
Intel®

Technology
Journal

Managed Runtime Technologies

Volume 07 Issue 01 Published, February 19, 2003 ISSN 1535-766X

This issue of Intel Technology Journal (Vol. 7, Issue 1, 2003) explores Intel's investigations into the
behavior of dynamic managed runtime technologies as they relate to compilers, virtual machines,
enterprise applications, performance analysis, security, wireless and mobile applications.

Developing and Optimizing
Web Applications on the

ASP.NET Platform

Runtime Environment
Security Models

Runtime Abstractions
in the Wireless and

Handheld Space

Managed Runtime
Environments for Next-

Generation Mobile Devices

The Open Runtime
Platform: A Flexible
High-Performance
Managed Runtime

Environment

The StarJIT Compiler:
A Dynamic Compiler for

Managed Runtime
Environments

Enterprise Java
Performance:
Best Practices

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

Inside you’ll find the following papers:

Cover.qxd 2/10/03 5:32 PM Page 1

http://developer.intel.com/technology/itj/index.htm

Articles

Preface 3

Foreword 4

The Open Runtime Platform:
A Flexible High-Performance Managed Runtime Environment 5

The StarJIT Compiler:
A Dynamic Compiler for Managed Runtime Environments 19

Enterprise Java Performance: Best Practices 32

Developing and Optimizing Web Applications on the
ASP.NET Platform 47

Runtime Environment Security Models 60

Runtime Abstractions in the Wireless and Handheld Space 68

Managed Runtime Environments for Next-Generation Mobile Devices 77

Volume 07 Issue 01 Published, February 19, 2003 ISSN 1535-766X

Intel® Technology Journal

Managed Runtime Technology

Cover.qxd 2/10/03 5:48 PM Page 2

 3

Preface Q1, 2003 ITJ
Lin Chao
Publisher

We often think of the technology business as a competition, a contest to win customers. But it's more than
that. It's also a classroom for learning. This is particularly evident in Intel’s research into the cross-platform
technology known as dynamic, managed runtime technologies. Managed runtimes have an inherent
abstraction layer that makes it possible to run on a wide range of devices such as personal computers,
cellular phones, digital appliance, smart cards, and network servers. This abstraction layer characteristic
carries interesting implications and opportunities.

This issue of Intel Technology Journal (Vol. 7, Issue 1, 2003) explores Intel’s investigations into the
behavior of managed runtime technologies. Papers in this issue discuss dynamic runtime environments as
they relate to compilers, enterprise applications, performance analysis, Java virtual machines, security,
wireless and mobile applications.

The three main topics are software technology, applications performance, and wireless mobility. In the first
category, the paper by Cierniak, et al, describes the Intel Open Runtime Platform (ORP), an open runtime
platform that is used extensively for Intel studies of runtime behavior and as a test-bed for new runtime
technologies. It features exact generational garbage collection, fast thread synchronization, and multiple
coexisting just-in-time compilers (JITs). A companion paper by Adl-Tabatabai, et al, describes one such
technology known as the StarJIT, a just-in-time compiler for both the Java and C# programming languages
that generates code for both IA-32 and Itanium® processors.

In the second category, three papers cover applications performance and security. The paper by Chow, et
al, discusses the best practices for improving Enterprise Java performance, while the paper by Vorobiov, et
al, looks at optimizing Web applications on the ASP .NET platform. Aissi’s paper examines the security
aspects of runtimes environments, which is another one of their compelling features.

In the third category, two papers look at the wireless mobility space where dynamic runtime environment
have become very popular. Comp, et al, look at runtime abstractions for wireless and handheld devices,
while Drew, et al, examines runtime environments for high performance mobile devices.

As the Intel Technology Journal begins its 7th year, we thank readers, authors, and referees who have
contributed to it. This quarterly web publication is a refereed technical journal, which means that the
integrity of each paper is ensured by peer reviews of the papers by recognized Intel experts. The papers,
which are authored by the engineers and researchers who are actively working on the technology, are
written for the technically aware readership worldwide, and give readers valuable insights into the purpose
and intentions behind the technology.

You can read past issues at http://developer.intel.com/technology/itj/archive_new.htm.

You can also subscribe thru a simple registration form at
http://www96.intel.com/cme/showSurv.asp?formID=1019&actv=REG.

http://developer.intel.com/technology/itj/archive_new.htm
http://www96.intel.com/cme/showSurv.asp?formID=1019&actv=REG

 4

Foreword to the Q1 ’03 ITJ Issue on Managed Runtime Technologies
Justin Rattner
Intel Senior Fellow
Director, Microprocessor Research Laboratories

Microprocessor software is currently witnessing the most important behavioral change since the
move from assembly language to high-level language programming. The transition to dynamic or
so-called managed runtime environments, as exemplified by the Java virtual machine and, more
recently, the .NET common language runtime (CLR), are the two most important language
developments underlying this change. As a major microprocessor manufacturer, Intel has taken a
special interest in these environments as they may lead to new architectural and
microarchitectural elements in future designs. The papers in this special issue of the Intel
Technology Journal reflect the broad nature of Intel’s investigations and the breadth of impact–
from cell phones to clustered application servers–which dynamic runtime environments are
having on the computer and communications industries.

A dynamic runtime environment is by no means a monolithic piece of software. While frequently
referred to as a language virtual machine, with the Java* virtual machine (JVM) being the most
familiar example, the actual virtual machine component is but one element of a modern runtime
environment. In addition to the virtual machine, which interpretively executes a high-level, byte-
encoded representation of a program, today’s runtimes include a garbage collector and a just-in-
time compiler. The garbage collector provides automatic management of the address space by
seeking out inaccessible regions of that space (i.e., no addresses point to them) and returning
them to the free memory pool. The just-in-time compiler or JIT, as it is called, is used at runtime
or install time to translate the byte code representation of a program into native machine
instructions, which run much faster than interpreted code. The last-minute translation helps
preserve program portability, a key feature of byte code, while maintaining acceptable application
performance. Other features such as feedback-guided, dynamic optimization, which improves
program performance during execution, are quickly becoming standard components of advanced
runtime environments.

Dynamic runtimes are also changing the way programs are written and optimized for different
platforms. An application written for a server will most likely deal with a lot of concurrency in
the form of many simultaneous transactions. Multi-threading is thus an inherent aspect of server
applications. An application written for a cell phone is more concerned about minimizing its
memory footprint while providing good performance with limited processor, memory, and
communication resources. Learning to deal with these vast differences in program structure and
behavior has been a key part of Intel’s effort to fully characterize this new application paradigm.

The papers in this issue of the ITJ illustrate the exciting nature of this rapidly emerging
technology, and its impact of both hardware and software design. They also illustrate Intel’s
broad effort to fully comprehend these impacts and to apply that knowledge to future processor
and platform designs.

http://www.intel.com/pressroom/kits/bios/jrattner.htm

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 5

The Open Runtime Platform: A Flexible High-Performance
Managed Runtime Environment

Michal Cierniak, Microprocessor Research Labs, Intel Corporation
Marsha Eng, Microprocessor Research Labs, Intel Corporation
Neal Glew, Microprocessor Research Labs, Intel Corporation

Brian Lewis, Microprocessor Research Labs, Intel Corporation
James Stichnoth, Microprocessor Research Labs, Intel Corporation

Index words: MRTE, Java, CLI, virtual machine, interface design

ABSTRACT
The Open Runtime Platform (ORP) is a high-performance
managed runtime environment (MRTE) that features exact
generational garbage collection, fast thread
synchronization, and multiple coexisting just-in-time
compilers (JITs). ORP was designed for flexibility in
order to support experiments in dynamic compilation,
garbage collection, synchronization, and other
technologies. It can be built to run either Java∗ or
Common Language Infrastructure (CLI) applications, to
run under the Windows or Linux operating systems, and to
run on the IA-32 or Itanium processor family (IPF)
architectures.

Achieving high performance in an MRTE presents many
challenges, particularly when flexibility is a major goal.
First, to enable the use of different garbage collectors and
JITs, each component must be isolated from the rest of the
environment through a well-defined software interface.
Without careful attention, this isolation could easily harm
performance. Second, MRTEs have correctness and
safety requirements that traditional languages, such as
C++, lack. These requirements, including null pointer
checks, array bounds checks, and type checks, impose
additional runtime overhead. Finally, the dynamic nature
of MRTEs makes some traditional compiler optimizations,
such as devirtualization of method calls, more difficult to
implement or more limited in applicability. To get full
performance, JITs and the core virtual machine (VM)

∗ Other brands and names are the property of their
respective owners.
 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

must cooperate to reduce or eliminate (where possible)
these MRTE-specific overheads.

In this paper, we describe the structure of ORP in detail,
paying particular attention to how it supports flexibility
while preserving high performance. We describe the
interfaces between the garbage collector, the JIT, and the
core VM; how these interfaces enable multiple garbage
collectors and JITs without sacrificing performance; and
how they allow the JIT and the core VM to reduce or
eliminate MRTE-specific performance issues.

INTRODUCTION
Modern languages such as Java∗ and C# execute in a
managed runtime environment (MRTE) that provides
automatic memory management, type management,
threads and synchronization, and dynamic loading
facilities. These environments differ in a number of ways
from traditional languages like C, C++, and Fortran, and
thus provide a challenge both for language implementers
and for the developers of high-performance
microprocessors. This paper concentrates on language
implementation challenges by describing a particular
MRTE implementation developed at Intel Labs. Other
articles in this issue of the Intel Technology Journal
discuss the implications of MRTEs for microprocessors.

Intel Labs’ Microprocessor Research Lab (MRL) has
developed an MRTE implementation called Open
Runtime Platform (ORP). ORP was designed to support
experimentation with different technologies in just-in-time
compilers (JITs), garbage collection (GC), multithreading,
and synchronization. Over the past five years, researchers
have used ORP to conduct a number of MRTE
implementation experiments [15-17, 19-21, 23, 25]. At
least three different garbage collectors and eight different

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 6

JITs have been developed and integrated with ORP. The
version of ORP described in this paper is an internal
research tool and is not publicly available.

Three characteristics of MRTEs provide the key
challenges to their implementation. First, MRTEs
dynamically load and execute code that is delivered in a
portable format. This means that code must be converted
into native instructions through interpretation or
compilation. As a result, MRTE implementations
typically include at least one JIT (and often several), and
often an interpreter as well. In addition to the challenges
of just-in-time compilation, dynamic loading adversely
affects important object-oriented optimizations like
devirtualization, which reduces the overhead of virtual
method calls. Second, MRTEs provide automatic memory
management and thus require a garbage collector. Since
different applications may impose very different
requirements on the garbage collector (e.g., raw
throughput versus GC pause time constraints), garbage
collector design becomes a significant challenge. Third,
MRTEs are multi-threaded, providing facilities for the
creation and management of threads, and facilities such as
locks and monitors for synchronizing thread execution.
The design of efficient locking schemes, given the modern
memory hierarchies and bus protocols of microprocessors,
is a significant challenge. In addition, the garbage
collector must be designed for multiple threads and may
very well need to be parallel itself.

O1 JIT

O3 JIT

GC

Core
VM

Figure 1: Block diagram of ORP

In order to provide the flexibility needed for JIT and
garbage collector experiments, we designed interfaces to
cleanly separate the JIT and garbage collector parts of
ORP from each other and from the core virtual machine
(VM). These interfaces are represented as ovals in
Figure 1. Evaluating these experiments requires
performance studies, which can be meaningful only if the
interfaces impose insignificant overhead. As a result, one
of the key contributions of ORP is the design of clean

interfaces for JITs and garbage collectors that does not
sacrifice performance. The MRTE implementation
challenges described above may require cooperation
between different components to achieve a good result.
For example, devirtualization optimizations may require
cooperation between JITs that do the optimization and the
core VM that manages the class hierarchy. We had to
balance the need for clean interfaces to support flexibility
with the need for cooperation to overcome performance
hurdles.

In the next section we elaborate on the nature of MRTEs
and the challenges they provide to implementers. Then
we describe ORP in detail, paying close attention to the
design of interfaces that are clean and also lead to high
performance.

MANAGED RUNTIME ENVIRONMENTS
In 1995, the Java programming language and the Java
Virtual Machine (JVM∗) [22] emerged as the first
mainstream managed runtime environment (MRTE). In
2000, Java∗ was joined by Common Language
Infrastructure (CLI) [10], and associated languages like
C# [9], as the second major MRTE in the market. Both
MRTEs have significant differences over C++ compilers
and runtimes; yet they are similar to each other in most
important ways. In this section, we describe the
terminology and key features that distinguish MRTEs
from traditional C++ systems, in particular those that may
require new optimization techniques to gain full
performance.

Key Features
MRTEs dynamically load and execute code. The code
and other related data are loaded from class files, which
can be read from disk, read from a network stream, or
synthesized in memory by a running application. Each
class file describes a single class, including its superclass,
superinterfaces, fields, and methods. Concrete methods
include bytecodes that specify what to do when that
method is invoked. These bytecodes are machine
independent, and are at a slightly higher level of
abstraction than native instructions. As a result, MRTEs
require some means to convert bytecodes into native
instructions: an interpreter or a JIT. Because the MRTE
controls how bytecodes are converted into native
instructions, it may place additional requirements on this
conversion that help it to perform functions such as
garbage collection and exception throwing, which are
discussed below. Because MRTEs tend to produce more

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 7

information about compiled bytecodes than just the native
instructions, this code is referred to as managed code;
implementations of native methods and the MRTE itself
are called unmanaged code.

MRTEs manage type information, that is, they store
information about all the classes, fields, and methods that
they have loaded, and also about other types that they
define or derive automatically, such as primitive and array
types. MRTEs provide reflection facilities that allow
application code to enumerate and inspect all this
information about types, fields, and methods.

MRTEs provide automatic memory management. There
is a region of memory belonging to the MRTE called the
heap. When bytecodes request the instantiation of a class
or the creation of an array, space for the new object is
allocated in the heap. If the heap is full, the MRTE tries
to reclaim the space of objects no longer in use, a process
known as garbage collection (GC). The part of the
MRTE that manages the heap, allocates objects, and
performs GC is known as the garbage collector.

GC consists of three phases. In the first phase, the
garbage collector must find all direct references to objects
from the currently executing program; these references are
called roots, or the root set, and the process of finding
them all is called root-set enumeration. Within one stack
frame of managed code, each native instruction may
potentially have a different set of roots on the stack and in
physical registers; for this purpose, a JIT usually
maintains a GC map to provide the mapping between
individual instructions and roots. In the second phase of
GC, the garbage collector finds all objects reachable from
the root set, as these might be used in the future; this is
called marking or scanning. In the final phase, the
garbage collector reclaims the space of objects not found
in the first two phases.

Generational garbage collectors attempt to improve GC
efficiency by only scanning a portion of the heap during a
collection. Doing so requires additional support from the
rest of the MRTE, particularly the JITs: a write barrier
must be called whenever a reference type pointer in the
heap is modified. The write barrier is part of the garbage
collector’s code and typically does a fast mark of a
garbage collector data structure before completing the
object field write.

MRTEs provide exceptions to deal with errors and
unusual circumstances. Exceptions can be thrown either
explicitly via a “throw” bytecode, or implicitly by the
MRTE itself as a result of an illegal action such as a null
pointer dereference. Each bytecode in a method has an
associated list of exception handlers. When an exception
is thrown, the JVM must examine each stack frame in
turn, until it finds a matching exception handler among the

list of associated exception handlers. This requires stack
unwinding, the ability to examine stack frames and
remove them from the stack one by one. Note that stack
unwinding is also needed to implement security policies
and during root-set enumeration, as individual stack
frames may also contain roots.

Most of the significant differences between CLI and Java
are due to additional features in CLI. Because CLI is
largely a superset of Java, it is relatively straightforward
to add Java support to an MRTE or JIT compiler that
already supports CLI. One addition is that CLI has a
richer set of types than Java. Key among these is value
types. Value types resemble C structures and are
especially useful for implementing lightweight types such
as complex numbers. CLI also supports managed
pointers that have many uses, including the
implementation of call-by-reference parameters. These
may point into the runtime stack, static fields, or into the
interior of objects on the heap. These pointers are called
“managed” because they must be reported to a garbage
collector in order to prevent an object from being
prematurely collected. Managed pointers require that a
garbage collector properly deal with objects that are only
referenced by a pointer into their interior; this means the
garbage collector needs a mechanism to locate the start of
such an object, based on the interior pointer. Other
additions in CLI include support for unsafe code that may,
for example, operate on pointers and the representation of
objects. Such code is often required when accessing
legacy libraries. In contrast to Java, CLI objects can be
set to be pinned, guaranteeing that such objects will not be
relocated; pinning may be required for some objects when
interfacing with legacy code. CLI also supports a
platform library invocation service that automates much of
the work involved in calling native library routines.

Optimization Challenges
MRTEs (particularly Java systems) gained an early
reputation for not performing as well as traditional
languages like C or C++. In part, this reputation arose
because the first implementations only interpreted the
bytecodes. When JITs were introduced as a way to
achieve better performance than interpretation, they were
thought of as not optimizing code, but rather as quick
producers of native code, with quick startup and response
times being the driving requirements. Over time, JIT code
quality has increased, due to more mature JIT technology,
dynamic recompilation techniques, and a relaxation of the
fast startup requirement, particularly for longer-running
server-type applications.

Despite the general maturation of JIT technology, there
still remain some fundamental issues that separate an
MRTE JIT from a traditional C++ compiler. One set of

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 8

issues is the lack of whole-program analysis in an MRTE.
Classes can be dynamically loaded into the system at any
time, and new classes may invalidate assumptions made
during earlier compilations of methods. When making
decisions about devirtualization, inlining, and direct call
conversion, JITs must take into account the possibility that
a target method may be overridden in the future (even if at
compile time, there is only one possible target), and that a
target class may be subclassed (even if the class is
currently not extended). This generally results in extra
overhead for method dispatch or inlining than would
typically be present in a C++ system.

Another set of issues is the safety checks required by
MRTE semantics. For example, every array access must
test whether the array index falls within the bounds of the
array. Every type cast must test whether it is a valid cast.
Every object dereference must test whether the reference
is null. C and C++ lack these runtime requirements. To
achieve competitive performance, therefore, JITs must
employ additional techniques to minimize the overhead.

Further performance challenges relate to the garbage
collector. Some batch-style applications may demand the
highest possible throughput, while other interactive
applications may require short GC pause times, possibly at
the cost of some throughput. Such requirements have a
profound impact on the design of the garbage collector.
In addition, since the garbage collector is responsible for
mapping objects into specific heap locations, it may also
need to detect relationships between objects and ensure
that related objects are collocated in memory, in order to
maximize memory hierarchy locality.

Some of these JIT-related overheads can be reduced
through compiler techniques alone. Others require some
level of cooperation with the core virtual machine (VM).
Throughout this paper, we identify such techniques and
how they are implemented in ORP.

OVERVIEW OF THE OPEN RUNTIME
PLATFORM
The Open Runtime Platform (ORP) is a high-performance
managed runtime environment (MRTE) that features exact
generational garbage collection (GC), fast thread
synchronization, and multiple just-in-time compilers
(JITs), including highly optimizing JITs. All code is
compiled by these compilers: there is no interpreter. ORP
supports two different MRTE platforms, Java∗ [22] and
Common Language Infrastructure (CLI) [10].

Basic Structure
ORP is divided into three components: the core virtual
machine (VM), just-in-time compilers (JITs), and the
garbage collector. The core VM is responsible for class

loading, including storing information about the classes,
fields, and methods loaded. The core VM is also
responsible for coordinating the compilation of methods
to managed code, root-set enumeration during GC, and
exception throwing. In addition, the core VM contains the
thread and synchronization subsystem, although we are
planning to split this into a separate component in a future
version of ORP. JITs are responsible for compiling
methods into native instructions. The garbage collector is
responsible for managing the heap, allocating objects, and
reclaiming garbage when the heap is full.

ORP is written in about 150,000 lines of C++ and a small
amount of assembly code (this includes the core VM code,
and excludes the JIT and garbage collector code). It
compiles under Microsoft Visual C++ 6.0∗ and GNU g++,
and it runs under Windows (NT/2000/XP∗), Linux∗ , and
FreeBSD∗ . ORP supports both IA-32 [7] and Itanium
processor family (IPF) [8] CPU architectures. ORP uses
the GNU Classpath library [1], an open source
implementation of the Java class libraries, and OCL [12],
an open source implementation of the CLI libraries that is
ECMA-335 [10] compliant.

ORP was originally designed with two JITs for Java. The
Simple Code Generator (known as the O1 JIT [15])
produces code directly from the JVM bytecodes [22]
without applying complex optimizations. Its
optimizations include strength reduction, load-after-store
elimination, and simple versions of common-
subexpression elimination (CSE), eliminating array-
bounds checks, and register allocation.

The Optimizing Compiler (known as the O3 JIT) converts
JVM bytecodes to an intermediate representation (IR) that
can be used for more aggressive optimizations. Besides
the optimizations performed by the O1 JIT, O3 applies
inlining, global optimizations (e.g., copy propagation,
dead-code elimination, loop transformations, and constant
folding), as well as more complete implementations of
CSE and elimination of array-bounds checks.

∗ Other brands and names are the property of their
respective owners.
 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 9

unoptimized
native code

unoptimized
native code

Profiling Data
Representation

CountersCounters

BytecodeBytecode

Simple Code
Generator (O1)
Simple Code

Generator (O1)

optimized
native code
optimized

native code

Optimizing
Compiler (O3)
Optimizing

Compiler (O3)

Figure 2: Structure of dynamic compilation

As shown in Figure 2, ORP can run in a mode that uses
both the O1 and O3 JITs. In this mode, when a method is
invoked for the first time, ORP uses O1 to compile the
method in a way that instruments the generated code with
counters that are incremented on every method call and on
every back edge of a loop. When a counter reaches a
predetermined threshold, ORP invokes O3 to recompile
the method. The dynamic recompilation approach allows
ORP to avoid the cost of expensive optimizations, while
applying those optimizations to the methods where the
payoff is likely to be high. It also provides the O3 JIT
with profiling information that can help guide the
optimizations.

ORP also supports a very simple JIT for CLI (currently
only on the IA-32 platform), known as the O0 JIT. It does
no optimizations and was designed for simplicity and to
ease debugging. For each CLI bytecode instruction, it
generates a sequence of machine instructions that is fixed
for each set of operand types.

StarJIT [14] is a new JIT designed to plug into ORP. It
supports Java and CLI, and it produces aggressively
optimized code for IA-32 and IPF. It translates JVM and
CLI bytecodes into a single common intermediate
representation on which the rest of StarJIT operates.
StarJIT includes an SSA-based optimizer and supports
profile-based optimizations as well as dynamic
optimizations that are based on continuous profiling and
monitoring during program execution.

ORP has supported many different GC implementations
over its lifetime, including a simple stop-the-world
collector, an implementation of the Train Algorithm [18],
and a concurrent collector [19]. There is support in the
VM and JIT interfaces for moving collectors (in which
objects can be relocated over their lifetimes) and for
generational collectors (which require write barrier
support from JITs and the core VM). ORP also supports
dynamic linking of the GC module, making it possible to
select a specific GC implementation via a command-line
option.

Common Support for Java and CLI
CLI and Java are semantically similar enough that most of
ORP’s implementation is common to both runtimes. Both
Java and CLI require approximately the same support for
class loading, exception handling, threads, reflection,
runtime, and low-level (non-library specific) native
methods. Of course, CLI uses a different object file
format than Java, so the object file loaders are different.
Similarly, the class libraries for the two runtimes are
different and require a different set of native method
implementations. CLI’s bytecode instructions are
different, so there are differences in the JITs. However,
these differences are relatively minor, and most of the
code in the StarJIT is common. In general, the significant
differences between CLI and Java are due to additional
features in CLI. This means if an MRTE (or JIT) supports
CLI, it is relatively straightforward to add support for
Java.

ORP has relatively few Java-specific or CLI-specific
source files beyond those that load classes and those that
implement the native methods required by the different
CLI and Java class libraries. The MRTE-specific source
changes are mostly in short sequences of code that are
conditionally compiled when ORP is built. We are
currently refactoring ORP to share even more code, which
will significantly reduce the need for conditionally
compiled code sequences. For example, to indicate an
attempt to cast an object to a class of which it is not an
instance, a Java MRTE must throw an instance of
java.lang.ClassCastException, whereas a CLI MRTE
must throw System.InvalidCastException. Refactoring
this part of ORP’s implementation simply involves raising
the exception stored in a variable that is initialized to the
appropriate value.

THE CORE VIRTUAL MACHINE
The core virtual machine (VM) is responsible for the
overall coordination of the activities of the Open Runtime
Platform (ORP). It is responsible for class loading: it
stores information about every class, field, and method
loaded. The class data structure includes the virtual-
method table (vtable) for the class (which is shared by all
instances of that class), attributes of the class (public,
final, abstract, the element type for an array class, etc.),
information about inner classes, references to static
initializers, and references to finalizers. The field data
structure includes reflection information such as name,
type, and containing class, as well as internal ORP
information such as the field’s offset from the base of the
object (for instance fields) or the field’s address in
memory (for static fields). The method data structure
contains similar information.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 10

These data structures are hidden from components outside
the core VM, but the core VM exposes their contents
through functions in the VM interface. For example,
when a just-in-time compiler (JIT) compiles an access to
an instance field, it calls the VM interface function for
obtaining the field’s offset, and it uses the result to
generate the appropriate load instruction.

There is one data structure that is shared across all ORP
components, including JITs and garbage collectors, which
describes the basic layout of objects. Every object in the
heap, including arrays, begins with the following two
fields:
typedef struct Managed_Object {
 VTable *vt;
 uint32 obj_info;
} Managed_Object;

No other fields of the Managed_Object data structure are
exposed outside the core VM. The first field is a pointer
to the object’s vtable. There is one vtable for each class,1
and it stores enough class-specific information to perform
common operations like virtual-method dispatch. The
vtable is also used during GC, where it may supply
information such as the size of the object and the offset of
each reference stored in the instance. The second field,
obj_info, is 32 bits wide on both IA-32 and Itanium
processor family (IPF) architectures, and it is used in
synchronization and garbage collection. This field also
stores the instance’s default hashcode. Class-specific
instance fields immediately follow these two fields.

Garbage collectors and JITs also share knowledge about
the representation of array instances. The specific offsets
at which the array length and the first element are stored
are determined by the core VM and are available to the
garbage collector and JITs via the VM interface.

Another small but important piece of shared information is
the following. The garbage collector is expressly allowed
to use a portion of the vtables to cache frequently used
information to avoid runtime overhead. This cached
information is private to the garbage collector and is not

1 Because there is a one-to-one correspondence between a
Class structure and a vtable, it would be possible to unify
them into a single data structure. We chose to separate
them to make sure that offsets to entries in the vtable that
are used for method dispatch are small, and that
instructions generated for virtual method dispatch can be
encoded with shorter sequences. Also, the information in
vtables is accessed more frequently, so collocating it
improves spatial locality and reduces DTLB misses.
 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

accessed by other ORP components. Apart from the basic
assumptions about object layout and this vtable cache, all
interaction between major ORP components is achieved
through function calls.

The VM interface also includes functions that support
managed code, JITs, and the garbage collector. These
functions are described as part of the discussion of the
specific components, which we turn to next.

THE JUST-IN-TIME COMPILER
INTERFACE
Just-in-time (JIT) compilers are responsible for compiling
bytecodes into native managed code, and for providing
information about stack frames that can be used to do
root-set enumeration, exception propagation, and security
checks.

Compilation Overview
When the core virtual machine (VM) loads a class, new
and overridden methods are not immediately compiled.
Instead, the core VM initializes the vtable entry for each
of these methods to point to a small custom stub that
causes the method to be compiled upon its first
invocation. After a JIT compiles the method, the core
VM iterates over all vtables containing an entry for that
method, and it replaces the pointer to the original stub
with a pointer to the newly compiled code.

The Open Runtime Platform (ORP) allows many JITs to
coexist within it. Each JIT interacts with the core VM
through the JIT interface, which is described in more
detail below, and must provide an implementation of the
JIT side of this interface. The interface is almost
completely CPU independent (the only exception being
the data structures used to model the set of physical
registers used for stack unwinding and root-set
enumeration), and it is used by both our IA-32 JITs and
our Itanium® processor family (IPF) JITs. JITs can be
either linked statically or loaded dynamically from a
dynamic library.

As previously mentioned in the ORP overview, managed
code may include instrumentation that causes it to be
recompiled after a certain number of invocations. Another
option is to have a background thread that supports
recompiling methods concurrently with the rest of the
program execution.

Native methods are also “compiled” in the following
sense. When a native method is invoked for the first time,
the core VM generates a custom wrapper for that native
method, and installs it in the appropriate vtables. The
purpose of the wrapper is to resolve the different calling
conventions used by managed and native code.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 11

Interface Description
The JIT interface consists of a set of functions that every
JIT is required to export and a set of functions that the
core VM exports. One obvious function in the JIT
interface instructs the JIT to compile a method. The JIT
interface also includes some not-so-obvious JIT-exported
functions that implement functionality that is traditionally
thought of as being part of the core VM. These include
functions to unwind a stack frame and to enumerate all
roots in a stack frame. Stack unwinding is required for
exception handling, garbage collection (GC), and security.
To allow exact GC, the JIT interface provides a
mechanism to enumerate exactly the roots of a stack
frame. Given an instruction address, the JIT consults the
GC map for that method and constructs the root set for the
frame. This is in contrast to some other JIT interfaces
such as the Sun JDK 1.0.2∗ JIT interface [3] that assumes
conservative scanning of the stack. Of course, if a
conservative collector were used with ORP, this
mechanism for root-set enumeration would never be used.

There are two basic solutions to providing stack
unwinding and root-set enumeration from the stack:

1. A white-box approach in which the core VM and all
JITs agree on a common format for GC maps. At
compile time, JITs create GC maps along with native
code, and then the core VM can unwind and
enumerate without any further help from the JITs.

2. A black-box approach in which each JIT can store
GC maps in an arbitrary format understood only by
that JIT. Whenever the core VM unwinds the stack
or enumerates roots, it calls back into the appropriate
JIT for the frame in question, and the JIT decodes its
own GC map and performs the operation.

ORP uses the latter scheme, the black-box approach. The
advantage of ORP’s approach is simplicity and flexibility
in JIT design. For example, the O3 JIT supports GC at
every native instruction [25], but the simpler O1 JIT only
supports GC at call sites and backward branches. This is
all possible through the same JIT interface.

Support for Multiple JITs
To support multiple JITs simultaneously, the core VM
maintains an array of pointers to JIT objects that represent
each JIT. The standard ORP/Java/IA-32 configuration
includes two statically linked JITs, O1 and O3.
Additional JITs may be specified on the command line by
supplying the name of a library containing its
implementation.

∗ Other brands and names are the property of their
respective owners.

When a method is invoked for the first time, the custom
stub transfers control to the core VM, which tries each JIT
in turn until one returns success. If no JIT succeeds, ORP
terminates with a fatal error.

Core VM Support for JITs and Managed
Code
The VM interface includes functions to allocate memory
for code, data, and JIT-specific information. The core
VM allocates this memory, rather than JITs, which allows
the space to be reclaimed when it is no longer needed
(however, ORP does not currently implement unloading or
GC of methods). The VM interface also includes
functions to query the exception information provided in
the application class files and to set the exception
information for managed code. The core VM uses this
latter information during exception propagation.

The core VM also provides runtime support functions for
use by managed code. They provide functionality such as
throwing exceptions, subtype checks, complex arithmetic
operations, and other nontrivial operations.

Optimizations
As mentioned in the section on MRTEs, there are safety
requirements and features such as dynamic class loading
that can affect the applicability or effectiveness of
traditional compiler optimizations. To get performance
comparable to unsafe, static languages like C++, JITs
must include optimizations that reduce or eliminate safety
overheads, and that can work effectively even in the
presence of dynamic loading. Some of these
optimizations can be implemented entirely in the JITs, but
some require cooperation from the core VM. Here we
outline some of the key problems and their solutions,
along with the additional interface functions that provide
the needed cooperation.

Null-check elimination. Java and CLI semantics require
null-pointer dereferences to throw an exception. As
object dereferences are typically frequent in applications,
this safety check might be costly if implemented naively.
Compiler analysis can often prove that certain null checks
are redundant, and thereby eliminate the checks: many
null checks still remain, however.

Some help can be obtained from the core VM. It can
instruct the operating system and the hardware to catch
null-pointer dereferences and notify the core VM, which
can then identify the offending instruction and throw the
exception. The IA-32 version of ORP uses this technique,
eliminating the need for most null checks by managed
code.

The core VM is not always able to assist in this way,
though. One frequent example involves devirtualization

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 12

of method invocations. A virtual dispatch typically
involves dereferencing the object to extract its vtable,
which implicitly contains a null reference check. A
devirtualized call removes the implicit null check, and
thus an explicit check must be added back to the managed
code. (If this is not done, then program semantics could
be changed if the null-reference exception is never raised,
or if it is raised only after some visible side effect that
should not have occurred.) In our experience with ORP,
the vast majority of these explicit checks can be removed
through simple compiler analysis, either by proving that
the null check is dominated by a previous explicit or
implicit null check, or that an implicit null check happens
shortly thereafter, without any intervening side effects.

Array-bounds checking. Java and CLI semantics require
out-of-bounds array accesses to throw exceptions. The
core VM provides a function that tells JITs, at compilation
time, the offset into the array at which the array length is
stored, and the JIT is responsible for testing the array
index and throwing an exception if necessary. Therefore,
managed code does not have to execute a function call to
determine the array length.

In a few cases, JITs can prove that all array accesses are
within the array bounds. If the array is created within the
same scope that it is accessed, it may be possible to
symbolically prove that the array index is within bounds.
If the application explicitly tests the array index against
the bounds (for example, in a loop that explicitly iterates
from the lower to the upper bound of the array), then the
implicit bounds check can also be eliminated.
Unfortunately, such instances of “clean” source code seem
to be rare in practice.

In many cases, JITs can eliminate most array bounds
checks through “loop cloning.” The JIT generates two
versions of the loop, one with bounds checks and one
without. Loop prolog code is also created that tests the
starting and ending conditions of the loop and determines
which version of the loop to execute.

Note that both of these techniques are completely within
the capabilities of JITs and require no cooperation from
the core VM.

Fast subtype checking. Both Java and CLI support
single inheritance and, through interfaces, multiple
supertypes. An instance of a subtype can be used where
an instance of the supertype is expected. Testing whether
an object is an instance of a specific supertype is frequent:
many thousands of type tests might be done per second
during program execution. These type tests can be the
result of explicit tests in application code (for example,
Java’s checkcast bytecode) as well as implicit checks
during array stores (for example, Java’s aastore
bytecode). These array store checks verify that the types

of objects being stored into arrays are compatible with the
element types of the arrays. Although checkcast,
instanceof, and aastore take up at most a couple of
percent of the execution time for our Java benchmarks,
that is enough to justify some inlining into managed code.
The core VM provides an interface to allow JITs to
perform a faster, inlined type check under some conditions
that are common in practice.

