
Library Architecture
Challenges for

Cell-Based Design

Full Hold-Scan Systems
in Microprocessors:

Cost/Benefit Analysis

Managed Runtime Technologies
Intel® Pentium® 4 processors built on the 90-nanometer process retain the multitasking capabilities
of Hyper-Threading (HT) Technology, and add new features including enhanced Intel NetBurst®

microarchitecture, a larger, 1 MB Level 2 (L2) cache and 13 new instructions.

The Microarchitecture
of the Intel® Pentium® 4

Processor on 90nm
Technology

Support for the
Intel® Pentium® 4 Processor

with Hyper-Threading
Technology in Intel® 8.0

Compilers

Performance Analysis
and Validation of the

Intel® Pentium® 4 Processor
on 90nm Technology

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

Inside you’ll find the following papers:

Intel®

Technology
Journal

Intel® Pentium® 4 Processor on 90nm Technology

Volume 08 Issue 01 Published, February 18, 2004 ISSN 1535-864X

LVS Technology for the
Intel® Pentium® 4 Processor

on 90nm Technology

http://developer.intel.com/technology/itj/index.htm

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

Intel® Pentium® 4 Processor on 90nm Technology

Articles

Preface iii

Foreword v

The Microarchitecture of the Intel® Pentium® 4 Processor 1
on 90nm Technology

Support for the Intel® Pentium® 4 Processor with Hyper-Threading 19
Technology in Intel® 8.0 Compilers

Performance Analysis and Validation of the Intel® Pentium® 4 Processor 33
on 90nm Technology

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 43

Library Architecture Challenges for Cell-Based Design 55

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 63

Volume 08 Issue 01 Published, February 18, 2004 ISSN 1535-864X

Intel® Technology Journal

Intel® Pentium® 4 Processor on 90nm Technology

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

Intel® Pentium® 4 Processor on 90nm Technology ii

Intel Technology Journal, Volume 8, Issue 1, 2004

Preface

By Lin Chao, Publisher

At Intel Corporation, we use “roadmaps” to help set the direction for each new microprocessor. The
microprocessor’s roadmap includes features, performance, power, frequency, number of transistors
and market segments. Included in this roadmap is a mapping to the semiconductor process technology
on which the microprocessor will be built. It requires a delicate balance to match each new
processor’s specifications and features to underlying circuit devices, which physically must be
manufactured using a semiconductor process. The semiconductor process technology is what
determines the microprocessor’s features and capabilities.

The Intel Pentium® 4 processor on 90-nanometer (nm) technology is the first Intel processor to be
manufactured on 90nm semiconductor process technology. This new process offers smaller
dimensions and more transistors on the same area, allowing us to double the number of transistors
while reducing the chip size by over 15 percent. The smaller the chip size, the lower the
manufacturing costs per chip. Typically, the higher the number of transistors, the higher the
performance and capabilities offered. So 90nm is a winning solution.

Among the many new features of the 90nm process is “strained silicon.” Strained silicon has silicon
atoms spaced so the lattice of the silicon lines up with one another. This stretches and “strains” the
silicon, which means the resistance to the flow of electrons is reduced. Electrons can flow up to 70
percent faster in this strained lattice. The strained silicon remains strained, and transistors made from
it get a 35 percent performance benefit over unstrained transistors of the same size.

The six papers in this issue of Intel Technology Journal (Vol. 8, Issue 1, 2004) explore Intel
engineers’ talented work on our Pentium 4 processor on 90nm technology and the innovations used to
design, manufacture and test it. The papers discuss its microarchitecture including the thirteen new
instructions referred to as SSE3 and the 31-stage pipeline; a compiler supporting the new features for
writing high-performance software; use of Low-Voltage Swing circuit logic; use of standard library
cells; a new testing system named Full Hold-Scan; and insights into the complexities of modeling for
validation purposes. All the papers reflect the creative and innovative work by the team of engineers
who made the newest Intel Pentium 4 processor a reality.

 Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Intel® Pentium® 4 Processor on 90nm Technology iii

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

Intel® Pentium® 4 Processor on 90nm Technology iv

Intel Technology Journal, Volume 8, Issue 1, 2004

Foreword

By William M. Siu
Vice President
General Manager, Desktop Platforms Group
Intel Corporation

The role of a today’s PC is expanding. The boundary between PCs and Consumer Electronics devices
is blurring. Whether it is decoding and displaying high-definition content to a plasma TV or sharing
your personal content wirelessly to other rooms in the home, PCs require horsepower and
multitasking capabilities. A single PC in the future will likely be required to manage vast media
libraries, time shift live video, and share multiple video streams to other devices around the home and
it may need to do this all at once. Corporations are looking for PCs that enhance employee
productivity by supporting collaborative tools such as Microsoft Office 2003, videoconferencing or
instant messenger. They are looking for PCs that offer high responsiveness to applications while
running security applications or database queries in the background.

These usage models are becoming relevant even to mainstream users. Intel® Pentium® 4 processors
built on the 90-nanometer (nm) process provide improved responsiveness for today’s corporate and
home applications, and offer headroom for the next wave of technologies. Intel Pentium 4 processors
with Hyper-Threading Technology,1 together with Intel’s next-generation chipset, which delivers
high-definition audio, integrated wireless capabilities, and PCI Express among other advances,
provide the market place with the most compelling platform to meet user needs.

Intel Pentium 4 processor on 90nm technology contains several microarchitecture enhancements such
as a larger 1 MB Level 2 (L2) cache, larger 16 KB Level 1 (L1) cache and 13 new instructions. The
processor’s hardware prefetcher and branch predictor have also been improved to keep the execution
units busy and avoid processor stalls. A new integer multiplication unit and fast shift/rotate features
improve latency and help encryption and decryption. The processor also has eight write-combining
buffers compared to six in the previous generation. Four entries were added to the floating-point
schedulers to enhance floating-point and media application performance, especially in HT Technology
configurations. These architectural enhancements in the processor are expected to fuel office and
digital home usage models. For example, a home user can play an immersive game while encoding
audio or video, compressing images or compositing special effects. An IT department can run
background applications such as continuous virus scanning, encryption or compression
simultaneously, while minimizing disruption for other business users in the same computing
environment.

® Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

1 Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT
Technology and an HT Technology-enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. For more information including details on which processors support HT
Technology, see http://www.intel.com/products/ht/hyperthreading_more.htm.

Intel® Pentium® 4 Processor on 90nm Technology v

http://www.intel.com/pressroom/kits/bios/wsiu.htm
http://www.intel.com/products/ht/hyperthreading_more.htm

Intel Technology Journal, Volume 8, Issue 1, 2004

Intel® Pentium® 4 Processor on 90nm Technology vi

Apart from the architectural changes in the processor, Intel Pentium 4 processor on 90nm technology
has the distinction of being the world’s first high-volume processor on the new technology. Intel’s
90nm process technology is the most advanced semiconductor manufacturing process in the industry,
built exclusively on 300mm wafers. This new process combines high performance, low-power
transistors, strained silicon with gate length scaling down to 50nm, 7 layers of high-speed copper
interconnects, and a new low-k Carbon Doped Oxide dielectric material. This is the first time all of
these technologies have been integrated into a single manufacturing process. The 90nm process
technology reduces die size by more than 15% compared to the previous 130nm process, while more
than doubling the number of transistors. Given the manufacturing efficiency of the new 90nm process,
Pentium 4 processor on 90nm technology is expected to be the fastest ramp in Intel’s history.

We faced new challenges for the verification and validation of the Pentium 4 processor on 90nm
technology. The processor embodied a new microarchitecture, new features, new circuit designs, and
it’s done on the leading 90-nanometer technology. It’s the most complex design we’ve had since
Willamette, the first Intel Pentium 4 processor. Intel’s validation and design teams developed a new
methodology called Design for Validation (DFV). DFV features allow debuggers to reproduce
failures deterministically on a system and to dump key state data from the CPU. DFV features allow
us to reduce debug time significantly. Engineers from the validation and design teams analyzed the
I/O buffer behavior in detail, both modeling and simulating the GTL Reference Voltage data and
improved them in the final release of the product.

Will Intel Pentium 4 processor with HT Technology on 90nm process succeed in the market place?
Certainly! Traditional computing requirements have not gone away. A usage model evolution is
taking place that requires new platforms with rich features for both consumers and corporate computer
users. Intel Pentium 4 processor on 90nm process, with its multi-tasking capability and headroom for
the next wave of technologies, and Intel’s next-generation chipset, with its rich feature set, provide the
most compelling platform for users. In addition, the processor’s die size benefits from 90nm
technology process and 300mm size wafers, thereby increasing our flexibility to more readily meet
demand in market place.

The Microarchitecture of the Intel®
Pentium® 4 Processor on 90nm Technology

Darrell Boggs, Desktop Platforms Group, Intel Corporation
Aravindh Baktha, Desktop Platforms Group, Intel Corporation
Jason Hawkins, Desktop Platforms Group, Intel Corporation

Deborah T. Marr, Desktop Platforms Group, Intel Corporation
J. Alan Miller, Desktop Platforms Group, Intel Corporation

Patrice Roussel, Desktop Platforms Group, Intel Corporation
Ronak Singhal, Desktop Platforms Group, Intel Corporation

Bret Toll, Desktop Platforms Group, Intel Corporation
K.S. Venkatraman, Desktop Platforms Group, Intel Corporation

Index words: Pentium® 4 processor, Hyper-Threading Technology, microarchitecture

ABSTRACT
This paper describes the first Intel® Pentium® 4
processor manufactured on the 90nm process. We
briefly review the NetBurst microarchitecture and
discuss how this new implementation retains its key
characteristics, such as the execution trace cache and a
2x frequency execution core designed for high
throughput.

This Pentium 4 processor improves upon the
performance of prior implementations of the NetBurst
microarchitecture through larger caches, larger internal
buffers, improved algorithms, and new features. This
processor also implements Hyper-Threading
Technology, which is the ability to simultaneously run
multiple threads, allowing one physical processor to
appear as two independent logical processors. This
technology is another means of providing higher
performance to the end user. We discuss how this
processor not only maintains support for this key

technology but also increases the benefit seen due to
Hyper-Threading Technology.

We also describe 13 new SSE3 instructions that have
been added to the IA-32 instruction set and are
implemented for the first time on this processor. These
instructions can be used in multimedia algorithms, such
as motion estimation, and for complex arithmetic.
Additionally, two new instructions are added for
improving thread synchronization. To conclude,
performance data are presented that show the benefit of
this Pentium 4 processor over prior implementations on
key applications and benchmarks.

INTRODUCTION
The first Intel Pentium 4 processor manufactured on the
90nm manufacturing process contains 125 million
transistors with a die size of 112mm2. It builds upon the
NetBurst microarchitecture that forms the foundation of
prior Pentium 4 processors. Like its predecessors, this
processor is designed to provide the end user with new
levels of performance, enabling compute-intensive tasks
to be undertaken by conventional desktop processors.
One means of achieving this performance is by
designing the processor to run at a high frequency. The
frequency of a processor is a key component to
determining overall performance, as the frequency
determines the rate at which the processor can process
data. We have extended the original Pentium 4
processor pipeline to enable this processor to reach

® Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.
 NetBurst is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 1

Intel Technology Journal, Volume 8, Issue 1, 2004

higher frequencies than is possible with the original
pipeline. Additionally, as the frequency of the processor
continues to increase, the amount of time spent waiting
for data to be retrieved if they are not located in the
processor’s caches is becoming a larger and larger
percentage of overall execution time. This effect reduces
the performance impact of continually increasing the

processor frequency. To alleviate this problem, several
features are implemented to increase the number of
times that data will be present in the caches. With these
and other features, including a set of new instructions,
the Pentium 4 processor is able to achieve new heights
in performance.

Allocator / Register RenamerAllocator / Register Renamer

Memory Memory uop uop Queue Queue Integer/Floating Point Integer/Floating Point uop uop QueueQueue

FP Register / Bypass FP Register / Bypass

FPFP
MoveMove

Simple FP Simple FP Memory Scheduler Memory Scheduler Fast Fast Slow/General FP SchedulerSlow/General FP Scheduler

Integer Register File / Bypass NetworkInteger Register File / Bypass Network

ComplexComplex
Instr.Instr.

Slow ALUSlow ALU

Simple Simple
Instr. Instr.

2x ALU 2x ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

Load Load
Address Address

AGU AGU

Store Store
Address Address

AGU AGU

256 bits 256 bits

64-bits wide 64-bits wide

Bus
Interface

Unit

SystemSystem
Bus Bus

InstructionInstruction
TLB/TLB/ PrefetcherPrefetcher

Front-End BTB
4K Entries

Execution Trace Cache
(12K (12K µµ opsops))

Trace Cache BTB
2K Entries

MicrocodeMicrocode
ROMROM

µµopop Queue Queue

Quad
Pumped
6.4 GB/s

108GB/s

L2 Cache
(1M Byte

8-way)

L1 Data Cache (16Kbyte 8-way)

FP
MMX
SSE

SSE2
SSE3

Instruction Decoder

Figure 1: Block diagram of the Intel® Pentium® 4 processor

NETBURST® MICROARCHITECTURE
OVERVIEW
The NetBurst microarchitecture is the basis for the latest
version of the Intel Pentium 4 processor. Elements of
this microarchitecture include an Execution Trace
Cache, an out-of-order core, and a Rapid Execution
Engine [1]. This implementation also contains store-to-
load forwarding enhancements that were introduced in
previous implementations. Figure 1 depicts the block
diagram for the Pentium 4 processor.

Execution Trace Cache
The NetBurst microarchitecture has an advanced
instruction cache called an Execution Trace Cache. This
cache stores decoded instructions in the form of uops
rather than in the form of raw bytes such as are stored in
more conventional instruction caches. Once stored in the
trace cache, uops can be accessed repeatedly just like a
conventional instruction cache. Storing uops instead of
bytes allows the complicated instruction decoding logic
to be removed from the main execution loop.

In addition to removing the cumbersome decode logic
from the main execution loop, the Execution Trace

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 2

Intel Technology Journal, Volume 8, Issue 1, 2004

Cache takes the already decoded uops from the
instruction decoder and assembles or builds them into
program-ordered sequences of uops, called traces. It
packs the uops into groups of up to six uops per trace
cache line and these lines are combined to form traces.
These traces consist of uops from the sequentially
predicted path of the program execution. This allows the
target of a branch to be included in the same trace cache
line as the branch itself, even if the branch and its target
instruction are thousands of bytes apart in the program.
Thus, both the branch and its target instructions can be
delivered to the out-of-order core at the same time.
Conventional instruction caches typically provide
instructions up to and including a taken branch in a
given clock cycle but no instructions following the
branch. If the branch is the first instruction in a cache
line, only the single branch instruction is delivered that
clock cycle. Conventional instruction caches also often
add a clock delay getting to the target of the taken
branch due to delays getting through the branch
predictor and then accessing the new location in the
instruction cache. The trace cache avoids both of these
instruction delivery delays.

The trace cache is able to deliver up to three uops per
clock cycle to the out-of-order core. Most instructions in
a program are fetched and executed from the trace
cache. Only when there is a trace cache miss does the
machine fetch and decode instructions from the unified
second-level (L2) cache. The Execution Trace Cache on
the Pentium 4 processor can hold up to 12K uops and
has a hit rate similar to an 8 to 16 kilobyte conventional
instruction cache.

Out-of-Order Core
The Execution Trace Cache provides the out-of-order
core with a stream of uops to prepare for the Rapid
Execution Engine to consume. The main responsibility
of the out-of-order core is to extract parallelism from the
code stream, while preserving the correct execution
semantics of the program. It accomplishes this by
reordering the uops to execute them as quickly as
possible.

The out-of-order core will schedule for execution as
many ready uops as possible each clock cycle,
regardless of their original program order. By
considering a larger number of uops from the program,
the out-of-order core can usually find many independent
uops that are ready to execute. The maximum number
of uops that the out-of-order core can contain is 126, of
which 48 can be load operations and 32 can be store
operations.

At the heart of the out-of-order core are the uop
schedulers. The schedulers determine when a uop is

ready to execute by tracking its input register operands.
When the input operands have been produced, the uop is
considered to be ready to execute. The scheduler will
then schedule the uop to execute when the execution
resources required by the uop are available. Thus, uops
are allowed to schedule and execute in what is called
data-dependent order. In many code sequences, there are
independent streams of execution. The scheduler
identifies the streams of execution and allows these
streams to execute in parallel with each other, regardless
of their original program order.

There are five different schedulers connected to four
different dispatch ports. On two of these ports, up to two
uops can be dispatched each clock cycle. The fast
Arithmetic and Logic Unit (ALU) schedulers can
schedule on each half of a clock cycle, while the other
schedulers can only schedule once per clock cycle. One
fast ALU scheduler shares a dispatch port with the
floating-point/media move scheduler, while the other
fast ALU shares another dispatch port with the complex
integer/complex floating-point/media scheduler. These
schedulers arbitrate for a dispatch port when multiple
schedulers have uops ready to execute at the same time.
The remaining two dispatch ports allow one load and
one store address uop to be dispatched every cycle. The
collective dispatch bandwidth across all of the
schedulers is six uops per clock cycle. This is twice the
rate at which the out-of-order core can receive uops
from the Execution Trace Cache and allows higher
flexibility to issue ready uops on the different ports.

Rapid Execution Engine
The Rapid Execution Engine of the NetBurst
microarchitecture executes up to six uops per main
clock cycle. These uops are executed by several
execution units: two double-speed integer ALUs, a
complex integer unit, load and store Address Generation
Units (AGUs), a complex floating-point/media unit, and
a floating-point/media move unit. These highly tuned
and optimized execution units are designed for low
latency and high throughput.

The double-speed integer ALUs are able to execute at a
rate of two uops per clock cycle, providing for a very
high ALU throughput. Being able to execute these uops
at twice the rate of the main core clock enables
application performance to be increased relative to
running the ALUs at the main clock rate.

The NetBurst microarchitecture is also able to execute
one load and one store address uop every clock cycle
through the AGUs. The AGUs are very tightly coupled
to the low-latency first-level (L1) data cache. On this
processor, the cache is 16 kilobytes in size and is used
for both integer and floating-point/media loads and

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 3

Intel Technology Journal, Volume 8, Issue 1, 2004

stores. It is organized as an 8-way set associative write-
through cache containing 64-byte cache lines.

The low latency of the L1 cache is very hard to achieve.
This cache uses unique access algorithms to enable its
low latency. The algorithms leverage the fact that almost
all accesses hit the L1 data cache and the Data
Translation Lookaside Buffer (DTLB). Generally, the
schedulers assume that loads will hit the L1 data cache
and will schedule dependent uops before the parent load
has finished executing. Allowing these dependent uops
to dispatch prior to knowing if the load has hit the cache
is a form of data speculation. If the load misses the L1
data cache, the dependent uops will already be well into
their execution and will temporarily be bound to
incorrect data. Using a mechanism known as replay, the
processor tracks and re-executes instructions that
received incorrect data. Only the dependent operations
are replayed; all independent operations are allowed to
complete. Using this form of data speculation allows
more parallel execution streams to be extracted from the
program and increases the performance of the processor.

Floating-Point (x87), MMX, SSE (Streaming SIMD
Extension), SSE2 (Streaming SIMD Extension 2), and
the new SSE3 (Streaming SIMD Extension 3)
operations are executed by the two floating-point
execution blocks. One of the execution blocks is used
for simple operations, such as SSE register-to-register
moves and x87/MMX/SSE/SSE2 store data uops. The
other execution block is used for more complex
operations.

Store-to-Load Forwarding Enhancements
In all implementations of the NetBurst
microarchitecture, stores are written to the L1 data cache
in programmatic order and only after the store is
guaranteed to be non-speculative. This requires that all
operations older than the store must be completed before
the store’s data are committed to the cache. The
forwarding mechanism implemented enables a load
dependent on a store’s data to have its data “forwarded”
prior to the commitment of the store’s data into the L1
cache. Forwarding is accomplished by doing a partial
address match between the load and all older stores in
the Store Forwarding Buffer (SFB) in parallel with the
load’s L1 data cache access. If the load’s partial address
matches that of an older store in the SFB, then the load
gets its data from the SFB instead of the cache. The
forwarding mechanism is optimized for speed such that
it has the same latency as a cache lookup. To meet this

latency requirement, the SFB cannot afford to do a full
address and access size check. This function is
accomplished by the Memory Ordering Buffer (MOB)
later in the pipeline. The role of the MOB is to ensure
that the forwarded load got the correct data from the
most recent dependent store. In the event that the
forwarding from the SFB was incorrect, the load in
question must be re-executed after the dependent store
writes to the L1 cache. The load can then pick up its
data from the cache.

The latency from when a store has valid data to when
these data are written into the cache can be high because
of the deep pipeline of the NetBurst microarchitecture.
So in cases where a load must wait for a store to commit
its data for the load to complete, a significant reduction
in performance can occur. Most of these cases are rare
in real-world applications. However, there a few
instances where applications do see a performance loss:

• Forwarding disabled due to address misalignment.

• Wrong forwarding due to a partial address match.

Mechanisms have been implemented on recent
implementations of the Intel Pentium 4 processor to
improve the performance in the above cases.

Force forwarding is a mechanism that allows the MOB
to control the forwarding in the SFB. Figure 2 shows the
block diagram for this mechanism. Two new selection
points were added to the existing store-forwarding path.
The forwarding-entry-selection mux allows the MOB to
override the SFB’s partial address match-based entry
selection, while the data alignment mux allows for
misaligned data to be rotated, based on the shift
information provided by the MOB.

When a load first executes, the SFB detects a
dependency with older stores based on a partial address
match. When this load comes to the MOB to determine
its “true” dependencies, the MOB can either agree with
the SFB’s decision to forward or it can cause the load to
be re-executed. The load can be re-executed because the
SFB detected either an incorrect dependency or because
it failed to detect a dependency when a dependency did
exist. If the SFB’s dependency check is wrong, the
MOB can correct the forwarding logic when the load re-
executes by directing the SFB in one of two ways:
forward to the load from the right entry and rotate the
data as necessary or disable forwarding to the load if
there is no dependent store in the SFB.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 4

Intel Technology Journal, Volume 8, Issue 1, 2004

Figure 2: Force forwarding block diagram

The misaligned address cases that are fixed by the force
forwarding mechanism are shown in Figure 3. In the
figure, for each load at a given starting address, the data
access sizes for which force forwarding is supported are
listed. These cases can be categorized as follows:

• DWord/QWord Store forwarding to Byte/Word
loads whose data are fully contained in either the
lower or upper DWord.

• QWord Store forwarding to DWord Load to the
upper DWord of the Store.

For each of these cases, the MOB “forces” the SFB to
forward from a specific store by a given shift amount in
order to align the store’s data to the load.

Figure 3: Supported cases of misaligned forwarding

False forwarding occurs when the SFB detects a partial
address match between a load and a store, but their full
addresses do not match. The MOB detects the false
forward condition and determines if there exists another
store that the load should have forwarded from. If a
store exists that can be forwarded, then the MOB will
direct the SFB to forward from this store entry using the

force forwarding mechanism when the load re-executes.
If the MOB detects that there is no dependent store in
the forwarding buffer, then the MOB instructs the SFB
to not forward to this load. When the load is re-
executed, it can then pick up its data from the cache
instead. Memory Ordering

Buffer (MOB)

Alignment
Mux

Store Forwarding
Buffer
(SFB)

F
or

w
ar

di
ng

En
try

 M
ux

Forwarding entry
selection based
on partial virtual
address match

Shift Control

“Forced” forwarding entry

Load’s forwarded data

NEW MICROARCHITECTURAL
FEATURES AND ENHANCEMENTS
The 90nm Intel Pentium 4 processor improves
performance over prior processor implementations
through increasing the sizes of key resources, while also
improving existing algorithms and introducing new
microarchitectural features. These changes were made
throughout the various parts of the processor as detailed
below.

Front End
The instruction fetch and decode portions of this Intel
Pentium 4 processor remain largely unchanged from
previous implementations, but some performance
enhancements have been made.

The simple static branch prediction scheme that is used
when the Branch Target Buffer (BTB) has no prediction
for a conditional branch has been enhanced. At the time
the instruction decoder realizes that an instruction is a
branch that was not predicted by the BTB, a static
branch prediction is made. Making this prediction at
decode time allows for a faster restart, and therefore
better performance, rather than waiting for the normal
execution time detection of a mispredicted branch.

In prior Pentium 4 processor implementations, the static
prediction algorithm was to predict that a branch was
taken if the branch direction was backwards and to
predict that the branch was not taken if the branch jumps
forward. This helped by correctly predicting taken for
the first iteration of most loops. This works well for
backwards branches that are in loops, but not all
backwards branches are loop-ending branches.

We can try to ascertain the difference between loop-
ending branches and other backwards branches by
looking at the distance of the branch and the condition
on which the branch is dependent. Our studies showed
that a threshold exists for the distance between a
backwards branch and its target; if the distance of the
branch is larger than this threshold, the branch is
unlikely to be a loop-ending branch. If the BTB has no
prediction for a backwards branch, the Intel Pentium 4
processor will then predict taken for the branch only if
the branch distance is less than this threshold.

We also discovered that branches with certain
conditions were more often not taken, regardless of their

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 5

Intel Technology Journal, Volume 8, Issue 1, 2004

direction and distance. The conditions that they used are
not common loop-ending conditions, so for branches
with these conditions and no BTB prediction, the static
prediction algorithm predicts them as not taken.

Table 1: Comparison of mispredicted branches per
100 instructions

 130nm 90nm
164.gzip 1.03 1.01
175.vpr 1.32 1.21
176.gcc 0.85 0.70
181.mcf 1.35 1.22
186.crafty 0.72 0.69
197.parser 1.06 0.87
252.eon 0.44 0.39
253.perlbmk 0.62 0.28
254.gap 0.33 0.24
255.vortex 0.08 0.09
256.bzip2 1.19 1.12
300.twolf 1.32 1.23

In addition to these changes in the static prediction
algorithm, we also enhanced the dynamic branch
prediction algorithms to reduce the number of times that
a branch is mispredicted. Each time a branch is
mispredicted, the pipeline must be flushed. Thus, large
performance gains can be had by reducing the number
of branch mispredictions. To this end, one of the
dynamic branch predictor enhancements we made was
to add an indirect branch predictor. This was motivated
by results from the Intel Pentium M processor team,
who saw good performance improvements on some
applications [3]. Table 1 compares the number of branch
mispredictions per 100 instructions on the 90nm version
of the Intel Pentium 4 processor versus the 130nm
version of the processor on the components of
SPECint*_base2000. The data were collected using the
performance counters available on each processor, and
they show the reduction in mispredictions on almost all
components, due to the algorithmic enhancements.

Another performance enhancement was to expand the
set of instructions where the processor detects that
dependence chains can be broken. A common technique
to zero a register is to xor the register with itself, rather
than to move an immediate of 0 into the register. This
technique is preferred because of the smaller resulting
code size. The result is logically equivalent, but the xor
method adds a dependency on the previous contents of
the register. In an out-of-order machine, this extra
dependency can result in a performance loss. Previous
processor implementations recognized when the xor,
pxor, and sub instructions were used in this manner,
and they removed the dependency on the source register,
since the same answer is arrived at regardless of the
value of the sources. On this Intel Pentium 4 processor,
additional instructions that are used for the same
purpose are now detected. Among these are the SSE
instruction xorps and the SSE2 psub and xorpd
instructions.

We can also now encode more types of uops inside the
trace cache than could be encoded in prior processors. If
an instruction uses a uop that cannot be encoded in the
trace cache, then the uops for the entire instruction have
to be sequenced from the Microcode ROM. This
enhancement allows for higher average uop bandwidth
from the front end of the machine to the execution core
by removing transitions to the Microcode ROM. Indirect
calls with a register source operand and software
prefetch instructions are the best examples of
instructions that can now be encoded in the trace cache.

 Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

Execution Core
The execution core of the Intel Pentium 4 processor is
similar to previous implementations in that the two
integer ALUs run at 2x the frequency of the rest of the

* Other names and brands are the property of their
respective owners.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 6

Intel Technology Journal, Volume 8, Issue 1, 2004

processor, allowing for high throughput of common
arithmetic and logical operations. An enhancement we
implemented in this processor was to add a
shifter/rotator block to one of the ALUs. This block
allows the most common forms of shift and rotate
instructions to be executed on a fast ALU. On prior
Pentium 4 processor implementations, these operations
were executed as complex integer operations that took
multiple cycles to execute.

Another key operation whose latency has been reduced
on this processor is integer multiply. Previously, the
Intel Pentium 4 processor executed integer multiplies
using the floating-point multiplier. This introduced
latency by paying the cost of moving the source
operands to the floating-point side and then moving the
result back to the integer side. On this processor, we
added a dedicated integer multiplier to service these
operations.

On top of the changes to the execution units, we also
changed the L1 data cache. As with all implementations
of the NetBurst microarchitecture, the cache is designed
to minimize the load-to-use latency by using a partial
virtual address match to detect early in the pipeline
whether a load is likely to hit or miss in the cache. On
this processor, we significantly increased the size of the
partial address match from previous implementations,
thus reducing the number of false aliasing cases. More
importantly, we increased the size of the cache.
Previously, the L1 data cache was 8 kilobytes in size
and 4-way associative. Now the size of the cache has
been increased to 16 kilobytes by increasing the
associativity to 8-ways.

The schedulers in the NetBurst microarchitecture are
critical, as they must run at a high speed in order to
continually feed the high-speed execution core. The
schedulers in this implementation of the
microarchitecture remain largely the same, as the rate at
which they can feed the core is unchanged from prior
implementations. In all implementations, the schedulers
are capable of scheduling up to six uops per clock cycle.

Even though the rate of scheduling remains the same,
we made several enhancements to the schedulers to
improve performance on the implementation. The two
schedulers that are used to hold uops used in
x87/SSE/SSE2/SSE3 instructions were increased in size.
By increasing the size of these schedulers, the window
of opportunity to find parallelism in multimedia
algorithms is increased. And we increased the effective
size of the queues that feed all the schedulers, such that
more uops can now be buffered between the allocator
and the scheduler before the allocator has to stall. This
allows the allocation and renaming logic to continue to

look ahead in the instruction stream even when the
schedulers are full.

