interconnect as an abstraction to the application 
programmer and/or the run-time system. Thus, one could 
envision a programmer fine-tuning an application’s  
inter-processor communication requirements, based 
specifically on that application. For example, a media 
application requiring little support for cache coherence 
may be better served in power and performance through a 
direct send/receive interface. Similarly, the programmer 
may want to commandeer different levels of resources of 
the interconnects, i.e., number of buffers, switching 
priority, or bandwidth, and leave the rest of the hardware 
for use by another application. 

A network interface that can allow this level of control 
and flexibility, yet can achieve good performance would 
be powerful. In addition, such a network makes for easy 
and rapid integration of multiple IP blocks that conform 
to the same interface. 

CACHE HIERARCHY AND COHERENCE 
PROTOCOL
Diversity of workloads and concentration of compute 
resources in the tera-scale architecture put tremendous 
demands on the cache hierarchy and coherency protocol. 
This requires a flexible cache organization that can adapt 
to workload demands and puts minimal restrictions on the 
software to fully realize the performance potential. The 
associated coherency protocol needs to be efficient and 

scalable. It should also be flexible in terms of the 
requirements it imposes on the building blocks of  
the tera-scale architecture. In this section we highlight the 
challenges and tradeoffs associated with the cache 
hierarchy and protocol and point out potential directions 
for tera-scale architecture. 

Developing parallel applications to harness and 
effectively use the massively parallel tera-scale processors 
is likely to be the key challenge for tera-scale computing. 
Many parallel programming models and languages have 
been deployed in different contexts over the last few 
decades and in fact, parallel programming remains an  
area of active research. A clear lesson, however, that  
we can draw from the history of parallel computing to 
date, is that hardware shared memory has proven to  
be a particularly successful programming model for 
general-purpose systems. Accordingly, tera-scale 
architecture should include first-class hardware support 
for shared memory. Industry and academic experience 
with coherence protocols for large-scale, hardware-shared 
memory machines has demonstrated that shared  
memory machines scaling to hundreds of processors  
can be successfully built. In fact, implementing a 
message-passing library such as the Message Passing 
Interface (MPI) over hardware-shared memory often 
results in higher bandwidth and lower latency than 
equivalent implementations using specialized low-latency 
cluster networks [19]. In addition, hardware support for 
shared memory will allow tera-scale processors to support 
common operating systems assuming that such operating 
systems overcome any existing scalability bottlenecks to 
harness the capabilities of tera-scale architecture. 

A cache hierarchy should efficiently support a wide range 
of programming models and workloads. These are some 
important classes:  

Multiprogrammed workloads where there is no 
communication and data sharing among the processes 
running in different cores.  

Workloads with a mix of scalar and parallel sections. 
The performance of these workloads on tera-scale 
architecture is limited by the performance of the 
scalar section as indicated by Amdahl’s law.  

Highly parallel workloads, where most of the 
computations can be parallelized. These workloads 
may exhibit one or more of the types of parralelism 
as described below: 

- Thread parallelism: Each thread may be similar 
or very different from each other and may or 
may not share data with other threads. Threads 
are created based on the granularities exposed by 
the application and then scheduled on available 
hardware contexts through task queues or other 
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constructs. Examples of this programming model 
can be found in transaction processing and  
Web applications. 

- Data parallelism: A similar task is performed on 
different data sets, where some data may be 
shared between tasks. Applications are more 
structured, and algorithms are typically modified 
to fit the underlying cache organization. The 
number of threads used in this model is typically 
the same or less than the number of hardware 
contexts available. Examples of this 
programming model can be found in media, 
numerical analysis, and data-mining workloads. 

- Streams: Programs are structured as kernels 
where input data are processed and output  
data are fed into other kernels. In this model 
threads (or kernels) are statically scheduled  
to hardware contexts. Within each kernel, 
thread- or data-level parallelism constructs can 
be applied to break tasks into ever finer sizes. 
Examples of this programming model can be 
found in media and graphics applications. 

Cache Organization 
A combination of different workloads and different types of 
parallelisms within these workloads presents unique 
architectural and design challenges for the cache hierarchy 
of tera-scale architecture. Architectural challenges center on 
the organization and policies associated with the cache 
hierarchy to meet performance, scalability, and  
energy-efficiency goals. Cache organization deals with the 
number of levels in the cache hierarchy, and with the size, 
associativity, latency, and bandwidth parameters at each 
level. Cache policies determine accessibility, allocation,  
and eviction policies to effectively utilize on-chip  
cache resources. 

The objective of a cache hierarchy is to minimize the 
latency to frequently accessed data. In a traditional 
uniprocessor cache hierarchy, we move cache blocks 
closer and closer to the core through the levels in the 
cache hierarchy, based on access frequency. The same 
principle applies to multi-core cache hierarchies, but we 
have to take into account whether cores have to share a 
given level in the cache hierarchy or whether a level is 
implemented as a single physical block or as multiple 
physically distributed banks with non-uniform access 
latency to each bank.

In multi-core processors released over the last few years, 
the first one or two levels in the cache hierarchy are 
private to each core. However, different designs have 
pursued a range of options in sharing the last-level cache. 
In some designs such as those described in [20], the  
last-level cache is private to a core. In others, such as 

those described in [18, 23], the last-level cache is shared 
among multiple cores.  

In CMPs with only a few cores, the last-level cache is 
being implemented as a single physical block with 
uniform access latency to the entirety of the cache by all 
the cores sharing it. As the number of cores and cache 
banks increase, physically distributed caches become 
attractive from a physical design perspective [15]. 
Moreover, by collocating a portion of the cache with a 
subset of the cores, there is an opportunity to reduce 
access latency to a portion of the cache, instead of 
offering equally high latency to all the cache. Figure 6 
summarizes different multi-core cache organizations 
according to their suitability for the types of workloads, 
assuming a distributed multibank last-level cache. 

Figure 6: Cache organization options for multi-core 
architectures

In a tera-scale processor with a last-level cache physically 
distributed across multiple tiles, private and shared caches 
introduce distinct tradeoffs. A shared cache design 
increases effective cache capacity because only a single 
copy of a block shared by multiple cores resides in the 
cache. The downside is that any given block, whether 
private or shared, may be placed in a tile arbitrarily and 
be far away from the core(s) using it. In contrast, a private 
cache design will have all blocks used by a specific core 
on its local tile. However, since read-shared blocks will 
be replicated in multiple tiles, the effective cache capacity 
is reduced, and off-die traffic may increase.  

Recent work suggests that other hybrid alternatives are 
possible: these combine the advantages of private and 
shared caches while avoiding their shortcomings. The key 
observation is that in a physically distributed cache design 
where some cache banks are closer to a specific core than 
others, one can optimize cache performance by 
optimizing the placement of blocks in the cache banks so 
that they are closer to the point of use. A number of 
approaches in the literature have been proposed to 
achieve this [4, 9, 30, 31]. Such approaches are beneficial 
in any multi-core processor with differential access 
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latency to a given portion of a shared cache, but are 
particularly effective in a tera-scale processor where there 
is large variation in the latency to access the cache in 
different tiles.  

Fundamentally, all approaches have the following key 
policies to set: initial placement, read-shared block 
replication, block migration, and eviction. The initial 
placement policy defines where a block is placed in the 
cache hierarchy when it is fetched from memory. The 
replication policy determines whether multiple copies of a 
read-shared block can coexist in different cache banks. 
The block migration policy determines whether a block 
will move between tiles in response to processor accesses. 
Finally, the eviction policy determines what happens to a 
block evicted from a cache bank. Private and shared 
cache designs represent the end points in the design space 
with regard to these specific policies. For example, in a 
private design, a block is initially placed in the cache of 
the requesting core, while in a shared design, a block is 
placed in a cache bank determined by the physical address 
of the block (home tile). Hybrid approaches combine 
policies from private and shared design or introduce new 
policies to perform better than either private or shared 
designs, or they even dynamically switch between 
competing policies based on application demands. For 
example, the Adaptive Selective Replication (ASR) [4] 
determines the replication level within the context of a 
private cache design based on program behavior. 

The enormous computing power available in tera-scale 
design implies that many applications (or applications 
consisting of many concurrent functions with distinct 
caching behavior) will be running concurrently (e.g., 
games physics with game AI and graphics rendering). 
Accordingly, when a level in the cache hierarchy is 
shared among multiple cores in the presence of diverse 
per-core access patterns and working sets, destructive 
interference can occur. One of the causes of destructive 
interference is the suboptimal behavior of the least 
recently used (LRU) replacement policy, typically 
implemented in processor caches, when the application 
workload exceeds the cache capacity. Sharing a cache 
level among multiple threads can further exacerbate the 
problem. This is a well known issue for any shared cache, 
including page disk and file system caches. Recent  
work in this area, however, shows some promise of 
success [22].

In its generalized version, the tera-scale architecture is a 
collection of modular and heterogeneous building blocks 
with well defined interfaces. Such a heterogeneous 
collection of elements puts its own unique requirements 
on the cache hierarchy, and meeting these with a single 
set of caching policies and a single cache hierarchy  
is quite challenging. For example, if an incarnation  

of tera-scale architecture is a collection of several 
general-purpose processors, some graphics coprocessors, 
a few network accelerators, a security coprocessor and so 
on, each of these processors exhibit very different data 
footprints and locality characteristics. Satisfying their 
needs through a unified cache hierarchy is challenging 
and requires further exploration. 

Cache Coherency 
The cache coherency protocol for tera-scale architecture 
must be scalable to a large number of caching agents and 
must enable efficient utilization of on-chip resources. The 
choice of a coherency protocol is closely linked to the 
cache organization and the interconnect. For example, a 
protocol designed for cache organization without any 
shared caches may be designed to keep precise 
information about the lines present in private caches, such 
that off-chip reads and writes are minimal. A snoop 
broadcast protocol is suitable when there is a broadcast 
interconnect, but it cannot be scaled.  

On-chip interconnects are capable of providing an order 
of magnitude smaller latency and an order of magnitude 
higher bandwidth than off-chip socket-to-socket 
interconnects. Therefore, latency and bandwidth 
optimizations may not seem to be the primary goals for an 
on-chip coherency protocol. However, since tera-scale 
processors are expected to have a concentrated density of 
computing throughput, they do impose tremendously high 
bandwidth demands on the interconnect. Since the power 
delivery, cooling, and off-chip bandwidth available to 
each chip is not scaling with process technology, the 
protocol must enable improved utilization of on-chip 
cache structures, and the interconnect overhead, because 
of the protocol, must be kept to a minimum to gain the 
maximum performance under these limits. 

Directory-based protocols have been widely used in  
large-scale, multichip multiprocessors [7, 8, 17, 24], 
where a directory is used to keep track of copies of blocks 
in different caches. The same concept can be applied to 
on-chip cache coherence protocols in tera-scale 
architecture with some modification. As illustrated in 
Figure 7, a directory consists of entries corresponding to 
lines in caches where each entry has a state field and a 
field to store the identities (indicated as pointers in the 
directory structure in Figure 7) of the caches with a copy 
of the block. The state field indicates if a block may be 
present in one of the caches and the possible states the 
cached copies could be in. For a directory that is inclusive 
of all the on-chip caches, a directory miss or a state of I 
(invalid) in the directory indicates that none of the caches 
have a copy of the block; a state of S (shared) indicates 
that some caches may have copies of the block in Shared 
state; and a state of X (exclusive) indicates that one of the 
caches may have a copy in either Modified, Exclusive, or 
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Shared state. When a directory entry is in S or X state, the 
identity field identifies the cache(s) with a copy of the 
memory block. The identity information can be stored in 
various ways, either as a set of bits with 1 bit for each 
cache (called full bit map), 1 bit for a group of caches 
(called coarse bit map) or a limited set of explicit cache 
identities with a mechanism to handle overflows. The cost 
of a full bit map directory may be acceptable for the  
first few generations of tera-scale architecture; however,  
a more compact representation may be desirable for 
further scalability. 

Figure 7: Directory structure to track cache lines 

Since the purpose of the directory is to keep track of 
copies of a cache line in different private caches, the size, 
associativity, and replacement policy of the directory 
needs to provide adequate coverage for the total capacity 
of the private caches. Some designs combine the directory 
information in the same structure as the cache at the 
higher level in the hierarchy (if there is one), which may 
reduce complexity and area at the expense of some 
performance disadvantage due to conflicting policy 
requirements on the directory and cache. The cost and 
scalability or directory structures may start becoming a 
problem when the number of entities being tracked 
becomes very large. At that point, mechanisms to reduce 
directory size [8] or distributed directory [12] 
implementations may have to be considered.  

The enormous amount of computing resources in a  
tera-scale platform enable a richer set of interactions 
between the computer and the end user than previously 
was possible. These include speech, motion and gesture 
recognition, enhanced visual effects, etc. often within 
virtual worlds where multiple users directly interact with 
each other. Interactions with the physical world introduce 
real-time considerations, and the tera-scale architecture 
must properly address them. Caches, however, interact in 
unpredictable ways with real-time applications. For this 
reason, processors targeted to interactive applications 
often include hardware mechanisms to allow applications 

to control the caching behavior to the point where one can 
reason about their expected performance [1]. 
Accordingly, the tera-scale cache hierarchy should 
include support in the form of locking primitives or 
similar mechanisms to allow applications to keep critical 
data in the caches. The exact form of such support is an 
area of active research. 

Tera-scale architecture may also require much tighter 
integration of off-chip memory and I/O interfaces to take 
full advantage of its compute capabilities. Therefore, the 
on-chip protocol must enable optimizations for efficiently 
accessing local memory and for interacting with other 
auxiliary engines such as special-purpose co-processors 
and I/O controllers.  

FEEDING THE BEAST: MEMORY 
ARCHITECTURE
With substantial increases in the computation power on a 
single die, one faces the challenge of feeding it with 
enough data bandwidth. For a small class of applications 
where the memory footprint is small, the memory 
accesses will mainly be exercising the on-die caches. For 
the majority of applications, a major increase in off-chip 
memory bandwidth is required. This manifests itself in 
two ways: (1) providing power-efficient high-speed  
off-die I/O; (2) providing power-efficient high bandwidth 
DRAM access. The former has seen steady progress in 
the past decade, but not at the required pace. The latter 
may require a new look at DRAM core and I/O design. 

The first step to addressing the memory bandwidth 
challenge can be more efficient storage or improved 
management of the on-die storage. For example, embedded 
DRAM [3] helps to increase the density of on-die storage 
compared to SRAM. Efficient management of on-die 
storage by avoiding duplication of data in the cache 
hierarchy, as discussed in the previous section, is another 
step in increasing the effective capacity of on-die storage.  

Integration of DRAM, e.g., GDDR memory, inside the 
processor package can offer more control over the I/O 
channel and thus allow a higher bandwidth, compared to 
crossing of package to motherboard-connector-DIMM 
path. Recent works have demonstrated methods of  
using 3D stacked SRAM to offer a low capacity  
high-bandwidth option, e.g., Intel’s tera-scale prototype 
[13] and IBM’s work on 3-D integrated circuits [26]. The 
freedom in the footprint design of such SRAM devices 
enables power-efficient solutions; however, limited 
capacity of such devices limit their application. 3D 
stacking of multiple DRAM dies can improve the memory 
capacity, but requires dense Through Silicon Vias (TSVs) 
to allow the required concurrency of accesses to 
independent DRAM banks. 
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Tera-scale Architecture Prototype 
The Intel® Teraflop processor [27] is a prototype of some 
of the elements of tera-scale architecture. The Teraflop 
processor realizes an 80-core prototype with a 2D-mesh 
interconnect architecture that reaches more than 1Tflops 
of performance dissipating less than 100W of power.  
This illustrates the potential of the tera-scale architecture 
and validates the efficacy of some of the architectural 
building blocks. 

SUMMARY
Tera-scale architecture presents tremendous challenges 
and opportunities to take advantage of Moore’s Law. As 
discussed in this paper, the architectural and design 
tradeoffs for tera-scale architecture are unique to this 
architecture. A very high level of integration and the 
presence of heterogeneous building blocks necessitate a 
modular and scalable on-chip interconnect. Based on the 
organization, architectural building blocks, and physical 
design constraints, we expect ring, 2D-mesh, or similar 
topologies to be an attractive option. Interconnects with 
switches, such as 2D-mesh, though better in utilizing 
wiring tracks, bring their own challenges in terms of 
achieving aggressive latency targets within an acceptable 
power budget. 

With shrinking device geometries and resulting increases 
in process variability and device failure rates, careful 
consideration needs to be given to get maximum 
performance without excessive cost through overly 
conservative designs. A flexible on-chip interconnect can 
play a role in dealing with variability and in-field failures 
by adapting to an optimal operating configuration through 
provisioning for fault-tolerant routing. A flexible 
interconnect can also be used to provide additional 
functionality, such as improved quality of service and 
performance isolation, to make tera-scale architectures 
more useful. 

Providing adequate memory and I/O bandwidth to satisfy 
the needs of large numbers of compute engines in  
tera-scale architecture is a major challenge. Some of these 
can be addressed through using on-chip caches more 
effectively such that the needs of off-chip memory 
bandwidth are reduced. A higher integration of system 
components on tera-scale architecture also reduces pressure 
on memory bandwidth by avoiding the need for I/O 
controllers and compute engines to exchange data through 
the caches rather than memory. Technological approaches 
to improve the available memory bandwidth are also an 
active area of exploration, ranging from 3D stacked 
memory to higher speed memory interfaces, but they do 
have their own challenges, such as limited memory capacity 
and higher power consumptions, respectively. 

In conclusion, tera-scale architecture is definitely in the 
not-too-distant future of mainstream computer 
architecture. Its realization, however, poses some 
challenges and a rich set of problems for researchers both 
in academia and industry. Problems and some solution 
strategies related to the “uncore” have been presented in 
this paper. 
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ABSTRACT
To maximize performance and power efficiency, future 
multi-core architectures may be heterogeneous, 
incorporating some accelerator cores alongside the IA 
cores. Accelerator Exoskeletons provide a shared virtual 
memory heterogeneous multi-threaded programming 
paradigm for these accelerators using novel CPU 
instruction set extensions and software tool chains with an 
Intel® Architecture (IA) look-n-feel. Firstly, we introduce 
the proposed architectural extensions known as the 
Exoskeleton Sequencer (EXO), which represents 
heterogeneous accelerators as ISA-based MIMD 
architecture resources, and a shared virtual memory 
heterogeneous multi-threaded program execution model 
that tightly couples specialized accelerator cores with 
general-purpose CPU cores. Then we introduce the C for 
Heterogeneous Integration (CHI) programming 
environment that includes a compiler, runtime, debugger, 
and performance-analysis tools. The CHI compiler 
extends the OpenMP pragma for heterogeneous  
multi-threading programming, and it produces a single fat 
binary with code sections corresponding to different 
instruction sets. The runtime can judiciously spread 
parallel computation across the heterogeneous cores to 
optimize performance and power. 

INTRODUCTION
The relentless pace of Moore’s Law will lead to mainstream 
multi-core microprocessor designs with extensive on-die 
integration of a large number of cores [11]. Fundamentally, 
to scale multi-core processor designs to incorporate a large 
number of cores, ultra low Energy Per Instruction (EPI)
cores are essential [6]. One approach to improving EPI by 
an order of magnitude is through heterogeneous multi-core 

design, in which some cores vary in functionality, 
instruction set (ISA), performance, power, and energy 
efficiency [14]. The key challenge then becomes how to 
accomplish such heterogeneous integration and achieve 
high performance while still maintaining the look-n-feel of 
the classic mainstream IA-based programming models and 
software ecosystem. 

In this paper we present an overview of EXOCHI: 
Exoskeleton Sequencer (EXO), an architecture proposal to 
represent heterogeneous accelerators as ISA-based MIMD 
architectural resources, and C for Heterogeneous Integration
(CHI), a programming environment that supports tightly 
coupled integration of heterogeneous cores. The EXO 
architecture supports the familiar POSIX shared virtual 
memory multi-threaded programming model for 
heterogeneous cores. Architecturally, the heterogeneous 
cores are exposed to the programmer as a new form  
of sequencer resource. They can be regarded as  
application-level MIMD functional units on which user-level 
threads, or shreds, encoded in the accelerator-specific ISA 
can execute. Having a shared virtual address space between 
the IA sequencer and accelerator sequencers facilitates code 
and data sharing and harmonizes cooperation between the 
concurrent shreds of different ISAs. Such a program is said 
to be multi-shredded.

The CHI integrated programming environment  
allows an application developer to inline blocks of 
accelerator-specific assembly or domain-specific language
with traditional C/C++ code. The CHI compiler produces 
a single fat binary consisting of executable code sections 
corresponding to the different ISAs. CHI further extends 
the OpenMP pragmas [21, 23, 26] to allow the 
programmer to express thread-level parallelism by 
demarcating parallel regions of code targeting 
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heterogeneous accelerators. The CHI extensions to 
OpenMP support both fork-join and producer-consumer 
parallelism among the accelerator shreds and between the 
IA shreds and the accelerator shreds. The CHI runtime 
can judiciously spread the shreds across the 
heterogeneous sequencers dynamically to maximize 
throughput performance while minimizing power. 

The rest of the paper is organized as follows. We first 
briefly review related work. We then introduce the EXO 
architecture that supports a shared virtual memory 
heterogeneous multi-threaded programming model. We 
then present an overview of the CHI integrated 
programming environment that extends the Intel® C++ 
Compiler, runtime, and tool chains to provide the familiar 
IA look-n-feel to program heterogeneous cores. To 
prototype the EXO architecture, we describe potential 
heterogeneous multi-core processors which combine an 
Intel® Core™2 Duo processor [27] and two possible 
accelerators: an 8-core 32-thread Intel® Graphics Media 
Accelerator (GMA) X3000 [10] or the Datastream 
Processing Engine (DPE) from a research Scalable 
Communication Core (SCC) prototype [8]. We 
demonstrate code examples and evaluate performance. 

Figure 1: Alternate programming environments 

RELATED WORK 
There has been a rich body of research on heterogeneous 
acceleration. In most published work, the execution 
models usually fall into two classifications: (category 1) 
an ISA-based tightly coupled approach or (category 2), a 
device driver-based loosely coupled execution model.  
An example of the tightly coupled approach is the 
Software-configurable Processor (SCP) architecture [4] in 
which a custom ISA extension represents the operations 
implemented by a hardware accelerator attached to the 
CPU. The CPU is then responsible for sequencing, 
decoding, and dispatching each co-processor instruction, 
stalling until the co-processor execution completes. This 
approach resembles the classic x87 escape-wait style  
co-processor instruction execution where the co-processor 

does not sequence instructions independently from  
the CPU. 