Direct-call conversion. In ORP, devirtualized calls are
still by default indirect calls. Even though the target
method may be precisely known, it may not have been
compiled yet, or it may be recompiled in the future. By
using an indirect call, the managed code for a method can
easily be changed after the method is first compiled, or
after it is recompiled.

Unfortunately, indirect calls may require additional
instructions (at least on IPF), and may put additional
pressure on the branch predictor. Thus it is important to
be able to convert them into direct calls. To allow this to
happen, the core VM includes a callback mechanism to
allow JITs to patch direct calls when the targets change
due to compilation or recompilation. Whenever a JIT
produces a direct call to a method, it calls a function to
inform the core VM of this fact. If the target method is
(re)compiled, the core VM calls back into the JIT to patch
and redirect the call.

Devirtualization and dynamic loading. The O3 JIT
performs class-hierarchy analysis to determine if there is a
single target for a virtual-method invocation. In such
cases, the compiler generates code that takes advantage of
that information (for example, direct calls or inlining) and
registers that class-hierarchy assumption with the core
VM. If the core VM later detects that loading a class
violates a registered class-hierarchy assumption, it calls
back into the JIT that registered the assumption, to instruct
it to deoptimize the code to use the standard dispatch
mechanism for virtual methods. This is a variant of
guarded devirtualization and does not require stack frame
patching (see [17] for more details). The following
functions in the JIT interface are used in this scheme:

• method_is_overridden(Method_Handle m). This
function checks if the method has been overridden in
any of the subclasses.

• method_set_inline_assumption(Method_Handle
caller, Method_Handle callee) This function informs
the core VM that the JIT has assumed that caller
nonvirtually calls the callee.

• method_was_overridden(Method_Handle caller,
Method_Handle callee) The core VM calls this
function to notify the JIT that a new class that
overrides the method callee has just been loaded.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 13

This small set of methods, though somewhat specialized,
was sufficient to allow JITs to implement an important
optimization without requiring detailed knowledge of the
core VM’s internal structures.

Fast constant-string instantiation. Loading constant
strings is another common operation in Java applications.
In our original JIT interface, managed code had to call a
runtime function to instantiate constant strings. We
extended the interface to reduce the constant-string
instantiation at runtime to a single load, similar to a load
of a static field.

To use this optimization, JITs, at compile time, call the
function class_get_const_string_intern_addr(). This
function interns the string and returns the address of a
location pointing to the interned string. Note that the core
VM reports this location as part of the root set during GC.

Because these string objects are created at compile time
regardless of which control paths are actually executed,
there is the possibility that applying this optimization
blindly to all managed code will allocate a significant
number of unnecessary string objects. Our experiments
confirmed this: performance of some applications
degraded when JITs use fast constant strings. Fortunately,
the simple heuristic of not using fast strings in exception
handlers avoids this problem.

Native-Method Support
ORP gives JITs wide latitude in defining how to lay out
their stack frames, and in determining how they use
physical registers. As a consequence, JITs are responsible
for unwinding their own stack frames and enumerating
their roots, and must implement functions for this that the
core VM calls. However, since a native platform
compiler, not a JIT, compiles unmanaged native methods,
the core VM cannot assume any such cooperation. As a
result, the core VM generates special wrapper code for
most native methods. These wrappers are called when
control is transferred from managed to native code. They
record enough information on the stack and in thread-local
storage to support unwinding past native frames and
enumerating Java Native Interface (JNI) references during
GC. The wrappers also include code to perform
synchronization for native synchronized methods.

In ORP, managed code can interact with native code using
one of four native interfaces:

• Direct calls
• Raw Native Interface2 (RNI)

2 ORP’s implementation of RNI is very close to but not
identical to the original Raw Native Interface that is used
in the Microsoft Java SDK [4].

• Java Native Interface (JNI)
• Platform Invoke (PInvoke)

CLI code uses PInvoke, and Java code uses RNI and JNI.
For optimization purposes, native methods may be called
directly. RNI, JNI, and PInvoke require a customized
wrapper as discussed above. In Java most of the methods
use JNI.

Interestingly, we also found JNI methods to be useful for
implementing CLI’s internal call methods. These are
methods implemented by the MRTE itself that provide
functionality that regular managed code cannot provide,
such as System.Object.MemberwiseClone.

Native interfaces comparison. JNI and PInvoke are the
preferred interfaces and are the only native-method calling
mechanisms available to application programmers.
However, a few native methods are called so frequently,
and their performance is so time-critical, that ORP
internally uses either a direct call interface or RNI for
better performance.

The direct interface simply calls the native function
without any wrapper to record the necessary information
about the transition from managed code to native code.
The lack of a wrapper means that ORP cannot unwind its
stack frame. This means that the direct native interface
can only be used for methods that are guaranteed not to
require GC, exception handling, or security support.

For the PInvoke, RNI, and JNI interfaces, ORP generates
a specialized wrapper for each method. This wrapper
performs the exact amount of work needed based on the
method’s signature. This specialization approach reflects
the general ORP philosophy of performing as much work
as possible at compile time, so that minimum work is
required at runtime. The wrapper first saves enough
information to unwind the stack to the frame of the
managed code of the method that called the native
function (described in more detail below), performs
locking for synchronized methods, and then calls the
actual native method.

RNI and JNI are very similar; the only major difference
between them is how references to managed objects are
handled. In RNI, references are passed to native code as
raw pointers to the managed heap. In JNI, all references
are passed as handles. JNI handles incur additional
overhead but they make writing and debugging native
methods much simpler.

CLI’s PInvoke is designed to simplify the use of existing
libraries of native code. It supports the look up by name
of functions in specified dynamic link libraries (DLLs). It
handles the details of loading DLLs, invoking functions
with various calling conventions, and marshalling
arguments and return values. PInvoke automatically

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 14

translates (marshals) between the CLI and native
representations for several common data types including
strings and one-dimensional arrays of a small set of types.

Stack unwinding for native methods. Unwinding a
thread’s stack proceeds by first identifying, for each
frame, whether it is managed or native. If the frame is
managed, the corresponding JIT is called to unwind the
frame. Otherwise, the core VM uses a last managed frame
(LMF) list to find the managed frame nearest the native
frame. Each thread (in thread-local storage) has a pointer
to the LMF list, which links together the stack frames of
the wrappers of native methods. Included in these
wrapper stack frames and the LMF list is enough
information to find the managed frame immediately before
the wrapper frame, as well as the previous wrapper frame.
Also included are the callee-saved registers and the
instruction pointer needed to unwind to the managed
frame.

Managed frame

Stack
Bottom frame

Top frame

Wrapper

Native frame

Native frame

Wrapper

Native frame

Wrapper

Native frame

LMF pointer

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Figure 3: LMF List after the call to a native method

Figure 3 shows a thread stack just after a call to a native
method. The thread-local LMF variable points to the head
of the LMF list. During unwinding, the LMF list is
traversed as each native-to-managed transition is
encountered, and the wrapper information is used to
unwind past native frames.

JNI optimizations. The core VM generates specialized
JNI wrappers to support the transition from managed to
native code. The straightforward implementation of these
wrappers calls a function to allocate storage and initialize
JNI handles for each reference argument. However, most

JNI methods have only a small number of reference
parameters. To take advantage of this fact, we use an
inline sequence of instructions to allocate and initialize the
JNI handles directly. This can improve by several percent
the performance of applications that make many JNI calls.

Flexibility Versus Performance
For JITs, the performance impact of using interfaces is
minimal, since interface functions are called infrequently
during program execution. Naturally, the compilation
interface is used once for every method that is compiled
(including the wrapper generation for native methods), but
the number of methods executed is typically orders of
magnitude greater than the number compiled, and the
compilation cost far exceeds the interface cost.
Depending on the application, the number of calls related
to exception unwinding and root-set enumeration may be
much higher than the compilation-related calls. Once
again, though, the cost of performing these operations
generally greatly exceeds the cost of using the interface.

THE GARBAGE COLLECTION
INTERFACE
The main responsibility of the garbage collector is to
allocate space for objects, manage the heap, and perform
garbage collection (GC). The GC interface defines how
the garbage collector interacts with the core virtual
machine (VM) and the just-in-time (JIT) compilers, and it
is described in detail below. First we describe the typical
garbage collection process in the Open Runtime Platform
(ORP).

Overview of Garbage Collection
Typically, when the heap is exhausted, GC proceeds by
stopping all managed threads at GC-safe points,
determining the set of root references [26], performing the
actual collection, and then resuming the threads. A
garbage collector relies upon the core VM to enumerate
the root set. The core VM enumerates the global
references and thread-local references in the runtime data
structures. Then it enumerates each frame of each thread
stack, and calls the JIT that produced the code for the
frame to enumerate the roots on that frame and to unwind
to the previous frame.

The garbage collector is also responsible for allocating
managed objects. As such, whenever the core VM,
managed code, or native methods need to allocate a new
object, they call a function in the GC interface. If the
heap space is exhausted, the garbage collector stops all
managed threads and performs GC as described above.

A generational garbage collector also needs support from
the core VM and from managed code to execute a write

http://www.classpath.org/
http://www.research.ibm.com/jikes
http://java.sun.com/docs/jit_interface.html
http://www.microsoft.com/java/
http://www.spec.org/jbb2000
http://www.spec.org/jvm98
http://sf.net/projects/ocl
http://commerce.bea.com/downloads/weblogic_jrockit.jsp
http://commerce.bea.com/downloads/weblogic_jrockit.jsp

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 15

barrier whenever a reference field of a managed object is
changed. In particular, this requires the JIT to insert calls
to the write barrier function in the GC interface into
managed code, where appropriate.

Overview of the Interface
Using an interface for GC potentially has a much greater
performance impact than using a JIT interface, since a
large number of objects are created and garbage-collected
during the lifetime of a typical managed runtime
environment (MRTE) application. Calling a core VM
function to access type information would slow down
common GC operations such as object scanning. A
common solution to this problem is to expose core-VM
data structures to the garbage collector, but this exposure
increases the dependency between the garbage collector
and the core VM.

The solution in ORP is to expose core-VM data structures
only through a call interface (which provides good
separation between the core VM and the garbage
collector), but to allow the garbage collector to make
certain assumptions and to have some space in vtables and
thread local storage. In our experience, these non-call
parts have been a very important feature of the GC
interface. The following sections describe the explicit
functions in the GC interface, as well as the implicit data
layout assumptions shared between the core VM and the
garbage collector.

Data Layout Assumptions
Part of the GC interface consists of an implicit agreement
between the core VM and the garbage collector regarding
the layout of certain data in memory. There are four
classes of memory assumptions in the interface.

First, the garbage collector assumes the layout of objects
described previously, in terms of the Managed_Object
data type. This allows it to load an object’s vtable without
calling into the core VM. In addition, it can use the
object_info field for certain purposes such as storing a
forwarding pointer while performing GC. However, this
field is also used by the synchronization subsystem, so the
garbage collector must ensure it does not interfere with
those uses.

Second, the core VM reserves space in each vtable for the
garbage collector to cache type information it needs
during GC. This cached information is used in frequent
operations such as scanning, where calling the core VM
would be too costly. When the core VM loads and
prepares a class, it calls the GC function
gc_class_prepared so that the garbage collector can
obtain information it needs from the core VM through the
VM interface and store it in the vtable.

Third, the core VM reserves space in thread-local storage
for the garbage collector, and during thread creation it
calls gc_thread_init to allow the garbage collector to
initialize this space. The garbage collector typically stores
a pointer to per-thread allocation areas in this space.

Fourth, the garbage collector assumes arrays are laid out
in a certain way. It can call a VM function to obtain the
offset of the length field in an array object, and for each
array type, the offset of the first element of arrays of that
type. It can further assume that the elements are laid out
contiguously. Using these assumptions, the garbage
collector can enumerate all references in an array without
further interaction with the core VM. Note that the two
offsets can be cached in vtables or other garbage collector
data structures.

Initialization
The GC interface contains a number of functions that are
provided to initialize certain data structures and state in
the core VM and the garbage collector at specific points
during execution. These points include system startup, as
well as when new classes are loaded and new application
threads are created.

At the startup of ORP, the core VM and the JITs call the
GC interface function gc_requires_barriers to determine
what kinds (if any) of write barriers the garbage collector
requires. Write barriers are used by some generational,
partial collection, and concurrent garbage-collection
techniques to track the root sets of portions of the heap
even in the presence of updates to those portions. If the
garbage collector requires write barriers, then JITs must
generate calls to the GC function gc_write_barrier after
code that stores references into an object field.

As previously mentioned, the core VM calls
gc_class_prepared upon loading a class, and
gc_thread_init upon creating a thread. Also, the core VM
calls gc_init to initialize the garbage collector,
gc_orp_initialized to tell the garbage collector that the
core VM is sufficiently initialized that it can enumerate
roots, and thus that GC is allowed, and
gc_next_command_line_argument to inform the garbage
collector of command line arguments.

Allocation
There are several functions related to allocating space for
objects. The function gc_malloc is the main function, and
it allocates space for an object given the size of the object
and the object’s vtable. There are other functions for
special cases such as pinned objects. These allocation
functions are invoked by the core VM or by the managed
code.

http://www.shudo.net/jit/perf
ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps
mailto:michal.cierniak@intel.com
mailto:marsha.eng@intel.com
mailto:neal.glew@intel.com
mailto:michal.cierniak@intel.com
mailto:james.m.stichnoth@intel.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 16

Root-Set Enumeration
If the garbage collector decides to do GC, it first calls the
VM function orp_enumerate_root_set_all_threads. The
core VM is then responsible for stopping all threads and
enumerating all roots. These roots consist of global and
thread-local object references. Global references are
found in static fields of classes, JNI global handles,
interned constant strings, and other core VM data
structures. Thread-local references are found in managed
stack frames, local JNI handles, and the per-thread data
structures maintained by the core VM. The core VM and
the JITs communicate the roots to the garbage collector by
calling the function
gc_add_root_set_entry(Managed_Object**). Note that
the parameter points to the root, not the object the root
points to, allowing the garbage collector to update the root
if it moves objects during GC.

After the core VM returns from
orp_enumerate_root_set_all_threads, the garbage
collector has all the roots and proceeds to collect objects
no longer in use, possibly moving some of the live
objects. Then it calls the VM function
orp_resume_threads_after. The core VM resumes all
threads; then the garbage collector can proceed with the
allocation request that triggered GC.

Flexibility Versus Performance
Relatively few interface functions need to be called during
GC, largely as a result of the cached type information.
However, within managed code, there are potentially
many GC interface crossings. The majority of these are
object allocation (both of objects and of arrays) and write
barriers. The write barrier sequence consists of just a few
straight-line instructions with no control flow, and the
extra call and return instructions have not proven to be a
performance issue in practice. For object and array
allocation, the extra call and return instructions are also
not a significant source of overhead for MRTE
applications (but the same is not true in functional
languages). However, if future benchmarks warranted it,
the JIT and GC interfaces could be extended to allow
inlining of the fast-path of allocation into managed code.

PERFORMANCE OF THE OPEN
RUNTIME PLATFORM
For our work to be relevant to other groups that we work
with, and to Intel as a whole, the Open Runtime Platform
(ORP) must perform as well as commercial Java∗ virtual
machines (JVM∗ s). As a result, we have put significant
effort into designing our interfaces to impose minimal
overhead. The purpose of this section is not to provide
any in-depth analysis of ORP’s performance, but merely
to show that ORP is comparable with commercial JVMs

on a set of standard benchmarks. A more extensive
performance analysis appears in another study [24].

Many commercial JVMs have been developed for the IA-
32 platform. A few examples include IBM JDK 1.3.1∗
[2], Sun HotSpot JDK 1.4.0∗ [11], and BEA JRockit JVM
1.3.1∗ [13]. We compare ORP with Sun HotSpot JDK
1.4.0∗ [11] for SPEC JVM98 [6]3 which is a set of
benchmarks that are designed to reflect the workload on a
client machine.

The comparison appears in Figure 4. These numbers are
taken on a 2.0 GHz dual-processor Pentium 4 Xeon
machine without Hyper-Threading, with 1GB of physical
memory, and running RedHat Linux 7.2∗ . We set the
initial and maximum heap sizes to the same value of
48 MB for both VMs by using the –Xms and –Xmx
command line options.

We are unable to strictly follow the official run rules for
these benchmarks because, for example, the Java class
library we use, GNU Classpath, does not support AWT
and thus cannot run the applets that are required for a
conforming SPEC JVM98 run. We have tried to
approximate as closely as possible the conditions required
for conforming runs within the limits of our research
infrastructure. We use unmodified benchmarks, each of
which is run from the command line.

Performance numbers are presented in a relative fashion
so that the performance of ORP is normalized to 1, and
numbers greater than 1 indicate better performance than
ORP (the graph shows the inverse of the execution time).
ORP was run in its default configuration (all methods
were compiled by the O3 JIT), and the only parameter we
modified was the heap size.

∗ Other brands and names are the property of their
respective owners.
3 As a research project, the information based on the
components of SPEC JVM98 are published per the
guidelines listed in the SPEC JVM98 Run and Reporting
rules section '4.1 Research Use'
(http://www.spec.org/jvm98/rules/runrules-
20000427.html#Research). As such these results do NOT
represent SPEC JVM98 metrics but only run times and are
not directly comparable to any SPEC metrics. Also, as
such, enough information is being provided to allow
people to reproduce the results.
 Pentium is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C
om

pr
es

s

Je
ss D
b

M
pe

ga
ud

io

M
trt

Ja
ck

Ja
va

c

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 O
RP

ORP

Sun Hotspot
Client 1.4.0

Figure 4. Relative performance to Sun HotSpot Client

ORP performance compares well with Sun HotSpot on
these benchmarks. We believe that this performance
comparison demonstrates that using interfaces can be
consistent with good performance.

CONCLUSION
Along with a general overview of the Open Runtime
Platform (ORP), we have described our use of strict
interfaces between the core virtual machine (VM) and
other components, in particular just-in-time compilers
(JITs) and the garbage collector. These interfaces have
allowed us and others to construct new JITs and garbage
collectors without having to understand or modify the
internal structure of the core VM or other components.
Contrary to conventional wisdom, we are able to provide
this level of abstraction and yet still maintain high
performance. The performance cost of using interfaces is
minor for the JITs, where interface crossings are
infrequent. For the more heavily crossed interface of the
garbage collector, we maintain high performance by
exposing a small, heavily used portion of the Java object
structure as part of the interface and allowing caching of
frequently used information. Our experience has shown
that this approach is effective in terms of both software
engineering and performance.

Our experience with ORP’s component design has been
positive and has encouraged us to modularize our
implementation further. We are currently developing
interfaces for other managed runtime environment
(MRTE) components such as ORP’s threading and
synchronization subsystems, to simplify experimentation
with other runtime technologies.

ACKNOWLEDGMENTS
This work would not be possible without contributions
from the entire Open Runtime Platform (ORP)
development team. We also thank ORP users outside of
Intel for their contributions and GNU Classpath
developers, for providing an open-source class library for
Java.

REFERENCES
[1] GNU Classpath, http://www.classpath.org

[2] Jikes Research Virtual Machine. IBM,
http://www.research.ibm.com/jikes

[3] The JIT Compiler Interface Specification, Sun
Microsystems,
http://java.sun.com/docs/jit_interface.html

[4] Microsoft SDK for Java. Microsoft Corp.,
http://www.microsoft.com/java/

[5] SPEC Java Business Benchmark 2000, Standard
Performance Evaluation Corporation,
http://www.spec.org/jbb2000

[6] SPEC JVM98, Standard Performance Evaluation
Corporation, http://www.spec.org/jvm98

[7] Intel Architecture Software Developer’s Manual, Intel
Corp., 1997.

[8] IA-64 Architecture Software Developer’s Manual,
Intel Corp., 2000.

[9] “C# Language Specification,” ECMA-334. ECMA,
2002.

[10] Common Language Infrastructure, ECMA-335.
ECMA, 2002.

[11] Java 2 Platform, Standard Edition (J2SE) v. 1.4.1,
Sun Microsystems, 2002.

[12] Open CLI Library (OCL). Intel Corp., 2002,
http://sf.net/projects/ocl

[13] WebLogic JRockit JVM Version 1.3.1, BEA, 2002,
http://commerce.bea.com/downloads/weblogic_jrockit.
jsp

[14] Adl-Tabatabai, A.-R., Bharadwaj, J., Chen, D.-Y.,
Ghuloum, A., Menon, V., Murphy, B., Serrano, M.J.
and Shpeisman, T., “StarJIT: A Dynamic Compiler for
Managed Runtime Environments,” Intel Technology
Journal, 7 (2003).

[15] Adl-Tabatabai, A.-R., Cierniak, M., Lueh, G.-Y.,
Parikh, V.M. and Stichnoth, J.M., “Fast, Effective
Code Generation in a Just-In-Time Java Compiler,”
ACM Conference on Programming Language Design

http://www.research.ibm.com/jikes
http://www.classpath.org
http://java.sun.com/docs/jit_interface.html
http://www.microsoft.com/java/
http://www.spec.org/jbb2000
http://www.spec.org/jvm98
http://sf.net/projects/ocl
http://commerce.bea.com/downloads/weblogic_jrockit.jsp

Intel Technology Journal, Vol. 7, Issue 1, 2003

The Open Runtime Platform: A Flexible High-Performance Managed Runtime Environment 18

and Implementation, Montreal, Canada, 1998, pp.
280-290.

[16] Cierniak, M., Lewis, B.T. and Stichnoth, J.M., “Open
Runtime Platform: Flexibility with Performance using
Interfaces,” Joint ACM Java Grande - ISCOPE 2002
Conference, Seattle, Washington, 2002.

[17] Cierniak, M., Lueh, G.-Y. and Stichnoth, J.M.,
“Practicing JUDO: Java Under Dynamic
Optimizations,” ACM Conference on Programming
Language Design and Implementation, Vancouver,
British Columbia, 2000.

[18] Hudson, R. and Moss, J.E.B., Incremental Collection
of Mature Objects, International Workshop on
Memory Management, 1992.

[19] Hudson, R. and Moss, J.E.B., Sapphire: Copying GC
Without Stopping the World, Java Grande, 2001.

[20] Hudson, R., Moss, J.E.B., Sreenivas, S. and
Washburn, W., “Cycles to Recycle: Garbage
Collection on the IA-64,” International Symposium on
Memory Management, 2000.

[21] Krintz, C. and Calder, B., “Using Annotations to
Reduce Dynamic Optimization Time,” ACM
Conference on Programming Language Design and
Implementation, 2001.

[22] Lindholm, T. and Yellin, F., The Java Virtual
Machine Specification, Second Edition, Addison-
Wesley, 1999.

[23] Shpeisman, T., Lueh, G.-Y. and Adl-Tabatabai, A.-
R., “Just-In-Time Java Compilation for the Itanium
Processor,” International Conference on Parallel
Architectures and Compilation Techniques
(PACT'02), Charlottesville, Virginia, 2002.

[24] Shudo, K., “Performance Comparison of JITs,”
January 2002. http://www.shudo.net/jit/perf

[25] Stichnoth, J.M., Lueh, G.-Y. and Cierniak, M.,
“Support for Garbage Collection at Every Instruction
in a Java Compiler,” ACM Conference on
Programming Language Design and Implementation,
Atlanta, Georgia, 1999, pp. 118-127.

[26] Wilson, P.R., “Uniprocessor Garbage Collection
Techniques,” in revision (accepted for ACM
Computing Surveys).
ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps

AUTHORS’ BIOGRAPHIES
Michal Cierniak is a senior staff researcher in the
Programming Systems Lab. He joined Intel in 1997 and
has over ten years of experience in compiler design and
over six years of experience in managed runtime design.

Michal has a Ph.D. degree from the University of
Rochester, an M.S. degree from the University of
Edinburgh, and an M.S. degree from the Silesian
University of Technology. His e-mail address is
michal.cierniak@intel.com.

Marsha Eng is a researcher in the Programming Systems
Lab. Marsha joined Intel in 2001, with an M.S. degree in
Computer Engineering from the University of California,
San Diego, and a B.S. degree, also in Computer
Engineering, from the University of Washington. Her e-
mail address is marsha.eng@intel.com.

Neal Glew is a staff researcher in the Programming
Systems Lab. He received a Ph.D. degree in Computer
Science from Cornell University in January 2000. His e-
mail address is neal.glew@intel.com.

Brian Lewis is a senior staff researcher in the
Programming Systems Lab. Brian joined Intel in 2002.
He previously worked at Sun, Olivetti Research, and
Xerox. While at Sun Microsystems Laboratories, Brian
worked on the development of virtual machines for
several languages. He also worked on techniques for
binary translation as well as portions of the Spring
research operating system. Brian received a Ph.D. and
M.S. degree in Computer Science and a B.S. degree in
Mathematics from the University of Washington. His e-
mail address is brian.t.lewis @intel.com.

James Stichnoth is a senior staff researcher in the
Programming Systems Lab. Jim joined Intel in 1997, with
a Ph.D. degree in Computer Science from Carnegie
Mellon University. Jim has worked extensively on both
the core VM and the JITs in the Open Runtime Platform
(ORP). His e-mail address is
james.m.stichnoth@intel.com.

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.shudo.net/jit/perf
ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 19

The StarJIT Compiler: A Dynamic Compiler for Managed
Runtime Environments

Ali-Reza Adl-Tabatabai, Microprocessor Research Labs, Intel Corporation
Jay Bharadwaj, Microprocessor Research Labs, Intel Corporation

Dong-Yuan Chen, Microprocessor Research Labs, Intel Corporation
Anwar Ghuloum, Microprocessor Research Labs, Intel Corporation

Vijay Menon, Microprocessor Research Labs, Intel Corporation
Brian Murphy, Microprocessor Research Labs, Intel Corporation

Mauricio Serrano, Microprocessor Research Labs, Intel Corporation
Tatiana Shpeisman, Microprocessor Research Labs, Intel Corporation

Index words: Just-in-time compiler, JIT, Java, Common Language Runtime, virtual machine, dynamic
optimization

ABSTRACT
Dynamic compilers (or Just-in-Time [JIT] compilers) are
a key component of managed runtime environments. This
paper describes the design and implementation of the
StarJIT compiler, a dynamic compiler for Java Virtual
Machines and Common Language Runtime platforms.
The goal of the StarJIT compiler is to build an
infrastructure to research the influence of managed
runtime environments on Intel architectures. The StarJIT
compiler can compile both Java∗ and Common Language
Infrastructure (CLI) bytecodes, and it uses a single
intermediate representation and global optimization
framework for both Java and CLI. The StarJIT compiler
is designed to generate optimized code for the major Intel
architectures and currently targets two Intel architectures:
IA-32 and the Itanium Processor Family.

In this paper, we describe the overall architecture
(bytecode translators, global optimizer, and code
generators) of the StarJIT compiler and the design of its
intermediate representation, global optimizer, Itanium
Processor Family code generator, and dynamic
optimization framework. We present implementation
details on the single static assignment (SSA)-based global

∗ Other brands and names are the property of their
respective owners.
 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

optimizations [1], the Itanium Processor Family trace
scheduler, and the profile-driven dynamic optimization
framework.

INTRODUCTION
Programs targeted to managed runtime environments
(MRTEs), such as the Java Virtual Machine and the
Common Language Runtime, are distributed in a machine-
neutral bytecode format and need to be compiled to native
machine code by a dynamic compiler. The performance
of managed applications depends on the quality of
optimizations and code generation performed by the
dynamic compiler. Dynamic compilers, or Just-in-Time
(JIT) compilers, are thus a key component of MRTEs.

Because final native code generation happens as part of an
application’s execution, MRTEs pose several challenges
to the dynamic compiler:

1. The dynamic compiler must be sensitive to the time
and space efficiency of its optimization algorithms –
compilation overheads become overheads on the
application’s execution. For example, a slow
compiler can slow down an application’s load time,
making the system feel less responsive to the user. A
dynamic compiler, therefore, must be designed to
balance compilation overhead with code quality.

2. Bugs in the dynamic compiler can become security
holes that can be exploited by hackers. MRTEs
partially rely on the dynamic compiler to enforce
security; for example, the dynamic compiler enforces

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 20

memory safety by inserting checks for type casts and
out-of-bound array accesses. Bugs in the dynamic
compiler can compromise the safety guarantees
provided by the MRTE. A dynamic compiler,
therefore, must not only be efficient but also robust.

These challenges are particularly difficult for architectures
that rely on compiler optimizations for performance. For
example, the Itanium Processor Family architecture
relies heavily on expensive and sophisticated code-
generation optimizations (such as global scheduling and
control speculation) for performance. A dynamic
compiler must implement these optimizations robustly and
efficiently, and also be flexible, to allow balancing of
compilation overhead and code quality.

In comparison to traditional, statically compiled programs,
however, MRTEs also provide new performance
optimization opportunities:

1. Because native code generation occurs during an
application’s execution, MRTEs are an ideal
environment for dynamic profile-guided optimization.
This is important for the Itanium Processor Family,
which relies on profile-guided optimizations (such as
inlining and trace scheduling) for performance.
Dynamic profile-guided optimization also enables the
dynamic compiler to concentrate expensive
optimizations only on those regions of the program
that have the biggest payoffs, thus limiting
optimization overhead.

2. The dynamic compiler can tailor the generated code
to the platform on which the application is executing.
The dynamic compiler can detect platform parameters
(such as microarchitecture generation, cache size, and
memory size) and tailor the code to the platform
parameters. Thus it can deal effectively with “legacy
binary” issues.

3. MRTEs provide metadata (such as type information)
that can be used for optimization. Metadata gives the
compiler precise information about control flow and
types used by a program, which the compiler can
exploit for optimization (e.g., type-based alias
analysis).

We have built the StarJIT compiler as a research
infrastructure to investigate these challenges and
opportunities on Intel architectures.

The rest of this paper is organized as follows. In the next
section, we describe the overall architecture of the StarJIT
compiler. We then describe the design of the global

 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

optimizer, including the single static assignment (SSA)-
based intermediate representation, global optimization
phase structure, and SSA-based global optimization
algorithms. We then describe the design of the Itanium
Processor Family code generator, including the code
generation phase structure and trace scheduler.

THE ARCHITECTURE OF THE STARJIT
COMPILER
The StarJIT compiler is designed to provide a common
strongly typed substrate in which code distributed for
various managed runtime environments can be safely
optimized and targeted to Intel architectures. A further
design goal is to enable dynamic profile-driven
optimization and recompilation. These goals are reflected
directly in the topological organization of the architecture,
illustrated in Figure 1. Paths exist connecting every
language front-end with every architecture-specific back-
end, propagating type information from the source
bytecodes through to the architecture-specific back-ends.
Furthermore, an additional path for annotating the
intermediate representation (IR) used by the global
optimizer with profile information from execution of the
generated native code enables the seamless injection and
use of dynamic information for recompilation.

If virtual machine (VM) support exists, supporting a new
hardware architecture for all of the supported languages
requires only that a single StarJIT compiler back-end is
implemented for that hardware. Similarly, supporting a
new language across the supported Intel architectures
requires only that a new language front-end be
implemented. The primary architectural features of the
StarJIT compiler that enable this are divided into
language- and architecture-specific portions and language-
and architecture-independent portions, both of which are
described in this section.

The process for StarJIT compilation follows a single path
in this architectural schema, determined by the source
language and target architecture. The managed runtime
environment (MRTE) bytecode is translated into the
global optimizer’s IR by the individual front-ends for each
source language supported. The language- and
architecture-independent portion comprises the global
optimizer and the profile feedback manager. The global
optimizer is built on an IR called STIR (StarJIT IR).
After optimization, architecture-specific code generators
translate STIR into architecture-specific IRs, perform
architecture-specific scheduling and register allocation,
and finally emit the generated native code. A dynamic
feedback loop is created through the use of profile
information by the Profile Feedback Manager to
selectively recompile and guide global and architecture-
specific optimization decisions.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 21

Itanium
Processor

Family
Code

Selector

IPF IR Code
Emitter Bits

Execution

Itanium
Processor Family
Scheduler & Reg.

Allocator

IA32 Code
Selector IA32 IR Code

Emitter Bits

IA32 Scheduler &
Reg. Allocator

Architecture-specific

Java Byte
Codes

CLI Byte
Codes

Java
xlator

CLI
xlator

StarJIT IR
(STIR)

Global
Optimizer

Execution
Profile

Profile
Feedback
Manager

MRTE bytecode-
specific

Architecture
& MRTE

independent

Figure 1: StarJIT compiler architecture

The interface of the StarJIT compiler to a specific
MRTE’s VM is implemented in a layer that abstracts out
the required set of interactions between the JIT and the
VM in any MRTE. These include, among other
transactions, enumeration of live pointer information for
garbage collection, allocation of objects, and metadata
queries.

Java∗∗∗∗ and Common Language Infrastructure
Bytecode Translators
The initial compilation step is the translation of portable
bytecode into STIR. Currently, the StarJIT compiler has
bytecode translator front-ends for Common Language
Interface (CLI) and Java∗ .

Bytecode translation has two phases: the first phase
establishes basic block boundaries and exception handling
regions, and it recovers type information for variables and
operators. There are two major differences in the type
information contained in the CLI and Java bytecodes.
First, CLI variables are annotated with exact type
information whereas Java variables do not have a fixed
type and may be reused with different types at different
points in the program. Second, CLI operators are untyped
whereas Java operators are typed. The first phase of
translation reconciles these differences to generate type
information for both variables and operators: the Java
translator performs type propagation to recover type
information for variables, and the CLI translator performs
type propagation to recover type information for the
operators.

∗ Other brands and names are the property of their
respective owners.

The second translation phase generates STIR and
performs simple optimizations, including inlining,
constant and copy propagation, folding, strength
reduction, type check elimination, devirtualization,
elimination of class initialization checks, and value
numbering-based redundancy elimination across extended
basic blocks.

The bytecode translators generate low-level operators to
expose as many calculations as possible to the later global
optimization phase. For example, a load of an object field
is broken up into component operations that perform a
null check of the object reference, load the base address of
the object, compute the address of the field, and load the
value at that computed address. The front-end translators,
however, can be configured to use higher-level operators,
which minimizes the need for later-stage coalescing, to
take advantage of IA-32’s rich addressing modes.

STIR: The StarJIT Compiler’s Intermediate
Representation
The StarJIT compiler’s intermediate representation (IR)
(STIR) is a traditional two-level IR, with control-flow
represented as a graph and instructions represented as
triples [16].