Additionally, we changed the mechanism used to
schedule load uops to improve performance. As on prior
implementations, store instructions are broken up into
two pieces: a store address and a store data uop. In the
previous implementations, loads were scheduled
asynchronously to store data uops. Thus, if a load
needed to receive forwarded data from a store, it was
possible that the load would execute before the store
data uop. If this occurred, the load would have to be re-
executed after the store data uop had finally executed.
Because of this, latency could be introduced because the
minimum latency between a store data uop and a
dependent load was not the common case latency for
loads that had been re-executed. On top of that penalty,
having to re-execute the load meant that precious load
bandwidth was being wasted on loads that executed
more than once. To alleviate both of these issues, we
added a simple predictor to the processor that marks
whether specific load uops are likely to receive
forwarded data, and, if so, from which store they are
likely to forward. Given this information, the load
scheduler now holds a load that is predicted to forward
in the scheduler until the store data uop that produces
the data it depends on is scheduled. In doing so, both of
these performance penalties are reduced significantly.

We also added a performance feature to enhance
applications that use the SSE/SSE2/SSE3 instructions.
On the x87 side, the Floating-Point Control Word
(FCW) is often modified as the programmer wants to
change the rounding mode and precision of the data that
are being worked with. To avoid serializing the
processor each time that the FCW is modified, a simple
prediction scheme was implemented on the NetBurst
microarchitecture to capture common renaming cases.
This same idea is now extended on this implementation
of the microarchitecture to also handle the MXCSR,
which is the corollary of the FCW for instructions that
use the SSE registers. On prior implementations,
changes to the MXCSR would serialize the machine. On
this processor, the common case modifications of
MXCSR will not incur a serialization.

Memory System
In the memory subsystem of the processor, we made a
number of changes to increase overall performance. The
changes made focus on trying to reduce the amount of
time spent waiting for data to be fetched from DRAM
and on increasing the size of critical resources so as to
limit the number of times the processor is forced to stall
because of a resource shortfall.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 7

Intel Technology Journal, Volume 8, Issue 1, 2004

One mechanism to reduce the amount of time spent
waiting for data to be returned from DRAM is to
increase the size of the caches. Previous
implementations of the Intel Pentium 4 processor
contained unified L2 caches of either 256 or 512
kilobytes. On the 90nm version of the Intel Pentium 4,
we implemented a 1MB L2 unified cache. Similar to the
previous implementations, the cache is a writeback 8-
way set associative cache and contains 128-byte lines.

A second way to reduce the time waiting for DRAM is
by using software prefetch instructions that are inserted
by the programmer to bring data into the cache before
the data are actually used. On all Pentium 4 processors,
software prefetch instructions bring in data from DRAM
into the L2 cache. These instructions opportunistically
look up the L2 cache and on a miss, initiate a data
prefetch cycle on the front-side bus. The data are filled
only to the L2 cache so as not to pollute the much
smaller L1 data cache.

On previous Pentium 4 processor implementations,
these operations were dropped on a DTLB miss. The
Pentium 4 processor adds a mechanism to allow the
software prefetch instructions to initiate page table
walks and allow data TLB fills if the prefetch access is
to a page currently not cached in the TLB. We added
special fault-handling logic to handle cases where page
faults were detected on the software prefetch
instructions. These instructions are dropped silently
without reporting the fault to the operating system, and
the prefetch operation is not performed. In effect, the
90nm version of the Pentium 4 processor allows
software prefetch instructions to not only prefetch data,
but also to prefetch page table entries into the DTLB. As
we previously mentioned, the cost of software prefetch
instructions has been greatly reduced on this processor,
as software prefetches can now be cached in the trace
cache; they used to have to be fetched from the
Microcode ROM.

A third mechanism used to reduce the time waiting for
DRAM is through a hardware prefetching scheme. The
hardware prefetcher looks for streams of data and tries
to predict what data will be needed next by the
processor and proactively tries to fetch these data. This
mechanism can be superior to software prefetching, as it
requires no effort from the programmer and can improve
performance on code that has no software prefetch
instructions. All Intel Pentium 4 processors contain a
hardware prefetcher that can prefetch both code and data
streams, where the data stream can be accessed by loads
and/or stores. This implementation of the processor
improves upon the previous implementations in its
ability to detect when to prefetch data and what data
needs to be prefetched. Figure 4 shows the effect of the

hardware prefetcher. We show the performance of this
processor with the hardware prefetcher enabled versus
the hardware prefetcher disabled on the most hardware
prefetcher-sensitive components in the
SPECint_base2000 and SPECfp∗_base2000
benchmarks1. These are the components that gain more
than 10% in performance by enabling the hardware
prefetcher.

Addressing resource constraints was the other means of
improving performance in the memory system. On
previous Intel Pentium 4 processors, only 24 stores
could be simultaneously outstanding in the processor.
This number has now been increased to 32.
Additionally, the number of write-combining buffers
that are used to track streams of stores was increased
from 6 to 8, which also alleviates pressure on the
number of stores that can be in the machine
simultaneously by allowing stores to be processed
faster. Finally, the number of unique outstanding loads
that have missed the L1 data cache and can be serviced
has been increased from 4 to 8.

1.16 1.18 1.21 1.26 1.29 1.30 1.32 1.40 1.45 1.49

1.97

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

25
4.g

ap

19
1.fm

a3
d

17
8.g

alg
el

18
7.fa

cer
ec

17
1.s

wim

168
.wupw

ise

17
3.a

pp
lu

189
.luc

as

181
.mcf

17
2.m

gri
d

183
.eq

uak
e

Re
la

tiv
e P

er
fo

rm
an

ce

HWP Disabled
HWP Enabled

Figure 4: Effect of the hardware prefetcher

HYPER-THREADING TECHNOLOGY
Hyper-Threading Technology was introduced on
previous implementations of the Intel Pentium 4
processor and is also present on many versions of this
latest processor. Hyper-Threading Technology allows
one physical processor to appear to the operating system
as two logical processors [2]. This allows two program
software threads, either related or unrelated, to execute

∗ Other names and brands are the property of their
respective owners.
1 Estimated performance through measurements on non-
production hardware.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 8

Intel Technology Journal, Volume 8, Issue 1, 2004

simultaneously throughout the processor. Prior to
Hyper-Threading Technology, only one thread could be
executed at a time on a processor, and each switch to a
different thread would incur a context-switching
overhead penalty.

In addition to these changes, this processor also contains
an enhancement for Hyper-Threading Technology
performance known as the context identifier that was
included in some prior processor implementations. With
Hyper-Threading Technology, the partial virtual address
indexing scheme used for the L1 cache creates conflicts
when each logical processor’s access pattern matches
the partial virtual tag even when accessing separate
regions of physical memory. For example, this situation
can occur if the stacks of the two threads are offset by a
fixed amount that is greater than the size of the partial
match, such that these two addresses, although different,
alias to the same partial tag. This causes contention in
the cache, leading to a reduced cache hit rate. In order to
reduce the likelihood of contention, a context identifier
bit is added to the partial virtual tag for each logical
processor. This bit is dynamically set or reset based on
the page-table structure initialization for each logical
processor and serves as an indication of data sharing
intent across logical processors.

Many of the changes mentioned previously were
motivated mainly by Hyper-Threading Technology
performance. For instance, increasing the number of
outstanding loads that miss the L1 data cache from 4 to
8 has very little performance impact on the majority of
single-threaded applications. This resource, however, is
more important when two threads are being executed.
Increasing the size of the resource that controls this
behavior provides for better threaded performance while
also slightly enhancing single-threaded performance.
Similarly, the size of the queue that sits between the
front end of the processor and the allocation/rename
logic was also increased in this processor
implementation. Again this change was motivated by the
need for increased performance when running multiple
threads, as the size increase provides minimal benefit
when only running a single thread.

For example, assume that two logical processors share
the same page directory base in physical memory. This
gives a strong indication that data are intended to be
shared between the logical processors. In such a case,
the additional context-identifier bit for each logical
processor is set to the same value, allowing for sharing
of the L1 data cache. Conversely, if the page-directory
bases are different, it is likely that both logical
processors are working on separate data regions. In such
a case, sharing of the L1 data cache is disallowed by
keeping the context-identifier bit different across logical
processors.

Other changes that were made in this processor
implementation to help support Hyper-Threading
Technology performance include additions to the type of
operations that can be conducted in parallel. For
instance, on previous implementations, the processor
could either work on a page table walk or on handling a
memory access that splits a cache line, but not on both
simultaneously. For single-thread performance, this
limitation was rarely seen as a bottleneck. However,
when running multiple threads, the effect of this
bottleneck becomes much more acute as the behavior of
one thread can have a significant negative impact on the
other thread. In this processor, this bottleneck has been
fixed such that a page table walk can occur at the same
time as a memory access that splits a cache line is being
handled. Similarly, on prior implementations, if a page
table walk missed all the caches and had to go to
DRAM, no new page table walks could be started. This
again was very rarely seen as a bottleneck for single-
threaded performance but was detrimental when running
multiple threads as one poorly behaving thread could
effectively stall both threads. Now, in this
implementation, a page table walk that misses all of the
caches and goes to DRAM does not block other page
table walks from being initiated.

There may be uncommon cases where logical processors
use different page directory bases but still share the
same physical memory region through page-table
aliasing. These arise when two different page table
entries across logical processors point to the same
physical page frame. The processor detects such cases
and implements a reservation mechanism to prevent
repetitive L1 cache access conflicts among different
logical processors.

SSE3 INSTRUCTIONS
The Intel Pentium 4 processor extends the IA-32 ISA
with a set of 13 new instructions. With the exception of
three (fisttp, monitor, mwait), these
instructions use the SSE registers. These new
instructions are designed to improve performance in the
following areas:

Changes were also made to some of the thread selection
points in this version of the Pentium 4 processor in order
to improve overall bandwidth. For example, the trace
cache now responds faster to stalling events in the core,
dedicating all of its resources to the thread that is not
stalled, thereby generating better overall performance.

• x87 to integer conversion (fisttp)

• Complex arithmetic (addsubps, addsubpd,
movsldup, movshdup, movddup)

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 9

Intel Technology Journal, Volume 8, Issue 1, 2004

Code without SSE3: • Video encoding (lddqu)
fstcw <old FCW>

• Graphics (haddps, hsubps, haddpd,
hsubpd)

movw ax, <old FCW>
or ax, 0xc00
movw <new FCW>, ax

• Thread synchronization (monitor, mwait) fldcw <new FCW>
fistp <INT>

Improved x87 Conversions to Integer fldcw <old FCW>
 Fisttp has been added to provide the ability of IA-32

to ignore the value of the Floating-Point Control Word
(FCW) when converting a value from x87 to an integer.
Currently on IA-32, a conversion to integer is done with
the convert-store instruction fistp. The rounding
mode used for the conversion is taken from the FCW. In
order to meet Fortran and C/C++’s specifications for
conversion to integer, the rounding mode has to be set to
chop, whereas the default rounding mode is usually set
to even to minimize rounding errors. Because fistp
gets its rounding mode from FCW, the user has to create
a new FCW that is equal to the default one, but with the
rounding mode changed to chop. Once FCW is changed,
fistp can be used to do the conversion. Finally, the
user has to restore the default value of FCW. The whole
operation involves changing FCW twice, and since
fldcw is a relatively slow instruction, it can degrade
the performance of an application. To alleviate this
problem, fisttp has been added. It is a new fistp
instruction that ignores FCW and always uses chop as
its rounding mode.

Code with SSE3:
fisttp <INT>

Complex Arithmetic
Complex arithmetic usage is ubiquitous, as it is used in
Discrete/Fast Fourier Transform (DFT/FFT), Discrete
Multi Tone (DMT) modulators, frequency domain
filtering, etc. A typical example of the importance of
complex arithmetic in a multimedia context is given by
the implementation of an Acoustic Echo Canceller
(AEC). In an AEC, a long Finite Impulse Response
(FIR) filter is used to model the inverse of the acoustic
channel. It is not uncommon for this filter to have 1024
or more taps. The operation done by a FIR filter is
called a convolution, and its execution time is O(n2).
With filters of such large length, and with the quadratic
cost of a convolution, the operation of filtering in the
time domain can be prohibitive, to the point of not
meeting, for example, a real-time constraint. By moving
from the time domain to the frequency domain, the
execution time can be significantly reduced. Because the
execution time of a DFT is also O(n2), moving to the
frequency domain does not appear to have saved
anything. But DFT has fast implementations with
execution time O(nlogn). Such fast implementations of
DFT are collectively called FFT. In the frequency
domain, a convolution (O(n2)) is simply a point-product
(O(n)). For a filter with fixed coefficients, the n-element
input array can be transformed into the frequency
domain in O(nlogn) operations; the point-multiplication
(with the frequency domain transformed set of
coefficients) takes O(n) operations; the conversion of
the result back to the time domain (using an inverse
FFT) takes also O(nlogn) operations. For large n, the
complexity behaves as O(nlogn), significantly faster
than O(n2).

As shown below, the benefit of fisttp is two-fold:
fewer instructions are needed and there is no need to
modify FCW. The instruction is available in three
precisions: Word (16-bit), DWord (32-bit), and QWord
(64-bit).

Three benchmarks out of SPEC* CPU2000* make heavy
use of complex arithmetic: 168.wupwise (BLAS3
ZGEMM – complex matrix multiply), 189.lucas
(FFT_SQUARE – a FFT-based function to square large
integer numbers), and 187.facerec (FFT).

Five instructions have been added to significantly
accelerate complex arithmetic. Two instructions
(addsubps and addsubpd) perform a mix of
floating-point addition and subtraction, hence removing
the need for changing the sign of some operands. The

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 10

Intel Technology Journal, Volume 8, Issue 1, 2004

three others (movsldup, movshdup, movddup), in
their memory version, combine loads with some level of
duplication, hence saving the need for a shuffle
instruction on the loaded data.

Code without SSE3:
movapd xmm0, <mem_X>
movapd xmm1, <mem_Y>
movapd xmm2, <mem_Y>
unpcklpd xmm1, xmm1
unpckhpd xmm2, xmm2
mulpd xmm1, xmm0
mulpd xmm2, xmm0
xorpd xmm2, xmm7
shufpd xmm2, xmm2, 0x1
addpd xmm2, xmm1
movapd <mem_Z>, xmm2

Code with SSE3:
movapd xmm0, <mem_X>
movddup xmm1, <mem_Y>
movddup xmm2, <mem_Y+8>
mulpd xmm1, xmm0
mulpd xmm2, xmm0

 shufpd xmm2, xmm2, 0x1
addsubpd xmm2, xmm1

movapd <mem_Z>, xmm2

The code sequence above shows how to implement a
double-precision complex multiplication using SSE2
only or with the new SSE3 instructions, where mem_X
contains one complex operand and mem_Y the other;
mem_Z is used to store the complex result; and xmm7 is
a constant used to change the sign of one data element.
Since the main speed limiter of this code is the number
of execution uops (7 for SSE2, 4 for SSE3), the new
instructions can improve complex multiplications by up
to 75%. On SPEC CPU2000, the compiler is able to use
SSE3 to improve 168.wupwise by 10-15%.

Video Encoding
The most compute-intensive part of a video encoder is
usually Motion Estimation (ME) where blocks from the
current frame are checked against blocks from the
previous frame to find the best match. Many metrics can
be used to define the best match. The most common is
the L1 metric: the sum of absolute differences. Due to
the nature of ME, loads of the blocks from the previous
frame are unaligned whereas loads of the blocks from
the current frame are aligned. Unaligned loads suffer
two penalties:

• cost of handling the unaligned access

• impact of the cache line splits

The NetBurst microarchitecture does not support a uop
to load 128-bit unaligned data. For that reason, 128-bit

unaligned load instructions, such as movups and
movdqu, are emulated with microcode, using two 64-
bit loads whose results are merged to form the 128-bit
result. In addition to the cost of the emulation, unaligned
loads are penalized by the cost of handling cache line
splits if the access crosses a 64-byte boundary.

SSE3 adds lddqu to solve the cache line split problem
on 128-bit unaligned loads. The instruction works by
loading a 32-byte block aligned on a 16-byte boundary,
extracting the 16 bytes corresponding to the unaligned
access. Because the instruction loads more bytes than
requested, some usage restrictions apply. Lddqu should
be avoided on Uncached (UC) and Write-Combining
(USWC) memory regions. Also, by its implementation,
lddqu should be avoided in situations where store-load
forwarding is expected. In load-only situations, and with
memory regions that are not UC or USWC, lddqu can
advantageously replace movdqu/movups/movupd.

The code below shows an example of using the new
instruction. Both code sequences are similar except that
the load unaligned (movdqu) is replaced by the new
unaligned load (lddqu). With the assumption that 25%
of the unaligned loads are across a cache line, the new
instruction can improve the performance of ME by up to
30%. MPEG∗ 4 encoders have demonstrated speedups
greater than 10%.

Motion Estimator without SSE3:
movdqa xmm0, <current>
movdqu xmm1, <previous>
psadbw xmm0, xmm1
paddw xmm2, xmm0

Motion Estimator with SSE3:
movdqa xmm0, <current>
lddqu xmm1, <previous>
psadbw xmm0, xmm1
paddw xmm2, xmm0

Graphics
Most (graphics) vertex databases are organized as an
array of structures (AOS), where each vertex structure
contains data fields such as the following:

• x, y, z, w: coordinates of the vertex

• nx, ny, nz, nw: coordinates of the normal at the vertex

• r, g, b, a: colors at the vertex

• u0, v0: 1st set of 2D texture coordinates

• u1, v1: 2nd set of 2D texture coordinates

∗ Other names and brands are the property of their
respective owners.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 11

Intel Technology Journal, Volume 8, Issue 1, 2004

Thread Synchronization By its very nature, SSE does not deliver optimal results
when operating on vertex databases organized as an
AOS. SSE is much better at handling vertex databases
organized as a structure of arrays (SOA), where the first
array contains the x of all the vertices; the second array,
the y of all the vertices; etc. Because AOS is the favored
way vertex databases are organized, in order to use SSE,
the data have to be loaded and reorganized using shuffle
instructions.

Monitor and mwait instructions provide a solution to
address Hyper-Threading Technology performance of
the operating system idle loop and other spin-wait loops
in operating systems and device drivers. Software can
use the monitor and mwait instructions to hint that a
thread is not doing useful work (e.g., spinning and
waiting for work). The processor may then go into a
low-power and performance-optimized state. Monitor
and mwait provide a way for software to wake up the
processor from this low-power/performance-optimized
state via a store to a specified memory location (e.g., a
store to the work queue).

The most common operation performed in a vertex
shader is the scalar product, where 3 (or 4) pairs of
single-precision data elements are multiplied and the 3
(or 4) results summed. Due to the AOS organization of
the vertex database, evaluating the scalar product can be
challenging with SSE because of the lack of horizontal
instructions. We have added horizontal floating-point
addition/subtraction instructions to speed up the
evaluation of scalar products.

Monitor sets up hardware to detect stores to an
address range, generally a cache line. The monitor
instruction relies on a state in the processor called the
monitor event pending flag. The monitor event pending
flag is either set or clear and its value is not
architecturally visible except through the behavior of the
mwait instruction. The monitor event pending flag is
set by multiple events including a write to the address
range being monitored and reset by the monitor
instruction.

The code sequence below illustrates how a scalar
product of four single-precision pairs of elements can be
evaluated with and without the new instructions:

Code without SSE3:
mulps xmm0, xmm1
movaps xmm1, xmm0
shufps xmm0, xmm1, 0xb1
addps xmm0, xmm1

The monitor instruction sets up the address monitoring
hardware using the address specified in EAX and resets
the monitor event pending flag. A store to the address
range will set the monitor event pending flag. Other
events will also set the monitor event pending flag,
including interrupts or any event that may change the
page tables. The content of ECX and EDX are used to
communicate other information to the monitor
instruction.

movaps xmm1, xmm0
shufps xmm0, xmm0, 0x0a
addps xmm0, xmm1

Code with SSE3:

mulps xmm0, xmm1
haddps xmm0, xmm0
haddps xmm0, xmm0 Mwait puts the processor into the special low-

power/optimized state until a store, to any byte in the
address range being monitored, is detected, or if there is
an interrupt, exception, or fault that needs to be handled.
There may also be other time-outs or implementation-
dependent conditions that may cause the processor to
exit the optimized state. The mwait instruction is
architecturally identical to a nop instruction. It is
effectively a hint to the processor to indicate that the
processor may choose to enter an implementation-
dependent optimized state while waiting for an event or
for a store to the address range set up by the preceding
monitor instruction in program flow. For example, a
Hyper-Threading Technology-capable processor may
enter a state that allows the other thread to execute
faster, or it may enter a state that allows for lower power
consumption, or both.

The monitor and mwait instructions must be coded
in the same loop because execution of the mwait
instruction will clear the monitor address range. It is not

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 12

Intel Technology Journal, Volume 8, Issue 1, 2004

possible to execute monitor once and then execute
mwait in a loop. Setting up monitor without
executing mwait has no adverse effects.

Typically the monitor/mwait pair is used in a sequence
like this:

EAX = Logical Address(Trigger)
ECX = EDX = 0 // Hints
While (!trigger_store_happened) {
 MONITOR EAX, ECX, EDX
 If (!trigger_store_happened) {
 MWAIT EAX, ECX
 }
}
The above code sequence makes sure that a triggering
store does not happen between the first check of the

trigger and the execution of the monitor instruction.
Without the second check that triggering store would go
un-noticed.

It is expected that operating systems will use the
monitor and mwait instructions to significantly
improve the performance of idle loop handling and
allow the system to provide higher performance at lower
power consumption.

PERFORMANCE
Given all of these changes in the 90nm version of the
Intel Pentium 4 processor, the real question is how much
performance benefit will be realized on applications
from making these changes.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 13

Intel Technology Journal, Volume 8, Issue 1, 2004

Table 2: Detailed system configuration for results shown in Figure 5

Processor Pre-production Intel® Pentium® 4 processor 3.40 GHz supporting Hyper-
Threading Technology

Pre-production Intel® Pentium® 4 processor 3.40E
GHz supporting Hyper-Threading Technology

Motherboard Intel Desktop Board D875PBZ AA-204 Intel Desktop Board

Motherboard
BIOS BZ87510A.86A.0041.P09 Pre-production BIOS

Cache 512KB full-speed Advanced Transfer Cache 1MB full-speed Advanced Transfer Cache

Memory Size 1 GB (2x512MB) PC3200 DDR400 (Samsung* PC3200U-30331-B2
M368L6423ETM-CCC CL3 Double-Sided DDR400 memory)

1 GB (2x512MB) PC3200 DDR400 (Samsung*
PC3200U-30331-B2 M368L6423ETM-CCC CL3
Double-Sided DDR400 memory)

Hard Disk Seagate* ST3160023AS 160 GB Serial ATA (SATA) (7200 RPM, 8MB
cache)

Seagate* ST3160023AS 160 GB Serial ATA (SATA)
(7200 RPM, 8MB cache)

Hard Disk
Driver Intel Application Accelerator RAID Edition 3.5 with RAID ready Intel Application Accelerator RAID Edition 3.5 with

RAID ready

Video
Controller/Bus ATI* Radeon* 9800 Pro 8x AGP ATI* Radeon* 9800 Pro 8x AGP

Video
Memory 128 MB DDRAM 128 MB DDRAM

Operating
System

Microsoft* Windows* XP Professional, Build 2600, Service pack 1 on NTFS
Default Microsoft DirectX* 9.0b

Microsoft* Windows* XP Professional, Build 2600,
Service pack 1 on NTFS
Default Microsoft DirectX* 9.0b

Video Driver
Revision ATI Catalyst* 3.5 Driver Suite: display driver version: 6.14.10.6360 ATI Catalyst* 3.5 Driver Suite: display driver version:

6.14.10.6360

Graphics 1024x768 resolution, 32-bit color 1024x768 resolution, 32-bit color

SPEC*
CINT2000

Intel C++ Compiler Plug-in V8.0
Microsoft Visual Studio* .NET V7.0 (for libraries)

Intel C++ Compiler Plug-in V8.0
Microsoft Visual Studio* .NET V7.0 (for libraries)

SPEC*
CFP2000

Intel C++ Compiler Plug-in V8.0 and Intel FORTRAN Compiler Plug-in V8.0
Microsoft Visual Studio .NET V7.0 (for libraries)

Intel C++ Compiler Plug-in V8.0 and Intel FORTRAN
Compiler Plug-in V8.0
Microsoft Visual Studio .NET V7.0 (for libraries)

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 14

Intel Technology Journal, Volume 8, Issue 1, 2004

Table 3: Detailed system configuration for results in Figure 6

Processor Pre-production Intel® Pentium® 4 processor 3.40E GHz
supporting Hyper-Threading Technology

Motherboard Intel Desktop Board

Motherboard BIOS Pre-production BIOS

Cache 1MB full-speed Advanced Transfer Cache

Memory Size 512MB (4x128MB) Samsung PC3200U-30330-C3 M368L1624DTM-
CCC 128MB DDR PC3200 CL3 Single-Sided DDR400 memory

Hard Disk IBM 120GXP 80 GB IC35L080AVVA07-0 ATA-100

Hard Disk Driver MS default UDMA-5

Video Controller/Bus ATI Radeon 9700 Pro AGP graphcis

Video Memory 128 MB DDRAM

Operating System Microsoft* Windows* XP Professional, Build 2600, Service pack 1 on
NTFS Default Microsoft DirectX* 9.0b

Video Driver Revision ATI CATALYST 6.13.10.6166 driver

Graphics 1024x768 resolution, 32-bit color

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 15

Intel Technology Journal, Volume 8, Issue 1, 2004

Figure 5: Performance comparison (estimated
SPEC* CPU2000* performance as measured on pre-

production hardware)

Figure 5 compares the performance of this new
processor with the performance of the 130nm version of
the Intel Pentium 4 processor with a 512kb L2 cache on
SPEC CPU2000, as estimated on pre-production
hardware. Detailed system configuration information is
shown in Table 2. As can be seen here, the performance
enhancements that have been described in this paper do
have a noticeable effect on overall performance.

Figure 6: Performance benefit of Hyper-Threading
Technology

Hyper-Threading Technology on this processor also
shows significant benefits on popular consumer
applications and for various multi-tasking scenarios.
Figure 6 compares the performance on some of these
applications and scenarios when Hyper-Threading
Technology is enabled and disabled on this processor.

Table 3 lists the detailed system configuration for these
results.

CONCLUSION
The NetBurst microarchitecture that was introduced
with the Intel Pentium 4 processor brought

unprecedented levels of performance to the end user
through its unique features such as the Execution Trace
Cache and an execution core that ran at 2x the core
frequency. Now, we are building upon the strength of
those previous processors with the new Intel Pentium 4
processor manufactured on the 90nm process. With
these new performance features and enhancements, the
performance of desktop processors continues to reach
new heights. With capabilities like Hyper-Threading
Technology and a set of new instructions, building
blocks are being provided for software to be created to
take advantage of this power and deliver to users a new
level of functionality on their desktop.

1.07
1.14

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

SPECint*_base2000 SPECfp*_base2000

R
el

at
iv

e
Pe

rf
or

m
an

ce

Intel Pentium® 4 Processor with HT Technology 3.40 GHz

Intel Pentium® 4 Processor with HT Technology 3.40E GHz

ACKNOWLEDGMENTS
The authors thank all of the architects, designers, and
validators around the world who collaborated in the
creation of this product.

REFERENCES
[1].

[2].

Hinton, G.; Sager, D.; Upton, M.; Boggs, D.;
Carmean, D.; Kyker, A.; Roussel, P., “The
Microarchitecture of the Pentium® 4 Processor,”
Intel Technology Journal Q1, 2001.

Marr, D.; Binns, F.; Hill, D.; Hinton, G.; Koufaty,
D.; Miller, J.; Upton, M., “Hyper-Threading
Technology Architecture and Microarchitecture: A
Hypertext History,” Intel Technology Journal, Q1,
2002.
http://developer.intel.com/technology/itj/2002/volu
me06issue01/

1.201.19 1.26 1.30
1.13

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

MainConcept*
1.3.1

Windows*
Media Encoder

9.0

Cinema* 4D Adobe*
Photoshop*

7.01

Magix* MP3
2004 Diamond

Re
la

tiv
e

Pe
rfo

rm
an

ce

HT Technology Disabled HT Technology Enabled

[3]. Gochman, S.; Ronen, R.; Anati, I.; Berkovits, A.;
Kurts, T.; Naveh, A.; Saeed, A.; Sperber, Z.; and
Valentine, R., “The Intel® Pentium® M Processor:
Microarchitecture and Performance,” Intel
Technology Journal, Q2, 2003.
http://developer.intel.com/technology/itj/2003/volu
me07issue02/

AUTHORS’ BIOGRAPHIES
Darrell Boggs is a senior principal engineer/architect
with Intel Corporation and has been working as a
microarchitect for 12 years. He graduated from Brigham
Young University with a M.S. degree in Electrical
Engineering. Darrell played a key role on the Intel®

Pentium Pro processor design, and was one of the key

 Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 16

http://www.intel.com/technology/itj/2002/volume06issue01/
http://www.intel.com/technology/itj/2002/volume06issue01/
http://developer.intel.com/technology/itj/2003/volume07issue02/
http://developer.intel.com/technology/itj/2003/volume07issue02/

Intel Technology Journal, Volume 8, Issue 1, 2004

architects of the Pentium 4 processor. Darrell holds
many patents in the areas of register renaming;
instruction decoding; events and state recovery
mechanisms; speculative architectures; and Hyper-
Threading Technology. His e-mail address is
darrell.boggs at intel.com.

Aravindh Baktha has been with Intel for 12 years. He
worked on the design and microarchitecture of the
Pentium 4 processor. Prior to joining the Pentium 4
processor team, Aravindh worked on the design of the
80960HA processor in Arizona and the Itanium
processor in California. Aravindh received his
undergraduate degree from the University of Zambia
and his M.S. degree in Electrical and Computer
Engineering from Illinois Institute of Technology. His e-
mail address is aravindh.baktha at intel.com

Jason M. Hawkins received his B.S. degree in
Electrical and Computer Engineering from Brigham
Young University. He joined Intel in 1997 and has
focused on validation and microarchitecture of the
Pentium 4 family of processors. His e-mail address is
jason.hawkins at intel.com.

Deborah T. Marr is the CPU architect responsible for
Hyper-Threading Technology in the Desktop Products
Group. Deborah has been at Intel for over thirteen years.
She first joined Intel in 1988 and made significant
contributions to the Intel 386SX processor, the Pentium
Pro processor, and the Pentium 4 processor. Her
interests are in high-performance microarchitecture and
performance analysis. Deborah received her B.S. degree
in EECS from the University of California at Berkeley
in 1988 and her M.S. degree in ECE from Cornell
University in 1992. Her e-mail address is debbie.marr at
intel.com.

