
Intel®

Technology
Journal

Network Processors

Volume 06 Issue 03 Published, August 15, 2002 ISSN 1535766X

This issue of Intel Technology Journal (Volume 6, Issue 3, 2002) explores the exciting
advances in the development of network processors and shows how they are fast
becoming the silicon core of next-generation networking.

IXA Portability Framework:
Preserving Software

Investment in Network
Processor Applications

Network Processor
Building Blocks for All-IP

Wireless Networks

Implementing Voice over
AAL2 on a Network

Processor

Challenges and
Methodologies for

Implementing High-
Performance Network

Processors

The Next Generation of
Intel IXP Network

Processors

Network Processor
Performance Analysis

Methodology

Packet over SONET:
Achieving 10 Gigabit/sec

Packet Processing with an
IXP2800

Security: Adding Protection
to the Network via the

Network Processor

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

Inside you’ll find the following papers:

Cover.qxd 8/8/02 1:58 PM Page 1

http://developer.intel.com/technology/itj/index.htm

Articles

Preface 3

Foreword 4

The Next Generation of Intel IXP Network Processors 6

Network Processor Performance Analysis Methodology 19

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing
with an IXP2800 29

Security: Adding Protection to the Network via the Network Processor 40

IXA Portability Framework: Preserving Software Investment in
Network Processor Applications 50

Network Processor Building Blocks for All-IP Wireless Networks 61

Implementing Voice over AAL2 on a Network Processor 70

Challenges and Methodologies for Implementing High-Performance
Network Processors 83

Volume 06 Issue 03 Published, August 15, 2002 ISSN 1535766X

Intel® Technology Journal

Network Processors

Cover.qxd 8/8/02 1:58 PM Page 2

Preface 3

Preface Q3, 2002 Intel Technology Journal
By Lin Chao

Network processors are microprocessors designed specifically for packet processing, a
core element of high-speed communication routers. Despite the recent communications
industry downturn, network processor technologies continue to advance rapidly. Similar
to the microprocessors used in a PC, a network processor is a programmable chip, but its
instruction set has been optimized to support the operations that are needed in
networking, especially for packet processing. A number of companies, including Intel
Corporation, have developed network processors. The Intel network processors are based
on the Intel® Internet Exchange Architecture (Intel® IXA), and include the IXP2800,
IXP2400, and IXP1200 processors.

The trend toward using network processors is exciting for two main reasons. First, the use
of network processors provides a way of developing high-speed routers, using standard,
off-the-shelf hardware. Until now, the main router functions have been performed either
in software (for the low-end routers) or with the use of expensive custom hardware (for
high-end routers). Second, because the network processors are programmable, they
support the development of high-speed routers that are flexible, in the sense that their
functionality can be easily modified or extended by downloading new code. A network
vendor could develop this code, or the code could potentially come from a third party or
from the users of the equipment. This means that network processors would be the
foundation for programmable or active networks.

There are three important elements in Intel’s IXA as a network processing architecture.

Microengine technology – a subsystem of programmable, multi-threaded microengines
that has high-performance packet processing.

Intel® XScale™ technology – provides the highest performance-to-power ratio in the
industry, with performance up to 1000 MIPS and power consumption as low as 10mW.

The Intel IXA Portability Framework – a modular programming framework providing
software code portability advantages.

This issue (Vol. 6 Issue 3, 2002) of Intel Technology Journal gives a detailed look into
the exciting advances in the development of network processors. The first three papers
explain Intel's next generation of network processor architecture, network security, and
chip design challenges. The fourth and fifth papers look at performance methodologies
and how to achieve high-rate packet throughput. The sixth paper discusses the IXA
Portability Framework, which provides developers with software portability. The last two
papers address voice over AAL2 on a network processor and building wireless networks.
These eight papers show how network processors are fast becoming the silicon core of
next-generation networking.

Foreword

4

Foreword Q3, 2002 ITJ

Innovations in Network Processors
By Jim Finnegan
Co-General Manager, Network Processor Division, Intel Communications Group

Moore’s Law has a timeless reassuring certainty, yielding a relentless

improvement in the cost and performance of the PC/workstation/server. While there is an
obvious correlation between the speed of networks required to effectively distribute such
PCs/workstations/servers, a less intuitive requirement for networks is the ability to
simultaneously support different traffic types (voice, data, video), each with its own
disparate properties of latency, error-rate tolerance, jitter, etc. Even though competing
networking technologies, such as ATM, frame relay, and SNA, have converged on
TCP/IP as the ubiquitous networking protocol, many generic challenges remain, such as
address space (IPV6) and security. Furthermore, customer innovation demands the ability
to inspect each packet payload and even routing decisions based upon content!