Examples of the second category include most known 
GPGPU infrastructures [1, 3, 5, 13, 15, 16, 17, 18, 19, 20, 
22, 24, 25, 28]. As depicted in Figure 1(a), the CPU 
resources (cores and memory) are managed by the 
operating system (OS), and the GPU resources are 
separately managed by vender-supplied device drivers. 
Applications and device drivers run in separate address 
spaces, and consequently, data communication and 
synchronization between them is usually carried out in 
coarse granularity through explicit data copying via 
device driver APIs. In the EXOCHI framework depicted 
in Figure 1(b), the EXO architecture supports an 
execution model with a shared virtual address space and a 
POSIX multi-threaded programming model for the  
OS-managed IA sequencer and application-managed  
non-IA accelerator sequencers.

EXO differs from the existing tightly coupled approaches 
(category 1) by allowing independent sequencing and 
concurrent execution of multiple instruction streams on 
multiple sequencers within a single OS thread context. 
EXO also differs from the loosely coupled, driver-based 
approaches (category 2) by directly exposing the 
heterogeneous sequencers to application programs and by 
supporting a shared virtual address space amongst these 
sequencers. EXOCHI’s user-level runtime can be used to 
schedule shreds and coordinate light-weight inter-shred 
data communication efficiently through shared virtual 
memory.  

In addition, by supporting the shared virtual memory 
heterogeneous multi-threaded execution model, the CHI 
integrated programming environment enables the 
application developer to inline blocks of accelerator 
specific assembly or domain-specific languages within 
traditional C/C++ code. This allows performance 
sensitive parts of an algorithm to be optimized for the 
accelerator ISA just as Intel’s SSE ISA extensions are 
traditionally used in implementing a high-performance 
math library. CHI’s extensions to OpenMP allow 
programmers to express the underlying thread-level 
parallelism in a familiar parallel programming 
environment. 

EXO ARCHITECTURE 
Architecturally, EXO extends the Multiple Instruction 
Stream Processor (MISP) architecture [7] in three 
significant ways: (1) MISP exoskeleton (2) Address 
Translation Remapping (ATR), and (3) Collaborative 
Exception Handling (CEH). With this architectural 
support, EXO fundamentally enables a powerful shared 
virtual memory heterogeneous multi-threaded 
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programming model, despite ISA differences between the 
IA sequencer and the exo-sequencers. 

MISP Exoskeleton 
EXO provides a minimal architectural “wrapper,” or 
exoskeleton, to make a non-IA heterogeneous accelerator 
sequencer conform to the MISP inter-sequencer signaling 
mechanism. With this exoskeleton, the accelerator 
sequencer can be exposed as an application-managed 
sequencer, even though it has a different ISA from the IA 
sequencers. To distinguish from an application-managed 
IA sequencer, we call such heterogeneous accelerator 
sequencers exo-sequencers. The exoskeleton supports 
interaction with the OS-managed IA sequencer through 
either initiating or responding to inter-sequencer  
user-level interrupts. With this enhancement, the code on 
an OS-managed IA sequencer can use MISP’s SIGNAL
instruction to dispatch shreds of a non-IA ISA to run on 
the exo-sequencers. This demands no additional OS 
support beyond MISP’s requirements.  

Figure 2: ATR and CEH between heterogeneous 
sequencers

Microarchitecture Support 

To support shared virtual memory between the  
OS-managed IA sequencer and the exo-sequencers, EXO 
provides an ATR mechanism to allow the IA sequencer to 
handle page faults on behalf of the exo-sequencers.  

Maintaining a shared virtual address space between two 
sequencers requires the same virtual address to be 
resolved to the same physical memory address on both 
sequencers. Among sequencers of the same architecture, 
this is accomplished by having the sequencers utilize the 
same page table for address translation. In a 
heterogeneous multi-core with IA sequencers and non-IA 
exo-sequencers, however, the page table format 
understood by each sequencer may differ. Directly 
accessing the IA page table is not an option for the  
exo-sequencers in such a case. 

EXO solves this problem with its ATR mechanism. With 
ATR, when an exo-sequencer incurs a translation miss, it 
suspends shred execution and signals the IA sequencer to 
request proxy execution in order to service that 
Translation Lookaside Buffer (TLB) miss or page fault. 
Like MISP, upon receiving the proxy request as a  
user-level interrupt, the IA shred transfers control to a 
proxy handler that will touch the virtual address on behalf 
of the exo-sequencer. Once the page fault is serviced on 
the IA sequencer, however, unlike MISP, ATR will 
transcode the IA page table entry to the format of the  
exo-sequencer’s page table entry before inserting the 
entry into the exo-sequencer’s TLB. The exo-sequencer’s 
TLB then points to the same physical page as the IA’s 
TLB and can directly access the needed data. The  
exo-sequencer then resumes execution. As shown in 
Figure 2, an address translation remapping mechanism is 
responsible for remapping the IA page entry to the native 
format on the accelerator.  

The shared virtual memory space for heterogeneous 
sequencers provides many benefits over the alternative 
approaches. It provides the essential architectural 
foundation to extend the classic shared memory 
multithreaded programming paradigm to heterogeneous 
multi-core processors. With a shared virtual address 
space, shreds from a single memory image executable 
running on IA sequencers and exo-sequencers can 
perform data communication and synchronization in 
familiar and efficient ways, e.g., without having to  
resort to explicit data copying as is necessary in the 
loosely-coupled approach.  

It is important to note that even though ATR provides the 
necessary architectural support for a shared virtual 
address space, ATR by itself does not guarantee or 
require cache coherence between the IA sequencer and an 
exo-sequencer. In the absence of hardware support for 
cache coherence between the IA sequencer and an  
exo-sequencer, it is the responsibility of the programmer 
to use critical sections to protect other IA shreds from 
reading or writing the data being processed by shreds on 
the exo-sequencers. When an IA shred hands off a shared 
data structure to a shred on an exo-sequencer to process, 
the IA shred must first commit any dirty lines to main 
memory. Similarly, when the exo-sequencer shred 
completes its computation, it also needs to flush its cache 
before releasing a semaphore to the IA sequencer. 

Clearly, with full cache coherence support between the IA 
sequencer and the exo-sequencer the programmer’s work 
can be greatly eased. In particular, there is no need to use 
critical sections to ensure mutual exclusion on reads to the 
shared working set. This enables more concurrency 
between shreds on the IA sequencer and the  
exo-sequencer.
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As with page faults, execution on the exo-sequencers 
could potentially incur exceptions or faults that require 
OS services. In conventional MISP, if an exception 
occurs on an application-managed sequencer, the 
instruction causing the exception can be replayed on  
the OS-managed sequencer through proxy execution. 
However, when the exception occurs on a non-IA  
exo-sequencer, the faulting instruction cannot simply be 
replayed on the IA CPU sequencer. Because the exo-
sequencer uses a different ISA, the faulting instruction 
might have a data type that is not supported by IA ISA 
directly, or the exo-sequencer may require a different 
exception handling convention. To address this, EXO 
adds hardware support for CEH and a software-based 
exception handling mechanism, which allows faults or 
exceptions that occur on the exo-sequencer to be handled 
by the OS by proxy on the OS-managed IA sequencer.  

Through CEH, an exception is handled in a similar 
fashion to a TLB miss. For example, as shown in 
Figure 2, when a double precision floating point vector 
instruction on an exo-sequencer incurs an exception, the 
exo-sequencer first signals the IA sequencer, as it does 
with ATR. The IA sequencer then functions as the proxy 
for the exo-sequencer by invoking an application-level 
handler to emulate the faulting vector instruction or use 
an OS service such as Structured Exception Handling 
(SEH) to provide full IEEE-compliant handling of the 
exception on the particular excepting scalar element. 
Once the exception is handled on the IA sequencer, CEH 
ensures the result is updated on the exo-sequencer before 
resuming execution. 

Accelerator Exo-Sequencer: Two Examples 
Media Accelerator 
One example of an exo-sequencer accelerator is the 
integrated Intel Graphics Media Accelerator X3000 from 
the Intel® 965G Express chipset [9]. Figure 3 shows a 
high-level view of the GMA X3000 hardware. The GMA 
X3000 contains eight programmable, general-purpose 
graphics media accelerator cores, called Execution Units 
(EU), each of which supports four hardware thread 
contexts. From the programmer’s perspective, 32  
exo-sequencers are available. We use a custom emulation 
firmware that uses an IA CPU core as the OS-managed 
sequencer and uses the 32 GMA X3000 sequencers as 
exo-sequencers. The firmware implements all essential 
architectural extensions required by the EXO architecture, 
including MISP exoskeleton, ATR, and CEH. 

A shred for the GMA X3000 exo-sequencer can be 
created either by an IA shred or spawned from another 
GMA X3000 shred. Once created, GMA X3000 shreds 
are scheduled in a software work queue in shared virtual 

memory like POSIX threads. The work queue can have a 
far greater number of shreds than the number of GMA 
X3000 exo-sequencers. The emulation firmware is 
responsible for translating a shred descriptor, which 
includes shred continuation information like instruction 
and data pointers to the shared memory, into 
implementation-specific hardware commands that the 
GMA X3000 exo-sequencers can consume and execute. 
The emulation layer hides all device-specific hardware 
details from the programmer. 

Figure 3: High-level view of the Intel GMA X3000 

Communication Accelerator 
Another example of the exo-sequencer accelerator is the 
Scalable Communication Cores (SCC) [8]. SCC is a 
research prototype designed for a reconfigurable radio 
baseband that is capable of processing several wireless 
standard protocols, such as WiFi, WiMax [12], or cellular 
infrastructure, with a common set of hardware. The SCC 
system architecture consists of a heterogeneous set of 
coarse-grained, highly optimized baseband Processing 
Elements (PEs).   

One type of PE is the Data Processing Element (DPE) 
core, which performs computationally intensive 
operations, such as the Fast Fourier Transform (FFT) that 
is commonly used in many standard protocols. The DPE 
core structure consists of control and computation units 
and several memory blocks. DPE cores are connected via 
flexible interconnect matrices. Asynchronous data-path 
swap units support commutations from any of four inputs 
to any of four outputs. Reconfiguration of the data-path 
can be done dynamically with interconnection 
information and operation parameters stored in the 
configuration cache.

Inside DPE, there is a configuration (CFG) queue that is 
part of a special task scheduling mechanism. Each task 
pointer that is pushed onto the CFG queue will be fetched 
by the core engine. Each launched task becomes an  
exo-sequencer running on DPE. The DPE can be 
configured to use multiple CFG queues, thus implying a 
multi-threaded implementation. This allows multiple  
exo-sequencers to run concurrently on the DPE engine. 

Command

Dispatcher

8 cores, 4 hw threads/core 

(32 exo-sequencers)
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CHI PROGRAMMING ENVIRONMENT 
C for Heterogeneous Integration (CHI) is designed to 
provide an IA look-n-feel programming environment  
to support user-level multi-shredding on heterogeneous 
sequencers. In the CHI infrastructure, we enhance the 
Intel C++ Compiler to support accelerator-specific inline 
assembly within the C/C++ source. In addition, we extend 
OpenMP pragmas to support heterogeneous multi-
shredding and provide the related runtime support. The 
runtime library is responsible for judiciously scheduling 
heterogeneous shreds across the exo-sequencers. The 
compiler can also embed debugging information for 
different ISAs in a single binary. Such information can be 
used by an enhanced version of the Intel Debugger (IDB) 
to enable source-level debugging for both C/C++ code  
on the IA CPU target and the accelerator-specific code on 
the accelerator target. Figure 4 depicts the overall CHI 
compilation infrastructure. Three new capabilities are 
provided in the CHI compiler to allow programmers to 
express multi-shredded computation for the 
heterogeneous exo-sequencers in the C/C++ source code: 

A method to specify a region of accelerator-specific 
computation in either inline assembly or domain-
specific language.  

A method to specify fork-join or producer-consumer 
style shred-level parallel execution for the inline 
accelerator-specific code region with OpenMP 
pragmas.  

A method to specify input and output memory 
regions and live-in values for the accelerator-specific 
code region.  

Inline Accelerator Assembly Support 
C/C++ provides a facility to inline assembly code blocks 
directly within the high-level source code. This capability 
provides programmers access to new instructions or 
processor features not exposed through the compiler and 
allows the most performance-critical parts of a program to 
be custom optimized in assembly. This inline assembly 
construct can be naturally extended to provide 
accelerator-specific inline assembly support.  

Many variants of  keyword and syntax exist. In CHI 
we adopt the Microsoft MASM syntax, i.e.,  

asm_statements;

where brackets are used to enclose the assembly 
statements.  is the keyword that indicates the 
enclosed block of code is a special assembly block written 
specifically for the given accelerator ISA. The 
asm_statements enclosed in the ensuing brackets are 
compiled into an accelerator-specific executable binary. 
The target ISA for the asm_statements is specified 

through the enclosing OpenMP pragma with the 
clause, which is described in this paper in the section 
entitled “OpenMP Parallel Pragma Extension.” As shown 
in Figure 4, a separate accelerator-specific assembler is 
dynamically linked with the Intel compiler. Figure 5 
shows an example of C code using the extended OpenMP 
pragmas and CHI runtime APIs for a heterogeneous target 
consisting of an IA32 sequencer and GMA X3000 exo-
sequencers.

Figure 4: CHI compilation flow 

Similar to traditional inline assembly, this accelerator-
specific assembler generates code for the target ISA by 
translating the inline assembly instructions enclosed in the 
brackets into binary code and resolving symbolic names 
for memory locations and other entities referenced within 
the assembly block. After the assembler compiles the 
assembly block, the resulting binary code is embedded in 
a special code section of the executable indexed with a 
unique identifier. The final executable is a fat binary, 
consisting of binary code sections corresponding to 
different ISAs.

Domain-specific Language Support 
In addition to supporting accelerator-specific inline 
assembly, the capability of the C/C++ compiler can  
be further extended to provide a facility to inline  
domain-specific language blocks directly within the high-
level source code. These domain-specific languages are 
designed to utilize the accelerator-specific features not 
exposed through the general C/C++ programming 
environment. Therefore, the programmers can take 
advantage of the full capability of the underlying 



Intel Technology Journal, Volume 11, Issue 3, 2007 

Accelerator Exoskeleton  190 

accelerators without programming the exo-sequencer 
directly in assembly language. 

To provide a uniform programming interface to 
programmers, we adopt the format similar to that of the 

 syntax, i.e.,

domain-specific 
language statements;

where brackets are used to enclose the domain-specific 
language statements.  can 
be any language that is supported by CHI. Upon parsing 
the particular language keyword, the C/C++ compiler 
invokes the corresponding domain-specific compiler 
plug-ins to generate the accelerator-specific binary, 
similar to how it is done with the inline assembly support 
as described in the section entitled “Inline Accelerator 
Assembly Support.” 

Figure 6 shows an example of the domain-specific 
language support to the Data-stream Programming 
Language (DPL) that is specifically designed for the 
retargetable SCC-DPE accelerator. DPL provides 
essential high-level functions to exploit the inner 
microarchitecture of the DPE systolic arrays. The 
programmers can embed DPL code within the brackets 
preceded by the __dpl keyword.  

OpenMP Parallel Pragma Extension 
CHI extends the OpenMP  pragma. The 
construct for generating heterogeneous shreds of an 
accelerator-specific instruction set is outlined in 
Figure 7(a). The  clause specifies the particular 
accelerator instruction set used within the parallel region. 
The compiler inserts appropriate calls to the CHI runtime 
layer to enable judicious dynamic shred scheduling and 
dispatching onto the targeted exo-sequencers. When the 

main IA shred encounters an accelerator-specific 
 construct with the 

clause, the IA shred spawns a team of 
heterogeneous shreds for the parallel region, where each 
shred eventually executes the enclosed assembly block on 
an exo-sequencer.

Figure 6: Example inline DPL code using CH 

By default, the main IA shred waits at the end of  
the construct until it is notified by the CHI runtime of the 
completion of all heterogeneous shreds. Similar to  
the traditional  clause, an optional 

 clause allows the main IA shred to 
continue execution past the construct after spawning the 
team of heterogeneous shreds, without having to wait for 
their completion. This allows concurrent execution on 
both the IA sequencer and its exo-sequencers. The CHI 
runtime is responsible for asynchronously notifying the 
IA sequencer of the eventual completion of all 
heterogeneous shreds.  

OpenMP Work-Queuing Extension 
In order to support concurrent threads with intricate 
dynamic inter-thread dependencies (e.g., due to the use of 
irregular data structures), the Intel C++ Compiler supports 
irregular parallelism through two special OpenMP 
pragmas,  and  [23]. In CHI, we further 
enhance the compiler and runtime to support inter-shred 
dependencies among heterogeneous shreds using these 
pragmas. The  construct and the 

 construct for an exo-sequencer are outlined in 
Figure 7(b) and Figure 7(c).  

int *A = malloc(n); 
  int *B = malloc(n); 
  int *C = malloc(n); 

  A_desc = chi_alloc_surface(A, X3000_INPUT, n, 1); 
  B_desc = chi_alloc_surface(B, X3000_INPUT, n, 1); 
  C_desc = chi_alloc_surface(C, X3000_OUTPUT, n, 1); 
  #pragma omp parallel target(x3000) shared(A,B,C)  
      descriptor(A_desc,B_desc,C_desc) private(i) 
  { 
    for (i=0; i<n/8; i++) 
       __asm 
       { 

shl.1.w    vr1 = i, 3 
          ld.8.dw    [vr2..vr9] = (A, vr1, 0) 
          ld.8.dw    [vr10..vr17] = (B, vr1, 0) 
          add.8.dw   [vr18..r25] = [vr2..vr9], [vr10..vr17] 
          st.8.dw    (C, vr1, 0) = [vr18..vr25] 
       } 
  } 
  #pragma omp parallel for shared(D,E,F) private(i) 
  { 
     for (i=0; i<n; i++) 
        F[i] = D[i] + E[i]; 
  } 

Figure 5: Example GMA X3000 inline assembly 
i C

float Vin[4]; 
float Vout[4]; 

void *in_desc  = (void *)chi_alloc_buffer_desc 
 (DPE_INPUT_BUFFER,  Vin, 4, 1); 
void *out_desc = (void *)chi_alloc_buffer_desc 
 (DPE_OUTPUT_BUFFER, Vout, 4, 1); 

#pragma omp parallel target(dpe)  
       shared(Vin,Vout) 
descriptor(in_desc,out_desc) 
{
  __dpl { 
    configuration[1] cfgMult( vector val[1],  
           vector coeff[1] ) 
    { 
      result bs( mull(val, coeff), 13 ); 
    } 
    flow[4] multiFlow( vector vec[4],  
   vector coeffs[4]) 
    { 
      vector ret[4]; result out; 
      selector[iter : 4] sel[1] = {{ iter }}; 
      selector[iter : 4] selRev[1] = {{ 3 - iter 
}}; 
      ret[sel] = cfgMult(vec[sel], coeffs[selRev]); 
    } 
    vector cf[4] = { 0.5 + I * 0.0 }; 
    program dlMain()  
    {  
      Vout = multiFlow(Vin, cf);  
    } 
  } 
}
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Figure 7: CHI extensions to OpenMP pragmas 

CHI Runtime Support 
The CHI runtime is a software library that translates the 
programmer-specified OpenMP directives into primitives 
to create and manage shreds that can carry out parallel 
execution on the heterogeneous multi-core target. Like 
conventional OpenMP runtimes, the CHI runtime layer 
provides a layer of abstraction that hides the details of 
managing the exo-sequencers from the programmer.  

In order to allow the accelerator more efficient access to 
the C/C++ variables specified by the  data 
clause, programmers can use the CHI runtime APIs to 
convey accelerator-specific access information through 
data structures known as descriptors. Descriptors are used 
by the accelerator to interpret the attributes of the 

 variables that are accessed by the shreds.

EXOCHI PROTOTYPE 
The EXOCHI framework described in this paper has 
already been deployed within Intel for successful 
development of production-quality, GMA X3000  
media-processing kernels and other workloads of growing 
importance [2]. Figures 8 and 9 provide examples of the 
use of how an IA look-n-feel allows familiar development 
tools and environments to be used in writing 
heterogeneous multi-shredded code. Figure 8 shows the 
use of familiar legacy development tools (Microsoft 
Visual Studio*) for development and debugging of 

heterogeneous multi-shredded code. Figure 9 illustrates 
the compilation and execution of such a program.   

Figure 8: IA Look-n-Feel IDE (Microsoft Visual 
Studio) for application development 

Figure 9: IA Look-n-Feel compilation and execution 

Performance Evaluation 
To evaluate the performance of our EXOCHI prototype 
we select a representative subset of the kernels that have 
been developed. These kernels exhibit a significant 
amount of data- and thread-level parallelism and thus, 
readily lend themselves to efficient execution on the 
GMA X3000 exo-sequencers. 

Implementation of these kernels is made easy due to 
special GMA X3000 ISA features optimized for media 
processing. The key ISA features include wide SIMD 
instructions, predication support, and a large register file 
of 64 to 128 vector registers for each GMA X3000  
exo-sequencer. With CHI, programmers can directly use 
the GMA X3000 ISA features via inline assembly in 
C/C++ code as if they are traditional ISA extensions to 
IA, such as SSE. By providing such IA look-n-feel, CHI 
enables highly productive development of heterogeneous 
multi-shredded code. 

All benchmarks are compiled with the enhanced version 
of the Intel C++ Compiler using the most aggressive 
optimization settings (–fast –Qprof_use). These compiler 
optimizations include auto-vectorization, profile-guided 
optimization, and tune specifically for the Intel Core 2 
Duo processor used in the EXO prototype system. 