John (Alan) Miller has worked at Intel for over seven
years. During that time, he has worked on design and
architecture for the Pentium 4 processor. Alan obtained
his M.S. degree in Electrical and Computer Engineering
from Carnegie Mellon University. His e-mail address is
alan.miller at intel.com.

Patrice Roussel graduated from the University of
Rennes in 1980 and L’Ecole Supérieure d’Electricité in
1982 with a M.S. degree in signal processing and VLSI
design. Upon graduation, he worked at Cimatel, an
Intel/Matra Harris joint design center. He moved to the
USA in 1988 to join Intel in Arizona and worked on the

960CA microprocessor. In late 1991, he moved to Intel
in Oregon to work on the Pentium Pro processor. Since
1995, he has been the floating-point architect of the
Pentium 4 processor. His e-mail address is
patrice.roussel at intel.com.

 Itanium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

Ronak Singhal received his B.S. and M.S. degrees in
Electrical and Computer Engineering from Carnegie
Mellon University. He subsequently joined Intel in 1997
and has spent the majority of his time focused on
microarchitecture performance analysis and verification
for the Pentium 4 processors. His e-mail address is
ronak.singhal at intel.com.

Bret Toll received his B.S. degree in Electrical
Engineering from Portland State University and M.S.
degree in Computer Science and Engineering from
Oregon Graduate Institute. He joined Intel in 1993 and
has focused on microcode, machine check architecture,
and instruction decode microarchitecture for the
Pentium 4 processor. In his spare time he likes to tinker
with cars and is currently building a 1965 Ford roadster
from a kit of components and hand-picked items from
junkyards. His e-mail address is bret.toll at intel.com.

K. S. Venkatraman received his B.S. degree from Birla
Institute of Technology and M.S. degree from Villanova
University. He joined Intel in 1997 and has focused on
microarchitecture as well as post-silicon performance
analysis for the Pentium 4 processor. In his spare time,
he enjoys amateur radio and riding his motorcycle. His
e-mail address is k.s.venkatraman at intel.com.

Copyright © Intel Corporation 2004. This publication
was downloaded from http://developer.intel.com

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 17

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology 18

Support for the Intel® Pentium® 4 Processor with Hyper-
Threading Technology in Intel® 8.0 Compilers

Kevin B. Smith, Enterprise Platforms Group, Intel Corporation
Aart J.C. Bik, Enterprise Platforms Group, Intel Corporation
Xinmin Tian, Enterprise Platforms Group, Intel Corporation

Index words: Compilers, Intel Pentium 4 processor, Optimization, OpenMP, Hyper-Threading
Technology, Vectorization

ABSTRACT Intel’s compilers support both automatic optimization
techniques and programmer-controlled methods to
achieve high-performance software. The compiler
provides two automatic optimization techniques to gain
performance from recompilation: vectorization and
advanced instruction selection. We describe new
vectorization capabilities focusing on how these improve
performance on the new processor. Then we present a
section on advanced instruction selection providing
details on both the implementation of complex data
operations using the new SSE3 instructions, and on how
micro-architectural changes affect instruction selection
for other operations. The mapping of complex operations
onto SSE/SSE2/SSE3 instructions is also shown, and we
contrast this with the implementation of complex data
types when generating code for Intel processors that do
not support the SSE3 instructions. Next, we discuss how
changes to the compiler’s advanced instruction selection
are motivated by the processor’s micro-architectural
changes. Experimental results show that together these
improvements to automatic optimization techniques can
speed up software by up to 25%.

Intel’s 8.0 compilers enable software developers to take
advantage of the new architectural and micro-
architectural features of the latest Intel® Pentium® 4
processor with Hyper-Threading Technology. This paper
describes the support for both automatic optimization
techniques and programmer-controlled methods of
achieving high performance using the Intel 8.0 C++ and
FORTRAN compilers. Details of both the automatic and
programmer-controlled optimization techniques are
presented. Results show that use of this compiler can
significantly speed up software running on this new
processor.

INTRODUCTION
The latest Intel Pentium 4 processor with Hyper-
Threading Technology contains new features, both
architectural and micro-architectural, which Intel’s 8.0
compiler family uses to significantly increase software
performance. This paper shows how the Intel 8.0 C++ and
FORTRAN compilers enable software developers to take
advantage of the new features of this latest Intel
processor.

The latest Intel Pentium 4 processor implements a set of
new instructions called the Streaming-SIMD-Extensions 3
(SSE3). We present an overview of these new
instructions. Similarly, we discuss the new micro-
architectural features and changes that affect the
compiler.

Intel’s compilers also offer programmers the ability to
leverage performance features of Intel’s processors by
making changes to their source code. There are two kinds
of source-level changes that the user can perform to take
advantage of this new processor’s performance features:
direct insertion of SSE3 instructions and insertion of
OpenMP* [7, 8] directives. The direct insertion of SSE3
instructions can be done either with intrinsic functions,
which map directly to SSE3 instructions, or with inline
assembly code containing SSE3 instructions. Both
methods are discussed in this paper. Insertion of OpenMP

 ® Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

* Other brands and names are the property of their
respective owners.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 19

Intel Technology Journal, Volume 8, Issue 1, 2004

directives allows the programmer to take advantage of
improved Hyper-Threading (HT) Technology support in
this latest Intel Pentium 4 processor. Results are presented
showing that our OpenMP implementation works with the
improved HT Technology to produce significant
performance improvements.

We conclude by summarizing the ways in which Intel’s
8.0 compilers enable programmers to extract maximum
performance from this latest Intel processor, and we
review the performance improvements that have been
achieved using these methods.

Throughout the paper, assembly examples follow the
conventional format (see [13]).

NEW FEATURES
The latest Intel Pentium 4 processor contains both
architectural and micro-architectural changes that the
compiler uses to increase software performance.

New Instructions
The Streaming-SIMD-Extensions 3 supports 11 new
instructions that can be used by the compiler to boost
software performance: addsubpd, addsubps, haddpd,
haddps, hsubpd, hsubps, movddup, movshdup, movsldup,
fisttp, and lddqu. The new addsubpd and addsubps
instructions allow one vector element to be subtracted
while its next vector element is added. The haddpd,
haddps, hsubpd, and hsubps instructions provide the
capability to add or subtract horizontally within a vector,
which enables more efficient clean-up code at the end of
vectorized reduction loops. The movddup, movshdup, and
movsldup instructions allow duplication of certain data
elements into a vector. The lddqu instruction is a more
efficient form of movups, useful when a memory load is
likely to cross a cache-line boundary. Finally, the fisttp
instruction provides a more efficient implementation of
floating-point to integer conversion.

Micro-Architectural Changes
In addition to providing new instructions, the latest Intel
Pentium 4 processor also has micro-architectural changes
that the compiler can use to boost software performance.
The latency of the multiply, shift, rotate, and some
SSE/SSE2 instructions has been decreased. This reduced
latency makes it more desirable than it used to be for the
compiler to use these instructions. The processor’s ability
to forward stored data to a subsequent load that overlaps
the store has also been improved. This allows more
aggressive vectorization, since there is less probability
that inefficiencies due to store mis-forwarding occur as a
side effect. There are also many micro-architectural
changes, which significantly improve Hyper-Threading
Technology performance, and increase the opportunities

for software performance improvement as a result of
threading of an application.

AUTOMATIC OPTIMIZATION
TECHNIQUES
New compiler options enable the generation of SSE3
instructions and tuning specifically for the micro-
architectural changes in the latest Intel Pentium 4
processor. On Microsoft Windows∗ platforms, the /QxP
option [11] directs Intel’s compilers to use SSE3 and to
tune for the new processor (for Linux* platforms the –xP
option [12] has the same effect). Additional options are
available (/QaxP [11] for Windows and –axP [12] for
Linux) that direct the compiler to generate special high-
performance copies of functions that can be sped-up using
automatic techniques targeted for the new processor.
These high-performance function copies will only be
executed on the new processor, while on older Intel
processors a less optimized version will be executed.
When these options are specified, two classes of
automatic optimizations are used to improve software
performance: vectorization and advanced instruction
selection.

Vectorization
Multimedia extensions provide a convenient way to
exploit fine-grained parallelism in an application. Because
manually rewriting sequential software into a form that
exploits multimedia extensions can be rather
cumbersome, vectorizing compilers have proven to be
necessary tools for making multimedia extensions easier
to use. Details of the vectorization methodology used by
the Intel® C++ and FORTRAN compilers are given
elsewhere [2][3]. This section briefly discusses aspects of
vectorization that are specific to exploiting SSE3
instructions.

Vectorization of Single-Precision Complex Data
Types
A complex number c∊ℂ has the form

c = x + y·i

where x,y∊ℝ denote the real part and imaginary part,
respectively. The C99 standard [5] and FORTRAN have
built-in single-precision and double-precision complex
data types that simplify programming with complex
numbers by assigning the usual complex semantics to
operators like + (addition), - (subtraction), *
(multiplication), and / (division) when applied to
operands with a complex data type. Some SSE3

∗ Other brands and names are the property of their
respective owners.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 20

Intel Technology Journal, Volume 8, Issue 1, 2004

instructions are particularly useful to vectorize these
complex operations in an efficient manner. Consider, for
example, the FORTRAN code shown below.

 complex a(10), b(10), c(10)
 do i = 1, 10
 a(i) = b(i) * c(i)
 enddo
The data layout of the single-precision complex arrays
interleaves the 4-byte real parts and 4-byte imaginary
parts of all complex elements in the 80-byte chunk of
memory allocated for each array. Since complex
multiplication is defined as

c·c’ = (x·x’ - y·y’) + (x·y’ + y·x’)·i

the Intel compiler can translate the DO-loop shown above
into the following sequence of SSE and SSE3
instructions.
L:
movaps xmm0, XMMWORD PTR b[eax]
movsldup xmm2, XMMWORD PTR c[eax]
mulps xmm2, xmm0
movshdup xmm1, XMMWORD PTR c[eax]
shufps xmm0, xmm0, 177
mulps xmm1, xmm0
addsubps xmm2, xmm1
movaps XMMWORD PTR a[eax], xmm2
add eax, 16
cmp eax, 80
jb L

Since vector iterations process two complex data elements
at one time, the loop only iterates five times. Furthermore,
fine-grained computational overlap between operations
on the real and imaginary parts of each complex data
element is obtained.

0

1

2

3

1 2 4 8 16 32 64 128 256 512

Array Length

Ex
ec

. T
im

e
(m

ic
ro

se
cs

)

0

1

2

3

4

Sp
ee

du
p

SEQ VEC S

Figure 1: Single-precision complex vectorization
speedup

Figure 1 plots the execution times (in microseconds) of
the FORTRAN loop shown above using a sequential
FPU-based implementation (SEQ) and a vectorized
implementation using SSE3 instructions (VEC) for

various array lengths using a 2.8GHz Intel Pentium 4
processor with HT Technology. Execution times were
obtained by running the kernel repeatedly and dividing
the total runtime accordingly. The corresponding speedup
(S) is shown in the same figure using a secondary y-axis.
Clearly, vectorizing single-precision complex operations
by means of SSE3 instructions already pays off for arrays
of length two or more, with the speedup going up to
almost four.

Vectorization for SSE3 Idioms
Some SSE3 instructions enable a slightly more efficient
implementation of constructs that were already vectorized
by previous versions of Intel’s compilers. The instruction
haddps, for instance, simplifies accumulating partial sums
after a vectorized reduction. The following C example
 float a[100], red;
 …
 red = 0;
 for (i = 0; i < 100; i++) {
 red += a[i];
 }

is vectorized as shown below, where the loop body
exploits four-way SIMD parallelism to implement the
sum-reduction. The post loop clean-up code uses two
horizontal add instructions to reduce the four partial sums
back into one final sum again (formerly, this required six
instructions).
 pxor xmm0, xmm0
L: addps xmm0, XMMWORD PTR a[eax]
 add eax, 16
 cmp eax, 400
 jb L
 haddps xmm0, xmm0
 haddps xmm0, xmm0
 movss DWORD PTR red, xmm0

Other SSE3 instructions provide a more compact way to
implement some frequently occurring data rearranging
instruction sequences.

Improved store-to-load forwarding in the latest Intel
Pentium 4 processor also allows the Intel 8.0 compilers to
become more aggressive in exploiting fine-grained SIMD
parallelism in straight-line code. As an example, the
structure shown below
struct {
 double x;
 double y;
} v;

...
v.x += 1.0;
v.y += 2.0;

can be mapped to only a few SSE2 instructions.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 21

Intel Technology Journal, Volume 8, Issue 1, 2004

 movapd xmm0, XMMWORD PTR v <16,0>… … <16,15>
 addpd xmm0, const_1.0_2.0 <8,0><8,4> <8,2><8,6> <8,1><8,5> <8,3><8,7>

<4,0> <4,2> <4,1> <4,3> movapd XMMWORD PTR v, xmm0 <2,0> <2,1>
 <1,0>
Such straight line code vectorization offers the compiler
many more opportunities to improve the performance
using SSE/SSE2/SSE3 instructions than more traditional
loop-oriented vectorization. Collapsing fine-grained
parallelism into enclosing loops exposes more iterations
to a vector loop. This increases the probability that loops
can be effectively vectorized and enables the compiler to
apply more advanced methods, such as dynamic loop
peeling for alignment or dynamic data dependence testing
(see [3] for details). The two statements in the following
loop-body, when taken in isolation, do not expose enough
parallelism to enable use of 4-way parallel SSE
instructions.

with the meet operator going toward bottom element <1,0>
(i.e., arbitrary alignment), and jump functions that use
modulo arithmetic to correlate incoming formal
arguments with any outgoing expression used as actual
argument, the problem can be solved similar to the
algorithm given in [4] for interprocedural constant
propagation. More details can be found in [3]. A similar
approach to propagating alignment information within a
function was proposed by Larsen et. al. in [6].

More precise knowledge on the alignment of data
structures can substantially increase the effectiveness of
using SSE3 instructions. The compiler’s ability to
perform interprocedural alignment analysis is partially
responsible for the large performance improvement that is
seen in the results section for the 168.wupwise
benchmark.

struct {
 float x;
 float y;
} a[100];

Advanced Instruction Selection for (i = 0; i < 100; i++) {
 a[i].x = 0;

As stated earlier, both FORTRAN and C99 support basic
data types used for representing complex numbers.
Advanced instruction selection uses the new SSE3
instructions to implement these complex types’ basic
operations. Additionally, micro-architectural changes
create opportunities for advanced instruction selection
optimizations to tune for the latest Intel Pentium 4
processor. Both of these forms of instruction selection
will be covered in the following sections.

 a[i].y = 0;
}

However, when collapsed into the loop the full potential
of SSE instructions can be exploited, as shown below.

 pxor xmm0, xmm0
 xor eax, eax
L: movaps XMMWORD PTR a[eax], xmm0
 add eax, 16
 cmp eax, 800 Implementing Complex Operations with SSE3
 jb L As described previously, the representation of the

complex data types interleaves the real and imaginary
parts in memory. The real portion occupies memory at the
lowest address and the imaginary portion occupies
memory immediately above the real portion. With the
addition of SSE3 instructions, operations on complex data
map well onto the vector instruction sets provided on the
latest Intel Pentium 4 processor.

Interprocedural Alignment Analysis
Like most instructions, multimedia instructions operate
more efficiently when memory operands are aligned at
their natural boundary, i.e., 64-bit memory operands
should be 8-byte aligned and 128-bit memory operands
should be 16-byte aligned. In order to obtain aligned
access patterns in vector loops, the Intel compilers
perform advanced static and dynamic alignment analysis
and an enforcement method, as described elsewhere
[2][3]. The Intel 8.0 compilers further extend this support
with interprocedural alignment analysis. This analysis
consists of finding maximal values 2n in a mapping
ALIGN such that for a function f(), the value

The C99 Standard [5] defines many operations and library
routines that perform computation on complex data items.
In addition to the basic operations mentioned previously,
other complex operations are provided by library routines.
These additional operations include complex conjugate
(conj), extract real part (creal), and extract imaginary part
(cimag). In the Intel compilers’ intermediate
representation, both single- and double-precision complex
data types and operations are directly represented and
optimized when generating code targeting the latest Intel
Pentium 4 processor. At the transition from machine-
independent optimization to machine-specific code
generation, the complex operations are translated directly

 ALIGN(f, p) = <2n, o> with 0 ≤ o < 2n

denotes that all actual arguments that are associated with
formal pointer/call-by-reference argument p evaluate to
an address A that satisfies A mod 2n = o.

By defining an alignment lattice of the form

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 22

Intel Technology Journal, Volume 8, Issue 1, 2004

into SSE, SSE2, and SSE3 instructions. This occurs for
the basic operations and for the simpler library routines.
We discuss how these operations are translated in the next
section.

Complex Loads and Stores
The most basic of operations on complex data are loading
and storing. For single-precision complex data, the
movlps instruction is used to move the data into the lower
two single-precision vector elements of an xmm register.
This same instruction is also used for storing single-
precision complex data. For double-precision complex
data, the movapd instruction will be used to load and
store the data to/from an xmm register. This instruction
can only be used if the effective address for the load/store
is known to be 16-byte aligned. In the event that the
compiler cannot prove alignment of the data, then a
sequence of movlpd, movhpd instructions will be used to
perform the load/store. The ability to use the aligned
forms of these instructions has a significant impact on the
performance of the resultant code, as discussed
previously.

Creation of Complex from Real, Imaginary Parts
Complex numbers are often created from separate
expressions for the real and imaginary parts. This is done
using the unpcklps or unpcklpd instructions. For the
double-precision complex creation operation, if both
expressions are loaded directly from memory, then this
can be more efficiently done with the movlpd, movhpd
instructions. A common operation of creating a double-
precision complex with an imaginary part of 0.0 from a
real expression is done with an xorpd instruction,
followed by a movsd instruction. When the real value is a
memory expression, the xorpd is unnecessary as movsd
from memory zeros the upper vector element.

Complex Addition and Subtraction
The operations of complex addition and subtraction are
defined as adding or subtracting the real and imaginary
portions of the data. These operations map
straightforwardly onto the addps/subps and addpd/subpd
instructions, respectively, for single- and double-precision
complex data.

Complex Conjugate
The complex conjugate operation is defined as leaving the
real portion of the complex number unchanged, while
negating the imaginary portion. The fastest
implementation of this is done using the xorps/xorpd
instructions with a constant having only the sign bit of the
imaginary part set. This toggles the sign bit of the
imaginary part, while leaving the real portion unchanged.
The implementation of complex conjugate for a double-

precision complex data object that resides in the xmm0
register is shown below.
_floatpack.1: DWORD 0x80000000
 DWORD 0x00000000
 DWORD 0x00000000
 DWORD 0x00000000
…xorpd xmm0, XMMWORD PTR _floatpack.1

Complex Multiplication
The definition of complex multiplication was given above
in discussing vectorization of single-precision complex
data types. Complex multiplication of two operands A
and B of double-precision complex type is handled quite
similarly. The code sequence is shown below.
movapd xmm0, XMMWORD PTR A
movddup xmm2, QWORD PTR B
mulpd xmm2, xmm0
movddup xmm1, QWORD PTR B+8
shufpd xmm0, xmm0, 1
mulpd xmm1, xmm0
addsubpd xmm2, xmm1
movapd XMMWORD PTR C, xmm2

As can be seen above, the movddup and addsubpd SSE3
instructions make the implementation of complex
multiplication quite efficient. In contrast, the code
generated for this same operation when targeting older
Intel Pentium 4 processors is shown below.
movsd xmm3, QWORD PTR A
movapd xmm4, xmm3
movsd xmm5, QWORD PTR A+8
movapd xmm0, xmm5
movsd xmm1, QWORD PTR B
mulsd xmm4, xmm1
mulsd xmm5, xmm1
movsd xmm2, QWORD PTR B+8
mulsd xmm0, xmm2
mulsd xmm3, xmm2
subsd xmm4, xmm0
movsd QWORD PTR C, xmm4
addsd xmm5, xmm3
movsd QWORD PTR C, xmm5

As can be seen this sequence uses the scalar SSE2
instructions and isn’t as efficient in either code size or
execution time.

Complex Real and Imaginary Part Extraction
Both the creal and cimag operations are generated using
the vector instruction sets. The creal operation requires no
instructions at all. The compiler simply uses scalar
SSE/SSE2 instructions to operate on the low vector
element in future computations. For the cimag operation,
if the complex value is in memory, the compiler simply
adjusts the memory address and size to refer to the
imaginary part of the value. When the value is in an xmm
register, then a movshdup or unpckhpd instruction is used
to copy the imaginary value into the lowest vector
element of the register. Thereafter, scalar SSE/SSE2

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 23

Intel Technology Journal, Volume 8, Issue 1, 2004

operations will be performed using the resulting value in
the lowest vector element.

Partial Constant Propagation and Folding
The expansion of complex operations into vector
instructions can result in some partially redundant
operations. For example in the code below, a double-
precision complex value A is multiplied by a scalar B that
has been cast to a double-precision complex value. After
the cast the complex representation of B has an imaginary
part of 0.0.
C = A * (double _Complex)B;

The expansion of this multiplication would be as shown
below.
movapd xmm0, XMMWORD PTR A
movsd xmm2, QWORD PTR B
movapd xmm1, xmm2
movddup xmm2, xmm2
mulpd xmm2, xmm0
unpckhpd xmm1, xmm1
shufpd xmm0, xmm0, 1
mulpd xmm1, xmm0
addsubpd xmm2, xmm1
movapd XMMWORD PTR C, xmm2

The unpckhpd in the above sequence serves to duplicate
the imaginary part into both high and low vector
elements. However, the upper vector element of xmm1
can be proven to be zero, so the unpckhpd instruction just
creates a vector of 0.0. This zero vector will be used as an
operand to a mulpd; therefore, the mulpd will also
produce a zero vector. The result of the mulpd is an
operand of addsubpd. A source operand of a zero vector
is an identity operand for addsubpd, passing through the
destination operand unchanged. So after partial constant
propagation and arithmetic simplification, the above code
has been optimized into the code below.
movapd xmm0, XMMWORD PTR A
movddup xmm2, QWORD PTR B
mulpd xmm2, xmm0
movapd XMMWORD PTR C, xmm2

Partial constant folding and arithmetic simplification
allows extremely efficient generation of complex
operations involving scalar values converted to complex,
a frequent occurrence. In a micro-benchmark containing
only complex multiplication by a scalar, this optimization
improves execution time by 55%.

Maximal Use of SSE/SSE2/SSE3 Instructions
The latest Intel Pentium 4 processor has improved latency
for some of the frequently used operations in SSE and
SSE2 instructions. For example, cvtps2pd latency is
improved from seven cycles in earlier Intel Pentium 4
processor implementations to three cycles. In addition,
micro-architectural improvements have raised the overall

performance of the SSE/SSE2 instruction sets. The Intel
8.0 compilers now use SSE/SSE2/SSE3 instructions for
all possible floating-point operations when generating
code targeted for the latest Intel Pentium 4 processor.
This improves performance of many floating-point-
intensive applications, particularly those where
performance was limited by denormal exception
processing. The improvement in denormal processing is a
result of using the flush-to-zero (FTZ) and denormals-are-
zero (DAZ) modes that are available only with the SSE,
SSE2, and SSE3 instruction sets.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 24

Intel Technology Journal, Volume 8, Issue 1, 2004

1

1.2

1.4

1.6

1.8

2

2.2

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.
tw

olf

16
8.w

up
wise

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
7.f

ac
er
ec

18
8.a

mmp

18
9.
luc

as

19
1.f

ma3
d

20
0.s

ixt
ra

ck

30
1.a

ps
i

Sp
ee

du
p

vs
 O

2

QxN
QxP

Figure 2: Processor-specific speedup of SPEC∗ CPU 2000 estimates (based on measurements on Intel internal
platforms)

Lower Multiply/Shift Latency Fisttp Instruction Usage
The latency of the imul and shl instructions has been
improved in the new Intel Pentium 4 processor. This
caused changes to the compiler’s heuristics for expansion
of multiplication by compile-time constants. These
changes result in more compact code at the same
performance level. For example, when generating code
for older Intel Pentium 4 processors, a multiply of edx by
68 produces

The SSE3 fisttp instruction is useful for converting
floating-point data to integer. For conversion from
floating-point format to 32-bit integer or smaller data
types the compiler will use the cvtsd2si or cvtpd2dq
instructions. However, for converting from floating-point
format to 64-bit signed or unsigned integer format, the
fisttp instruction is most efficient, and the compiler will
use the instruction in that circumstance. This is illustrated
by the following snippet of C code. lea ecx, DWORD PTR [edx+edx]

add ecx, ecx __int64 llfunc(double in)
lea eax, DWORD PTR [ecx+ecx] {
add eax, eax return (__int64)(in);
add eax, eax }
add eax, eax
add eax, ecx The code generated for this by the Intel 8.0 C++ Compiler

using the –QxP –O2 options follows.
However, using compiler option /QxP, the code below is
produced for the same operation. _llfunc PROC NEAR

 sub esp, 20
mov ecx, edx fld QWORD PTR [esp+24]
shl ecx, 6 fisttp QWORD PTR [esp]
lea eax, DWORD PTR [ecx+edx*4] mov eax, DWORD PTR [esp]
 mov edx, DWORD PTR [esp+4]

 add esp, 20 The resulting code is smaller and has slightly better
performance than the earlier sequence. ret

∗ Other brands and names are the property of their

respective owners.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 25

Intel Technology Journal, Volume 8, Issue 1, 2004

For comparison, the code below is generated for the same
code when using the –QxN –O2 options. Note the use of
the fnstcw and fldcw instructions that are necessary to
assure that rounding is done towards 0 as required by the
C language.
_llfunc PROC NEAR
 sub esp, 20
 fld QWORD PTR [esp+24]
 fnstcw [esp+8]
 movzx eax, WORD PTR [esp+8]
 or eax, 3072
 mov DWORD PTR [esp+16], eax
 fldcw [esp+16]
 fistp QWORD PTR [esp]
 fldcw [esp+8]
 mov eax, DWORD PTR [esp]
 mov edx, DWORD PTR [esp+4]
 add esp, 20
 ret

The code using the new fisttp instruction is 3 times faster
than the code using the older code sequence as measured
on a micro-benchmark doing only conversion of double-
precision floating-point values to signed 64-bit integers.

SPEC* CPU2000 Performance Results
To give a flavor of the impact of processor-specific
optimizations, some performance results are given for
SPEC* CPU2000 [9]. This industry-standardized
benchmark suite consists of 14 floating-point and 12
integer C/C++ and FORTRAN benchmarks that are
derived from real-world applications. The graph in Figure
2 shows the speed-ups obtained on a 2.8GHz Intel
Pentium 4 processor with HT Technology for each of the
SPEC CPU2000 benchmarks. The bars denoted QxP
represent the ratio of the performance of executables
obtained using high-level, interprocedural, profile-guided,
and processor-specific optimizations for the latest Intel
Pentium 4 processor with HT Technology processor (-O3
–Qipo –Qprof_use –QxP) compared with the
performance of executables that result when using default
optimizations (-O2). Similarly, the bars denoted QxN
represent the ratio of the performance of executables
obtained using high-level, interprocedural, profile-guided,
and processor-specific optimizations for older Intel
Pentium 4 processors (-O3 –Qipo –Qprof_use –QxN)
compared with the performance of the default
executables. The results reveal the advantages of the latest
processor-specific optimizations particularly for programs
such as 168.wupwise, where performance is highly
dependent on the speed of complex arithmetic. For
168.wupwise, this results in a 25% improvement
compared to older Intel Pentium 4 processor-specific
optimizations, and a 2X performance improvement
compared to default (-O2) level of optimization. The
results also show that significant performance

improvements can be obtained using the latest Intel
Pentium 4 processor even when using processor-specific
optimizations (-QxN) that are targeted at older Intel
Pentium 4 processors.

PROGRAMMER-GUIDED
OPTIMIZATION TECHNIQUES
In addition to automatic optimization techniques, the Intel
8.0 compilers also support programmer-controlled
methods of improving software performance for the latest
Intel Pentium 4 processor. The Intel C/C++ compilers
support intrinsic functions, which the compiler maps
directly to the Streaming-SIMD-Extensions 3 (SSE3).
These intrinsics can be fully optimized by the compiler.
The C/C++ compilers also support inline assembly code,
and the SSE3 instructions are fully supported in inline
assembly. Both the C/C++ and FORTRAN compilers
support OpenMP. The programmer can insert OpenMP
directives into the source programs to allow their
applications to be threaded, thus taking advantage of the
improvements to Intel Pentium 4 processor Hyper-
Threading (HT) Technology [10].

SSE3 Intrinsics
The C/C++ compiler provides a set of intrinsic functions
that the compiler maps directly into SSE3. Intrinsics
allow the programmer to write low-level code using SSE,
SSE2, and SSE3 without having to worry about issues
such as register allocation or instruction scheduling, for
which compilers are well suited. This allows
programmers to concentrate on mapping their algorithms
efficiently to these instructions, and it allows the compiler
to fully optimize these instructions. Table 1 lists the
intrinsics supported for the SSE3 and the instruction that
the intrinsic maps to.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 26

Intel Technology Journal, Volume 8, Issue 1, 2004

Table 1: SSE3 intrinsic to instruction mapping

Intrinsic Name Instruction Generated

_mm_addsub_ps addsubps

_mm_hadd_ps haddps

_mm_hsub_ps hsubps

_mm_moveldup_ps movsldup

_mm_movehdup_ps movshdup

_mm_addsub_pd addsubpd

_mm_hadd_pd haddpd

_mm_hsub_pd hsubpd

_mm_loaddup_pd movddup xmm, m64

_mm_movedup_pd movddup reg, reg

_mm_lddqu_si128 lddqu

Inline Assembly Using SSE3
The Intel C/C++ compiler also supports inline assembly
code in C/C++ source. All of the SSE3 instructions are
supported in inline assembly. Examples of the inline
assembly supported for each of the new instructions are
shown below.
__asm {
 addsubpd xmm0, xmm1
 addsubpd xmm3, XMMWORD PTR mem
 addsubps xmm5, xmm1
 addsubps xmm4, XMMWORD PTR mem
 haddpd xmm2, xmm7
 haddpd xmm3, XMMWORD PTR mem
 haddps xmm5, xmm6
 haddps xmm0, XMMWORD PTR mem
 hsubpd xmm2, xmm7
 hsubpd xmm3, XMMWORD PTR mem
 hsubps xmm5, xmm6
 hsubps xmm0, XMMWORD PTR mem
 lddqu xmm2, XMMWORD PTR mem
 movddup xmm0, xmm1
 movddup xmm2, QWORD PTR mem
 movshdup xmm1, xmm0
 movshdup xmm3, XMMWORD PTR mem
 movsldup xmm1, xmm0
 movsldup xmm3, XMMWORD PTR mem
}

OpenMP-Based Multi-Threading
Due to the simplicity of OpenMP model, it has become
the dominant high-level programming model to exploit
the Thread-Level Parallelism (TLP) in various
applications for shared-memory multi-threaded
architectures. The Intel 8.0 C++/Fortran95 compilers
support OpenMP [7,8] directive-guided parallelization
[9], which significantly increases the domain of
applications amenable to thread-level parallelism. An
application example, shown below, uses OpenMP parallel

sections to exploit the TLP of Audio-Visual Speech
Recognition (AVSR) through functional decomposition.