At a high level, STIR is a control flow graph consisting of
nodes and edges. The StarJIT compiler also maintains
dominator and loop structure information on this level of
IR for use in optimization and code generation. STIR
represents both conventional control flow due to jumps
and branches, and exceptional control flow due to thrown
and caught exceptions, so that the global optimizer and
code generators both account for and optimize exceptions
and exception handlers. STIR models conventional
control flow via basic block nodes and edges, which
represent jumps and conditional branches between basic

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 22

block nodes. STIR models exceptional control-flow via
dispatch nodes: a thrown exception is represented by an
edge from a basic block node to a dispatch node, and a
caught exception is represented by an edge from a
dispatch node to a block node.

In managed runtime implementations, compiler-generated
code generally does not implement exceptional control
flow. Instead, the underlying system implicitly handles
the exception throws and catches. The StarJIT compiler
generates a system call instruction for each throw and
registers a handler for each catch. By modeling
exceptional control flow explicitly in the control flow
graph, the compiler can optimize across throw-catch
boundaries. For locally handled exceptions, the compiler
replaces expensive throw and catch combinations with
cheaper direct branches.

At a lower level, each basic block node consists of a list of
instructions, where each instruction is a tuple consisting of
an operator and a set of static single assignment (SSA)
operands [10]. The operators are low level in order to
expose finer-grain operations to the optimizer. SSA form
provides explicit use-def links between operands and their
defining instructions, which simplifies and speeds up
global optimizations. STIR is designed to address both
exclusive and dissonant implementation semantics of Java
and CLI.

Each STIR instruction and operand is annotated with
detailed type information. STIR instructions retain all
type information explicit or implicit in the original Java
and CLI bytecodes. Optimization passes preserve and
update this type information, and they propagate it
through to the architecture-specific back-ends for their
use. Type information is needed in the code generator to
support exact garbage collection (GC), which requires
enumeration of the root set at GC safe points. Type
information also greatly improves the quality of the
compiler analyses by enabling type-based memory
disambiguation at various optimization and code-
generation stages.

Itanium Processor Family and IA-32 Code
Generators
The StarJIT compiler currently supports both the Itanium
Processor Family and IA-32 family architectures through
distinct back-end code generators. The compiler enables
adaptation of new code generators, such as for the Intel

 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
 Intel XScale is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

XScale family, through a software interface that allows
the optimizer to transparently perform the necessary
callbacks to the code generator to construct each code-
generator’s IR with the appropriate type information.

The propagation of STIR type information and access to
metadata provide the code generators with the critical
ability to disambiguate memory accesses relatively
inexpensively, avoiding aliasing conflicts that would
otherwise defeat many code optimizations and
transformations. Metadata also allow the code generators
to generate sufficient GC information so that the StarJIT
compiler can enumerate the root set of live pointers when
requested to do so by the garbage collector at runtime.

The implementations of the code generators are
completely independent because each architecture family
requires a different set of optimizations and code-
generation passes and utilizes very different IRs. For
example, the Itanium Processor Family code generator
performs aggressive trace scheduling; the IA-32 code
generator does not need to do this because of its
instruction set architecture and its microarchitectural
implementation.

Dynamic Profile-Guided Optimizations
The StarJIT compiler supports dynamic profile-guided
optimization (DPGO) as part of its dynamic compilation
framework. Modern static compilers have used profile-
guided optimization (PGO) to achieve significant
performance improvement [5] [7]. The performance
benefit from PGO on the Itanium Processor Family
architecture is even more profound, with a speedup of
approximately 20% observed on certain integer
benchmarks. Traditional static PGO requires an initial
compilation and execution run to collect an execution
profile for use in a final compilation step. The three-step
process – compiling with instrumentation, executing with
representative inputs, and re-compiling with PGO –
requires manual involvement, and it adds a significant
burden to the usually time-constrained software
development cycle. Moreover, this process requires the
software vendor to develop a training workload that
represents the end-user’s workload.

In contrast, DPGO is automatic and transparent to the end
user and software vendor. At the center of the StarJIT
compiler’s DPGO framework is a module called the
Profile Manager, which resides in the virtual machine.
The Profile Manager manages the collection and
processing of the execution profile, and it selects hot
methods for recompilation. The first time it compiles a
method, the compiler uses lightweight, fast-path
optimizations and prepares additional information to
support profiling (which depends on the profiling
mechanisms used). When a method is executed, its

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 23

execution profile is collected online. Periodically, the
Profile Manager examines the execution profile of each
method to determine which methods are hot enough to
warrant recompilation. Once the Profile Manager selects
a method for recompilation, it tells the compiler to
recompile the method with a higher level of optimizations.
The Profile Manager also preprocesses the execution
profile of the method and provides it to the compiler so
that the compiler can apply PGO during recompilation.

This recompilation yields higher performing code for hot
methods. The Profile Manager continues this profiling-
recompilation process throughout the execution of the
application. Since DPGO collects execution profiles and
triggers recompilation on-the-fly, it can re-optimize hot
methods when there is significant change in their
execution profile, allowing the MRTE to adapt to different
execution or usage patterns of an application.

Because of the high overhead in collecting an execution
profile, DPGO in today’s MRTEs is typically constrained
to collect a method invocation profile for identifying hot
methods and a dynamic call graph for making inlining
decisions. As an advanced research platform, the StarJIT
compiler provides a much more extensive set of profiles in
its DPGO framework. Two types of profiling mechanisms
are supported in the StarJIT DPGO framework: one is
instrumentation-based and the other is sampling-based.

Instrumentation-based profiling inserts profile-collecting
code in the dynamically generated native binary when the
compiler first compiles a method. The inserted code
increments counters when execution goes through the
control flow of the method [2]. The StarJIT compiler
currently supports the collection of method invocation and
control flow edge execution counts. The inserted code
maintains these counters in buffers that are accessible to
the Profile Manger. The instrumentation code incurs
significant overhead during execution; therefore, the
compiler does not generate instrumentation when it
recompiles a method with DPGO.

Sampling-based profiling collects an execution profile by
collecting samples during the program execution. Instead
of simply taking an instruction pointer (IP) sample, the
StarJIT compiler utilizes the Performance Monitoring
Unit (PMU) of a microprocessor to get a better execution
profile of an application. On the Itanium Processor
Family architecture, the PMU can monitor and provide a
rich set of events and execution information. For
example, the Itanium Processor Family PMU has a Branch
Trace Buffer (BTrB) that can capture information on the
last few branches executed. The branch trace information
includes the IP address of a branch instruction and the
target IP address of the branch. The information in the
BTrB thus captures a short trace fragment during the
execution of the program. By taking enough BTrB

samples, the Profile Manager is able to construct an
execution profile that approximates the edge profile.

The PMU samples contain virtual IP addresses. To map
the sampling profile into a control flow profile, the
compiler must map IP addresses into IR at the feedback
point. To facilitate such IP-to-IR mapping, the StarJIT
compiler emits a basic block mapping table when it
dynamically compiles a method. The table allows the
mapping of an IP address to a basic block and the branch-
target pair of IPs to a control flow edge in the optimizer
IR.

The Profile Manager can adjust the overhead of sampling-
based profiling by changing the sampling rate. Hence once
the compiler has recompiled the majority of hot methods
with DPGO, the Profile Manager can tune down the
sampling rate to lower the profiling cost. The dynamic
adjustment of the sampling rate allows non-stop, low-
overhead monitoring of the application, making
continuous profiling and recompilation feasible in
MRTEs.

When profile information is available, the StarJIT
compiler feeds the profile information into the IR, and it
selects an optimization path consisting of aggressive
profile-guided optimizations. The optimizer propagates
the profile information to the Itanium Processor Family
code generator so that the code generator can use the
profile to guide basic block layout, trace selection,
instruction scheduling, and other transformations. We
discuss the details of profile usage in later sections.

GLOBAL OPTIMIZER
The StarJIT compiler uses a single optimization
framework for Java∗ and Common Language
Infrastructure (CLI) programs. The StarJIT global
optimizer applies a set of classical, object-oriented, and
profile-guided optimizations to the method representation,
balancing the aggressiveness of optimizations with their
compile-time cost.

Figure 2 shows the high-level flow of the StarJIT global
optimizer. The optimizer has two primary phases. The
first phase consists of fast optimizations performed every
time the StarJIT compiler is invoked. This phase
improves code quality and performance without
substantial compile-time cost. It carries out a baseline set
of optimizations on all generated code. It is deterministic:
it uses no contextual information (such as profiling) that
may change in a later recompile. If no profile information
is available (i.e., this is the first time the StarJIT compiler

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 24

is compiling a method) and the Profile Manager is using
instrumentation-based profiling, then the StarJIT
optimizer instruments the intermediate representation (IR)
before invoking the code generator.

If profile information is available (i.e., the method is a hot
method that the Profile Manager has selected for
recompilation), the optimizer annotates it into the STIR
after the first phase and runs the second optimization
phase. This phase applies more aggressive optimizations
and takes advantage of profile information in the
annotated STIR. Through this second phase, the StarJIT
compiler focuses compilation time on methods and
regions that are most critical to overall performance.

Figure 2: The StarJIT global optimizer

Each of the two optimization phases performs the same
basic set of optimization passes. These passes are
grouped into four categories. Scope Enhancement passes,
Privatization passes, and Redundancy Elimination passes
are performed in sequence, while IR Simplification passes
are performed at multiple points to clean up the method
representation between passes. In the first phase, all
passes use conservative settings to run quickly. In the
second phase, the passes use profile information and more
aggressive settings. In this manner, the StarJIT compiler
balances compile time with performance by concentrating
expensive optimizations only on methods that are hot.
The remainder of this section describes the optimization
passes in more detail.

Intermediate Representation Simplification
Passes
IR simplification passes are a set of very fast optimization
passes that the StarJIT optimizer performs several times
on the IR. These optimizations reduce the size and
complexity of the IR. In addition to improving the code
quality, this reduction improves the efficiency of other,
more expensive optimizations. IR simplification consists
of three passes.

The first pass involves propagation and folding. This pass
performs constant, type, and copy propagation over the
entire method following the static single assignment
(SSA)-form use-def links. As it does this, it also
simplifies and folds expressions such as arithmetic on
constants or runtime checks for null references that are
proven non-null (e.g., a reference defined by a new
allocation). When branch conditions or instructions that
can potentially raise an exception are folded, the
corresponding edges are also removed from the control
flow graph, and any unreachable code as a result of the
edge deletion is skipped (effectively performing
conditional constant propagation [19]).

The second pass eliminates unreachable and useless code.
It does the former by testing reachability via traversal
from the control flow graph entry; it does the latter by
using a sparse liveness traversal over SSA-form use-def
links.

The third pass performs fast global value numbering to
eliminate common subexpressions [3]. This pass does an
in-order depth-first traversal of the dominator tree (instead
of the more expensive iterative dataflow analysis done by
traditional common subexpression elimination). At any
given program point, SSA-form expressions computed
earlier within the same basic block are considered
available. In addition, expressions that are available at the
end of dominating blocks are also available. Expressions
that may be killed (such as loads from memory) or have
side-effects (such as calls) are ignored.

Global value numbering is effective in eliminating
redundant address computation and check instructions
(e.g., chkzero, chknull, and chkcast that are redundant or
guarded by explicit conditional branches). Later
optimization passes eliminate redundant memory accesses
(which require alias analysis and kill information) and
array bounds checks (which are difficult to remove in a
single forward pass because they require arithmetic
reasoning and propagation of dataflow facts across loop
back edges).

Together, the IR simplification passes can be thought of as
a single cleanup pass. This cleanup is performed at a
number of points in the optimization process.

Scope Enhancement Passes
The global optimizer begins with a set of transformations
designed to enhance the scope of later optimizations. The
first scope enhancement pass normalizes control flow by
removing critical edges (a critical edge is an edge from a
node with multiple successors to a node with multiple
predecessors), and factoring entry and back edges of
loops. These transformations prepare the intermediate
representation for later optimization; for example, loop

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 25

normalization simplifies the implementation of peeling,
and critical edge removal is necessary for redundancy
elimination.

After normalization, the optimizer performs a set of loop
transformations. These include loop inversion, peeling,
and unrolling. The first optimization phase is
conservative, and performs only loop inversion and
limited partial peeling. The second profile-driven
optimization phase is more aggressive, and performs
profile-driven peeling and unrolling of hot loops. Note
that loop peeling, in combination with global value
numbering, provides a cheap mechanism to hoist loop-
invariant computation and runtime checks.

The third scope enhancement optimization is guarded
devirtualization of virtual method calls. Virtual method
calls are prevalent in managed runtime environment
(MRTE) applications. They differ from direct calls in that
the actual call target must be resolved at runtime by
examining an object’s virtual method table. The costs of
this extra level of indirection include the runtime expense
of extra code to invoke a virtual method and potentially
poorer branch prediction in hardware for that call, as well
as the compile-time expense of impeded interprocedural
analysis and inlining.

In cases where the optimizer has exact type information,
the IR simplification pass is able to devirtualize a virtual
call by converting it into a more efficient direct call. In
other cases, the target of a virtual method may be highly
predictable. In these cases, the scope enhancement pass
devirtualizes the call by guarding it with an inexpensive
runtime test that checks whether the predicted method is
in fact the target. If performed accurately, guarded
devirtualization alleviates the runtime costs associated
with virtual method calls and enables the compiler to
inline targets of virtual method calls. The first phase
performs guarded devirtualization conservatively using
simple static heuristics. The profile-driven phase
performs guarded devirtualization aggressively using
block execution and call graph profiles.

The centerpiece of the scope enhancement passes is the
inliner. Inlining removes the overhead of a direct call and
specializes the called method within the context of its call
site. The inliner consists of an iterative process built
around the other scope enhancement and IR simplification
passes. In the first pass through this cycle, scope
enhancement and IR simplification transformations are
performed on the original intermediate representation. At
this point, the inliner examines each direct call site in the
IR (including those exposed by guarded devirtualization),
heuristically assigns a benefit to it, and, if it exceeds a
certain threshold, registers it in a priority queue. The top
candidate, if any, is then selected for inlining. The
translator generates IR for the inlined method, and the

cycle is repeated upon the new IR. The inliner then
processes the new IR for further inlining candidates
(updating the priority queue), splices it into the existing
IR, selects a new candidate, and repeats the cycle. The
inliner halts once the queue is empty or after the IR
reaches a certain size limit. When inlining is completed,
the global optimizer performs a final IR simplification
pass over the entire intermediate representation.

Privatization Passes
The privatization passes optimize accesses to memory
locations. The privatization phase first performs alias and
escape analyses on memory accesses, and then performs
synchronization removal [18] and scalar replacement [16].
Alias analysis yields information about which load/store
addresses may affect each other [16]. The StarJIT
optimizer uses the type information about object fields for
alias analysis. For example, accesses to two object fields
cannot refer to the same location if the object types, field
names, or field types differ. A store cannot alias with a
final or read-only field of an object (except in the object
constructor). The StarJIT optimizer also uses the
definition point of an object reference for alias analysis: a
reference to an object that is a method parameter may not
alias with a reference resulting from an object allocation.

Escape analysis determines the extent to which accessed
memory locations are visible outside the current method
[6][13]. Escape analysis determines this information with
a sparse SSA-based analysis of each object referenced in a
method. An object that is allocated in the body of the
method is initially assumed to be private to the method
(i.e., non-escaping). Any object passed in as an argument
or a return value, passed as an argument to another
method, returned as a result, or stored into a static field
escapes by definition. Moreover, any object stored as a
field in an escaping object transitively escapes. Finally,
any object that potentially aliases an escaping object
(because of a copy or a merge at an SSA phi node) also
escapes. The StarJIT optimizer’s current escape analysis
algorithm is intra-procedural and relies on the prior
inlining pass to expose privatization opportunities. We
plan on augmenting the escape analysis pass with inter-
procedural information.

Once escape analysis is done, synchronization removal
eliminates synchronization operations (which are explicit
in STIR) on objects that do not escape a method or that
escape only via a return. Scalar replacement promotes
object fields and array elements to SSA variables that are
amenable to further optimization passes [9]. This pass
takes advantage of the alias and escape analysis
information to disambiguate memory references.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 26

Redundancy Elimination Passes
The final set of optimization passes comprises
optimizations to eliminate redundant and partially
redundant computations. These passes include loop-
invariant code motion, bounds-check elimination, and
strength reduction [16]. They are deferred until the
largest possible program scope is available and the most
memory locations have been promoted to scalar variables.

The StarJIT optimizer uses a demand-driven array
bounds-check elimination analysis based upon the
previously published ABCD algorithm [4]. It first inserts
Pi nodes into the IR to split variable live ranges based on
branch conditions. Pi nodes capture information gleaned
about a variable based on branch conditions. From each
variable’s definition, the analysis then derives inequality
constraints upon that variable’s value, which can be used
to prove redundancy of bounds checks involving that
variable. Unlike the original ABCD algorithm, the
StarJIT optimizer’s bounds-check elimination
implementation does not construct a separate constraint
graph, but uses the SSA graph directly to derive
constraints during an attempted proof. We also have
added handling of symbolic constants to allow check
elimination in slightly harder cases, commonly
encountered in practice.

To facilitate load hoisting in the code generator, the
check-elimination transformations track conditions used to
prove that a check can be eliminated. The code
generation interface passes this information to the code
generator. The scheduler uses this information to
determine which branches guard the safety of a given
load, and marks the load as speculative if it hoists the load
above a guarding branch.

The StarJIT optimizer performs strength reduction to
transform expensive operations, such as multiplication by
an induction variable in a loop, into simpler operations
such as addition. The implementation is based upon the
operator strength reduction optimization described in [8],
extended to also reduce the strength of memory address
computations. The strength reduction pass performs
linear function test replacement to eliminate uses of the
original loop induction variable in tests (e.g., loop exit
tests). This optimization is effective in transforming an
iteration through the elements of an array into a series of
pointer increments and pointer comparisons, and
eliminating the original array index. In cases where the
loop index is live after the loop, this pass rematerializes
the index on loop exits to still allow removal of the loop
index computation from the loop. For the Itanium

 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Processor Family architecture, the strength reduction pass
can also transform loops with invariant trip counts into
counted loops.

The optimizer must be careful during strength reduction
because of overflow issues: the optimizer cannot
transform a 32-bit integer induction variable used as an
array index into a 64-bit pointer (strength reducing the
indexing operations) unless it can prove that additions to
the 32-bit index will not overflow (and wrap around to a
negative number, as required by Java∗ bytecode
semantics) because adding to the 64-bit pointer will not
overflow in the same cases. While unlikely to occur in
real code, the induction variable range is checked for
possible overflow before such a strength reduction
transformation. The range analysis makes use of the same
demand-driven bounds-check analysis used for array
bounds-check elimination.

THE ITANIUM PROCESSOR FAMILY
CODE GENERATOR
The Itanium® Processor Family code generator is
responsible for generating native code for a program
represented by STIR. It lowers the program
representation to the machine level, performs architecture-
dependent optimizations such as register allocation and
scheduling, computes the information necessary to support
garbage collection (GC), and emits the bits that are
directly executed by the processor.

Figure 3 shows the structure of the code generator. The
first code generation phase is code selection. During this
phase the code generator lowers STIR operations into
Itanium Processor Family code sequences and performs
simple optimizations such as immediate operand folding,
operator folding, and strength reduction. It uses
predication [15] to avoid generating additional control
flow for complex STIR operations such as instanceOf.
The Itanium Processor Family instruction sequences
generated from STIR usually contain many operations that
move data between temporaries, variables, incoming and
outgoing arguments, and return values. The code selector
makes a pass over the intermediate representation to
coalesce the sources and destination operands of moves,
and to remove the resulting redundant moves.

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 27

C ode selec tion

G ot profile?

S tatic p rofile
estim ation

G lobal reg ister
allocation

T race
scheduling

G C info
com putatio n

C ode em ission

N o

Figure 3: Itanium Processor Family code generator

phases

The optimizer drives code selection through a code-
generation interface. This interface abstracts the
information that the optimizer should communicate to a
code generator from the details of STIR implementation
and allows the code generator to be used with any front-
end that supports the code generation interface. The
subsequent code generation phases require profile
information to guide optimizations. When dynamic
profile information is not available, the code generator
estimates the profile using static heuristics [1].

The ordering of register allocation and code scheduling is
a classical phase-ordering problem [12]. Register
allocation performed before scheduling introduces
additional anti and output dependencies that restrict
scheduler freedom to reorder the instructions. Register
allocation performed after code scheduling may require an
additional scheduling pass to accommodate generated spill
code. In addition, register allocation quality may suffer
because of increased register pressure. The code
generator chooses a middle-ground approach. It divides
all operands into two categories: local and global. An
operand is local if it has a single definition and its live
range does not span a loop boundary. All other operands
are global. Only global operands require iterative data
flow analysis to compute their liveness. The liveness of
local operands can be computed with a single reverse pass
over the IR. The global operands are assigned registers
during the global register allocation phase that occurs
before scheduling. This introduces only a few data
dependencies, as most of the operands are local. The
local register allocator is integrated with scheduling. The
scheduler keeps track of the register pressure, and
materializes and schedules spill code as needed.

The code scheduler is the most complex component of the
code generator. In addition to scheduling instructions
using trace scheduling [11], it performs code layout and
local register allocation. The design of the trace scheduler
is described in the next section.

After scheduling, the code generator computes the
information necessary to support GC. For each call
instruction, it computes the set of registers and stack
locations that contain live references and interior pointers
(pointers to the middle of the objects allocated on the
heap), and it records this information in a data structure
called the GC map table. During garbage collection, the
garbage collector enumerates the root set by iterating over
the set of frames on each thread’s runtime stack. For each
frame, the garbage collector makes a callback into the JIT
compiler asking it to enumerate the set of live references
for that frame and to unwind to the previous frame. The
JIT compiler computes the set of live references for the
frame using the GC map information.

The final code emission phase emits the native Itanium
Processor Family binary code into memory for execution.
This phase also emits the GC map table, exception handler
tables (for dispatching exceptions), stack unwinding
information (for root set enumeration, exception
unwinding, and runtime security checks), and the IP-to-IR
mapping tables (for profile gathering).

Trace Scheduler Design
The modular trace scheduler design facilitates managed
runtime environment (MRTE) research work,
retargetability to other micro-architectures, and portability
for use in other virtual machine (VM) or compilation
systems. The various components of the trace scheduler
are shown in Figure 4. The components have been
designed as independent modules with clear interfaces so
that they can be applied to each trace selectively.

List
Scheduler

Dependence
Manager

Compensation
Manager

Speculation
Manager

Micro-
Scheduler

Trace Interface
Manager

Local Register
Allocator

Code Linearizer, Tail Duplicator &
Trace Picker

Trace Scheduler

Figure 4: Trace scheduler components

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 28

The first pass of the trace scheduler is the code linearizer,
tail duplicator, and trace picker. Trace selection is
important because it defines the scheduling scope. Trace
selection and scheduling are best done after code (basic
block) layout, to schedule unconditional branches
introduced by code linearization, and to form cross-block
bundles and cycles. Tail duplication is useful to eliminate
side entries into traces, but must be done before code
layout decisions are finalized. Tail duplication decisions,
however, are best made with input from trace formation.
Therefore, there is a cyclic phase ordering dependency
between trace picking, code layout, and tail duplication.

The StarJIT Itanium Processor Family code generator uses
a novel scheme that performs all three together. The code
layout technique is a top-down scheme similar to that
described by Pettis & Hansen [17]. Code layout, trace
formation, and tail duplication decisions all benefit from
any available branch profile information. Code layout
uses profiles to improve cache locality and reduce taken
branches. Along hot paths the trace picker picks longer
traces, and the tail duplicator is more aggressive in
removing cold side entries, while on cooler paths shorter
traces are picked with little or no tail duplication. Finally,
a few compensation blocks are added on some critical
edges. After scheduling, the code generator eliminates
useless compensation blocks, which have no
compensation code moved into them.

At the core of the trace scheduler is the list scheduler,
which schedules one trace at a time. The list scheduler
schedules instructions from a data-ready list. It uses
several heuristics to choose between data-ready
candidates. These include critical path length, slack (a
measure of the freedom to delay an operation without
delaying the overall schedule), register and resource
availability and future needs, code size and code motion
usefulness metrics, and effects of any required
compensation, or speculation. The heuristics are profile
sensitive: their basic goals are to generate high-
performance code at hot traces and to enable fast
generation of compact code at cold traces. The list
scheduler heuristics also guide multiway branch
generation. MRTE safety checks, such as null pointer,
array bounds, and type checks, result in a large number of
branch operations. It is therefore important to bundle
multiple branches together to reduce code size, control
height, and mispredicted branches.

The list scheduler uses a micro-scheduler to schedule
instructions within a cycle. The micro-scheduler models
resources and dispersal rules, and makes compact
bundling decisions. For the Itanium Processor Family, it
is important to integrate scheduling with bundling because
the bundling choices influence dispersal. The micro-
scheduler is based on the Open Research Compiler’s

micro-scheduler [14]. It abstracts away the machine
details and reads the Itanium micro-architecture definition
from a knobs file.

The dependence manager tracks all register data
dependencies, memory dependencies, and control
dependencies while trying to avoid transitive
dependencies, for efficiency reasons. It uses MRTE
metadata to avoid creating false memory and control
dependencies. Memory disambiguation is based on the
properties of pointers to memory locations such as type,
memory region (heap, stack, static), and access semantics
(e.g., field, array element). The dependence manager uses
the safety semantics of MRTE memory operations to
avoid unnecessary control dependencies. A load is safe
(i.e., can be issued without making it speculative)
everywhere except before its corresponding safety checks
(chknull, chkbounds, and/or chkcast). When the optimizer
combines or eliminates any of these checks based on
control or data flow implications, it keeps around enough
information to allow the dependence manager to recognize
control dependencies of such loads on the appropriate
check and/or branch instructions. The dependence
manager also enables the list scheduler to use predication
to convert a control dependency on a branch to a data
dependency on the associated predicate-generating
compare. This allows the list scheduler to predicate a
block partially, thus reducing the need for speculation,
check, and recovery generation.

The speculation manager uses the Itanium Processor
Family control speculation feature to schedule loads
before the branches on which they are control dependent.
It keeps track of the speculative loads and dependent
speculative instructions that should be included in the
recovery code. After all traces have been scheduled, the
speculation manager materializes the recovery code and
schedules it using a local scheduler.

When instructions are moved above a trace side entry or
below a trace side exit, the compensation manager inserts
copies of these instructions in the off-trace blocks. The
scheduler performs code motion, only when heuristics
suggest that the good done to the on-trace path is not
outweighed by any harm done by compensation code to
the off-trace path. Code motion requiring compensation
insertion into previously scheduled traces is not permitted.
Profile information (which determines the order in which
traces are scheduled), therefore, guides compensation
code decisions. The compensation manager also avoids
compensation code when control and data dependence
relationships indicate that it is unnecessary. For example,
compensation code is not needed at intermediate side
entry points when an instruction is moved to a dominating
point in the trace and the instruction’s operands are not
modified on any off-trace path.

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 29

The trace interface manager models liveness and data flow
latency across trace boundaries (trace main entry/exit and
side entries/exits), thus maximizing scheduling freedom
and improving performance at trace interfaces.

The StarJIT trace scheduler has an integrated local
register allocation module (as mentioned earlier, global
operands are allocated registers prior to scheduling). This
module monitors liveness of local temporaries and
allocates registers to them when their definitions are
scheduled. A local temporary has a single definition that
dominates all its uses. The scheduler exploits this
property to model register pressure during scheduling, and
to materialize and schedule spill code on-the-fly, thus
performing efficient and optimized register allocation.

CONCLUSION
Managed Runtime Environments (MRTEs) depend on
dynamic compilation for performance and security. The
strict runtime requirements of dynamic compilation pose
new challenges to compiler engineers. These requirements
also provide new dynamic optimization opportunities
involving both the compiler and the hardware.

In this paper, we have described the design of the StarJIT
compiler. Built upon a framework that enables dynamic
recompilation for a range of MRTEs and Intel
architectures, this research infrastructure enables
heretofore intractable research opportunities in
implementation tradeoffs of managed runtimes and
hardware architectures.

ACKNOWLEDGMENTS
The authors thank members of the Open Research
Platform (ORP) VM team, Michal Cierniak, Neal Glew,
Rick Hudson, Brian Lewis, James Stichnoth, Sreenivas
Subramoney, and Weldon Washburn. The StarJIT
compiler would not have been realized without their
support and efforts in making the ORP VM robust and
high-performing. We thank Youfeng Wu, Roy Ju, and
Sun Chan for providing valuable feedback on the IPF
trace scheduler design and details on the ORC micro-
scheduler. The authors also thank Jesse Fang for his
guidance and continuing support of this work, Ken Lueh
for his early contributions to the StarJIT source code, and
Youngsoo Choi for his contributions to the Itanium
Processor Family PMU driver.

REFERENCES
[1] T. Ball and J.R. Larus, “Branch Prediction for Free,”

in proceedings of ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation,
June 1993, pp. 300-313.

[2] T. Ball and J.R. Larus, “Optimally Profiling and
Tracing Programs,” Conference Record of the
Nineteenth ACM Symposium on Principles of
Programming Languages, January 1992, pp. 59-70.

[3] P. Briggs, K.D., Cooper and L.T. Simpson, “Value
Numbering. Software-Practice and Experience,” vol.
27(6), June 1997, pp. 701-724.

[4] R. Bodik, R. Gupta, and V. Sarkar, “ABCD:
Eliminating Array-Bounds Checks on Demand,” in
proceedings of the SIGPLAN ’00 Conference on
Program Language Design and Implementation,
Vancouver, Canada, June 2000, pp. 321-333.

[5] P.P. Chang, S.A. Mahlke and W.W. Hwu, “Using
Profile Information to Assist Classic Code
Optimizations,” Software-Practice and Experience,
vol. 21(12), Dec. 1991, pp.1301-1321.

[6] J.-D. Choi, M. Gupta, M.J. Serrano, V.C. Sreedhar
and S.P. Midkiff, “Escape Analysis for Java,” in
proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, 1999, pp. 1-19.

[7] R. Cohn, D. Goodwin and P.G. Lowney, “Optimizing
Alpha Executables on Windows NT with Spike,”
Digital Technical Journal, vol. 9, No. 4, 1997, pp. 3-
20.

[8] K.D. Cooper, L.T. Simpson and C.A. Vick, “Operator
Strength Reduction,” ACM Transactions on
Programming Languages and Systems, vol. 23, no. 5,
September 2001, pp. 603-625.

[9] K.D. Cooper and L. Xu, “An Efficient Static Analysis
Algorithm to Detect Redundant Memory Operations,”
ACM 2002, Workshop on Memory System
Performance (MSP ‘02), Berlin, Germany, June 16,
2002.

[10] R. Cytron, J. Ferrante, B. Rosen, M. Wegman and F.
Zadeck, “Efficiently computing static single
assignment form and the control dependence graph,”
ACM Transactions on Programming Languages and
Systems, vol. 13, No. 14, October 1991, pp 451-490.

[11] J.A. Fisher, “Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Transactions
on Computers, C-30(7), July 1981, pp. 478-490.

[12] S.M. Freudenberger and J.C. Ruttenberg, “Phase
Ordering of Register Allocation and Instruction
Scheduling,” in proceedings of the International
Workshop on Code Generation, May 1991, pp. 146-
172.

[13] D. Gay and B. Steensgaard, “Fast Escape Analysis
and Stack Allocation for Object-Based Programs,” 9th

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 30

International Conference on Compiler Construction,
(CC ‘2000), Springer-Verlag, Vol. 1781, 2000, pp.
82-93.

[14] R. Ju, S. Chan, F. Chow, X. Feng and W. Chen,
“Open Research Compiler (ORC) Beyond Version
1.0,” tutorial presented at PACT-2002, September 22,
2002.

[15] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank and
R.A. Bringmann, “Effective Compiler Support for
Predicated Execution Using the Hyperblock,” in
proceedings of the 25th International Symposium on
Microarchitecture (MICRO 25), Dec. 1992, pp. 45-
54.

[16] S. Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufmann, San Francisco,
CA, 1997.

[17] K. Pettis and R.C. Hansen, “Profile Guided Code
Positioning,” in proceedings of the ACM SIGPLAN
90 Conference on Programming Language Design
and Implementation, White Plains, N.Y., June 20-22,
1990, pp. 16-27.

[18] E. Ruf, “Effective synchronization removal for
Java,” in proceedings of the ACM SIGPLAN ’00
Conference on Program Language Design and
Implementation, Vancouver, British Columbia, June
2000, pp. 208-218.

[19] M. Wegmen and F. Zadeck, “Constant Propagation
with Conditional Branches,” ACM Transactions on
Programming Languages and Systems, vol. 13, No.2,
April 1991, pp. 181-210.

AUTHORS’ BIOGRAPHIES
Ali-Reza Adl-Tabatabai is a senior staff researcher in the
Programming Systems Lab. He received a B.Sc. degree
from UCLA in Computer Science & Engineering and a
Ph.D. degree from Carnegie Mellon University in
Computer Science. His research interests include dynamic
compilation and optimization, managed runtimes, memory
hierarchy design, and compression. His e-mail is ali-
reza.adl-tabatabai@intel.com

Jay Bharadwaj is a senior staff researcher in the
Programming Systems Lab. He received a B.S. degree in
Mechanical Engineering from IIT Madras, India and M.S.
degrees in Computer Science and Mechanical Engineering
from Rensselaer Polytechnic Institute and SUNY Stony
Brook, respectively. His research interests include
managed runtimes, hardware software cooperation, and
compilation techniques. Other interests include activities

requiring use of hand or power tools. His e-mail is
jay.bharadwaj@intel.com

Dong-Yuan Chen is a staff researcher with the
Programming Systems Lab. He received his Ph.D. degree
in Computer Science from Yale University in 1995. He
has worked on back-end compiler optimizations, including
software pipelining and machine modeling, and various
microarchitectural performance studies for the Itanium
Processor Family architecture. His current interests
include lightweight online profiling mechanisms and
dynamic profile-guided optimizations in managed runtime
environments. His e-mail is dong-yuan.chen@intel.com

Anwar Ghuloum is a senior staff researcher in the
Programming Systems Lab. He received a B.Sc. degree
from UCLA in Computer Science & Engineering and a
Ph.D. degree from Carnegie Mellon University in
Computer Science. His research interests include
managed runtime environments, memory hierarchy design,
and compression. Other pursuits include cycling, tri,
building bikes, painting, and the uses of coherent light.
His e-mail is anwar.ghuloum@intel.com

Vijay Menon is a staff researcher in the Programming
Systems Lab. He received a B.S. from the University of
California, Berkeley in Electrical Engineering and
Computer Science and a Ph.D. from Cornell in Computer
Science. His current research interests include program
analysis, dynamic compilation, and managed runtime
environments. His e-mail is vijay.menon@intel.com.