,  and  make use of 
the optimized and SSE-enhanced Intel IPP library, and 
the other benchmarks were manually tuned and  
SSE-optimized. Performance results measure the wall 
clock execution time.  
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Figure 10: Speedup from execution on GMA X3000 
exo-sequencers over IA sequence 

Performance Speedup on GMA X3000 Exo-
sequencers over IA Sequencer 
Figure 10 shows the speedup achieved over IA sequencer 
execution by executing media kernels on the GMA 
X3000 exo-sequencers. Significant speedup is achieved, 
ranging from 1.41X for  up to 10.97X for .
Two factors are crucial in achieving this high throughput 
performance on the GMA X3000 exo-sequencers. Most 
important is the availability of abundant shred-level 
parallelism. As each GMA X3000 exo-sequencer 
supports only in-order execution within a shred, the 
accelerator relies on the presence of multiple concurrent 
shreds to cover up stalls incurred in one shred by 
switching to another shred. A second, but related issue, is 
the need to maximize cache hit rate and memory 
bandwidth utilization. The GMA X3000 supports 
simultaneous execution of 32 hardware threads, each of 
which might be reading and writing multiple data streams. 
The CHI runtime allows programmers to carefully 
orchestrate shred scheduling to ensure shreds accessing 
adjacent or overlapping macroblocks are ordered closely 
together in the work queue so as to take advantage of 
spatial and temporal localities.  

Other than support for thread-level parallelism, the GMA 
X3000 ISA also provides strong support for data-level 
parallelism. It features significantly wider SIMD 
operations (8- to 16-wide vector) than the SSE on today’s  
IA CPU.

Figure 11: Impact of shared virtual memory 

Impact of Data Copying Versus Shared 
Virtual Address Space 
In general, the performance improvement achieved by 
using an accelerator is determined not only by the 
accelerator architecture but also by the overhead of data 
communication between the CPU and accelerator. This 
overhead varies greatly depending on the memory model 
between the CPU and the accelerator. Figure 11 shows 
overall performance improvement achieved with a cache 
coherent shared virtual memory model between the IA 
sequencer and the GMA X3000 exo-sequencers. In the 
absence of cache coherence or shared memory, the data 
communication overhead can significantly degrade the 
speedup achieved from accelerating the computation. In 
Figure 11 we contrast performance impacts for three 
memory model configurations. 

The first configuration, Data Copy, assumes a model 
without shared virtual memory and no cache coherence 
between the IA sequencer and the GMA X3000 exo-
sequencers. Consequently, data communication between 
IA shred and GMA X3000 shreds requires explicit data 
copying, for which we assume a 3.1GB/s data copy rate. 
This corresponds to an aggressive data copy rate using an 
SSE-enhanced memory copy routine when copying data 
from a cacheable memory source to a destination region 
marked as uncacheable, write-combining memory. The 
Intel Core 2 Duo processor features special write-
combining buffers that allow aggressive burst mode 
transfers when copying from cacheable memory to write-
combining memory. Due to the lack of shared virtual 
memory, the inter-shred communication between the IA 
shred and GMA X3000 shreds resembles that of 
traditional message passing communication between 
processes from different address spaces.  
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The second configuration, Non-CC Shared, assumes a 
shared virtual address space but without cache coherency 
between the IA sequencer an the GMA X3000  
exo-sequencers. Data copying can be avoided in this case as 
both the IA sequencer and GMA X3000 exo-sequencers can 
access the identical physical memory location for the same 
virtual address. Memory writes performed by the IA 
sequencer or the GMA X3000 exo-sequencers may not be 
visible to the other until after a cache flush operation, which 
forces any dirty cache lines to be written back to main 
memory. However, data communication can still be 
accomplished by passing a pointer to a shared data structure 
between the IA sequencer and a GMA X3000  
exo-sequencer as long as cache flush operations are 
appropriately invoked. Due to the lack of cache coherence, 
the IA shred and the GMA X3000 shreds need to use critical 
sections to enforce mutually exclusive access to shared data 
structures. The semaphore on the critical section will not be 
released until the GMA X3000 exo-sequencers completely 
flush the dirty lines to memory.  

The first configuration, Data Copy, assumes a model 
without shared virtual memory and no cache coherence 
between the IA sequencer and the GMA X3000  
exo-sequencers. Consequently, data communication 
between IA shred and GMA X3000 shreds requires 
explicit data copying, for which we assume a 3.1GB/s 
data copy rate. This corresponds to an aggressive data 
copy rate using an SSE-enhanced memory copy routine 
when copying data from a cacheable memory source to  
a destination region marked as uncacheable,  
write-combining memory. The Intel Core 2 Duo 
processor features special write-combining buffers that 
allow aggressive burst mode transfers when copying from 
cacheable memory to write-combining memory. Due to 
the lack of shared virtual memory, the inter-shred 
communication between the IA shred and GMA X3000 
shreds resembles that of traditional message passing 
communication between processes from different  
address spaces.

The third configuration, CC Shared, models a  
cache-coherent shared virtual address space, which is the 
configuration assumed in Figure 10. In this model, data 
communication between the IA shred and the GMA 
X3000 shreds becomes much more efficient. Similarly, 
the synchronization on mutual access to shared data 
structure is also made much easier for programmers. For 
example, while critical sections are still necessary to 
provide mutual exclusion on writes to a shared variable, 
one shred can always read the shared variables that are 
updated by the other shreds. This allows more execution 
concurrency between shreds. 

The performance data in Figure 11 demonstrate the 
benefits of a shared virtual address space compared to 

data copying. While significant performance 
improvement is still possible even with data copying, for 
computationally intensive kernels (e.g.,  and 

), the gains are significantly reduced from the 
original CC Shared configuration in cases such as 

 and . For benchmarks in which the 
GMA X3000 performs little computation on the loaded 
input data, the time to copy data between separate address 
spaces represents a significant fraction of the processing 
time. Even with a highly optimized implementation on the 
latest IA Intel Core 2 Duo processor, the data copying 
achieves only 70.5% of that seen for a coherent shared 
virtual address space. 

The cost of copying data can be ameliorated if the IA 
sequencer and the GMA X3000 exo-sequencers operate 
within a shared virtual address space, even if cache 
coherency is not supported. The time required to flush 
caches is still nontrivial, however, and the lack of 
coherency (Non-CC Shared) still yields 85.3% of the 
performance achieved with full cache coherency. Support 
for cache coherence improves performance because the 
cache flush operation is not needed to synchronize 
memory accesses. 

For the Non-CC Shared configuration, when an IA shred 
spawns GMA X3000 shreds, it may appear necessary to 
flush the IA sequencer’s cache fully before any GMA 
X3000 shred can be launched. In reality the majority of 
the cache flush operation on the IA sequencer can be 
overlapped with parallel shred execution on the GMA 
X3000 exo-sequencers if cache flush operations and shred 
launches can be interleaved. As each exo-sequencer shred 
only reads and writes a tiny portion of each data buffer 
(e.g., a 16 pixel by 16 pixel macroblock), as long as those 
data have been flushed back to memory by the IA 
producer shred, the exo-sequencer consumer shred for 
that macroblock can be launched and can execute safely. 
Additional cache flush operations can then proceed in 
parallel with useful work being performed in parallel on 
the exo-sequencers. 

CONCLUSION
In this paper we present the EXO MIMD extension to  
the IA ISA to expose heterogeneous cores as application-
level architecture resources and provide shared virtual 
memory to support the classic multi-shredded 
programming model for heterogeneous multi-core 
processors. The EXO architecture allows application 
programs to directly use heterogeneous hardware as 
MIMD functional units while requiring minimal 
additional dependency on the existing OS ecosystem. In 
addition, in order to take advantage of the rich ecosystem 
legacy for IA software development, the CHI 
programming environment provides an IA look-n-feel by 
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extending the Intel C++ Compiler, OpenMP runtime, and 
debugger toolchains to support user-level heterogeneous 
multi-shredding. Since its development, EXOCHI has 
been used in Intel’s production media kernel 
development. Based on extensive feedback from 
developers, there is strong evidence that the IA  
look-n-feel of the programming environment has 
significantly improved productivity over prior device 
driver-based development environments.  
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ABSTRACT
This paper presents the design and implementation of a 
runtime environment for tera-scale platforms. System 
software stacks currently view tera-scale platforms as an 
“SMP (symmetric multiprocessor) on a die.” We show 
that there are fundamental differences between tera-scale 
and SMP systems that require that the software (SW) 
stack be re-architected. In particular, the SW stack needs 
to provide (1) support for efficient fine-grain parallelism, 
(2) programmability enhancements such as transactional 
memory, and (3) support for heterogeneous platforms  
and applications.  

We discuss the design and implementation of a  
Many-Core RunTime (McRT) environment—a prototype 
tera-scale runtime environment—and show how it 
addresses the challenges of a tera-scale runtime. We also 
present simulation results from a tera-scale simulator  
to show that McRT enables excellent scalability on  
tera-scale platforms. 

INTRODUCTION
System software tends to view a tera-scale chip 
multiprocessor (hereafter called TS-CMP) as a large-scale 
“symmetric multiprocessor (SMP) on a die”; yet, tera-
scale CMPs have several characteristics that are 
fundamentally different from those of SMPs. It is critical 
to address these differences in order to implement a 
scalable and effective software stack. In particular it is 
important for the software stack to support (1) efficient 

fine-grain parallelism, (2) new concurrency abstractions 
that make parallel programming easier, and (3) platform 
and application heterogeneity.  

Supporting Fine-grain Parallelism 
TS-CMP has a very different compute-to-cache ratio than 
a traditional SMP. A 32-way SMP system typically has 
more than 100 MBs of aggregate cache size, while a  
32-core TS-CMP has less than 10 MBs of cache. Thus a 
TS-CMP application needs to be threaded at a much finer 
granularity to reduce its working set. For example, 
MPEG4 encoding could be parallelized on a large-way 
SMP by encoding several frames in parallel. On a  
TS-CMP the encoding of an individual frame needs to be 
parallelized since the platform will not be able to cache 
multiple high-definition frames. Finally, many tera-scale 
applications benefit from fine-grain nested data 
parallelism rather than from coarse-grain task parallelism. 

On the other hand, a TS-CMP enables fine-grain 
parallelism since inter-core communication is much 
easier—core-core bandwidth is of the order of 
terabytes/sec as opposed to gigabytes/sec for an SMP, and 
core-core latency is in the low tens of cycles (say 20 
cycles) as opposed to hundreds of cycles in an SMP. 
Moreover, the effective core-core latency is much 
smaller, since the high degree of threading in a TS-CMP 
core allows some other thread (within the same core) to 
fully utilize the core resources if one thread is blocked on 
a cache miss. 
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Supporting New Concurrency Abstractions 
Due to their high cost, large-way SMP systems have been 
restricted to niche markets, running applications written 
by sophisticated programmers whereas TS-CMP 
processors are targeted at mainstream price points and 
will bring parallelism to the average programmer. The 
success of TS-CMP processors and the applications that 
run on them depends on mainstream programmers 
embracing parallelism aggressively. Thus, the system SW 
stack should include new higher-level concurrency 
abstractions that make it easier for the average 
programmer to deal with parallelism.  

Supporting Heterogeneity 
Unlike SMPs, a TS-CMP software stack must 
comprehend heterogeneity at multiple levels. At the 
application level, TS-CMP processors will run a more 
diverse set of applications because they are targeted at a 
much broader market. At the hardware level, the TS-CMP 
platform may be heterogeneous with a combination  
of high-performance scalar cores, an array of  
high-throughput cores, and fixed function units. The 
system software stack must comprehend this 
heterogeneity. It needs to support configurable policies, 
for example, configurable scheduling policies, to adapt to 
different applications, and it needs to schedule 
applications according to their hardware requirements.   

In this paper we present the design and implementation of 
McRT, a runtime environment for tera-scale platforms. 
McRT provides a configurable runtime framework that 
addresses the key tera-scale runtime requirements in the 
following ways: 

Fine-grain parallelism: McRT implements a 
significant fraction of threading services such as 
thread creation, synchronization, memory 
management, etc. at the user level. It also provides 
efficient user-level abstractions such as futures  
that make it easier to program and extract  
fine-grain parallelism. 

Concurrency abstractions: McRT includes a high-
performance transactional memory library that 
supports an atomic construct in both C/C++ and Java. 
Transactional memory [15] provides a number of 
software engineering benefits compared to locks for 
managing access to shared data. 

Heterogeneity: McRT supports a number of 
configurable runtime policies that can be adapted for 
a particular application. In addition, McRT also 
supports multiple scheduling domains. Different 
hardware (HW) units can be mapped to different 
scheduling domains, and applications can be 
scheduled independently within each domain.  

We show McRT’s scalability using media encoding and 
Recognition, Mining, Synthesis (RMS) applications [11] 
on a tera-scale simulator. The results show that McRT’s 
efficient threading primitives enable the applications to 
scale almost linearly up to 64 HW threads. We show that 
transactional memory can significantly ease parallel 
programming. Applications can use coarse-grain atomic 
blocks to synchronize access to shared data; yet they can 
achieve the performance of fine-grain locking. We also 
show a prototype implementation of a heterogeneous HW 
platform that leverages the support for scheduling 
domains in McRT. 

McRT ARCHITECTURE 
At its core, McRT contains a set of user-level threading 
primitives including a scheduler, memory manager, 
synchronization primitives, and a set of threading 
abstractions. We implemented these traditional operating 
system (OS) services as user-level primitives to improve 
efficiency by avoiding the expensive transitions between 
the user level and OS level making fine-grain  
parallelism more tractable. The McRT architecture is 
shown in Figure 1. 

Figure 1: McRT architecture 

McRT provides two user-level threading abstractions, 
threads and futures. The threads are similar to POSIX 
threads in functionality, while the futures are more 
lightweight and intended to support a concurrency idiom 
found in some languages such as MultiLisp [14] and 
CILK [8]. Futures provide a serial execution semantic, 
but can be executed in parallel if there are additional 
hardware resources. 

The user-level scheduler is implemented as a task queue. 
An application can configure the number of task queues, 
e.g., specifying a single task queue for each processor. 
The application can also specify the scheduling policy, 
e.g., it can ask for a work-sharing policy where new tasks 
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are distributed among the task queues, or a work-stealing 
policy where idle processors search different queues for 
the next available task. 

McRT uses a cooperative scheduling policy as opposed to 
the preemptive scheduling policy used predominantly in 
software stacks for SMPs. In an SMP system, the 
processing resource is expensive. Therefore the system 
software tries to timeshare the processing resource across 
multiple application threads by using preemptive 
scheduling. In a TS-CMP platform (say a platform with 
128 cores), the processing resource is both inexpensive 
and abundant, which led us to use cooperative scheduling. 
This in turn addresses scalability bottlenecks, such as 
convoying, since an application can control when a thread 
gets preempted. 

McRT includes a user-level synchronization library that 
includes different scalable algorithms such as MCS [24] 
locks and CLH [22] queues. It also includes a user-level 
memory allocator [16] that uses per-thread private 
allocation blocks. The allocator uses a completely  
non-blocking implementation that allows it to scale even 
with large oversubscription where the number of software 
threads is much greater than the number of  
hardware processors. 

Finally, McRT includes a number of client adaptors that 
translate existing popular paradigms such as OpenMP and 
pthreads to the core McRT API. The OpenMP adaptor 
implements the API used by the Intel® C compiler, while 
the pthreads adaptor translates the POSIX API. 

The core services in McRT are modularized and can be 
used as standalone services. For example, the memory 
manager ships as part of the Threading Building Blocks, 
while the transactional memory module has been tightly 
integrated into several compilers including the Intel C 
compiler, the StarJIT compiler [1], and the Harmony 
JITtrino compiler [5]. 

Evaluating Support for Fine-Grain 
Parallelism
We used a number of micro-benchmarks to evaluate the 
efficiency of the McRT threading primitives and hence its 
support for fine-grain parallelism. Figure 2 shows the 
results: the first row compares the cost of creating 255 
threads; the second row compares the cost of 1000 
consecutive lock acquire and release operations; and the 
final row compares the cost of 1000 context switches. In 
each case the gettimeofday() system call was used for the 
measurements. All the experiments were run on a 2.8GHz 
Intel® Xeon® processor. Column 2 reports the 
measurements observed by using native threads on Linux*

2.4.9, while Column 3 reports the measurements from 

using native threads on RedHat Enterprise* Linux  
2.6.9-22ELsmp (NPTL 0.60).  

 Native 
threads on 
Linux 2.4.9 

µsec

Native 
threads on 
Linux 2.6.9 

µsec

McRT

  µsec 

Thread create 

(255 iterations)  

21294 8960 1841 

Mutex 
lock/release

(1000 iterations) 

120 82 81 

Context switch 

(1000 iterations) 

2927 3600 748 

Figure 2: Micro-benchmark evaluation 

We also measured the scalability of our threading 
primitives. Figure 3 compares the cost of creating 
thousands of threads on McRT and on Linux (2.6.9). Note 
that the efficiency of thread creation in McRT does not 
degrade even with thousands of threads.  

Figure 3: Scalability of thread creation 

As mentioned before, McRT also implements futures to 
provide a lighter weight concurrency mechanism. Figure 
4 compares the overhead of McRT futures to that of using 
McRT threads. For this, we created batches of futures and 
threads whose executable code simply returned 
immediately. We compared the time to complete such a 
batch using both threads and futures. Figure 4 compares 
the ratio of the execution time for threads and futures with 
futures being 40 to 100 times more efficient than threads. 
Obviously, futures can provide very good support for 
fine-grain parallelism. 
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Figure 4: Thread vs. future creation overhead 

NEW CONCURRENCY ABSTRACTION: 
TRANSACTIONAL MEMORY 
Parallel programming poses many new challenges to the 
developer. A major one is synchronizing access to shared 
data between multiple threads. Traditionally, 
programmers have used locks for synchronization, but 
this method has well-known pitfalls such as deadlock and 
lack of composition. Transactional memory provides a 
new language construct that avoids the pitfalls of lock-
based synchronization and eases concurrency control.  

The McRT core services include a Transactional Memory 
(TM) library that supports the implementation of TM for 
C/C++ (unmanaged) and Java (managed). The TM library 
uses 2-phase locking to implement pessimistic write 
concurrency, and it uses versioning to implement 
optimistic read concurrency [27]. Every datum that may 
be accessed inside a transaction is associated with a 
transaction record—a pointer-sized word that mediates 
access to the shared datum. On a write, the TM library 
acquires exclusive ownership of the transaction record, 
performs an in-place update, and records the old value 
and the version number in an internal undo-log. On a 
read, the TM library records the version number of the 
transaction record (corresponding to the data address) in 
an internal read log. Before committing, the TM library 
validates a transaction by checking that the version 
numbers of the transaction records in the read set have not 
been changed. Upon committing, the lock is released and 
the version number is incremented. On an abort, the 
library uses the values in the undo-log to roll back the 
updates. 

The TM library is also integrated with other runtime 
services such as memory management [16]. For example 
if a transaction allocates memory during its execution, the 
memory is automatically freed when the transaction 
aborts. Using a language-neutral API, we integrated the 

TM library with the Intel C/C++ compiler v10 and the 
StarJIT and JITtrino compilers for Java. These compilers 
take language-level transactional code blocks and insert 
calls to the appropriate runtime functions for every shared 
memory access inside the code block. This allows 
programmers to directly use TM rather than locks for 
concurrency control.  

Figure 5: Transactions vs. locks on a hashmap 

Figure 5 compares the performance of locks and 
transactions on a hashmap data structure. It measures the 
time taken to complete a set of insert, delete, and update 
operations on lock-based and transactional versions of the 
hashmap [2] on a 16-way SMP machine. The 
transactional version of the hashmap was obtained by 
replacing the critical sections in the coarse-grain 
synchronization version with atomic sections. As 
expected, coarse-grained locking (Sync(coarse)) does not 
scale, but both the transactional and the fine-grain version 
scale comparably, even though the transactional version 
uses coarse-grain synchronization. 

Figure 6: Transactions vs. locks on FMM (SPLASH2) 
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Figure 6 shows a similar result on the FMM benchmark, 
which is part of the SPLASH2 suite. The transactional 
version of the benchmark was obtained by replacing the 
coarse-grain critical sections with transactions. Again,  
the transactional version scales as well as the fine-grain 
version even though it uses coarse-grain synchronization. 

These results show that McRT allows a programmer to 
leverage the software engineering benefits of 
transactional memory, such as composability and coarse-
grain reasoning, while getting the performance of fine-
grain locking. We expect this to be a key enabler in 
promoting multithreaded programming for tera-scale 
platforms. 

SUPPORTING HETEROGENEITY 
McRT uses multiple scheduling domains to support 
platform heterogeneity. Each domain can represent a set 
of hardware units with specific features such as good 
scalar performance, good throughput, special instruction 
sets, and so on. McRT extends the task queue mechanism 
to support scheduling domains. To create a domain Dk
consisting of logical processors Pi to Pj a client creates a 
task queue Qk that is accessed only by the processors Pi to 
Pj. New tasks created at these processors are only added 
to Qk. The scheduler also exports an API that allows a 
task to yield its current logical processor and enqueue 
itself on a different task queue. A task executing in a 
domain Dk can switch to a different domain D’k by 
enqueing itself on to the task queue Q’k at which point it 
will get executed by the processors in D’k . Applications, 
or even different parts of the same application, can be 
scheduled on different hardware units based on their 
requirements. 

We prototyped a heterogeneous hardware platform on an 
8-way SMP system. One processor (referred to as the OS 
processor) in the system boots up Windows* Server 2003, 
while the remaining seven processors (referred to as the 
sequestered processors) use McRT for all the threading 
services, without using the OS. The sequestered 
processors use a lightweight executive for interrupt 
handling. Thus, the sequestered processors emulate an 
attached compute engine, with the OS processor 
emulating a host CPU. Internally, McRT creates two 
scheduling domains, one representing the sequestered 
processors and the other representing the OS processor. 
The system configuration is shown in Figure 7. 

We ran Equake* using the standard Spec input on the 
sequestered system. At the beginning the application is 
serial and reads the input. It then forks off a number of 
threads to perform the computation. McRT scheduled  
the serial part on the OS core and the parallel part on the 
sequestered cores. 

Figure 7: Sequestered system 

Figure 8 shows the performance of Equake on the 
sequestered system. We first ran the benchmark on  
the 8-way SMP system with Windows running on all the 
processors. These numbers are reported as “Native” and 
“McRT-OS”: “Native” refers to the performance from the 
Intel OpenMP* implementation (referred to as KAI in  
the figure), and “McRT-OS” refers to the performance 
from running McRT on top of Windows on the 8-way 
SMP. “McRT-Sequestered” refers to the performance on 
the sequestered system with one OS processor and seven 
sequestered processors. All speedups are reported with 
respect to the single thread “Native” execution time. 