…
#pragma omp parallel sections default(shared)
{
 #pragma omp section
 { DispatchThreadFunc(&AVSRThData; } // data input and dispatch
 #pragma omp section
 { AudioThreadFunc(&AudioThData); } // process audio data
 #pragma omp section
 { VideoThreadFunc(&VideoThData); } // process video data
 #pragma omp section
 { AVSRThreadFunc(&AVSRThData); } // perform avsr
}

…
From the AVSR code sample shown above, we can see
the omp section-1 invokes the call for data input and
dispatching, the omp section-2 invokes the call to process
the audio data, the omp section-3 invokes a call to process
video data, and the omp section-4 invokes a call to do
AVSR, so the performance gain is obtained by mapping
four sections onto different logical processors to fully
utilize processor resources based on HT Technology. In
the next two sub-sections, we present optimizations used
by Intel 8.0 compilers to tune performance for HT
Technology.

Preloading with Aggressive Code Motion
When two threads are sharing data, it is important to
avoid false sharing. An example of false sharing occurs
when a private and a shared variable are located within
the cache line size boundary (64 bytes) or sector
boundary (128 bytes). When one thread writes the shared
variable, the “dirty” cache line must be written back to
memory and updated for each processor sharing the bus.
Subsequently, the data are fetched into each processor
128 bytes at a time, causing previously cached data to be
evicted from the cache on each processor. False sharing
incurs a performance penalty when two threads run on
different physical processors, due to cache evictions
required to maintain cache coherency, or on logical
processors in the same physical processor package, due to
memory order machine clear conditions. In this section,
we present an optimization-aggressive code motion that
preloads all read-only shared memory references into
register temps from inside of a region/loop/section to
outside of a region/ loop/section, if a memory reference is
proven to be a read-only memory reference based on the
compiler’s load-store analysis and memory
disambiguation. The preloading code is moved right after
the T-entry. For example, in Figure 3, the memory
references of the dope-vector base-address, array lower
bound, and stride are lifted to the outside of the loop and
pre-loaded into a register temp t0, t1, and t2.
Additionally, the memory references of dv_ptr-

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 27

Intel Technology Journal, Volume 8, Issue 1, 2004

>baseaddr, dv_ptr->lower, and dv_ptr->stride are
replaced by register temp t0, t1, and t2, respectively.

The benefit of this optimization is that it reduces the data
false sharing and avoids the performance penalty. This
reduces the overhead of memory de-referencing, since the
value is preloaded into a temporary register for the
frequent read operations. The second benefit is that it
enables advanced optimizations such as vectorization, if
the memory de-references in array subscript expressions
are lifted outside the loop. For example, in Figure 3, the
address computation of array involves the memory de-
references of the member lower and extent of the dope-
vector, the compiler lifts the memory de-references of
lower and extent outside the m-loop, because the compiler
is able to prove that all references to members of the
array’s dope-vector are read-only within the parallel do
loop. In general, this aggressive code motion enables a
number of high-level optimizations such as loop unroll-
and-jam, loop tiling, and loop distribution as well. This
has resulted in good performance improvements in real
applications.

Figure 3: An example of code motion

Auto-Dispatching Fast Lock Routines
Efficient reduction of bus traffic and resource contention
can significantly impact the overall performance of
threaded applications on systems using the Intel Pentium
4 processor with HT Technology. One of the
optimizations implemented in the 8.0 compilers reduces
memory and bus contention by dispatching to fast lock
routines in the Intel OpenMP runtime library based upon
an auto-cpu dispatching mechanism. This allows
generated code to query the thread id only once for each
thread and re-use the thread id for invoking fast lock
routines instead of the generic version of OpenMP lock
routines in the source. The Intel compiler generates code
that dynamically determines which processor the code is

running on and chooses which version of the function will
be executed accordingly. This runtime determination
allows the library to take advantage of architecture-
specific tuning without sacrificing flexibility by allowing
execution of the same binary on older Intel IA32
processors that do not support some of the newer
instructions. See the sample code in Figure 4, the
omp_set_lock and omp_unset_lock routines are called
200,000 times inside a parallel loop.

… …
#pragma omp parallel for shared(x)
for (i=1, i<200000; i++) {
 omp_set_lock(&lock0) ;
 x = x * foo(&x, i) + …
 omp_unset_lock(&lock0) ;
}

… …
tid = __kmpc_get_global_thread_num() ; get thread id outside the loop
… …
$B1$25:
 mov eax, DWORD PTR ___intel_cpu_indicator
 cmp eax, 1 ; CPU dispatch
 je $B1$27
$B1$26:
 mov eax, DWORD PTR [ebp+16]
 push DWORD PTR [eax] ; passing lock0
 push ebx ; passing thread id
 push OFFSET FLAT: _kmpc_loc ; location info
 call ___kmpc_set_lock ; dispatching fast lock routine
$B1$49:
 add esp, 12
 jmp $B1$28
 ALIGN 4
$B1$27:
 mov eax, DWORD PTR [ebp+16]
 push DWORD PTR [eax] ; passing lock0
 call _omp_set_lock ; call generatic lock routine
$B1$50:
 pop ecx
$B1$28:

real allocatable:: w(:,:)
… …
!$omp parallel do shared(x), private(m,n)
do m=1, 1600 !! Front-End creates a dope-vector for allocatable
 do n=1, 1600 !! array w
 w(m, n) = … dv_baseaddr[m][n] = …
 end do
end do
… …
T-entry(dv_ptr …) !! Threaded region after multithreaded code generation
 … …
 t0 = (P32 *)dv_ptr->baseaddr // dv_ptr is a pointer that points
 t1 = (P32 *)dv_ptr->lower // to the dope-vector of array w
 t2 = (P32 *)dv_ptr->extent
 … …
 do prv_m=lower, upper
 do prv_n =1, 1600 // EXPR_lower(w(prv_m, prv_n)) = t1
 t3[prv_m][prv_ n] = … // EXPR_stride(w(prv_m, prv_n)) = t2
 end do
 end do
T-return
… …

Figure 4: Example of dispatching fast lock routines

Originally, the query of thread id was done inside the lock
routine. Each lock routine accesses a shared data structure
that is maintained by the runtime library, which can cause
heavy bus traffic and resource contention due to frequent
access to the shared data structure. With the fast version
of lock routines, we get the thread id outside the loop and
re-use it for invoking the fast-version of lock routines
(e.g., __kmpc_set_lock/__kmpc_unset_lock) at runtime
based on Auto-CPU-dispatch, which reduces the memory
access contention and bus traffic significantly for all lock
routines, while minimizing the overhead of those frequent
queries of thread id. This is important to get performance
gain on Intel hyper-threaded processors. In summary, the
Intel 8.0 compiler generates code to call two versions of
the lock functions. A generic version of the lock function
is invoked that will run on any x86 processor. Another
fast version would be tuned for the Intel Pentium 4
processor family enabled with HT Technology.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 28

Intel Technology Journal, Volume 8, Issue 1, 2004

Performance gain on Intel® Pentium® 4 Processor with HT (2.8GHz 1P+HT)

0.9
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

31
0.w

up
wise

_m

31
2.s

wim
_m

31
4.m

gri
d_

m

31
6.a

pp
lu_

m

31
8.g

alg
el_

m

32
0.e

qu
ak

e_
m

32
4.a

ps
i_m

32
6.g

afo
rt_

m

32
8.f

ma3
d_m

33
0.a

rt_
m

33
2.a

mmp_m

Geo
mean

No
rm

al
iz

ed
 S

pe
ed

up

OMP 1T w/ QxN
OMP 1T w/ QxP
OMP 2T w/ QxN
OMP 2T w/ QxP

Figure 5: Speedup of SPEC* OMPM2001 estimates (based on measurements on Intel internal platforms)

As we can see, the multi-threaded code generated by the
Intel compiler on a Intel Pentium 4 processor 1-CPU
system enabled with Hyper-Threading Technology
achieved a performance improvement of 4.2% to 28.6%
(OMP 2T w/ QxN) on 9 out of 11 benchmarks except
316.applu_m (0.0%) and 312.swim_m (-7.3%). The
312.swim_m slowdown under the two-thread execution
mode was well known: it is due to the fact that the
312.swim_m is a memory bandwidth bounded
application. Overall, the geometric mean improvement
with OMP 2T w/ QxN is 9.2% by running the second
thread on the second logical processor. Furthermore, the
geometric mean improvement with OMP 1T w/ QxP is
1.6%, due to the optimizations presented earlier. Under
OMP 2T w/ QxP, we achieved a performance gain range
from 4.2% to 30.6% for 9 out 11 benchmarks except the
benchmarks 312.swim_m (-7.4%) and 316.applu_m
(0.0%), and the geometric mean improvement was 10.9%.
These performance results demonstrated that the multi-
threaded codes generated and optimized by the Intel 8.0
compilers are very efficient when used with the support
of the well-tuned Intel OpenMP runtime library.

SPEC* OMPM2001 Performance Results
The performance study of SPEC OMPM2001
benchmarks is conducted on a pre-production single
physical processor system built with the latest Intel
Pentium 4 processor with HT Technology, running at
2.8GHz, with 2GB memory, an 8K L1-Cache, and a
512K L2-Cache. The SPEC OMPM2001 is a benchmark
suite that consists of 11 scientific applications.

Those SPEC OMPM2001 benchmarks target small- and
medium-scale SMP multiprocessor systems, and the
memory footprint reaches 2GB for several very large
application programs. For our performance measurement,
all SPEC OMPM2001 benchmarks are compiled by the
Intel 8.0 C++/Fortran compilers with two sets of base
options: -Qopenmp –Qipo –O3 –QxN (OpenMP w/ QxN)
and –Qopenmp –Qipo –O3 –QxP (OpenMP w/ QxP). The
normalized performance speed-up of the SPEC
OMPM2001 benchmarks is shown in Figure 5. This
demonstrates the performance gain attributed to Intel
Hyper-Threading Technology and Intel 8.0 C++/Fortran
compiler support by exploiting thread-level parallelism.

The performance scaling is derived from the baseline
performance of single thread binary with OMP 1T w/
QxN, single thread execution under OMP 1T w/ QxP, and
two threads execution under OMP 2T w/ QxN and OMP
2T w/ QxP, respectively.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 29

Intel Technology Journal, Volume 8, Issue 1, 2004

CONCLUSION [5] International Organization for Standardization,
ISO/IEC 9899:1999. The standard can be obtained at
http://www.iso.org/. Due to the complexity of modern microprocessors,

compiler support has become an important part of
obtaining high performance. The Intel 8.0 compilers
provide full support for the rich features of the latest Intel
Pentium 4 processor with Hyper-Threading Technology.
The compilers perform automatic optimization of
programs using vectorization and advanced instruction
selection techniques that together can yield up to a 2x
performance improvement compared to the default level
of optimization. Additionally, the Intel compilers provide
support for programmer-guided performance
improvements by supporting the Steaming-SIMD-
Extensions 3 (SSE3) directly using compiler intrinsics
and inline-assembly, and by improving OpenMP directive
support, enabling performance improvements of up to
30% for software using OpenMP directives. These
capabilities allow software developers to use the Intel
compilers to optimize the performance of their software
for the latest Intel Pentium 4 processor.

[6] Samuel Larsen, Emmett Witchel, and Saman
Amarasinghe, “Increasing and detecting memory
address congruence,” in Proceedings of the 11th
International Conference on Parallel Architectures
and Compilation Techniques, 2002.

[7] OpenMP Architecture Review Board, “OpenMP C
and C++ Application Program Interface,” Version
1.0, October 1998, http://www.openmp.org.

[8] OpenMP Architecture Review Board, “OpenMP
Fortran Application Program Interface,” Version 2.0,
November 2000, http://www.openmp.org.

[9] Standard Performance Evaluation Corporation. SPEC
CPU2000, http://www.spec.org/.

[10] Xinmin Tian, Aart J.C. Bik, Milind Girkar, Paul M.
Grey, Hideki Saito, and Ernesto Su, “Intel OpenMP
C++/Fortran Compiler for Hyper-Threading
Technology: Implementation and Performance,” Intel
Technology Journal, Vol. 6, Q1 2002.

More information on the Intel 8.0 compilers can be found
at http://www.intel.com/software/products/compilers.

[11] Intel® C++ Compiler for Windows Systems User
Guide,
http://www.intel.com/software/products/compilers/c
win/docs/ccug.htm

ACKNOWLEDGMENTS
The authors thank Zia Ansari, Mitch Bodart, Dave
Kreitzer, Hideki Saito, and Dale Schouten for their
contributions to the Intel 8.0 compilers and the KSL team
for tuning the Intel OpenMP runtime library. The authors
also thank Milind Girkar for his capable leadership of the
IA32 compiler team.

[12] Intel® C++ Compiler for Linux Systems User Guide,
http://www.intel.com/software/products/compilers/cli
n/docs/ug/index.htm

[13] Intel Corporation. IA32 Intel Architecture Software
Developer’s Manual, Volume 1: Basic Architecture,
2003. Manual available at http://developer.intel.com/. REFERENCES

[1] Vishal Aslot et. al., “SPEComp: “A New Benchmark
Suite for Measuring Parallel Computer
Performance,” in Proceedings of WOMPAT 2001,
Workshop on OpenMP Applications and Tools,
Lecture Notes in Computer Science, 2104, pp. 1-10,
July 2001.

AUTHORS’ BIOGRAPHIES
Kevin B. Smith received his B.Sc. degree in Computer
Science from Iowa State University in 1981. From 1981
to 1990 he worked at Tektronix, Inc on C and Pascal
compilers and debuggers targeting 8086, Z8000, 68000,
68030, PDP-11, and VAX microprocessors. He joined
Intel Corporation in 1990 working on compilers for the
Intel i960® microprocessor, and in 1996 began working
on compilers for the Intel Pentium II, Pentium® III, and
Pentium 4 processors. He is currently working in the Intel
Compiler Lab as team leader for the IA32 code generator.
His e-mail is kevin.b.smith at intel.com

[2] Aart J.C. Bik, Milind Girkar, Paul M Grey, and
Xinmin Tian, “Automatic Intra-Register
Vectorization for the Intel Architecture,”
International Journal on Parallel Processing, 2001.

[3] Aart J.C. Bik, The Software Vectorization Handbook:
Applying Intel® Multimedia Extensions for Maximum
Performance, Intel Press, April 2004,
http://www.intel.com/intelpress/sum_vmmx.htm.

 [4] D. Callahan, K.D. Cooper, K. Kennedy, and L.M.
Torczon, “Interprocedural Constant Propagation,” in
Proceedings of the SIGPLAN Symposium on
Compiler Construction, New York, 1986.

 i960 and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 30

http://www.intel.com/software/products/compilers
http://www.intel.com/intelpress/sum_vmmx.htm
http://www.iso.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.spec.org/
http://www.intel.com/software/products/compilers/cwin/docs/ccug.htm
http://www.intel.com/software/products/compilers/cwin/docs/ccug.htm
http://www.intel.com/software/products/compilers/clin/docs/ug/index.htm
http://www.intel.com/software/products/compilers/clin/docs/ug/index.htm
http://developer.intel.com/

Intel Technology Journal, Volume 8, Issue 1, 2004

Aart J.C. Bik received his M.Sc. degree in Computer
Science from Utrecht University, The Netherlands, in
1992, and his Ph.D. degree from Leiden University, The
Netherlands, in 1996. In 1997, he was a post-doctoral
researcher at Indiana University, Bloomington, Indiana,
where he conducted research in high-performance
compilers for Java*. In 1998, he joined Intel Corporation
where he is currently working on automatically exploiting
multimedia extensions in the parallelization and
vectorization group. His e-mail is aart.bik at intel.com

Xinmin Tian is currently working in the parallelization
and vectorization group at Intel Corporation, where he
works on compiler code generation and optimization for
exploiting thread-level parallelism. He leads the OpenMP
parallelization team. He holds B.Sc., M.Sc., and Ph.D.
degrees in Computer Science from Tsinghua University.
He was a postdoctoral researcher in the School of
Computer Science at McGill University, Montreal.
Before joining Intel Corporation he worked on a
parallelizing compiler, code generation, and performance
optimization at IBM. His e-mail is xinmin.tian at
intel.com

Copyright © Intel Corporation 2004. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

*Other brands and names are the property of their
respective owners.

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 31

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

Support for the Intel® Pentium® 4 Processor with Hyper-Threading Technology in Intel® 8.0 Compilers 32

Performance Analysis and Validation of the Intel® Pentium®
4 Processor on 90nm Technology

Ronak Singhal, Desktop Platforms Group, Intel Corporation
K. S. Venkatraman, Desktop Platforms Group, Intel Corporation.

Evan R. Cohn, Technology and Manufacturing Group, Intel Corporation
John G. Holm, Desktop Platforms Group, Intel Corporation

David A. Koufaty, Desktop Platforms Group, Intel Corporation
Meng-Jang Lin, Desktop Platforms Group, Intel Corporation

Mahesh J. Madhav, Desktop Platforms Group, Intel Corporation
Markus Mattwandel, Desktop Platforms Group, Intel Corporation

Nidhi Nidhi, Desktop Platforms Group, Intel Corporation
Jonathan D. Pearce, Technology and Manufacturing Group, Intel Corporation

Madhusudanan Seshadri, Desktop Platforms Group, Intel Corporation

Index words: performance, validation, RTL, tracing, analysis, benchmarking, Hyper-Threading
Technology

ABSTRACT
In addition to the considerable effort spent on functional
validation of Intel® processors, a separate parallel
activity is conducted to verify that processor
performance meets or exceeds specifications. In this
paper, we discuss both the pre-silicon and post-silicon
performance validation processes carried out on the
90nm version of the Intel® Pentium® 4 processor.

For pre-silicon performance work, we describe how a
detailed performance simulator is used to ensure that the
processor specification meets the product’s performance
targets and also that the implementation matches the
defined specification. Additionally, we describe how we
project the performance of the Pentium 4 processor on
key applications and benchmarks.

Once silicon arrives, the second phase of performance
verification work starts. We describe the process for
detecting post-silicon performance issues, developing
associated optimizations, and communicating these to

application engineers, compiler teams, and
microprocessor architects for appropriate action. We
also discuss the tools used to gather performance
metrics and characterize application performance.

INTRODUCTION
Performance validation is a crucial counterpart to
functional validation. Delivering a functional processor
is not sufficient in today’s competitive marketplace; we
must also deliver compelling performance to the end
user. Performance analysis and validation for modern
microprocessor development projects such as the Intel
Pentium 4 processor require complex modeling at
different levels of abstraction. These levels range from
high-level microarchitecture-specific performance
simulators to detailed Register-Transfer-Level (RTL)
models that perfectly capture the logical behavior of the
CPU. A set of microarchitectural features that define
and meet the performance goals of the Pentium 4
processor are simulated in all of these models. A close
working relationship among the architecture, design,
and performance validation teams ensures that
performance does not degrade as the design progresses
and that appropriate trade-off decisions are made at
every stage of the project, even after silicon is delivered.

® Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
® Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries

In subsequent sections of this paper, we describe the
various tools used and methodologies followed for

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 33

Intel Technology Journal, Volume 8, issue 1, 2004

analyzing and validating the performance of the Pentium
4 processor, during both the pre-silicon and post-silicon
phases.

PRE-SILICON PERFORMANCE
VALIDATION
Pre-silicon performance work involves two broad areas:
feature specification and feature validation. During the
initial stages of the project, performance work is focused
on determining the set of features needed to reach target
performance levels. The second stage of pre-silicon
performance work involves ensuring that the
implementation achieves the desired level of
performance and that performance does not degrade
during the design convergence effort. Specific
validation must be done for performance since
functional validation will not catch many performance
issues. For instance, consider a case where the branch
predictor of a processor is always incorrect, resulting in
every branch being mispredicted. If the branch recovery
logic was implemented correctly, no functional failure
would ever occur but performance could be severely
impacted. This is an extreme case but it typifies the
scenario that a performance validation team tries to
address.

Tracing and Workload Collection
In order to start pre-silicon performance validation, it is
necessary to have inputs to the simulator that reflect the
most important applications and benchmarks for the
processor. It is also important that these can be run on
the various simulators.

First, consider what makes up a “trace” that can be run
on the performance simulator. These are not traces in
the classical sense, where a trace simply defines the
control flow of a program and provides memory access
information. Our “traces” consist of a preliminary
architectural state and the memory image of the
corresponding process. Our performance simulators
mostly use hardware Long Instruction Traces (LIT) of
real-world applications. These traces are a tuple of
processor architectural state, system memory, and “LIT
injections” that are external events like Direct Memory
Access (DMA) and interrupts. They are needed to
ensure that the simulator follows the exact execution
path that the application took on the machine where the
trace was collected.

The traces collected are carefully chosen to provide
wide coverage of applications and benchmarks that
cover all market segments (server, mobile, desktop).
Each application is typically represented by 25 traces. A
trace captures about 30 million instructions. The traces
are regularly updated as new applications or newer

versions of existing applications appear. This ensures
that the microarchitecture development constantly tracks
the changing needs of the marketplace. Table 1 lists the
different categories covered by our traces and examples
of applications in each category. The majority of our
traces are collected using special trace capture hardware
that employs a logic analyzer interface (LAI) inserted
between the processor core and the main memory
subsystem. The main benefit of hardware trace
collection is the ability to record and replay events
external to the processor that affect overall performance.

Table 1: Trace categories and sample applications

Category Sample Applications

SPECint* 2000 164.gzip, 181.mcf

SPECfp* 2000 179.art, 200.sixtrack

Kernels Fourier transforms, saxpy, daxpy

Multi-media Unreal* Tournament, 3dMark*

Productivity Sysmark*, Business Winstone*

Workstation Autocad*, Ansys*, Nastran*

Internet SPECjbb*, Netscape*, WebMark*

Server TPC-C*, TPC-W*

Threaded Adobe Photoshop*, 3dStudio Max*

In addition to the traditional hardware trace collection
methodology, a tool called UserLIT has been developed
that allows for trace collection from an executable by
trapping system calls without any specialized hardware.
(The name UserLIT refers to a program running in user
space and capable of collecting LITs.)

A UserLIT trace must also include a minimal “operating
system” that sets up descriptor tables, page tables, and
system call handlers. The instruction stream, of course,
is stored in the memory image. The simulator does not
execute system calls since their behavior is non-
deterministic and reproducibility is a requirement for
simulation. Thus, any system calls encountered during
trace collection will need to be handled to preserve their
effect on the memory image and keep the execution of
the program on the correct path. We accomplish this by
keeping a system call log that is replayed during
simulation.

* Other brands and names are the property of their
respective owners.

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 34

Intel Technology Journal, Volume 8, Issue 1, 2004

The Linux∗ operating system allows users to intercept
calls into the kernel using the ptrace() system call. This
utility allows the ptracing parent process to monitor,
pause execution, and peek/poke the state of a running
child process. Many Linux users are already familiar
with a tool called strace. Strace is an example of how
ptrace can be used to extract information that crosses the
user-kernel boundary. [2]

Performance Simulator Development
For all generations of the Intel NetBurst®
microarchitecture, a highly detailed performance
simulator was developed to be used as the primary
vehicle of pre-silicon performance analysis. This model
is used to both drive the definition of the
microarchitecture, as well as to serve as a specification
for performance validation against an RTL model. The
simulator uses a performance model-driven functional
execution paradigm, meaning that the performance
model of the simulator drives the control flow of the
simulation. As a result, it is imperative that the
performance simulator also produce functionally correct
answers.

The UserLIT invocation sets up the ptrace traps, forks
off the child process being traced, and waits for ptrace
to snare a system call. Upon encountering a system call,
the child process pauses execution and allows UserLIT
to record relevant information about the system call,
including arguments and a return value. All this
information is stored in the system call log. When
system calls are encountered during simulation, the
execution goes to a special system call handler that
verifies the arguments and writes the output in the
proper location. Replaying of the log not only ensures
accurate simulation, but also acts as a sanity check; for
example, if a call is missed, the simulation breaks out
with an error.

To ensure functional correctness, the architectural state
of the processor is checked against a “golden”
functional model throughout the simulation. The benefit
of forcing the performance model to be functionally
correct is that it provides some level of confidence in the
features implemented in the simulator. Without the need
for functional correctness, it is possible to overstate the
performance impact of a microarchitectural feature. For
instance, consider a simulator where a bug is introduced
such that dirty data in the caches are never evicted but
are merely overwritten. Such a bug would only be
caught by an analysis of results but could greatly skew
performance results until the bug is found. With our
performance simulator, a functional failure would occur
indicating a problem with the performance model and
invalidating any conclusions that could be generated
from these flawed simulations. Obviously, this serves as
only one means of validation and it is still necessary to
conduct other steps to ensure the accuracy of the
simulator.

The other information UserLIT grabs when creating
traces is the memory image. The Linux operating system
gives privileged users the ability to peek at process
memory. This information is copied and used as the
basis of our trace.

Yet another method of generating an input for the
simulator is another software-based tracing tool called
SoftLIT. With this methodology, traces are generated by
running the workload on top of SoftSDV [3], a
processor and platform emulator used to enable
prototyping of system software. The memory dumps and
trace collection can be done at a lower level than with
UserLIT, allowing traces of privileged (Ring 0) code to
be collected. SoftLIT also has full knowledge of all
system memory I/O and can create LIT files containing
this I/O for realistic playback during simulation. While
UserLIT is the choice for quick turnaround application
tracing, SoftSDV is used to collect system-level routines
such as operating system boot and interprocess
communication.

For the Intel Pentium 4 processor, the performance
simulator used for the prior generations of the processor
was the starting point. On top of the existing model,
modifications were made to reflect changes in the
pipeline, feature set, and microcode to emulate the new
processor under development. Given this model,
comparisons of the performance of this processor to its
previous implementations were generated and used to
drive a performance analysis effort. The simulator is
also capable of simulating threaded workloads in both
single processor and multi-processor configurations.
This is crucial in understanding and analyzing the
performance of Hyper-Threading Technology
performance, which is a key feature of this processor.

∗ Other names and brands are the property of their
respective owners.

® NetBurst is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other
countries.

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 35

Intel Technology Journal, Volume 8, issue 1, 2004

RTL Correlation 2) An existing protocol was broken. This can happen if
logic is partitioned across pipeline stages differently
from how it was partitioned on previous processor
implementations.

Once the feature set of the processor is determined
through studies conducted in the performance simulator,
the next step in performance verification is to ensure
that the implementation of these features delivers the
expected performance. The actual implementation is
represented in the RTL model that is a gate-level
accurate representation of the processor. A set of tests is
run on both the performance simulator and the RTL
model and the number of clock cycles needed to
complete the simulation on each model are compared. If
there is a large miscorrelation, it is investigated with the
analysis likely pointing to either a modeling inaccuracy
in the performance simulator or a bug in the RTL.

3) An optimization is discovered. There are cases
where a better algorithm or implementation method
is found through performance analysis. An example
of this is microcode implementation where
opportunities for performance enhancement often
exist at little to no hardware cost.

As a result of the correlation efforts, the simulator
correlates on average within 3% of the RTL on the tests
that are run as part of BCS. By creating a simulator to
this degree of accuracy, we have high confidence in
using it to predict which features make sense to
implement in the processor, as well as having a tool that
is useful for predicting and analyzing the performance
of software applications and benchmarks.

An RTL simulation takes around 500 times longer than
a run of the same trace through the performance
simulator. Due to its slow simulation speed, it is
practical to run only very short tests through the RTL.
Since this length is clearly not long enough to warm up
all of the structures on the processor, state is injected at
the beginning of the simulation into the largest
structures, such as the caches, Translation Lookaside
Buffers (TLBs), and branch predictors.

PERFORMANCE PROJECTION
METHODOLOGY
A “projection” process is used to accurately estimate
and track performance during the lifetime of the project
on the highest profile benchmarks, such as SPEC∗
CPU2000 [1]. The projection methodology is different
from a routine performance study in that it utilizes all
the traces available for a given application and tries to
correct for simulator miscorrelation with actual silicon.
A good projection methodology should provide accurate
estimates (>95%) with quick turnaround times while
remaining easy to use. As a result of these goals, the
methodology itself is under continuous development.

Every week thousands of tests are created and run on
RTL and the simulator, and if miscorrelations are
uncovered, the simulation results are saved for further
investigation. The tests run are subsets of the longer
traces used for performance studies. This process is
called the Billion Cycle Search (BCS). It is aptly named,
since each month around one billion cycles of RTL are
run through our distributed computing environment.

Once a miscorrelation between the performance
simulator and the RTL is detected, the offending test is
investigated to understand the source of the discrepancy.
It is often the case that the performance simulator did
not model certain boundary conditions correctly. In
these instances, the performance model is updated to
reflect the true behavior of the processor. The opposite
case, where the simulator is operating correctly and the
RTL is not, is more interesting. This can occur because
new features were not correctly coded in the RTL. In
cases such as this, a performance bug is filed against the
RTL. The resolution of the bug follows the same
process as any functional bug. On the Intel Pentium 4
processor, performance bugs mostly came in three basic
forms:

The Intel Pentium 4 processor SPEC CPU2000
projection process started with the evaluation of
benchmark performance on several existing baseline
hardware configurations. The configurations were
chosen to provide variation in microarchitecture, cache
size, core frequency, and main memory performance.
These variables are critical to expose simulator
modeling inaccuracies and trace inadequacies.
Specifically, Pentium 4 processors with different cache
sizes running at different frequencies were used with
different memory technologies (RDRAM, DDR
memory, etc.)