Brian R. Murphy is a Just-In-Time researcher at Intel
Labs. He has done analysis of functional languages,
automatic parallelization of Fortran code, development of
advanced program analysis techniques, programming
language design and implementation, Unix and Linux
systems programming and administration, and Web site
development and management. He received S.B. and
S.M. degrees from M.I.T., and a Ph.D. degree from
Stanford University. His e-mail is
brian.r.murphy@intel.com

Mauricio Serrano received his Ph.D. degree in Computer
Engineering from the University of California Santa
Barbara in 1994, an M.S. degree from Rensselaer
Polytechnic Institute, and a B.S.E.E. from Javeriana
University, Bogota, Colombia. Before joining Intel, he
spent several years working with IBM T.J. Watson/New
York and STL/San Jose, where he worked in several
compiler areas including program restructuring,
retargetable code generation, and Java performance
optimizations. His other interests are computer
architecture and performance modeling. He published the
first dissertation on SMT (Simultaneous Multithreaded
Processors) in 1994, although at that time he called it

mailto:ali-reza.adl-tabatabai@intel.com
mailto:ali-reza.adl-tabatabai@intel.com
mailto:jay.bharadwaj@intel.com
mailto:dong-yuan.chen@intel.com
mailto:anwar.ghuloum@intel.com
mailto:vijay.menon@intel.com
mailto:brian.r.murphy@intel.com

Intel Technology Journal, Vol. 7, Issue 1, 2003

The StarJIT Compiler: A Dynamic Compiler for Managed Runtime Environments 31

SMS (Simultaneous Multistream Superscalar Processors).
His e-mail is mauricio.j.serrano@intel.com

Tatiana Shpeisman is a staff researcher in the
Programming Systems Lab. She received her B.Sc.
degree from the Leningrad Electrical Engineering Institute
in Applied Mathematics and M.S. and Ph.D. degrees from
the University of Maryland, College Park, in Computer
Science. Her research interests include compilation
techniques, managed runtimes, and sparse matrix
computations. Her other interests include hiking in the
Sierras, ballroom dancing, and classical ballet. Her e-mail
is tatiana.shpeisman@intel.com.

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

mailto:mauricio.j.serrano@intel.com
mailto:tatiana.shpeisman@intel.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Enterprise Java Performance: Best Practices 32

Enterprise Java Performance: Best Practices

Kingsum Chow, Software and Solutions Group, Intel Corporation
Ricardo Morin, Software and Solutions Group, Intel Corporation

Kumar Shiv, Software and Solutions Group, Intel Corporation

Index words: Enterprise Applications, Application Servers, Java Performance, Java 2 Enterprise
Edition, J2EE

ABSTRACT
This paper discusses best practices for maximizing the
performance of enterprise Java* workloads. First, we
introduce the importance of performance of enterprise
Java applications. We then describe our top-down, data-
driven, and closed-loop approach to characterize where
the problems are. We examine the performance of the
software/hardware stack, first from the system-level
perspective (topology, I/O, network), then from the top
software layer (application level), through the middle
layer (Java Virtual Machine), and down to the platform
layer (processor, memory). We conclude by summarizing
our recommendations for attaining the best performance
on enterprise Java applications.

INTRODUCTION
Managed runtime environments such as Java have proven
to be a very attractive platform for developing and
deploying enterprise applications. Accessible object
orientation, programming safety, and automatic memory
management features deliver a highly productive
foundation for business application development. In
addition, the platform independence offered by managed
runtime environments provides unprecedented investment
protection, which is appealing to Information Technology
(IT) managers, as enterprise applications tend to have a
long life span.

Advanced Just-In-Time (JIT) compilation, memory
management, and garbage collection technologies have
effectively addressed initial concerns raised about the
poor performance of Java-based applications. Today’s
Java Virtual Machines (JVM*) take full advantage of a
variety of target platforms, and keep up to date with the
performance of the latest hardware and operating system
advances as they evolve over time.

As Java [1] gained popularity in the development of
server-based applications, standardized, robust, and
scalable application support frameworks became a must.
Enter Java 2 Enterprise Edition (J2EE) [2], a
comprehensive specification for application servers, a
class of system software designed to relieve application
developers from creating and re-creating the “plumbing”
necessary to support enterprise applications, including
component models and life-cycles, object models,
database access, security, transactional integrity, and safe
multi-threading.

Figure 1: Performance optimization considerations at
the three levels of the top-down stack: system-level,

application-level, and machine-level

Since the emergence of J2EE, application servers have
grown to become important IT infrastructure components
of many enterprises [3]. They support complex, multi-tier
configurations with well-defined separation of functions

System

Applicat ion

Machine

System Config
Topology

Network I /O
Dis k I/O

Databas e Tun ing
O S

App Design
App Server T uning

Drivers
Pers is tence

Clus tering

J VM Select ion
JVM Tuning

JVM Internals
JIT Compilat ion

Cache Architec ture
SMP Sc aling

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 33

(user interface, business processing, and database access),
often including multiple servers arranged in clustered
configurations, as well as back-end relational database
management systems and legacy applications, integrated
in the overall design.

As applications move from development to production,
performance becomes a critical life-cycle requirement.
Applications must not only meet stringent performance
requirements upon deployment, but they must be able to
gracefully scale with varying usage patterns and increased
demand. Performance optimization and management in
this environment is a difficult task, as performance is
affected by many interrelated elements.

In this paper, we describe an iterative, data-driven, top-
down methodology and the tools needed to systematically
optimize the performance of application-server-based
applications. We also describe performance optimization
considerations at the three levels of the top-down stack:
system-level, application-level and machine-level (see
Figure 1).

At the system level, we identify performance and
scalability barriers such as input/output (I/O), operating
system and database bottlenecks, and we discuss
techniques to overcome those barriers. At the application
level, we discuss application design considerations and
application server tuning. At the machine level, we
discuss JVM implementations and hardware-level
performance considerations such as processor frequency,
cache sizes, and multi-processor scaling.

Throughout the paper, we introduce several case studies to
illustrate the application of the techniques presented.

APPLICATION SERVERS
Application servers provide a solid foundation for
developing and deploying enterprise applications. They
implement a large collection of Application Program
Interfaces (API) and a set of capabilities specified in the
J2EE suite of standards, which support the development
of multi-tier applications.

Application-server-based applications are arranged in
multi-tier configurations: client tier, Web interface tier,
business tier, and enterprise information systems tier. The
client tier represents the service requestors, and it is
usually associated with the user interface. The Web
interface tier provides services required to process Web-
based forms and Web services, and it dynamically
assembles the resulting HTML and/or XML. The
business tier is used to implement computation, business
processing, and business rules. The enterprise
information systems tier includes persistence back-ends,
based on relational databases and legacy applications such
as mainframe-based information systems.

As depicted in Figure 2, application server functionality is
organized around the concept of containers, which provide
groupings of related functions, and are typically layered
on top of the Java 2 Standard Edition (J2SE*) platform,
which includes a Java Virtual Machine (JVM) and the
corresponding suite of APIs. For instance, the two
application server-based containers are the Web container
and the Enterprise JavaBeans (EJB) container. Web
containers are used to support Web-based user interface
components, such as Servlets and Java Server Pages
(JSP). EJB containers are used to support business
components, which include Session Beans, Entity Beans,
and Message-driven Beans. Session Beans provide access
to independent business components in two flavors:
Stateful Session Beans, used when state information is
required between service calls, and Stateless Session
Beans, used when individual service calls are independent
of each other and do not require state information to be
preserved. Entity Beans provide persistence services
through connectivity to relational databases. Message-
driven Beans provide the ability to implement business
components that take advantage of asynchronous
messaging capabilities.

In addition to the core container APIs, application servers
provide additional support to APIs such as naming and
directory services (JNDI*), database connectivity
(JDBC*), messaging (JMS*), XML processing (JAXP*),
transactions (JTS*), and connectivity to legacy systems
(JCA*).

Most application servers also provide the ability to
transparently cluster multiple containers in order to enable
fault tolerance and multi-node scalability.

To provide runtime support for this comprehensive set of
functionality, application servers need to implement a
number of key services, including state management, life-
cycle management, thread pooling, transactions, security,
persistence, fault tolerance, and load balancing.

Examples of commercial application servers include
BEA’s WebLogic∗ [4], IBM’s WebSphere∗ [5] and
Oracle’s 9i AS∗ [6]. In addition, there are a number of
open source implementations, including JBoss∗ [7] and
JOnAS∗ [8]. Additional information about J2EE* and
application servers can be reviewed in [9], [10], and [11].

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 34

J2EE Application Server
Servlet Container

JN
D

I

JT
A

Ja
va

M
ai

l/J
A

F

JD
B

C

J2SE Platform

JM
S

JA
XP

JA
A

S
C

on
ne

ct
or

Servlets JSPs

Container
Services

EJB Container

JN
D

I

JT
A

Ja
va

M
ai

l/J
A

F

JD
B

C

J2SE Platform

JM
S

JA
XP

JA
A

S
C

on
ne

ct
or

Session
Beans

Entity
Beans

Message
Driven
Beans

Container
ServicesC

lie
nt

 T
ie

r
Enterprise Inform

ation
System

s (EIS) Tier
Enterprise Applications

Threads
Transactions

Security

Load balancing
Fault tolerance

Persistence
State

Life-cycle

Figure 2: The two server-based containers are the Web and Enterprise JavaBeans (EJB) containers. Web

containers support Web-based user interface components, such as Servlets and Java Server Pages (JSP). EJB
containers support business components, which include Session Beans, Entity Beans and Message-driven Beans.

PERFORMANCE TUNING
METHODOLOGY
Application server configurations involve multiple
computers interconnected over a network. Given the
complexity involved, ensuring an adequate level of
performance in this environment requires a systematic
approach. There are many factors that may impact the
overall performance and scalability of the system.
Examples of these performance and scalability factors
include application design decisions, efficiency of user-
written application code, system topology, database
configuration and tuning, disk and network input/output
(I/O) activity, Operating System (OS) configuration, and
application server resource throttling knobs.

The first and foremost element an application implementer
needs to keep in mind to achieve the desired level of
performance is ensuring that the application architecture
follows solid design principles. A poorly designed
application, in addition to being the source of many
performance-related issues, will be difficult to maintain.
This compounds the problem, as resolving performance

issues will often require that some code be re-structured
and sometimes even partially re-written.

Once an enterprise application is ready for deployment, it
is critical to establish a performance test environment that
mimics production. This environment is then used to
identify and remove performance and scalability barriers,
using an iterative, data-driven, and top-down
methodology.

A key consideration in the performance analysis process is
selecting the workload. A good workload exhibits three
fundamental attributes.

• First, the workload must be representative. It must
provide adequate functional coverage, realistic
implementation and usage patterns, and it must be
relevant to the goal. The best workload is a
controlled baseline of the application under study,
configured as close as possible to production. It is
highly desirable to fully populate the back-end
database with realistic data in order to uncover data
access bottlenecks, a common source of performance
problems.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 35

• Second, the workload must be measurable. It must
have well-defined metrics and must exhibit a stable
measurement period over which to gather
performance statistics. Performance metrics for
enterprise applications are usually defined in terms of
throughput (number of operations per unit of time)
and response time (amount of time that it takes to
process individual transactions). Another commonly
used metric is the number of simultaneous requests
applied to the workload. This is often referred to as
the injection rate. In many cases the total number of
concurrent users achieves the same purpose.

Baseline

Collect
Data

Identify
Bottlenecks

Identify
Alternatives

Apply
Solution

Test

!

!

!!

!

Figure 3: The iterative, data-driven, top-down process
for performance tuning and optimizations

• Third, the workload must be repeatable. It needs to
be consistent across tests, in order to be able to
perform reliable data analyses and draw meaningful
conclusions. In addition, the workload state needs to
be the same at the start of each run. For example, if
the workload adds data to the database, the database
needs to be reinstated to the original state to avoid
progressive performance degradation over successive
runs. Variations in the primary metrics should not
exceed a 5% margin across measurements.

Prior to engaging in performance tuning, it is important to
establish a baseline to provide the basis for measuring
performance improvements as the tuning process
progresses. The baseline should be configured based on
the estimated capacity needed to sustain the desired load,
including network bandwidth and topology, processor
memory sizes, disk capacity and physical database layout.
In addition, the baseline configuration should incorporate
basic initial configuration recommendations given by the
application server, database server, JVM, and hardware
platform vendors. These include: recommended tunable
parameter settings, choice of database connectivity

(JDBC) drivers, and the appropriate level of product
versions, service packs, and patches.

Part of the baselining process also includes defining
performance goals for the system. Performance goals are
usually defined in terms of desired throughput within
certain response time constraints: for example, the system
needs to be able to process 500 operations per second
with 90% or more of the operations taking less than one
second.

The steps in the iterative process, as illustrated in Figure
3, are as follows:

• Collect data: Use stress tests and performance-
monitoring tools to capture performance data as the
system is exercised.

• Identify bottlenecks: Analyze the collected data to
identify performance bottlenecks.

• Identify alternatives: Identify, explore, and select
alternatives to address the bottlenecks.

• Apply solution: Apply the proposed solution.

• Test: Evaluate the performance effect of the
corresponding action.

Once a given bottleneck is addressed, additional
bottlenecks may appear, so the process starts over again:
performance data is collected and the cycle is initiated
again, until the desired level of performance is attained.
Two very important points to keep in mind during this
process are first, let the available data drive performance
improvement actions, and second, make sure only one
performance improvement action is applied at a time.

Figure 4: BEA WebLogic JRockit management

console

As the quantity and variety of collected data can be
overwhelming, and the bottlenecks can often come from

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 36

many interrelated sources, it is important to follow a top-
down approach. At the top are system-level items such as
disk subsystem configuration, network devices, and
database configuration; in the middle are application-level
items such as transaction configuration, persistence
strategies, and JDBC drivers; and at the bottom are
machine-level items such as JVM configuration, multi-
processor configurations, and processor caches. The
iterative process described above needs to be applied at
each level of this hierarchy.

Having the right set of tools available is essential for
supporting productive performance tuning activities.
Performance tools fall under the following categories:

• Stress test tools. These provide the ability to script
application scenarios and play them back, thereby
simulating a large number of users stressing the
application. Commercial examples of these types of
tools are Mercury Interactive’s LoadRunner∗ [12] and
RADView’s WebLoad∗ [13]; open-source examples
include the Grinder∗ [14], Apache’s JMeter∗ [15], and
OpenSTA∗ [16].

• System monitoring tools. Use these to collect system-
level resource utilization statistics such as CPU
utilization (e.g., % processor time), disk I/O (e.g., %
disk time, read/write queue lengths, I/O rates,
latencies), network I/O (e.g., I/O rates, latencies).
Examples of these tools are the Performance System
Monitor from Microsoft’s Management Console
(known as perfmon∗), and “sar/iostat” in the Linux
environment.

• Application server monitoring tools. These tools
gather and display key application server performance
statistics such as queue depths, utilization of thread
pools, and database connection pools. Examples of
these tools include BEA’s WebLogic∗ Console and
IBM’s WebSphere∗ Tivoli Performance Viewer.

• Database monitoring tools. These tools collect
database performance metrics including cache hit
ratio, disk operation characteristics (e.g., sorts rates,
table scan rates), SQL response times, and database
table activity. Examples of these tools include
Oracle’s 9i Performance Manager and the DB/2
Database System Monitor.

• Application profilers. These provide the ability to
identify application-level hotspots and drill down to
the code-level. Examples of these tools include the

∗ Other brands and names are the property of their
respective owners.

Intel VTune Performance Analyzer [17], Borland’s
Optimizeit∗ Suite [18], and Sitraka’s JProbe∗ [19]. A
new class of application response time profilers is
emerging that is based on relatively modest intrusion
levels, by using bytecode instrumentation. Examples
of these include the Intel VTune Enterprise Analyzer
[20] and Precise Software Solutions Precise/Indepth∗
for J2EE [21].

• JVM monitoring tools. Some JVMs provide the
ability to monitor and report on key JVM utilization
statistics such as Garbage Collection (GC) cycles and
compilation/code optimization events. Examples of
these tools include the “verbosegc” option, available
in most JVMs, and the BEA WebLogic JRockit∗ [22]
Console, depicted in Figure 4.

An important issue to keep in mind when using the above
tools is that the measurement techniques employed
introduce a certain level of intrusion into the system. In
some cases, the intrusion level is so great that the
application characteristics are altered to the extent that
they make the measurements meaningless (i.e.,
Heisenberg problem). For example, tools that capture and
build dynamic call graphs can have an impact of one or
more orders of magnitude on application performance
(i.e., 10-100X). The recommended approach is to only
activate the appropriate set of tools based on the level the
data analysis is focused on at the time. For example, for
system-level tuning, it only makes sense to engage system
monitoring tools, whereas application-level tuning may
require the use of an application profiler.

Additional application tuning methodology information
can be reviewed in [23].

SYSTEM-LEVEL PERFORMANCE
It is possible to identify two broad classes into which
software can be bucketed, batch processing and interactive
processing. For the former, the raw throughput, the
amount of work done in a period of time, is the only real
metric of interest. The time spent on any specific unit of
work is not a significant consideration. For the latter class
of software, the response time, the time taken for each unit
of work, is very important, and in some cases it may be of
higher importance than the throughput.

Architecting the system and application for good
performance goes a long way towards making the rest of
the performance optimization methodology more efficient.
It is important to understand the type of the application

Intel VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 37

(batch or interactive) and to identify system hardware and
software components that meet that goal [24].

Any system can be visualized as a network of components
with transactions passing through them. In enterprise Java
applications, such components could be viewed as
hardware, software, or a combination of the two. For
example, the network or disk sub-system is a hardware
component, the application software is a software
component, and the database server is a combination of
hardware and software. Viewing the whole system as a
network of components is useful in understanding the
capacity requirements of system components.

Multi-processing, the capability of a system component to
work on more than one request at the same time, plays a
big role in the performance of most components. Two
methods of multi-processing are pipelining and
parallelism.

Pipelining is the concept of breaking down the required
work into many parts. While one section of the
component is working on one part of one transaction,
other sections of the component can be working on other
parts of other transactions, thereby maximizing use of
system components. Pipelining is extensively used to
increase throughput, but its effect on the time taken for an
individual transaction is not a primary consideration.

Parallelism throws multiple resources at a task so that the
task completes faster. Its primary effect is to reduce
response time. Multi-threaded code is a way to achieve
this in software. Hardware examples would include
mirrored disks and multiple network cards.

Block diagrams that show the work-flow and identify the
network of queues and parallel entities are very useful
here. They are especially valuable in ensuring that
sufficient capacity is designed into the system to meet the
desired throughput and response time goals. Most
systems typically use both multi-processing approaches.

Theoretically, the only system with no performance
bottleneck is designed such that every component of the
system exhibits the same performance behavior and has
identical capacity. In practical terms, every system has a
performance bottleneck.

At the system level, the goal is to ensure that the
bottleneck is in the application code over which the
developer has direct control, so that changes can be made
that directly improve performance. If the bottleneck was
elsewhere in the system, then even large-scale
performance improvements in the developer's code may
have only a slight effect on measured system performance.

Drawing a throughput curve can be very valuable in
understanding system-level bottlenecks and helping
identify potential solutions. Figure 5 shows a conceptual

diagram of a throughput curve, which plots system
throughput, response time, and application server CPU
utilization as functions of the injection rate, i.e., the rate of
requests applied to the system.

“Production”
operational zone

Re
sp

on
se

 T
im

e/
Th

ro
ug

hp
ut

/%
C

PU

Injection Rate

CPU Saturation
Max Throughput

Unacceptable RT

Figure 5: A conceptual throughput curve, which plots

system throughput, response time and application
server CPU utilization as functions of the injection
rate, i.e., the rate of requests applied to the system

Through system-level tuning, the main goal should be to
saturate the application server CPU (i.e., 90-100%
utilization). Reaching maximum throughput without full
saturation of the CPU is an indicator of a performance
bottleneck such as I/O contention, over-synchronization,
or incorrect thread pool configuration. Hitting a high
response time metric with an injection rate well below
CPU saturation indicates latency issues such as excessive
disk I/O or improper database configuration.

Reaching application server CPU saturation indicates that
there are no system-level bottlenecks outside of the
application server. The throughput measured at this level
would point out the maximum capacity the system has
within the current application implementation and system
configuration parameters. Further tuning may involve
tweaking the application to address specific hotspots,
adjusting garbage collection parameters, or adding
application server nodes to a cluster.

Keep in mind that reaching CPU saturation is a goal for
the performance tuning process, not an operational goal.
An operational CPU utilization goal would be that there is
sufficient capacity available to address usage surges.

Knowing the workload well is an important factor in the
identification of the required capacity of many
components. Some preliminary measurements and
characterization can help. For instance, identifying the
network bandwidth required for one unit of work will be

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 38

very useful in estimating the network capacity required
when the desired system performance is N units of work.

Most components exhibit an exponential response
time/throughput behavior. In other words, increasing the
throughput will tend to increase the response time, and the
higher the throughput, the faster the increase in response
time. It is important to size these components such that
the required throughput utilization for the component is
relatively low to allow for the response time to be
relatively small as well. This is especially important for
network capacity, disk capacity, and the capacity of the
data bus connecting processors to memory and I/O.

If the response time is an important aspect of the
application, then low resource utilizations are particularly
necessary; otherwise, higher utilizations will be
acceptable. The precise thresholds that mark a utilization
level as having hit a bottleneck depend on a variety of
factors, and they are best identified through targeted
experiments with test workloads.

System monitoring tools can be used to track system
performance metrics, which can help find bottlenecks. In
a multi-tiered system set-up where multiple computers are
used, it is important to run these tools on all of the
computers.

Key performance events that should be monitored include
processor utilization, time spent in the kernel, interrupts,
number of calls to the kernel (system calls), page faults,
disk I/O, and network usage.

A key component of enterprise applications is a back-end
relational database, as it provides essential persistence
services, data retrieval capabilities for downstream
systems, as well as support for querying and reporting
applications. The back-end relational database is often a
source of performance bottlenecks, because it manages
large volumes of high latency disk I/O operations. It is,
therefore, extremely important to pay special attention to
the physical design and tuning of the database, to ensure
acceptable levels of performance. Fundamental
considerations include isolating log files to dedicated
devices to reduce conflicts between the sequential nature
of log operations and random access to data tables;
adequately sizing the sort area memory size to minimize
disk sort operations; allocating sufficient database cache
memory (but avoiding swapping); carefully defining
indexes such as indexing frequently used, highly selective
keys, indexing foreign keys frequently used in joins, using
full-text retrieval keys where appropriate; and using disk
striping (e.g., RAID 1+0) to spread I/O operations and to
avoid device contention.

Case Study 1: Database Tuning
The scenario described here was a performance issue
related to database disk I/O, which is a common source of
bottlenecks. In this case study, the system failed
response-time requirements. Although throughput could
be increased, response time increased as well. Also, the
CPU was not fully utilized on the application server at
maximum throughput and within response-time
constraints. The supporting data included a high % disk
time and long disk queues, high latencies (as seen in
seconds per transfer), heavy log write activity, and
excessive I/Os at some physical disks. The database used
was Oracle, and Oracle statistics were helpful in
pinpointing the source of the problem. In this case study,
the data pointed to disk contention associated with the
database log write operations. The solution was to isolate
log files to dedicated devices to remove the perturbation
of log write operations on other database activities, and to
strip the log device to spread the I/O over multiple disks
and reduce the associated latencies.

APPLICATION-LEVEL PERFORMANCE
Application design is one of the most important
considerations for good performance. A well designed
application will not only avoid many performance pitfalls
from the start, but will be easier to maintain and modify
during the performance testing phase of the development
life-cycle.

Many J2EE application development best practices are
well documented in design patterns [25] [26]. Design
patterns provide a starting point for application design
approaches that capture commonly encountered
application functional requirements and usage scenarios.
Several design patterns have positive performance
implications, in addition to the associated maintainability
and modularity benefits.

The following design patterns should be considered due to
the clear performance advantages they provide:

• Composite Entity. This pattern provides mechanisms
to implement coarse-grained entity beans that manage
a set of subordinate persistent objects. It is used to
limit the proliferation of entity beans and reduce the
number of fine-grained remote calls.

• Value Object. This pattern assembles data requests
into aggregated data objects to reduce remote calls to
individual field get methods. It reduces the number
of fine-grained remote calls and allows the transfer of
more data with fewer remote calls.

• Session Façades. This pattern encapsulates business
logic and data access using well-defined, coarse-
grained, service-level interfaces to clients. It

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 39

eliminates the need for clients to access fine-grained
business and data objects, thus reducing the number
of remote calls. It is often used in combination with
the Value Object pattern.

• Service Locator. This pattern encapsulates access to
directory access through JNDI and provides caching
of retrieved initial contexts and factory objects (e.g.,
EJB Homes). It reduces expensive accesses to JNDI
by implementing caching strategies.

• Value List Handler. This pattern encapsulates access
and traversal of database-generated lists of items. It
improves performance by providing low-overhead list
population mechanisms and implementing caching
strategies.

In addition to design patterns, there are a number of
programming practices that reduce performance
bottlenecks, such as the following:

• Enterprise JavaBeans* (EJB*) homes and data sources
should be cached to avoid repeated JNDI lookup of
EJB objects and data source objects.

• Use of HTTP sessions should be minimized and used
only for state that cannot realistically be kept on the
client.

• Java Server Pages (JSP*) create HTTP sessions by
default. This should be overridden (i.e.,
session=“false”) when not needed, to prevent
inefficient use of session resources.

• Database connections should be released when not
needed as unreleased connections result in resource
leakage problems.

• Unused stateful session beans should be removed
explicitly, and appropriate idle timeout seconds
should be set to control stateful bean life cycle to
conserve scarce resources.

A strategy frequently used to improve the responsiveness
and scalability of enterprise applications involves the use
of asynchronous messaging, either through the use of
message-driven beans or via JMS directly. Asynchronous
messaging can be used to implement high latency business
operations that do not require instantaneous processing,
such as order requests or document submissions, thus
increasing the responsiveness of the system [27].
Messaging can also be used to break down complex
business operations in message processing pipelines,
which can be parallelized by instantiating multiple
message queue consumers. This enhances the scalability
of the system by enabling multi-threading with minimal
data sharing requirements.

While good practices are a good starting point for a high-
performance system, they alone are not sufficient. The
workload itself still plays an important factor in
performance and it may demand a specific optimal
application server configuration. Many parameters can be
tuned to optimize for both response times and throughput,
as reducing response time can often help increase the
capacity for a further increase in throughput. However,
when the response times are broken into sub-components,
it is necessary to further tune the system so that the
response times of key sub-components are optimized too.

Many of these tunable parameters are easily accessible
from common application servers such as the BEA
WebLogic server. The lists of parameters presented here
to help improve performance are not exhaustive. They are
merely good starting points to tune the performance for
your enterprise Java applications. The list includes tuning
key application server parameters and tuning key
container parameters.

Tuning Key Application Server Parameters
Many application server parameters can be tuned to
enable better sharing and interaction with virtual machines
and operating systems. The following parameters should
be considered for most applications.

• Platform-optimized socket multiplexers should be
used to improve server performance for I/O
scalability, because they overcome performance
limitations of the blocking nature of Java I/O APIs
prior to version 1.4. For example, when a
performance pack is available from a vendor, it
should be used.

• A thread pool size should be gradually increased until
performance peaks. However, one should not make
the number too big as a higher number may degrade
performance. The optimal number is likely
dependent on the workload and the performance
metrics.

• An application server may support the notion of
multiple queues for transactions, e.g., by allowing the
application developer to choose different values of
thread pool sizes for those queues. One may find a
specific distribution of execute threads to optimize for
a specific workload. This is particularly important
when certain transactions have tight response-time
limits, and more threads for those transactions can be
allocated accordingly. The support of multiple
queues has an advantage over a single queue
mechanism for shifting long response-time
transactions to less critical areas.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 40

• The database connection pool should be set equal to
the number of available execute threads so that an
execute thread does not need to wait for a connection.

• Experimenting with a JDBC prepared statement cache
may yield a configuration that minimizes the need for
parsing statements on the database. The value should
be gradually increased until performance peaks.

Tuning Key Container Parameters
Many container parameters can be tuned to deploy an
application more effectively to an application server. The
following parameters should be considered for most
applications.

• Setting appropriate session timeouts for the interval
of time after which the HTTP session expires and for
the idle timeout seconds to control stateful bean life
cycle helps performance by making more efficient use
of memory and other application server resources.

• Setting a good value for the initial bean pool size
improves the initial response time for EJBs as they
are pre-allocated upon application server startup.

• Setting optimal value for bean cache size will not let
the server passivate beans too often, thus increasing
performance by reducing file I/O activity.

• The least restrictive but valid transaction isolation
level should be applied to specific EJB methods for
good performance.

• Using call by reference when applicable increases the
performance of method invocation.

• Configuring JSP fragment or full-page caching with
appropriate, application-dependent timeout values to
reduce dynamic page generation and database access
requests.

Figure 6, Case Study 2: Before application tuning. The
middle chart for “Queue Length” contained values as

high as 231. The queue build-up suggested that
perhaps there were not enough threads to do work.

Case Study 2: Application Tuning
As an illustration of tuning application server parameters,
a workload was studied using the BEA WebLogic server
console. Before any tuning was applied, it was observed
that while the maximum throughput was reached, the
response time increased heavily with the load on the
system but the processors were not fully utilized. The
execute queue size was 15 while the average CPU
utilization was about 70%. Using the console (see Figure
6) provided by the vendor, a high number of waiting
requests was found. A considerable queue build-up was
seen by the middle chart for “Queue Length.” After the
disk and network I/O bottlenecks were ruled out, it was
decided to increase the execute queue size and see if the
performance improves. At the execute queue size of 35,
average CPU utilization reached 95% and the throughput
could be increased by 40%. Figure 7 shows the
performance of the system through the console. The
queue build-up problem was much reduced as a result of
the tuning effort.

Figure 7, Case Study 2: After application tuning. The

middle chart for “Queue Length” contained values
mostly close to zero. The lack of queue build-up

suggested that adequate threads were allocated to do
work.

MACHINE-LEVEL PERFORMANCE
For applications developed using static environments such
as C or C++, machine-level performance involves tuning
the code for the hardware through recompilation, which
complicates enterprise application deployment. With Java
though, there is an additional layer – the virtual machine.
This is significant for two reasons. The Java Virtual
Machine (JVM) allows the application to take quick and
effective advantage of new processor features since this
involves only the deployment of a new JVM version and
not an expensive rebuild of the entire application code.

Second, multiple versions of the application are not
required to get best performance from differences in the
platform such as available memory or cache. Such aspects

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 41

of the hardware are abstracted away by the JVM, and the
very same version of application code can get optimal
performance on the different platforms through JVM
configuration tunables.

JVM-Level Performance
Selecting the correct JVM is critical. It is essential to use
a JVM that has been optimized for the underlying
hardware of choice. The best optimizations for various
processor platforms are known [28] [29], and a Java
application needs to rely on the JVM to harness these
optimizations. It is also desirable that the JVM provide a
rich set of configuration tunables that can be adjusted for
peak performance. A JVM that can tune itself for good
performance is an asset, since it simplifies deployment on
a variety of platforms using the same architecture.

There are three JVM functions of interest to us: memory
management, code generation, and thread management.

Memory Management
Memory management includes object allocation, heap
management, and garbage collection. Modern JVMs use a
variety of algorithms for these; some incorporate several
algorithms for each and allow the user to select the desired
one. The correct choice of algorithm is important since
there are fairly significant performance differences
between them. However, different techniques work better
for different applications.

There are two aspects to object allocation: the
management of the heap to identify the space where the
object should be allocated and the preparation of the space
for object allocation. The latter principally involves
clearing the space by writing zeroes to it.

In a multi-processor system, the heap is shared across the
processors, and obtaining space for allocation has to be a
synchronized operation to ensure that no other processor
is allocating an object to the same space. All
synchronization is necessarily expensive, but it is
especially so if the synchronized primitive is contended.
A solution used by several JVMs is to allocate segments
of the heap that are local to each thread, and these
segments are called thread local areas (TLAs).

There are several choices for clearing space required for
objects. One technique is to clear the whole TLA when it
is allocated. This has the disadvantage of slowing down
the object allocation that triggered the creation of a new
TLA, but has the advantage that all subsequent objects
created in that TLA will be able to allocate faster, since
the space is already cleared. It also has the advantage of
improving cache performance, since the clearing of the
space serves as a prefetch from memory into the processor
caches.

A second technique is to prepare the TLAs by clearing
them during garbage collection (GC). It worsens the
impact of GC, but all object allocation is now uniform.
Finally, a third technique is to clear the space required for
each object in the TLA just before allocation. This has
the advantage that the object allocations are more
uniform, and that neither GC nor TLA allocations take
longer.

BEA JRockit, for instance, offers all three options as
“cleartype:local,” “cleartype:global” and “cleartype:gc.”

The correct technique to use depends on the application.
For instance, if the application puts a lot of pressure on
the data bus to memory (FSB or front-side bus), then the
improved cache performance of the first technique could
be valuable. If uniform response time is a concern, then
the third technique may be the correct choice.

There are similarly several approaches used in GC. Key
aspects to consider are whether the heap should be
arranged in generations and whether a significant part of
GC should run concurrent with the application. It is
imperative for performance that most if not all of the GC
be multi-threaded. When the heap is arranged in
generations, most of the GC cycles collect garbage only in
the smaller nurseries, and this method is therefore not as
intrusive to application performance. However, garbage
is collected more frequently. Generations are effective
when many objects die young, because then the GC in the
small nurseries is particularly efficient. On the other
hand, when GC is run concurrent with the application, the
effect of each GC cycle is reduced, at the cost of a more
frequent gradual impact.

Code Generation
There are two main approaches to code generation:
interpreting and compiling (with a Just-in-Time (JIT)
compiler). An interpreter translates each new bytecode to
machine code just before execution; a compiler translates
a whole segment of code (the whole application, a class, a
set of classes, a set of methods, even a single method) into
machine code before use.

Code compilation takes time and happens during
application runtime, and the time taken to generate the
code can have an impact on performance. However, the
quality of code produced by the JIT is significantly
superior to interpreted code, and the performance benefits
of the better code should far outweigh the negative effect
of compile time [30].

However, the time spent in the JIT is still an issue, and the
JIT cannot therefore include all of the optimizations that a
C/C++ compiler could include. This results in code that is
inferior to what could have been produced if compile time
was not an issue.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 42

The solution to this is for the JVM to incorporate levels of
optimizations in the JIT [31]. In other words, some
portions of the application are compiled to very high
quality code, whereas the remaining portions of the
application are compiled quickly to lower performing
code. If the portions of the application that are most used
are compiled well, this will result in the whole application
performing almost as well as if the whole application had
been compiled thus, and it will not suffer the performance
loss due to long compile times.

Many enterprise-class Java applications tend to have a
large number of small methods. SPECjAppServer2002
[32], for example, has over 10,000 methods. Many
compiler optimizations have a more significant impact on
performance if they can operate on a larger block of code,
which is impeded by the small methods. A good JIT
should possess an excellent inliner to overcome this.
Inlining of code during compilation is made more difficult
by the large number of virtual calls in enterprise Java
applications. The JIT must include approaches to de-
virtualizing these calls [33].