The specialized packet-processing properties of networking have requirements
beyond those of general-purpose microprocessors. Historically, networking equipment
manufacturers have been forced to develop ASICs for this task. There are a number of
disadvantages with ASICs; notably, they are inherently inflexible and expensive to
develop. They also trail emerging standards and invariably are implemented in a lagging
process technology. Such a scenario has presented Intel with the huge opportunity to
develop a new class of processor–the network processor. This issue of Intel Technology
Journal is dedicated to network processors.

As stated above, the genesis of network processors came from the realization that
an ASIC-based design approach offers neither the flexibility nor the time-to-market
benefits required for increasingly higher data rates, evolving networking standards, and
customer demand for extensive and versatile packet/cell processing capability. The
classical networking challenge is to maintain stability while maximizing throughput and
minimizing latency for the worst-case traffic. The case of OC-192 (10 Gigabits/sec)
Packet over SONET (POS) for minimum packet size (49 bytes) presents significant
processing and memory bandwidth challenges, equating to a throughput of 28 million
packets per second or service time of 4.57 usecs per packet for transmit and receive.
Considering the array of tasks per packet (e.g., route lookup, metering, policing,
congestion avoidance, statistics, transmit scheduling, etc.), it is necessary to be able to
sustain a processing capability of over 23,000 MIPs and packet memory bandwidth in
excess of 40 Gigabits/sec. The introduction of Intel’s latest members of the IXP network
processor family solves this difficult problem using the IXP2800, as well as using the
IXP2400 to solve similar problems at lower line rates.

One of the distinguishing features of the IXP network processors is the
microengine cluster, which provides the demanding processing capability to service the
packet arrival rate. There are 16 microengines running at 1.4GHz in the IXP2800, while
the IXP2400 can service OC-48 traffic with 8 microengines running at up to 600MHz.
Each microengine has a six-stage pipeline, low-latency local memory, and support of
multiple threads to maximize utilization of processing capabilities. Since OC-192 packets
are processed in real time, an elegant architectural feature was added to the IXP2800: a

http://www.intel.com/research/silicon/mooreslaw.htm

Foreword

5

full-duplex cryptographic unit. This was added to support multiple encryption standards–
Data Encryption Standard (DES), Advanced Encryption Standard (AES), Secure Hash
Algorithm (SHA)–providing on-chip performance to encrypt and authenticate Ipsec at 10
Gigabits/sec when all of the traffic needs to be secured.

A number of detailed performance analyses for OC-192 POS and OC-48 voice
over AAL2 illustrate how to allocate the tasks per microengine in order to meet the very
challenging performance requirements. What is probably evident is the need to present
the users of these powerful network processors with a rich array of tools to develop their
respective applications. This has been addressed by providing a set of well-instrumented
development tools, pivotal to which is the Microengine C Compiler, deemed crucial to
our customers’ goals for software reuse. A formal software framework enables the
customer to accelerate software development and maximize reuse.

Reuse, in fact, is a key principle used in the development of these high-
performance processors, by which RTL is shared across geographically dispersed teams
with different target frequencies and process technologies. An additional item of note in
the development methodology is the innovative internally developed VMOD tool that
generates RTL and the corresponding C++ cycle-accurate model (Transactor), which
interfaces seamlessly with the development environment (Workbench).

The introduction of these new products to the IXP family confirms Intel’s
technology, performance, and innovation leadership position in a new and exciting
network processor market.

The Next Generation of Intel IXP Network Processors 6

The Next Generation of Intel IXP Network Processors

Matthew Adiletta, Mark Rosenbluth, Debra Bernstein,
Gilbert Wolrich, Hugh Wilkinson

 Intel Communications Group, Intel Corporation

Index words: network processors, IXP, communication architecture, routing, switching, Ethernet,
ATM, multi-service switches, multi-processors, microprocessor architecture, multi-threading, 10Gb/s,
OC-192, OC-48.

ABSTRACT
This paper describes the next generation of Intel Internet
eXchange Processors (IXPs). The IXP family of network
processors is growing with the addition of three new parts.
This paper focuses on the high-end IXP2800. The
IXP2800 is capable of 10Gb/s ATM, OC-192 POS, or
Ethernet data processing. The IXP2400 is a sibling and is
capable of sustained OC-48 or Quad Gigabit Ethernet data
processing. The third new member of the family is the
IXP440, which is a Customer Premise Equipment (CPE)
class device. The IXP2800 and IXP2400 share the
architectural chassis, major functional units and software
programming model, as well as the same instruction set.

This paper covers system architecture, micro-architecture,
and functional unit characteristics, and provides insights
into the challenges of processing an incoming cell or
packet every 35ns. Special attention is paid to the problem
of enqueuing and dequeuing onto and from a linked list
that is maintained in external memory. The challenge is
that cell and packet arrival rates are approaching the
external memory access latencies.