For the simulations, 550 traces covering the 26
applications of the SPEC CPU2000 benchmark suite
were used. The traces were fed through the simulator for
each of the baseline configurations and the target

1) New features were not implemented correctly. For
instance, several new predictors were added or
enhanced on this processor, but they sometimes
required multiple iterations of design changes in
order to get them to match performance
expectations.

∗ Other names and brands are the property of their
respective owners.

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 36

Intel Technology Journal, Volume 8, Issue 1, 2004

configuration. The simulator starts collecting
performance metrics after an initial warm-up phase of
500,000 instructions. The simulated application
execution time is calculated by simply summing up the
reported execution times for all the traces, which is no
different from assuming an equal weighting for every
trace. We are investigating this area for future
enhancements to the projection methodology.

A linear regression equation using the method of least
squares is then derived using the simulated and
measured silicon times for the baseline configurations: it
is done on a per-application basis. This equation is
applied to the simulated time of the target configuration
to directly calculate the silicon execution time of that
application. The Root Mean Square (RMS) value of the
regression equation is indicative of the projection error.
This process is repeated for all the 26 applications of the
SPEC CPU2000 suite. The estimated times are
converted to SPEC CPU2000 scores in the standard
manner.

Using this methodology, the estimated SPECint*_base
and SPECfp∗_base geometric mean scores were within
2% of actual silicon measurements for the Intel Pentium
4 processor.

POST-SILICON PERFORMANCE
VALIDATION
Between completion of the pre-silicon design and arrival
of first silicon, the post-silicon performance team
consisting of various groups (benchmarking,
architecture, compiler, software, and platform teams)
develop plans for ensuring that the processor provides
the expected level of performance when placed in a
system environment. We outline the various activities
involved with post-silicon performance validation at
different stages, starting with first silicon; we then move
onto performance characterization, detection and
resolution of performance anomalies along with
optimization of specific processor features.

First Boot and Bring-up Activities
Approximately a month before silicon arrives, target
systems that will accommodate the new processor are
built and tested. These also serve as reference systems
for performance comparisons with previous versions of
the Intel Pentium 4 processor family, enabling baseline
performance data to be generated. The systems are
configured with high-end peripherals so as to not cause
a performance bottleneck. The initial set of benchmarks

are chosen across several operating systems to establish
a representative sample of benchmarking classes,
including micro-benchmarks, games, and important
desktop applications. At least one long-running
performance test is also included to accommodate
overnight stress testing in addition to measuring
processor performance.

When processor silicon arrives, pre-built hard drive
images are used to establish initial processor health. Pre-
installed operating systems are booted at this time. Once
an operating system boots successfully, basic
functionality is established by means of short stress
tests. If the system passes these tests, the first
benchmarks are run, starting with “canary” tests that
stress key system components, such as graphics,
memory, and raw processor speed. Front-side bus, core
frequency, and cache size scaling are also measured at
this time. This gives an indication of preliminary
performance health, as well as how measured
performance correlates back to performance projections.

Performance Parameter Characterization
Once the preliminary performance analysis is
completed, basic microarchitecture characteristics are
measured and compared to expectations and to previous
processor family implementations. This activity is
carried out in parallel with the collection of application
performance results.

Measurements are taken for key latencies, such as store-
to-load forwarding, lock execution, cache access, SSE3
instructions, system calls, mispredicts, and microcode
assists. Throughput data for certain key operations, such
as strings and fast integer operations, are also measured.
These measurements are primarily taken through micro-
benchmarks that are developed internally. For certain
measurements, benchmarks or special tests are used
instead of targeted micro-benchmarks. For example,
cache latencies are measured by running a standard
latency test such as LMbench [4]. Programs that perform
memcpy are used to understand string performance. For
the new SSE3 instructions, a program that implements a
motion estimation algorithm is used to confirm that the
algorithm shows the expected performance benefit.

In addition to running tests, we produced an instruction
latency document to aid the characterization work and
analysis of performance sightings. This document gives
the static execution latency for most of the Pentium 4
family of processors. For each instruction, the latency is
determined by obtaining a list of micro-ops that
comprise the instruction, finding the critical path to the
destination for this instruction, and calculating the
number of cycles it takes to execute the serially

∗ Other names and brands are the property of their
respective owners.

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 37

Intel Technology Journal, Volume 8, issue 1, 2004

dependent sequence of micro-ops that are on the critical
path. Intel

Group
External ExternalIntel

Group Group Group

Life Cycle of a Performance Sighting
Performance issues, anomalies, and unexpected
behaviors are reported, or “sighted,” to the Performance
Debug Team. Issues internal to Intel are reported
directly to this team, while issues elevated by groups
external to Intel are communicated via Technical
Marketing groups. Communication between the
Performance Debug Team and the sighting reporting
groups is bi-directional in order to guarantee complete
closure for all parties associated with a performance
issue.

Technical Marketing

Performance
Debug
Team

Once a performance issue has been sighted, it is entered
into the Performance Sightings Database, and its
progress is tracked by the Performance Debug Team.
The team meets on a regular basis to coordinate
performance debug activities and share results with the
goal of achieving optimal progress on all open
performance sightings. Often other experts within the
company, ranging from processor and chipset designers
to operating systems, compilers and application software
experts, are consulted to provide feedback. Sightings
that require focused attention or expediency result in the
formation of a specialized task force. Such task forces
typically meet on a daily basis in order to fully
understand and provide a solution to performance
issues.

Task Performance
Force Sightings

Database

ECO Senior
Management Board

Figure 1: Performance sighting life cycle

Interaction with Other Teams
As soon as silicon is functionally healthy and
performance measurements begin, many questions are
raised that frequently require the engagement of other
teams. The main interactions are with the chipset,
benchmarking, and compiler teams, but also with the
software teams, and often in that order. A typical
benchmarking sequence proceeds as follows:

The Performance Sightings Database is continually
updated by both the Performance Debug Team and
performance task forces with results and conclusions.
Multiple teams have access to these data so that known
issues can be correlated quickly to new sightings. An
illustration of this process is shown in Figure 1.

Both the Performance Debug Team and the task forces
periodically report a summary of their findings to senior
management. Additionally, if a change is required
within the processor to resolve the issue, it is driven
through the Engineering Change Order (ECO) process
for formal approval. This guarantees that any
performance-related design changes are propagated
consistently to all current and future Intel designs.

• Measuring the latency and throughput of
instructions on the integer and FP side.

• Measuring cache latencies at all levels.

• Targeted measurements of other features such as the
hardware prefetcher.

• Memory bandwidth and platform tests.
 • Off-the-shelf benchmarks for which the source code

is not available (such as Sysmark 2002).

• Compiled benchmarks (such as SPEC CPU2000).

While these performance-testing activities often start
simultaneously, they typically finish in the order listed
above due to the complexity and runtime of the tests.
The testing activities also have the property of first

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 38

Intel Technology Journal, Volume 8, Issue 1, 2004

targeting the core, then the platform, and finally the
software.

The first programs run for performance are typically
small kernels or micro-benchmarks that are internally
generated or benchmarks written externally that are
targeted towards specific processor features. Such
targeted tests usually lead to the first performance
sightings on the processor. Once the tests that target the
CPU core have run, memory and platform tests are
completed. These memory and platform tests typically
have an expected result. For example, two channels of
DDR400 should have a peak bandwidth of 6.4GB/s
when the front-side bus is running at 200MHz on a
streaming memory test. If memory bandwidth tests were
to show lower-than-expected performance, a
performance sighting is filed and work would begin to
resolve it. If the test has already proven itself on
previous processors and platforms, the performance
team will start looking at possible problems within the
CPU or chipset.

After running targeted tests, higher-level benchmarks
are run. These include both compiled benchmarks and
benchmarks that come in binary-only form. The results
are compared against projections and real results from
previous systems. If performance is different from what
is expected, a performance sighting is filed and
diagnosis begins. Initial data are usually obtained from
the processor performance counters to narrow down the
problem type. Higher-level performance tools, such as
the Intel VTune™ Performance Analyzer [5], are then
used to find regions of code in the benchmark that may
be responsible for the performance delta. If it is
determined that the software can be changed to alleviate
the problem, the appropriate software teams are engaged
to look at possible fixes. In the case of compiled code,
the compiler team is involved to produce more
optimized code generation.

Since compiler performance affects all applications, the
performance team periodically meets with the compiler
team. Experts from the architecture and compiler team
work side-by-side looking at generated code, taking into
account the subtleties of the microarchitecture and
finding ways to improve the code.

Once the compiler is optimized, benchmark
performance has been analyzed, and all the outstanding
issues have been closed, the performance team
transitions from proactive mode to reactive mode.
Application engineers, Original Equipment
Manufacturers, and independent software vendors will

then file performance sightings on applications that they
run. At this point, the performance team attempts to
reproduce the problem and determine solutions using the
methods outlined previously.

In addition to the CPU architecture team, the chipset
architects, compiler team, and software developers play
an important role in overall system performance. The
performance validation effort actively engages these
teams to diagnose and solve performance issues.

Tools Used for Post-Silicon Performance
Analysis
Once a comparison is made between a new processor
and a baseline, relative performance anomalies are
analyzed using the Intel VTune Performance Analyzer.
Time- and/or event-based profiles are taken on both
systems and compared to understand processor
behavior.

In this section, we discuss the two tools most commonly
used for performance debug: the Intel® EMON
performance monitoring tool and the Intel VTune
Performance Analyzer. These tools are used in two steps
mainly involved in performance debug: pinpointing the
location of the performance anomaly and identifying
why it is occurring.

The EMON Performance Monitoring Tool
The EMON tool allows collection of data from the
hardware performance monitoring counters. We used
this tool extensively to get a high-level view of
workload characteristics. EMON is fed with an
extensive list of performance events, including, but not
limited to, clock ticks, instructions retired, mispredicted
branches, cache misses, and bus traffic. The typical
usage model is to collect the events during the whole
workload execution by passing the original command
line to EMON and allowing it to execute the workload
as many times as it needs until all requested events are
fulfilled. Due to hardware restrictions, the number of
events that can be collected simultaneously is limited.
Therefore, the event list is typically hand optimized to
maximize the number of events collected on each run of
the workload and minimize the total number of runs
needed.

The result of the EMON run is imported into a custom
spreadsheet. The resulting data can be used to do high-
level analysis of a workload. For example, by
comparing it to a second configuration with a different
processor, it is possible to determine what
microarchitectural features might be responsible for the
performance difference.

™ VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 39

Intel Technology Journal, Volume 8, issue 1, 2004

The Intel VTune™ Performance Analyzer
The Intel VTune Performance Analyzer usage within the
CPU performance team is typically three-fold: time-
based sampling, Pdiff, and event-based sampling.

Time-based sampling is most commonly used to identify
the location of performance anomalies during
performance debug. Additionally, the user can inspect
the source code or disassembly at the identified
locations to help understand the issue.

Pdiff refers to the table-based output that the Intel
VTune Performance Analyzer can generate when
comparing two configurations. Time-based samples are
bucketed based on a set of consecutive address bytes as
specified by the user. The output consists of a table in a
spreadsheet format, where each row is the delta between
the number of samples in each configuration for each
address range. Since the samples are time based, the
delta effectively corresponds to the performance
difference observed between the two configurations for
a particular address range. This allows performance
engineers to focus on the sections of code that
contribute the most to the total slowdown.

Event-based sampling is most commonly used in
conjunction with the results from EMON. Whenever an
event of interest is identified by the EMON tool as a
potential reason for a performance delta, event-based
sampling provides a powerful way to find the exact
location in the code where the event is triggered. Once
identified, the engineers can proceed to analyze and
investigate further.

Optimal CPU Performance Feature Tuning
On the Intel Pentium 4 processor, a large number of
performance features can be tuned in silicon, changing
the way they work and the benefit they provide. On
Pentium 4 processors, many features are designed with
both the ability to be completely disabled and to have
their characteristics modified after silicon is available.
The ability to disable a feature is crucial for
functionality, as it is possible that a new feature
introduces a new functional bug, as well as for
performance, so that the benefit of the new features can
be isolated and checked against expectations.
Additionally, for features that are defined by a large set

of variables, it is often prohibitive to try and simulate
the entire possible search space doing pre-silicon
simulations because of the high cost of these
simulations. Furthermore, with post-silicon tuning, a
large number of workloads can be tested to find optimal
settings than can be accomplished via pre-silicon
simulations.

A small number of tests was conducted manually by
turning a set of features off, including performance
features not found on previous implementations of the
Pentium 4 processor, to confirm that they actually
provided a benefit. Settings for some features such as
the aggressiveness of the hardware prefetcher and
dynamic thread partitioning algorithms in the uop
schedulers have a large search space. For features such
as these, an automated approach, driven by a genetic
optimization algorithm, was used to find an optimal
operation point. To provide the genetic-based approach
with enough sample points to make a valid judgment,
two or three tests from SPEC CPU2000 were selected
that show sensitivity to the features being tuned to act as
a proxy for each study.

The performance improvements produced by the
automated approach for three out of six features chosen
for tuning were negligible or were outweighed by the
negative outliers. However, the improvements for the
other three features produced worthwhile speedups. The
first two features were simply additive in their effects (a
+1.4% improvement on estimated SPECfp_rate2000),
but adding the third tuned feature on top of that
degraded the overall SPECfp_rate2000 speed-up to only
0.7%. In order to limit the search space, some settings
that were already at their best possible value were
“frozen” and removed from the search space. This
approach was successful in achieving a speed-up of
+2.7% on estimated SPECfp_rate2000 as shown in
Figure 2, which is greater than the sum of the
improvements from each of the individual features. The
performance improvements represent a speed-up over
the initial default settings that the Pentium 4 processor
was taped out with.

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 40

Intel Technology Journal, Volume 8, Issue 1, 2004

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

16
8.

w
up

w
is

e
17

1.
sw

im
17

2.
m

gr
id

17
3.

ap
pl

u
17

7.
m

es
a

17
8.

ga
lg

el
17

9.
ar

t
18

3.
eq

ua
ke

18
7.

fa
ce

re
c

18
8.

am
m

p
18

9.
lu

ca
s

19
1.

fm
a3

d
20

0.
si

xt
ra

ck
30

1.
ap

si

S
pe

c_
C

PU
20

00
_b

as
e

S
pe

c_
C

PU
20

00
_p

ea
k

* SPEC estimates based on measurements on Intel internal platforms

Sp
ee

du
p

ov
er

 b
as

el
in

e

SPEC_CPU2000_FP_Rate*
SPEC_CPU2000_FP*

Figure 2: Results obtained via performance feature tuning experiments on SPEC*_CPU2000_FP and
SPEC_CPU2000_FP_rate

[3] Uhlig, R.; Fishtein, R.; Gershon, O.; Hirsh, I.; Wang,
H., “SoftSDV: A Pre-Silicon Software Development
Environment for the IA-64 Architecture,” December
1999.
http://www.intel.com/technology/itj/q41999/articles/art_2
.htm

CONCLUSION
Performance validation has become an integral part of the
complex design process. Detailed and regular
performance analysis coupled with timely bug fixes
enable the Intel Pentium 4 processor to not only meet and
exceed its performance targets but also to deliver a high
level of performance to the end user on key applications. [4] http://sourceforge.net/projects/lmbench

[5] Intel VTune™ Performance Analyzer
http://www.intel.com/software/products/vtune/index.htm ACKNOWLEDGMENTS

The work described in this paper is due to the efforts of
many members of the Intel Pentium 4 processor
performance team over a multi-year period, all of whom
deserve credit for the successful performance validation
of the Pentium 4 processor. The team was co-managed by
Deborah Marr, Michael Upton (Desktop Platforms
Group) and Gustavo Espinosa (Technology and
Manufacturing Group).

AUTHORS’ BIOGRAPHIES
Ronak Singhal received B.S. and M.S. degrees in
Electrical and Computer Engineering from Carnegie
Mellon University. He joined Intel in 1997 and has spent
the majority of his time focused on microarchitecture
performance analysis and validation for the Pentium 4
family of processors. His e-mail address is ronak.singhal
at intel.com.

REFERENCES K. S. Venkatraman received his B.S. degree from Birla
Institute of Technology and his M.S. degree from
Villanova University. He joined Intel in 1997 and has
focused on microarchitecture as well as post-silicon
performance analysis for the Pentium 4 family of

[1] Standard Performance Evaluation Corporation.
http://www.spec.org

[2] http://sourceforge.net/projects/strace

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 41

http://www.spec.org/
http://sourceforge.net/projects/strace
http://www.intel.com/technology/itj/q41999/articles/art_2.htm
http://www.intel.com/technology/itj/q41999/articles/art_2.htm
http://sourceforge.net/projects/lmbench
http://www.intel.com/software/products/vtune/index.htm

Intel Technology Journal, Volume 8, issue 1, 2004

processors. In his spare time, he enjoys amateur radio and
riding his motorcycle. His e-mail address is k.s.
venkatraman at intel.com.

Evan R. Cohn received a B.A. degree in Applied
Mathematics from Harvard in 1982 and a Ph.D. in
Computer Science from Stanford in 1988. He initially
joined Intel in the supercomputer division and eventually
migrated to the Design Automation group in LTD. His e-
mail address is evan.cohn at intel.com.

John G. Holm received a B.S. degree in Computer
Engineering from the University of Michigan, Ann Arbor
in 1989 after which he attended the University of Illinois,
Urbana-Champaign where he received an M.S. degree in
1993 and a Ph.D. degree in 1997. He joined the Itanium®
Architecture team in 1997 where he worked on TPC-C
analysis and simulator development. He joined the
Pentium 4 Architecture team in 2001. His e-mail address
is john.g.holm at intel.com.

David A. Koufaty has been a part of the
microarchitecture and performance team for the Intel
Pentium 4 processor and a key developer of Hyper-
Threading Technology. David has also been involved
with post-silicon performance debug of various x86
server and desktop processors. He received B.S. and M.S.
degrees from the Simón Bolívar University, Venezuela in
1988 and 1991, respectively, and a Ph.D. degree in
Computer Science from the University of Illinois at
Urbana-Champaign in 1997. His main interests are
processor microarchitecture and performance. His e-mail
address is david.a.koufaty at intel.com.

Meng-Jang Lin received a B.S. degree in Electronics
Engineering from National Chiao-Tung University in
Taiwan, an M.S. degree from the University of Oxford,
and a Ph.D. degree in Computer Engineering from the
University of Texas at Austin. She joined the Intel
Pentium 4 Architecture team in 2002. Her e-mail address
is meng-jang.lin at intel.com.

Mahesh J. Madhav received an Sc.B. degree in
Engineering from Brown University in 1999. He then
helped research and design an x86-based hand-held
computer jointly at TIQIT Computers and Stanford
University, where he received an M.S. degree in
Computer Science in 2002. Hired into the Pentium 4
microarchitecture team in 2002, he spends his time
exploring new simulation technologies, post-silicon
performance debug, and hacking code. His e-mail address
is mahesh.j.madhav at intel.com.

® Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Markus Mattwandel received an M.S. degree in
Computer Engineering with an emphasis on High
Performance Computing from Oregon Graduate Institute
in Beaverton, Oregon in 1991. He joined the Intel
Desktop Products Group Compatibility Validation team
in 1994 where his primary responsibility is to direct
performance validation of Intel processors. He has
worked on Pentium Pro, Pentium® II, Pentium® III,
Celeron and Pentium 4 processors. His e-mail address is
markkus.mattwandel at intel.com.

Nidhi Nidhi received a B.S. degree in computer
engineering from Delhi College of Engineering in 2000
and an M.S. degree from the University of Wisconsin,
Madison in 2002. She joined the Pentium 4 performance
team shortly after. Nidhi holds a patent on branch
prediction schemes and likes to follow the financial
markets. Her e-mail address is nidhi.nidhi at intel.com.

Jonathan D. Pearce received B.S. and M.S. degrees in
Computer Engineering from Carnegie Mellon University
in 2002. He joined the Pentium 4 processor performance
team after graduation where he worked on processor
performance optimizations. He is currently a member of
the Logic Technology Development architecture team
working on the lead processor for Intel’s 65nm process
technology. His e-mail address is jonathan.d.pearce at
intel.com.

Madhusudanan Seshadri has worked on Pentium 4
performance validation since joining Intel in 2002.
Madhu holds an M.S. degree in Electrical Engineering
from the University of Wisconsin-Madison and a B.E
degree from Anna University, India. His interests include
processor microarchitecture and VLSI design. His e-mail
address is madhusudanan.seshadri at intel.com..

Copyright © Intel Corporation 2004. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

 Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other countries.
 Celeron is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other countries.

Performance Analysis and Validation of the Intel® Pentium® 4 Processor on 90nm Technology 42

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

LVS Technology for the Intel® Pentium® 4 Processor on
90nm Technology

Dan J. Deleganes, Desktop Platforms Group, Intel Corporation
Micah Barany, Desktop Platforms Group, Intel Corporation

Daniel Chow, Technology and Manufacturing Group, Intel Corporation
Tom D. Fletcher, Desktop Platforms Group, Intel Corporation

George L. Geannopoulos, Technology and Manufacturing Group, Intel Corporation
Kurt Kreitzer, Desktop Platforms Group, Intel Corporation

Anant P. Singh, Desktop Platforms Group, Intel Corporation
Sapumal B. Wijeratne, Technology and Manufacturing Group, Intel Corporation

Index words: X86 integer core, adder, sense-amplifier, adder, rotator, microprocessor, Low-Voltage
Swing, LVS

ABSTRACT
To meet the demands of low-latency integer operations,
the Intel Pentium® 4 processor architecture implements
fast integer operations using a 2x frequency core clock.
The frequency advances enabled by Intel’s new 90nm
technology when paired with a 2x frequency multiplier
require novel circuit topologies if latency is to be
optimized. The discussed solution uses unprecedented
levels of small signal random logic to implement a double
frequency X86 integer core. This circuit technology,
termed “Low-Voltage Swing” (LVS) enables the Pentium
4 processor [1] to take full advantage of Intel’s new 90nm
technology [2].

INTRODUCTION
Microprocessor performance can be defined as the
product of latency and parallelism. Since parallelism has
been well exploited in previous microprocessor
generations, the integer performance in the Intel Pentium
4 processor architecture is achieved using ultra-low-
latency integer operands. The reduced latency when then
paired with Hyper-Threading Technology (parallelism)
empowers a one-generation-ahead design. Like the
preceding Pentium 4 processor designs, the newest
member of the family on Intel’s 90nm technology enables
ultra low-latency integer ops by running the integer core

at twice the core frequency of the microprocessor. At
today’s clock rates, this operating frequency is in and of
itself notable. For example, a 3.4 GHz processor would
have the integer logic functioning at 6.8 GHz. Such a
frequency target is on the low end of 90nm technology
capabilities–that is, at the beginning of process life. End-
of-life process technology frequency expectations are far
higher. In this paper, we describe the implementation of
the newest Pentium 4 processor integer logic core using
Low-Voltage Swing (i.e., differential small signal) logic.
This circuit topology, referred to most frequently as
“LVS,” is designed explicitly to take advantage of the
frequency headroom enabled by Intel’s new 90nm
technology. In this paper we explain the overall circuit
topology, and take you on a walk-through of three core
blocks: the Alignment Mux, Adder, and Rotator. A
section describing the tools/methodologies for pre-silicon
verification necessary for high-volume manufacturing
(HVM) is outlined, which includes small signal path
tracing, merging dynamic and static timing, and matched
layout. Finally, you will see up-to-date post-silicon data
demonstrating the integer core running at higher
frequencies than any other published X86 integer cores.

 Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 43

Intel Technology Journal, Volume 8, Issue 1, 2004

DCN
(datapath)

LVS Cycle Time for Operation

CDLDCN CDL

Single
ended
WBB input

Gain stages Carry chain5:1 Mux
plus logic

Ph1 SA

Front-end LVS Black Box

Fast Clock
2x Core clock

CDL

Thru-
Gate

Performs logic
(Decode, PGK,etc)

Reset clk

Figure 1: LVS circuit block diagram

LOW-VOLTAGE SWING LOGIC AT
INTEL
In 1997 Intel researchers began investigating ways to
continue designing the Intel Pentium 4 architecture’s 2x
frequency integer core on process technologies many
years in the future. Looking several generations ahead,
they were concerned that the self-resetting domino
topologies used so effectively in the original Pentium 4
design would need to be replaced with even faster circuit
topologies, if the integer core was to keep pace with the
capabilities of future manufacturing technologies. These
researchers, led by our co-author Tom Fletcher,
determined that large Diffusion Connected Networks
(DCN) with multiple inputs and outputs could be used to
implement significant logic functions in a single stage.
Although such structures are excruciatingly slow at
creating standard CMOS voltage levels, it was recognized
that by using differential (true and complement)
functions, the resulting “small signal” voltages could be
differentially sensed and amplified into a “large signal.”
This circuitry operated faster than even our fastest
domino circuits. The delays through two stages of sense
and gain were costly, but since the diffusion connected

network was capable of doing six to eight stages of logic
in a single stage, the overall time to implement a complex
logic function was a net performance win over other
topologies. Furthermore, it was determined that such
networks could readily take advantage of straightforward
pass-gate algorithms, such as carry skip addition, to
minimize the number of series devices. The resulting
differential Low-Voltage Swing (LVS) topology used
fewer transistors to implement a given logic function,
which lead to an area advantage over traditional static or
domino circuits. The topology also promised low-power
opportunities at equal frequencies due to reduced voltage
transitions. The performance of speed, area, and power
wins led to the technology being selected for the next-
generation design. During technology development, the
LVS circuit topology that delivered the best performance
operated like domino logic, with evaluate and reset
phases. The higher linear region currents of N-transistors
make them the device of choice for DCN pre-conditioned
to ground being selected. A P-type sense amplifier senses
the differential output of these pass-gate DCNs.

The potential gains of this new topology promised to be
significant. However, the design complexity was
identified as a major concern. The sheer amount of small

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 44

Intel Technology Journal, Volume 8, Issue 1, 2004

signal logic that would be needed to implement an entire
X86 logic core was unprecedented. Consider this: the
transistor count of this execution core exceeds that of the
entire Pentium Pro design! There were no tools for timing
analysis, noise analysis, or logic verification. To
minimize the differential and common-mode noise, new
layout checks were needed to ensure that custom devices
in random logic met analog layout requirements. Pulsed
clocks required careful crafting. Clearly, the challenges of
implementing an entire Pentium 4 integer core using
small signal circuits to implement logic functions would
be an extreme challenge. The work began!

LOW-VOLTAGE SWING CIRCUIT
ARCHITECTURE
Figure 1 shows the basic topology of the LVS circuits
used. An LVS circuit, called the Front End (FE),
implements an LVS multiplexer to select among the Write
Back Buses and the Source Buses. For simplicity, the
DCN diagram shows only two N-pass-gates connected to
each node, when in reality, each node would have
multiple inputs. The Complementary Domino Logic
(CDL) gain stage restores the sense-amplifier output’s
ratioed voltage levels. The CDL in most cases also
implements logic; for example, in the Adder this would
be a Propagate, Generate, Kill (PGK) function generator.
Also shown is the thru-gate, which acts as a min-delay
blocker by gating static data entering the DCN. The thru-
gate is controlled by a clock that turns on one inversion
after the de-assert of the reset clock. By ANDing the thru-
gate clock with a logic signal, one series device can be
removed, further improving speed. In Figure 1, the carry
chain is collected into a second LVS blackbox that
produces the result of a 16-bit add.

Figure 2: Sense-amplifier and CDL inverter followed
by a CMOS inverter

Figure 2 illustrates the ratioed P-type sense-amplifier
driving a simple CDL inverter. The reset devices are
removed to simplify the diagram. The outputs of the LVS
carry-chain DCN connect to “SA IN” and its
complementary pin. The timing relationships between the

LVS DCN, the sense-amplifier, and the CDL are shown
in Figure 3. The sense-amplifier and the CDL are in phase
and are controlled by the clocks named “SA EN” clock
and “CDL CLK,” respectively. The rising edge of “SA
EN” clock initiates the reset of the sense-amplifier
outputs, and it is immediately followed by the precharge
of the CDL outputs. During this time the LVS DCN
(carry-chain) is in evaluation and generates a differential
voltage at the inputs of the 17 receiving sense-amplifiers
of the 16-bit adder. The falling edge of the “SA EN”
clock triggers evaluation of these sense-amplifiers. This
event is depicted in Figure 3 with a vertical line that
intersects the 50% transition point of the falling “SA EN”
clock. In this example, it can be seen that at the sense-
amplifier trigger point, the input differential is
approximately 344 mV with 49 mV of common mode.
The lower plot in Figure 3 illustrates the sense-amplifier
outputs resolving this input differential. The non-zero
offset level on the sense-amplifier ‘0 output can be seen
to induce a glitch on the non-switching terminal of the
CDL (middle plot) that is mitigated by the cross-coupled
P-keepers on the CDL. The magnitude of this glitch is a
decreasing function of the sense-amplifier input
differential. Below a certain minimum input differential
voltage, the CDL glitch could potentially induce a domino
false-discharge failure mechanism on the CDL output,
resulting in a speedpath or logic failure.

It can be seen in the bottom plot of Figure 3 that the DCN
reset clock resets the inputs of the sense-amplifier shortly
after the sense-amplifier trigger point. In fact the DCN
reset is initiated only one inversion after the sense-
amplifier. If the inputs to the sense-amplifier are reset
before the sense-amplifier resolves, then a functional
failure will occur. The part will then not operate at any
frequency. This race is known as the “sense versus reset”
race, and it is the only functional race in this LVS design.

A typical LVS circuit is allocated only about two
inversions to develop differential!