Figure 8: Equake on sequestered system 

Equake performs much better on the sequestered system, 
mainly due to the fact that the software stack is much 
more lightweight and is not interrupted as often. Another 
reason is that in the sequestered mode, the application 
reserves and locks down enough memory at initialization 
so that it does not encounter page faults during execution.  
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RESULTS
We used a cycle-accurate simulator to evaluate McRT’s 
performance on a TS-CMP processor. The simulated 
platform consists of an array of up to 16 in-order cores, 
each of which has four threads. Each core will select a 
different thread each cycle, round-robin, unless the thread 
is stalled due to, for example, a cache miss, being in the 
sleep state. The memory system consists of a 32 KB L1 
data cache that is shared by all four threads in the core, a 
2MB L2 cache that is shared by all the cores, and an  
off-chip 4MB L3 cache. All caches were simulated with 
an 8-way set associative configuration. The L1 cache 
access time is 3 cycles, the L2 cache access time is 12 
cycles, and the L3 cache access time is 40 cycles. The 
simulator performs a cycle accurate simulation of the 
execution pipeline for all the HW threads, the different 
caches, the coherence protocol, the bandwidth for data 
transfer between different parts of the memory system, 
and the interconnect to the external memory.  

We ported McRT to run directly on the simulator. Thus, 
the results reflect true execution driven simulation and 
accurately account for inter-thread synchronization. The 
simulator was modified to support system calls, while 
McRT provided all the threading services required by  
the application. 

We used the popular open source MPEG4 encoder XviD 
(www.xvid.org*) and a set of RMS kernels [11] for 
Singular Value Decomposition (SVD) and Self 
Organizing Maps (SOM) as our workloads. The XviD 
encoder is used mainly on frames of 1920x1080 to 
correspond with frame sizes in emerging high-definition 
video. We show the performance for encoding the P 
frames since these (along with the B frames) happen to be 
the computationally intensive parts of the encoding. The 
simulated cache size does not allow multiple frames to be 
encoded in parallel; therefore, we had to parallelize the 
encoding of a single frame. A frame is partitioned into 
“k” sub-blocks, where “k” is the number of logical 
processors used for encoding. Thus, the scalability of 
MPEG4 encoding is a good test of the efficiency of 
McRT’s fine-grain threading support. 

SVD has numerous applications in the areas of  
data-mining and feature extraction, signal processing, and 
automated control; this workload uses the Jacobi method. 
An SOM is an unsupervised learning method represented 
by a two-layer neural network. Typically, it is used to 
map N dimensional data to two dimensions to discern 
patterns. It is extensively applied in text and feature 
mining, pattern recognition, and medical diagnostics. 

Figure 9: XviD speedup 

Figure 9 shows the speedup of encoding a single frame as 
we increase the number of processors. The x-axis shows
the number of cores. Note that for k cores, the number of 
HW processors is k*4. The graph uses the execution time 
on a single core (4 threads) as the baseline. Even at 16 
cores (64 threads) we get almost a linear speedup (the 
“Linear” line in the graph represents speedup expected if 
the application was completely parallelized). The speedup 
on the 1080P (1920x1080) frame is slightly higher than 
on the 768P (1024x768) frame since the sub-block sizes 
are larger, and hence the cost of threading gets amortized.  

Figure 10 shows the speedup for the RMS workloads. 
(The x-axis represents the number of cores, and the 
baseline is the execution time on a single core.) Both 
SVD and SOM scale almost perfectly up to 64 HW 
threads.

Figure 10: RMS speedup 

RELATED WORK 
Our work was inspired by previous projects in the areas 
of language systems, operating systems design, and  
high-performance computing. Several operating systems 
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have explored issues related to SMP scalability [3, 4, 17, 
23, 26]. Disco [9] and K42 [18] have explored the design 
of scalable operating systems. Currently, operating 
systems such as Linux and MS Windows treat CMP 
architectures as an SMP on a chip. While the McRT 
framework arose out of our experience of these projects, 
this paper shows why we still need to rethink the system 
design to fully enable a scalable tera-scale environment.  

The threading and synchronization primitives provided by 
McRT are similar to those seen in traditional user-level 
threading packages such as pthreads [19], NGPT [25], 
NPTL [10] and Capriccio [6]. The McRT scheduler is 
comparable to user-level schedulers that have been 
explored in the context of kernels such as L4 [20], 
Exokernel [12], Flux [13], and SPIN [7], but it is more 
lightweight and configurable. The McRT runtime is also 
comparable to language runtimes such as CILK [8]  
and OpenMP [21], but unlike these runtimes it is 
platform-neutral.  

Finally, the specific mechanisms used in the McRT-STM 
[27] and the McRT memory manager [16] are described 
elsewhere, while the compiler integration is discussed in 
[2, 28]. 

CONCLUSION
A tera-scale platform has a number of fundamental 
differences from a traditional SMP system, which 
requires that the system software stack be redesigned to 
provide an effective and scalable runtime environment. In 
particular, the runtime environment must provide good 
support for fine-grain parallelism, support new 
concurrency abstractions that ease parallel programming, 
and support heterogeneous platforms and applications. 

This paper described how McRT addresses the challenges 
of a many-core environment. To enable efficient  
fine-grain parallelism, McRT replaces many of the  
OS-level services with user-level primitives. Our results 
show that this enables a very scalable runtime stack that 
scales to more than 64 HW threads.  

To ease parallel programming, McRT provides  
a high-performance TM library that supports a  
language-level atomic construct. TM provides several 
software engineering benefits compared to locks such as 
deadlock freedom, scalable composition, and failure 
atomicity. Additionally, our results show that transactions 
achieve the performance of fine-grain locking, yet allow 
coarse-grain synchronization.  

McRT supports heterogeneity by dividing the platform 
into independent scheduling domains. These domains can 
be mapped to different hardware resources, and 
applications can be scheduled on the domain that best fits 
their requirements. In addition, McRT also supports a 

number of configurable runtime policies that allow it to 
adapt to different applications. 
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ABSTRACT
In order to harness the additional compute resources of 
future Multi-core Architectures (MCAs) with many cores, 
applications must expose their thread-level parallelism  
to the hardware. One common approach to doing this is to 
decompose a program into parallel “tasks” and allow an 
underlying software layer to schedule these tasks on 
different threads. Software task scheduling can provide 
good parallel performance as long as tasks are large 
compared to the software overhead. We examine a set of 
Recognition, Mining, and Synthesis (RMS) applications 
and find that a significant number have small tasks for 
which software task schedulers achieve only limited 
parallel speedups.  

We propose a hardware technique to accelerate dynamic 
task scheduling on MCAs with many cores. We compare 
this hardware to highly tuned software task schedulers for 
a set of RMS benchmarks with small tasks. The proposed 
hardware delivers significant performance improvements 
over the best software scheduler: for 64 cores, it is 88% 
faster on a set of loop-parallel benchmarks and 98% faster 
on a set of task-parallel benchmarks. 

INTRODUCTION
Multi-core Architectures (MCAs) provide applications 
with an opportunity to achieve much higher performance 
than uniprocessor systems. Furthermore, the number of 
cores on MCAs is likely to continue growing, increasing 
the performance potential of MCAs. However, realizing 
this performance potential in an application requires  
the application to expose a significant amount of  
thread-level parallelism. 

A common approach to exploiting thread-level 
parallelism is to decompose each parallel section into a 
set of tasks. At runtime, an underlying library or run-time 
environment distributes (schedules) these tasks to the 
software threads [2, 3, 4]. To achieve maximum 

performance, especially in systems with many cores, it is 
desirable to create many more tasks than cores and to 
dynamically schedule the tasks. This allows for much 
better load balancing across the cores. 

We examine a set of benchmarks from an important 
emerging application domain: Recognition, Mining, and 
Synthesis (RMS) [1]. Many RMS applications have very 
high compute demands and can therefore benefit from a 
large amount of acceleration. Further, they often have 
abundant thread-level parallelism. Thus, they are 
excellent targets for running on MCAs with many cores. 

For previously studied applications and architectures, the 
overhead of software dynamic task schedulers is small 
compared to the size of the tasks, and therefore, enables 
sufficient scalability. However, we find that a significant 
number of RMS applications are dominated by parallel 
sections with small tasks. These tasks can complete 
execution in as few as 50 processor clock cycles. For 
these, the overhead of software dynamic task scheduling 
is large enough to limit parallel speedups. 

We therefore propose a hardware technique to accelerate 
dynamic task scheduling on scalable MCAs. It consists of 
two components: (1) a set of hardware queues that cache 
tasks and implement task scheduling policies, and (2)  
per-core task prefetchers that hide the latency of 
accessing these hardware queues. This hardware is 
relatively simple, scalable, and delivers performance close 
to optimal. 

We compare our hardware proposal to highly tuned 
software task schedulers, and also to an idealized 
hardware implementation of a dynamic task scheduler 
(i.e., operations are instantaneous). On a set of RMS 
benchmarks with small tasks, it provides large 
performance benefits over the software schedulers  
and gives performance very similar to the  
idealized implementation. 
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 8  Tasks
4X speedup 
On 4 cores 

8X speedup 
On 8 cores 

4X speedup 
On 6 cores 

4X speedup 
On 4 cores 

8X speedup 
On 8 cores 

5.3X speedup 
On 6 cores 

 32  Tasks

Figure 1: Impact of multiprogramming 

Our contributions are as follows: 

1. We make the case for efficient support for  
fine-grained parallelism on MCAs. Parallel tasks can 
be as fine as 50 processor clock cycles. 

2. We propose a hardware scheme that provides 
architectural support for fine-grained parallelism. Our 
proposed solution has low hardware complexity  
and is fairly insensitive to access latency to the 
hardware queues. 

3. We demonstrate that the proposed architectural 
support has significant performance benefits. First, it 
delivers much better performance than optimized 
software implementations: 88% and 98% faster on 
average for 64 cores on a set of loop-parallel and 
task-parallel RMS benchmarks, respectively. In 
addition, it delivers performance close to (about 3% 
on average) an idealized hardware implementation  
of a dynamic task scheduler (i.e., operations  
are instantaneous). 

A CASE FOR FINE-GRAINED 
PARALLELISM
Previous work on dynamic load balancing targeted 
coarse-grained parallelism, i.e., parallel sections with 
either large tasks, a large number of tasks, or both. The 

target was primarily scientific applications for which this 
assumption is valid. For these applications, an optimized 
software implementation delivers good load balancing 
with an acceptable performance overhead. 

The widespread trend towards an increasing number of 
cores becoming available on mainstream computers—
both at homes and at server farms—motivates efficient 
support for fine-grained parallelism. Parallel applications 
for the mainstream are fundamentally different from 
parallel scientific applications that run on supercomputers 
and clusters in a number of aspects. We discuss these 
differences in detail in this section. 

Architecture
Reduced communication overhead: MCAs dramatically 
reduce communication latency and increase bandwidth 
between cores. This allows parallelization of modules that 
could not previously be profitably parallelized. 

Usage scenarios: These architectures are designed to be 
used with virtualization technologies as well as 
multiprogramming. In both these instances, the number of 
cores assigned to an application can change during the 
course of its execution. Maximizing the available 
parallelism under these conditions requires exploiting 
fine-grained parallelism. 



Intel Technology Journal, Volume 11, Issue 3, 2007 

Architectural Support for Fine-Grained Parallelism on Multi-core Architectures 219 

Consider the example shown in Figure 1 that illustrates 
this using an 8-core MCA. It presents two scenarios 
where the parallel section is broken down into 8 and 32 
equal-sized tasks (represented by green boxes). In a 
parallel section, if a core finishes its tasks before all other 
cores have finished their tasks, it has to wait. This results 
in wasted compute resources (shown in red). In each of 
the two scenarios, it shows the performance when varying 
number of cores are assigned to this parallel section. In 
both scenarios, with 4 and 8 cores, all the assigned cores 
are fully utilized. However, when 6 cores are assigned to 
the application, the first scenario wastes significant 
compute resources. In fact, it achieves the same speedup 
as when it was assigned 4 cores. In the second scenario, 
there are many fewer wasted compute resources because 
the parallel section was broken into finer-grained tasks. 

This problem worsens when the number of cores 
increases. Figure 2 shows the maximum potential speedup 
on a 64-core MCA for a varying number of tasks. The 
ideal situation would be if the graph was linear, implying 
that each additional core would deliver additional 
performance. When only 64 tasks are used, the 
application would see no performance improvement even 
when the number of cores assigned to an application was 
increased from 32 to 63. To approach the ideal situation, 
one needs a much larger number of tasks (say 1024). 

Performance portability across platforms: Parallel 
scientific computing applications are often optimized for 
a specific supercomputer to achieve the best possible 
performance. However, for mainstream parallel programs, 
it is much more important for the application to get good 
performance on a variety of platforms and configurations. 
This has a number of implications that require exposing 
parallelism at a finer granularity.  

Figure 2: Theoretical scalability 

First, the number of cores varies from platform to 
platform. For reasons similar to that for 
virtualization/multiprogramming, finer-granularity tasks 
are necessary. 

Second, MCAs are likely to be asymmetric for a number 
of reasons including heterogeneous cores, Hyper-
Threaded (HT) cores, Non-Uniform Cache Architecture 

(NUCA), and Non-Uniform Memory Architecture 
(NUMA). This means that the different threads on the 
core might progress at different rates. For instance, two 
threads sharing a core run at a different rate than  
two threads running on two different cores.  

Figure 3 illustrates the impact of asymmetry with an 
example. Consider an application that breaks its parallel 
section into tasks that represent equal amounts of work 
(shown in green). However, asymmetry in architecture 
results in each task taking a different amount of time to 
complete. The result is wasted compute cycles (shown in 
red). This example shows that to ensure good 
performance in the presence of hardware asymmetry, it is 
best to expose parallelism at a fine grain. 

Workloads
To understand emerging applications for multi-core 
architectures, we have parallelized and analyzed emerging 
applications (referred to as RMS [1]) from a wide range 
of areas including physical simulation for computer 
games as well as for movies, raytracing, computer vision, 
financial analytics, and image processing. These 
applications exhibit diverse characteristics. On the one 
hand, a number of modules in these applications have 
coarse-grained parallelism and are insensitive to a task 
queuing overhead. On the other hand, a significant 
number of modules have to be parallelized at a fine 
granularity to achieve reasonable performance scaling. 

Recall that Amdahl’s law dictates that the parallel scaling 
of an application is bounded by the serial portion. For 
instance, if 99% of an application is parallelized, the 
remaining 1% that is executed serially will limit  
the maximum scaling to around 39X on 64 threads. 

This means that even small modules need to be 
parallelized to ensure good overall application scaling. 
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On 8-core MCA 
32 Tasks 

On 8-core MCA 
8 Tasks 

Figure 3: Impact of asymmetry in architecture 

Ease of Programming 
The use of modularity will continue to be very important 
for mainstream applications for several reasons. 
Modularity is essential to developing and maintaining 
complex software. In addition, applications are 
increasingly composed of software components from 
multiple vendors. These include middleware as well as 
libraries optimized for specific platforms.  

Modular programs require writers of individual modules 
to make decisions about how best to parallelize that 
module. Consider a simple example where an application 
is composed of two modules: the main program and an 
optimized math library. Suppose that parallelizing either 
the library or the main program is sufficient to exploit all 
the parallel computing resources on the machine. 
However, modularity dictates that one module does not 
make assumptions about another module. This requires 
that for the best performance on a variety of platforms, 
both modules be parallelized in cases where the other 
module is not parallelized. The net result will be a finer 
granularity of parallelism in the application. 

ARCHITECTURAL SUPPORT FOR FINE-
GRAINED PARALLELISM 
Software implementations of task queues incur an 
overhead (e.g., for enqueues and dequeues). This 
overhead grows with an increasing number of threads due 
to increased contention on shared data structures in the 
software implementation. Thus, if the tasks are small,  
the overhead can be a significant fraction of application 
execution time. This limits how fine-grained the tasks can 

be made and still achieve performance benefits with a 
large number of cores. 

Therefore, we investigate adding hardware for MCAs that 
accelerates task queues. This hardware operates under the 
covers (i.e., is not visible to application writers) to 
accelerate the task queue operations that are key to high 
performance on many-core architectures. In particular, it 
provides very fast access to the storage for tasks. This 
includes performing fast task scheduling (i.e., determining 
which task a core should execute next). Its task 
scheduling is based on work stealing—a well-known 
scheduling algorithm. 

Using the Proposed Hardware 
Applications interface to the proposed hardware via a 
software library. This allows programmers to use the 
same intuitive API that they use for software 
implementations of task queues. Since the software 
library hides the proposed hardware from applications, 
only the library needs to directly interact with this 
hardware. Besides initialization and termination, the only 
operations that the library needs to perform are task 
enqueues and dequeues. 

In current software task queue implementations, each task 
is represented as a tuple, a set of associated items, as 
shown in Figure 5. Typically, the tuple entries will be 
function pointers, jump labels, pointers to shared data, 
pointers to task-specific data, and iteration bounds, but 
they could be anything. An enqueue places a tuple into a 
software data structure for storage, and a dequeue 
retrieves a tuple from the data structure. 
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Our proposed hardware is primarily intended to accelerate 
enqueue and dequeue operations. Thus, the hardware 
stores tuples on enqueue operations and delivers tuples on 
dequeue operations. It does not interpret the contents of 
the tuples. This provides flexibility to the software library 
in that the library determines the meaning of each entry in 
a tuple. This flexibility allows the library writer to 
optimize for applications with different needs. 

Our Proposed Hardware 
We consider an MCA chip where the cores are connected 
to a cache hierarchy by an on-die network. The proposed 
hardware consists of two separate hardware components: 
a Local Task Unit (LTU) per core, and a single Global 
Task Unit (GTU). This is illustrated in Figure 4. 

Figure 4: Our proposed hardware in a MCA chip with cores (Ci) and parts of the last-level shared cache ($i)

Global Task Unit (GTU) 
The GTU holds enqueued tasks in a set of hardware 
queues. There is one hardware queue per logical core in 
the chip. This allows the use of the distributed task 
scheduling algorithm. The GTU also includes logic for 
implementing this algorithm. Since the hardware queues 
are physically close to each other, the proposed scheme 
can quickly determine which queues are empty and which 
are not. This makes stealing tasks much faster than for 
software implementations of distributed task scheduling. 
It also allows the hardware to quickly detect when all 
tasks are complete. This is important so that the main 
thread can start executing the serial code following the 
parallel section as quickly as possible. 

Function 
pointer 

Parameter 
1

Parameter
2
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Figure 5: An example task tuple format 

The GTU is physically centralized on the chip. 
Communication between the GTU and the cores is via  
the same on-die interconnect as the cache subsystem. The 
downside of a physically centralized GTU is that as  
the number of cores on a chip increases, the average 
communication latency between a core and the GTU also 

increases. This latency, if not hidden, could impact 
performance. Therefore, we address this with task 
prefetchers at each core, as described below. 

The size of the queues in the GTU is bounded. When the 
queues are full, the hardware generates an exception.  
The exception handler can move some of the tasks from 
the hardware queues into memory creating room for 
future task enqueues. An underflow mechanism is used to  
move the overflown tasks back into hardware queues at  
a later point [2].  

Multiprogramming is also supported by the hardware by 
using the same overflow and underflow mechanism to 
move tasks from hardware into memory, and vice versa, 
on context switches [2]. 

Local Task Unit (LTU) 
Each core has a small piece of hardware to interface with 
the GTU, called the LTU. In addition to hardware for 
interfacing with the GTU, the LTU also contains a task 
prefetcher and small buffer to hide the latency of 
accessing the GTU. Hiding this latency can significantly 
improve performance. While a typical enqueue operation 
from a thread can be almost entirely overlapped with 
useful work, a dequeue operation is on a thread’s critical 
path. If a logical core were to wait to contact the GTU 
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until the thread running on it finished its current task, the 
thread would have to stall for the entire GTU access 
latency. If the latency is significant compared to the size 
of a task, this can take up a significant fraction of an 
application’s execution time. Therefore, the LTU tries to 
hide the dequeue latency. It does this by trying to keep at 
least one task in the LTU’s buffer at all times. A dequeue 
is able to grab such a task very quickly. The LTU 
operates as follows. 

On a dequeue, if there is a task in the LTU’s buffer, 
that task is returned to the thread and a prefetch for 
the next available task is sent to the GTU. When the 
GTU receives a prefetch request, it treats it as a 
regular dequeue, and will steal a task from another 
logical core’s queue if necessary. 

On an enqueue, the task is placed in the LTU’s 
buffer. Since the proposed hardware uses a LIFO 
ordering of tasks for a given thread, if the buffer is 
already full, the oldest task in the buffer is sent to the 
GTU.

In our experience, the LTU’s buffer only needs to hold a 
single task to hide the GTU access latency. If this latency 
grows in the future, the buffer could be made larger. 
However, there is a cost: tasks in an LTU’s buffer cannot 
be stolen since they are not visible to the GTU. This could 
hurt performance if there are only a few tasks available at 
a time. 

Table 1: Loop-level benchmarks and their inputs 

Benchmark Data set 

Gauss-Seidel 128x128, 256x256, 512x512 

Dense Matrix-Matrix Multiply (MMM) 64x64, 128x128, 256x256 

Dense Matrix-Vector Multiply (MVM) 64x64, 128x128, 256x256, 512x512 

Sparse Matrix-Vector Multiply (MVM) 4 data sets 

Scaled Vector Add 512, 1024, 4096, 16384 elements 

Table 2: Task-level benchmarks and their inputs 

Benchmark Data set 

Game Physics Constraint Solver 4 Models 

Binomial Tree 512, 1024, 2048, 4096 

Canny Edge Detection cars, costumes, camera2, camera4 

Cholesky Factorization 4 data sets 

Forward Solve 4 data sets 

Backward Solve 4 data sets 

EXPERIMENTAL EVALUATION 

Benchmarks
We evaluate our proposed hardware on benchmarks from 
a key emerging application domain: RMS. All 
benchmarks were parallelized within our lab. Table 1 and 
Table 2 give the benchmarks and their data sets. 

Loop-level parallelism: We use primitive matrix 
operations and Gauss-Seidel as a set of benchmarks with 
loop-level parallelism since these are both very common 
in RMS applications and very useful for a wide range of 
problem sizes. Most of these benchmarks are standard 
operations and require little explanation. The sparse 
matrices are encoded in compressed row format.  
Gauss-Seidel iteratively solves a boundary value problem 
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with finite differencing using a red-black Gauss-Seidel 
algorithm. These benchmarks are straightforward to 
parallelize; each parallel loop simply specifies a range of 
indices and the granularity of tasks. We evaluate each 
benchmark with several problem sizes to show the 
sensitivity of performance to problem sizes. 