Finally, this paper concludes with future directions for the
IXP family.

INTRODUCTION
The IXP1200 is the first member of the IXP network
processor family. It has been designed into over 200
products at a wide range of companies and market
segments. Introduced in 1999, it provided OC-12 or
Gigabit Ethernet packet processing capability. The
IXP2800 and IXP2400 leverage many learnings from the
experiences of the IXP1200. In particular, refining the
computational needs and memory access bandwidths
required at different incoming line rates has led to
providing both

greater computational capability and memory bandwidth.
The IXP2800 provides over 23,000 MIPs, the IXP2400
4800 MIPs, and the IXP1200 1200 MIPs.

There are many competing approaches to network
processing. One approach is through dedicated hardware
state machines with configurability, or minimal software
programming capability. Another approach is through
very high-performance microprocessors that are provided
with a very flexible software programming capability.
The IXP family employs the flexible software approach,
with state-of-the-art compilers and debuggers. This
allows the IXP to address many market segments and
allows our customers to develop a base hardware platform
that they can then use in different applications.
Additionally, by providing a flexible software platform,
customers can download features and capabilities to
enhance product lifespans and product experiences.

The first section of this paper describes three system
architectures using the IXP2800. It is interesting to note
that the system architectures detailed may also be applied
to the IXP2400, albeit at a lower incoming cell or packet
rate.

The second section focuses on the internal architecture of
the IXP2800. The chassis, or the interconnection between
the different functional units, will be described, as well as
the major functional units.

The third section provides details on the microengine,
which is the processor arrayed in either 16 instantiations
for the IXP2800 or eight instantiations for the IXP2400.

The challenges of packet or cell processing at 10 gigabits
per second are then described along with the solution
employed by the IXP2800. Then flexibility versus
software complexity is discussed. The paper concludes
with a discussion of the future directions of the IXP high-
end processor.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 7

IXP2800 SYSTEM EXAMPLES
Many system architectures are possible employing the
IXP2800. This section details three configurations of
IXP2800 processors supporting various switching
applications.

Metro-LAN 10 Gigabit Ethernet Switching or
OC-192 Packet over SONET Switching Blade
In this system architecture, two IXP2800 network
processors are used (Figure 1). The top IXP2800 is used
for ingress processing. Ingress processing tasks may
include classification, metering, policing, congestion
avoidance, statistics, segmentation, and traffic scheduling
into a switching fabric. The bottom IXP2800 is used for
egress processing. Egress processing tasks may similarly
include reassembly, congestion avoidance, statistics, and
traffic shaping. Both input and output buffering are
supported using small DRAM buffers linked together by
linked lists maintained in SRAM.

SRAM Bulk
DRAM

Framer

Fabric

Interface
Chip

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

IXP2800
Ingress

Processor

IXP2800
Egress

Processor

SRAM Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

Figure 1: Metro-LAN 10 Gigabit Ethernet switching
or OC-192 Packet over SONET configuration

The framer interfaces to the two IXP2800 network
processors using the interface defined by the Optical
Internetworking Forum SPI-4.2 Implementation
Agreement. The fabric interfaces to the two IXP2800
network processors using the Common Switch Interface
Specification-L1 (CSIX-L1) protocol implemented on top
of the SPI-4.2 physical signaling. The ingress and egress
network processors present a single full-duplex interface
to the fabric, as if they were a single chip.

Packets are streamed into the ingress IXP2800 at or above
line rate. The processing of a packet begins upon receipt

of the initial part. The parts of a packet are received,
reassembled, processed, buffered into DRAM, and
enqueued for transmission into the fabric. Subsequently,
the packet is scheduled and transmitted into the fabric to
be processed by an egress IXP2800. The egress IXP2800
reassembles the packet in DRAM and queues the packet
for outgoing transmission. Subsequently, the packet is
transmitted out the egress framer. At both the ingress
IXP2800 and the egress IXP2800, packet data is written
to and read from DRAM only a single time. The DRAM
interface constists of three Rambus DRAM (RDRAM)
channels operating at a clock rate of up to 533MHz,
offering an aggregate peak bandwidth of 51Gb/s.

At a maximum packet rate of approximately 15 million
packets per second for 10 Gigabit Ethernet, the IXP2800
supports a service time of 8.53 usec per packet for receive
and transmit processing by distributing the processing
across 128 different computation threads. The IXP2800
can support the execution of up to 1493 microengine
instructions per packet (93 instructions per microengine *
16 microengines) at this packet rate and a clock rate of
1.4GHz.

At a maximum packet rate of approximately 28 million
packets per second for OC-192 Packet over SONET, the
IXP2800 supports a service time of 4.57 usec per packet
for receive and transmit. The IXP2800 can support the
execution of up to 800 microengine instructions per
packet at this packet rate and a clock rate of 1.4GHz.