Thread Management
A JVM either uses the threading package provided by the
operating system (native threads) or it can use its own
threading package and map several threads onto each
kernel thread (thin threads). If the application suffers a lot
from context switches, then the cost of that can be reduced
by using thin threads. Similarly, if there is a pool of
threads that operate on the same data, then cache
performance can be enhanced by tying all the threads onto
a single kernel thread. This will result in all of these
threads tending to run on the same processor and
benefiting from the shared data.

How a JVM handles synchronization plays an extremely
important role in performance. The best way to handle a
lock is to avoid locks all together, and it is good for the
application developer to avoid unnecessary synchronized
methods and blocks of code. In the event that such
unnecessary synchronized code does exist, JVMs can
possess techniques to detect them and eliminate the locks.

JVMs handle contended and uncontended locks
differently, optimizing such that the uncontended lock
operations go faster. The choices the JVM makes as to
how it handles uncontended (thin) and contended (fat)
locks, when it will promote a lock from thin to fat and
when it will deflate a fat lock to a thin, and whether it will
spin on a contended lock or switch over to another task
can all impact performance [34].

JVM Configuration
Due to the range of choices that can be made by the JVM,
a JVM can provide configuration parameters to the users

to let them identify which techniques the JVM should use
for optimal performance of their application.

The more important of these parameters are all in the area
of heap management, ranging from the selection of the GC
algorithm and the specification of heap sizes, to the
specifics of TLA sizes and when the space for an object is
cleared. It is usually preferable to set the minimum and
maximum heap sizes to be the same. The selected heap
size can have a profound effect on performance.

0
2
4
6
8

10

0 1000 2000

Heap Size in Kilobytes

Re
sp

on
se

 T
im

e
in

se

co
nd

s Type A
Transaction
Type B
Transaction

Figure 8: A variation in transaction response time for
two types of transactions by changing the maximum

virtual machine heap size in a typical application

The code generation can also be accessed through
parameters that can decide the initial code quality and how
frequently the JVM checks to see whether better code
generation is warranted for a section of code, and so on.

While rules-of-thumb can be created and experience can
be a guide, there is no real substitute for running a variety
of experiments to identify the JVM parameters that work
best for a given application.

An analogy can be made between the transmission
systems in a car and JVM performance. In most cases, an
automatic transmission performs adequately. For high-
performance requirements such as auto-racing, however, a
manual transmission works better, since, in the hands of a
good driver, better performance can be had from a manual
transmission. Similarly, while a good JVM will provide
excellent performance as it is, appropriate selection of
configuration parameters can result in even better
performance.

Case Study 3–JVM Tuning
As stated earlier, heap size configuration can have a
dramatic performance impact. Figure 8 shows the
variation in transaction response time for two types of
transactions in a typical enterprise Java application. By
increasing the heap size in this experiment, we observed a
two to four times improvement in response time,
depending on the type of transaction.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 43

Hardware-Level Performance
There are several hardware aspects that affect
performance, including processor frequency, cache sizes,
Front Side Bus (FSB) capacity, and memory speed [35].
In general we would like to get the best-possible
performance on a single processor, then scale that
performance across multiple processors in the box, and if
more performance is desired, scale the performance out of
the box by using clustering.

It is important to ensure that the settings for the BIOS and
the populating of the memory sub-system follow
prescribed norms. For example, a platform with 4
gigabytes of memory may perform better with four 1-
gigabyte memory cards rather than with one 4-gigabyte
memory card. Reading and following the system
documentation can pay dividends.

Processor performance is affected most by the processor
stalling, waiting on memory. The memory subsystem
comprising the FSB, the server chipset and the memory
cards, is typically an order of magnitude slower than the
processors, and so the penalty of accessing memory for
data and instruction is felt rather severely by the
processors. Keeping more of the code and data near the
processor, by using large caches, can alleviate this
problem significantly [36].

As an experiment, we measured the performance of a
typical enterprise Java application on a two-processor
Intel Xeon MP 2.0 GHz system with a 2 MB level-3
cache as well as on a two-processor Intel Xeon DP 2.2
GHz system without a level-3 cache. Both systems had
the same amount of memory, the same operating system
and application software, the same I/O connectivity, and
they both had processors that included a 512 KB level-2
cache. The main difference between the systems was that
one of them included an additional level of caching, a 2
MB level-3 cache. We found that having the large level-3
cache almost doubled the performance of the application.

Scaling to multiple processors in a box can be hurt by
resource sharing. When the resource is a hardware
resource such as the bus, larger caches can help. If larger
caches are not available, or do not help, investigation into
whether there is a significant impact on the bus due to data
shared between threads is called for. If there is, then
processor affinity could help.

If processor scaling is hurt due to software issues, it is
typically a problem related to synchronization. All efforts
must be made to identify the lock or locks that are the

Intel Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

bottleneck, and to remove them or at least reduce their
use.

0
1
2
3
4
5

1P 2P 4P

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 a

1-
pr

oc
es

so
r s

ys
te

m

Figure 9: Performance scaling with the number of

processors in a 1 GHz Itanium 2 system: performance
of a 4-processor system is four times higher than a

1-processor system

One way to identify whether the processor scaling is
affected by hardware or software is to measure the bus
utilization. If it is high, then it most likely is a hardware
resource bottleneck. Another experiment that is useful is
to run the system at two different frequencies. The
processor speed is now changed but not the bus or
memory speed. However, the time taken to handle
synchronization does scale with frequency. If now the
performance scales with frequency, then it would point to
a synchronization issue.

The Itanium processor family can display excellent
processor scaling. Figure 9 shows the performance
scaling with the number of processors for a 1 GHz Itanium
2 system when running a typical enterprise Java
application. The Itanium systems have large caches, a
large capacity front-side bus, and out-of-order memory
transfers, all of which enable high levels of processor
scaling.

Clustering is an excellent way to increase performance
when transactions share very little, frequently changed
data. If there are substantial amounts of shared modified
data, keeping the data coherent across the different
components of the cluster will be a significant endeavor
and have a big impact on performance.

It may also be possible to increase the performance within
the box through clustering, by deploying more than one
version of the code using multiple copies of the JVM.
This has the advantage that each version of the application
will run on its own copy of the JVM, with its own heap.

 Itanium is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 44

In some platforms there is a limit placed by the operating
system on heap size, and some applications do benefit
from larger heap sizes. By clustering within a box, this
performance benefit can be tapped.

CONCLUSION
This paper describes a top-down, data-driven, and closed-
loop approach to boost enterprise Java performance. The
opportunities to improve performance were examined
from the perspective of the whole system, including the
software/hardware stack at the system level, the software
applications, and at the machine level for both the virtual
machine and the physical hardware. The case studies
presented in this paper suggested that all layers–not just
one or two–of the system stack should be examined for
performance bottleneck identification and removal.

Workloads evolved over time and no single solution
works for all applications. While many good practices for
enterprise Java performance were described in this paper,
it is important to recognize that the performance
characteristics of enterprise Java applications will change
over time. The data-driven approach described in this
paper should be able to adapt to the expected workload
changes over time.

In the future, application servers and virtual machines may
work hand-in-hand with the underlying hardware and self-
tune for performance by using techniques such as dynamic
feedback optimization and perhaps deriving data from
some hardware performance counters. When the time
comes, the approach described here may be suitable for
integration into that infrastructure. Until then, our
approach will help to enhance the performance of your
current systems.

ACKNOWLEDGMENTS
The authors thank the members of Intel’s MRTE group for
performance data collection and analysis.

REFERENCES

[1] Ken Arnold, James Gosling, David Holmes, “The
JavaTM Programming Language Third Edition,” 2000,
Sun Microsystems, Inc.

[2] Java Community Process, “JavaTM 2 Platform,
Enterprise Edition 1.3 Specification,”
http://jcp.org/aboutJava/communityprocess/final/jsr05
8/

[3] Kevin McIsaac, “J2EE Paves the Way to Software
Infrastructure,” Meta Group, August 2002.

[4] BEA Systems Inc., “BEA WebLogic Server,”
http://www.bea.com/products/weblogic/server/index.s
html

[5] IBM Corporation, “WebSphere Application Server,”
http://www.ibm.com/software/webservers/appserv/wa
s/

[6] Oracle Corporation, “Oracle9i Application Server,”
http://www.oracle.com/ip/deploy/ias/

[7] JBoss Group, “JBoss, ” http://www.jboss.org/

[8] ObjectWeb Consortium, “Java Open Source J2EE
Application Server (JOnAS),”
http://www.objectweb.org/jonas/

[9] Jim Farley, William Crawford, David Flanagan, Java
Enterprise in a Nutshell, April 2002, O’Reilly &
Associates, Sebastopol, CA.

[10] Richard Monson-Haefel, Enterprise JavaBeans,
September 2001, O’Reilly & Associates, Sebastopol,
CA.

[11] Michael Girdley, Rob Woollen, Sandra L. Emerson,
J2EE Applications and BEA WebLogic Server,
August 2001, Prentice Hall PTR, Upper Saddle
River, NJ.

[12] Mercury Interactive Corporation, “LoadRunner,”
http://www-
heva.mercuryinteractive.com/products/loadrunner/

[13] RadView Software Ltd, “WebLoad,”
http://www.radview.com

[14] Paco Gómez, et al, “The Grinder,”
http://grinder.sourceforge.net/

[15] Apache Software Foundation, “Jmeter,”
http://jakarta.apache.org/jmeter/

[16] Various authors, “Open System Testing Architecture
(OpenSTA),” http://www.opensta.org/

[17] Intel Corporation, “VTuneTM Performance Analyzer,”
http://www.intel.com/software/products/vtune/vtune6
1/

[18] Borland Software Corporation, “Optimizeit Suite,”
http://www.borland.com/optimizeit/index.html

[19] Sitraka, Inc., “JProbe,”
http://www.sitraka.com/software/jprobe/

[20] Intel Corporation, “VTuneTM Enterprise Analyzer,
Java Edition,”
http://www.intel.com/software/products/vtune/vte_jav
a10/

http://jcp.org/aboutJava/communityprocess/final/jsr058/
http://www.bea.com/products/weblogic/server/index.shtml
http://www.ibm.com/software/webservers/appserv/was/
http://www.oracle.com/ip/deploy/ias/
http://www.jboss.org/
http://www.objectweb.org/jonas/
http://www-heva.mercuryinteractive.com/products/loadrunner/
http://www.radview.com
http://grinder.sourceforge.net/
http://jakarta.apache.org/jmeter/
http://www.opensta.org/
http://www.intel.com/software/products/vtune/vtune61/
http://www.borland.com/optimizeit/index.html
http://www.sitraka.com/software/jprobe/
http://www.intel.com/software/products/vtune/vte_java10/

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 45

[21] Precise Software Solutions, Inc., “Indepth/J2EE,”
http://www.precise.com/Products/Indepth/J2EE/

[22] BEA Systems, Inc., “BEA WebLogic JRockit 8.0
(Beta) for Windows and Linux User Guide,” http://e-
docs.bea.com/wljrockit/docs80/index.html

[23] Intel Corporation, “Performance Methodology,
Terminology and Concepts,”
http://cedar.intel.com/media/training/perf_meth/tutori
al/

[24] Raj Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation and Modeling, 1990, John
Wiley & Sons, Hoboken, NJ.

[25] Deepak Alur, John Crupi, Dan Malks, “Core J2EE
patterns: best practices and design strategies,” 2001,
Prentice Hall PTR, Upper Saddle River, NJ.

[26] Floyd Marinescu, EJB Design Patterns, 2002, John
Wiley & Sons, Hoboken, NJ.

[27] Alejandro Buchmann, Samuel Kounev, “Improving
Data Access of J2EE Applications by Exploiting
Asynchronous Messaging and Caching Services,” in
proceedings of the 28th VLDB Conference, Hong
Kong, China, 2002.

[28] Intel Corporation, “Intel Itanium 2 Processor
Reference Manual for Software Development and
Optimization,”
http://developer.intel.com/design/itanium2/manuals/

[29] Intel Corporation, “Intel Pentium 4 Processor
Optimization Reference Manual,”
http://developer.intel.com/design/pentium4/manuals/

[30] A. Adl-Tabatabai et al., “Fast Effective Code
Generation in a Just-in-Time Java Compiler,” in
proceedings of the ACM SIGPLAN’98 conference on
Programming Language Design and Implementation,
1998.

[31] M. Arnold, et. al., “Adaptive Optimization in the
Jalapeno JVM,” ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 2000), Minnesota,
October 15-19, 2000.

[32] Standard Performance Evaluation Corporation,
“SPECjAppServer2002,”
http://www.spec.org/jAppServer2002/index.html

[33] O. Waddell and R. K. Dybvig, "Fast and Effective
Procedure Inlining," in proceedings of the 1997 Static
Analysis Symposium (SAS '97), Sept. 1997, pp. 35-52.

Springer-Verlag Lecture Notes in Computer Science
vol. 1302.

[34] R. Dimpsey, et. al., “Java Server Performance: A case
of building efficient, scalable JVMs,” IBM Systems
Journal, vol. 39, no. 1, pp. 151-174, 2000.

[35] David A. Patterson, John L. Hennessy, “Computer
Organization and Design: The Hardware/Software
interface,” 1997, Morgan Kaufmann Publishers.

[36] C.A. Hsieh, M.T. Conte, T.L. Johnson, J.C.
Gyllenhaal, and W.W. Hwu, “A Study of the Cache
and Branch Performance Issues with Running Java on
Current Hardware Platforms,” in proceedings IEEE
Compcon '97, pp. 211-216, 1997.

AUTHORS’ BIOGRAPHIES
Kingsum Chow is a Senior Performance Engineer
working with the Managed Runtime Environments group
within the Software and Solutions Group (SSG). Kingsum
has been involved in performance modeling and
optimization of middleware application server stacks, with
emphasis on J2EE and Java Virtual Machines. He has
published 20 technical papers and presentations. He
received his Ph.D. degree in Computer Science and
Engineering from the University of Washington in 1996.
His e-mail is kingsum.chow@intel.com.

Ricardo Morin is a Staff Architect working with the
Managed Runtime Environments group within the SSG.
Ricardo leads performance optimization activities for
J2EE and JVM implementations. He has extensive
experience architecting, developing, and deploying
enterprise information systems. Ricardo is a Sun Certified
Architect for J2EE. He received his Electronic
Engineering (Cum Laude) degree from Simón Bolívar
University, Caracas, Venezuela in 1980. His e-mail is
ricardo.a.morin@intel.com.

Kumar Shiv is a Senior Performance Architect working
with the Managed Runtime Environments group within the
SSG. Kumar leads the team focusing on JVM and system
performance optimization for the Itanium Processor
Family and earlier lead the team working on the Intel
Xeon technology. He received his Ph.D. degree in
Computer Engineering from University of Missouri in
1991, and has been a performance architect on several
hardware and software projects for more than a decade.
His e-mail is kumar.shiv@intel.com.

http://www.precise.com/Products/Indepth/J2EE/
http://e-docs.bea.com/wljrockit/docs80/index.html
http://cedar.intel.com/media/training/perf_meth/tutorial/
http://developer.intel.com/design/itanium2/manuals/
http://developer.intel.com/design/pentium4/manuals/
http://www.spec.org/jAppServer2002/index.html

Intel Technology Journal, Vol. 7, Issue 1, 2003

Enterprise Java Performance: Best Practices 46

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/sites/corporate/tradmarx.htm

Developing and Optimizing Web Applications on the ASP .NET Platform 47

 Developing and Optimizing Web Applications on
the ASP.NET Platform

George Vorobiov, Software and Solutions Group, Intel Corporation
Carl Dichter, Software and Solutions Group, Intel Corporation

John Benninghoff, Software and Solutions Group, Intel Corporation
Charlie Hewett, Software and Solutions Group, Intel Corporation

Index words: ASP.NET, CLR, performance, tuning

ABSTRACT
This paper discusses best practices in developing and
tuning the performance on Intel architecture of Web
applications based on the ASP.NET∗ platform. We
provide an overview of the ASP.NET platform and
discuss a number of optimizations that can be applied to
this class of applications based on our findings from
developing and characterizing an e-commerce workload.
We also want to disseminate our knowledge to the
industry on optimal software configuration and the use
of the rich feature set provided by ASP.NET and
Common Language Runtime (CLR).

Our major emphasis has been to characterize and
improve the performance of these applications. To do
this effectively the design of the application and
configuration of the infrastructure to host this software
application are discussed. The description of the
application shows the components participating in
request processing and response generation. We also
present the analysis of performance problems and
tradeoffs facing ASP.NET developers. Finally, we
discuss the evolution of the workload to include different
distributed computing scenarios using emerging
technologies such as Web Services and .NET Remoting∗ .

∗ Other brands and names are the property of their
respective owners.

INTRODUCTION
ASP.NET∗ is a new Microsoft Web development
platform, which is built on top of the Common Language
Runtime (CLR) platform, and it inherits many familiar
features of the ASP platform. Despite the similarities in
the naming and APIs exposed, these two
implementations do not have much in common in terms
of their underlying technology and performance
characteristics. While the ASP platform used an
interpreted scripting language and was limited in the way
it can interact with other components of the operating
system (OS), the new ASP.NET platform enables the use
of a variety of different programming languages, all of
which are compiled into Intermediate Language (IL) and
all of which can take advantage of all the features
provided by CLR and Windows .NET.

Some of the benefits of the new programming model are
given below.

• There is a true separation of the presentation logic
code and HTML scripting. Visual Studio .NET∗
facilitates this process by automatically creating a
code-behind class in a language of the developer’s
choice that can process events and dynamically
modify the page presentation, based on the current
application state.

• Session state management now supports both
efficient in-process session state handling and a
more scalable Microsoft SQL server-based solution
that allows sharing of the session state by a large
number of servers in a server farm scale-out
scenario.

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 48

• There is support for modular page design, using
extensible server-side controls, that enables
component-based programming models to easily
share functionality between multiple ASP.NET
pages.

• New and improved ADO .NET∗ data access APIs
provide both fast forward-only data retrieval
methods and a more advanced DataSet approach for
creating an offline view of the data that can be
accessed and modified independently and
synchronized with the database when needed.

• There are more opportunities for efficient caching
using both object cache and output caching features.

CLR is a new managed runtime platform by Microsoft
that is designed to increase programmer productivity by
providing a rich set of features such as automatic
garbage collection, built in support for multiple remote
procedure call (RPC) mechanisms, full compliance with
multiple XML standards, and a state-of-the-art object-
oriented programming framework. It also provides
easier deployment and administration support with code
verification and type safety checking, global assembly
cache (GAC) for shared libraries, and code versioning
support to eliminate the infamous “DLL Hell”1 problem.

ASP.NET applications also take advantage of
Microsoft’s new Internet Information Server (IIS)
processing model that was introduced in version 6. IIS
streamlines the Web request execution by using a new 2-
tier kernel mode listener/worker process model instead
of the former 3-tier model.

To characterize and optimize the new programming
platform, we developed an e-commerce workload
modelled after a small Web-based bookstore. This
workload is designed to exercise most of the major
features of ASP.NET and CLR. In this paper we discuss
the findings from our work on optimizing the
performance of this application using the standard Intel
methodology described in the optimization section.

We hope that the information in this paper will be useful
to developers who want to understand system and
software design issues, and their respective impact on
performance. It should also be of interest to those with a
current implementation in ASP or who want to weigh the
cost and benefits of moving forward with the latest
software technology from Microsoft.

1 DLL Hell is often used to refer to the problem with
deploying different versions of the same library that
leads to incorrect execution of the programs that depend
on it.

WORKLOAD DESCRIPTION
In order to successfully apply optimization techniques to
a given application it is necessary to understand the
design and performance characteristics of the system.
This section concentrates on describing the architecture
and configuration of the system as well as the hardware
profile.

Hardware Description
Our e-commerce workload can be functionally divided
into two distinct parts: emulated browsers, or EBs, and
the system under test, or SUT. Every EB emulates a
number of distinct users, each generating their own
unique HTTP traffic to the SUT. The SUT is the
collection of servers that makes up the e-commerce
solution that accepts these requests. Figure 1 depicts the
hardware layout.

Major components of the workload required to provide
the full implementation of the application and assist in
load generation include the following:

• Web/Application Server. This machine is running
IIS with the actual ASP.NET application containing
presentation, business logic, and data access
components.

• Database Server. This contains an application
database and a set of stored procedures to provide
optimized data access support.

• Image Server. This Web server, running IIS,
handles all the HTTP image requests from the
clients.

• Emulated Browsers. These run our custom load
generator tool to provide sufficient load on the
system for workload characterization and
performance problem identification purposes.

A typical Web request from an EB client is passed
through the switch and accepted by the Web/app server,
which parses the request and generates queries to the
Database (DB) server if necessary. After receiving the
response from the DB server, the Web/app server
generates its response to the EB client. The EB client
will then parse the response page and retrieve any
images from the image server. Based on the response
from the Web/app server and a few other conditions, the
EB will randomly generate its next Web request, and the
pattern repeats itself until the end of a run.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 49

System Under TestEmulated
Browsers

EB client

EB client

EB client

Switch
Web/App

Server

Image
Server

Disk Array

Database
Server

Machine Hardware Description
EB client PentiumIII 2 x 1.26 GHz Generates HTTP load to the SUT
Image Server PentiumIII Xeon 4 x 900 MHz Serves out images to the EB clients
Web/App Server Intel Xeon 4 x 2.0 GHz Processes HTTP requests from the EB clients
Database Server PentiumIII Xeon 8 x 900 MHz Processes SQL queries from the web/app server
Switch Extreme Networks Black Diamond Gigabit Ethernet switch
Disk Array EMC FC4700 Fiber Channel Storage RAID 0 data storage for all tables

Figure 1: Hardware deployment diagram and descriptions for the e-commerce test suite

System Software Description
The workload runs as a Web application in the instance
of the CLR platform (version 4322) hosted by the IIS
worker process (W3WP.EXE). All machines in the SUT
are running on Windows∗ Enterprise Server∗ version
3663. As seen in Figure 2 below, incoming request
processing starts at the kernel mode listener
(HTTP.SYS) and is then passed to the IIS worker
process running our application. There can be more than
one worker process if multiple Web applications are
running concurrently. CLR is loaded inside the worker
process, using the ISAPI extension mechanism common
to all Web application types under the IIS.

The ASP.NET application is controlled by the
web.config configuration file located in the application
directory. This file specifies multiple aspects of the
application runtime behavior, such as the type of session
state handling to use (in-process is the default, but an
SQL Server instance or a custom implementation can
also be specified), or the custom error processing page,
which provides a unified way of handling uncaught

∗ Other brands and names are the property of their
respective owners.

exceptions by displaying a more user-friendly message
instead of a standard stack trace. You can also specify a
different authentication mode, such as the use of the
Windows authentication mechanism or the Microsoft
Passport∗ service.

Since our workload is a managed application running on
top of CLR, it is also controlled by the CLR
machine.config file located in the config subdirectory of
the framework installation. This XML file contains
multiple settings for ASP.NET, such as the number of
the worker threads available to process application
requests and the size of the ASP.NET request queue.
Optimal values for these settings are discussed later.

IIS settings are common to all types of Web applications
and can be applied using the Web Administration
Service, as shown in Figure 2. You can configure
multiple application pools and assign different
applications to a given pool. Application pool settings
provide a set of configurable parameters to improve
ASP.NET application robustness and performance.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 50

Figure 2: System software configuration

Application Description
Our workload is designed to provide a representative yet
simple Web application, exercising most of the major
features of ASP.NET and CLR, such as garbage
collection (GC), ADO .NET data-access framework,
server-side controls, and XML support. It is modeled
after a small bookstore Website that provides catalog
browsing, shopping-cart maintenance, ordering, and
support for administrative functions. The workload
logical architecture provides true separation of Web
application layers by defining clear interfaces between
these layers and providing implementations adhering to
the defined interfaces. These logical application layers
are the Presentation, Business Logic, and Data Access
layer, respectively.

The design of the workload is based on the patterns and
practices for developing distributed applications for
.NET [5]. The main reasons to use such a multi-tiered
logical structure were to make sure that the workload is
representative of this class of applications and to
facilitate future design changes to utilize distributed Web
Services and Remoting components.

The Presentation layer of the workload consists of a set
of ASP.NET Web pages (ASPXs) and custom server-
side controls (ASCXs) with their code-behind classes.
The code-behind classes dynamically modify the
resulting document by requesting up-to-date information
from the Business Logic layer and manipulating the
properties of the controls on the page.

The Business Logic layer contains a set of stateless
services, implementing the business interfaces that
provide current application data, based on a set of
business rules. This layer uses the Data Access layer to
retrieve and update the data, based on parameters
received from the Presentation layer.

The Data Access layer handles all data retrieval and
update requirements defined by the application. It uses
the ADO .NET framework to access an SQL Server
database, using the .NET SQL Server driver. This layer
can use either dynamically built SQL commands or a set
of stored procedures residing in the database.

To better understand the system behavior, we present the
sequence diagram of request processing execution in
ASP.NET as shown in Figure 3. Inside the CLR, the
request is handled by an instance of the HttpApplication
object representing a single pipeline of execution. It
maps the incoming request URL to a specific ASPX
page, creates an instance of the code-behind class for
this page, and executes any event handlers defined for
the page or for the user-defined server-side controls
defined on the page.

In most cases the application logic is executed by the
Load event script. It starts by validating the input
parameters and initializing data structures. Then the
script requests an instance of the business logic class,
specific to the request type. The application is
structured so that an instance of a different stateless
service class can be loaded at startup, depending on
whether remote method invocation via Remoting or Web
Services is used, or on whether the service runs locally.
We discuss the latter in this paper, but part of the future
direction of our workload is to run business and data
access logic on a separate application server.

Once the request is passed to the service object, some
additional business rules are applied to ensure the
validity of the request, and an appropriate data access
provider class is invoked. Our workload is configured to
allow for different types of data access and retrieval, the
two main alternatives being the use of SQL Server stored
procedures and dynamically generated SQL statements.
(Find out more about the comparison of these two
alternatives in the analysis section.) The default for the
workload is to use stored procedures for all data access.
In this case, an object of the class implementing the
stored procedure-based data access is instantiated
dynamically at application startup.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 51

Figure 3: Workload sequence diagram

Once the stored procedure implementation is invoked, it
constructs a new SQL command to call a stored
procedure on the database server by using the .NET
driver for the Microsoft SQL Server. The .NET driver
has a built-in capability to provide connection pooling,
so after the interaction with the database is completed,
the current data connection utilized by the current
request is returned to the pool of available connections.
This helps eliminate the overhead of connection creation
on every request, while freeing the developer from
manually implementing connection pooling.

After the stored procedure results are received, the
control passes back to the Load event script. The rest of
the logic in it manipulates the controls on the page to
show the results returned from the database. Once the
script execution for the page is completed, the Load
scripts for all custom controls on the page are invoked if
necessary to execute control-level logic.

Finally, the engine proceeds with rendering the page,
which involves recursively calling the Render method
for every server-side control on the page and writing the
result to the Response object output stream.

Note that if the output caching is defined for any of the
controls on the page, or the page itself and the control or

page output is currently in the ASP.NET output cache,
then none of the event scripts will be executed for it, and
the previously saved (cached) output from the page or
control will be written to the output stream. Output
caching is discussed in detail later in this paper.

Performance Data
Figure 4 shows the throughput scaling for one, two, and
four Intel Xeon™ 2.0 GHz processor configurations on
the application server with Hyper-Threading enabled for
our workload. As you can see, it scales fairly well with a
two-processor scaling of 1.87, and a four-processor
scaling of 3.27. A number of system- and application-
level tunings were applied to enable good CPU
utilization, which is critical to achieve such scaling.
These optimizations are discussed in the following
sections.

Intel Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 52

SUT Throughput (Requests/Second) Scaling

1

1.87

3.27

0

1

2

3

4

1P 2P 4P

Processor Configuration

Sc
al

e
Fa

ct
or

Figure 4. Throughput scaling diagram

OPTIMIZATION
The goal of applying optimizations is typically to
achieve maximum throughput and/or to lower response
time. Optimizing a complex system consisting of a
number of hardware and software components can be
difficult, but by applying a systematic approach,
optimizations can be discovered and applied effectively.

The optimization process begins by collecting data on
the system and analyzing the data. A performance issue
is identified, and alternatives are proposed and explored.
Next, a solution is applied to the system, and data is
collected again to analyze the performance difference.
The change is then accepted or rejected and the
performance analysis cycle begins again.

In addition to this iterative approach, a top-down
methodology is used. There are three levels of
optimization: system, application, and micro-
architectural. The top-down methodology means that
tuning begins with higher impact changes such as I/O
and database configuration at the system level. Only
after the bottlenecks have been removed from the higher
level of optimization, can the next level of optimization
take place. This means that system-level optimizations
have to come before application-level optimizations,
which have to come before micro-architecture-level
optimizations.

Furthermore, after applying a change at a lower level,
you must go back again to the top level and begin the
optimization again. For instance, an application-level
change could help performance, but also expose a
system-level bottleneck that then needs to be alleviated.
Generally, when optimizing a complex system, a
majority of the time is often spent identifying system-
level issues.

Each different class of tuning requires a different set of
tools and performance tests. For instance, system-

monitoring tools such as Microsoft’s Perfmon∗ are
excellent at finding system-level issues, but will not find
micro-architectural-level issues. The Intel VTune™
Performance Analyzer is an excellent performance
analysis tool, providing Call Graph, Counter Monitor,
and other valuable data. It is also flexible enough to be
applied in system-, application-, or micro-architecture-
level tuning, but it may not provide the necessary
specific data. For instance, if you know you have a
network issue, Microsoft’s Netmon∗ tool can be used
specifically for that purpose.

In tuning an application, you will need to apply a
systematic, top-down approach, and use the correct tool
to analyze the performance of your system. The
following sections will explain system- and application-
level optimization. Although it is possible to achieve
performance benefits with micro-architectural tuning,
they are typically smaller and not within the scope of this
article.

A great deal of this paper is dedicated to caching. This
is because it is the single biggest source code or
configuration file optimization that you can perform in
most Web applications.

System-Level Optimizations
Our methodology is to look at the system-level issues
first, making sure that the performance bottleneck is not
in the physical capacity of I/O devices, disks, and
network, etc., but in the application- and system-level
code. Once the system-level optimizations are applied,
we can proceed with our top-down methodology,
analyzing performance and applying changes to the
application, configuration, and tunable parameters.

To apply system-level tuning we utilized Perfmon∗ ,
Microsoft’s performance-monitoring tool. When using
Perfmon, a number of counters are selected to monitor
such metrics as Processor, Network, and Disk utilization,
as well as more application-specific counters such as
“ASP.NET\Requests Queued” and “.NET CLR
Memory\Number of Bytes in all Heaps.” Perfmon,
along with some knowledge about the physical limits of
the components you are studying, can help diagnose
many system-level issues.

∗ Other brands and names are the property of their
respective owners.

Intel VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 53

For our workload, we found network bottlenecks in both
our application and image servers. By looking at the
Perfmon logs, we were able to ascertain that we were
packet limited on the application server, due to the large
number of requests entering from the emulated browsers
(EBs), and that we were throughput limited on the image
server, due to the large size of some of the images being
accessed. In each case, the problem prevented us from
saturating our application server processors. Installing
Gigabit (1000Mbps) Ethernet cards in both the
application and image servers alleviated the network
bottlenecks.

Database optimizations were also necessary, including
the addition of indices and tuning of specific database
parameters. In the early stages of our workload
development, we found that the disk I/O subsystem on
the database server was overutilized. Moving the
database and log files to physically separate disks
helped, but did not completely alleviate the problem. In
order to reduce latency and alleviate the disk bottleneck,
it was finally necessary to move the database and log
files each to their own RAID 0 disk array.

It is obvious that without applying system-level
optimizations such as those described above,
application-level tuning will not provide any benefit.
For example, if the processor is busy only 10% of the
time, making the code twice as efficient would only
result in a modest performance improvement. However,
if the processor is busy 100% of the time, code
efficiency improvements result in significant
performance improvement. The goal of system-level
tuning is to ensure that the bottleneck lies in code that
the developer controls, such that application-level
optimizations can then be applied.

Application-Level Optimizations
After system-level bottlenecks have been alleviated,
developers can further increase performance through
changes in the application, including caching, data
access optimizations, and application tunable
parameters. The following is a discussion of some
caching and tuning options provided by ASP.NET and
ADO.NET.

In our efforts to optimize the workload, we concentrated
on achieving better use of the platform features and not
improving the efficiency of our application code, since
our application code only consumes less than 1% of the
CPU, as measured by the Intel VTune Performance
Analyzer. The main reason for this is the fact that the
platform automates most of the common programming
tasks that used to be handled by the application code,
such as memory management or session state handling.

Caching
Popular Web sites receive millions of hits per day.
Normally, that means many millions of disk accesses hit
their databases, large amounts of processing are used to
serve their application, and possibly other systems are
used for Web services or other remote objects.

What would happen if every request for a Web page
could be met by sending the image of a page already
created? In this ideal situation, the Web server would
only have to serve up existing pages from memory, along
with statically included information such as pictures.
This integrated cache is part of the power of Microsoft’s
.NET. It has the ability to cache entire Web pages,
fragments of a Web page, or any object.

Overall, there are two types of caching: output caching
and data caching. Output caching can be either caching
of entire Web pages or fragments of Web pages. This
caching in .NET is unlike caching of static Web pages
because it works with dynamic content (pages built with
ASP.NET). Each time a page (or a fragment of a page)
is requested with the same dependencies as another
recent request, the information is delivered from cache.
(Dependencies and expiration periods are more fully
described later.)

Data caching, which is also called Object Caching, is the
ability to cache the output of any method. Typically it is
used for methods with a high-performance cost, such as
methods that access a database. Until .NET, many
serious applications would build their own data cache,
but few did it well.

If properly used, .NET’s caching options can provide
huge performance improvements. Proper use of the
cache results in less object creations, less processing,
and most important of all, lower dependency on slow
system resources (such as disk I/O) or external facilities
such as databases, remote objects, or Web services [1].

We now provide a detailed analysis of how different
types of caching can be applied to a Web application to
improve its performance.

How to Use .NET’s Object Cache
Using the object cache is easy; using it properly is
difficult.

We cover the basic syntax for using the object cache.
More detailed information about how to use the cache
can be obtained from the Microsoft Developer Network
(MSDN) and GotDotNet (www.gotdotnet.com) Web
sites.

The object cache can be used wherever a method returns
an object. There are also several forms for inserting data
into the cache, including versions that allow you to set

http://www.gotdotnet.com/

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 54

expiration times for the item. In our example, the cache
has a simple key as the parameter to the fetchMyData
method.