Full details on the adder circuitry are detailed in the
Adder Circuit section below.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 45

Intel Technology Journal, Volume 8, Issue 1, 2004

g l i t c hg l i t c h

Figure 3: LVS waveforms

CLOCKING
The core logic of the CPU is running at the specified
processor frequency. For a 3.5 GHz core clock frequency,
the Main Core Clock (MCLK) period is about 285 ps.
The pulsed Fast Clock (FCLK) doubler circuit doubles
the MCLK frequency, in this case to 7 GHz. One FCLK
phase is allocated for LVS DCN signal development, and
the other FCLK phase is allocated for DCN precharge.
The pulsed clocks used on the previous 2x Intel Pentium
4 integer cores were ideal for clocking LVS circuits
because they would only stop in the reset phase. This
meant that when the clock was stopped there would be
zero source drain leakage for the pass-gates because all
nodes would be reset to ground. The pulsed FCLK is
generated by combining two tunable NAND chopper
delay circuits into a pseudo wired-or. One chopper is
sourced from the MCLK, the other, one inversion later. In
order to provide symmetric FCLK pulses for both phases
of the MCLK, the low phase of the MCLK is one
inversion delay longer than the high phase to account for
the additional inversion to the second chopper. This non-
fifty percent duty cycle of the MCLK allows the core
circuitry to do more work in the low phase of the MCLK
for the non-LVS MCLK circuitry, but limits the
bandwidth of the global clock distribution more than if it

was a true fifty percent duty cycle clock. Figure 4 shows
the clocking edge relationships.

MCLK

True
Pulse

Inverted
Pulse

FCLK

FCLK Generation and Jitter Relationship

Figure 4: Fast Clock (FCLK) timing edge
relationships

Clock skew and jitter posed significant challenges to LVS
design, especially as these would degrade an FCLK phase
speedpath four times as much as an MCLK cycle path.
Exact control of the MCLK high and low phases have a
direct impact on the allowable time for the low phase of
FCLK; if either phase of MCLK gets smaller, the FCLK
low phase will also get smaller by the same amount. A
key advantage of pulsed clocking is that the FCLK high
phase is not affected by MCLK jitter and skew, since both
FCLK edges are generated from the same MCLK edge.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 46

Intel Technology Journal, Volume 8, Issue 1, 2004

With cycle-to-cycle jitter, just the low phase of the FCLK
will be impacted. The design of the LVS blocks took
advantage of these effects and accounted for them directly
during timing analysis.

LOW-VOLTAGE SWING USAGE WITHIN
THE INTEGER CORE
Figure 5 provides an architectural block diagram,
showing the critical integer core components. LVS
circuitry enabled the Intel Pentium 4’s low latency, used
in the critical L0 load pipeline’s alignment mux, adders,
logic unit, rotator, and the address generation unit. Details
of LVS used for the adder, rotator, and alignment mux
circuits are given below.

...
.

...
.

...
.

...
.

...
.Load and Store

Address to L0
Cache sub-system

and MEU

Data from L0

Alignment
Mux

Flag LogicResult
from

slow-port

Se
gm

en
t B

as
e

D
is

pl
ac

em
en

t

144-entry
integer

register file

Alu0: Adder + Basic LogicAlu1: Adder + Shifter/RotatorAddress Generation Unit

Alu0 Operands

Alu1 Operands

AGU Operands

Write-Back
Buses

= LVS block

Figure 5: Integer core architectural diagram showing
LVS usage

Adder Circuit
The LVS carry chain for a 16-bit adder is shown in Figure
6. It is built upon 16 cascaded LVS PGK cells, named “0-
F,” with carry-skip pass-gates “s0-s9” placed between
them such that the span of any carry propagation path is
limited to no more than 6 series devices. The LVS cells
that make up the LVS carry-chain are shown in Figure 7.
The LVS XOR gates in Figure 7 hook up to each polarity
of the carry [n] nodes along the carry-chain to produce the
sum [n+1] result. The typical critical path begins with the
turning ON of the “s0” skip pass-gate that allows the
“Cin” to charge up the precharged-low carry-chain and
develop differential at the inputs of 17 PMOS sense-
amplifiers that sense the 16 bit sum and the carry out.
This 16 bit adder spans half the datapath height. It’s
length represents the total interconnect distance that has
to be traversed for a carry-chain to propagate from “Cin”
to “Carry<15>.” A bit slice of the LVS adder, including
adder PGK controls and clocking, is shown in Figure 8.
The LVS front-end evaluates in phase 2 of the FCLK and
presents source data to the first sense-amplifier “P-SA-1”
that is triggered on the fall of the “ckxf1pb6_b” clock.
The next stage “CDL-1” is an inverting level-restoring
stage that has integrated PGK logic. This circuit is a

complex CDL gate that begins evaluation on the rise of
the “ckxf1p7c” clock. Exactly one FCLK phase later the
fall of the “ckxf1p7c” clock triggers the 17 sense-
amplifiers commonly titled “P-SA-2” (see Figure 8) that
capture the sum and carry results of the 16 bit LVS adder.

Typically, the critical path goes through the “gp [n]”
group-propagate signals. The wide NOR gates that
generate “gp [n]” group-propagate functions are allocated
only 16 ps. A conventional design of a fast ratioed-NOR,
similar to the one illustrated in Figure 9, could not be
used to implement wide, single-stage, precharged-low
NOR functions required by the LVS adder. For certain
input combinations, the gates’ pull-up and pull-down
networks are on simultaneously, and for these cases the
ratioed-NOR gate’s output can produce a steady-state
noise source that is typically in the ~200-400 mV (Vcc =
1.2 V, 1262) range. A novel p-interruptible ratioed-NOR
gate (RP-NOR), illustrated in Figure 10, was designed in
place of a ratioed-NOR (RNOR) gate. RP-NOR gates can
implement fast NOR2-NOR5 gates while limiting the
contention-induced noise to a small and narrow glitch.
The signals “pc,” “pa,” “pb” are the inverse of “pcn,”
“pan,” and “pbn,” respectively. All inputs are precharged
high. During precharge, the top P-device is on, enabling it
to precharge the internal node n1 thus facilitating a fast
rising transition. If “pdn” falls, then the P-stack is enabled
and the NOR will begin to rise. This transition is allowed
to continue only if “pan,” “pbn,” and “pcn” also fall,
because this is the only condition for which the top P-
device will remain enabled. For all other combinations,
the P-device is disabled within one gate delay, limiting
the contention to a narrow pulse that is approximately one
gate delay wide. Figure 11 shows the comparison of the
RP-NOR contention noise pulse to the DC contention
waveform produced by a RNOR within the context of the
LVS adder’s evaluation window. A RNOR produces a
contention waveform that exists for the entire duration of
the LVS evaluate window, allowing the off skip device
driven by it to leak opposite charge onto the carry-chain,
degrading or even destroying the DCN signal
development. The new RP-NOR, however, produces its
contention glitch only at the onset of LVS evaluation
leaving the carry-chain a significant amount of time to
recover and develop positive differential unimpeded by
any further contention-induced differential noise.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 47

Intel Technology Journal, Volume 8, Issue 1, 2004

Span = 178.2 u on 1262 process

0 1 2 3 4 5 6 7 8 9 A B C D E F

s0

s1

s2

s3

s5

s4 s6

s9

s7
s8

Cin Carry<15>

Span = 178.2 u on 1262 process

0 1 2 3 4 5 6 7 8 9 A B C D E F

s0

s1

s2

s3

s5

s4 s6

s9

s7
s8

Cin Carry<15>0 1 2 3 4 5 6 7 8 9 A B C D E F

s0

s1

s2

s3

s5

s4 s6

s9

s7
s8

Cin Carry<15>

Figure 6: 16-bit adder LVS carry-chain structure

Figure 7: LVS PGK and XOR cells used in the LVS carry-chain

W
B-

bu
s p _ b

p

g _ b , k _ b

L V S f ro n t-e n d

P -S A -1

C D L -1

ck
x

f1
pb

6
_b

p
_b

[0
]

g p [0]]p _ b [2 :1]

g [0] /k [0]

p [0]

p _ b [0]

c k x f1 p 7 c

L
V

S
 A

dd
er

ck
xf

1p
7c

ck
xf

1p
d8

_
b

P -S A -2

C D L -2
g _ b [0] /k _ b [0]

re
se

t

W
B-

bu
s p _ b

p

g _ b , k _ b

L V S f ro n t-e n d

P -S A -1

C D L -1

ck
x

f1
pb

6
_b

p
_b

[0
]

g p [0]]p _ b [2 :1]

g [0] /k [0]

p [0]

p _ b [0]

c k x f1 p 7 c

L
V

S
 A

dd
er

ck
xf

1p
7c

ck
xf

1p
d8

_
b

P -S A -2

C D L -2
g _ b [0] /k _ b [0]

re
se

t

Figure 8: Logic for adder bitslice

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 48

Intel Technology Journal, Volume 8, Issue 1, 2004

Figure 9: A 4-input ratioed NOR (R-NOR) gate

Figure 10: A 4-input ratioed P NOR (RP-NOR) gate

Figure 11: Contention behavior of ratioed-NOR gate
(RNOR) versus new RP-NOR gate

Alignment Mux Circuit
LVS makes possible the implementation of the Alignment
Mux function in an MCLK phase (144ps), reducing the
critical “load pipeline” latency in the integer core. It
provides a 2x speed improvement over the traditional
multi-stage domino design. The Alignment Mux datapath
function consists of 128 individual 32:1 dual rail muxes
distributed across the datapath width of the entire L0
cache. Muxing is performed with a single-stage DCN pair
followed by the large distributed mux node connected to
the sense-amplifiers. This RC requires designing the

Alignment Mux at MCLK frequencies, whereas all other
LVS blocks operate at FCLK. Source inputs to the DCN
are full-swing dual rail signals from the L0 cache. The
clock gated control logic generates the full-swing DCN
selects, which are replicated across the entire mux height
to reduce loading and RC. Figure 12 shows the circuit
topology of the Alignment Mux.

D
C

B

A
O

32
:1

 m
ux

di
st

rib
ut

ed
ac

ro
ss

90

0u
m

S
ou

rc
e

in
pu

t d
riv

er
s

P-SA

C
D

L

O
ut

pu
t d

riv
er

s

4Bytes differential
data for integer
16Bytes single

Ended for FP

L0
-C

ac
he

 in
pu

ts
 (

F
ul

l S
w

in
g)

Figure 12: Alignment Mux circuit block diagram

LVS was the ideal technology for the Alignment Mux,
with its muxing and distributed RC. LVS technology
proved crucial in reducing the L0 cache latency and has
enabled aggressive frequency headroom for subsequent
Pentium 4 steppings.

LVS Rotator and Shifter

The LVS rotator/shifter performs these operations (ops):
Rotate Left (ROL), Rotate Right (ROR), Shift Left (SHL),
Shift Right (SHR), Shift Arithmetic Right (SAR), Byte Swap,
and High-Low Swap. The only 8-bit operations supported are
“8L,” performed on bits [7:0] of the operand. “8H” rotates
and shifts are done in the Intel Pentium 4 processor slow port
datapath and are longer latency operations. For 8-bit and 16-
bit rotates and shifts, the remaining bits of the operand are
passed through unchanged to the result. For SHL and SHR
ops, the value of ‘0 is padded in from the least significant or
most significant position, respectively. For SAR ops, the value
of the most-significant bit is padded in from the most
significant position.

Rotate and shift operations are done by first rotating the
operand according to the shift count, and then selecting either
the rotated value or the “kill value” to produce the final result.
The kill value is always ‘0 for SHL and SHR ops, and it is the
size-appropriate, most-significant bit for SAR ops.

As in reference [3], the block algorithm takes advantage of
symmetry to streamline the rotation portion of the datapath.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 49

Intel Technology Journal, Volume 8, Issue 1, 2004

Right rotates with a shift count of r are done by rotating the
operand to the left by r# + 1 places. For right ops, the shift
count is complemented prior to entering the shift count decode
logic, and the extra “+1” place is taken care of in the datapath.

Rotator circuits are traditionally a series of muxes wired up
with long interconnects to steer the operand over the length
and breadth of the datapath. This makes the rotator particularly
suited to LVS technology. The datapath muxes are
implemented with a wide DCN that ends up at 32 sense-
amplifiers for the “prop value” and an additional 32 sense-
amplifiers for the “kill value.” A final muxing stage selects
between the outputs of these two sets of sense-amplifiers. The
selects for this muxing stage are bitwise. The complex shift
logic is implemented using LVS circuits. The decode of the
shift and rotate count is done in the Front-End by embedding
logic into the CDLs and the subsequent static logic stage. LVS
technology has enabled us to implement Fast Rotate and Shift
ops in Pentium 4 processors, which provides a significant and
measurable performance gain.

TOOLS AND METHODOLOGY
A large challenge to enabling the design of LVS circuitry
was to provide the innovative tools and methodologies
that enabled us to successfully apply this technology to a
HVM environment. We created LVSTNT (LVS Timing
and Noise Tool), a custom dynamic simulator and
interface, that calculates required and valid times for
groups of data and pass-gate signals interfacing with the
LVS circuitry. These results were merged with our
project standard static timing tools and flows. A custom
LVS Layout Rule Checking (LRC) tool was developed to
eliminate non-common mode noise and to ensure layout
matching that can tolerate process variation.

Dynamic Simulation and Timing Issues
LVS timing performance depends upon the relative
arrival of dozens of signals, followed by the generation of
a small differential signal, which requires a uniquely
complicated timing analysis. In contrast, traditional static
timing analysis simply assumes that a single signal
generates a timing path. And unlike a typical dynamic
simulation, which simply verifies that a circuit operates at
a target frequency, our LVSTNT dynamic simulator
provides a key advantage by calculating the worst-
required times for the input signals. By having the
required times, we know how much timing margin a
given input has, enabling us to make valuable
area/power/delay trade-offs. To avoid exponential growth
in the number of timing paths when calculating the
required input timings of combinations of multiple
signals, we made creative, specific assumptions to
maintain a linear number of simulations. And even after
pruning the number of timing paths using patented
algorithms [4], the rotator alone required simulations on

more than 60,000 paths to characterize the circuit. To
address the associated huge runtime and database size,
LVSTNT partitions the LVS circuitry into the minimum
database needed to dynamically simulate each unique
path. We can quickly, interactively, simulate a single path
of interest. As even a single path requires 3-12
simulations to find the passing conditions and input
required times, understanding so many simulation results
proves daunting, so LVSTNT automatically merges the
worst-case results from all simulations for dozens of
timing constraints. While analyzing the complete circuit,
we batch and send all simulations to our compute farms,
utilizing hundreds to thousands of machines worldwide.

Transparently clocked designs provide greater tolerance
to clock skew on silicon, which is a significant portion
(15-20%) of the FCLK cycle time. The LVSTNT required
times are merged into our normal static timing tools,
enabling us to take full advantage of transparency through
latches and domino state elements. To provide a
transparent timing interface, DCN selects and dual rail
data inputs were ideally designed to be precharged.
During evaluate, the DCN select gate inputs and data and
data# inputs would transition monotonically; if this occurs
after the thru-gate opens, then we have a nicely
transparent timing path. This elegant interface is not
feasible when just single rail data inputs are available
because both data and data# cannot be precharged to
ground. Generating data# locally, results in either data or
data# starting out high before evaluate, and as the first
pass-gate opens, the DCN would start developing the
opposite logic value before developing the correct small
signal waveform. This posed significant simulation
modeling challenges. Aiming for a robust design, we
decided to prevent generating this wrong differential by
adding an extra clocked n device, the thru-gate, and then
requiring that data be set up to the thru-gate opening.
While the thru-gate intrinsically slows the circuit, due to
the additional n device in series, this greatly simplified
the timing complexities of both dynamic and static
analysis, enabling robust tools.

Determining whether the circuit operated or failed raised
many questions in our challenge to enable HVM. Sense-
amplifiers in the ideal world of a dynamic simulator
resolve with just a few electrons. On silicon, the coupling
noise to signal waveforms and power supply alone
contribute significant complexity to an ideal model. A
few failure criteria are described below.

An initial failure criterion used during pre-silicon
verification was the magnitude of the CDL output glitch.
If this noise glitch propagated to a subsequent domino
stage or state element, a logic error or severe speedpath
could occur. This provided an easily implementable
pass/fail criterion that was based upon an observable

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 50

Intel Technology Journal, Volume 8, Issue 1, 2004

circuit failure. In standard CMOS designs, noise tools
verify that the circuit will not falsely discharge a domino
node. In LVS designs, we not only guarantee this will not
happen, but this failure point can directly dictate the
required set-up times to the sense-amplifier. Traditional
static and dynamic circuits never attempt such closely
intertwined timing and noise requirements.

A second failure criterion mandated a minimum
differential voltage. The total requirements ranged from
50-100 mV, or roughly 5-10% of VCC. Device variations
due to process (Le, Vt, dual-Vt, etc.) was analyzed for our
library of sense-amplifiers, and accounted for nearly half
of the signal voltage requirement, with the remaining
attributable to incomplete precharge, noise, and the
inherent differential needed to sense correct data. This
requirement enhances confidence in the design, and it
covers several corner cases and simulation artifacts not
caught by the CDL failure criterion.

A third criterion avoids designing non-full-rail static
signals, which static timing tools ignore, but are very easy
to create at such extremely high frequencies. While a
dynamic simulator shows circuit robustness with non-full-
rail input signals, real silicon in HVM would not be
nearly as forgiving. An additional motivation in avoiding
non-full-rail signals is the inability to define them when
we translate waveforms back to the static timing tool
environment.

Functional race analysis across process corners poses
additional failure, modeling, and runtime concerns. Our
implementation contains just one functional race, the
sense-amplifier enable assertion to the DCN reset clock.
Minimizing functional races (mindelays) is important,
because if they fail to make speed, the part will not
function at any frequency. If mindelays had occurred,
they would have required significant timing guard band
(impractical at these frequencies), and/or significant effort
to simulate the circuit (with additional timing paths)
across process variation. In light of design for debug and
testability, we added software controllable circuitry to
vary our functional race margins.

Merging Static and Dynamic Timing Tools
Creative solutions enabled interfacing our dynamic timing
tools with standard project tools into a seamless tool flow
that could be batched. Specific attention was paid to
drawing a precise boundary of what was dynamically
analyzed: for dynamic simulation. We automated netlist
extraction to form a black box containing just the data
inverters, DCN, sense-amplifiers, and CDL. LVSTNT
provided the minimum number of timing edges, leaving
the project static timing tools to analyze all but the small
signal development and failure criteria. To enable the
static tools to analyze the black box for the remaining

edges, we fully automated the generation of timing tool
assertions. For example, the set-up of static data falling
would be checked against the thru-gate clock rising.
Outside the black box, static timing tools analyze the
select and data timings and convert their timings into
waveform inputs to the dynamic simulation. Black box
interface timings come from a combination of the
dynamic simulator, the static simulator, or a worst-case
merging of max and min timing. (Providing details on
over 30 classes of signal types, domino, static, etc., and
edges, rise, fall, lead, trail, is beyond the scope of this
paper.) The fully automated performance verification tool
suite provides a huge return on investment, given the
design size, complexity, and multi-year life cycle of a
production processor. This automation greatly increased
our productivity, providing consistency of assumptions
among our designs, and it enabled high-quality audits of
the correctness and thoroughness of our checks.

Dynamic Noise Analysis of LVS
Noise easily overwhelms the tens of millivolts of signals
inspiring us to support dynamic noise simulation directly
within our LVSTNT timing tool. Project noise analysis
tools provided the input waveforms, based on the circuits
(static or LVS) driving into the LVS block. LVSTNT
super-imposes DC and pulse-wise-linear noise waveforms
onto the DCN data and select gates. Logically off devices
will result in their gates being slightly turned on, with the
device’s source tied to the rail that provides worst-case
leakage, with respect to the signal being developed. The
methodology and algorithms are fairly complicated and
posed several logic and circuit challenges. A few early
designs proved highly susceptible to leakage constraints,
so we formed several guidelines on circuit topologies and
sizing to deal with these problems.

Layout Rules and Matching
High-quality layout was a key enabler to not just
functional first silicon, but to HVM. Sensing signals on
the order of 50-100 mV (~5% of vcc) demanded diligent
elimination of all noise, be it from residual precharge,
leakage, gate to drain coupling, wire coupling, or non-
common mode noise caused by mismatched layout or
process variation. Careful, up-front attention to layout
enabled early identification, elimination, or mitigation of
noise sources.

The creation of a custom LVS Layout Rule Checking tool
enabled us to create correct-by-construction layout by
highlighting non-common mode geometries. The LRC
tool helped guarantee that all differential paths were
matched in terms of layout geometries. It analyzed all
pertinent device and metal layers, handling process
patterning and variation issues, enforcing consistent
shielding, and ensuring all signal attackers (cross

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 51

Intel Technology Journal, Volume 8, Issue 1, 2004

AUTHORS’ BIOGRAPHIES capacitance) were common mode. This correct-by-
construction layout was absolutely necessary for high-
volume production and for the creation of a database of
this size. SRAM and analog designs deal with similar
layout matching issues, but on a much smaller scale; e.g.,
SRAMs involve just one arrayed memory cell. LVS
circuitry contained hundreds of thousands of unique
layout geometries and timing paths, and ensuring matched
nlayout alone was a feat never before accomplished on
this scale.

Daniel J. Deleganes is the project manager of the Intel
Pentium 4 processor integer execution cluster described.
Daniel received a B.S.E.E. degree from the University of
Washington in 1988 and an M.S.E.E. degree from Cornell
University in 1989. At Intel he contributed to high-speed
Intel i486 and Intel Pentium processor 2nd level cache
SRAM families, several Pentium processor generations,
and all Pentium 4 processor generations. His e-mail is
daniel.j.deleganes at intel.com.

To date, no tool or methodology holes have led to
functional, yield, or speed issues on silicon. Micah Barany is the microarchitecture manager of the

Pentium 4 processor integer execution cluster described.
Micah received a B.S. degree in Engineering Physics
from the University of California, San Diego in 1989, and
an M.S.E.E. degree from Stanford University in 1993. At
Intel he contributed to Intel i386™ SX and Intel i486 SL
microprocessor families, and several Pentium and
Pentium 4 processor generations. His e-mail is
micah.barany at intel.com.

CONCLUSION
Low-Voltage Swing circuit technology utilizes custom
tools and methodologies to implement random small
signal logic at an unprecedented scale. Our 2x frequency
integer core implementation on Intel's 90nm process
meets the present Pentium® 4 processor product demands.
With process and post silicon optimizations the design
will support increasingly higher frequency processors. Daniel Chow is a memory design lead and integrator in

the Execution Cluster. He joined Intel in 1996 and has
been involved with the methodology definition and
implementation of high speed circuits in all Pentium 4
processor generations. Prior to Intel, he worked at
Motorola as the primary memory designer for the
MC68060. He received his MSEE and BSEE from
Oregon State University. His e-mail is daniel.c.chow at
intel.com.

ACKNOWLEDGMENTS
Innumerable thanks to Matt Morrise, who worked side-
by-side with us to create our custom dynamic simulator
tool. Thanks to Nick Kuhlman for developing and
supporting countless methodology and tool issues.
Edmund Pierzchala enabled our layout design rule
checker tools. Dan Milliron provided our noise analysis
tools and automation tools. Many thanks to our crack
layout design team, for ensuring high-quality, low-noise
layout. Andy Soelburg and Sean Mirkes provided a
comprehensive methodology to interface static and
dynamic timing analyses.

Thomas D. Fletcher directs circuit methodology and
research for new microprocessors in DPG. He has worked
at Intel since 1991 and is a senior principal engineer. He
was the clock unit owner for the Pentium Pro processor
and has steered early circuit design and research for
several generations of the Intel Pentium 4 processor. He is
listed as inventor or co-inventor for 45 Intel patents and
has 5 IEEE publications. His e-mail is tom.fletcher at
intel.com.

REFERENCES
[1] Dan Deleganes, et. al., “Low-voltage-swing logic

circuits for a 7Ghz x86 integer core,” IEEE ISSCC,
February 2004. George L. Geannopoulos co-managed the LVS design

team and is currently managing the PLL team in LTD. He
joined Intel in 1994. His interests include high-speed
circuits, PLL, clock generation and analog design. Prior
to joining Intel, he worked at Bipolar Integrated
Technologies as a design manager designing VLSI ECL
RISC FPUs FPCs and register files. He also worked at
MMI/AMD designing programmable array logic (PALs).
He received a B.S.E.E. degree from the University of

[2] S. Thompson, et. al., “A 90nm technology featuring
50nm strained silicon channel transistors, 7 layers of
Cu interconnects, low k ILD, and 1 um2 SRAM cell,”
2002 IEDM Digest, Dec. 2002, pp. 21-64.

[3] Pereira, R., and Mitchell, J.A., and Solana, J.M.,
“Fully pipelined TSPC barrel shifter for high speed
applications,” IEEE Journal of Solid-State Circuits,
Vol. 30, No. 6, June 1995.

 [4] Stevens, K. and Morrise, M., “Algorithm for finding
vectors to stimulate all paths and arcs through an LVS
gate,” U.S. Patent 6557149.

 i486 and i386 are trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 52

Intel Technology Journal, Volume 8, Issue 1, 2004

Illinois, Champaign Urbana. His e-mail is
george.geannopoulos at intel.com.

Kurt Kreitzer currently manages the LVS design team.
He recently worked to spec and develop quality LVS
design tools and methodologies. Kurt received a B.S.C.E.
degree from Oregon State University in 1994. After
working on the Pentium Pro, he created the modular
SRAM array used throughout the Pentium 4 and other
projects and implemented the Pentium 4 Trace Cache. His
e-mail is kurt.kreitzer at intel.com.

Anant P. Singh is a senior designer on the LVS team.
His recent focus is in mixed signal design where he has
worked to define, implement and productize LVS circuits
in the dual pumped execution core of the next-generation
Pentium 4 processor. He has also designed circuits to
enable the backside bus logic on Pentium® III processors.
Anant has an M.S.E.E. degree. from the University of
Washington and a B.S.E.E. degree from Delhi University.
Prior to Intel, Anant worked in the field of control
systems and automation. His e-mail is anant.p.singh at
intel.com.

Sapumal B. Wijeratne co-designed the LVS
AGU/ALUs. Prior to this work Sapumal held numerous
technical leadership positions including methodology lead
for domino circuits and register files. He is currently co-
managing the next lead processor’s integer execution core
design team in LTD. Sapumal received a B.S.E.E. from
Lafayette College in 1984 and a M.S.E.E. from Purdue
University in 1986. His e-mail is sapumal.wijeratne at
intel.com.

Copyright © Intel Corporation 2004. This publication was
downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

 Pentium is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 53

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 8, Issue 1, 2004

THIS PAGE INTENTIONALLY LEFT BLANK

LVS Technology for the Intel® Pentium® 4 Processor on 90nm Technology 54

Library Architecture Challenges for Cell-Based Design

Barbara Chappell, Technology and Manufacturing Group, Intel Corporation
Amanda Duncan, Technology and Manufacturing Group, Intel Corporation

Kiran Ganesh, Mobile Platforms Group, Intel Corporation
Manoj Gunwani, Mobile Platforms Group, Intel Corporation
Abhinav Sharma, Mobile Platforms Group, Intel Corporation
Madhu Swarna, Desktop Platforms Group, Intel Corporation

Index words: Cell-Based Design, standard cell library

ABSTRACT The use of CBD in the Intel Pentium 4 processor on 90nm
technology enabled large “sea-of-cells” designs for
improved global optimization and more rapid design
convergence. Pre-qualification of the cells and a reduced
amount of unique layout contributed to the quality control
for the product. The CBD library also aided estimation of
chip floor-plan and architectural trade-offs. Early
explorations of library architecture in conjunction with
90nm technology pathfinding helped us evaluate the
impact of the technology on circuits.

The Intel Pentium® 4 processor on 90nm technology is
the first Intel microprocessor whose significant portion
(~50% of the non-cache devices) was designed using a
Cell-Based Design (CBD) methodology. In the CBD
methodology, Electronic Design Automation (EDA) tools
are used with a library of standard cells to build up a large
and complex design. This paper describes the challenges
involved in designing a standard cell library to enable the
CBD methodology to be applied on a large scale on a
chip with an aggressive performance target. Factors
critical in enabling CBD on the Intel Pentium 4 processor
included the breadth of library content, the physical
architecture and design guidelines of the cells, the circuit
optimization methodologies, and the functional validation
of the cells. In addition to these design concerns, careful
modeling for timing, noise, reliability, formal verification,
and place and route were required. In this paper, we
present an overview of the CBD flow, and we discuss
these cell library design and modeling issues.

The quality of the library plays a key role in producing a
competitive design with the CBD methodology. The goal
of this paper is to present some of the technical challenges
in cell library design and modeling faced by the
designers.

CELL-BASED DESIGN FLOW
The Cell-Based Design (CBD) flow for the Intel Pentium
4 processor consisted of four basic steps:

1. Netlist generation

INTRODUCTION 2. Cell placement
Cell-Based Design (CBD) refers to a design approach that
uses a library of basic building blocks called cells. Using
cells from the library, larger, more complex functions are
realized. In contrast to transistor-level in situ
customization of cell designs [1], the cells are treated as
black box entities by the design and verification tools and
are fully characterized for timing, noise, reliability, etc.

3. Routing

4. Design verification

Due to the very aggressive performance targets of the
Intel Pentium 4 processor and other constraints specific to
portions of the design, varying degrees of automation
were used.

Gate-level netlists were created both by directly
synthesizing Register Transfer Level (RTL) code and by
manually drawing schematics. Cell placement and
interconnect routing were generated using both automatic
techniques and manual specification. Design verification

 Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

Library Architecture Challenges for Cell-Based Design 55

Intel Technology Journal, Volume 8, Issue 1, 2004

included domains such as logic, timing, noise, and
reliability.

One of the main challenges in the CBD flow was design
convergence. Standard circuit and layout techniques were
applied to solve timing problems including max-delay,
min-delay, and max slope. Wire-spacing, shielding, buffer
sizing, and other solutions were used to address noise
issues. Reliability convergence for electromigration and
self heat was achieved mainly through slope fixing, wire
sizing, and thermal simulation. In addition, the CBD flow
had to automatically perform design completion tasks
such as scan insertion, scan chain hook-up, clock tree
synthesis, and sizing of clock buffers.

The CBD flow was used across the board on the Intel
Pentium 4 processor to implement a variety of design
blocks. Some designs such as cache, register files, domino
and analog circuits were implemented using custom
techniques. Table 1 shows the percentage of area,
transistor count, and cell count in the CBD and non-CBD
sections of the chip, where cell count in the non-CBD
areas refers to the number of custom cells.