The IXP2800 supports four QDR II SRAM interfaces that
may be clocked at up to 250MHz. Each interface supports
an independent read and write port, providing an
aggregate read rate of 32Gb/s and, simultaneously, an
aggregate write rate of 32Gb/s. These interfaces may be
used to access SRAM. Additionally, Ternary Content
Adressable Memories (TCAM), which support the same
interface, are becoming available.

Classification may be performed using TRIE data
structures in SRAM, hashing and collision resolution in
SRAM, and/or TCAM tables.

At 15 million packets per second, the IXP2800 provides
for 64 read and 64 write SRAM references per packet. At
28 million packets per second, the IXP2800 provides for
32 read and 32 write SRAM references per packet. The
references may be used for network address lookup, multi-
tuple classification, policing, packet or buffer descriptors,
queuing, statistics, and scheduling. The IXP2800
supports an aggregate rate in excess of 60 million queue
operations per second on one or multiple queues. The
number of queues that an IXP2800 supports is limited
only by the available SRAM capacity, not by any on-chip
resource limit. Tables 1 and 2 depict a possible allocation
of SRAM bandwidth.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 8

Table 1: Ingress possible allocation of SRAM
references

Function QDR
Reads

QDR
Writes

Destination address TRIE
route lookup

7

7-tuple TCAM rule lookup 1 5

Buffer descriptor 2 2

Queue and freelist linked-list
operations

6 6

Metering 3 3

Congestion avoidance
(WRED)

5 4

Per-rule statistics 2 2

Per (min-size) packet totals 26 22

Table 2: Egress possible allocation of SRAM
references

Function QDR
Reads

QDR
Writes

Reassembly context 2 2

7-tupple TCAM rule lookup 1 5

Buffer descriptor 2 2

Queue and freelist linked-list
operations

6 6

Congestion avoidance
(WRED)

5 4

Per-rule statistics 2 2

Per (min-size) packet totals 18 21

Varying product requirements will increase or decrease
the allocation of SRAM references per packet. For
instance, incorporating ATM segmentation and
reassembly into the processing flow will add a couple of
read and write references on ingress and egress. A
balanced system design will try to balance the
consumption of resources across ingress and egress
processors.

This configuration represents a cost-effective and
extremely flexible approach to basic packet processing at
10Gb/s rates.

10GB/S MULTI-SERVICE SWITCH
BLADE
In this system architecture, three IXP2800 network
processors are used (Figure 2). The ingress processing is
distributed across two IXP2800 network processors.

1st IXP2800
Ingress

Processor

Fabric
Interface

Chip

SRAM Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

SRAM

Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

2nd IXP2800
Ingress

Processor

IXP2800
Egress

Processor

SRAM

Bulk
DRAM

R
D
R

R
D
R

Q
D
R

Q
D
R

Framer

Figure 2: 10Gb/s multi-service configuration

The egress processing is accomplished with a single
IXP2800, as in the prior configuration.

The distinguishing characteristic about this configuration
is the division of labor between the 1st and 2nd ingress
IXP2800 processors. The configuration is intended to
support broadly varying rates of packet processing while
maintaining expected aggregate throughput rates.

The 1st ingress IXP2800 is responsible for transferring
received packet pieces into contiguous ring buffers in
DRAM, as they are received, with minimal processing.
Multiple rings may be supported, with the destination ring
identified by minimal packet classification. These rings
provide for an elasticity buffer to allow for varying rates
of packet processing performed subsequent to the storage
of the packets in DRAM. The size of the rings may vary,
based upon the expected arrival rate of the packets and the
elasticity requirements. Maintenance of the rings requires
minimal SRAM accesses but does require static allocation
of memory per ring. The smallest configuration of
DRAM that supports the maximum bandwidth (3 DRAM
components) supports 96 mega-bytes of storage.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 9

Smaller rings in SRAM shadow the rings in DRAM. The
entries in the SRAM rings provide status regarding the
processing of the packet and information to pass on to the
2nd ingress IXP2800 for final processing. Upon
completion of the processing of a packet in the 1st ingress
IXP2800, the status is updated. Earlier packets may
complete processing subsequently, but the ring insures in-
order forwarding to the 2nd ingress IXP2800, as the
packets are fetched from the ring in-order and only after
they complete processing.

As packet-processing threads become available, a
scheduling decision is made in software regarding which
rings should be serviced. Threads read sufficient parts of
packets in DRAM to process the packets. Threads may
take an arbitrary time to complete processing of the
packet, subject to the elasticity provided by the DRAM
buffering and the average packet arrival rate. Separately,
as Transmit Buffer (TBUF) elements become available,
the status of the rings is polled to forward packets to the
2nd ingress IXP2800.