The cache key must contain all the dependencies that
would affect the output of the method to be cached. The
key is always derived from some or all of the parameters
to the method being called; however, it may also use
other variables that can affect the result. For example,
fetchMyData might contain internal state information –
such as my user information – such that it would return a
different value for another user. In this case, it is
prudent to include the user ID as part of the key to the
cache.

In addition to simple variables, dependencies can also
include files, directories, or the keys for other objects in
the cache.

Incorrectly identifying the dependencies for caching can
result in incorrect program output or low cache hit rates.
Determining these dependencies requires a
programmer’s skill, i.e., don’t expect to see tools to
automate the process anytime soon.

Proper Use of the Object Cache
Using the cache properly to optimize performance is not
a simple matter. There are two performance problems
that are prevalent in many .NET applications:

• Under-caching. To under-cache is to fail to take
advantage of caching where it would be a benefit.

• Over-caching: Using the cache where you shouldn’t
is known as over-caching.

Under-caching is caused by the fact that unlike a
processor cache, .NET caching is not something that
happens automatically. If you haven’t implemented
caching, you are missing out on performance.

The second problem, over-caching, is equally serious.
On applications that abuse the object cache, the object
cache itself becomes a major bottleneck that limits the
performance of the application.

Part of the problem with over-caching is that putting
something in cache might imply “kicking-out” something
else that is needed. With .NET, a bigger part of the
problem is that the cache object is a synchronized
(thread safe) collection; therefore, it can become a major
source of contention when multiple threads are trying to
access it at the same time.

Proper use of the .NET cache includes putting all things
in cache if they will be used again, and only if they will
be used again.

Finding Under-Caching and Over-Caching
The best way to find these problems would be to have a
tool do all the work; unfortunately, that is not possible
today. These tools are probably coming in the near
future, but they will require additional instrumentation in
the .NET framework.

In the meantime, here are some strategies to consider
and some tips on how each might be applied in various
situations.

• Start from the ground up: implement caching only
where appropriate.

• Observe what is removed from cache.

• Manually instrument every use of cache to
determine hit/miss rates.

What follows is a description of each approach and an
analysis of each from the perspective of accuracy, ease-
of-use, and ease-of-implementation.

Start From the Ground Up
In this approach, start without any caching, and then use
strategies to implement caching only where it is strongly
indicated.

This approach is applicable if you have not implemented
any caching or when you have caching that may be
improperly implemented. It is easier to find under-
caching than it is to find over-caching.

The implementation effort is very high with this
approach, especially for programs that already have
caching. First, you must remove (comment out) all
caching, then you must use a methodology to decide
where to cache, and finally you must re-implement
caching where appropriate.

One way to find out where to cache is to start with the
objects that have the highest creation rates, implement
caching there, and observe the hit rate.

DataView Source;
// See if the object is in cache
Source = (DataView)Cache["MyDataKey”];
// If object isn’t in cache, get
d tif(Source == null)
{

Source = fetchMyData(“MyDataKey”);
// Put data in cache
Cache["MyDataKey"] = Source;

}
// use the data
MyDataGrid.DataSource = Source;
MyDataGrid.DataBind();

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 55

When applying this approach, keep the following in
mind:

• String and other objects will show up as high usage
in many places. You must determine whether the
same data are ever likely to be returned, or time will
be wasted implementing caching where the hit rate
will be low.

• Incorrectly implementing caching can result in
incorrect program output, or low cache hit rates.
You must correctly identify dependencies to
implement proper caching; unfortunately,
determining dependencies is not a trivial task.
Dependencies may be more than just parameters to
the method; they may include files or time
information.

Ideally, you should only cache where it will yield the
most benefits. In reality, your results will depend a lot
on the skill and effort of the implementer. Intel
Solution Services has helped many customers determine
appropriate caching schemes for their applications, often
improving application performance in the process.

Observe What is Removed From Cache
If the code already makes extensive use of caching, use
this technique to determine if you are caching when you
shouldn’t or have implemented caching incorrectly.

For this technique, you can use the
CacheItemRemovedCallBack to tell when an item is
removed and to track the type of objects being evicted.
The most evicted objects might represent objects that
were placed into the cache but never used because
unused items in cache will get evicted due to the Least
Recently Used algorithm the cache employs.

There are three problems with this technique. One is the
complexity of implementation. You’ll have to implement
cache (with the CacheItemRemovedCallback) in all the
places where it is likely to be helpful. You will also
need to implement the actual method that will be called
by the callback mechanism. You will then have to figure
out where in the program these callbacks are happening.
Unless you use a different callback, you will only have
the name and value of the key to guide you.

Another problem is there is no way of knowing how long
these items were used in cache before they were evicted.
They might have been worth caching. They might have
been used for a while then evicted when they expired or
a dependency changed.

 Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Manually Instrument Use of Cache
In this approach, you modify the application’s source
code to instrument every use of cache to determine
hit/miss rates, hit/miss counts, and the ratio for that use.
For example:

This is very accurate: it simulates processor cache
counters to show where cache is effective and where it is
not. Unfortunately, extensive code changes are required
to implement this instrumentation, and they can be more
complicated in certain code situations.

First, caching has to be implemented on every likely
candidate. Implementing caching is difficult because
although it is only a couple lines of code, you must
correctly identify dependencies.

Second, since C# does not provide macros like
__FILE__ and __LINE__ or the ability to build macros
which would combine these built-in counters with
instrumentation, implementing the cache manually is
labor intensive.

Using ASP.NET Output Caching
Output caching represents another way of reusing the
previously generated data instead of performing the
processing-intensive operation again.

Output caching is used when the whole page, or part of
it, can remain static for some period of time. Obviously,
the biggest benefits can be reaped if the whole page is
stored in cache for future use, but this may not always be
the case. In this case, the page can be restructured to
make the cacheable part of it a separate user-defined
server-side control. Then caching can be applied to the
output from this control. The easiest way to enable
output caching for both user control and the whole page
is to put the OutputCache directive at the top of the
ASPX page containing its definition:

DataView Source;
Source = (DataView)
Cache["MyDataKey"]; // Cache lookup.
if(Source != null)
 // Add instrumentation
 // to count cache hits
 XXXXXXXXX();
else {
 // Add instrumentation to
 // count cache misses
 YYYYYYYY();
 // Get the data
 Source = fetchMyData(“MyDataKey”);
// Put the data in cache
 Cache["MyDataKey"] = Source;
}
// use the data

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 56

<%@ OutputCache Duration="#ofseconds"
VaryByParam="parametername" %>

This approach is the best for the pages and controls that
can always be cached for a specified period of time.
You can also use the VayByParam attribute to specify
caching by parameter, which caches the output for every
unique value of the input parameter. If the decision of
whether to cache the output depends on more complex
criteria, the framework provides a programmatic API to
dynamically enable the output caching:
Response.Cache.SetCacheability(HttpCacheability.Public);

Response.Cache.SetExpires(DateTime.Now.AddSeconds(30));

Based on the output from our workload, we experienced
a 23% performance degradation in the case where output
caching is disabled. Based on our experience,
significant performance gains can be attained if you
examine your application to see which output pages do
not need to always show the current snapshot of your
data, so that output caching can be applied.

Better yet, the new IIS 6 architecture allows for an
output of dynamic ASP.NET pages to go into kernel
mode cache. This increases the benefit from caching,
since the processing of requests does not need to
transition from kernel to user mode, a transition that
involves a context switch and is, therefore, much more
expensive.

Use of output caching can also help in scale-out
scenarios, where all the cache requests can be serviced
by a separate system running the Microsoft ISA Server∗ .

How to Choose Which Type of Caching to Use
When choosing a type of caching you need to examine
your application and determine whether the data you can
cache are used by a single page or by a number of pages.
If only one page (or control) is affected, it is likely that
output caching will work better. The reason for this is
that in the case of output caching, you eliminate both
data retrieval and presentation logic, so the amount of
work to satisfy the request is minimized. In the case of
object caching, only the data retrieval part is eliminated,
but the application still needs to execute the
programming logic that produces the resulting HTML
document that is based on the data retrieved. One
potential problem with the output caching API, as
compared to object caching, is that it currently lacks the
ability to dynamically invalidate cached pages that are
based on criteria other than expiration time.

∗ Other brands and names are the property of their
respective owners.

The object cache approach works better when multiple
pages are using the data object cached, or the source of
the data is a file on the application server.

Session State Usage Tuning
Session state is a service provided to your Web
application by default; the assumption is that all pages in
your application require session state data to process
incoming requests. If any of your pages do not rely on
session state, you can get a limited performance benefit
by disabling it for a given page.

To disable session state for a page, set the
EnableSessionState attribute in the @Page directive to
false as follows:

<%@ Page EnableSessionState="false" %>

Server-Side Control Guidelines
The general advice is not to use any server-side controls
unless you have specific reasons to do so. Some of the
reasons to use server-side controls over plain HTML
might be to programmatically modify/access control
properties, or to implement the same functionality on
multiple pages, or use fragment caching on them.

If you don’t have these reasons to use server-side
controls, use plain HTML tags (located under the HTML
tab in the WebForm Designer Toolbox) as a better
performing alternative, since HTML tags do not require
additional objects to be instantiated and manipulated
during page processing on the Web server.

Software Configuration Issues
There are a number of ASP.NET settings that reside in
the machine.config file provided with the .NET
framework that can be tweaked to improve system
performance.

The following is an example of some of the important
components of the machine.config file: httpRuntime,
sessionState, and processModel.

 <httpRuntime
 executionTimeout=""
 minFreeThreads=""
 minLocalRequestFreeThreads=""
 appRequestQueueLimit= ""
 />

<sessionState
 stateNetworkTimeout=""
 timeout=""/ >

 <processModel
 requestLimit=""
 requestQueueLimit=”"

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 57

 memoryLimit=""
 maxWorkerThreads=""
 maxIoThreads=""
 />

The two parameters that will likely need to be tuned on
an ASP.NET server are the request queue limit and the
maximum number of worker threads.

Request Queue Limit
When system resources such as the CPU, or available
worker threads, become saturated, ASP.NET will direct
the request to the ASP.NET request queue. The requests
in the queue are then serviced in the order in which they
arrived (FIFO) as resources become available. The
request queue is very effective in handling heavy or non-
steady-state loads, but a limit must be placed on this
queue, because throughput and response times will
degrade as the queue grows larger.

The request queue limit can be found at
\System\Web\httpRuntime\@appRequestQueueLimit in
the machine.config file. This parameter is the maximum
number of requests that will be queued before 503
“Server too busy” HTML errors are returned. For
debugging, performance tuning, or any situation where
error pages should not be returned, assigning a high
value to the appRequestQueueLimit will prevent the
HTTP 503 errors. In our configuration, we are testing
performance and cannot tolerate errors being returned,
so we set the queue size to be large enough such that
requests will never be rejected. However, in a
production environment, where the server can become
overloaded with requests, a balance must be made
between performance and not rejecting requests.

Maximum Thread Count
Many Web pages rely on an external resource such as a
database or Web service, and waiting on these resources
will often halt the processing of that request. If more
CPU bandwidth is available, it is advantageous to
process another request while the other is halted. Thus it
is important to have the maximum thread count set high
enough such that the CPU is saturated fully. However,
having an excessively high thread count can cause too
many requests to be processed concurrently, which can
degrade performance.

The maximum worker thread limit can be found at
\System\Web\processModel\@maxWorkerThreads in
the machine.config file. This parameter is the maximum
number of worker threads that will process requests. It
is beneficial to run with as few threads as possible.
However, without sufficient worker threads, the CPU
will not be fully utilized, so the optimum value must be
experimentally determined.

Unfortunately, ASP.NET does not provide a
performance counter to measure the number of worker
threads in use. The only way to estimate this number is
to use the “ASP.NET Applications\Pipeline instance
count” counter. Pipeline in this context is an instance of
your HttpApplication-derived class named Global, which
resides in the Global.asax.cs file in your Web application
directory. This class defines the logic of HTTP request
handling inside ASP.NET, common to all types of
request processing, whether HTML (ASPX pages) or
XML based (Web Services). At any given moment, a
pipeline instance can process only one request, so this
counter indicates how many requests can be processed
concurrently, which has some correlation to the number
of worker threads.

One example of potentially needing a higher thread
count is when the ASP.NET server has long-standing
requests out to a database (or other external resource).
In the early stages of our workload development, the
database implementation was slow and inefficient and
response times were poor. Because of this, more threads
were needed on the ASP.NET server so that it could
continue processing requests while waiting for responses
from the database.

However, in our current, more optimized workload, after
varying max threads with 1, 5, 10 and 15, the results
revealed that 10 threads (per processor) provided the
maximum throughput for this application. This setting
was found to be quite different if the SQL server did not
use stored procedures. It is therefore likely that you will
need to run a series of experiments to determine the
optimal configuration. This procedure may need to be
repeated if the design of your application changes.

ADO .NET Related Optimizations
ADO .NET provides a number of alternatives for
accessing and modifying the data residing in the SQL
Server database. The DataSet API provides a unified
way to manipulate the data in the offline mode and
synchronize it with its source. The DataSet API
supports different types of data sources: an SQL Server
database, an XML file, or some custom data provider for
a proprietary format.

A different set of APIs supports fast data retrieval of
ResultSet objects and execution of either dynamically
generated SQL stat elements or stored procedures. The
main difference between the last two methods is the fact
that the SQL Server needs to parse and recompile the
SQL statement submitted in the case of dynamic SQL
statements, whereas stored procedure execution uses a
precompiled version of the SQL statement, so these two
steps are no longer required. We have also discovered
that the previous assumption about the high overhead of

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 58

executing the stored procedure compared to a dynamic
SQL statement is not valid in the case of the Microsoft
SQL Server. This is because in the case of dynamic
SQL statements, the .NET client implicitly invokes a
stored procedure called sp_executesql.

To show the benefits of the stored procedure approach
over dynamic SQL generation, we ran a series of tests on
the current workload implementation. In the run where
we replaced the stored procedure implementation with
the dynamically generated SQL alternative, the
throughput of the system as a whole dropped by over
18%. Moreover, in order to compensate for the worse
response times of the database (DB) server, we needed
to increase the number of ASP.NET worker threads to
20 from the original setting of 10.

WORKLOAD EVOLUTION
The current version of the workload is geared towards
improving the performance of ASP.NET∗ Web
applications by exercising most of the common features
of the new engine. However, the current computing
trends point toward more scalable scenarios, where the
Web server integrates the data provided by the remote
application services. The .NET platform provides a
number of choices for implementing distributed
computing.

Distributed Computing Scenarios
As mentioned earlier, our workload has a built-in
flexibility that allows it to dynamically load different
implementations of stateless business service instances.
While the current version of the workload is configured
to create instances locally to study the behavior of a
single Web server, we currently have two more versions
of the business service classes: one implemented as a
Web Service and another one implemented as a
Remoting server application. In the case of the latter,
only remote object proxies are instantiated locally, not
the actual implementations itself. The only thing that is
required to enable this change is to change the
application configuration file to specify a different class
to be loaded. This process is totally transparent to the
presentation layer: no change to the source code is
required.

Web Services
Web Services are the new emerging standard in the
distributed computing arena. Their most appealing
feature is that they utilize existing standards, such as

∗ Other brands and names are the property of their
respective owners.

HTTP and XML, which are the most widely deployed
and used. The downside of this protocol is the relatively
high overhead that is associated with it: it is based on
XML and rides on top of HTTP. However, Web
Services are clearly the best choice for heterogeneous
computing environments where ease of integration and
support are the key factors.

.NET provides the highest level of support for the Web
Services standard, so the integration of components
running on remote machines is almost transparent.

.NET Remoting API
Remoting API is an alternative to Web Services, which
provides an extensible framework that allows you to
easily configure communication channels by using
different protocols and encoding standards. This set of
protocols allows for binary encoding and use of the TCP
protocol instead of HTTP.

Our preliminary results indicate that this option provides
significant performance benefits over Web Services, and
that it is also better integrated with the .NET framework.
The downside, however, is that it can only be used when
both client and server applications are CLR-based,
which means that it is not the right solution if cross-
platform compatibility is required.

CONCLUSION
ASP.NET∗ is a great new development platform for Web
applications. It provides a rich feature set and automates
a number of common tasks. However, because it hides
the complexity of handling Web requests from the
developer, it is easy to incorrectly estimate the
performance impact of different implementation
alternatives and system-level configuration options.

The object and output cache are powerful capabilities
provided by .NET and using them properly is a key to
high performance and scalable applications. As the
object cache capability is fairly new, tools are not yet
available to automate the process, but a skilled
programmer can use these techniques and get great
results. Output caching brings substantial performance
benefits while requiring minimal coding efforts.

By applying systematic methodology and appropriate
tools it is possible to identify and alleviate the
performance bottlenecks in the system. Also, it is
extremely important to tune the application software
stack to achieve optimal performance. This is a
complicated task that requires some experimentation in

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Developing and Optimizing Web Applications on the ASP .NET Platform 59

order to find optimal values for your specific
application. When the proper tuning has been applied,
ASP.NET applications can scale well on Intel-based
servers.

Web Services and .NET Remoting technologies enable
the next generation of Web applications that consist of a
number of distributed services, seamlessly integrated,
using these protocols. .NET Remoting offers higher
performance than Web Services, but it is not platform
independent; it requires that both the client and server
applications are CLR-based.

Ongoing research occurs at Intel to ensure that the
current and emerging technologies such as ASP.NET,
Web Services, and .NET Remoting perform well on Intel
Architecture. We hope that this article has provided
valuable information to assist in developing and
optimizing ASP.NET applications on Intel-based
servers.

ACKNOWLEDGMENTS
Sam Warner provided a lot of advice and hands-on
experience with tuning the HTTP and Microsoft’s
Internet Information Server (IIS) layers, and he also
helped with identifying performance issues.

Paul Delvecchio was a great source of information on
hardware setup and configuration as well as system-level
tuning.

REFERENCES
[1] F. Yeon, “ASP.NET Performance Tips and Best

Practices,”
http://gotdotnet.com/team/asp/ASP.NET%20Performance
%20Tips%20and%20Tricks.aspx, October 22, 2001.

[2] J. Richter, “Applied Microsoft .NET Framework
Programming,” Microsoft Press, January 2002,
ISBN: 0735614229.

[3] Microsoft ASP.NET, http://asp.net/

[4] Microsoft Patterns and Practices,
http://msdn.microsoft.com/practices/

[5] “Application Architecture for .NET: Designing
Applications and Services,”
http://msdn.microsoft.com/library/?url=/library/en-
us/dnbda/html/distapp.asp, December 2002.

[6] “Developing High-Performance ASP.NET
Applications,”
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cpguide/html/cpcondevelopinghigh-
performanceaspnetapplications.asp, December 2002.

AUTHORS’ BIOGRAPHIES
George Vorobiov is a senior software engineer in the
Software and Solutions Group in Bellevue, Washington.
He is working on performance optimization of managed
runtime technologies in the Web server application
space. George holds an M.S. degree in Computer
Systems from Kursk State Technical University, Russia;
His e-mail is George.Voroibov@intel.com

Carl Dichter has been a systems and software engineer
for over twenty years and has been at Intel since 1995.
He has developed methodologies for optimizing server
applications, especially managed code (C# and other
.NET languages, as well as Java) and currently works
with the processor architects to make sure our processors
run today’s applications best. Carl has filed 11 patents
and written over 60 articles and one book (on software
engineering and related subjects). His e-mail is
cdichter@yahoo.com

John Benninghoff is a lead software engineer working
on performance analysis of enterprise workloads on the
.NET CLR Framework and ASP.NET. He has been at
Intel for three years and has worked in the software
industry for 20 years. Prior to Intel he worked at a major
network software company doing performance analysis
on Web and LDAP servers for their Internet portal,
serving millions of registered users. Prior to that he
worked for a major computer system vendor on graphics
and network software. His e-mail is
john.benninghoff@intel.com

Charlie Hewett is a software engineer in the Software
and Solutions Group in Bellevue, Washington. He
works on performance analysis and optimization of
managed runtime technologies such as Microsoft’s
Common Language Runtime (CLR) and .NET
Framework for Intel Architecture. Charlie holds a B.S.
degree in Electrical Engineering from the University of
Washington. His e-mail is charlie.j.hewett@intel.com

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://gotdotnet.com/team/asp/ASP.NET Performance Tips and Tricks.aspx
http://gotdotnet.com/team/asp/ASP.NET Performance Tips and Tricks.aspx
http://asp.net/
http://msdn.microsoft.com/practices/
http://msdn.microsoft.com/library/?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/?url=/library/en-us/dnbda/html/distapp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcondevelopinghigh-performanceaspnetapplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcondevelopinghigh-performanceaspnetapplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcondevelopinghigh-performanceaspnetapplications.asp
mailto:George.Voroibov@intel.com
mailto:cdichter@yahoo.com
mailto:john.benninghoff@intel.com
mailto:charlie.j.hewett@intel.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Runtime Environment Security Models 60

Runtime Environment Security Models

Selim Aissi, Intel R&D, Intel Corporation

Index words: security models, runtime security, access control, sandbox, CLR security, ASP.NET
security, JRE security, Java security, runtime access control models

ABSTRACT
The tremendous new potential offered by distributed
computing, inside and outside the home and business, also
carries with it the necessity to exercise certain security
safeguards. As distributed, mobile, and executable
content moves among devices, the opportunity for security
breaches increases dramatically. Also, as device-to-
device e-Commerce services become more automated
[11], new types of security threats are emerging. With
these drastic changes in computing models comes a
greater need for robust application security.

For example, “executable content” is the idea of sending
code to a remote compute engine to be executed. In
addition to flexibility and expressiveness, executable
content brings new potential problems. A program
received from a remote source must be regarded as non-
trusted to some degree, and its access to certain resources
must be restricted. However, this new execution model is
not bound by the limitations of the operating system
because the runtime environment enforces the security
policies based on the code’s origin. Both the Java∗
Runtime Environment (JRE) and .NET∗ Framework
Common Language Runtime (CLR) security models have
the following common security features: language type-
safety, bytecode verification, runtime type checking, name
space separation via class loading, and fine-grained access
control.

This paper compares the JRE and the CLR evolutionary
security mechanisms. The paper also compares the two
models to the Clark-Wilson security model, a formal,
application-level model used to ensure the integrity of
commercial data. The Clark-Wilson model is a formal
presentation of the security policy enforced by a system,
and it is useful for testing a policy for completeness and

∗ Other brands and names are the property of their
respective owners.

consistency. It also helps describe what specific
mechanisms are necessary to implement a security policy.

Besides exploring the nature and scope of the sandbox-
based JRE and CLR security models and comparing them
to the Clark-Wilson integrity model, this paper also
provides some insight into the future of runtime security.

INTRODUCTION
The idea of using a sandbox to secure the threads running
inside of that box is very similar to the idea of building a
wall around a town to protect its inhabitants.

The concept of building a thick wall for protection is as
old as history itself. Greek legend provides an interesting
case of a thick wall that caused more destruction than
protection: the Trojan Wall. Let’s explore that security
legend a bit further. During the Trojan War, the Greeks
asked Epeius, an excellent craftsman, to build a wooden
horse, which he did with the aid of the goddess Athene.
Inside the horse were placed a handpicked group of
warriors. Then the Greek fleet sailed away, leaving
behind a warrior named Sinon, who pretended he had
been left behind by accident. He also pretended that the
huge wooden horse was an offering to Athene and that, if
taken into the city, would make the city invincible.
Despite warnings from some quarters, the Trojans pulled
down part of their battlements and hauled the wooden
horse inside the city. Lulled into a false sense of security,
little watch was kept. The Greek fleet returned furtively
and Sinon released the warriors from inside the wooden
horse. Troy fell because the Trojans’ confidence in an
impenetrable wall led them to overlook the security risk in
their midst [1]. When programmers (or users) fail to
check inside the Horse (a metaphor for malicious code)
before they roll it within the computing device, like the
Greek legend, the result is unpleasant.

A Trojan Horse is an easily written security hack that has
been used for years to breach traditional computer and
network security barriers. The first Trojan Horses were
disguised as demos, freeware, and shareware. The

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 61

unsuspecting victim would run the software from inside
traditional security walls where the program could
effectively attack. Sometimes the program just displayed
a witty joke, performed some harmless mischief, installed
viruses or broke into password files. Sometimes the
Trojan Horse used security holes to break deeper into the
computer. In all of those cases, the Trojan Horse causes
some damage, including loss of productivity and
confidence in the security of our systems.

Contrary to early claims, Trojan Horses and viruses are no
strangers to runtime environments either [6]. In August of
1998, a proof-of-concept virus called Strange Brew
appeared. While it did not carry a damaging payload, it
did prove the concept that cross-platform Java∗ viruses
and Trojan Horses could be written. Strange Brew,
however, affects only Java applications, not Java applets
that typically run inside a Web browser.

In January of 1999, the second known Java virus, called
Java.BeanHive, was discovered. This virus was designed
to infect both Java applets as well as Java applications.

The Java.BeanHive virus was, however, the first to exploit
JRE’s access control mechanisms by asking the user to
grant the virus permission for full file access. Because the
virus was a seemingly innocuous Java applet, some users
inadvertently granted it full permission, not knowing it
was malicious code.

In Java and .NET, the runtime environments provide
security models that deal with access control to system
resources. The following sections describe the
capabilities offered by those mechanisms.

The .NET Framework also has had its share of security
holes. In June 2002, session highjacking, information-
leakage, and buffer overflow vulnerabilities were
identified [12].

MOBILE CODE SECURITY: JAVA∗∗∗∗ AND
THE .NET∗∗∗∗ ENVIRONMENTS
“Mobile code” denotes program code that traverses a
network and executes at a remote site. The process of
traversing can either be active as in the case of mobile
agents which move around in a network at their own
volition, or it can be passive, as in the case of user-
downloaded code such as applets.

Both Java∗ and .NET∗ environments can be used as
platforms for both types of code mobility, and in

∗ Other brands and names are the property of their
respective owners.

conjunction with the Internet, they open new possibilities
for software development, software deployment, and
computing architectures. The downside is that they also
open new security threats. Downloaded code can include
a virus or be a Trojan Horse and thus pervert the concept
of code mobility over the Internet in a possibly dangerous
way. Any mobile code platform, including both Java and
.NET, suffers from four basic categories of potential
security threats [5]:

• Leakage. This occurs when there are unauthorized
attempts to obtain information belonging to or
intended for someone else.

• Tampering. Tampering is unauthorized changing or
deleting of information.

• Resource stealing. This occurs when there is
unauthorized use of resources or facilities such as
memory or disk space.

• Antagonism. These are interactions that don’t result in
a gain for the intruder but are, nonetheless, annoying
for the attacked party.

To deal with these threats, Java and. NET environments
provide special runtimes that try to protect users from
erroneous or malicious mobile code and try to ensure the
security and privacy of the user’s system.

They both provide fairly good levels of protection against
leakage and tampering but resource stealing and
antagonism cannot be fully prevented since it is still hard
to automatically distinguish between legitimate and
malicious actions.

THE EVOLUTION OF THE JAVA∗∗∗∗
RUNTIME ENVIRONMENT’S SECURITY
MODEL
In runtime environments, the security model is based on
policy construction and enforcement. A security policy
consists of the rules that must be obeyed by a program, the
mechanisms to enforce these rules and to detect when they
are violated, and the actions that are taken when a security
violation is detected.

In Java∗ , a security policy is implemented by writing a
subclass of the SecurityManager class and installing it as
the system’s security manager.

While the bottom three layers of Java’s security model are
fixed and defined by the Java language specification [2],
the Java Virtual Machine (JVM) specification [3], and the
Java API specification [4], the runtime environment is
implementation-dependent. Although it is the only
configurable part of the security model, this is,

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 62

nevertheless, sufficient for a wide range of different
security policies to be implemented.

The Java Sandbox Model
Java security has undergone considerable evolution. In
the JDK 1.0 security model, any code run locally had full
access to system resources while dynamically loaded code
had access to system resources controlled by a security
manager. The default security manager sandbox provided
minimal access to resources such as disk drives. In order
to support a different security model, a new security
manager would have to be implemented. The concept of
trusted, dynamically loaded code was introduced in JDK
1.1. Any dynamically loaded code that was digitally
signed by a trusted code provider could execute with the
same permission as local code. JDK 1.2 introduced an
extensible access control model that applies to both local
code and dynamically loaded code. Fine-grained access
to system resources can be specified in a policy file on the
basis of the source of the code, the code provider, and the
user of the code. Unlike earlier versions of the JDK, this
policy file allows the security model to be adjusted
without writing a new security manager. The security
manager has standard access control checkpoints
embedded in its code whose behavior is determined by the
selection of permissions enabled in the policy file. New
permissions can be defined, but explicit checks must be
added to the security manager or application code if the
permissions apply to application resources rather than
system resources.

JVM Security
Four practical techniques for securing mobile code exist:
the sandbox model, code signing, firewalls, and proof-
carrying code. In order to secure mobile code, Java uses a
hybrid approach, which combines sandboxes and code
signatures. The Java core classes act as a security shield
and enforce the sandbox model by granting or forbidding
access to resources, based on a security policy. The rules
specified in the security policy define the actions a piece
of code is allowed to perform depending on the origin of
the code and an optional signature. Not all of Java's
powerful security mechanisms are in place by default
when launching the JVM. While some basic checks are
performed automatically, the more sophisticated concepts,
including the sandbox model, have to be put into action
explicitly.

Before a class is loaded, the following steps occur. First,
the Verifier performs a set of security checks to guarantee
properties such as the correct class file format, the correct
parameter types, and binary compatibility. Doing these
checks before loading enhances both security and runtime
performance. They ensure the integrity of the Java
runtime environment since no malformed class can be

loaded that could cause a general system fault. Having
passed the Verifier, the class loader loads the bytecode
representation of the class and checks optional signatures.
Furthermore, the source (i.e., origin) of the class's code is
constructed, which consists of the location from which the
class was obtained and a set of certificates representing
the signature.

The source of the class code is the key input for the
security policy construction for a given class. In Java 2,
the security policy is defined in terms of protection
domains, which define what a piece of code with a given
source is allowed to do. Hence, a protection domain
contains a code source with a set of associated
permissions. Given the code source of a class, the
security policy is searched to determine the permissions of
the class.

Finally, the class is “defined,” meaning it is made publicly
available and added to the class loader’s cache of classes.
This is important to ensure class uniqueness. Java
considers two classes equal if, and only if, they have the
same name and were loaded by the same class loader.

After these initial steps, the class can be used in the Java
runtime environment. However, every time the class tries
to access a system resource, its permissions are checked
by the security manager. If the call to the security
manager returns silently, the requesting caller has
sufficient permissions to access the resource, and the
execution continues. If not, a security exception is raised
and has to be handled by the caller or otherwise the JVM
terminates.

A key question is how the security manager decides
whether access to a resource is granted. Since Java 2, the
security manager is mainly included for compatibility
reasons and delegates nearly all of its tasks to the access
controller. The access controller uses a stack inspection
algorithm and the security policy to decide how to
proceed.

The stack inspection algorithm is based on the call stack
of the current method. Since every class is assigned an
appropriate set of permissions when it is loaded, the stack
inspection algorithm can use this information to make its
decision.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 63

THE .NET∗∗∗∗ FRAMEWORK COMMON
LANGUAGE RUNTIME SECURITY
MODEL
The Microsoft .NET∗ Framework offers code access
security and role-based security to help address security
concerns about mobile code, and to help determine what
users are authorized to do. Both code access security and
role-based security are implemented using a common
infrastructure supplied by the Common Language Runtime
(CLR).

Because they use the same model and infrastructure, code
access security and role-based security share several
underlying concepts described in the following sections.

The CLR Code Access Security Model
Any application that targets the CLR must interact with
the runtime's security system. When an application
executes, it is automatically evaluated and given a set of
permissions by the runtime. Depending on the
permissions that the application receives, it can either run
properly or it will generate a security exception. The local
security settings on a particular computer ultimately
decide which permissions the code receives. Because
these settings can change from computer to computer, one
can never be sure that code will receive sufficient
permissions to run. This is in contrast to the world of
unmanaged development, in which one may not have to
worry about the code’s permission to run. CLR code
access security is based on the following four concepts:
writing type-safe code, using imperative and declarative
syntax, requesting permissions for the code, and using
secure class libraries.

In order to write type-safe code and to enable code to
benefit from code access security, a compiler that
generates verifiably type-safe code must be used.

Interaction with the runtime security system is performed
using imperative and declarative security calls.
Declarative calls are performed using attributes;
imperative calls are performed using new instances of
classes within your code. Some calls can only be
performed imperatively, while others can be performed
only declaratively. Some calls can be performed in either
manner.

Requests for permissions in the code are applied to the
assembly scope, where the code informs the runtime about
permissions that it either needs to run, or specifically does
not want. Security requests are evaluated by the runtime

∗ Other brands and names are the property of their
respective owners.

when the code is loaded into memory. The purpose of
requests is only to inform the runtime about the
permissions it requires in order to run. Requests do not
influence the runtime to give the code more permissions
than it “deserves.”

The secure class libraries use code access security to
specify the permissions they require in order to be
accessed. The developer must be aware of the
permissions required to access any library that the code
uses and make appropriate requests in the code [7].

The CLR Role-Based Access Model
Roles are often used in an application to enforce some
policies. Role-based security can be used when an
application requires multiple approvals to complete an
action.

The .NET Framework’s role-based security supports
authorization by making information about the principal,
which is constructed from an associated identity, available
to the current thread.

A principal represents the identity and role of a user and
acts on the user’s behalf. Role-based security in the .NET
Framework supports three kinds of principals: Generic
Principals which represent users and roles that exist
independent of Windows NT∗ and Windows 2000∗ users
and roles, Windows Principals which represent Windows∗
users and their roles (or groups), and Custom Principals
which can be defined by an application in any way that is
needed for that particular application.

The identity, as well as the principal it helps to define, can
be either based on a Windows account or be a custom
identity unrelated to a Windows account. The .NET
Framework applications can make authorization decisions
based on the principal’s identity or role membership, or
both. A role is a named set of principals that have the
same privileges with respect to security. A principal can
be a member of one or more roles. Hence, applications
can use role membership to determine whether a principal
is authorized to perform a requested action.

To provide ease of use and consistency with code access
security, .NET Framework role-based security provides
PrincipalPermission objects that enable the common
language runtime to perform authorization in a way that is
similar to code access security checks. The
PrincipalPermission class represents the identity or role
that the principal must match and is compatible with both
declarative and imperative security checks. You can also
access a principal’s identity information directly and

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 64

perform role and identity checks in your code when
needed [7].

Comparison Between the JRE and CLR Security
Models
Figure 1 compares the Java∗ and .NET Framework
architectures. The JRE and CLR are viewed as middle
layers between intermediate languages and the underlying
operating systems.