Table 1: CBD usage in the Pentium® 4 processor

CELL LIBRARY DESIGN

Library Content
The library consisted of over 1600 cells, covering over
130 unique logic functions, and associated collateral
included over 20 file types. Most cells had variants
implemented with different threshold voltage transistors
to enable trade-offs between delay and leakage power.
The percentage of library content, usage, and effort for
different cell types is shown in Figure 1. The library
content included complex cells that were aimed at device-
dominated, high-speed datapath and control blocks.
Buffers and sequentials for use as repeaters and drivers
for global nets were also included in the library.
Sequentials included latches and flip-flops with a wide
variety of functions, and scan and non-scan variants for
almost every type. As shown in Figure 1, although the
sequentials made up less than 45% of the library, they
accounted for more than 65% of the library effort, due to
their design and characterization complexity.

A wide range of drive strengths was designed for each
logic family. Drive strengths were selected to maximize
transistor density within the cells as much as possible,

while providing adequate granularity of drive strengths
for optimal tuning of paths.

0 10 20 30 40 50 60 70

inverters, buffers,
simple gates

clock and special
cells

sequentials

complex gates

% Used % Library % Effort

Figure 1: Library percentage content, effort, and
usage

Library Architecture
The architectural specification is what distinguishes a
CBD library from a random collection of cells. The scope
of this specification is broad–including naming
convention, physical design template, drive-strength
definitions, electrical and physical design guidelines, and
methodology for verification and for production of
collateral for chip design. For the Intel Pentium 4
processor project, the fundamentals of the library
architecture were defined very early in conjunction with
the device, design rule, and fabrication technology
definition for the 90nm generation [2,3]. It was revised
multiple times before production versions of the library
were used in the final design convergence of the Intel
Pentium 4 processor.

 CBD Non-CBD

Area 52% 48%

Cell count 44% 56%

Transistor count 50% 50%

The physical architecture of the library, Figure 2, is row-
based. All cells are 15 metal 2 (M2) tracks tall and a
variable, but integer, number of metal 3 (M3) tracks wide.
It features wide M2 power busing over the devices and 11
M2 tracks for signals. The outer tracks were useful for
routing on metal 1 (M1) and poly, thereby minimizing the
need for M2 for intra-cell routing, even in complex cells.
No M3 was used inside the cells. Pins in the cell were in
M1 in nearly all cases, and they conformed to a
specification that balanced cell area against block place-
and-route efficiency.

The cell template and rules for internal cell routing were
carefully designed to restrict the delay due to
resistance*capacitance (RC) to an acceptable level, while
minimizing cell area and the use of upper levels of metal.
For example, RC delay in the polysilicon layer was
acceptably low even when p or n device widths filled the
cell height, as illustrated in Figure 2, but would have
precluded the use of a wider gate, even if the cell height
was taller. Poly routing was used to cross under M1
routing in the cells (as an alternative to M2 routing) only

Library Architecture Challenges for Cell-Based Design 56

Intel Technology Journal, Volume 8, Issue 1, 2004

if the resulting RC delay was acceptable. All stages with
the fastest delay targets use full metal strapping of source
and drain diffusions, but limited use of diffusion without
metal strapping was allowed on series-connected devices
or other devices with longer delays. Netlists, including
resistances, were extracted from the cell layout to ensure
performance and margin verification accuracy.

Figure 2: Illustration of standard cell architecture

Cell Design Methodology
P/N ratios for single-stage gates (such as inverter, nand,
nor, and-or-invert and or-and-invert) were determined by
path-based delay optimizations. Average delay was
minimized for a given total gate area, under nominal
loading conditions. These ratios were typically
determined once per logical family and applied across all
of its drive strengths.

Multi-stage gates (such as muxes, xor/xnor gates, etc.)
were individually optimized across all drive strengths to
minimize objective functions specified by the designers.
Typically, the objective was to minimize a power-delay
product under nominal loading conditions, while meeting
any specified constraints for noise margins, transition
times, etc.

Sequential cells are special cases of multi-stage gates. The
objective functions for optimization included power-delay
trade-offs, noise, charge-sharing, stability, and side-pin
(reset/preset/enable) constraints. We modeled each of
these constraints under the appropriate skew and voltage
conditions. For master-slave flipflops, our key objective
was the minimization of its black-hole time (clock-to-out
+ setup). Prior to the design execution, we performed

several experiments to select the optimal activity factors,
driver sizes, waveform shapes, noise criteria, length of
clock chains, P/N ratio of output driver, and pass-gate
size restrictions. We then leveraged these results during
the design of all sequential families.

Individual sizing of each drive strength helped achieve
optimal transistor sizes. For example, smaller sized
latches were more susceptible to noise and less prone to
restore time failures, and we sized the transistors
appropriately to reflect this.

M2 Signal Track

M2 Power

M1 Input Pin

Cell Border

P-Device

Poly-Silicide
Gate Layer

M1 Output Pin

N-Device

M3 Signal Track

M2 Signal Track

M2 Power

M1 Input Pin

Cell Border

P-Device

Poly-Silicide
Gate Layer

M1 Output Pin

N-Device

M3 Signal Track

M2 Signal Track

M2 Power

M1 Input Pin

Cell Border

P-Device

Poly-Silicide
Gate Layer

M1 Output Pin

N-Device

M3 Signal Track

The library included phase-1 and phase-2 scan versions of
all sequential elements. In phase-1 scan sequentials, the
clock is in phase with the scan clock, and in phase-2
versions, the clock is out of phase with the scan clock.
Min-delay and max-delay constraints from the scan-
load/scan-store operations primarily drove the sizing of
scan circuitry. Leakage power considerations drove the
choice of non-minimum transistor lengths. Scan cells
were built by taking the regular sequential elements and
adding a scan gadget on top of them. Using the same
gadget sizes for all sequential cells helped minimize
design work. The combined scan cell was validated for
noise and delay constraints. (See “Full Hold-Scan
Systems in Microprocessors: Cost/Benefit Analysis” in
this issue of the Intel Technology Journal for additional
details on scan.)

We targeted some family types, such as clock buffers and
min-delay cells, for specific operating conditions. They
had their unique optimization methods under restricted
delay and transition time domains. Cells compatible with
Focused Ion Beam editing, de-coupling capacitors, and
other layout completion cells were driven by layout and
process requirements.

The 90nm process used in the Pentium 4 processor design
featured a choice of dual threshold-voltage transistors.
These can be used for power-performance trade-offs. In
the library, low Vt transistors were primarily used to gain
speed-up for the same layout footprint. These cells were
generated from the nominal versions by converting
selected devices to low Vt, without transistor size
changes.

A host of internally developed automation tools helped
ensure high productivity even when cells were
individually optimized. These included tools for circuit
optimization, parasitic and reliability estimation, low Vt
variant generation, and layout automation. Once a design
was set up for optimization, it propagated through process
file revisions, design target changes, creation of design
variants, and the addition of new drive strengths with
minimal effort.

Library Architecture Challenges for Cell-Based Design 57

Intel Technology Journal, Volume 8, Issue 1, 2004

Library Qualification

Once a library cell is designed, it must be qualified to
meet its logic, circuit, and layout design specifications.
Logic equivalence tools were used to validate that each
cell implemented the logic function for which it was
designed. A host of validation checks was performed to
guarantee circuit functionality and performance across
wide ranges of temperature, power supply, signal slopes,
and process skews. Functional checks for circuits covered
noise margins, writability, and node recovery times.
Performance checks included delay, setup/hold times, and
maximum signal slopes.

In addition to manual reviews, cell layout was checked by
a cell architecture verification tool to ensure that it was
compatible with the place and route tool. The reliability
checks on each cell included those for electromigration,
self-heat, and IR drop on the power rails.

Figure 3: Definition of setup time

Some cells are very sensitive to the environment in which
they are placed, which creates timing modeling
challenges. One example is a cell that has input pins
directly connected to pass-gates. For such cells, large
differences in timing due to charge sharing can be seen
for timing arcs that involve the switching on of the pass-
gates. The charge sharing problem is worse for large pass-
gates with weak external drivers. To mitigate this
problem, cells with inputs tied directly to pass-gates were
designed with restricted pass-gate transistor widths, and
they were characterized with the assumption of the
weakest possible driver allowed.

Multiple library releases were made during the course of
the project. Regression tests were used to ensure that a
new library release did not significantly perturb the
existing state of the design. Pilot blocks were re-created
using the new library to gauge the impact on the design
before the library release.

CELL LIBRARY MODELING
Typical cell timing characterization involves a single
input transition causing an output transition, but in some
instances it is possible that more than one pin transitions
simultaneously. Such scenarios were handled for
combinational cells by modeling possible increases or
decreases in delay when more than one pin transitions at
the same time. There are generally a large number of
input parameter combinations that could be considered.
To constrain the characterization effort, only the most
important input parameter combinations were considered,
while eliminating those combinations that were found to
have a smaller impact on the timing of the cell.

Modeling for Timing
To ensure accurate modeling of cell timing, the
mathematical timing models used by the static timing
analysis tools (typically of the form timing=f(CL, TTin)
where CL is the external load of the cell and TTin is the
transition time of the input) were compared against
dynamic simulations at each characterized value of the
input parameters. This was done for every cell, and
problematic cells were studied for further action, which
often simply involved recognizing that the models
showed large errors for the input parameter ranges at
which the cells were rarely used.

Another interesting case of modeling timing was
encountered in the fully decoded multiplexer cells, an
example of which is shown in Figure 5. In such cells,
only one select pin (sa or sb in the figure) can be on at
any given time. Also, select-to-output timing is degraded
if one of the select pins transitions high and the other one
transitions low simultaneously, relative to the case where
only one select pin transitions high with the other one
held at a constant low. To model this timing difference,
worst-case select-to-output delays were modeled by
simultaneous switching of two select pins with one rising
and the other falling, and the best case delays were
modeled by only one select pin rising.

Setup time modeling for latches and flip-flops was done
based on a set of criteria that involved constraints on
storage node transitions at the clock arrival time and
acceptable errors in cell delay timings at setup, with
respect to delay timings at infinite separation between
data and clock. Ideally, in order to reduce modeling errors
we would want zero errors in cell delay timings.
However, this approach is impractical as a flip-flop’s
black hole time (clock-to-out delay plus setup time) may
not be optimal at this point. Therefore, a point was chosen
for the setup time modeling that gave optimal timing at
the cost of an acceptable error between cell delays at
setup and infinite setup (see Figure 3).

Library Architecture Challenges for Cell-Based Design 58

Intel Technology Journal, Volume 8, Issue 1, 2004

Modeling for Noise Modeling for Reliability
In the CBD flow, any noise failure on a cell instance can
be fixed only by changing the environment around the
cell. Therefore, it is important to design cells with good
noise immunity while maintaining acceptable timings.

The primary reliability concerns addressed here are
Electromigration (EM) and Self-Heating (SH) problems.
This was a bigger concern in the 90nm process used for
the Intel Pentium 4 processor because of the low thermal
conductivity of the low-K inter-layer dielectric.

The analysis at the block level fell under a couple of
different categories: (a) validating the cell internals for a
given external loading and (b) validating the interconnect
between the cells for a certain routing topology. Power
grid validation for EM, SH, and voltage drop was a
special case of the latter.

 At the cell level, the characterization data were analyzed
for the product’s end-of-life operating condition. The
EM/SH characterization data for cells depended on
whether a net is a power or non-power (signal) net. For
signal nets, the cell characterization data included the
maximum average and root mean square (RMS) currents
a cell pin could support. For power nets, the
characterization produced a model of the cell’s power
network including resistors and current sinks.

Figure 4: Noise-sensitive latch

An example of a cell in which the noise versus timing
trade-off was critical is shown in Figure 4. The latch in
the figure is sensitive to noise on both the d and ck input
pins. An initial design with a very tight noise constraint
turned out to have the same timing as a cell with an extra
inverter in the d to output path. A revised noise spec
based on a more reasonable assumption of noise attackers
gave a design with much better timing. This made the
design less robust to noise, but the number of noise
failure cases at the CBD level was still manageable. Such
cases were used as a reference to come up with suitable
noise versus timing design trade-offs for other cells with
noise-sensitive architectures. Noise specs were revised for
some architectures to give timings that met expectations
with the understanding that usage of such cells in CBD
would be limited to cases where the noise levels are
manageable.

At the block level, the data from cell-level
characterization were used to do the roll-ups. The power
grid was simulated to test the accuracy of the heat
produced by the power nets. The temperature simulator
generated a temperature map for the whole die, from
which local temperatures for coarse pixels are
determined. An EM violation could be waived by
reducing the SH current in a neighboring wire that affects
the temperature.

Modeling for Formal Verification Interconnect parasitics have a big impact on the timing
and noise behavior of standard cells, especially when it
comes to cross capacitance either between nets within the
cell or between nets inside the cell and the ones
surrounding the cell. For the library cells, the extraction
tool modeled the cross capacitance between nets internal
to the cell by looking at the actual geometry and routing
of the nets. For the internal net to external net cross
capacitance estimations, assumptions were made about
what the external routing would look like and the
capacitances were extracted based on those assumptions.
For timing purposes, the external ends of these
capacitances were grounded to prevent unrealistically
pessimistic modeling. For noise purposes and for
reporting noise behavior of cells to the CBD tools, actual
attackers were assumed on the external ends of these
capacitors to come up with the worst-case attacker
switching scenario. A realistic “derating” of the attacker
strength based on the type of layer of the cross
capacitance was done to avoid making the results too
pessimistic.

The CBD flow required a library rich in content,
including cells whose logic did not fit the norm of
standard cells in previous libraries.

Cells with constrained inputs needed adequate modeling
to ensure that they are handled appropriately. As an
example, consider the 2-to-1 multiplexer circuit shown in
Figure 5.

a

b

sa

sa’

sb

o

sb’

Figure 5: 2-to-1 multiplexer with decoded selects

Library Architecture Challenges for Cell-Based Design 59

Intel Technology Journal, Volume 8, Issue 1, 2004

The logical behavior for this circuit in HDL syntax is
expressed as “if sa then a else if sb then b.” However, this
description has two pitfalls: (1) it implies priority of the
sa select over sb when both are active and (2) when both
sa and sb are inactive it implies that the circuit holds its
values, i.e., behaves as a latch. Moreover, the circuit
implementation is such that both selects cannot be made
active simultaneously since that can create a short-circuit
path. For correct usage of this cell, the constraint that one
and only one of the selects (sa or sb) must be active at all
times must be met when using this cell at the block level.

Another example of a cell with constrained inputs is a fast
XNOR gate with logic function “a*b + ab*bb” needed for
high-speed applications. The a & ab inputs, as well as the
b & bb inputs are assumed to be complementary signals.
This assumption needed to be propagated correctly to the
formal verification flow.

Some circuits such as the scan cells were too large for
analysis at the transistor level. This issue was overcome
by carefully decomposing the circuit into a hierarchy of
logic functions, each of which could then be successfully
verified.

Formal verification tools have used such constraints but at
higher levels in the design hierarchy. The CBD flow
necessitated their use even at the library level so that the
cells could be black-boxed for logic validation.

Modeling for Place and Route
The advanced 90nm process technology used in the Intel
Pentium 4 processor included complex layout design rules
that are not adequately comprehended by current place
and route tools.

Traditionally, placement tools assume that the spacing
between cell layout polygons and the cell border is
greater than or equal to half of the design rule spacing for
each layer. Thus, the spacing constraints are satisfied
even when cells are abutted against each other. The cell
layouts had to be carefully designed and modeled to
ensure this. Extra checks were added to the layout
verification flow to guard against violations.

During routing, cells are traditionally modeled as
abstracts consisting of terminals (target connection points
for routing) and obstacles (areas where routes cannot be
placed) This posed a couple of problems in the Intel
Pentium 4 processor design, including the following:

1. False design-rule violations on obstacles: The
obstacles within cells are assumed to originate from
physical wiring within the layout and were expected
to satisfy the layout design rules for the layer they
were on. However, sometimes only part of the wiring
on a net can be marked as a terminal for process or
circuit performance reasons. This led to router issues

because the unmarked segments created design-rule
violations.

As an example, consider the layout in Figure 6 where
the via cover on output net O cannot be marked as
terminal because it is too narrow to pass the
reliability checks. In this case, routing connections
must be made only to the wider segment. The
existence of other wiring (Net X) prevents the via
cover from being widened to pass the reliability
check. The part of the via cover outside the fat
segment must therefore be marked as obstacle to
enforce this–and that part is not wide enough to meet
design rules on its own.

Figure 6: Modeling issue with obstacle

2. Fixed vs. variable spacing constraints: Adequate
support for obeying spacing constraints based on
local polygon density was not available (similar to
the placement issue described above)

The first issue led to the loss of terminal area in some cell
abstracts since obstacles had to be expanded to meet
minimum width requirements. In some cells, layout
rework was needed to satisfy the requirements of the
routing tool. For the second issue, a workaround was
developed whereby the shape of the obstacle generated
was based on the local polygon density of the layer, and
the routing tool used a spacing constraint value that
ensured no violations were created by it. This workaround
required special care during the layout design so that the
generated obstacle shape satisfied all design rules as
required by the previous limitation mentioned.

CONCLUSION
For CBD to be an effective methodology for a high-
performance product like the Intel Pentium 4 processor,
many considerations must be addressed during library
design in order to use CBD widely without compromising
the design. Library richness, in terms of logic functions,
drive strengths, and collateral types, as well as an
optimized architectural specification, including the
physical design template and guidelines, play a key role.
Both power and delay must be considered during cell

Library Architecture Challenges for Cell-Based Design 60

Intel Technology Journal, Volume 8, Issue 1, 2004

Library Architecture Challenges for Cell-Based Design 61

optimization as well as other constraints for specific cell
types. Because the cells are treated as black boxes in the
CBD flow, it is critical that they are well-tested for
functionality and performance and meet the requirements
of the place-and-route tool and all process design rules.
There are many modeling issues that must be addressed
during the design of a library for CBD. Challenges
include the treatment of pass-gate inputs, multiple-input
switching, trade-offs between timing and noise
robustness, cells with problematic logic descriptions, cells
too large for formal verification at the transistor level, and
complex layout design rules that may not be completely
comprehended by the place and route tool. Careful
consideration of these and other issues during the
construction of the cell library helped enable the CBD
methodology to be used to an unprecedented extent in the
Pentium 4 processor.

ACKNOWLEDGMENTS
This library is the work of many more contributors than
can be included in the author list, including the design
engineers and graphics technicians on the library team,
the tool developers, the users of the library, and several
key technical leaders from both product and technology
groups. Special thanks go to Carl Simonsen, who was the
founder of much of the methodology used in this standard
cell library. The authors also thank Tim Deeter, Deanna
Hotchkiss, Donna Medeiros, Vijay Pitchumani, Stephen
Rich, and Ian Young for reviewing this paper.

REFERENCES
 [1] Northrop, G.A. and Lu, Pong-Fei, “A semi-custom

design flow in high-performance microprocessor
design,” in Proceedings of the 2001 Design
Automation Conference, pp. 426-431.

[2] Jan, C.H. et. al., “90nm generation, 300mm wafer low
k ILD/Cu interconnect technology,” in Proceedings of
the IEEE 2003 International Interconnect Technology
Conference, pp. 15-17.

[3] Thompson, S. et. al., “A 90nm Logic Technology
Featuring 50nm Strained Silicon Channel Transistors,
7 layers of Cu Interconnects, Low k ILD, and 1 um2
SRAM Cell,” in Proceedings of the 2002
International Electron Devices Meeting, pp. 61-64.

AUTHORS’ BIOGRAPHIES
Barbara Chappell is an Intel principal engineer in an
R&D design organization within the Technology
Manufacturing Group. During her eight years with Intel,
her contributions have been in the fields of synthesis and
library methodologies, in evaluating the impact of
process technology on design, and in circuit techniques

for high-speed logic. Barbara holds an M.S.E.E. degree
from the University of California at Berkeley. Her e-mail
address is barbara.a.chappell at intel.com.

Amanda Duncan manages the Standard Logic
Implementation group in Intel’s Logic Technology
Development organization. She has been with Intel for
seven years. Her interests include library design and
modeling. She holds B.S., M.S., and Ph.D. degrees in
Electrical Engineering from the University of Illinois at
Urbana-Champaign. Her e-mail address is amanda.duncan
at intel.com.

Kiran Ganesh manages the Cell Libraries Development
group in the Design Technology organization. He has
been at Intel for seven years. His primary interests include
design and modeling of cell libraries and physical design.
He holds a Bachelors degree in Electrical Engineering
from the Indian Institute of Technology, Madras and a
Masters degree in Computer Engineering from Syracuse
University. His e-mail address is kiran.ganesh at
intel.com.

Manoj Gunwani is a project leader in the Cell Libraries
Development group and has been with Intel for seven
years. His primary interests are in VLSI library and
physical design. He holds Masters degrees in Computer
Science and Neuroscience from Syracuse University, a
Bachelors degree in Electronics Engineering from IIT,
Chennai and also pursued doctoral studies in Electrical
Engineering at Stanford University. His e-mail address is
manoj.g.gunwani at intel.com.

Abhinav Sharma works as a library design engineer in
the Cell Libraries Development group in Design
Technology, Intel. His interests are standard cell libraries
and their usage by automated synthesis and P&R. He
received his MSE degree in Electrical Engineering from
Arizona State University and his B. Tech degree in
Electronics & Instrumentation from Nagarjuna
University, India. His e-mail address is abhinav.sharma at
intel.com.

Madhu Swarna is a design automation engineer in the
Desktop Products Group. He has been at Intel for seven
years. His primary interests are in design for low power,
timing analysis and library modeling. He earned his
Master’s degree in Computer Science from Texas A&M
University in 1997. His e-mail address is madhu.swarna
at intel.com.

Copyright © Intel Corporation 2004. This publication was
downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/sites/corporate/tradmarx.htm
http://developer.intel.com/

Intel Technology Journal, Volume 8, Issue 1, 2004

Library Architecture Challenges for Cell-Based Design 62

THIS PAGE INTENTIONALLY LEFT BLANK

Full Hold-Scan Systems in Microprocessors:
Cost/Benefit Analysis

Ravishankar Kuppuswamy, Technology and Manufacturing Group, Intel Corporation
Peter DesRosier, Technology and Manufacturing Group, Intel Corporation

Derek Feltham, Desktop Platforms Group, Intel Corporation
Rehan Sheikh, Desktop Platforms Group, Intel Corporation

Paul Thadikaran, Desktop Platforms Group, Intel Corporation

Index words: Microprocessor, Scan, Test, DFT, DFM, ATPG, DPM, Fault Grading

ABSTRACT
Ever-shrinking microprocessor product development
times require enhanced High-Volume Manufacturing
(HVM) techniques. This paper describes the full hold-
scan testing system implemented in the 90nm Intel®
Pentium® 4 processor. Benefits of this scan system
include significantly reduced functional test-writing and
fault-grade effort, extensive initialization of the design for
test and debug, massive visibility into the design for post-
silicon debug and fault isolation, and ultimately, a
significantly accelerated ramp to production test quality.
Any full hold-scan system such as this impacts timing,
power, area, and schedule. In a high-performance
microprocessor, in particular, this significantly impacts
product viability and must be closely managed. In this
paper, the Intel full hold-scan system is described,
particularly the design challenges, cost optimizations, and
test benefits, and we also discuss the costs and benefits of
having implemented this successful testing system.

INTRODUCTION
Our full hold-scan system (Figure 1) comprises a full-chip
scan bus that acts as a communication channel between
the Test Access Port (TAP) and all units. The TAP
controller converts data between the TAP clock domain at
the pins and core clock domains at the full-chip scan bus
interface. This controller also supports serial (TDI/TDO)
and parallel modes (36 in/36 out data & address bus pins).
There are 29 Scan Functional Units (SFUs) distributed
across the chip that interface between the full-chip scan
bus and the intra-unit scan chains. Each SFU supports 18

logic chains, 5 reserved chains and up to 3 custom chains.
The logic chains provide access to ~200k scan sites in the
design. The scan sites are implemented with hold-scan
cells, which provide a full shadow of the machine state
and enable non-intrusive operation while the system is
running or while system clocks are frozen.

Full hold-scan systems have an inherent die area cost and
have a critical impact on the timing performance and
power metrics of the microprocessor. The transistor
scaling for the development of high-speed circuits further
exacerbates the power problem. Additionally, the scan
circuits contribute to local device and wire congestion
leading to design convergence issues. We used a variety
of architectural and circuit design solutions to build a
commercially viable low-power full-scan system. We
describe the full-scan circuits in the latest 90nm Intel
Pentium 4 microprocessor. We also discuss the various
design trade-offs (cost vs. benefit) and the evolution of
Intel’s first full hold-scan system design in a
microprocessor.

® Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 63

Intel Technology Journal, Volume 8, Issue 1, 2004

TAP
ParOut[35:0]

ParIn[35:0]

TDO

TDI Data[1:0]

Control[5:0]

SFU SFU

SFU

SFUSFUSFU

SFU

Data[1:0]

Data[1:0]

Data[1:0]

Data[1:0]Data[1:0]

Data[1:0]

Data[1:0]

Control[5:0]

C
on

tro
l[5

:0
]

TAP
ParOut[35:0]

ParIn[35:0]

TDO

TDI Data[1:0]

Control[5:0]

SFU SFU

SFU

SFUSFUSFU

SFU

Data[1:0]

Data[1:0]

Data[1:0]

Data[1:0]Data[1:0]

Data[1:0]

Data[1:0]

Control[5:0]

C
on

tro
l[5

:0
]

Figure 1: Full-chip scan system

DESIGN AND TEST CHALLENGES
Intel’s move to full hold-scan in this design generation
was motivated fundamentally by the need to continue
accelerating new product development. Historically, Intel
has used custom Design For Test (DFT) features and
post-silicon test-writing to create high-quality production
test suites for lead microprocessor designs [1]. Past Intel
processor design teams have consumed upwards of 50
person-years to develop the production test suite for a
new design. The significant post-silicon effort of this
approach was justified by the product cost savings that
could be realized through saving the die area and timing
margin that more systematic DFT would have cost. This
cost/benefit trade-off has remained true for many
generations of Intel Pentium® processor design, as driven
primarily by the economics of extremely HVM.

With every design generation, however, the challenge of
creating a high-quality production test suite [2] in a timely
fashion with reasonable resources is increased. And in
every design generation, the business environment
changes to even further increase the economic emphasis
on time-to-market and on the need to move critical design
resources to the next project as soon as possible. In the
latest microprocessor design generation, all these factors

finally led us to doing extensive systematic DFT in our
lead processor.

 Intel and Pentium are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

The benefits that would have to be realized to justify this
move to full hold-scan were as follows:

1. Reduced test generation and fault grade effort.

2. Increased visibility into internal state, for post-silicon
debug and fault isolation productivity.

3. Improved initialization for maximally effective
functional signature testing.

4. High burn-in toggle capability in a limited pin-count
test environment.

5. Significantly accelerated ramp to HVM, enabling
production test quality.

Automated DFT provides the promise of quick, reliable
test generation for a new product and all of its design
proliferations, quick stabilization in factory test programs
during the critical debug and ramp phase, and ultimately
significant factory cost savings because of a much earlier
reduction in system-testing to ensure outgoing quality
levels.

Reduced debug time is a fundamental goal in itself. It
reduces the overall time-to-market of a product and also
accelerates the pace with which design modifications can
be turned for debug onion-peeling. The standard interface
and massive observability of a scan system is understood
industry-wide for its many benefits to debug.

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 64

Intel Technology Journal, Volume 8, Issue 1, 2004

SCAN SYSTEM ARCHITECTURE Initialization is also a key engineering challenge to
rapidly achieving high test quality, particularly for a
signature-based functional test of a design. The inclusion
of a full hold-scan system and minimal extra DFT
provides a much easier path to massive system
initialization in advance of a deterministic test–both for
functional signature testing and for Automatic Test
Pattern Generation (ATPG).

Scan Functional Unit Features
The full hold-scan system comprises 29 SFUs distributed
across the different functional blocks of the
microprocessor. Each SFU is an intermediate control
station in the scan system that can be configured to access
different scan chains in the corresponding partition. SFUs
are configured using address scan registers that exist in
each SFU and get connected as a serial shift chain in scan
address mode (Figure 2). Each SFU provides access to 5
reserve and 3 custom chains as shown in Figure. 3.
Custom chains are available for additional future
visibility. Reserve chains are used for various scan usage
modes (which are mentioned later in this paper). We do
not, however, present details of reserve chain usages in
this paper.

Finally, maximizing toggle coverage (circuit excitation)
during burn-in on a low pin-count test board can be
achieved through the use of full hold-scan.

All of the above led to a capability to accelerate the ramp
from initial tape-out of a new product to high-volume,
high-quality stable manufacturing, and also to
maximizing the capability of the manufactured product.

Even given the expected test benefits, it was still critical
to pay attention to the historical design challenges that
had worked against choosing full hold-scan in the past.
To ensure that scan achieved the right economic trade-off
for the product, the following design goals also had to be
met:

1. Integrate debug and test capabilities into a single
cost-optimized scan system.

2. Minimize scan impact to die area, power, timing, and
design schedule.

3. Minimize reliability impact due to contention under
test.

4. Keep the overall system, library requirements, and
design rules as simple as possible, so as to minimize
validation complexity and maximize achievable
coverage benefit.

These design requirements led to the scan system
described in this paper. In particular, requirements 3 and
4 led to the specific full hold-scan system that was
adopted. Specifically, we tried to minimize variation in
our scan system design, so as to streamline the effort for
all peripheral teams involved in getting full hold-scan into
the Intel IA-32 microprocessor design environment for
the first time, and to maximize the chances of taping out a
fully bug-free scan system into first silicon. Other
technical requirements that shaped the system we adopted
included the need for compatibility with the structural
testers [3][4] in use in our high-volume test floors,
enabling efficient parallel access for HVM test time
minimization, providing serial access for burn-in and
system debug, providing hooks for making easy
enabling/disabling changes to manufacturing test
programs, and providing extensive signature capability
for maximum test quality from our extensive legacy
functional test base used for at-speed testing.

Figure 2: Scan functional unit block diagram

Logic Scan Chains
There are ~200k scanned states on the die. The scan
system for 15% of these states operates at full-core
frequency. These full-core frequency scanned states are
consolidated onto 2 of the sub-chains within each SFU.
These chains are referred to as “fast” chains (total fast
chains = 70). The remaining 16 sub-chains in each SFU
operate at (up to) one-half of the core frequency. These
SFU sub-chains are referred to as “slow” chains. All 18
chains in each SFU share the same clocking network.
Originally all chains were designed to run at the full core
frequency. This approach provided additional benefits
such as running “transition fault” tests at the core
frequency. However the scan logic on 16 of the chains in
each SFU was re-designed specifically to save power.
The two “fast” chains in each SFU were preserved for

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 65

Intel Technology Journal, Volume 8, Issue 1, 2004

HIGH-LEVEL OPERATIONS AND
MODES

usage in the full frequency modes (snapshot and signature
modes).