The 1st ingress IXP2800 is best suited to performing
multi-level, multi-protocol packet classification and
editing. By design, most of the SRAM bandwidth is
available for classification. Update of flow-specific or
queue-specific state, including statistics, is deferred until
the 2nd ingress IXP2800. A digest is forwarded with the
packet that describes such state as needs updating. (The
bandwidth available through the SPI-4.2 physical interface
approaches 20Gb/s, accommodating the increased payload
per packet.)

The 2nd ingress IXP2800 receives packets with no packet
interleaving or limited packet interleaving, reducing the
accesses to SRAM to reassemble the packets. All
classification processing has been completed. The 2nd
ingress IXP2800 is responsible for any remaining
metering and policing, statistics, queuing and buffering,
congestion avoidance, and transmit scheduling into the
fabric.

By design, the division of labor between the 1st and 2nd
ingress processor distributes the use of SRAM bandwidth
across the two processors. The 1st ingress IXP2800
supports nearly arbitrary processing times, while
maintaining the order of packets within categories (rings).
The 2nd ingress IXP2800 updates shared state in-order.
The egress IXP2800 operates exactly as described in the
prior configuration that also uses a single egress IXP2800.

OC-48 (4 X OC-12 OR 16 X OC-3)
SWITCHING BLADE
In this system architecture, a single IXP2800 network
processor is used for both ingress and egress processing
(Figure 3). External silicon components multiplex the

data from the framer and fabric into the SPI-4.2/CSIX
receiver and distribute the transmit data from the SPI-
4.2/CSIX transmitter to the framer and fabric.

The IXP2800 supports the capability to simultaneously
multiplex the SPI-4.2 and the CSIX-L1 protocols on the
same interface. The switch chip allows interfacing to both
an OC-48 framer (probably using SPI-3 or UTOPIA Level
3) and a fabric supporting a CSIX-L1 interface.

SPI-4.2/CSIX
Switch Chip

Framer

Fabric

Interface
Chip

SRAM Bulk
DRAM

R
D
R

R
D
R

R
D
R

Q
D
R

Q
D
R

Q
D
R

Q
D
R

IXP2800
Full Duplex
Processor

Figure 3: OC-48 (4 x OC-12 or 16 x OC-3)
configuration

In this configuration, the IXP2800 is offered half of the
aggregate load supported by the prior configurations.
There is sufficient DRAM bandwidth to write packets to
DRAM on receptions and read them back for processing
as in the prior multi-service switching configuration,
although the packets are stored using the linked-list
organization of buffers. Rings of buffer descriptors are
used to enforce in-order enqueuing of the packets to
linked-list queues, just as in the prior configuration. The
different code paths for ingress and egress processing may
be handled on the same microengines or distributed across
different microengines in order to optimize the utilization
of the microcode stores. Finally, different microengines
are allocated to updating shared state in-order and
coherently.

THE IXP2800 MICROARCHITECTURE
The IXP2800 has 10 major internal units (Figure 4). The
IXP2400 also has 10 major units; however, a few of the
units have variations. The IXP2800 units and the
variations for the IXP2400 are described below.

The Media-Switch-Fabric Interface
The Media and Switch Fabric (MSF) Interface is used to
connect an IXP to a physical layer device (PHY) and/or a

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 10

switch fabric. The MSF consists of separate receive and
transmit interfaces. Each of the receive and transmit
interfaces can be separately configured on the IXP2800
for either SPI-4 Phase 2 (System Packet Interface) for
PHY devices or CSIX-L1 (Common Switch Interface
Specification, Layer 1) protocol for switch fabric
interfaces. Additionally, configuration provides for
multiplexing both protocols over the interface
simultaneously. The IXP2400 is similar; however, instead
of SPI-4 phase 2 signaling and protocol, the IXP2400

supports POS PHY Level 3 (dual 32-bit uni-directional
125MHz bus) and CSIX-L1 protocol.

The receive and transmit ports are unidirectional and
independent of each other. Each IXP2800 port has 16
data signals, a clock, a control signal, and a parity signal,
all of which use Low Voltage Differential Signaling
(LVDS) and are sampled on both edges of clock. There is
also a flow control port consisting of a clock, data, parity,
and ready status bits, and it is used to communicate