Task-level parallelism: We use modules from full RMS 
applications as a set of benchmarks with task-level 
parallelism. Task-level parallelism is more general than 
loop-level parallelism where each parallel section starts 
with a set of initial tasks and any task may enqueue other 
tasks. These benchmarks represent a set of common 
modules across the RMS domain. Some of the 
benchmarks are based on publicly available code, and  
the remaining ones are based on well-known algorithms. 
These benchmarks are as follows:  

1. The Binomial Tree uses a 1D binomial tree to price a 
single option. Given a tree of asset prices, the 
algorithm derives the value of an option at time 0 
(that is, now) by starting at time T (that is, the 
expiration date) and iteratively stepping “backward” 
toward t=0 in a discrete number of time steps, N. At 
each time step t, it computes the corresponding value 
of the option Vi at each node of the tree i. The 
number of exposed tasks (i.e., nodes) is small at any 
time step and the task size is small. Hence, task 
queue overhead must be small to effectively exploit 
the available parallelism. 

2. The Game Physics constraint solver iteratively solves 
a set of force equations in a game physics constraint 
solver. For inputs that have few bodies and 
constraints, the amount of parallelism is limited, 
especially for a large number of cores. 

3. Cholesky, Backward Solve, and Forward Solve are 
operations on sparse matrices. Cholesky performs 
Cholesky factorization. Backward Solve and Forward 
Solve perform backward and forward triangular solve 
on a sparse matrix, respectively. These solvers use a 
data structure called elimination tree that encodes the 
dependency between tasks. The irregularity in sparse 
matrices results in high variation of task size. 
Therefore, we need very efficient task management 
to achieve good load balancing. 

4. The Canny Edge Detection computes an edge mask 
for an image using the Canny edge detection 
algorithm. It first finds a group of edge candidates 
and determines whether their neighbors are likely to 
be edges. If so, the algorithm adds them to the 
candidate list and recursively checks their neighbors 
for candidacy. The number of tasks correlates 
directly to the number of candidates and tends to be 
small. Further, the amount of work in checking for 
candidacy is also very small. 

Figure 6: Performance of loop-level benchmarks 
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Figure 7: Performance of task-level benchmarks 

Results
Figures 6 and 7 show the performance benefit of our 
proposed hardware for the loop-level and the task-level 
benchmarks, respectively, when running with 64 cores. In 
particular, the hardware proposal is compared with the 
best optimized software implementations and an idealized 
implementation (Ideal) in which tasks bypass the LTUs 
and are sent directly to/from GTU with zero interconnect 
latency. Additionally, the GTU processes these tasks 
instantly without any latency. The optimized software 
implementation uses a combination of widely used state 
of the art techniques [2, 3] that deliver the best 
performance.  

The graphs represent the speedup over the one-thread 
execution using the Ideal implementation. For each 
benchmark, they show multiple bars. Each bar corresponds 
to a different data set shown in Tables 1 and 2. 

For the loop-level benchmarks in Figure 6, the proposed 
hardware executes 88% faster on average than the 
optimized software implementation and only 3% slower 
than Ideal.

For the task-level benchmarks in Figure 7, on average the 
proposed hardware is 98% faster compared to the best 
software version and is within 2.7% of Ideal. For Game 
Physics with one data set, and Forward Solve with 
another data set, the amount of parallelism available is 
very limited. In the software implementations, the cores 
contend with each other to grab the few available tasks, 
which adversely impacts performance. 

CONCLUSION
MCAs provide an opportunity to greatly accelerate 
applications. However, in order to harness the quickly 
growing compute resources of MCAs, applications must 
expose their thread-level parallelism to the hardware.  
We explore one common approach to doing this for  
large-scale multiprocessor systems: decomposing parallel 
sections of programs into many tasks, and letting a task 
scheduler dynamically assign tasks to threads. 

Previous work has proposed software implementations of 
dynamic task schedulers, which we examine in the 
context of a key emerging application domain, RMS. We 
find that a significant number of RMS applications 
achieve poor parallel speedups using software dynamic 
task scheduling. This is because the overheads of the 
scheduler are large for some applications. 

To enable good parallel scaling even for applications with 
very small tasks, we propose a hardware scheme to 
accelerate dynamic task scheduling. It consists of 
relatively simple hardware and is tolerant to growing  
on-die latencies; therefore, it is a good solution for 
scalable MCAs. 

We compare the proposed hardware to optimized 
software task schedulers and to an idealized hardware 
task scheduler. For the RMS benchmarks we study, our 
hardware gives large performance benefits over the 
software schedulers, and it comes very close to  
the idealized hardware scheduler. 
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ABSTRACT
We have entered an era of chip multiprocessor (CMP) 
platforms, where performance is delivered with the 
integration of more and more cores on a die. Tera-scale 
CMP architectures, consisting of several tens of physical 
cores and hundreds of hardware threads, are highly 
suitable for throughput computing especially in the 
server market place. In this paper, we start by 
highlighting tera-scale potential in datacenter 
environments. We show how a multi-tier datacenter 
workload that required tens (to hundreds) of platforms 
in the past can potentially map on to one (or a few) 
single-socket tera-scale CMP platforms running Virtual 
Machines (VMs) and thereby creating Datacenter-on-
Chip (DoC) architectures.

Having introduced tera-scale DoC architectures, we then 
describe key challenges involved in providing high 
degrees of performance, scalability, and adaptability. 
Performance and scalability challenges point to the need 
for efficient handling of cache/memory/IO requirements 
when a large number of cores are actively running many 
workloads. Adaptability challenges highlight the need 
for dynamically allocating cache, memory, and I/O 
resources amongst the simultaneously running VMs in 
order to enable Quality of Service (QoS). To address 
scalability and adaptability challenges, we then propose 
and evaluate important tera-scale architectural features: 
(a) hierarchy of shared caches and large DRAM caches 
for better cache/memory scalability and performance, 
and (b) cache/memory QoS techniques to form Virtual 
Platform Architectures (VPAs). Based on a detailed 

evaluation, we show that these architectural features are 
highly beneficial for DoC tera-scale architectures. 

INTRODUCTION
We have entered the era of CMP platforms with Intel’s 
dual-core and quad-core processors [5, 8] flourishing in 
the mobile, desktop, and server marketplace. Within a 
decade, we expect to integrate more and more cores  
on-die and create tera-scale architectures consisting of 
several tens of physical cores and hundreds of hardware 
threads. Such tera-scale architectures are highly suitable 
for high-performance throughput computing especially 
in the server marketplace.  

A decade ago, datacenters employed tens to hundreds of 
dual-processor and quad-processor server platforms 
(each running a single application) on an Ethernet 
fabric. However, recent trends show that most 
datacenters have started employing virtualization [21, 
23, 31, 32] to consolidate multiple applications onto the 
same platform in order to improve efficiency, 
manageability, and overall cost [6]. With tera-scale 
architectures [7] comes the potential to accelerate the 
consolidation trend and potentially even enable small 
datacenters to run on a single (or a few) platforms, thus 
the term “Datacenter-on-Chip” (or DoC) architectures. 
In this paper, we use an e-commerce benchmark,  
TPC-W [29], to illustrate this by showing how an earlier 
configuration (with 60+ server platforms) can now 
potentially run on a single tera-scale DoC platform with 
32 cores and 128 threads (4 threads per core). 
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Figure 1: Datacenter-on-chip usage models: classification and examples

With tera-scale DoC architectures comes the challenge of 
designing a balanced platform with sufficient resources to 
sustain the large number of cores actively running VMs. 
In this paper, we evaluate the cache, memory, and I/O 
requirements as well as the behavior of the DoC 
architecture. We accomplish this by analyzing the TPC-W 
configuration as well as running detailed platform 
simulations that mimic multiple VMs running Online 
Transaction Processing (OLTP) workloads, Java*

application server workloads, and even enterprise 
resource planning workloads simultaneously. To address 
the cache/memory scalability requirements, we show that 
(a) a hierarchy of shared caches is most suitable for DoC 
architectures since it maximizes performance and area 
efficiency when running virtualized server workloads and 
(b) integrating a large-capacity DRAM cache can 
significantly reduce the memory bandwidth requirements 
and thereby improve performance and scalability. 

Another critical challenge in DoC architectures is that the 
performance of each VM can be highly non-deterministic 
since it depends heavily on the other VMs running 
simultaneously. Since an abundant number of cores is 
provided in tera-scale DoC architectures, the source of 
this non-determinism comes from interference in shared 
platform resources such as cache and memory. Through 
detailed simulations of simultaneously running VMs, we 
quantify the impact of this interference and the lack of 
QoS provided to each individual workload. Since 
datacenters typically provide service-level agreements, it 
is important to incorporate QoS hooks in the platform 
resources such as cache and memory. In this paper, we 
describe potential platform QoS mechanisms and evaluate 
the effectiveness of these mechanisms in improving the 
performance isolation provided to each VM. 

DATACENTER-ON-CHIP USAGE 
MODELS AND TERA-SCALE 
ARCHITECTURES
In this section, we start by describing four classes of DoC 
usage models and then focus on one of them to highlight 
the potential of tera-scale architecture and describe the 
key challenges. 

Datacenter-on-Chip Usage Models 
Virtualization techniques make it possible to consolidate 
multiple server applications onto a single system. This 
usage model has been gaining momentum in enterprise 
datacenters because it improves resource sharing and 
usage, improves manageability, and reduces cost. We 
expect this trend to continue growing significantly in the 
coming years especially with the integration of more and 
more cores on the die. DoC essentially refers to the 
potential of multiple datacenter applications running 
simultaneously on a single-chip server platform. DoC 
usage scenarios can be classified into four broad 
categories based on (a) the types of applications being 
consolidated and (b) the level of communication  
and cooperation between the applications. Figure 1 
illustrates the four DoC usage models that are explained 
further below. 

Homogeneous/Non-Cooperating: In this type of 
consolidation, multiple server applications of the same 
type are consolidated onto a single platform. However, 
these applications are independent in nature and no 
significant communication is required between the 
applications. A good example is the consolidation of a 
farm of Web servers that are serving Web pages and 
are load balanced. For the most part, these different 
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Web servers run on their own without having to 
communicate with each other.  
Heterogeneous/Non-cooperating: In this type of 
server consolidation, multiple different server 
applications are consolidated onto a single system. It is 
often the case in enterprise datacenters that servers are 
under utilized for a significant portion of the time when 
running a single application. The main motivation for 
this type of consolidation is to achieve maximum 
resource usage by consolidating multiple applications 
onto the same platform. In this type of consolidation, 
the applications being consolidated are still quite 
independent and do not need to communicate with  
each other. One example is that of consolidating an 
email server, file and print server, and user 
authentication server. 
Homogeneous/Cooperating: This type of 
consolidation occurs when a clustered application (e.g., 
database cluster) is consolidated onto a single system. 
Clusters use some sort of message passing either on a 
regular network fabric like Ethernet or on a more 
specialized fabric to communicate with each other. This 
communication turns into inter-VM communication 
once consolidated onto the same platform. 
Heterogeneous/Cooperating: This type of usage 
model occurs when multiple heterogeneous workloads 
that need to communicate with each other are 
consolidated. A good example of this type is where a 
multitiered application, like in TPC-W, is consolidated 
onto a single system. Here various tiers need to 
communicate with each other while servicing user 
requests. Hence inter-VM communication can be a 
significant factor, and handling this can be a challenge 
in virtualized environments, as we will see in the later 
part of this paper.   

Mapping to Tera-scale Architectures 
The DoC usage models described above can take 
advantage of more and more cores on-die since they have 
many applications (potentially multi-threaded) running 
simultaneously on a single platform. As a result, a  
tera-scale architecture with several tens of physical cores 
and hundreds of hardware threads integrated on the die is 
highly suitable for DoC usage. To illustrate the potential 
of tera-scale and highlight the challenges, we now focus 
on a case study of an e-commerce environment based on 
the TPC-W benchmark. 

TPC-W [29] is a benchmark representative of an 
e-Commerce datacenter environment defined by the 
Transaction Processing Performance Council (TPC). The 
performance metric reported by TPC-W is the number of 
Web interactions processed per second (WIPS). Multiple 
Web interactions are used to simulate the activity of a 
retail store, and each interaction is subject to a response 
time constraint. The TPC-W benchmark is now obsolete; 

however, the e-Commerce workload that it represents is 
very relevant and important. A typical TPC-W setup 
contains several different application components (as 
shown in Figure 2): 

Web Servers process incoming HTTP requests and 
prepare responses to be sent to the clients. 

Web Cache Servers cache static and dynamic 
content for fast access to data. 

Image Servers serve static images that are part of the 
response Web pages. 

Application Servers provide the e-Commerce 
functionality and are responsible for processing 
customer orders and payments for goods, among 
other things. 

Database Servers hold inventory of product, 
description, availability, pricing and other 
information.  

Load Balancer and other Infrastructure Servers
distribute processing load among different Web and 
image servers equally by directing incoming HTTP 
requests to the server with the least load. 

Figure 2: Mapping datacenter workloads to tera-scale 
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Table 1: Compute/cache/memory capacity data from TPC-W setup (example based on TPC-W publication [30]) 
Server Type Oses Num servers Total Procs Frequency (GHz) Memory (MB) Total Cache (KCPU Util
Web server Win 2K Server 26 52 1.26 19968 26624 80%
Web server/Other software Win 2K Server 1 2 1.26 768 1024 80%
Image server Win 2K Server 20 40 1.26 10240 20480
Image server/Load Balancer Win 2K Server 1 2 1.26 512 1024
Database server MS .NET EE 1 8 1.6 8192 8192 45%
Web cache Win 2K Server 9 18 1.26 4608 9216 70%
Web cache Win 2K Server 3 6 1.26 2304 3072 70%
Web cache Volera 2 2 1.26 4096 1024 55%
Total 63 130 50688 70656

Figure 2 shows how these different components are 
interconnected in a typical TPC-W setup of the past. 
TPC-W is a perfect example of understanding the 
requirements and behavior of consolidating multiple tiers 
(heterogeneous/cooperating) of a datacenter on a  
tera-scale CMP platform (bottom of Figure 2). Table 2 
summarizes the number of systems, compute cores, cache 
and memory in an example configuration roughly based 
on a high-performing 2002 TPC-W publication [30]. As 
shown in the figure as well as the table, there are  
63 systems employed in the example TPC-W 
configuration. Except for the database server, which 
employed four processors, all other systems consisted of 
two processors (without multi-threading). As a result, the 
total number of processors in the configuration was about 
130. In a tera-scale CMP platform, we expect that a single 
processor socket could contain 32 cores each with 4 
threads (SMT). As a result, the entire TPC-W example 
configuration can be potentially consolidated onto such a 
32-core, 128-thread single-socket platform.  

However, it is also critical that we take into account the 
amount of platform resources that are needed to support 
the execution of simultaneously running VMs of this 
nature. For example, Table 2 shows that the total cache 
capacity available in the TPC-W configuration adds up to 
70MB in size. Given the area constraints and the fact that 
32 cores will be integrated onto the die, our previous 
work [36] has shown that the amount of cache space 
available is likely to be less than 32MB. As a result, 
architectural techniques that enhance cache/memory 
scalability and performance need to be incorporated into 
the platform. We discuss these further in the next section. 

Another key challenge in running heterogeneous VMs of 
this nature on the same platform is that they will contend 
for platform resources and interfere with each other. 
Given that these VMs are likely to get very different 
utility benefits from platform resources, and that the VMs 
are likely to be different in importance to the overall 
performance of the datacenter, it is important that we 
incorporate adaptability techniques in the platform so that 
resource usage can be dynamically controlled to provide 
performance isolation or QoS for DoC platforms. In the 
following section, we describe adaptability challenges and 
solutions to address these in tera-scale architectures. 

Last but not least, it is also important to consider the 
overheads of virtualization on the DoC performance. In 
addition to the basic overhead of handling system calls, 
context switches, and interrupts for VMs, one primary 
concern in virtualized platforms is the overhead of I/O 
virtualization. For example, Figure 3 shows the overheads 
of virtualization for (a) transmitting network data to 
external platforms, (b) receiving network data from 
external platforms, and (c) inter-VM communication 
between VMs. The data shown in Figure 3 are based on 
measurements done on a recent Intel® Xeon® dual-core 
processor (3GHz) dual-socket platform [8] running the 
Xen hypervisor [3, 33]. The measurements show that (a) 
receiving network data at 1Gbps and processing requires 
75% of CPU utilization under virtualization, (b) 
transmitting 1Gbps externally requires about 50% of CPU 
processing, and (c) communicating 1Gbps between VMs 
on the same platform requires about 70% of CPU 
utilization. Further, it should be noted that these compute 
cores are large out-of-order cores without multiple 
threads sharing the pipeline. As we design tera-scale 
processors, the use of smaller in-order cores with multiple 
threads sharing the pipeline may increase the associated 
processing overhead. However, since most of the cores in 
the example TPC-W configuration were underutilized 
(last column in Table 1), there is likely some headroom 
available to accommodate this extra I/O processing 
overhead. Extensions to techniques (such as Intel’s I/O 
Acceleration Technology [14, 22]) are needed to 
minimize this overhead for a virtualized DoC 
environment. However, this is not covered in this paper. 

CPU utilization (1Gbps while virtualized)
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Figure 3: CPU overheads for network I/O 
virtualization  
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SCALABILITY CHALLENGES AND 
SOLUTIONS
As described in the previous section, the tera-scale 
architecture offers a high compute density (large number 
of cores and threads) that is attractive for DoC usage 
models. However, in order to provide high performance 
and scalability, it is important to carefully design a 
balanced platform with sufficient resources (cache, 
memory, I/O, etc.). In this section, we present the DoC 
scalability considerations and discuss potential solutions 
that address the key challenges. 

The first challenge is that of providing sufficient cache 
space in order to reduce memory stalls and minimize 
memory bandwidth bottlenecks. Previous work [36] has 
shown that die area and cost will significantly restrict the 
amount of cache space that can be provided in tera-scale 
processors. In DoC usage models, the fact that several 
multi-threaded server applications will run simultaneously 
poses two potential considerations for cache hierarchy 
design: (a) since the threads within each server 
application tend to share code as well as data, cache space 
efficiency can be improved if these threads are allowed to 
share cache space, (b) since the cache space usage of each 
of the server applications can be quite different at 
different times in the execution, better utilization can be 
achieved if the cache space is shared. To take advantage 
of both of these sharing properties, we propose and 
evaluate a hierarchy of shared caches for tera-scale  
DoC platforms.  

Figure 4 illustrates a three-level hierarchy of shared 
caches in a tera-scale platform. The hierarchy of  
shared caches starts an L1 (16K to 64K) that is private to 
the core but shared between the multiple threads within 
the core. The L2 (256K to 1M, mid-level) cache is also 
shared by multiple cores within a “node.” The node forms 
the basic building block for the architecture. The L3 (8 to 
32M, last-level) cache is logically shared by all of the 
nodes in the socket. However, since the L3 cache is quite 
large, it is physically distributed around the die in smaller 
“slices.” A scalable interconnect connects all the L3 cache 
slices and the nodes. The benefits of sharing at each level 
is best explained with an example. Figure 5 compares the 
cache performance of private and shared L2 caches for an 
OLTP workload (based on the TPC-C [28]). As shown in 
the figure, a shared cache organization (e.g., 512K shared 
by four cores) is equivalent in cache performance to a 
private cache organization (four cores each with a 256K 
private L2 cache). This essentially shows a potential of 
2X space efficiency with a shared cache organization. 
Similar benefits were found for other server workloads as 
well as for other levels of the hierarchy. 

Having defined a cache hierarchy, the next major 
challenge is that of providing sufficient memory 

bandwidth to sustain the misses from the last-level cache. 
Figure 6 shows the cache scaling behavior of a 
consolidated server workload running on a last-level 
cache. These data were obtained from trace-driven 
simulations of four (8-threaded) workloads based on 
TPC-C [28], SPECjbb2005 [26], SPECjappserver2004 
[25], and SAP SD/2T [24] running simultaneously on 32 
single-threaded cores. The data show that consolidation 
workloads have good cache scaling behavior from 4MB 
all the way to 128MB of cache shared between the  
32 cores. 

Figure 4: Tera-scale DoC hierarchy of shared caches 
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Figure 5: Tera-scale shared L2 cache benefits 
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To understand the memory bandwidth requirements of 
tera-scale DoC platforms, let us now consider the 
simulation configuration with 8MB L3 cache and  
32 cores. In this configuration, we estimated that the 
bandwidth requirements can be as high as 20GB/s. Given 
that tera-scale processors may contain as many as  
128 threads, the overall bandwidth requirements can be 
100GB/s or higher. This in turn requires that a 
proportional number of memory channels be supported on 
the socket. Alternate solutions to solving the memory 
bandwidth bottleneck for tera-scale platforms could be 
the use of large capacity L4 caches. As shown in  
Figure 7, large capacity L4 caches can be implemented 
either as an additional package on the package (in a  
multi-chip package) or stacked (using 3D stacking 
technologies [1]). To understand the potential of large 
capacity L4 DRAM caches that can provide as much as 
twice the bandwidth at as little as one-third of the 
memory latency, we conducted simulations of a 32-core, 
8MB L3 cache configuration with and without a 32MB or 
64MB L4 cache. We found that significant performance 
benefits (from 10 to 40%) can be achieved depending on 
the organization of the DRAM cache, the exact 
bandwidth capability, and the latency benefits as 
compared to main memory latency. However, the key 
benefit is that of providing sufficient headroom in 
external memory so that the number of channels that is 
implemented can be reduced without affecting the 
performance. 

Figure 7: Tera-scale DoC L3 cache scaling behavior 

Having addressed the cache/memory scalability 
challenges for tera-scale DoC architectures (using a 
hierarchy of shared caches and large L4 caches), we next 
turn our attention to adaptability concerns and solutions. 

ADAPTABILITY CHALLENGES AND 
SOLUTIONS
Flexible and dynamic management of platform resources 
is important in DoC tera-scale architectures since multiple 
VMs will be running simultaneously. Traditionally, the 
execution environment (a virtual machine monitor 
(VMM) or hypervisor in DoC) attempts to control the 
visible resources (number of cores and memory capacity 
for instance). However, this alone will not suffice for 
CMP platforms where more cores might be available to 
run the virtualized applications simultaneously, but they 
end up contending for other (invisible) shared resources 

that have first-order performance impact [2, 4, 10, 16, 18, 
34]. Key among these invisible resources are cache space 
and memory bandwidth. In addition to cache and 
memory, other resources that are shared include 
interconnects, micro-architectural resources in the core 
(shared between hardware threads), and power.   