Code Type
Safety

Windows OS MacOS

Microsoft Intermediate Language
(MSIL)

Runtime ServicesRuntime Services

CLR JRE

Runtime Services Runtime Services

Code Type
Safety

Garbage
Collector Security SecurityGarbage Collector

Windows
OS LinuxUnix

J# C# VB.NET Managed
C++

Byte Codes

Java

Figure 1: CLR versus JRE

In order to compare the two security approaches, the
Clark-Wilson Security Model is used.

The Clark-Wilson Security Model
Integrity models [8] are used to describe what needs to be
done to enforce information integrity policies. There are
three goals of integrity: to prevent unauthorized
modifications, to maintain internal and external
consistency, and to prevent authorized but improper
modifications.

To accomplish these goals, a collection of security
services that embodies the properties needed for integrity
as well as a framework for composing them is needed.
The needed security properties for integrity include access
control, auditing, and accountability.

The Clark-Wilson [9] model is an integrity, application-
level model that attempts to ensure the integrity properties
of commercial data, and it provides a framework for
evaluating security in commercial application systems. It
was published in 1987 and updated in 1989 by David D.
Clark and David R. Wilson [13].

The Clark-Wilson model is based on analyses of security
models actually applied within businesses. These security
models aim at ensuring the integrity of resources rather
than simply controlling access to them. They depend on
controlling state transformations, and upon maintaining
separation of duties between users of the system.

Clark and Wilson partitioned all data in a system into two
types of data items for which integrity must be ensured:
Constrained Data Items (CDIs) and Unconstrained Data
Items (UDIs). The CDIs are objects that the integrity
model is applied to, and the UDIs are objects that are not
covered by the integrity policy (e.g., information typed by
the user on the keyboard). Two procedures are then
applied to these data items for protection. The first
procedure, namely the Integrity Verification Procedure
(IVP), verifies that the data items are in a valid state (i.e.,
they are what the users or owners believe them to be
because they have not been changed). The second
procedure is the Transformation Procedure (TP), which
changes the data items from one valid state to another. If
only a transformation procedure is able to change data
items, the integrity of the data is maintained. Integrity
enforcement systems usually require that all
transformation procedures be logged, to provide an audit
trail of data item changes.

In runtime environments, CDIs and UDIs can be mapped
to fields of components (e.g., assemblies). TPs can be
mapped to Java methods or .NET assemblies. An
assembly is a collection of types and resources that is built
to work together and form a logical unit of functionality.

A principal in this context is an authenticated Java or
.NET principal where the authentication has been
achieved using either the Java Cryptographic Extension
(JCE) or Microsoft’s Cryptographic API (CAPI∗).

DISCUSSION
Resource Integrity
The basic concepts of access control in the JRE and CLR
security models do not meet Clark-Wilson’s requirement
of resource integrity. Both environments require each
controlled operation to be re-coded to include a
permission check. This is not appropriate for a
component that is delivered in binary form. Both the CLR
and JRE also require determination of which operations
update the state of an object so that only those operations
that maintain the integrity of the system are allowed. This
approach is error prone. A better approach would be to
intercept all state accesses and allow only those made
from operations that maintain integrity while blocking all
others.

Execution-Time Checking
The .NET∗ Framework holds an advantage in the area of
execution-time checking. .NET’s application domains are

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 65

less permeable than Java’s, i.e., NET code verification is
stronger by default for local applications. Because a JVM
verifies only remotely loaded code by default, one can run
a Java∗ program locally without any security manager at
all [10].

Data Protection
Neither environment offers a significant advantage in
source code and data protection. Each platform has its
strengths and weaknesses in this area. .NET’s
cryptography relies on the developer properly configuring
the CAPI because it's so closely tied to Windows∗ .
However, the variety of plug-ins and components
available for Java makes it a more flexible environment.

The Java Cryptographic Extension (JCE) is a mechanism
that allows suppliers of cryptography to integrate their
libraries in a standard way with Java applications. The
API is fairly flexible, allowing detailed control of the
cryptographic process. However, that flexibility can lead
to excessive complexity and can make the API difficult to
use.

Communication Security
Developers using the .NET Framework may need to use
Microsoft’s Internet Information Server (IIS∗) for
communication protection. This strong dependency on a
Web Server, such as IIS, to provide runtime security
services, could restrict CLR’s communication security.

Code-Access Security
The code-based security mechanisms for Java and .NET
are very similar. The Windows connection gives the new
platform a richer set of permissions and evidences than
Java does. Java is more stripped down due to its platform
independence; however, Java’s code-based access control
is very mature and offers several configurable policy
levels. .NET provides hierarchical code groups and
allows for targeted code checks.

User Authentication
The .NET Framework offers good authentication out of
the box. It implements authentication through
authentication “providers,” such as forms, Passport, and
IIS. .NET’s close ties to IIS can hinder its flexibility.

Java code is easier to modify and the Java Authentication
and Authorization Service (JAAS) is available for
developers to modify and then plug in. JAAS also
provides several levels of customization, making Java’s

∗ Other brands and names are the property of their
respective owners.

authentication and role-based access control stronger than
.NET’s.

Both platforms, however, lack a mechanism for advanced
user-based access control, such as permission delegation.
For more complex role-based access control projects,
users have to build their own layer of security for
determining user-based access control.

Auditing and Tracking
Neither platform offers much support for secure
authentication and tracking. Although JDK 1.4 introduces
a logging package, it offers no secure facilities. .NET
offers a managed wrapper around Windows EventLog, but
that’s as far as its auditing features go. Consequently,
.NET applications are restricted to the functionality and
limitations of EventLog.

Neither .NET nor Java provides acceptable support for
auditing and tracking transactions. With .NET,
developers can use the Windows mechanisms, but they
need to go outside the .NET Framework to get them.
Even when .NET and Java add logging packages, it is not
clear how secure that mechanism would be.

Managed and Unmanaged Code
While the .NET Framework provides a solid security
model through managed code in the CLR, the ability to
run unmanaged code confers the ability to bypass CLR
security through direct calls to the underlying operating
system APIs. Also, in Java, signed and trusted code has
unrestricted access to system resources. Java’s calls to
native code through the Java Native Interfaces (JNIs)
confer the ability to bypass JRE’s security. Similarly,
running unmanaged code in the CLR can be used to
bypass the .NET Framework security.

FUTURE OF RUNTIME SECURITY
The real test for runtime security facilities will be their
deployment in large distributed systems. In their current
models, the overall system security depends on perfect
functioning of the application, the language, the virtual
machines, and the underlying operating systems. It also
depends on the interaction of those elements. Therefore,
this kind of system security becomes very complicated
and unstable if the system is very large. The experience of
Java security has shown that most of the security problems
reported come from defects in the implementation of the
security mechanism and from malicious applets that use
vulnerabilities in the applications that use the virtual
machine.

The ability to encrypt communication and provide digital
signatures is only part of enabling secure applications,
trusted communication, and proof-of-identity. There is

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 66

still the issue of where and how the keys are generated and
stored. Not only do the keys have to be exchanged over
secure links, they have to be generated and then managed
in a secure way. Hardware-based secure storage can play
a major role in securing the generation and safekeeping of
keys.

Security hardware may also provide more reliable
random-number-generation, time-stamping, and auditing
capabilities, which are crucial for cryptographic and
signature functions.

Both Java∗ and the .NET∗ Framework include
cryptographic capabilities based on software libraries.
However, performing the encryption on hardware is
inherently more secure than leaving it to the software.
Furthermore, hardware-based cryptography, signatures,
and key storage capabilities can provide a common
security infrastructure for both Java and .NET, which can
make the development of secure runtime applications
much easier than having to develop code to invoke the
Java or .NET cryptographic extensions.

CONCLUSION
Both Java’s∗ JRE and .NET’s∗ CLR do not meet Clark-
Wilson’s requirements of resource integrity. However,
they both provide quite comprehensive security services,
though each has a different focus.

Java’s authentication and authorization services are fairly
flexible. Although its use is not mandated, authentication
and authorization functionality can be provided by the
JAAS. .NET’s authentication and authorization services,
however, are provided through the Windows∗ operating
system or identification stores (e.g., Passport∗).

Both environments use similar concepts for handling user
and code access to resources, with permissions being
critical to both. The concept of roles is used to associate
permissions with principals in both environments.

Common hardware-based cryptographic and key-
management capabilities can drastically enhance the
security of the runtime environment. However, getting the
industry to agree on a common hardware architecture for
mobile and non-mobile security will be a challenge for the
next few years.

ACKNOWLEDGMENTS
The author extends his thanks to the reviewers who
provided invaluable feedback. Special thanks to Gene
Forte, Srinivasan Krishnamurthy, Joel Munter, Gururaj

∗ Other brands and names are the property of their
respective owners.

Nagendra, Murthi Nanja, and Carlos Rozas for their
careful review of this paper. My gratitude is also
extended to Norbert Mikula for generating many of the
thoughts in the paper.

REFERENCES
[1] Seton-Williams, M.V., Greek Legends and Stories,.

Barnes & Noble, Inc., New York, New York, pp. 103-
111.

[2] Joy, B., Steele, G., Gosling, J., and Brasha, G., Java
Language Specification,. Book News, Inc., Portland,
Oregon.

[3] Lindholm, T. and Yellin, F., The Java Virtual
Machine Specification, Addison-Wesley, New York,
New York.

[4] Gong, L., Inside Java(TM) 2 Platform Security:
Architecture, API Design, and Implementation,. Sun
Microsystems Press, Santa Clara, California.

[5] Goulouris, G., Dollimore, J., and Kindberg, T,.
Distributed Systems – concepts and design,
International Computer Science Series, Addison-
Wesley, Massachusetts and London, pp. 477-516.

[6] Schweitzer, D., Securing the Network from Malicious
Code: A Complete Guide to Defending Against
Viruses, Worms, and Trojans, John Wiley & Sons,
New York, New York.

[7] LaMacchia, B.A., Lange, S., Lyons, M., Martin, R.,
and Price, K., .NET Framework Security, Addison-
Wesley, Massachusetts and London, New York, New
York, pp. 43-79.

[8] Summers, C. R., Computer Security: Threats and
Safeguards, McGraw Hill, New York, page 142.

[9] Anderson, R., Security Engineering: A Guide to
Building Dependable Distribution Systems, Wiley
Computer Publishing, New York, pp. 188.

[10] Kunene, G., Software Engineers Put .NET and
Enterprise Java Security to the Test,.
http://archive.devx.com/enterprise/articles/dotnetvsjav
a/GK0202-1.asp.

[11] Aissi, S., Pallavi, M, and Krishnamurthy, S.,
“Ebusiness Process Modeling: the Next Big Step,”
IEEE Computer, May 2002.

[12] Adams, L., ASP.NET security holes, ZDNet,
Australia, June 2002,
http://www.zdnet.com.au/builder/architect/sdi/story/0,
2000035062,20266124,00.htm

[13] Clark, D. D. and Wilson, D.R.,“A comparison of
commercial and military computer security policies,”

http://archive.devx.com/enterprise/articles/dotnetvsjava/GK0202-1.asp
http://archive.devx.com/enterprise/articles/dotnetvsjava/GK0202-1.asp
http://www.zdnet.com.au/builder/architect/sdi/story/0,2000035062,20266124,00.htm
http://www.zdnet.com.au/builder/architect/sdi/story/0,2000035062,20266124,00.htm

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 67

IEEE Symposium on Security and Privacy, pp. 184-
194, Oakland, CA, 1987.

AUTHOR’S BIOGRAPHY
Selim Aissi has been involved in the development of
secure, safety-critical systems in the R&D sector, and in
military, automotive, and wireless appliances for over
twelve years. Before joining Intel in 1999, he worked at
the University of Michigan, General Dynamics’ M1A2
Abrams Battlefield Tank Division, General Motors’
Embedded Controller Excellence Center, and Applied
Dynamics International. At Intel, he played several
management and senior architecture roles, and he is
currently a Senior Security Architect at Intel’s Research &
Development group. Selim served on the review board of
several publications and conferences. He currently serves
on ACM’s CCS’03, SAM’03, NCISSE’03, and IC’03
conference boards. He holds a Ph.D. degree in Aerospace
Engineering from the University of Michigan and is a
member of the IEEE, ACM, and ISSA. His e-mail is
selim.aissi@intel.com.

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

mailto:selim.aissi@intel.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Runtime Abstractions in the Wireless and Handheld Space 68

Runtime Abstractions in the Wireless and Handheld Space

Lynn Comp, Wireless Computing and Communications Group, Intel Corporation
Tim Dobbing, Wireless Computing and Communications Group, Intel Corporation

Index words: Wireless Handheld Devices, Mobile Information Devices, Java, J2ME, .NET, Managed
Runtime Environments

ABSTRACT
The wireless handheld industry faces a number of
challenges that managed runtime environments are
uniquely positioned to solve. Unlike the Information
Technology (IT) and personal computing industries in
recent history, the handheld and wireless markets have
experienced significant fragmentation in the associated
application development environments. Developer
support is referred to in the tens and hundreds of
thousands of individual developers, rather than the
millions referred to in the IT and personal computing
industries. Another challenge that managed runtime
environments help solve is providing the ability to connect
to back-end infrastructure, whether in the carrier network
or the enterprise. This connectivity is critical to device
functionality in wireless. While runtime abstractions are
intended to simplify the lives of the developers by
providing the added protection and capabilities of Java∗
and .NET∗ , the abstraction can also present a challenge for
users desiring optimal device performance, and
component suppliers wishing to quickly enable advanced
functionality on their latest products. This paper examines
the tradeoffs of implementing an abstracted runtime
environment in the wireless and handheld spaces, focusing
on two of the most common managed runtime
architectures, Java and .NET.

A BRIEF HISTORY OF THE CELLULAR
INDUSTRY
The cellular industry (traditional wireless) is a relatively
new industry having evolved over just the last two to three
decades. In that time, the technology that came out of
AT&T research labs, was first used by the military, then
moved to the business community, and finally made

∗ Other brands and names are the property of their
respective owners.

available to the consumer at large. An important point
regarding the cellular telephone, in regards to its relatively
rapid adoption when compared to other ground-breaking
technologies, is that the user experience with a cellular
phone is nearly identical to the user experience with a
business or home phone: the cellular phone looks and
dials just like a landline phone, and it has, by and large,
been limited to voice communication. Adding
functionality to a traditional cellphone is accomplished by
replacing the cellphone altogether – there is no provision
for adding software or applications to this type of device.
To support dynamic software additions/updates, the
cellphone needed to integrate voice communication
services with the system management and data
communications services of the traditional computing
industry while maintaining the integrity of both.

The portable version of the data computing industry,
handheld computing, is also relatively new; it attempts to
mimic must-have computing functionality in small, more
portable devices capable of achieving better battery life.
Entering the market in 1993 [1] the Apple Newton∗ was
one of the first mainstream handheld computers, or as they
were called at the time, Personal Digital Assistants
(PDAs). Apple’s hope was that the loyal developer
community of Apple enthusiasts would also support the
handheld version. Unfortunately, the Newton was
unwieldy in functionality, size, and cost; it was too large
for a shirt pocket or a pocketbook, too expensive to be an
impulse purchase and unable to perform a few key basic
tasks well. Due to these factors the Newton achieved a
faithful, yet small following of users.

The Palm Pilot∗ , introduced in 1996 [2] was an invention
that benefited a great deal from observing the market
introduction and acceptance of the Newton. The tools to
program the device were very inexpensive; the
synchronization with the desktop PC was reliable and fast;
the device was small enough to be carried in pockets or
pocketbooks; and the price of $300 was just slightly
higher than an impulse purchase for the more technically

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 69

savvy consumer. The Palm Pilot ultimately attracted as
many as 60,000 developers to its platform and unique API
set. In the UK, a company called Psion made headway
with a keyboard-based device with similar functionality to
the Palm and Newton. This success resulted in a third set
of unique APIs for a software vendor to write to, test, and
support. By the time Microsoft entered the market in
1997 with the WindowsCE∗ platform, the independent
software vendors had to write, test, and support no fewer
than four different platforms to support the portable
market at large. Given the low-cost nature of the
handheld market in general, it was tough to support all the
platforms and still have a positive return on development
investment as an Independent Software Vendor (ISV).
The highest volume market, the cellular telephone,
allowed no extensibility once the platform was on the
market, and the portable but extensible platforms were
fragmented to the point where an ISV faced a potentially
negative return on investment on his or her development
efforts.

THE GREAT UNIFIER
When Sun Microsystems introduced Java∗ in 1995 with
the tagline “write once, run anywhere,” it was unclear
exactly what Java was intended to do. Editors and
analysts who studied and researched the computing and
software industries wrestled with how to categorize Java:
Was it intended to replace the operating system, the CPU
instruction set, or create network computers1, or was it
meant to provide an alternative to Microsoft desktop
operating systems? Whatever category that Java was
placed in at that time, it was too large and unwieldy, too
proprietary and too slow for small, memory-constrained
devices (although that didn’t stop early visionaries such as
the Nortel Orbiter [3] phone development team from
attempting to create an advanced cellular phone running
Java). Java gained its early strength and acceptance in the
enterprise infrastructure, simplifying and unifying multiple
types of Information Technology (IT) and Internet
systems through a higher layer of abstraction.

Java in Wireless
A number of developments spurred the acceptance of Java
into wireless client devices (“client” refers to a device that
must attach to a network or other infrastructure to
accomplish specific mission-critical tasks). The first key

∗ Other brands and names are the property of their
respective owners.
1 Network computers are thin clients in the network
architecture where the “network is the computer.” In this
model server computers provide the intelligence.

development was Sun’s introduction of a small-Java
solution and virtual machine for memory-constrained
devices in 1999 [4]. The inherent protection from
memory overruns provided in the Java architecture itself
already made Java attractive, since wireless operators are
highly sensitive to handsets suspending operations without
warning while a customer is operating the handset, or
being capable of proliferating network-damaging viruses.
Non-functional handsets increase operator costs, and a
healthy on-line network represents the only revenue
source for the wireless operator.

A second reason for the wireless operators having a
favorable response to Java is the inherent memory
efficiency of bytecodes versus native code [3, 6].
Operators have extremely high investment costs in
preparing to provide wireless services. The first cost to an
operator is paying national governments extremely high
license fees for rights to a limited amount of wireless
spectrum in a specific geographical area. The operators
are limited to servicing wireless data traffic within that
allocated spectrum. The more customers that an operator
can support within the limited amount of spectrum
purchased without customers experiencing dropped calls
or being unable to connect to the network, the faster the
operator is able to recoup cost and earn positive cash
flow.

The final factor in Java’s favor is that operators are
familiar with consortium-based standardization processes
through years of participation in the International
Telecommunication Union (ITU) and are more
comfortable with standardization than accepting whatever
an external vendor develops in binary form, with no
ability to influence or adapt it. The establishment of the
Java Community Process further enabled the acceptance
of Java by wireless operators. Not only was Java a
relatively open standard, it attracted a great number of
software developers in the enterprise space due to its
ability to provide a cohesive layer over whatever system
existed underneath it. A tenth of the three million
developers supporting Java in 2002 represents quadruple
the number of developers supporting the most popular
handheld device of the 90s, the Palm Pilot∗ .

Java in the Wireless Client Device–Devices Now
vs. Devices of the Future
Java technology for the wireless client device is in a state
of transition. Currently, Java wireless client devices are
based on the Java 2 Platform, Micro Edition (J2ME) and
specifically on the Connected Limited Device
Configuration (CLDC) version 1.0 and the Mobile
Information Device Profile (MIDP) version 1.0. The
specifications for CLDC 1.0 and MIDP 1.0, JSR-030 and
JSR-037 respectively, were released in 2000 at a time

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 70

when memory capacity and processor power were limited,
and as such, compromises were made in terms of the level
of support for the Java Language Specification and the
Java Virtual Machine Specification. In addition, new
libraries (e.g., user interface, networking, and persistence
libraries) were developed to support these resource-
constrained devices, reducing the consistency between
standard and wireless Java.

Java Applications

Native
ApplicationsMIDP 1.0 OEM Classes

CLDC 1.0

Native System Software/Host Operating System

Device Hardware

Figure 1: CLDC 1.0/MIDP 1.0 architecture

The high-level architecture of these CLDC 1.0/MIDP 1.0
devices is shown in Figure 1 above. One of the goals of
the J2ME architecture was to provide a highly portable,
secure, small footprint application development
environment for resource-constrained connected devices
[8], and it has been largely successful.

The CLDC 1.0 provides the platform that is intended to
serve as the lowest common denominator for all such
devices (e.g., mobile phones, pager, and point-of-sale
terminals) while the MIDP 1.0 addresses the needs of a
specific vertical market (e.g., mobile phones).

CLDC 1.0 addresses the following areas: support for the
Java language and virtual machine features, core libraries
(e.g., java.lang, java.io, java.util), input/output,
networking, security, and internationalization. MIDP 1.0
addresses the following areas: application models, user
interfaces, persistent storage, networking, and timers.

In the case of CLDC 1.0, a number of sacrifices were
made in terms of the support for the Java Language
Specification and the Java Virtual Machine Specification.
Specifically, there is no floating-point support, there is no
support for finalization, and there is limited exception
handling support. In addition, there is no support for the

Java Native Interface2 (JNI), no support for user-defined
class loaders, no reflection, no support for thread groups
or daemon threads, and no support for weak references.
The lack of support for reflection also means that there is
no support for language or virtual machine features that
rely on reflection (e.g., RMI, object serialization, JVM
debugging, and profiling). From a programming
perspective and also in terms of being able to port Java 2
Standard Edition (J2SE) applications to the J2ME
platform, these are serious issues that have led to
fragmentation of the J2ME architecture.

In terms of library support, the CLDC adopted subsets of
most of the corresponding J2SE libraries. The exception
to this was the specification of a new networking library,
the Generic Connection Framework.

While CLDC 1.0 addressed the needs of the horizontal
market, MIDP 1.0 addressed the needs of a specific
vertical market (e.g., mobile phones). Specifically it
covered the following areas: user interface support,
networking support (i.e., HTTP), persistent storage,
application models, and timers. In doing so, MIDP 1.0
diverged significantly from the J2SE. New user interface
and persistent storage libraries were specified, and the
networking libraries were based on extensions of the
CLDC 1.0 Generic Connection Framework.

In terms of achieving the goals that the J2ME expert
groups set for themselves in specifying the J2ME
architecture, the results have been mixed. Certainly the
goal of a small footprint has been achieved. However,
there has been a cost in terms of application portability
and security. The approach consistently taken by the
expert groups has been one of specifying the lowest
common denominator in terms of functionality for both
CLDC 1.0 and MIDP 1.0, which has led to a large degree
of fragmentation of the architecture. Specifically,
proprietary Original Equipment Manufacturer (OEM)
classes have been used by individual phone and PDA
OEMs to make up for the lack of functionality in the
CLDC and MIDP specifications. A number of companies,
including Sprint PCS, Motorola, and Nokia, have added
their own unique device-specific functionality (e.g.,
sound, additional network protocols, additional user
interface functionality) in the OEM classes, and in doing
so sacrificed application portability for enhanced
functionality.

Portability has not only been sacrificed between J2ME
CLDC/MIDP1.0 devices but also between the J2ME (i.e.,

2 Java methods are able to invoke native methods through
proprietary means.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 71

wireless) and J2SE∗ (i.e., desktop) clients. In addition to
the inconsistencies between user interfaces and
networking libraries, the CLDC/MIDP 1.0 client device
does not align with the J2SE security model.

Figure 2: CLDC 1.1/MIDP 2.0 architecture

MIDP 2.0 and CLDC 1.1 (JSR-118 and JSR-139,
respectively) address many of the concerns of MIDP 1.0
and CLDC 1.0. CLDC 1.1 has added back support for
floating point as well as support for weak references.
MIDP 2.0 provides significant improvements over MIDP
1.0. It provides enhanced networking support, enhanced
user interface support, support for gaming, support for
sound, and a security model that better aligns with the
J2SE model of security.

The architecture model for a CLDC 1.1/MIDP 2.0 device
is shown in Figure 2 above. Aside from the inclusion of
CLDC 1.1 and MIDP 2.0, the major enhancement is the
support for optional packages. Optional packages are
intended to supplement the functionality provided by
CLDC 1.1 and MIDP 2.0 and eliminate the need for the
use of OEM classes. Examples of optional packages
include JSR-120 (Wireless Messaging API), JSR-135
(Mobile Media API), JSR-82 (Bluetooth), JSR-80 (USB),
JSR-177 (Security and Trust APIs), JSR-172 (Web
Services) and more. The Java Specification that ties all of
these together is JSR-185–Java Technology for the
Wireless Industry. This Java Specification Review (JSR),
due out in 2003, will specify the mandatory JSRs that
must be supported by wireless client devices along with a
list of optional JSRs that may be supported.

Java is predicted to be the dominant technology for
wireless client devices through to 2007 [9]. It is expected

∗ Other brands and names are the property of their
respective owners.

that, on average, 50% or more of the applications running
on wireless client devices will be Java applications. A
breakdown of the predicted amount of data traffic
generated by Java applications (as a percentage of all
technologies) by type of application is shown in the
following table.

 2002 2003 2004 2005 2006 2007

Messaging 2% 6% 13% 26% 44% 67%

m-Commerce 7% 16% 29% 50% 65% 77%

Content <1% 12% 26% 38% 51% 63%

Information <1% <1% 2% 4% 8% 15%

Location-
based Services

3% 8% 16% 29% 45% 64%

Industry
Applications

6% 10% 18% 36% 56% 85%

Intranet 2% 5% 14% 30% 50% 73%

Total 3% 9% 18% 31% 46% 62%

Table 1: Data traffic generated by Java applications

In terms of numbers, it is predicted that there will be
691.6 million Java-enabled phones in the marketplace by
2007 out of a total 727.3 million handsets (95% of the
market). This is a significant number and could increase
as alignment improves between the J2ME platform and
the J2SE platform. This improvement in alignment is due
to the potential for improved application portability across
a wider range of devices, including the desktop, mobile
phones, and PDAs.

OTHER MANAGED RUNTIME
ENVIRONMENTS
In 2000, Microsoft introduced .NET∗ , an architecture
intended to accomplish many of the same tasks as Java∗ .
According to Microsoft, .NET intends to provide more
coherence and less fragmentation across device types for
application developers, providing a true “write once, run
anywhere” experience on Microsoft-based platforms.
What makes .NET attractive is the fact that it does allow a
developer to write an application once, in the most
commonly used Microsoft Visual Studio tools, and deploy
it across a variety of Microsoft-based platforms. Similar
to the deployment of Java, the larger, enterprise-focused
.NET was available prior to the smaller footprint Compact
Framework (CF) .NET, which began to roll out gradually
in the 2002 releases of Microsoft Windows CE∗ .

∗ Other brands and names are the property of their
respective owners.

Java Applications

Native
ApplicationsMIDP 2.0 OEM

Classes

CLDC 1.1

Native System Software/Host Operating System

Device Hardware

Optional
Packages

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 72

.NET has a number of differences when compared to other
runtime environments including Java. First, .NET
supports a number of different languages including C,
C++, C#, Visual Basic, and JavaScript. Using Microsoft’s
Visual Studio .NET, programs written in these languages
are compiled into a common intermediate language
representation that executes within the Common Language
Runtime Environment (CLR). Some of the benefits to this
approach are that existing developer skills (such as
programming language experience) and existing software
collateral (such as applications) may be reused with
minimal effort. In other words, it’s not necessary to learn
C# nor to completely rewrite applications (in C#) in order
to support .NET architectures.

Microsoft also claims that their driver model is more
flexible in that it avoids the need for proprietary
extensions and improves application portability provided
the same operating system is present across all devices.
Drivers in the application expose underlying hardware
differences, and the device only makes use of the
underlying features if it can. Applications do not need to
be recoded for each device [9].

In 2001 and 2002, Microsoft signed a number of
agreements with a variety of wireless network operators
such as Deutsche-Telecom, indicating that the wireless
industry views .NET as a possible alternative to Java.
However, the main question with .NET is not if, but when,
the average user will be able to utilize .NET applications
and services on wireless handheld devices.

Technical Tradeoffs in a Difficult Software
Environment
Even when using the smaller footprint Java or CF .NET in
the wireless and handheld spaces, successfully running
these managed runtime environments is a tightrope act
between good enough performance and the portability of
the device. Unlike in the desktop and server space, it is an
ineffective use of memory to compile every bytecode in an
application to native code and optimize the code during
subsequent runtime iterations to maximize performance.
The majority of phones on the market currently have 8MB
of ROM/RAM, feature phones have up to 40MB, and only
the most feature-rich segment of the market reaches
64MB. Stored bytecodes use memory far more efficiently
than compiled code. Relying solely upon a Just in Time
(JIT) compiler that assumes it has unlimited free space
available to it, negates one of the reasons the operators
selected Java for an applications framework in the first
place.

What might seem to be an obvious solution to the memory
and performance constraints, adding an execution unit
dedicated to executing only bytecodes, turns out to have
its own shortcomings. Bytecode translators are actually

less efficient overall, because they cannot use compilation
to improve execution efficiency for a CPU pipeline
architecture or a given software program code flow.
Bytecode translators also cannot use the general-purpose
register set available to native execution, and because the
protocol stacks for a phone are written in compiled C, the
processor must attempt to execute both the native
processor instruction set as well as the bytecodes. Even
after adding the bytecode translation units to RISC
processors, there are still a number of bytecode
instructions that must be emulated vs. executed directly.
This is due to the higher level of abstraction inherent in
Java: a single bytecode operation often cannot map
directly to a single RISC CPU instruction since the
operations required by some bytecode operations are, in
reality, a combination of RISC CPU instructions. To have
a direct 1:1 mapping between bytecode operations and
CPU instructions requires significant enough changes and
additions that the benefits of adopting a RISC architecture
because of lower power consumption and reduced
complexity could be completely lost.

What enabled Java to become small enough to run on a
phone is also a tradeoff between integration and
functionality with standard systems running Java in carrier
or enterprise infrastructures. In order to downsize Java to
fit into an unfriendly climate like the wireless handset, Sun
made a number of tradeoffs, essentially cutting Java to the
bare essence. So Java developers from the J2SE or J2EE
world find themselves without any of the standardized
graphics (AWT/Swing) and without the security libraries
in the J2ME CLDC/MIDP 1.0 world. It is only slightly
better in the J2ME CDC world: the graphics libraries are
added, but they are not the most recent version adopted
into J2SE (e.g., AWT vs. Swing).

Currently the CF.NET situation has improved coherence,
but is limited to the high-end segment of the phone
market. While Java can be fit into all but the least
expensive of the handsets, CF.NET awaits the inevitable
increase in capability and lowering of cost for memory
and processing components (sometimes referred to as
“Moore’s Law”) to catch up to the memory and
performance requirements necessary to adequately support
it.

THE INTEL APPROACH TO MANAGED
RUNTIME ENVIRONMENTS
The Intel approach to the challenges presented in the
wireless runtime world is to achieve the most optimal
balance between speed, memory use, and power efficiency
and to focus on decreasing the fragmentation of
functionality in the wireless space. While Intel believes

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 73

Java∗ and CF.NET∗ are key technologies in wireless for
many of the reasons mentioned above, the power of these
managed runtime environments is in using them as a
unifying framework to simplify application development
experience. “Write once, run anywhere” should not be
applied without accounting for the challenges specific to
running in a handheld wireless device (e.g., intermittent,
low-bandwidth connections).

The first underlying principle in Intel’s wireless managed
runtime approach is to focus on advanced, low-power,
high-performance and scalable processors such as the
Intel XScale microarchitecture core. Rather than
adding bytecode translation, which has its own problems,
the focus of Intel’s efforts is on providing a processor
capable of scaling a range of devices running Java,
CF.NET, and native code efficiently. For the simplest
phones running basic Java, components utilizing the Intel
XScale microarchitecture running directly out of
execution-capable flash memory is expected to be an
appropriate balance of performance and functionality for a
phone that is essentially free with the purchase of a
network contract. By running directly from the flash
memory, execution speed is increased and memory is
saved. In this situation, the interpretation process does not
copy into RAM in order to run. The program executes
directly and immediately from its original place in the
device memory.

The mid-range of functionality adds a self-limiting Just in
Time (JIT) compiler. Other descriptions include
“dynamic, adaptive” or “small footprint” JIT. The
primary difference between the small footprint JIT and the
larger JIT compilers seen in the PC world is the fact that
the system integrator is able to determine how much
memory the JIT may use within that specific piece of
equipment. The smaller footprint JIT compilers limit
themselves to a specific area in memory for “scratch pad”
space during the process that compiles Java bytecodes into
native code. The power of a JIT compiler is that by and
large, compilation is more efficient at executing code over
the lifetime of the program execution as a whole. The
goal is to determine on an iterative basis how to best
optimize the code that executes the most often: where the
branches are taken, what branches are not taken, which
variables to store and which are transient, and how code
blocks can be rearranged to execute most efficiently on a
given CPU architecture. The difference is that the JIT
compiler process happens on the fly, and in the case of the

∗ Other brands and names are the property of their
respective owners.

Intel XScale is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

wireless handheld devices, it happens within a limited
space in memory. In this scenario, the easiest way to
maximize the available memory to the JIT compiler is to
execute the JIT from flash memory, leaving the available
RAM space for the results of the compilation process.
Eliminating the need to copy the compiler into shadow
RAM saves both time and memory space for the operation
of the JIT compiler.

Another related process to the JIT compiler that increases
performance is to pre-compile the libraries required by the
Java profile in use to native code. The goal is to
selectively compile the most performance-critical libraries
used by applications popular in the wireless space to
balance the speed of native code against the memory
compactness of Java bytecodes. In wireless, the most
popular Java applications currently are entertainment,
which are game and graphics focused. Hence, the
libraries supporting the user interface and the multimedia
operations (optional in some profiles but highly
recommended by Intel for an improved user experience)
should be the first order of business for system
implementers. The primary difference between a feature
phone and the higher end smartphones and PDAs is the
memory dedicated to improved JIT compiler performance
as well as the ability to pre-compile all the existing
libraries to native code vs. selecting a few key areas to
focus on for improving performance.

FRAGMENTATION AND RE-
UNIFICATION
The specification of CLDC 1.0 and MIDP 1.0 were
constrained by the limited amount of processor power and
memory. However, recent advances in hardware
technology have all but eliminated these constraints and it
is not uncommon to find devices with processor speeds of
200-400MHz and total memory budgets of 40MB. This is
a far cry from the 328KB of memory allotted for CLDC
1.0/MIDP 1.0.

The removal of the constraints that drove the specification
of CLDC 1.0 and MIDP 1.0 means that these devices may
easily support the Connected Device Configuration
(CDC). CDC is the big brother of CLDC, and together
with the Foundation Profile (FP), provides the same
platform functionality as the J2SE version 1.3.