ME00

ME01

ME02

ME03

ME07

ME06

ME05

ME04

ME10

ME11

ME12

ME13

ME07

ME16

ME15

ME14

RDR DRAM
controller 2

RDR DRAM
controller 1

RDR DRAM
controller 0

DRAM Controller Bus Interface
Crypto
unit0

Crypto
unit1

ME Cluster 0 ME Cluster 1

XScale
Core

32k Icache
32k Dcache

PCI
Unit

2 DMAs
master/slave

 SPI 4.2
and / or
CSIX

rbuf

tbuf

QDR
0

QDR
1

QDR
2

QDR
3

SRAM Bus
Interface Unit

S Cluster

Hash
and

Scratch
Unit

D S D S

Media/Switch Interface

64

16

16

18 18 18 18

18

18

18

18

18 18 18 18 18 18

IXP2800

Figure 4: IXP2800 block diagram

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 11

between two IXP2800 chips, or an IXP2800 and a switch
fabric interface. All the high-speed LVDS interfaces
support dynamic deskew training. The IXP2800 supports
10Gb/s inbound traffic and 15Gb/s outbound or 15Gb/s
inbound and 10Gb/s outbound. The overspeed (15 vs.
10Gb/s) is required by fabrics, which have inherent
inefficiencies. The average bandwidth required by a
fabric may be 10Gb/s; however, for extended moments
they may burst 15Gb/s. The IXP can source or sink these
extended burst rates.

Incoming packets are received into the Receive Buffer
(RBUF). Outgoing packets are held in the Transmit
Buffer (TBUF). The RBUF and TBUF are both RAMs
and store data in sub-blocks (referred to as elements), and
are accessed by either the microengines or XScale™.

The RBUF and TBUF each contain 8KB of data. The
element size is programmable as either 64 bytes, 128
bytes, or 256 bytes per element. In addition, either buffer
can be programmed to be split into one, two, or three
partitions, depending on application. For SPI-4, one
partition is used. For CSIX, two partitions are used
(control and data c-frames). For both SPI-4 and CSIX,
three partitions are used.

The microengine can read data from the RBUF to the
microengine in_bound registers using the MSF[read]
instruction. The microengine can promote data from
RBUF to DRAM directly using the DRAM[rbuf_rd]
instruction.

The microengine can promote data into the TBUF along
with status via writes from the outbound_transfer registers
using the MSF[write] instruction. The microengine can
control movement of data from DRAM directly to the
TBUF using the DRAM[tbuf_wr] instruction.

The IXP Chassis
The chassis is the bus system, which interconnects all the
units within the IXP. The chassis employs uni-directional
buses to implement a microengine-based distributed
memory storage mechanism. The microengine has
inbound and outbound transfer registers. The chassis is
used to retrieve data from the outbound transfer registers
and deliver data to the inbound registers. The chassis
consists of data busses, which connect the microengine
transfer registers to the various shared resources (i.e.,
SRAM, DRAM, hash, cryptography units). Additionally,
the chassis has multiple instantiations of a command bus.
This command bus runs ahead of the data buses. It
notifies the shared resources that a microengine is
requiring service and indicates the source and destination
addresses, the function to be performed, and any other
information required to complete the requested task.

Additionally, the command bus has a field indicating the
data length of the requested transfer.

The chassis operates at half the frequency of the
microengine. This is up to 700MHz for the IXP2800 and
up to 300MHz for the IXP2400.

THE MICROENGINE CLUSTERS
The IXP2800 has 16 microengines, configured as two
clusters of eight identical microengines. The reason for
this partitioning is to provide more communication
capability between the microengine and the rest of the
chip resources. Each cluster has its own copy of
command and data busses. Thus each microengine shares
the command bus with seven other microengines, rather
than with 15 other microengines, as would be the case
without the two-cluster configuration. More details about
the capabilities and internal configuration of the
microengine are presented later in this paper.

The SRAM cluster
The SRAM cluster consists of four independent SRAM
controllers, each of which controls external Quad-Data-
Rate (QDR) SRAMs. The reason for four channels is to
provide sufficient control information bandwidth for 10Gb
network applications. SRAMs are a good choice for
control information, which tends to have many small data
structures such as queue descriptors and linked lists.
SRAMs, unlike DRAMs, allow for small access size and
additionally allow access to any address sequence with no
restrictions. Each SRAM controller, running at 200MHz,
provides 800MB/s of read bandwidth and 800MB/s of
write bandwidth.

In addition to the normal read and write access, the
IXP2800 SRAM controllers provide three additional
hardware functions.

1. Atomic read-modify-write operations: increment,
decrement, add, subtract, bit-set, bit-clear, and swap.
The atomic operations are useful for implementing
software semaphores. They can also be used for multiple
processes that modify a shared variable without using
conventional mutex to obtain ownership, for example,
update a network statistic via an atomic add operation.
This is more efficient, since it eliminates the mutex
operation altogether in this case.

2. Linked-list queue operations. This hardware
accelerates enqueue and dequeue to linked-list operations
by eliminating the read-to-write or read-to-read latency.
For example, to do an enqueue, software must read the
current list tail and then use it as an address to write the
new link to memory. The SRAM controller keeps the tail
address in on-chip registers and does the enqueue write
locally; this saves the time that would have been spent by

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 12

the microengine to get the tail value and then simply use it
as the address for the write.