While sharing resources is generally the most efficient 
approach to maximize resource utilization, having no 
control over management of these resources can lead to 
loss of determinism, lack of performance isolation, and an 
overall lack of the notion of QoS provided to an 
individual application running on the platform. This has a 
very direct impact on the datacenter consolidation 
environments where more and more heterogeneous 
workloads are consolidated into a single platform 
contending for the shared hardware resources. Another 
important aspect to consider when managing shared 
resources is the relative importance of each of the 
consolidated applications. Not all applications 
consolidated may be of equal importance. The difference 
in priority could be based purely on the service level 
agreement provided to the customer or could be based on 
the relative throughput requirements of each of the 
consolidated applications. It could also be decided by the 
VMM layer based on the workload behavior (cache 
friendly, IOVM, etc.).   
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We start by studying the extent to which contention for 
shared cache space affects an individual OLTP 
application when running with one or more other 
consolidated applications. We performed a trace-driven 
simulation [9] of a 32-core processor with 8MB of  
last-level cache running (a) an 8-threaded OLTP 
application (based on TPC-C) running alone, (b) OLTP 
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8-threaded Java workload (based on SPECjbb2005), and 
(e) OLTP consolidated with all of the three above 
applications. Figure 8 shows the impact of consolidation 
on OLTP cache occupancy as well as OLTP miss rate. As 
the occupancy is reduced from 100% when running alone 
to as low as 20% when running with all other workloads, 
the miss rate goes up significantly (by as much as 3X). It 
should be noted that even though the compute resources 
available to the OLTP application remain the same when 
running alone and running in consolidated mode, the 
performance will be significantly affected due to the 
increase in miss rate. 

QoS and Virtual Platform Architectures 
Managing the allocation of shared resources in the 
platform is key to addressing the contention effects shown 
above and to providing performance differentiation, 
performance isolation, and the overall notion of QoS. 
Today, Intel and other processor manufacturers, support 
hardware virtualization features. While these features 
support functionally isolated VMs, they do not offer the 
ability to provide performance isolation. Our goal is to 
define mechanisms that allow VMs to transform into 
Virtual Platform Architectures (VPAs). A VPA is defined 
as a collection of virtual resources (i.e., some fraction of 
each of the physical shared resources) that a VM is 
provided. In this section we introduce our Platform QoS 
research that enables QoS-aware platforms and VPAs.   
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Resource 
Monitoring

Resource
Enforcement

QoS
Exposure

Feedback
QoS Hints via
Architectural Interface

Figure 9: Platform QoS approach

Platform QoS 
For DoC tera-scale architectures, there are three key 
questions that the Platform QoS research attempts to 
answer: (a) how much of each shared resource is an 
application or VM using (b) how can the resource 
allocation be modified to improve individual QoS or 
overall performance, and (c) what are the most 
appropriate interfaces and mechanisms needed between 
hardware and software to achieve QoS and VPAs? 

The Platform QoS approach attempts to address these 
questions by enabling three major components:  
(a) monitoring, (b) enforcement, and (c) exposure. Figure 
9 shows the components and their relationship in terms of 
information flow. The monitoring and enforcement 
components are implemented in hardware, whereas the 

QoS policies and exposure can either be guided by 
software or by hardware. The monitoring component 
keeps track of shared resource usage on a per-application 
or per-VM basis. The resource monitoring ability allows 
the platform to pass back information to the execution 
environment (VMM or hypervisor in DoC) to determine 
the VPA that each VM ends up with in a platform. In 
addition, providing this information back to the software 
domain allows the VMM to optimize scheduling 
decisions or pass down hints for resource enforcement. 
The monitoring ability may also be useful to the system 
administrator to determine (a) whether a VM should be 
migrated to a different platform (if it is getting too few 
resources consistently), (b) what QoS hints should be 
passed down to the platform to modify resource 
allocation, or (c) what the end-customer should be 
charged based on resource usage. Alternatively, the 
administrator may be able to set up a QoS policy that 
performs one or more of the above dynamically, based on 
monitoring data.  

The resource enforcement component implements shared 
resource partitioning based on software guidance. This 
requires an architectural interface to be exposed to the 
execution environment that allows the specification of 
resource allocation requirements on a per-VM basis. 
While we expect QoS policies to be determined primarily 
by software, it is also important to allow a path for future 
platform optimizations that dynamically manage 
resources entirely in hardware. The resource enforcement 
component enables the VMM to create VPAs with a  
user-specified amount of resources. To achieve a scalable 
low-cost QoS solution, we propose resource partitioning 
and QoS exposure on a class of service basis instead of a 
per-VM basis. This is sufficient since it is unlikely that all 
of the VMs running on the platform need performance 
isolation simultaneously. Instead, one or more VMs can 
be mapped to a single class of service as specified by the 
VMM, and a smaller number of classes of service can be 
supported by the platform. In this paper, we use the terms 
“priority class,” “priority level” and “class of service” 
interchangeably. 

To help clearly describe the Platform QoS approach and 
mechanisms required, we now present a case study using 
the shared cache as the platform resource.  

QoS Case Study Using Shared Caches 
Since contention to shared cache (e.g., last-level) is a key 
issue, we now describe the implementation considerations 
for shared cache monitoring, enforcement, and exposure 
(highlighted in Figure 10).  

In the case of cache monitoring, the goal is to keep track 
of cache space consumed on a per-application or per-VM 
basis. In order to do so, the VMM needs to pass down a 
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unique identity (ID) to the platform for each running VM. 
This can be easily done by writing the ID to a new 
register, a Platform QoS Register (PQR), that is part of 
the processor architectural state. Since the ID is finite, it 
should be noted that the ID might have to be recycled 
amongst VMs (when the number of VMs is larger than 
the number of IDs). Once the ID is passed down, each 
load/store generated by the CPU is tagged with the ID so 
that it is passed down to the last-level cache. In the  
last-level cache, each cache line is tagged with the ID, 
and a global cache occupancy counter is also maintained 
per ID. When a line is evicted from the core, the 
appropriate cache occupancy counter is decremented. 
When a new line is allocated into the cache, the 
appropriate cache occupancy counter is incremented. The 
implementation can be optimized for area by employing 
set sampling techniques [37] if so desired. 
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Figure 10: Cache QoS architecture and techniques

For cache enforcement, we are investigating the use of 
several forms of capacity partitioning. One potential 
approach attempts to limit the number of cache lines in 
the entire cache used by a certain class of service. Since 
the class of service is also associated with each cache line, 
this enforcement is accomplished by modifying the cache 
replacement policy to pick the next victim from a class 
that is currently exceeding its assigned cache quota.

For cache QoS exposure, we introduce the PQR. The 
PQR allows software to specify (a) the VM ID, (b) the 
class of service (also referred to as priority level or 
priority class) that this VM should be mapped to, and  
(c) an optional resource allocation target for that class of 
service. As described above, the VM ID is used by the 
platform to monitor cache occupancy per application. The 
class of service is used to guide the QoS-aware 
replacement decision.  

To study the potential benefits of cache QoS enforcement 
we extended our trace-based cache simulations to 
implement cache enforcement. We conducted 
performance simulations of various consolidation 
scenarios where we limited the amount of cache space 
available to the low priority VM, but allowed  
high-priority VMs to allocate anywhere in the cache. In 
our example, we chose the OLTP application as the  
high-priority VM (with access to 100% of shared cache) 
and the three other consolidated applications as the  
low-priority VMs (limited to X% of the cache space). 
Figure 11 shows the OLTP miss rate as a function of X% 
(on the x-axis). As expected, reducing X from 100% to 
12.5% improves the cache performance of the  
high-priority OLTP application significantly. It may be 
noted that this will negatively impact the performance of 
the low priority VMs, but that is expected as an outcome 
of performance differentiation and QoS.  
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Figure 11: Case study of cache QoS benefits 

In the previous sections, we focused on the cache-sharing 
impact and cache QoS implementations. However, the 
implications are similar for other shared platform 
resources. For example, memory bandwidth is another 
resource that has a direct impact on application 
performance. Memory QoS [11] can be achieved by 
implementing priority queues in the controller or enabling 
rate control of the request stream. Once all shared 
resources are enabled with QoS support, we could 
provide differentiated service to the individual VMs 
running on top of these resources. This combined with 
hardware-supported virtualization provides a complete 
VPA where functional and performance isolation is 
provided to VMs in a DoC architecture. 

CONCLUSION
In this paper, we introduced DoC architectures and 
showed the potential of tera-scale platforms for DoC 
environments. The opportunity for more and more 
applications currently running on dedicated platforms to 
run on a tera-scale platform is tremendous, but it also 
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introduces some significant scalability and adaptability 
challenges that we need to address.

In this paper, we presented the scalability challenges for 
DoC in tera-scale platforms and described two important 
potential architectural features: (a) hierarchy of shared 
caches and (b) large-capacity L4 caches. We showed that 
enabling sharing at each level of the hierarchy can 
significantly maximize the space efficiency (e.g., sharing 
the mid-level L2 cache between multiple cores within a 
node provided a 2X better area efficiency as compared to 
private L2 caches). In addition, we also showed that 
large-capacity L4 caches (enabled either by 3D-stacking 
or a multi-chip package) can mitigate the memory 
bandwidth challenges for tera-scale platforms. 

Last, but not least, we presented the adaptability 
challenges for DoC tera-scale environments. DoC 
environments suffer from the lack of performance 
isolation and performance differentiation since multiple 
simultaneously running VMs are contending for critical 
shared platform resources. We described our Platform 
QoS research that is investigating QoS techniques for 
resource monitoring and enforcement to enable 
performance isolation and differentiation. We showed 
how these QoS techniques allow us to transform VMs 
into VPAs. The end goal is to provide better QoS in  
tera-scale platforms for DoC environments. 

Future work in this area is as follows. Research work 
along the lines of scalable cache/memory hierarchies [12, 
27, 35, 19] and adaptable QoS techniques [4, 10, 11, 13, 
15, 16, 17, 18, 20, 37] is a great start, but more and more 
emphasis on DoC usage models will be needed in  
the future.  
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ABSTRACT
With the exponential increase in media data on personal 
computers and the Internet, it is critical for end users to 
efficiently manage metadata to find the information they 
are looking for. Media mining refers to a technique 
whereby a user can retrieve, organize, and manage media 
data. However, most media-mining applications are 
compute intensive, and they require tera-operations  
per second. This paper focuses on how tera-scale 
computing enables new usage models with media-mining 
techniques. Several representative media-mining usage 
examples are explored in detail. 

First, we look at how these new usage models are enabled 
by a different kind of parallelism. For maximum 
performance, we provide a general parallel framework to 
abstract various parallelisms. We also present a detailed 
architectural performance analysis of several 
representative workloads on a dual-socket, quad-core 
system and on a 32-core Chip Multiprocessor (CMP) 
simulator. The results indicate that these media-mining 
applications have no obvious limits on concurrency and 
are amenable to future large-scale, multi-core 
architectures. They can take full advantage of tera-scale 
computing power in the form of thread-level parallelism 
to meet users’ needs. 

Because the underlying techniques and fundamental 
algorithms in media mining are widely used in other 
applications, many of our findings are applicable to other 
emerging applications as well. 

INTRODUCTION
Rapid advances in the hardware technology of media 
capture, storage, and computation power have contributed 
to an amazing growth in digital media content. As content 
generation and dissemination grows, extracting 
meaningful knowledge from large amounts of multimedia 
data becomes increasingly important. Media mining is a 
kind of technology that helps end users search, browse, 
and manage large amounts of multimedia data [1]. It 
yields a wide range of emerging applications with various 
mass-market segments, e.g., image/video retrieval, video 
summarization, scene understanding, visual surveillance, 
digital home entertainment, smart health care, etc. Most 
of these applications are very complicated and have  
real-time or even super-real-time processing demands, 
which require tera-scale computing power to make them 
usable. 

In this paper, we present several media-mining 
applications that require target architectures capable of 
delivering tera-scale computing. Our study shows that 
today’s single-core processor system performance is  
10x–1000x slower for acceptable human interactions. To 
accelerate these compute-intensive applications, we 
exploit the inherent data and function parallelism of these 
workloads. Our experiments show that with proper 
parallelization, these workloads can scale well, achieving 
a speedup of up to 7.5x on a 2-socket, quad-core machine 
and a speedup of up to 30x on a 32-core CMP simulator.  
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This paper is organized as follows. First, we explore 
several media-mining usage models and their key 
techniques. Next, we present several different parallel 
schemes and a general parallel video-mining framework. 
Then, we show our performance analysis results of the 
parallelized workloads. 

MEDIA-MINING APPLICATIONS 
Media mining has a huge number of emerging 
applications with different usage models. We highlight 
three typical usage models developed at Intel. 

Media-Mining Usage Models
Sports video analysis: Broadcast sports videos are 
very popular on television. Using highlights 
detection, consumers can quickly retrieve specific 
video clips without having to browse through the 
whole video. Sports video analytics can be viewed 
from the perspective of an editor. Based on a 
predefined semantic intention, an editor combines 
certain multimedia content elements and their 
temporal layout to achieve the desired highlighted 
events. Hence, detecting highlighted events is similar 
to a reverse process of authoring. The system 
framework consists of three levels: low-level 
audio/visual feature extraction, mid-level semantic 
keywords generation, and high-level event detection 
[8]. To minimize the semantic gap between low-level 
features and high-level events, we use mid-level 
semantic “keywords” followed by a classifier to infer 
events of interest. Our sports video analysis system 
can work with a multitude of sports including soccer, 
hockey, badminton, tennis, and diving. Given a video 
in a specific domain with predefined semantic 
intentions, the system can extract the desired events 
and features and interpret a summarization output 
video in terms of high-level semantics. 

Personal video editing: Home videos are 
increasingly popular as digital video cameras become 
more user friendly and portable. However, because 
home videos for the most part are shot by amateurs, 
shaking, blurring, under-exposure artifacts, and 
redundant content are always present. Therefore, the 
demand for an automated home video editing system 
[2] is high. Such a system has to be able to recognize 
how many people and how many scenes are involved, 
mine the relationship between various people and 
scenes, and synthesize a short artistic video clip from 
a long raw video. A typical personal video editing 
system includes three key modules: intelligent 
analysis, adaptive selection, and seamless 
composition. The first module extracts the  
multi-modal and multi-level audio-visual features; 
the second module selects the most interesting, 

important, and informative content; and the third 
module produces a near-professional story with 
incidental music. The overall automated home video 
editing system must be easily extended to the 
personal video recorder and digital home 
entertainment system. 

Personal video retrieval: A personal video retrieval 
system is a desktop application that works much like 
the Google desktop search to help end users manage 
more and more personal multimedia data from all 
kinds of mobility digital camera devices. In response 
to a user query, the personal video retrieval 
application finds the relevant video clips from a large 
video database such as from movies, TV, sports 
games, and home videos. Generally, a retrieval 
system first extracts low-level audio/visual features 
from videos, and then detects semantic concepts 
(keywords) to represent the video content. Finally, a 
query engine returns retrieval results based on the 
user’s query and on a similarity model. The query 
can be text keywords, image examples, hand-drawn 
sketches, or short video clips, and the output is 
relevant video clips ranked not only by their content 
similarity to the query, but also by their importance, 
according to a concept-link relationship analysis. To 
gradually improve system performance during the 
query procedure, the system provides user-friendly 
relevant feedback and active learning modules. 

Key Media-Mining Techniques
Although the above usage models are quite different from 
one another, the underlying technologies are common and 
can be extended to a broad range of media-mining 
applications. In this paper, four key techniques are 
extracted from previous usage models to show how 
media-mining applications are built.

Sports keyword detection: The mid-level module 
generates semantic “keywords” from the previously 
described low-level extraction. Listed below are 
some keywords in sports video analysis. These 
keywords are used as input for high-level event 
detection. 

- View type: Based on color histograms of each 
frame, we can obtain the dominant color to 
segment the playing field region. We then 
classify each frame as a global view, medium 
view, close-up view, and out of view [5]. 

- Play-field: A Hough transform from digital 
image processing is used to detect field 
boundaries and penalty box sections. Then a 
decision-tree-based classifier determines the play 
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position according to the slope and position of 
the lines. 

- Replay: In broadcast sports videos, to capture clues 
for significant events, there typically is a replay 
following an important event. At the beginning and 
end of each replay, there is generally a logo flying 
in high speed. We detect logos to identify replays 
by discovering repeat video segments through 
dynamic programming [6]. 

- Audio keywords: There are two types of audio 
keywords: commentator’s excited speech and 
referee’s whistle: these have a strong correlation 
to key events in the game such as a foul, a goal, 
or player entanglements. A Gauss Mixture 
Model (GMM) is used to detect keywords from 
low-level audio features including Mel 
frequency Cepstral coefficients (MFCC), energy, 
and pitch [7].  

Human detection and tracking: Human detection 
and tracking is a significant and challenging task in 
many application scenarios. Different from rigid 
objects, humans are articulated and jointed by several 
human-parts, which may lead to pose variance,  
self-occlusion, etc. In human detection, the first 
problem is to select the proper features to 
characterize human regions/parts: Haar wavelets [3] 
and orientation histograms are mostly used to do this. 
The second problem with human detection is to use a 
discriminator to determine whether there are humans 
and where they are if they are present. The Boosting 
learning-based detector is preferred [3]. It is an 
aggressive learning algorithm that produces a strong 
classifier by choosing features in a family of simple 
classifiers and combining them linearly. Then a 
cascaded structure is introduced in order to quickly 
reject the background regions. Human tracking is 
essentially finding body regions or parts that 
correspond with successive frames by using data 
association and occlusion inference techniques. 

Face detection and tracking: Face detection and 
face tracking have been an important technology and 
pre-requirement for many person-analysis relevant 
applications, such as face recognition/identification,
emotion analysis, and cast indexing. Face detection 
has been studied for many years. Viola and  
Jones Boosting learning-based detection algorithms 
are the most successful algorithm to date [2]. 
Recently, some improvements are proposed to enable 
the algorithm to handle multi-view faces more 
efficiently for high-quality videos [12]. Generally, 
Boosting-based face detection characterizes image 
regions by very simple Haar wavelet features, and it 
learns cascade detection from a training set to 

separate a face set from a non-face set. In the 
detection phase, the learned detector will slide by a 
window over the image to detect whether the window 
contains a face or not. Face tracking [13] is an 
extension of face detection technology, which can 
detect a person’s continuous faces from a video 
sequence. Spatial and temporal constraints are 
employed to avoid much unnecessary calculation. 
Since it detects faces only in predicted face image 
regions, it doesn’t waste time scanning all the 
positions of every frame.  

Concept ontology indexing: Concept ontology 
indexing represents multimedia data by large-scale 
concept ontology for indexing and fast retrieval. 
There are several concept lexicons for multimedia: 
large-scale ontology for multimedia (LSCOM) [9] is 
the most popular. LSCOM currently contains about 
1000 concepts that are relevant to objects, people, 
locations, scenes, and events. LSCOM has been 
successfully used by the TREC video retrieval 
evaluation (TRECVID) hosted by NIST [10]. 
Concepts are detected from more than 20 low-level 
MPEG-7 compatible audio/visual features, e.g., color 
histogram, Gabor texture, shape context, edge 
histogram, motion, and MFCC audio features, etc. 
Given these low-level features, a supervised classifier 
(such as an SVM) is learnt for each concept from a 
training set to identify whether the concept exists or 
not in each video shot [11]. Employing all of the 
concept detectors, a video shot is therefore 
represented and indexed by the semantic concept 
ontology that makes next-stage search similar to  
text retrieval. 

Common Characteristics in Media Mining
Three attributes of media-mining applications can be 
summarized as follows: 

First, a media-mining system is basically a bottom-up 
framework as shown in Figure 1. The framework is a 
three-layer architecture, i.e., low-level feature 
extraction, mid-level semantic keywords detection, 
and high-level concept detection. In processing,  
low-level visual/audio/textual features are extracted 
from raw media data. Then in the second layer,  
mid-level features or keyword concepts are detected 
from low-level features to bridge the semantic gap 
between low-level features and high-level concepts. 
Finally, high-level modules infer the desired concepts 
in the semantic keyword spaces.  
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Figure 1: General video-mining framework 

Second, media mining is a hybrid technique of 
computer vision, pattern recognition, machine 
learning, and data mining. For example, human 
detection/tracking techniques involve Haar and HoG 
feature extraction from video frames, Boosting 
(cascade learning) training-based candidate detection, 
and associate rule learning from quite large examples 
to identify relationships between articulations. In 
these techniques, Haar and HoG features are 
essentially computer vision methods; Boosting is a 
famous machine-learning algorithm; and associate 
rule learning is a typical data-mining method. 

Third, media-mining applications usually combine 
multiple components. For example, in the automatic 
home video editing application, the application needs 
to recognize people, mine the relationship between 
people, and synthesize a short artistic video clip from 
a long raw video. 

Media mining has mass-market potential and is therefore 
quite a suitable and important proxy not only for 
workload analysis on future architectures, but also  
for developing parallel programming models for 
multimedia applications. Furthermore, due to its similar 
framework for different usage models, we only use one 
technique as an example to study its computational 
requirements. 

Computational Requirement: a Case Study

Figure 2: Flowchart of player detection, tracking and 
classification

In the sports domain, we look at multiple player detection, 
tracking, and classification in broadcast soccer video for 
our example. Its flowchart is shown in Figure 2 [4]. To 
make the algorithm robust and adaptive, we construct the 
background (playfield) color model and three player 
appearance models (Team A, Team B, and Referee) 
through unsupervised learning procedures. In the learning 
phase, the background color model is obtained by 
accumulating color histograms over hundreds of frames in 
the video in HSV color space. Player appearance models 
are learned by player sample collection with a boosted 
player detector, color histogram representation, and 
clustering. In the testing phase, we first perform 
background segmentation, playfield extraction, and  
view-type classification. Only global views are selected 
for player detection. We then apply a boosted cascade of 
Haar features for player detection on each foreground 
pixel within the playfield. Multiple detections will usually 
occur around each player after scanning the image. We 
merge adjacent detected rectangles and get final 
detections with proper scale and position. In the player 
classification procedure, each player sample is 
represented by the learned codebook histogram. We 
calculate the Bhattacharyya distance between the 
histogram and each sub-model. The player sample is 
assigned the sub-model’s label by the nearest neighbor 
rule. With this procedure, players are labeled as Team A, 
Team B, Referee, or Outlier (if the minimum distance is 
larger than a threshold). Player tracking is performed by 
efficient forward and backward nearest neighbor data 
association. We take both binary mask overlap and color 
histogram intersections in player upper-body as 
observations within a certain spatial displacement range 
to find the optimal player regions correspondence, and we 
generate players’ trajectories across frames.  
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Figure 3 is an example of player tracking results, in which 
white ellipses and rectangles indicate two teams’ players 
and a black rectangle is the referee. 