The J2ME architecture of a CDC-based device is shown
in Figure 3 below. Similar to CLDC, CDC provides the
common platform services while the FP and Personal
Profile (PP) address the needs of a particular vertical
market.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 74

Figure 3: CDC/FP/PP architecture

The PP is similar in scope to MIDP in that it provides user
interface libraries, networking libraries, and the
application model. Unlike MIDP, the PP is compatible
with the J2SE∗ (e.g., the PP supports AWT).

Many of the optional packages that have been developed
to date are reusable across both CLDC and CDC
platforms (e.g., JSR-120 [Wireless Messaging API], JSR-
135 [Mobile Media API], etc.).

By moving towards a CDC-based J2ME architecture,
many of the fragmentation and portability issues
associated with CLDC/MIDP can be addressed and a
closer alignment with the J2SE achieved. This will
facilitate the development of common client devices that
may be run on both the desktop and wireless client
devices.

Figure 4, below, shows how the transition from today’s
CLDC/MIDP-based J2ME architecture to tomorrow’s
CDC/FP/PP-based J2ME architecture might be
accomplished. On the left-hand side is the situation today:
a CDC-based software stack and a CLDC-based software
stack. Moving to the right, CDC is adopted as the
configuration platform for MIDP with the benefit that
MIDP and MIDP applications now enjoy full Java
Language and Java Virtual Machine support. The next
phase in the migration supports a transition period
between MIDP and PP. It is during this time that MIDP
applications are ported to the PP. The final stage on the
right is the result of the migration: a single application

∗ Other brands and names are the property of their
respective owners.

development and runtime environment based on
CDC/FP/PP. The CLDC/MIDP stack is no longer
required nor should it be used.

Figure 4: CLDC/MIDP evolution strategy

The proposed CDC-based platform that forms the basis of
the Intel PCA Java architecture is shown in Figure 5
below. Along with CDC, FP, and the PP, it also shows
the optional packages, organized by application type, that
are required to support the predicted growth of Java∗
applications for wireless client devices3.

JSR-177 JSR-169
JDBC JSR-179 JSR-172 JSR-184 JSR-82 JSR-190FP

JSR-62
PP

JSR-xxx
Swing

JSR-75
PIM

JSR-xxx
SyncML

RMI JSR-135 JSR-180

JSR-xxx
Call Mgmt

JSR-186
Presence

JSR-187
IM

CDC

Java Applications

Core
JSRs

Security
and

Trust

Database
and Sync

Location

Middleware Entertainment

Communications

App
Mgmt

Figure 5: Proposed CDC/FP/PP platform

∗ Other brands and names are the property of their
respective owners.
3 Those JSRs that do not have numbers associated with
them do not yet exist.

CDC

FP

PP

CLDC

MIDP

Apps

Apps
CDC

FP

PP

Apps

CDC

FP

PP

Apps

CDC

MIDP

Apps
MIDP

Apps

Two application
environments
limit portability

MIDlets get
benefit of full

JLS and JVMS
support

Transition
period between
MIDP apps and

PP apps

Single
application

development
and runtime
environment

Java Applications

Native
Applications

PP 1.0
OEM

Classes

CDC 1.0

Native System Software/Host Operating System

Device Hardware

Optional
Packages

FP 1.0

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 75

CONCLUSION
The handheld and wireless markets have their own unique
challenges and opportunities. An emphasis on the ability
to connect to back-end infrastructure, the need for highly
compressed and efficient data transmission and highly
constrained screen and battery all shift the dynamics of the
traditional development environment.

Runtime abstraction solves many problems presented to
the average application developer, and it presents many
challenges to the hardware implementation teams in
adapting to the unique execution environment. The Intel
philosophy on balancing application developers’ desires
for simplicity and coherence against the hardware
implementers’ desire for low memory and high
performance is to appropriately select and tune key
components in the system. A high-performance yet low-
power general-purpose processor combined with
execution-capable flash memory and selectively tuned
native components provides the basis for a wide range of
wireless client devices.

JSR-185 (Java∗ Technology for the Wireless Industry) is
slated to be completed in 2003, and it will address some
of the fragmentation concerns with respect to J2ME. It
will provide an architectural overview of the essential
client components of an end-to-end wireless solution
including recommended combinations of J2ME
components (i.e., configurations, profiles, and optional
packages). The availability of this architectural
specification will also be used to trigger compatibility
requirements that, in turn, will be reflected in the
associated Technology Compatibility Kit (TCK) that is
used to determine conformance.

At the same time, .NET∗ will also be evolving and
spreading throughout the wireless ecosystem as Microsoft-
based platforms are deployed more widely. While .NET-
based platforms do not face as many integration
challenges due to the fact that the number of variables
decrease, the rollout of .NET devices is just beginning to
ramp.

Regardless of the managed runtime environment an
application developer selects, Intel technologies create a
balanced and flexible platform upon which the hardware
implementer and application developer have freedom to
innovate and differentiate their solutions and products. As
the platform costs decrease and the available performance
and memory increase, the user experience improves. It is
expected that the wireless client device will become a
significant force in the computing industry at large.

REFERENCES
[1] http://www.wired.com/news/mac/0,2125,54580,00.ht

ml, Apple’s Newton Just Won’t Drop, Leander
Kahney, Aug. 29, 2002 PT.

[2] http://www.fortune.com/fortune/fsb/specials/innovator
s/dubinsky.html , “HOW WE GOT STARTED,”
Donna Dubinsky.

[3] http://www.microjava.com/articles/perspective/shostec
k?content_id=2179, “The Battle For BREW, J2ME
And Related Technologies,” The Shosteck Group,
10/29/2001.

[4] http://java.sun.com/features/2000/06/time-line.html,
“The Java Platform: Five Years in Review.”

[5] http://more.abcnews.go.com/sections/business/dailyne
ws/silicon_insights_seybold_010716.html#1,
“Spectral Efficiency, Which technologies work
best?,” Andy Seybold, July 2002.

[6] http://www.byte.com/documents/s=693/byt19990811s
0006/index.htm, August 1999.

[7] http://www.pctel.com/cellular_problem.php, other
references available upon request.

[8] Roger Riggs et. al., “Programming Wireless Devices
with the Java 2 Platform,” Micro Edition.

[9] ARC Group, “Wireless Java 2002 Handset and
Application Revenue Streams.”

AUTHORS’ BIOGRAPHIES
Lynn Comp is a strategic marketing engineer in the
Wireless Computing and Communications Group at Intel
Corporation and has been active in the portable and
wireless computing market for the last six years, setting
strategy for WCCG in runtime environments and software
platforms. Prior to her involvement in the wireless and
portables’ market, Lynn was an applications engineer on
data communications silicon supporting customers
developing routers, cellular basestations, and WAN/LAN
bridges. Lynn has a B.S.E.E. degree from Virginia Tech
and an MBA degree in Technology Management from the
University of Phoenix. Her e-mail is
lynn.a.comp@intel.com

Tim Dobbing has more than 15 years of software
architecture, design, and implementation experience in the
telecommunications industry in the areas of network
management, high availability, traffic management, and
call processing for a variety of technologies including
CDMA, ATM and ISDN. In his current position as a
J2ME Architect at Intel Corporation, his focus is on the
specification of a J2ME reference architecture for Intel’s
Personal Internet Client Architecture (PCA). Other Java

http://www.wired.com/news/mac/0,2125,54580,00.html
http://www.wired.com/news/mac/0,2125,54580,00.html
http://www.fortune.com/fortune/fsb/specials/innovators/dubinsky.html
http://www.fortune.com/fortune/fsb/specials/innovators/dubinsky.html
http://www.microjava.com/articles/perspective/shosteck?content_id=2179
http://www.microjava.com/articles/perspective/shosteck?content_id=2179
http://java.sun.com/features/2000/06/time-line.html
http://more.abcnews.go.com/sections/business/dailynews/silicon_insights_seybold_010716.html#1
http://more.abcnews.go.com/sections/business/dailynews/silicon_insights_seybold_010716.html#1
http://www.byte.com/documents/s=693/byt19990811s0006/index.htm
http://www.byte.com/documents/s=693/byt19990811s0006/index.htm
http://www.pctel.com/cellular_problem.php
mailto:lynn.a.comp@intel.com

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Abstractions in the Wireless and Handheld Space 76

experience includes the architecture, design, and
implementation of a Web-based Management solution for
a CDMA Base Station Subsystem using J2SE and
PersonalJava. Tim received a B.E. and an M.E. degree in
Electrical Engineering in 1984 and 1990, respectively
from Carleton University in Ottawa, Canada, and he is a
member of the Association of Professional Engineers,
Geophysicists, and Geologists of Alberta (APEGGA).
His e-mail is timothy.c.dobbing@intel.com

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

mailto:timothy.c.dobbing@intel.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Managed Runtime Environments for Next-Generation Mobile Devices 77

Managed Runtime Environments for Next-Generation
Mobile Devices

Paul Drews, Intel R&D, Intel Corporation
Doug Sommer, Intel R&D, Intel Corporation
Roger Chandler, Intel R&D, Intel Corporation

Terry Smith, Intel R&D, Intel Corporation

Index words: Mobile, Handset, Wireless, Services, Mobile Data, Operator, Mobile Applications

ABSTRACT
The adoption of cellular communications has been one of
the fastest growing technology trends in history. Many
analysts predict that the demands of our increasingly
wireless world will result in the rapid convergence of
cellular communications and powerful, handheld
computing devices, enabling a wide array of exciting new
user experiences. By 2006, the analyst firm Instat/MDR
predicts there will be over 760M Internet-enabled mobile
devices in use (1), and the ARC Group predicts that by
2007, over 1.7 billion users will utilize wireless data
services (2). Intel is a leading building block supplier to
this new converged device industry with our Flash
memory products, our high-performance Intel XScale™
mobile application processor family, and our Personal
Internet Client Architecture (PCA) for mobile computing
devices and handsets. Intel is also developing key
technologies that will accelerate the adoption of managed
runtime environments (MRTEs) for mobile devices. The
industry predicts that the majority of converged devices
will include MRTEs (primarily in the form of J2ME and
.NET∗) and because of this, MRTEs are a key component
of Intel’s overall mobile industry strategy.

This paper describes how MRTEs are important enabling
technologies for the future of wireless computing and how
they are contributing to the fast delivery of wireless data
services. The term “managed runtime environment” as
used in this paper refers to new functionality and
technologies that extend the capabilities of the first

Intel® XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
∗ Other brands and names are the property of their
respective owners.

generation of runtime environments, notably, the Java∗

Virtual Machine and the Microsoft .NET Framework.
These first-generation MRTEs need to evolve further to
serve the demands of the mobile data market. We also
illustrate how PCA is the ideal platform to take full
advantage of MRTEs, and we conclude with descriptions
of Intel’s R&D to enable the next generation of MRTEs
for mobile devices

INTRODUCTION
The launch of cellular communications several years ago
had one purpose in mind: mobile voice communication.
Analog-based voice communication was the sole purpose
of cellular handsets for many years until the transition to
digitized voice data came about in the 1990s. Regardless
of the type, cellular handsets and networks were
architected and deployed to accommodate voice traffic. It
was not until the introduction and ensuing popularity of
Short Messaging Services (SMS) that cellular operators
and handset manufacturers began to explore the
possibilities and ramifications of building systems capable
of handling a wide range of digital datatypes. The
promise of 2.5G and 3G networks, widely deployed
wireless LANs, in combination with the Internet
explosion, has fueled a global demand for cellular
handsets that deliver both voice communications and
general-purpose computing capabilities.

Most cellular network operators and handset
manufacturers have either announced or begun
deployment of first-generation data applications and
services for cellular handset users. These initial
applications include 2D games, electronic mail, multi-
media messaging, personal information management, and
a host of other applications once found only on personal
computers. As more data-intensive mobile applications
are deployed, developers and service providers are

Intel Technology Journal, Vol. 7, Issue 1, 2003

Managed Runtime Environments for Next-Generation Mobile Devices 78

encountering troublesome issues stemming from the
heterogeneity of today’s mobile device platforms. In
order to successfully deploy a wide range of mobile data
applications and services, the device platform itself needs
a consistent software interface layer that developers can
rely upon when developing and deploying applications.
This will serve to not only insulate the mobile application
developer from the underlying hardware and software
variables of the device, but also create a “common
platform” necessary to jump-start a new wave of mobile
applications. This interface layer, so to speak, must also
protect the integrity of the device’s core capabilities and
enable the service provider to more effectively install,
manage, and maintain the applications and services on the
device. This layer is a managed runtime environment
(MRTE).

BENEFITS OF MANAGED RUNTIME
ENVIRONMENTS
The term “managed runtime environment” as used here
refers to new functionality and technologies that extend
the capabilities of the first generation of runtime
environments, notably the Java Virtual Machine and the
Microsoft .NET∗ Framework. MRTEs provide an exciting
array of benefits to mobile application developers,
operators, and end users, as follows:

• A platform-independent programming environment
that makes it far easier (than native code) to move
applications between platforms.

• A sandbox runtime environment that prevents rogue
programs from disrupting the platform.

• Garbage-collection-style memory management and
incorrect-reference (pointer) protection that together
nearly eliminate a major source of programming
errors.

• A dynamic code-loading mechanism that makes it
easier to extend platform capabilities with new
applications and class libraries.

These benefits are so substantial that MRTEs should be
considered an essential design element of all new mobile
device designs. Figure 1 below represents the
architectural framework for an MRTE.

∗ Other brands and names are the property of their
respective owners.

Figure 1: Architectural framework for MRTEs

Further Development of MRTEs
While MRTEs provide many benefits, today’s managed
execution environments need to evolve further to serve the
growing demands of the mobile communications and
computing industry. Increasing the intelligence and
capabilities of mobile clients introduces many new
applications and services to mobile devices, such as Web
access, e-mail, and multimedia application processing.
With these new capabilities, it is critical that the
communication capabilities and integrity of the device be
protected, even in the presence of unauthorized
applications. Several kinds of protection need to be built
into the platform to ensure highly reliable
communications, including the following:

• Communications need to be isolated from
applications.

• Applications need to be isolated from one another.

• Resource management and recovery need to be built
into the platform.

Wireless communications also need to guard against
incorrect or malicious devices in the environment.

ESSENTIAL BUILDING BLOCKS FOR
THE NEXT GENERATION OF MANAGED
RUNTIME ENVIRONMENTS
Through internal technology development and partnering
with key technology providers in the industry, Intel is
committed to ensuring future MRTEs meet the
requirements of next-generation mobile applications and
services. To deliver on this vision, Intel is creating
building blocks that meet the following criteria:

Intel Technology Journal, Vol. 7, Issue 1, 2003

Managed Runtime Environments for Next-Generation Mobile Devices 79

• Standardized. The mobile software development
environment demands this attribute in order for
manufacturers and operators to ensure
interoperability. Communities and standards groups
such as the Open Mobile Alliance (OMA) and the
Java Community Process (JCP) are therefore
essential.

• Open. The best specifications are those that are
developed by a wide array of contributors, thereby
meeting the needs of the entire mobile industry. Intel
sees tremendous value in creating building blocks
whose functionality was specified by many
contributors.

• Optimized. Intel is working diligently to ensure that
MRTE building blocks run efficiently on our
architectures and deliver value to application
developers, original equipment manufacturers
(OEMs), and carriers.

• Scalable. Application developers are confronted by a
myriad of platform choices in targeting applications.
Requiring a unique application image for each
platform increases development cost and complexities
for independent software vendors (ISVs) and carriers.
Enabling seamless scalability across the range of
mobile platforms, from low-end cellular terminals to
high-end “Smart Phones,” is a key design
requirement.

• Adaptable. MRTEs and the applications that take
advantage of them are evolving rapidly. In
anticipation of the needs of newly emerging MRTE
standards, the low-level building blocks provided by
mobile platforms need to be more general-purpose
and more powerful than what is offered today. This
enables rapid time-to-market for system designers by
allowing them to adapt the platform’s foundation
capabilities quickly and efficiently to the new
standards.

With these criteria in mind, Intel and its partners are
working hard on the next generation of MRTE building
blocks, which are described next.

MRTE Building Blocks
Described below are some of the attributes of the next
generation of MRTE building blocks.

• Advanced dynamic compilers. The initial versions of
MRTEs for cellular terminals were generally reliant
on interpreted execution. This was fine for simplistic
data applications, but it fails to meet the performance
requirements of the latest mobile applications and
services. Combined with the latest advances in
mobile application processor technology found in the

Intel XScale technology family, advanced dynamic
compilers deliver superior performance within a
memory-constrained environment.

• Platform management. One of the most resource-
intensive aspects of cellular operations is the
customer care requirement for deployed handsets.
Diagnosing and resolving customer problems in an
efficient manner can enhance the operator’s bottom
line. New platform management technologies will
enable carrier operations to more quickly spot and fix
software problems and identify hardware issues for
replacement or repair.

• Extended battery life. A key criterion in the end-user
selection process is battery life, both standby and
talk-time. The addition of data services will only
increase the demand for battery-saving technologies.
Intel is hard at work, both at the platform level and in
the MRTE environment, to deliver power
management capabilities and more power-efficient
components and building blocks.

• Flash management. The Intel Personal Internet Client
Architecture (PCA) supports scaling of flash memory
over a wide range of densities and mid-level building
blocks for a flash file system.

• Secure provisioning. The industry’s “best known
methods” for checking the integrity and permissions
of software and commands centers on verifying
digital signatures against configured public keys that
specify their authorized source. A secure
provisioning building block provides capabilities for
configuring authorization keys; verifying digital
signatures of software, commands, or other data;
defining sets of permissions and associating them
with authorities; and checking permissions. This
foundation building block can easily be adapted to
implement current and emerging provisioning
standards.

• Resource monitor and recovery. These functions
provide a generic mechanism for the managed
runtime environment to track the allocation of system
resources, such as peripherals, and to recover the
resources in the event of an unexpected application
termination or failure to return resources.

Intel XScale is a registered trademark of Intel
Corporation or its subsidiaries in the United States and
other countries.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Managed Runtime Environments for Next-Generation Mobile Devices 80

• User-data management. These interfaces provide a
framework for applications to separate data created
by the user from application installation data, giving
the ability to backup, remove, and restore user data
and application data independent of one another.

• Data location management. This building block
supports an evolving industry trend toward flexibility
and transparency regarding the actual location (local
or remote) of a persistent data object to promote “go-
anywhere, access-anytime” availability of data.

DELIVERING A MOBILE DEVICE
PLATFORM OPTIMIZED FOR
MANAGED RUNTIME ENVIRONMENTS
Intel has a long history of delivering building block
components to the computing industry. Delivering high-
performance platform components for the converged
communications and computing industry is a top strategic
priority for Intel. Achieving the best-possible
performance often involves a particular challenge: on the
one hand, a performance improvement frequently takes
advantage of a particular hardware feature; while on the
other hand, it is important to keep applications free from
particular hardware dependencies so that they can scale to
a wide variety of devices.

A highly effective technique for meeting both of these
criteria is to identify areas where performance is critical,
optimize them with native features at a low level, and
adapt these low-level optimizations to widely used,
standardized industry interfaces. In this way, applications
only “see” standardized interfaces, so they may run
anywhere, while still getting higher performance on
optimized platforms.

Some current and future fruitful areas that Intel has found
for optimization are briefly described below:

• Intel Integrated Performance Primitives. These
primitives provide high-speed implementations of
functions used in algorithms such as multimedia
codecs (encoder/decoder engines). They significantly
reduce the time and effort spent on algorithm
development. The Intel Performance Primitives
Library is a low-level building block that may be used
as the foundation for other mid-level building blocks
such as media playback and graphics.

• Real-time media playback. A rapidly emerging use
for mobile devices is in the area of playback of real-
time media types such as audio and video, either from

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

streaming or stored sources. This tends to demand
high computation rates to achieve good playback
quality and high compression or decompression
ratios. A current R&D effort is focused on producing
a high-performance optimized JSR 135 Java Mobile
Media framework, including a set of audio and video
players for popular formats.

• High-performance graphics. Mobile devices are
experiencing rapidly increasing use for graphics-
intensive gaming. Today’s mobile games emphasize
2D animation, scrolling, and sprites. As this trend
continues, we can expect such games to expand to 3D
graphics. Future R&D efforts will focus on
producing optimized implementations of the mobile
information device profile (MIDP) 2.0 2D gaming
additions and the JSR 184 3D graphics libraries.

• Execute in place. This library provides functions for
optimizing application modules for high-speed start-
up directly out of flash memory. It does not have a
distinct interface directly available to applications but
would instead be integrated into the loader or the
optimizing compiler of a managed runtime
environment (MRTE) virtual machine.

Delivering high-performance, memory-efficient, and
energy-friendly MRTE solutions is a tricky balance.
MRTE solutions must also conform to industry standards
and scale across a range of platform capabilities. The
need for optimized libraries grows along with the rapid
emergence of new MRTE libraries. One company alone
is not up to the optimization task. Intel has developed a
number of initiatives and established a broad range of
industry partnerships to enable “best-of-class” MRTE
support. Some of these efforts are described below:

• Tools. Intel has developed or supported the
development of several different optimizing tool-
chains for the Intel XScale software creation.
Details can be found at
http://www.intel.com/software/products/. In addition,
Intel has released a version of its award-winning
VTune optimization tool to better support software
developers creating high-performance software for
our architecture.

• Guides. The Intel XScale architecture is a
tremendous advance over our previous StrongARM
implementation, both in terms of processor clock
frequency and in the detail of its microarchitecture.
To assist the software developer in building high-

Intel XScale is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

http://www.intel.com/software/products/

Intel Technology Journal, Vol. 7, Issue 1, 2003

Managed Runtime Environments for Next-Generation Mobile Devices 81

performance Intel XScale applications and MRTEs,
developer documentation can be found at
http://www.intel.com/design/intelxscale.

• Partnerships. Intel has established a number of
critical relationships for “best-of-class” MRTE
solutions. Many of these have yet to be publicly
announced. Combined with superior platform and
architecture technology, these efforts will enable new
classes of mobile applications and services that will
drive new business opportunities for operators and
manufacturers alike.

CONCLUSION
Mobile data applications represent the next big revenue
opportunity for the wireless industry. New hardware and
software technologies will enable mobile handsets to run
Internet-aware applications and Web services, and
managed runtime environments like Java∗ and Microsoft
.NET∗ Framework are making it easier to quickly create,
deploy, and manage mobile data applications. Managed
runtime environments effectively insulate applications
from the variables of the systems they run on, reducing
development time and easing deployment. They also help
provide secure, manageable, and connected applications
to users, increasing the demand for data services on
wireless networks.

Still, the technological and business challenges facing
today’s mobile application developer are complex,
daunting, and rapidly changing. Managed runtime
environments provide the device independence, software
portability, speed of development, and security that
today’s Internet applications demand, while the Intel
Personal Internet Client Architecture, coupled with Intel’s
software building blocks allow hardware and software
developers to more easily implement these capabilities in
new handheld designs. These systems can take advantage
of low-level hardware features for efficiency while
supporting high-level standards, thus allowing application
interoperability across a wide range of devices.

REFERENCES
 [1] Instat/MDR, Mobile Internet Access Devices, 2002-2007,

April 2002.

[2] ARC Group, Future Mobile Handsets: Worldwide
Technology & Market Developments, 2002-2007,
April 2002.

∗ Other brands and names are the property of their
respective owners.

AUTHORS’ BIOGRAPHIES
Paul Drews is a senior software engineer in the Emerging
Platforms Lab, currently working on performance-
optimized Java∗ libraries for Intel XScale™ technology.
Mr. Drews has been with Intel for over 20 years, and he
has been awarded eight patents in the areas of operating
system performance, graphics, distributed hypertext, and
security. He also received an Intel Achievement Award
for his work on the WinSock 2 project. Drews received
his B.A. degree from Luther College with triple majors in
physics, mathematics, and computer science. His e-mail is
paul.drews@intel.com.

Doug Sommer is a senior engineering manager in Intel’s
Emerging Platforms Lab. Doug and his group are focused
on high-performance virtual machine technologies and
new manageability and security capabilities for mobile
platforms. Doug has worked for Intel for the last eleven
years on projects such as development tools, digital video,
new media, Java technology, and mobile platform
building blocks. He holds a B.S. degree in Computer
Science from Oregon State University. His e-mail is
doug.sommer@intel.com.

Roger Chandler is a Market Development Manager in
Intel’s Emerging Platform Lab. While at Intel, his areas
of focus have included manufacturing process analysis,
high-performance 3D technologies, and home networking.
He was a 2001 recipient of an Intel Achievement Award
for his work in the field of Web 3D. He is currently
focused on market development strategies for Intel’s many
wireless technology initiatives. He holds an MBA degree
from the University of Georgia and a B.A. degree from
the University of Tennessee. His e-mail is
roger.d.chandler@intel.com.

Terry Smith is a Business Development Manager in
Intel’s Emerging Platform Labs, focusing on Intel’s work
in Managed Runtime Environments and Mobile
Architectures. Previously he was responsible for Intel’s
Common Data Security Architecture strategy. He holds
an MBA from the University of Texas-Austin and a B.S.
degree in Math/CS from the University of Illinois. His e-
mail is terry.a.smith@intel.com.

∗ Other brands and names are the property of their
respective owners.

Intel XScale is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

http://www.intel.com/design/intelxscale
mailto:paul.drews@intel.com
mailto:doug.sommer@intel.com
mailto:roger.d.chandler@intel.com
mailto:terry.a.smith@intel.com

Intel Technology Journal, Vol. 7, Issue 1, 2003

Managed Runtime Environments for Next-Generation Mobile Devices 82

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Copyright © 2002, Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information vistit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

Paper7cover.qxd 1/31/03 9:06 AM Page 2

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

	1_OPENRUN_HIPERF.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org
	1_HighPerformanceMRTEWeb3.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org

	2_STARJIT.pdf
	A
	ABSTRACT
	INTRODUCTION
	THE ARCHITECTURE OF THE STARJIT COMPILER
	Java(and Common Language Infrastructure Bytecode Translators
	STIR: The StarJIT Compiler’s Intermediate Representation
	Itanium(Processor Family and IA-32 Code Generators
	Dynamic Profile-Guided Optimizations

	GLOBAL OPTIMIZER
	Intermediate Representation Simplification Passes
	Scope Enhancement Passes
	Privatization Passes
	Redundancy Elimination Passes

	THE ITANIUM PROCESSOR FAMILY CODE GENERATOR
	Trace Scheduler Design

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	2_StarJITWeb4QA1.pdf
	A
	ABSTRACT
	INTRODUCTION
	THE ARCHITECTURE OF THE STARJIT COMPILER
	Java(and Common Language Infrastructure Bytecode Translators
	STIR: The StarJIT Compiler’s Intermediate Representation
	Itanium(Processor Family and IA-32 Code Generators
	Dynamic Profile-Guided Optimizations

	GLOBAL OPTIMIZER
	Intermediate Representation Simplification Passes
	Scope Enhancement Passes
	Privatization Passes
	Redundancy Elimination Passes

	THE ITANIUM PROCESSOR FAMILY CODE GENERATOR
	Trace Scheduler Design

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_ENTERPR_JAVA.pdf
	A
	ABSTRACT
	INTRODUCTION
	APPLICATION SERVERS
	P

	PERFORMANCE TUNING METHODOLOGY
	SYSTEM-LEVEL PERFORMANCE
	Case Study 1: Database Tuning

	APPLICATION-LEVEL PERFORMANCE
	Tuning Key Application Server Parameters
	Tuning Key Container Parameters
	Case Study 2: Application Tuning

	MACHINE-LEVEL PERFORMANCE
	JVM-Level Performance
	Memory Management
	Code Generation
	Thread Management
	JVM Configuration

	Case Study 3–JVM Tuning
	Hardware-Level Performance

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	3_EnterpriseJavaWeb32QAR1.pdf
	A
	ABSTRACT
	INTRODUCTION
	APPLICATION SERVERS
	P

	PERFORMANCE TUNING METHODOLOGY
	SYSTEM-LEVEL PERFORMANCE
	Case Study 1: Database Tuning

	APPLICATION-LEVEL PERFORMANCE
	Tuning Key Application Server Parameters
	Tuning Key Container Parameters
	Case Study 2: Application Tuning

	MACHINE-LEVEL PERFORMANCE
	JVM-Level Performance
	Memory Management
	Code Generation
	Thread Management
	JVM Configuration

	Case Study 3–JVM Tuning
	Hardware-Level Performance

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	4_DEVEL_ASP_NET.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	4_Asp_netPlatformWeb31Q.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	5_RUNTIME_SECUR.pdf
	A
	ABSTRACT
	INTRODUCTION
	MOBILE CODE SECURITY: JAVA(AND THE .NET(ENVIRONMENTS
	THE EVOLUTION OF THE JAVA(RUNTIME ENVIRONMENT’S SECURITY MODEL
	The Java Sandbox Model
	JVM Security

	THE .NET(FRAMEWORK COMMON LANGUAGE RUNTIME SECURITY MODEL
	The CLR Code Access Security Model
	The CLR Role-Based Access Model
	Comparison Between the JRE and CLR Security Models
	The Clark-Wilson Security Model

	DISCUSSION
	Resource Integrity
	Execution-Time Checking
	Data Protection
	Communication Security
	Code-Access Security
	User Authentication
	Auditing and Tracking
	Managed and Unmanaged Code

	FUTURE OF RUNTIME SECURITY
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR’S BIOGRAPHY

	6_RUNTIME_ABSTRCT.pdf
	A
	ABSTRACT
	A BRIEF HISTORY OF THE CELLULAR INDUSTRY
	THE GREAT UNIFIER
	Java in Wireless
	Java in the Wireless Client Device–Devices Now vs. Devices of the Future

	OTHER MANAGED RUNTIME ENVIRONMENTS
	Technical Tradeoffs in a Difficult Software Environment

	THE INTEL APPROACH TO MANAGED RUNTIME ENVIRONMENTS
	FRAGMENTATION AND RE-UNIFICATION
	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	6_RunTimeAbstractionsWeb.pdf
	A
	ABSTRACT
	A BRIEF HISTORY OF THE CELLULAR INDUSTRY
	THE GREAT UNIFIER
	Java in Wireless
	Java in the Wireless Client Device–Devices Now vs. Devices of the Future

	OTHER MANAGED RUNTIME ENVIRONMENTS
	Technical Tradeoffs in a Difficult Software Environment

	THE INTEL APPROACH TO MANAGED RUNTIME ENVIRONMENTS
	FRAGMENTATION AND RE-UNIFICATION
	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	7_MANAGE_RUN_NEXT.pdf
	A
	INTRODUCTION
	BENEFITS OF MANAGED RUNTIME ENVIRONMENTS
	Further Development of MRTEs

	ESSENTIAL BUILDING BLOCKS FOR THE NEXT GENERATION OF MANAGED RUNTIME ENVIRONMENTS
	MRTE Building Blocks

	DELIVERING A MOBILE DEVICE PLATFORM OPTIMIZED FOR MANAGED RUNTIME ENVIRONMENTS
	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_DEVEL_ASP_NET.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	4_Asp_netPlatformWeb31Q.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_Asp_netPlatformWeb31Q.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_DEVEL_ASP_NET.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	4_Asp_netPlatformWeb31Q.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	4_Asp_netPlatformWeb31Q.pdf
	ABSTRACT
	INTRODUCTION
	WORKLOAD DESCRIPTION
	Hardware Description
	S
	System Software Description
	Application Description
	Performance Data

	OPTIMIZATION
	System-Level Optimizations
	Application-Level Optimizations
	Caching
	How to Use .NET’s Object Cache
	Proper Use of the Object Cache
	Finding Under-Caching and Over-Caching
	Start From the Ground Up
	Observe What is Removed From Cache
	Manually Instrument Use of Cache
	Using ASP.NET Output Caching
	How to Choose Which Type of Caching to Use

	Session State Usage Tuning
	Server-Side Control Guidelines

	Software Configuration Issues
	Request Queue Limit
	Maximum Thread Count

	ADO .NET Related Optimizations

	WORKLOAD EVOLUTION
	Distributed Computing Scenarios
	Web Services
	.NET Remoting API

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_RUNTIME_ABSTRCT.pdf
	A
	ABSTRACT
	A BRIEF HISTORY OF THE CELLULAR INDUSTRY
	THE GREAT UNIFIER
	Java in Wireless
	Java in the Wireless Client Device–Devices Now vs. Devices of the Future

	OTHER MANAGED RUNTIME ENVIRONMENTS
	Technical Tradeoffs in a Difficult Software Environment

	THE INTEL APPROACH TO MANAGED RUNTIME ENVIRONMENTS
	FRAGMENTATION AND RE-UNIFICATION
	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	6_RunTimeAbstractionsWeb.pdf
	A
	ABSTRACT
	A BRIEF HISTORY OF THE CELLULAR INDUSTRY
	THE GREAT UNIFIER
	Java in Wireless
	Java in the Wireless Client Device–Devices Now vs. Devices of the Future

	OTHER MANAGED RUNTIME ENVIRONMENTS
	Technical Tradeoffs in a Difficult Software Environment

	THE INTEL APPROACH TO MANAGED RUNTIME ENVIRONMENTS
	FRAGMENTATION AND RE-UNIFICATION
	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	6_RunTimeAbstractionsWeb.pdf
	A
	ABSTRACT
	A BRIEF HISTORY OF THE CELLULAR INDUSTRY
	THE GREAT UNIFIER
	Java in Wireless
	Java in the Wireless Client Device–Devices Now vs. Devices of the Future

	OTHER MANAGED RUNTIME ENVIRONMENTS
	Technical Tradeoffs in a Difficult Software Environment

	THE INTEL APPROACH TO MANAGED RUNTIME ENVIRONMENTS
	FRAGMENTATION AND RE-UNIFICATION
	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	2_STARJIT.pdf
	A
	ABSTRACT
	INTRODUCTION
	THE ARCHITECTURE OF THE STARJIT COMPILER
	Java(and Common Language Infrastructure Bytecode Translators
	STIR: The StarJIT Compiler’s Intermediate Representation
	Itanium(Processor Family and IA-32 Code Generators
	Dynamic Profile-Guided Optimizations

	GLOBAL OPTIMIZER
	Intermediate Representation Simplification Passes
	Scope Enhancement Passes
	Privatization Passes
	Redundancy Elimination Passes

	THE ITANIUM PROCESSOR FAMILY CODE GENERATOR
	Trace Scheduler Design

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES
	2_StarJITWeb4QA1.pdf
	A
	ABSTRACT
	INTRODUCTION
	THE ARCHITECTURE OF THE STARJIT COMPILER
	Java(and Common Language Infrastructure Bytecode Translators
	STIR: The StarJIT Compiler’s Intermediate Representation
	Itanium(Processor Family and IA-32 Code Generators
	Dynamic Profile-Guided Optimizations

	GLOBAL OPTIMIZER
	Intermediate Representation Simplification Passes
	Scope Enhancement Passes
	Privatization Passes
	Redundancy Elimination Passes

	THE ITANIUM PROCESSOR FAMILY CODE GENERATOR
	Trace Scheduler Design

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