3. Ring operations. A ring is also sometimes called a
circular buffer. It consists of a block of SRAM addresses,
which are referenced through a head and tail pointer.
Data is inserted at the tail of the ring (using the content of
the tail pointer as the address) and removed from the head
(using the content of the head pointer as the address). The
SRAM controller keeps the head and tail pointers in on-
chip registers and increments them as they are used. The
advantage is that multiple processors can add data to and
remove data from the rings without having to use a mutex
to obtain ownership.

It is also possible to attach an external coprocessor, such
as Ternary Content Addressable Memory (TCAM), or
classification processors to the SRAM interface. The
interface conforms to the Network Processor Forum’s LA-
1 (Look-Aside) interface specification.

The DRAM Cluster
The DRAM cluster provides three independent DRAM
controllers, each of which controls external Rambus
DRAMs (RDRAMs). The reason for three channels is to
provide sufficient data buffering bandwidth for 10Gb
network applications. DRAMs are a good choice for a
data buffer because they offer excellent burst bandwidth
and are much denser and cheaper per bit relative to
SRAM. Each DRAM controller, running at 133MHz (note
that this equates to 533MHz DDR, which is 1066 M
transfers/sec on the data pins), provides 17Gb/s of
bandwidth, shared between reads and writes.

The three DRAM controllers provide hardware
interleaving of the DRAM address space (often referred to
as striping). This is done to spread accesses evenly to
prevent “hot spots” in the memory. If all accesses for a
period of time were to address only one of the controllers,
then only one-third of the bandwidth would be available.
The way the interleaving works is that each controller
simultaneously receives all access requests and compares
the address to the range of addresses that fall within its
range. It then claims either all, part, or none of the access
request according to the result of the address compare.
The entire process is done in hardware, completely
transparent to the software.

The Cryptography Unit
The cryptography unit performs authentication and bulk
encryption. It is believed that these two datapath tasks are
critical strategic functions for the network processor. The
crypto engines are innovative designs that have a very
small footprint, yet the two engines provide 10Gb/s
throughput performance. This unit is covered in detail in
a subsequent article in this journal.

The Hash Unit
The hash unit can perform either 48-bit, 64-bit, or 128-bit
polynomial division. The hash function implemented is an
irreducible polynomial, which has the characteristic of a
one-to-one mapping. This means that if there is a
collision, checking the unused bits of the remainder
against that entry’s saved and unused remainder bits
confirms or denies the collision. The multiplier to the
hash function is programmable so that if a default
multiplier is not performing efficiently, a new one may be
calculated.

The motivation for the hash unit hardware is that
performing a high-quality hash in software is cycle
consuming. Layer 2 lookups for Ethernet employ a hash
on the 48-bit source and destination addresses for
bridging. The hash hardware acceleration is excellent for
this lookup. Ipv6 employs 128-bit source and destination
addresses, and the hash unit may be used for data
reduction.

The basic idea behind the hash unit is to take correlated
data and uniformly distribute it across a small set space.
For example, the hash unit may be used to take the 48-bit
Ethernet destination address and map it into a much
smaller 16-bit addressed destination table. A good hash
function will uniformly distribute entries in the smaller
table to reduce the probability of a collision.

The Scratch Unit
The scratch unit contains an on-chip 16KB scratchpad
memory, running at 700MHz. To a programmer, the
scratchpad memory provides very similar capability to the
SRAM described earlier. The main difference is that the
capacity of the scratchpad is much smaller than the
external SRAMs. However, the scratchpad has lower
latency (running at 700MHz instead of 200MHz as the
external SRAMs). The scratchpad provides the atomic
read-modify-write and ring operations as described in the
SRAM section.

The XScale™ Processor
The XScale processor is compliant with the ARM Version
5TE (Advanced Risc Machines), and runs at 700MHz.
Normally, it is used as a system control plane processor,
handling exception packets and doing management tasks.
It contains independent 32KB instruction and data caches,
and a full capability memory management unit. The
XScale has uniform access to all system resources, so it
can efficiently communicate with the microengine though
data structures in shared memory.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 13

The PCI Unit
The PCI Unit provides an interface to industry standard
64-bit 66MHz PCI Rev 2.2. It is typically used as a
control plane interface, either to an external
microprocessor, for example, a Pentium®, or as an
external device interface, such as a public key accelerator.
The PCI unit can act as a PCI bus master, allowing XScale
or microengine access to external PCI targets, or as a PCI
bus target, allowing external devices to transfer data to
and from the IXP2800 external SRAM and DRAM
memory spaces. The PCI Unit also contains DMA
channels that can be programmed to do bulk data transfers
between DRAM and external PCI targets.