Figure 3: Player tracking results on soccer video 

Player detection is achieved by background elimination 
and a boosted cascade of Haar features. In this paper, we 
only show the detailed detection procedure since this 
procedure is most compute intensive compared to 
tracking and classification. The cascade detector with 
multiple stages has the capability of quickly rejecting the 
regions and focus on the harder-to-classify windows. The 
number of features selected in each stage is different 
depending on the expected performance and sampling 
criterion. Therefore, increasingly complex classifiers are 
combined sequentially. This improves both the detection 
speed and efficiency. 

Input: image frame, background model 
Playfield elimination and view-type classification 
Player detection 
For each scale 

Scan each point to be detected 
For each point 

Evaluate its response with cascaded stages 
Calculate normalized constant 
For each stage 

Evaluate the response 
For each selected Haar feature 

Calculate Haar feature response 
Normalize Haar feature response 
Get weak classifier response 

Accumulate all Haar response 
If verified by the threshold, begin next stage;  
else, label the point as negative, break; 

If pass all stages, label the point as positive 
Post-processing to merge adjacent detection instances 
Output: vector of player regions (rectangles) 

Based on the above description, one can easily infer its 
computation complexity, which is proportional to the size 

of the video frame, the number of weak classifiers, and 
the number of scales. For player tracking between two 
adjacent frames, it is proportional to the number of 
players and player size. For player classification, it is 
linear to the number of players, player size, size of 
codebook, and size of sub-model. For an MPEG-2 video, 
the frame size is 720x576; we use about 1000 weak 
classifiers and three different scales. Thus, one minute of 
MPEG-2 video will need 1.86 tera-operations. Its serial 
processing speed on today’s processors is about 3 frames 
per second, which is 10x slower than real-time. 

MEDIA-MINING PARALLEL 
FRAMEWORK
With the boom in multi-core processors and the 
prevalence of shared memory processing, it is important 
to exploit thread-level parallelism within applications to 
take advantage of next-generation microprocessor 
capability. In this section, we present the parallelization 
methodology, characterize different parallel schemes, and 
provide insights for parallelizing these media-mining 
applications on future multi/many-core systems. Besides 
the parallelization study, we also made intensive 
optimizations, e.g., genetic loop-level optimization, 
SIMD acceleration, and cache-conscious optimizations, to 
provide a fully optimized baseline for further workload 
parallelization and analysis. 

Video-Mining Parallelism 
Most video-mining applications can be partitioned into 
three modules: video decoding, feature extraction, and 
post processing. We use an MPEG-2 video decoder to 
divide the input video stream into a number of 
consecutive decoded frames. Then we use a feature 
extraction module to extract a set of visual features from 
these decoded frames. This process continues until all the 
frames are processed. Finally, all the feature results are 
fed into a post-process module to detect the final visual 
information. The breakdown of execution time indicates 
that the video decoding and image processing modules 
are the most time consuming. The post-processing 
module is extremely fast and is therefore not the focus of 
this paper. 

We use a top-down analysis methodology to analyze the 
coarse-grained parallelism in each module and the whole 
application. In general, people tend to use data-domain 
decomposition rather than functional-domain 
decomposition to take advantage of the inherent 
parallelism in multimedia applications. Though  
fine-grained parallelism within each module is of interest, 
we don’t explore this kind of parallelism as it’s not 
profitable because of serial regions and insufficient 
parallelism in these modules. Therefore, we choose 
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coarse-grained parallelism to explore both functional 
domain decomposition and data domain decomposition 
within each task with the goal of load balancing, and we 
examine the issue of scalability when using a large 
number of processors. 

A task-level parallel scheme uses the producer-consumer 
model, where the video decoder works as a producer, 
generating a sequence of video frames, while the image 
processing modules act as a consumer, operating on 
decoded frames to obtain the corresponding visual feature 
information for each frame. This multi-threading scheme is 
very similar to the task queue model provided by the Intel®
OpenMP extension [14], which provides an efficient way 
to exploit functional-domain decomposition. The video 
decoder serves as the task producer to encapsulate the 
decoded frame as a task and conceptually put it in the task 
queue, and all the other worker threads will wait until the 
task is available. Though this parallel scheme is 
straightforward, it may experience limited scalability 
performance on a large number of processors when the 
ratio between feature extraction modules and video 
decoders is not sufficiently high.  

A static data slicing parallel scheme slices the raw data 
into several video bit-stream chunks. Each thread 
performs a similar routine to that of a sequential 
application: decoding the bit-stream chunk and extracting 
features from the decoded frames. Because the raw video 
stream is split manually, each thread has to find the new 
sequence synchronization position. Therefore, there is an 
explicit synchronization between two adjacent threads to 
guarantee no excess or loss of decoded frames. In 
addition, the static data-slicing scheme may experience a 
load imbalance problem when the work is not evenly 
distributed across threads. 

To take advantage of both task-level and data-level 
parallel schemes, a dynamic hybrid parallelization 
approach is proposed to combine these two schemes. At 
first, we decompose the video stream into several chunks 
to exploit the data-domain decomposition, and then we 
exploit the functional-domain decomposition on each 
particular chunk of data as previously mentioned. In this 
parallel scheme, there are multiple queues to buffer tasks. 
Master threads are responsible for video decoding and for 
enqueueing the feature extraction tasks in different 
queues. Worker threads fetch tasks from their associated 
queue and execute the tasks. Further, in order to reduce 
load imbalance, we use the work stealing strategy. When 
one queue is empty, it will steal tasks from other  
non-empty queues and execute the tasks on the idle 
physical processor. With work stealing enabled, the load 
imbalance disappears. In addition, due to reduced 
contention on the access to each queue, the 
synchronization overhead is reduced significantly.  

Figure 4 illustrates the hybrid task-stealing scheme. The 
whole video is partitioned into four chunks and assigned 
to four thread groups. Within each thread group, a task 
queue is implemented with one master thread and three 
worker threads. The task will not be migrated to other 
queues unless its private task queue is out of tasks. 
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Figure 4: Dynamic hybrid task-stealing scheme

In summary, the dynamic hybrid parallelization scheme 
has several advantages. First, it significantly improves 
performance by manipulating multiple queues of video 
data in parallel, which reduces the competition for shared 
resources. Second, it solves the load imbalance issue by 
enabling dynamic task scheduling and stealing. Finally, 
the hybrid scheme provides enough flexibility by 
specifying the number of decoding and worker threads to 
maximize system resources utilization and deliver good 
scalability. However, from the perspective of 
programming, this dynamic hybrid parallelization 
approach is the most difficult of the three parallel 
schemes to build. 

Parallel Pattern in Video Mining 
Applications
Because of the difficulty of parallelization in these  
media-mining applications, we construct a universal 
parallel video-mining framework to encapsulate the 
parallel scheme and provide an ease-of-use interface to 
the programmer.  

The video-mining parallel framework [15] is built in C++, 
and OpenMP is the default parallel language. It includes 
the parallel implementation, an abstract interface, and a 
set of configuration parameters. There are four primary 
components in this framework: 

An image-processing engine that serves as the 
interface to invoke the user codes in the library and 
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perform feature extraction functionalities for each 
decoded frame. 

A video-decoding engine that acts as an interface  
to enable most video codec standards with  
parallel support. 

A portal video-mining function that serves as an 
interface to link the user codes with the framework. 

Configuration parameters and core image data 
structures.

The parallel video-mining framework has several 
advantages. It provides a unified parallel computing 
environment for video-mining applications. Programs 
written in this framework can be automatically 
parallelized and efficiently executed on a multi-core 
architecture. The run-time library takes care of the details. 
Furthermore, this framework is easily extensible and 
maintainable. The programmer can extend it to meet  
new requirements.  

To summarize, video-mining workloads have abundant 
parallelism. The dynamic hybrid parallelization approach 
that combines both functional-domain decomposition and 
data-domain decomposition can achieve optimal parallel 
performance. In addition, the particular execution pattern 
of video-mining applications can be abstracted into a 
parallel video-processing framework to help programmers 
easily construct a parallelized video-mining application.  

PERFORMANCE ANALYSIS ON
MULTI-CORE SYSTEMS 
In this section we analyze three typical media-mining 
workloads (Player, Face and Shot detection), which are 
parallelized via our video-mining parallel framework. To 
generate best-performing executable codes, the Intel 9.1 
OpenMP compiler tool chain and highly optimized 
OpenCV and IPP library [16] are used. Furthermore, we 
also use the Intel VTune™ Performance Analyzer [17] to 
identify the hotspots in functional profiling and guide the 
optimizations. To characterize the parallel performance, 
the Intel® Thread Profiler is used to quantify the parallel 
performance metrics, i.e., synchronization, locks, load 
imbalance, etc. 

We evaluate the scaling performance of these parallel 
media-mining workloads on a real multi-core machine 
and a large-scale CMP simulator. The multi-core platform 
is a dual-socket, quad-core machine, with two Intel®

Core™2 Quad processors running at 2.33GHz. Each 
socket has four cores, and each core is equipped with a 
32KB L1 data cache and a 32KB L1 instruction cache. 
The two cores on one chip share a 4MB L2 unified  
cache. The maximum Front-Side-Bus (FSB) bandwidth is 
21GB/s. In addition to the existing multi-core system, we 

further study these media-mining applications’ 
performance on a large-scale CMP simulator with  
cycle-accurate simulation to see how they will scale with 
the increasing number of cores. We assume a very high 
main memory bandwidth so that we do not artificially 
limit the scalability of the modules. 

For the workloads studied in this experiment, we choose 
application parameters and datasets so as to represent 
realistic executions. For Player detection, we used a  
30-minute MPEG-2 soccer video as the input. For Face 
and Shot detection, we used a 10-minute MPEG-2 movie 
video as the input.  

Performance Scalability Analysis 
Our video-mining workloads scale very well as the 
number of threads increases, as shown in Figures 5 and 7. 
That is, media-mining applications can efficiently use the 
computational power provided by multi-core processors.  
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Figure 5: Scalability of parallel video-mining 
workloads on an 8-core system 

However, as also shown in Figure 5, our workloads,  
in particular, Shot detection, do not have linear scaling  
on the 8-core system. To fully understand the  
scaling-limiting factors on an 8-core system, we 
characterize the parallel performance from the perspective 
of the high-level parallelization overhead, e.g., 
synchronization penalties, load imbalance, and sequential 
regions, and from the detailed memory behavior,  
e.g., cache miss rates and FSB bandwidth.   
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Figure 6: Execution time breakdown 

In general, our parallelized workloads expose good 
parallel performance metrics. Figure 6 depicts the parallel 
profiling metrics for these three workloads. The higher 
the parallel region, the better speedup can be achieved on 
highly threaded architectures. Shot detection has slightly 
more load imbalance than other workloads. Because of 
frame dependency, it is more challenging to implement 
two-level task queues in Shot detection than in other 
workloads. In Shot detection, we use the static scheduling 
scheme, which leads to a slightly higher load imbalance. 
Nonetheless, the profiling information suggests these 
parallel video-mining workloads expose good parallel 
performance metrics. If we assume the parallel region can 
scale perfectly, the three workloads should achieve the 
theoretical speedups of 7.95, 7.93, and 7.56, respectively, 
on eight cores. They are higher than the results shown in 
Figure 5. Therefore, we believe the scalability of our 
workloads is limited by some other factors that are 
discussed in the next subsection.     

On the simulated 32-core CMP system with a huge 
amount of memory bandwidth, two selected parallel 
video-mining workloads have very good scalability, as 
depicted in Figure 7. First, the size of the serial sections 
in the applications is reasonably small—the serial code 
accounts for much less than 1% of the execution time for 
the one-thread runs. Second, there is little contention on 
the locks: the locking overhead does not increase with the 
thread number due to coarse-grained parallelism. Third, 
the load imbalance is not a major issue; most of our 
video-mining workloads adopt a dynamic hybrid 
parallelization scheme. In short, when we assume a very 
high main memory bandwidth so that we do not 
artificially limit the scalability of the workloads, these 
applications scale very well. 
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Figure 7: Scalability of two video-mining workloads 
on a 32-core CMP simulator 

Memory Behavior Analysis 
Besides the general parallel performance metrics, the 
memory subsystem also plays an important role in 
scalability. As shown earlier in Figure 6, our workloads 
with good parallel performance metrics should achieve 
the theoretical speedup of 7.6–7.9x on 8 cores, if the 
parallel region can scale perfectly. We now investigate 
why these workloads cannot achieve this perfect scaling 
performance from the perspective of the memory 
subsystem. We use the Intel VTune Performance 
Analyzer and a command-line tool for hardware-based 
performance counter sampling to further analyze  
the memory behavior of the applications on the real 
system, e.g., system memory bandwidth and L1/L2 cache 
miss rates.  

Our first observation is that average bus bandwidth is not 
limiting the scalability of these workloads on the 8-core 
system. Figure 8 shows how the average FSB bandwidth 
utilization varies with the number of threads. The 
bandwidth usages of all workloads are far below the 
21GB/s capacity supported by the system. This seems to 
indicate bus bandwidth does not limit the scalability of 
our workloads on the 8-core system. 
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Figure 8: Average FSB bandwidth utilization vs. 
number of cores 

Although workloads are not bounded by the average 
bandwidth usage, the scalability is limited by the 
instantaneous bandwidth usage. We perform interval 
sampling of the memory subsystem behavior over time. 
Figure 9 shows a representative phase of the bandwidth 
usage over time for the single-threaded Shot detection 
workload on a single core. It goes without saying that 
there are some bursty memory access behaviors—the 
instantaneous bandwidth usage is much higher than the 
average bandwidth usage. In particular, one of the 
modules demands about 7x more bandwidth over the 
average bandwidth. When the bandwidth demand of the 
module is higher than the system’s capability, its speedup 
from 8 cores is less than 3x, and it becomes the bottleneck 
of scalability. In short, the workload is not able to scale 
perfectly when the instantaneous bandwidth usage is 
higher than the system’s capability. This is what limits  
the scalability. 
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Figure 9: Bandwidth usage over time for
single-threaded Shot detection workload 

Additionally, there is a significant increase in bandwidth 
usage from four threads to eight threads for Shot 
detection. Figure 10 shows that L1 cache miss rates vary 
little with the number of threads, while L2 cache 
performance deteriorates when scaling the thread count. 
In particular, the external memory access rate for Shot 
detection increases from 0.05 bytes per instruction for a 
single thread to 0.30 bytes per instruction for eight 
threads. Because we exploit coarse-grained parallelism 
for these three workloads, each thread operates on a large 
private working set, about 32MB per thread for Player 
detection, 8MB per thread for Face detection, and 4MB 
per thread for Shot detection. As the total working set size 
increases with the number of threads, there are more L2 
cache misses for more threads. For Shot detection, while 
the working set of four threads fits well into 16MB L2 
caches, the working set of eight threads cannot fit. This 
explains the significant increase in cache misses from 
four threads to eight threads. Together with the 
instantaneously high bandwidth usage, the speedup of 
Shot detection from four threads to eight threads is much 
slower than the speedup from two threads to four threads.   
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Figure 10: L1/L2 cache miss rates 

To summarize, most of the video-mining workloads 
demonstrate fairly good parallel performance on both 
existing multi-core systems and future large-scale CMP 
platforms. As most of them can be partitioned into a large 
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number of parallel tasks, they have little lock overhead 
and serial region. Since the workloads are parallelized in 
coarse-grain fashion, which exposes a huge working set 
with the increase in thread numbers, large cache size and 
sufficient memory bandwidth will be necessary to enable 
large-scale, video-mining computing. To reduce the 
working set sizes and the external bandwidth usage in  
the future, we may need to exploit fine-grain parallelism. 
This could be a tradeoff between memory subsystem 
performance and parallelism overheads. 

CONCLUSION
Media mining can help us retrieve, organize, and manage 
the exponentially growing media data easily. We explored 
several usage models in media mining and showed that 
most applications require tera-scale computing. To 
efficiently use the processing power provided by  
multi-core processors, we studied common parallelization 
schemes and proposed a general parallel framework for 
these media-mining applications. Furthermore, we 
conducted a performance analysis of several 
representative media-mining workloads on an 8-core 
system and a 32-core CMP simulator. Our analysis shows 
they have no obvious limits on parallelism. With a proper 
parallelization scheme, future large-scale CMP systems 
can deliver real-time performance for these media 
applications. Taking advantage of next-generation  
tera-scale computing platforms, new usage models in 
media mining will be enabled. 
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ABSTRACT
Physical simulation applications model and simulate 
complex natural phenomena. The computational 
complexity of real-time physical simulations far exceeds 
the capabilities of modern unicore microprocessors, 
which are limited to only tens of billions floating-point 
operations per second (FLOPS). However, the advent of 
multi-core architectures promises to soon make 
processors with trillions of FLOPS available. Such 
processors are also known as tera-scale processors. 
Physical simulations can exploit this huge increase in 
computational capability to increase realism, enable 
interactivity, and enrich a user’s visual experience.

In this work, we study physical simulation applications in 
two broad categories: production physics and game 
physics. After parallelization, the benchmark applications 
achieve parallel scalabilities of 30 –60  on a simulated 
chip-multiprocessor with 64 cores. 

We examine the memory requirements of physical 
simulation applications and find that they require cache 
sizes in excess of 128MB and main memory bandwidths 
in excess of hundreds of GB/s for real-time performance. 
A radical re-design of the memory hierarchy may be 
necessary for the multi-core tera-scale era to provide good 
scaling for this type of application. 

INTRODUCTION
The booming computer games and visual effects 
industries continue to drive the graphics community’s 
seemingly insatiable desire for increased realism, 
believability, and speed. In the past decade, physical 
simulation has become a key to achieving the realism 
expected by audiences of games and movies. Physical 
simulation models the laws of physics to simulate life-like 
movement and interaction among objects, such as rigid 
and deformable bodies, human faces, cloth, and water.

Physical simulation can be used in a variety of settings 
such as weather prediction, movie special effects, and 
computer games. Complex natural phenomena such as 
ocean waves crashing on a shore, a flag waving in the 
wind, or bricks falling from a collapsing tower are 
modeled by means of numerical simulation of physical 
laws. Modeling different natural phenomena requires a 
diverse set of techniques, algorithms, and data structures, 
making physical simulation both complex and general. 
Computation and memory requirements are extremely 
demanding. This makes the workloads a challenging 
target for current as well as future architectures.

In this paper, we examine applications involving physical 
simulation for production environments and for gaming. 
For production physical simulation, we study the 
PhysBAM package from Stanford University [5, 11], 
which is used by several special-effects and film 
production companies, including Pixar and Industrial 
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Light and Magic. The goal is to recreate the visual 
experience of a human observing a natural phenomenon. 
For gaming physical simulation, we study the open source 
ODE package [13]. This package provides similar 
functionality to the widely used commercial Havok Effect 
package from Havok. The goal of physical simulation in 
gaming is to make real-time interactions between objects 
as accurate as possible. The difference in goals for the 
two physical simulation domains leads to different 
choices for algorithms and data structures. However, 
these two domains do have many similar characteristics.  

One common characteristic of production and gaming 
physical simulation is a need for significant acceleration. 
On a 4-way Intel® Xeon® processor 3.0GHz system, with 
16GB of DDR2-3200 and three levels of cache on each 
processor (16KB L1, 1MB L2, and 8MB L3), the 
production physics workloads take 5 to 188 seconds to 
process a single frame. These workloads have hundreds 
of thousands to a few million entities (tetrahedra/grid 
cells) interacting with each other. In contrast, for game 
physics workloads, only a thousand objects can currently 
interact in real time. Acceleration by an order of 
magnitude or more will allow improved accuracy, 
modeling of new effects, and even interactive or real-time 
production applications. Multi-core processors are now 
common, and we expect the number of cores to increase 
steadily for the foreseeable future, so that multi-core 
processors capable of executing applications tens of times 
faster than today’s processors are on the horizon. Such 
processors would improve the speed and realism of 
production-quality or real-time game physical simulation 
applications. However, for an application to harness the 
computational power of such a multi-core processor, it 
must effectively utilize multiple threads. Parallelization of 
a large code base as used by production or game physics 
applications is not trivial, especially when the target 
parallel scalability is tens of threads.  

Another similarity in requirements for the two categories 
of physical simulation applications is high-bandwidth 
requirements. The size of the data scales with increasing 
resolution or number of objects in the simulation. Input 
sizes are often millions of volume elements or tens of 
thousands of objects. This leads to memory footprints that 
are tens of megabytes (i.e., larger than typical caches). 
These applications therefore require either much larger 
caches or a large main memory bandwidth. 

Our contributions are as follows: 

We have parallelized six state-of-the-art physical 
simulation applications (fluid dynamics [4], human 
face simulation [12], and cloth simulation [2] for 
production physics and convex body collision [1, 3], 
game cloth [7], and game fluids [9] for game 
physics). In parallelizing these workloads, we 

employed various techniques which include 
parallelizing loops/graph operations and using 
alternative algorithms for better scalability. 

We simulated and analyzed the scalability of these 
applications using cycle-accurate simulation of a 
chip-multiprocessor with 64 cores. The workloads 
studied achieved a parallel scaling of 30  to 60  for 
64 cores. 

We perform a detailed analysis of the memory 
requirements of these applications. Our study finds 
that future physical simulation workloads demand 
cache sizes close to 100 megabytes or physical main 
memory bandwidths in the hundreds of GB/s. 