There are two primary arenas in which the scan system is
utilized. HVM, and Silicon Debug (1st Silicon Debug,
System Debug, Low Yield Analysis Debug (LYA)).

TAP Controller and Full-Chip Scan Bus
The Test Access Port (TAP) controller converts data
between the TAP clock frequency domain at the pins and
internal core clock domain at the full-chip scan bus
interface. The scan system in the TAP operates in either
serial or parallel mode. In parallel mode, the TAP
communicates with an Automated Test Equipment (ATE)
tester using 36 input and 36 output pins. In serial mode,
the TAP communicates with the ATE tester using TDI
and TDO. The TAP always shifts data into the two scan
bus data bits simultaneously. The full-chip scan bus is
comprised of two bits of data and five bits of control
signals. The two bits of data serially connect each of the
SFUs while the 5 bits of control signals are routed to each
of the SFUs as shown in Figure 4 in a balanced tree with
equal latency. The scan bus provides a non-intrusive
operation while the system is running or while the system
clocks are frozen. In parallel mode, the tester sends out
data (36 bits every TAP clock cycle) on the input bus.
Eighteen of the inputs received by the TAP are shifted
into one of the data bits in the scan system bus while the
other 18 inputs are shifted into the other data bit of the
scan system bus.

Snapshot for 1st Si System and LYA Debug
In both the tester and the system debug environments,
system data are captured in the scan states “on the fly”
while the system clock is running; this is called a “scan
snapshot.” These data are then shifted along the scan
chains and out of the chip in an operation called a “scan
dump.” At the chip interface, the captured states can be
serially shifted out on TDO pins or converted into parallel
data and sent out on external data and address pins.

During system debug, the architectural state of the
machine is dumped periodically using the Periodic
System Management Interrupt mechanism (details are not
included in this paper). When the system debugger would
like to know the “scannable” system state, he or she can
also perform periodic scan dumps. Consequently, the scan
dump operation must be non-destructive (not change the
state of the machine), and it must be possible to continue
normal system operation during and following the scan
dump.

A common use of scan snapshot on an Automated Test
Equipment (ATE) tester is to run a given test, perform a
scan snapshot at cycle N and dump the scan data, re-start
the test, do a scan snapshot at cycle N+1 and dump the
scan data. Continue in this fashion until K cycles of
snapshot data have been collected.

Snapshot Compression for 1st Si Debug
For repeatable errors, data are dumped and compared
several times to find when data goes from good to bad.
To reduce the amount of data that need to be collected,
scan chain data are compressed on-chip and only a
“signature” is dumped out. The scan chain (“fast” chains
only) outputs are fed through Linear Feedback Shift
Registers (LFSR) in each SFU and finally compressed
further by another LFSR in the TAP to produce the
signature. About 35k bits of snapshot data are compressed
down to 32 bits.

Figure 3: Addressing inside the SFU

On-Die Snapshot Diff for 1st Si Debug
Snapshot compression is more useful as part of a
technique called “on-die snapshot diff.” Often the
debugger is only looking for differences in the data
between a given test run and a known good run, thus the
snapshot data are compressed on-chip. The known good
signature can also be stored on-chip. The signatures
produced by subsequent test runs can be compared with

Figure 4: Logic chain connections inside the SFU

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 66

Intel Technology Journal, Volume 8, Issue 1, 2004

Device Initialization in Test Modes in High-
Volume Manufacturing

the golden signature on-chip, with only a pass-fail bit
shifted out of the chip.

The scan chains are also used for device initialization in
test modes. In this usage case, the scan system is loaded
with all 0s during reset pin assertion, and then a scan store
operation is executed to initialize the state of 200k non-
array sequential elements in the design to 0. This is done
early in the microprocessor reset sequence.

Signature Mode for Functional Tests in HVM
The shortcoming of the previous usage models is that, to
detect an error, the debugger must first find a point in
time during the test run where the error appears when a
snapshot was taken. “Signature mode” solves this
problem by compressing scan snapshot data taken every
clock cycle over a period of time. In addition to using the
LFSRs mentioned above to compress the scan data
spatially, the individual scan cells can compress the scan
data temporally. For example, instead of overwriting an
old bit of snapshot data, scan cells can XOR the old data
with new bits of snapshot data.

FULL SCAN DESIGN EXECUTION

Floor-Planning
The full hold-scan execution effort started with a detailed
floor-planning exercise to accommodate the 200K
scanned states on the chip. A detailed scan device area
estimation helped partition the full-chip functional block
boundaries as shown in Figure 5. We identified key
congestion areas to determine the critical cut of the die
and help shape the boundaries. Regular audits of bottom-
up area estimates were used to alter floor-plan
assumptions. The clock and control signal distribution
networks account for ~35% of the scan device area and
hence required congestion studies. The control signals
were routed in a balanced tree network to the different
SFUs and scan elements to optimize the signal tracks.

Signature mode is primarily useful in the production test
environment; especially while running hand-written
architectural tests. Instead of having to understand the
full-chip architecture to propagate a fault effect all the
way to a chip pin; the test writer’s job is greatly
simplified: he or she only needs to figure out how to
propagate the effect to a signature scan node.

Automatic Test Pattern Generation for
Various Faults Types in High-Volume
Manufacturing

The previous usage models only require the scan cell to
be able to observe a system state, which is reached by
running an architectural test. Scan is a much more
powerful feature when it is used to control, or modify, the
system state. Then, a stimulus pattern can be shifted into
the scan chain and applied to the system logic. The
response pattern can then be shifted out of the scan chain
and compared with an expected response obtained
through simulation. An ATPG tool determines the
stimulus and response patterns.

At the time of this design a microprocessor-sized netlist
was too large for an ATPG tool to handle all at once, thus
the design was partitioned into multiple clock domains.
Scan tests were generated and applied to one domain at a
time. The simplest type of fault for which to test using
ATPG is the stuck-at fault.

Toggle Coverage in Burn-in Mode in High-
Volume Manufacturing Figure 5: Full-chip floor plan

During burn-in testing, the scan system is used similarly
to how it is used in ATPG mode, except that the serial
interface to the scan system (via only the TAP port) is
used instead. Content loaded into the design for burn-in
testing can be either pseudo-random or generated by the
ATPG tools.

Library Development
The library cells are the fundamental building blocks of
the full hold-scan system. We designed independent scan
libraries to cater to the two distinct design methodologies
on the die: Cell-Based Design (CBD) and Embedded
Building Blocks (EBB). The library cells are designed
independently and pre-characterized to describe their

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 67

Intel Technology Journal, Volume 8, Issue 1, 2004

behavior for timing, logic, noise, reliability, etc. The
microprocessor uses a wide variety of latches and flip-
flop circuits to implement the logic functionality. The
scan system now requires scanned variants of every latch
and flip-flop on the die. A scanned latch shown in Figure
6 comprises two distinct circuits: a system latch and a
scan gadget. The system latch is the pristine storage
element catering to the system functionality needs, while
the scan gadget is comprised of a fixed size storage
element and interface circuits to meet communication
needs (shift, capture, store) as dictated by the scan
architecture. The interface circuits are sized in relation to
the system latch.

Figure 6: System latch with scan gadget cell

Figure 7: System latch with fast scan gadget layout

In a full hold-scan design, the large usage numbers of
scanned state elements (~200K) impose a high standard
on the scan gadget design. Individual scan gadgets have
been designed for use in fast and slow chains. The fast
gadget shown in Figure 7 needs to support shift, snap-
shot and store operations at full-speed, while the slow one
needs to operate the same functions at half core-speed.
This not only provides an opportunity to size down the
devices but also allows 100% use of low-leakage devices
in slow gadgets. Special care was taken to reduce the
amount of clock switching capacitance, a source of
dynamic power. Library cells were characterized first at

the cell level to meet all scan timing requirements. Scan
cell timings were designed with an additional 5-10%
margin to guarantee that process variation does not push
the scan circuits to be the speed-limiting paths on the die.

Scan Design Flows and Methodologies
There are two unique types of design methodologies used
on the microprocessor: EBB and CBD [5]. The physical
break-up of the two types of blocks is approximately
equal on the chip. While EBBs are hand-crafted by
individual designers, the CBD blocks use automated
techniques to implement the design. Although the
implementation flows of the two types of blocks are
vastly different, there is little difference in the logic
model. The design has a small fraction of blocks that are
deviant from the CBD methodology called Structured
Data Path (SDP) blocks. SDP blocks need hand-drawn
schematics and some manual intervention to help in the
automation of the convergence of the design.

The logic representation of a microprocessor design
undergoes significant early changes during the
functionality definition and logic convergence phases of
the design. To enable validation of the logic and
downstream steps of a microprocessor design flow,
snapshots of the logic model are released on a regular
basis. To enable such rapid changes in succession, it is
important to keep the scan-related steps and collateral
minimal while still enabling validation of scan features in
the model. This requirement for a light-weight process
drove the scan flow strategy. The key steps involved are
scan selection, insertion, ordering and stitching, clock tree
synthesis, and rules and checkers.

Scan Selection
The scan selection step involves marking the correct
states to be scanned. This step is required even in a full
hold-scan methodology to enable exceptions and to avoid
scanning transparent latches, states supporting the scan
system, and other test or debug features.

Scan sites were selected in the logic using a scan selection
tool scansel. The scansel needs to not only identify
transparency but also recognize the clock phase of the
different states when the global clock of the
microprocessor is shut off. This is a key requirement to
guarantee functionality of the different modes of the scan
system. To enable appropriate accounting, all states in the
logic microprocessor design were divided into three
classes: scan, do_not_scan & scan_exception. Examples
of states that fall into do_not_scan are transparent latches,
states supporting other test/debug features, etc. Examples
of states that are classified as scan_exception are states in
blocks that are exempt from full scan requirements. All
blocks in the design fall into two full scan categories: a)
full scan targeted or b) full scan exempt.

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 68

Intel Technology Journal, Volume 8, Issue 1, 2004

Scan Insertion Design Rule Checkers (DRC) are deployed to check for
compliance of the design to scan rules. These scan rules
support the scan ATPG strategy adopted, and compliance
to these rules is critical to the success of obtaining the full
scope of the test coverage benefits. The result from the
DRCs was a pass/fail for a scan-targeted block.

The scan insertion step involves incorporating scan by
replacing the non-scan state elements with scan
equivalent state elements and connecting the scan control
ports of the scan cell to the scan control signal
distribution network. In EBBs this was a manual
operation while in CBD blocks, automation manipulated
the netlist representation of the design. For semi-custom
(SDP) and synthesized (CBD) blocks, scan insertion was
automated through the use of API functions available
within the logic synthesis tool Design Compiler*.

COST AND BENEFIT ANALYSIS

Timing/Performance
System performance is critically dependent on the scan
gadget architecture and operating modes. The scan gadget
circuits add capacitance to the system nodes thereby
causing degradation to the setup and clock-to-out times of
the system. The scan gadget design is tuned to work well
within its operating modes to limit this timing
degradation. The scan contribution of the setup and clock-
to-out penalties are summed into a new metric called
“Black-hole time.” A select number of families were
simulated and the black-hole times are reported in Figure
8. We used a variety of circuit design techniques to
reduce black-hole time penalties. Furthermore, the system
timing degradation will translate into actual maximum
frequency (Fmax) loss if and only if the impacted system
paths are the speed-limiting paths on the manufactured
chip.

Scan Ordering and Stitching
The scan ordering step involves connecting the scan-out
port of a scan cell to the scan-in port of the next scan cell
to form a serial chain. This enables a scan ordering that is
optimal in terms of usage of chip area used to route the
scan chain. This functionality was implemented using
features available with the place and route tool Apollo*.
The scan chain ordering flow was constrained to meet
slope rules for all scan signals and full functional timing
goals on select scan chain paths. To meet these
requirements, large repeater networks were designed to
enable distribution of scan signals. Additionally, these
requirements had to be met within tight block area
constraints.

Scan Clock Tree Synthesis
The scan states on the die use generic core clocks to avoid
additional global clock distribution costs. Although the
global clock grid is shared between system and scan, the
scan local clock buffers have been specifically optimized
for power and area constraints. There exists a special
local scan clock network delay and slope tuned to meet
scan functionality while limiting degradation to system
performance. The scan clock network below the global
clock grid consists of a Regional Clock Buffer (RCB) and
a Local Clock Buffer (LCB). The RCB is a scan-function-
enabled driver that services a small number of LCBs
while meeting fan-out guidelines. The scan LCBs are un-
gated buffers driving ~10-15 scan states.

Scan Rules and Checkers
The scan states are present across the die in and around
different types of circuit configurations. A set of rules
was developed to ensure functionality and maintain
consistency across the design. They primarily belong to
two classes: Scan Friendly Array (SFA) and Scan
Friendly Mega Block (SFMB). The former deals with
scan logic interaction with memory arrays, and the latter
focuses on interactions between scan elements of one
logic block with another neighboring block.

* Other brands and names are the property of their
respective owners.

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 69

Intel Technology Journal, Volume 8, Issue 1, 2004

Figure 8: Black-hole time performance penalty

Die Area
The full scan system area contributions are primarily
shared by the scan gadget, scan clocks, and control
distribution circuits. These critical components of the
scan system tend to affect the critical cut of the die. This
issue can be mitigated with early floor planning and with
the use of optimized place and route tools. Our scan
methodology allowed for full scan exception cases in
select areas to ease local device and wire congestion.

Power
Although the dynamic power is important from the stand-
point of power delivery capability in test systems, the
critical contribution from scan is the leakage power
during normal system operation. The scan system was
partitioned into fast and slow scan chains with ~15% cells
in fast chains. This inherently allowed us to reduce
leakage power to a minimum in slow chains. Even in the
fast chains, the scan operating modes were optimized;
i.e., all non-essential functions were slowed down to
optimize for power. The scan gadget nodes are parked in
non-toggling state, and furthermore, scan clocks do not
toggle during normal operation. The control signal
distributions were architected to operate at low frequency
thereby saving power. Scan power has been reduced to
~2.5% of the total power for the processor.

Time to Quality and Factory Savings
The primary goal of adding full hold-scan into the design
was to reduce HVM test development effort for the
product, without compromising test quality. The final
fault coverage for this product was achieved through a
combination of scan ATPG testing, other DFT-based tests
(such as directed array testing), and full-speed functional
tests. The full-speed functional test base consists of
significant existing “legacy” tests and many newly-
written tests targeted at fault coverage enhancement. All
classes of tests are graded against the current design, to

assess coverage and ensure quality. Against an overall
graded single-stuck-at fault coverage goal of ~96% for
this product, scan provided unique coverage of 6
percentage points above all other content in the test base,
as shown in Figure 9.

0

1

2

3
4

5

6

7
8

9

MSFF A MSFF B LATCH A LATCH B

Cell Family

B
la

ck
 H

ol
e

Ti
m

e
Pe

na
lty

 (p
s)

Rise
Fall

0

1

2

3
4

5

6

7
8

9

MSFF A MSFF B LATCH A LATCH B

Cell Family

B
la

ck
 H

ol
e

Ti
m

e
Pe

na
lty

 (p
s)

Rise
Fall

This unique coverage translated directly to saving
significant manual test-writing effort in the “last mile”
(the most labor-intensive portion) of test development,
that would have otherwise had to be done. Recent Intel
test development experience (from both the current high-
volume 130nm design and the new 90nm Intel® Pentium®
4 microprocessor) has indicated that “last mile” manual
test development costs on the order of 5 person-years
effort per percentage point of full-chip coverage. Hence,
full hold-scan in this design directly saved ~30 person-
years of test development for HVM. Practically speaking,
this can alternately be stated as a 6-month pull-in from
test development schedule to quality for the product,
which is a significant fraction of our typical timeline from
1st silicon through debug to product introduction.

Apart from direct engineering cost savings, the reduction
in effort has an even more significant benefit in the
factory: reduction in time-to-quality leads to earlier
detection of real testing issues (as opposed to start-up
issues), much better predictability of the test program
ramp to stability, and much quicker cost-reduction of
expensive screening tests, which are always employed in
early testing of a new product. This alone has been
estimated to represent large savings in factory test cost, in
the early testing ramp for this 90nm-generation
microprocessor.

Figure 9: Fault coverage goals

Yield Learning and Quality Improvement
The extent of scan in this design also provides a powerful
diagnostic technique for failure analysis of bad parts in
the early days of product ramp. This has benefits both for
yield learning on a new process, and for test program

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 70

90nm Pentium™ 4 Processor Fault Coverage

80.0%

85.0%

90.0%

95.0%

100.0%

80.0% 85.0% 90.0% 95.0% 100.0%

Graded Fault Coverage, not including Scan

G
ra

de
d

Fa
ul

t C
ov

er
ag

e,

in
cl

ud
in

g
Sc

an

Min Coverage without Scan
Test Development Trend
Coverage Quality Goal

Final graded
fault coverage

90nm Pentium™ 4 Processor Fault Coverage

80.0%

85.0%

90.0%

95.0%

100.0%

80.0% 85.0% 90.0% 95.0% 100.0%

Graded Fault Coverage, not including Scan

G
ra

de
d

Fa
ul

t C
ov

er
ag

e,

in
cl

ud
in

g
Sc

an

Min Coverage without Scan
Test Development Trend
Coverage Quality Goal

Final graded
fault coverage

Intel Technology Journal, Volume 8, Issue 1, 2004

improvement through early and quick identification of
test holes in the random logic of the die. For many
product generations, Intel has had industry-leading array
DFT and techniques for failure analysis and fault isolation
in array logic, but the same process for random logic has
been highly customized and laborious. With the advent of
full hold-scan, we bring the fault analysis time and cost in
random logic down from weeks to hours.

Historically for Intel, the potential test-writing effort
savings possible through full hold-scan was swamped by
the die area cost in the volumes of product that we run.
The potential debug and manufacturing benefits of full
hold-scan were well understood, but existing methods
were mature, productive, and cost-effective enough to
keep HVM test development well off the critical path for
new product ramp. The pressure that has been mounting,
and what changed specifically with this processor
generation, is the need for even quicker design cycles,
and historically unprecedented manufacturing volume
shift to each next-generation product. These factors
shifted the economic return on investment for full hold-
scan from negative to positive for this generation of
product. We have taken significant cost to move our
design processes to full-scan, but we are in turn reaping
the benefit in the many debug and manufacturing ramp
capabilities that this provides.

Figure 10: 90nm Intel® Pentium® 4 microprocessor

 die photo

CONCLUSION
Shorter product cycles are driving the need for a reduced
test generation and fault-grading effort. There is an
imminent need for a quick, reliable, test content and
methodology that is capable of being proliferated to
future generations of microprocessor design. Our full
hold-scan system not only provides a solution to this
problem but also helps reduce logic and speed-path debug
time. One needs to pay close attention to the die area,
power, and system performance impact to harness all the
benefits of this new full hold-scan system. In summary,
Intel’s first low-power performance-friendly full hold-
scan CPU has been designed and integrated into the Intel
90nm Pentium 4 microprocessor shown in Figure 10. This
scan system will not only help decrease the time-to-
market of this product but also set the standard for all our
future generations of high-speed microprocessors.

Additional significant benefits of a full hold-scan system
are widespread initialization during the production test
reset sequence, significant internal visibility into the
design for debug, and burn-in toggle coverage capability.
One thing that is uniquely beneficial to Intel’s full hold-
scan design is the ability to shift state into the design
without causing any contention in the design. This is used
in production test for design initialization prior to
functional signature mode or ATPG testing, and in our
burn-in environment for pseudo-random toggle coverage
maximization without risking chip damage. The second
capability, which is unique to our full hold-scan design, is
the debug ability to capture almost full internal state in
either the tester- or system-based debug environments,
while running tests at full speed. This opens a new door
for observability that is now being leveraged as we
continue to develop debug capabilities around this test
feature.

ACKNOWLEDGMENTS
The full hold-scan design is a culmination of several
contributors from design, device and test, including
several key technical leaders from both the product and
the technology groups at Intel. We thank Mike Mayberry,
Adrian Carbine, Greg Taylor, Dave Nedwek and Jim
Wilson for their help in reviewing this paper and
providing data, figures, and valuable insight for this
paper. The authors also thank the scores of design and
product engineers, tool developers, and debuggers who
helped make the full hold-scan product a reality.

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 71

Intel Technology Journal, Volume 8, Issue 1, 2004

Full Hold-Scan Systems in Microprocessors: Cost/Benefit Analysis 72

REFERENCES
[1] Carbine, A. and Feltham, D., “Pentium Pro Processor

Design for Test and Debug,” in Proceedings of the
1997 IEEE International Test Conference, 1-6 Nov.
1997, pp. 294-303.

[2] Sengupta, S. et. al., “Defect-Based Test: A Key
Enabler for Successful Migration to Structural Test,”
in Intel Technology Journal, Q1 1999.

[3] Mayberry, M.; Johnson, J.; Shahriari, N., and Tripp,
M., “Realizing the benefits of structural test for Intel
microprocessors,” in Proceedings of the 2002 IEEE
International Test Conference, 7-10 Oct. 2002, pp.
456-463.

[4] Tripp, M., “On-die DFT based solutions are sufficient
for testing multi-GHz interfaces in manufacturing
(and are also key to enabling lower cost ATE
platforms),” in Proceedings of the 2002 IEEE
International Test Conference, 7-10 Oct. 2002, p.
1232.

 [5] Rich, S.E., Parker, M.J. and Schwartz, J., “Reducing
the frequency gap between ASIC and custom designs:
a custom perspective,” in Proceedings of 2001 Design
Automation Conference, 18-22 June 2001, pp. 432-
437.

 AUTHORS’ BIOGRAPHIES
Ravishankar Kuppuswamy is a design manager in
Intel’s Technology and Manufacturing Group,
specializing in mixed signal design and Design for Test
(DFT) areas of high-speed microprocessors. Ravi
received both a B.S. degree in Electrical Engineering and
a M.S. degree in Chemistry from the Birla Institute of
Technology and Science, Pilani, India in 1994 and a M.S.
degree in Electrical Engineering from Arizona State
University in 1996. He has worked on a large number of
product areas including IO, clock generation, clock
distribution, and features specifically targeted for High-
Volume Manufacturing (HVM). Ravi’s e-mail is
ravishankar.kuppuswamy at intel.com.

Peter DesRosier: is a design manager in Intel’s
Technology and Manufacturing Group, specializing in
DFT features and architectures and production test
methods for high-speed microprocessors. Peter received
his B.S. degree in Electrical Engineering from Montana
State University in 1985. Peter’s e-mail is peter.desrosier
at intel.com.

 Pentium is a registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

Derek Feltham is a principal engineer in Intel’s Desktop
Platforms Group, specializing in DFT and production test
methods. His technical interests include DFT features, test
development productivity, and test quality prediction
methods. Derek received his B.S. and M.S. degrees in
Applied Science from the University of Toronto and a
Ph.D. degree from Carnegie Mellon in 1992. Derek’s e-
mail is derek.feltham at intel.com.

Rehan Sheikh is a senior staff engineer in Intel’s
Desktop Platforms Group, specializing in DFT and HVM
methods. His technical interests include DFT feature
design, validation, initial Si debug, and advanced test
methods. Rehan received his Masters of Electrical
Engineering from Georgia Tech in 1994. Rehan’s e-mail
is rehan.sheikh at intel.com.

Paul Thadikaran currently leads a DFT Tools team in
Intel’s Desktop Platforms Group focused on developing
DFT tools and solutions for IA-32 CPU designs. Paul
received his Ph.D. in Computer Science from SUNY-
Buffalo in 1997. His technical interests are CAD tools for
DFT and Test generation and CAD algorithms for design
optimizations. His e-mail is paul.thadikaran at intel.com

Copyright © Intel Corporation 2004. This publication was
downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/sites/corporate/tradmarx.htm
http://developer.intel.com

Copyright © 2004 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

	1_Microarchitecture Web2QAr1 - Marian12forprogramming.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Foreword webQAforprogramming.pdf
	Foreword

	blank_page.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	2_Compilers Final11ForProg_REV.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	2_extra.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_Performance Validation FinalQAr1for prog_REV.pdf
	INTRODUCTION
	PRE-SILICON PERFORMANCE VALIDATION
	Tracing and Workload Collection
	Performance Simulator Development
	RTL Correlation

	PERFORMANCE PROJECTION METHODOLOGY
	POST-SILICON PERFORMANCE VALIDATION
	First Boot and Bring-up Activities
	Performance Parameter Characterization
	Life Cycle of a Performance Sighting
	Interaction with Other Teams
	Tools Used for Post-Silicon Performance Analysis
	The EMON Performance Monitoring Tool
	The Intel VTune™ Performance Analyzer

	Optimal CPU Performance Feature Tuning

	��
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_LVS Technology Final1ForProg_REV.pdf
	INTRODUCTION
	��
	LOW-VOLTAGE SWING LOGIC AT INTEL
	LOW-VOLTAGE SWING CIRCUIT ARCHITECTURE
	CLOCKING
	LOW-VOLTAGE SWING USAGE WITHIN THE INTEGER CORE
	Adder Circuit
	Alignment Mux Circuit
	LVS Rotator and Shifter

	TOOLS AND METHODOLOGY
	Dynamic Simulation and Timing Issues
	Merging Static and Dynamic Timing Tools
	Dynamic Noise Analysis of LVS
	Layout Rules and Matching

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	5_Library Architecture Challenges Final2ForProg.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	5_extra.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full Hold Scan Systems WebForProg.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Foreword_Renumbered.pdf
	Foreword

	1_Microarchitecture_Renumbered.pdf
	INTRODUCTION
	NETBURST® MICROARCHITECTURE OVERVIEW
	Execution Trace Cache
	Out-of-Order Core
	Rapid Execution Engine
	Store-to-Load Forwarding Enhancements

	NEW MICROARCHITECTURAL FEATURES AND ENHANCEMENTS
	Front End
	Execution Core
	Memory System

	HYPER-THREADING TECHNOLOGY
	SSE3 INSTRUCTIONS
	Improved x87 Conversions to Integer
	Complex Arithmetic
	Video Encoding
	Graphics
	Thread Synchronization

	PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	2_Compilers_Renumbered.pdf
	INTRODUCTION
	NEW FEATURES
	New Instructions
	Micro-Architectural Changes

	AUTOMATIC OPTIMIZATION TECHNIQUES
	Vectorization
	Vectorization of Single-Precision Complex Data Types
	Vectorization for SSE3 Idioms

	Interprocedural Alignment Analysis
	Advanced Instruction Selection
	Implementing Complex Operations with SSE3
	Complex Loads and Stores
	Creation of Complex from Real, Imaginary Parts
	Complex Addition and Subtraction
	Complex Conjugate
	Complex Multiplication
	Complex Real and Imaginary Part Extraction
	Partial Constant Propagation and Folding
	Maximal Use of SSE/SSE2/SSE3 Instructions
	Lower Multiply/Shift Latency
	Fisttp Instruction Usage

	SPEC* CPU2000 Performance Results

	PROGRAMMER-GUIDED OPTIMIZATION TECHNIQUES
	SSE3 Intrinsics
	Inline Assembly Using SSE3
	OpenMP-Based Multi-Threading
	Preloading with Aggressive Code Motion
	Auto-Dispatching Fast Lock Routines

	SPEC* OMPM2001 Performance Results

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_Performance_Validation_Renumbered.pdf
	INTRODUCTION
	PRE-SILICON PERFORMANCE VALIDATION
	Tracing and Workload Collection
	Performance Simulator Development
	RTL Correlation

	PERFORMANCE PROJECTION METHODOLOGY
	POST-SILICON PERFORMANCE VALIDATION
	First Boot and Bring-up Activities
	Performance Parameter Characterization
	Life Cycle of a Performance Sighting
	Interaction with Other Teams
	Tools Used for Post-Silicon Performance Analysis
	The EMON Performance Monitoring Tool
	The Intel VTune™ Performance Analyzer

	Optimal CPU Performance Feature Tuning

	��
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_LVS_Technology_Renumbered.pdf
	INTRODUCTION
	��
	LOW-VOLTAGE SWING LOGIC AT INTEL
	LOW-VOLTAGE SWING CIRCUIT ARCHITECTURE
	CLOCKING
	LOW-VOLTAGE SWING USAGE WITHIN THE INTEGER CORE
	Adder Circuit
	Alignment Mux Circuit
	LVS Rotator and Shifter

	TOOLS AND METHODOLOGY
	Dynamic Simulation and Timing Issues
	Merging Static and Dynamic Timing Tools
	Dynamic Noise Analysis of LVS
	Layout Rules and Matching

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	vol8_art05.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	5_extra.pdf
	INTRODUCTION
	CELL-BASED DESIGN FLOW
	CELL LIBRARY DESIGN
	Library Content
	Library Architecture
	Cell Design Methodology
	Library Qualification

	CELL LIBRARY MODELING
	Modeling for Timing
	Modeling for Noise
	Modeling for Reliability
	Modeling for Formal Verification
	Modeling for Place and Route

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full_Hold_Scan_Renumbered.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	Untitled
	Untitled
	 55 55
	6_Full_Hold_Scan_Renumbered.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_Full Hold Scan Systems WebForProg.pdf
	INTRODUCTION
	DESIGN AND TEST CHALLENGES
	SCAN SYSTEM ARCHITECTURE
	Scan Functional Unit Features
	Logic Scan Chains
	TAP Controller and Full-Chip Scan Bus

	HIGH-LEVEL OPERATIONS AND MODES
	Snapshot for 1st Si System and LYA Debug
	Snapshot Compression for 1st Si Debug
	On-Die Snapshot Diff for 1st Si Debug
	Signature Mode for Functional Tests in HVM
	Automatic Test Pattern Generation for Various Faults Types in High-Volume Manufacturing
	Toggle Coverage in Burn-in Mode in High-Volume Manufacturing
	Device Initialization in Test Modes in High-Volume Manufacturing

	FULL SCAN DESIGN EXECUTION
	Floor-Planning
	Library Development
	Scan Design Flows and Methodologies
	Scan Selection
	Scan Insertion
	Scan Ordering and Stitching
	Scan Clock Tree Synthesis
	Scan Rules and Checkers

	COST AND BENEFIT ANALYSIS
	Timing/Performance
	Die Area
	Power
	Time to Quality and Factory Savings
	Yield Learning and Quality Improvement

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