PHYSICS SIMULATION PIPELINE 

Compute forces, torques,
pressures, etc

Time Stepping

Collision &
constraint
processing

State (time=tn)

State (time=tn+1)

External 
control

Figure 1: Overview of physical simulation 

Figure 1 shows a typical time step in a physical 
simulation application. For each time step of a simulation, 
a physical simulation application takes as input the state 
of the simulated scene (e.g., positions, orientations, and 
velocities of all objects), as well as external control 
information (e.g., what the player is doing in a game). 
The application then computes the physical processes that 
potentially lead to an updated state (e.g., force, torque, or 
pressure generation). Depending on the scheme used, this 
information will be used to advance the state forward in 
time (e.g., time integration of the laws of motion), 
yielding a new candidate state. Should phenomena such 
as collisions or other constraints be triggered, the state 
may be updated in response to this collision or constraint, 
and the force computation/time stepping phases will be 
repeated, possibly with a smaller time step. 
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While game and production physics share the same 
iterative process, they exhibit important differences. 
These differences stem from the execution time 
requirements of their domains. Production physics is 
primarily used for special effects in movies and other  
off-line simulations. The execution time limit for these 
environments is typically a few minutes per frame in 
order to simulate the complete effect in a reasonable 
amount of time (e.g., less than a day). Game physics, on 
the other hand, is concerned with real-time simulation 
used in computer games. Thus, the execution time limit  
is at most tens of milliseconds per frame. Both areas  
of physical simulation have the goal of providing 
maximum visual plausibility within their execution  
time requirements. 

We now describe how we model some specific phenomena.

Fluid Simulation 
Production physics: Simulated water volumes are key 
elements in an increasing number of feature films, making 
fluid simulation (a.k.a., Computational Fluid Dynamics, 
or CFD) very common in the special effects industry 
today. Our production-quality fluid simulation application 
models a body of water with a free surface (as opposed to 
water flowing in a pipe or other airtight container). The 
application uses a combination of a three-dimensional 
grid and a set of particles [4]. The simulation tracks the 
velocity and pressure of the water in each grid cell. It 
computes how velocity and pressure change at each time 
step using incompressible Navier-Stokes equations. This 
is very computationally expensive, and it becomes much 
more so as the number of grid cells goes up. 
Unfortunately, unless prohibitively large grid resolutions 
are to be used, the grid cannot accurately represent 
intricate geometrical features of the water surface (such as 
thin sheets and droplets). Therefore, particles are 
sprinkled around the surface and advected along with  
the fluid. The updated positions and velocities of  
these particles are used to enhance the resolution of the 
water surface. 

Game Physics: While CFD is the method of choice for 
high-fidelity simulation of fluids, its high computational 
requirements necessitate off-line rendering. Game physics 
therefore uses much faster, although less accurate, 
techniques. Smoothed Particle Hydrodynamics (SPH) has 
recently emerged as a popular technique for interactive 
simulation of fluids [9]. The SPH method represents a 
fluid as a set of discrete particles and models a resistance 
to density changes: when particles get too close to one 
another, a repulsive force separates them; when they get 
too far from each other, an attractive force brings them 
together. If a pair of particles is far enough apart, no 
forces act between them. SPH discretizes the Navier-
Stokes equations and samples its solution at a finite 

number of such particles in space and time. While in the 
grid-based method the position of these sample points is 
fixed, in the SPH the particles are free to move around. 
This difference fundamentally changes the way the 
Navier-Stokes equations are solved and generally leads to 
much smaller complexity and ease of implementation, 
making SPH more suitable for interactive environments.  

Cloth Simulation 
Production physics: Cloth simulation models a cloth 
surface that can deform under the influence of external 
forces such as gravity or forced stretching, and internal 
forces such as the elastic response to tensile stress, 
shearing, and bending [2]. This application also models 
collisions of the piece of cloth with itself and other 
elements in the environment. The deformable cloth is 
modeled as a set of mass particles connected to form a 
triangle mesh. The mesh is endowed with a network of 
spring elements aligned with all triangle edges and 
altitudes, as well as between adjacent triangles. These 
springs model the cloth’s resistance to various forms of 
deformation. Collision detection and resolution is a key 
part of this application. After the velocities and positions 
of the cloth particles are updated, collisions are detected. 
If the collisions cannot be resolved, the application 
undoes the updates from this iteration and re-executes it 
with a smaller time step. 

Game Physics: Similar to production physics, game 
physics models a cloth object as a set of particles [7]. 
Each particle is subject to external forces, such as gravity, 
wind and drag, as well as various constraints. These 
constraints are used to maintain the overall shape of the 
object (spring constraints), and to prevent interpenetration 
with the environment (collision constraints). The 
particle’s equation of motion resulting from applying the 
external forces is integrated using explicit Verlet 
integration. The above-mentioned constraints create a 
system of equations linking the particles’ positions 
together. This system is solved at each simulation time 
step by relaxation, that is, by enforcing the constraints 
one after another for a fixed number of iterations. This 
method is less accurate but faster than the Conjugate 
Gradient solver [7] used in production physics, which 
enables the game cloth to simulate in real time. In 
addition, self-collisions are typically ignored. 

Face Simulation 
Production physics: Face simulation animates a model of 
a human face to provide an anatomically correct 
visualization of a person speaking or making facial 
expressions [12]. The application we examine assumes 
that inertia has a negligible effect on human faces in 
typical situations, and it therefore models facial motion as 
a sequence of steady states. Each state is defined by facial 
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muscle activation and the position of the cranium and 
jawbone. The face is modeled as a tetrahedral mesh, 
which is driven by the facial musculature and the motion 
of the jawbone. The application takes as input a time 
sequence of muscle activation values and kinematics 
parameters for the jaw motion. The finite element method 
is used to define the forces (elastic deformation resistance 
and active muscle contraction) that act on the face and 
determine its shape.  

Rigid Body Simulation 
Game Physics: Rigid body dynamics [3] simulates 
motion and interaction of non-deformable objects when 
forces and torques are present in the system. Rigid body 
dynamics is the most commonly used physical simulation 
in video games today. Examples of rigid bodies in games 
are vehicles, rag dolls, cranes, barrels, crates, and even 
whole buildings. The traditional approach solves a system 
of ordinary differential equations, which represent 
Newton’s second law of motion, F=ma, where m is the 
mass of an object, a is its acceleration, and F is the 
applied force. The applied force determines the 
acceleration of the object, so velocity and position are 
obtained by integration of the above equation. The main 
computational challenge comes from the fact that rigid 
bodies’ motion is constrained due to their interaction with 
the environment. For example, consider a destructive 
environment in a video game where 1000s of rigid objects 
explode, collapse, and collide, resulting in 100,000s of 
interactive contacts. To realistically simulate such a scene 
requires determination of collisions, calculation of 
collision contact points, and physically correct 
computation of the contact forces that result from these 
contacts. To accelerate collision detection relies on spatial 
partitioning data structures, such as grids or bounding 
volume hierarchies. To determine contact forces that 
result from collision contact, we model the contact as a 
linear complementary problem [1].  

Rigid body simulation in games today assumes that rigid 
bodies cannot break. In general, this assumption is not 
true in production physics. Today’s films use animation 
of elasticity and fracture. However, these techniques are 
too slow for interactive use.  

PARALLELIZATION METHODOLOGY 
The applications we study are all computationally 
demanding—on a 4-way Intel Xeon processor 3.0GHz 
system, with 16GB of DDR2-3200 and three levels of 
cache on each processor (16KB L1, 1MB L2, and 8MB 
L3), they take on average 188, 14, and 5 seconds  
to process a single frame for production fluid, face,  
and cloth simulations, respectively. Similarly,  
high-complexity scenes in game rigid body dynamics, 
fluid and cloth take on average 1, 0.4, and 0.1 seconds to 

process a single frame. While game physics performance 
may seem much better than production physics, one needs 
to perform at least 30 frames per second for real-time 
interactive experiences. Since they will all benefit from a 
large performance boost, we parallelize the applications, 
targeting a multi-core processor with tens of cores. 

We took the conventional approach to parallelizing large 
code bases. We first profiled each application to 
determine the most expensive modules in a serial 
execution. After that, we prioritize the modules of  
each application and parallelize them in decreasing order 
of importance.  

The applications were parallelized using the fork-join 
model in which the program consists of alternating serial 
and parallel sections. This model is attractive because it 
allows one to start with a serial program and selectively 
parallelize the most profitable portions of the program 
until satisfactory performance is achieved. We use a 
standard task queue technique [8], similar to Intel Thread 
Building Blocks (TBB) [6] and OpenMP [10], to 
parallelize all modules.  

In the rest of this section, we discuss how the various 
modules were parallelized to scale to a large number  
of cores. 

Parallelizing Loops 
The majority of modules were parallelized via loop 
parallelization. These modules typically involve 
operations on arrays of elements, such as grid cells of a 
3D grid (production fluid), an array of particles (game 
fluid), vertices of a triangle mesh (production cloth), and 
contact constraints (game rigid bodies). 

In most of the cases, the iterations of the loops are 
independent of each other. For instance, computing the 
aggregate force on a vertex of the triangular mesh 
(production cloth) requires simply adding all the forces on 
that vertex. These loops are parallelized by partitioning 
the iterations of the loop among the cores. In a few 
instances, multiple iterations update the same piece of 
data. However, even in these instances, the final result is 
independent of the ordering of the iterations. These loops 
are also parallelized by splitting iterations among cores 
while using fine-grained locking to guard updates on the 
shared data. 

Parallelizing Graph Operations 
A few modules have more complex forms of parallelism 
and typically incur more parallelization overheads.  
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Figure 2: Scene configuration 
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Figure 5: Relative speedups for the constraint solver 
with and without reordering of the constraints 

An example of this is the broad-phase in collision 
detection. Collision detection requires checking every pair 
of objects for collisions. Since only a small fraction of the 
objects actually collide at any given instant, collision 
detection is performed in two phases: a broad-phase that 

performs quick checks to rule out a large fraction of the 
object pairs, and a narrow-phase that performs the exact 
(and more computationally expensive) check on the 
remaining pairs. A standard technique to accelerate  
the broad-phase is to build a bounding volume hierarchy 
(a tree) containing the objects. A leaf node of this tree 
consists of a single object. The computation starts at the 
root and traverses down. At each step, it checks pairs of 
nodes of the tree. If the bounding volumes at the two 
nodes do not overlap, then none of the objects in the first 
subtree can possibly collide with any object in the second 
subtree. Otherwise, more checks have to be performed 
using the children of the two subtrees. Each of these pairs 
of subtrees represents independent computation and  
can be performed in parallel. Consequently, in the  
broad-phase, each unit of parallel work can spawn off 
more parallel work. 

Using Alternative Algorithms 
Sometimes, the best serial algorithm has poor parallel 
scalability. In such cases, we often use an alternative 
algorithm whose serial version is not as efficient as the 
original, but whose parallel version scales much better. 
Sometimes, we use an additional phase to reorder data 
and expose more parallelism. In this section, we describe 
two specific examples in detail. 

The first example is from rigid-body dynamics from game 
physics. During the execution of the physical simulation 
pipeline, the collision detection phase computes the pairs 
of colliding bodies, which are used as inputs to the 
constraint solving phase. The physics solver operates on 
these pairs and computes the separating contact forces, 
which keep the bodies from inter-penetrating each other. 
In Figure 2, we show one such case involving four bodies 
(three boxes and one ground plane), where the 
corresponding pairs of colliding bodies are listed in 
Figure 3. The resulting constraints C1, C2, C3, and C4 
need to be resolved to update the body positions. 

To parallelize this phase, we would ideally like to 
distribute the constraints amongst the available threads 
and resolve them in parallel. However, there is often an 
inherent dependency between consecutive constraints. In 
our example, constraints C1 and C2 both involve body b2 
and thus cannot be resolved in parallel. These 
dependencies can force a significant serialization of the 
computation. However, we can reorder the constraints 
into different batches such that there are no conflicting 
constraints in each batch. That is, each batch will contain 
at most one constraint that refers to any given body.  

Reordering algorithms traverse the constraints, 
maintaining an ordered list of partially filled batches. 
Each constraint is assigned to the earliest batch with no 
conflicting constraints. As a result, all constraints within a 
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batch can be processed in parallel, while the different 
batches have to be processed sequentially. 

For example, we reorder the constraints in Figure 3 and 
obtain two batches, (C1, C3) and (C4, C2), as shown in 
Figure 4. Note that C1 and C3 from the first batch do not 
refer to any body more than once and can be resolved in 
parallel. A similar observation holds for C4 and C2. As a 
result C1 and C3 in the first batch are solved in parallel 
and the results are fed as part of the input to the second 
batch. The bottom curve in Figure 5 shows the speedup of 
the physics solver using the original order of the 
constraints relative to the serial version for up to 64 cores. 
The top curve shows the speedup using reordered 
constraints. We see that without reordering, the speedup 
is limited to 4  on 64 cores. However, reordering  
the constraints enables a speedup of 35 , including the 
overhead for reordering. This example highlights the case 
where some extra computation needs to be performed to 
expose the parallelism. 

The second example of the need for alternative algorithms 
is from fluid simulation for production physics. Our fluid 
simulation application implicitly tracks the interface 
(boundary) between the air and the fluid. For each grid 
cell in the modeled space, it computes the distance to the 
interface. The most common technique to do this is  
the Fast Marching Method (FMM), which iteratively 
advances the wave front. For each iteration, it finds and 
updates the closest grid cell to the front that is not already 
on or behind the front (Figure 6). This is inherently serial. 
However, these distance values are required only for a 
narrow band around the interface. Thus, we parallelize 
FMM by dividing the grid into overlapping blocks, 
padded by the width of the narrow band, and working on 
each block independently (Figure 7). This works well for 
a small number of threads. However, the total overlap 
region becomes large quickly as the number of blocks 
increases. As a result, the application scales relatively 
poorly, achieving a scaling of around 21  on 64 threads.  

We instead use an alternative scheme known as the Fast 
Sweeping Method (FSM) [5] (Figure 8). FSM traverses 
the grid cells in all eight possible combinations of the X, 
Y, and Z directions. Each “sweep” updates the distance of 
a cell from the distances computed for its neighbors in the 
previous sweeps. We obtain the correct distance for each 
cell after completing all eight sweeps. We parallelize 
FSM in a similar manner to FMM (i.e., with overlapping 
blocks). The serial version of FSM is around 30% slower 
than the serial version of FMM. However, FSM has more 
parallelism since the sweeps are independent. Thus, we 
achieve scaling of around 55  on 64 threads. In Figure 9, 
we compare the speedup of FSM relative to FMM. Up to 
16 cores, FMM provides higher performance, but beyond 

16 cores, FSM is better, giving about 2  the performance 
of FMM on 64 cores. 

Advancing the front

Initial Fluid-air 
interface

Figure 6: Fast Marching Method (FMM) advances the 
front to incrementally compute the signed distance of 

nodes from the interface 
Regions shared by two or more cells where extra 

computation is done 

Figure 7: Parallelizing the algorithm by dividing the 
region into overlapping cells 

Sweep along the grid nodes and 
update the distance

Figure 8: Fast Sweeping Method (FSM) traverses the 
grid nodes and incrementally updates the minimum 

distance to the interface 

PARALLEL SCALABILITY RESULTS
Figure 10 shows the parallel scalability for our 
applications for up to 64 cores. Since no large-scale CMP 
is available for us to experiment with, we use  
cycle-accurate simulation to measure performance and 
characterize the parallelized workloads. Details of our 
simulator can be found in [5]. We assume a very high 
main memory bandwidth so that we do not artificially 
limit scalability. The speedups are obtained against the 
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one thread version of the parallelized code. On 64 cores, 
we achieve 30  to 56  speedup for production physics 
and 36  to 61  speedup for game physics.  
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Figure 9: Speedup of FSM relative to FMM 
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Figure 10: Parallel scalability of production physics 
and game physics 

Next, we discuss important issues regarding scalability. 
Amdahl’s law determines the theoretical maximum 
scalability. Load balancing and synchronization overheads 
impact how close we can be to the theoretical limit. 

Serial Sections: Amdahl’s law dictates that the parallel 
scalability is limited by the size of the serial sections. In 
most of the production and game physics modules, the 
serial section accounts for much less than 1% of 
execution time for one core. As a result, it does not 
significantly impact the parallel scalability in our study of 
up to 64 cores. However, as the number of cores 
increases, more aggressive parallelization will be needed 
to keep serial code from limiting parallel scalability. 

Load Imbalance: The load imbalance is a function of the 
variability of task size as well as the number of tasks. The 
lower the variability, the fewer tasks are needed to obtain 
good load balance. Unfortunately, some modules exhibit 
high variability, which requires many tasks for good load 
balance, resulting in high parallelization overhead. 

Therefore, we should make a tradeoff between good load 
balance and low parallelization overhead. Under certain 
instances (e.g., Figure 7), we are forced to minimize the 
number of tasks to keep the amount of replication and 
redundant computation at an acceptable level. However, 
this comes at a cost of significant load imbalance that may 
limit parallel scaling. 

Task Queuing: We implement a task queue to distribute 
parallel tasks across the cores. For some modules, the task 
queue overhead becomes a bottleneck for the scalability. 
In our implementation of task queues, all tasks are 
enqueued before we enter the parallel section. Therefore, 
if the number of tasks is large and/or the parallel section 
is small, the enqueue overhead becomes significant. Note 
that an alternative implementation of task queues might 
solve the problem, one of which is discussed in [8]. 

Locking: Grabbing and releasing locks incurs 
synchronization overhead. However, we observe that the 
locking overhead does not increase with the number of 
threads. Since there is little contention on the locks, 
locking does not significantly limit scalability. 
Nevertheless, accessing an uncontended lock still incurs 
parallelization overhead as it is extra work that is not 
required in a serial code. 

In addition to the reasons listed above, parallel scaling is 
also affected by the memory behavior, which is covered 
in detail in the next section. 

IMPLICATIONS FOR THE MEMORY 
SUBSYSTEM
Memory bandwidth requirements grow proportionally to 
the number of cores on a multi-core chip. Furthermore, as 
applications and workloads evolve, memory bandwidth 
requirements are expected to grow. Current server 
memory bandwidth projections are mostly based on 
traditional benchmarks such as TPC-C, SPECjAppServer 
(SJAS), and SPECjbb (SJBB). Unfortunately, these 
benchmarks do not accurately reflect future important 
workloads such as our physical simulation applications. 

Figure 11 shows the projected external memory 
bandwidth requirements for five different sizes of  
last-level cache (the other caches are assumed to be small 
and inclusive). The projection is based on running the 
workloads at 64 giga-instructions-per-second (GIPS). We 
analyze the bandwidth requirements for all important 
modules and compare them to TPC-C, SJAS, and SJBB. 
For each cache size, the modules are sorted according to 
their bandwidth requirements. The bandwidth 
requirements for the traditional benchmarks are 
highlighted for comparison.  
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Figure 11: Projection of external memory bandwidth requirements (GB/s) for a given last-level on-die cache size 

The results show the following behaviors: 

(1) If we have less than 128MB of last-level cache, 
modules in physical simulation have a wide range of 
bandwidth requirements, ranging from a few 
gigabytes per second to over 200GB/s. The 
bandwidth usage of traditional benchmarks, on the 
other hand, is much lower than that (maximum of 
40GB/s, even if we have only 8MB of cache). 

(2) To put the results into context, we compare the 
requirements to projected available bandwidth in 
2010. Memory bandwidth typically grows at 30%  
per year, so we expect the available bandwidth to be 
about 48GB/s in 2010. Workloads with bandwidth 
requirements greater than this will suffer 
performance-wise. Some of our modules have 
bandwidth requirements that greatly exceed 48GB/s 
unless the last-level cache is at least 64MB. 

(3) The average bandwidth usage for each of the 
applications is significantly lower than the peak 
bandwidth usage. This is because each application is 
made up of modules with different bandwidth 

requirements. The scalability of the module with  
the highest bandwidth requirement often limits the 
scalability of the entire application.  

(4) Our physical simulation modules benefit significantly 
more than traditional benchmarks do from a large 
last-level cache. When an application’s entire 
working set fits into cache, the external memory 
bandwidth usage becomes minimal. For our 
applications, this happens when the cache is 128MB. 

(5) One of our most memory-intensive modules is the 
incomplete Cholesky Preconditioned Conjugate 
Gradient (PCG) method from production fluid 
simulation. PCG is used to solve a system of 
equations arising from the discretization of the 
Poisson Equation.1 It consists of a number of 

1 PCG is one of the most popular approaches for solving 
large symmetric positive-definite systems of equations 
because it is more robust than direct solvers and 
converges fast. As such, PCG is of great importance 
beyond the study of this application. 
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operations performed sequentially on a set of two 
matrices and a number of vectors. The solver iterates 
tens of times until the solution converges. During each 
iteration, both matrices (which occupy about 40MB 
each) are streamed over. Thus, we see a huge 
bandwidth requirement when the last-level cache 
cannot hold the matrices. When the last-level cache is 
big enough to hold both matrices (and all the vectors), 
the bandwidth requirement is greatly reduced. 

CONCLUSION
We consider two broad categories of physical simulation 
applications: production physics and game physics. 
Production physics is used by movie studios for creating 
special effects that may take many minutes to process a 
single frame. In contrast, game physics is used by the 
gaming industry and has a more stringent real-time 
requirement of about 30-60 frames per second. The 
difference in execution time requirements affects the 
choice and design of algorithms for the two categories of 
physical simulation. 

We have parallelized applications in both categories and 
achieve parallel scalability of 30-60  on a cycle-accurate 
simulator of a multi-core chip with 64 cores. Many 
modules of these applications require extensive effort to 
achieve good performance scaling. In some cases, the best 
serial algorithms have poor parallel scalability. For these, 
we use alternative algorithms which are slower on one 
core, but have more parallelism. In other cases, we 
modify the algorithm to expose more parallelism. The 
overhead of exposing the parallelism is often small 
compared to the benefits of improved scaling. 

While our applications scale well, some modules are far 
from the theoretical maximum scaling. This is primarily 
due to overheads in the task queues and to imperfect  
load balancing. 

Some modules also have significant overheads from 
locking, but these overheads do not grow with the number 
of cores (i.e., the locks have low contention), and 
therefore do not impact scalability. However, the cost of 
locking still has a significant impact on the overall 
performance of the parallelized application. 

We find that future physics workloads will require large 
last-level caches (i.e., 128MB) or main memory 
bandwidths in excess of 100GB/s. This is due to the 
applications’ use of streaming access patterns combined 
with large data sets (e.g., tens of thousands of objects for 
game physics and hundreds of thousands to a few million 
objects for production physics).  

We also find that physical simulation applications have 
very different memory characteristics than traditional 
benchmarks such as TPC-C, SPECjAppServer, and 

SPECjbb. These traditional benchmarks do not get a big 
boost from a large last-level cache since their working 
sets are extremely large. However, physical simulation 
applications benefit greatly from a 128MB cache since it 
can fit the whole working set of all application modules. 
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