Pentium® is a registered trademark of Intel Corporation or its

subsidiaries in the United States and other countries.

XScale™ is a trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

THE IXP2XXX MICROENGINE
Several goals guided the specification of the ME:

• Efficient silicon implementation. The need for
lots of compute capability in the network
processor dictated the need for a large number of
MEs.

• High frequency to allow for sufficient
instructions per packet. The ME has a six-stage
pipeline and runs at 1.4GHz in P861 (.13

Control Store
4k Words

S Transfer
IN Register

8thds x
16regsx32b

D Transfer
IN Register

8thds x
16regsx32b

Next
Neighbor

8thds x
16regsx32b

General
Purpose

8thds x
32regsx32b

Local
Memory

640words x 32b

PrevA PrevB

32b ALU

Multipy

Find 1st bit set

Add, Shift, Logical

CAM 16entries

LRU Logic

S Transfer
Out Regs

8thds x
16regsx32b

D Transfer
Out Regs

8thds x
16regsx32b

Pseudo Random#

CRC Unit

CRC remainder

Local CSRs

Timers

Timestamp

D Push Bus

S Push Bus

LM ptr[15:0]

D Pull Bus S Pull Bus

The IXP Microengine

Figure 5: IXP microengine block diagram

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 14

micron).

• Large register set. Having many registers
minimizes the need to shuffle program variables
back and forth between registers and memory.
Having to shuffle uses valuable cycles without
accomplishing useful work.

• Low-latency local memory in the ME. This is
addressable memory, in addition to the registers.
It can be used in any way the application
chooses, for example, to hold packet data or state
related to ports, etc.

• Efficient intra-ME communication capability.
This is useful in the applications described earlier
in this article.

• Multiple threads. Given the disparity in
processor cycle times vs. external memory times,
a single thread of execution often blocks waiting
for external memory operations to complete.
Having multiple threads available allows for
threads to interleave operation—there is often at
least one thread ready to run while others are
blocked. This makes more productive use of the
other ME resources, which would otherwise be
idle.

There are eight hardware threads available in the ME. To
allow for efficient thread swapping, each thread has its
own register set, program counter, and thread-specific
local registers. Having a copy per thread eliminates the
need to move thread-specific information to/from shared
memory and ME registers for each swap. Fast thread
swapping allows a thread to do computation while other
threads wait for IO (typically, external memory accesses)
to complete, or for a signal from another thread or
hardware unit. (Note that a swap is similar to a taken
branch in timing.)

Each of the eight threads will always be in one of four
states.

• Inactive—Some applications may not require all
eight threads. Unused threads can be kept in an
inactive state by setting the appropriate value in a
configuration register.

• Executing—The executing thread is the one in
control of the ME. Its PC is used to fetch the
instructions that are executed. A thread will stay
in this state until it executes an instruction that
causes it to go to sleep state (there is no hardware
interrupt or pre-emption; thread swapping is
completely under software control). At most,
one thread can be in executing state at any time.

• Ready—In this state, a thread is ready to execute
but is not because a different thread is executing.
When the executing thread goes to sleep state,
the MEs thread arbiter selects the next thread to
go to the executing state from among all the
threads in the ready state. The arbitration is
round robin.

• Sleep—In this state, the thread is waiting for
some external event(s) to occur (typically, but
not limited to, an IO access). In this state the
thread does not arbitrate to enter the executing
state.

At most, one thread can be in executing state at a time;
any number of threads can be in any of the other states.

Registers
As shown in the block diagram in Figure 5, each ME
contains four types of 32-bit datapath registers:

1. 256 general-purpose registers

2. 512 transfer registers

3. 128 next neighbor registers

4. 640 32-bit words of local memory

Each of the first three types is partitioned per thread. The
local memory is shared among all threads.

GPRs are used for general programming purposes. They
are read and written exclusively under program control.
GPRs, when used as a source in an instruction, supply
operands to the execution datapath. When used as a
destination in an instruction, they are written with the
result of the execution datapath.

Transfer registers are used for transferring data to and
from the ME and locations external to the ME (for
example, DRAMs, SRAMs, etc).

Next Neighbor (NN) registers are used as an efficient
method to pass data from one ME to the next, for
example, when implementing a data-processing pipeline.
The NN registers can supply instruction source operands;
when NN register is the destination of an instruction, that
value is written in the next ME.

The NN registers can also be configured to act as a
circular ring instead of addressable registers. In this mode
the source operands are “popped” from the head of the
ring, and destination results are “pushed” to the tail of the
ring. The head and tail pointers are maintained in
hardware in the ME.

For applications that don’t need to use the NN registers
for intra-ME communications, the ME can be put into a
mode where an instruction with NN as destination will
write the NN register in the same ME. This increases the

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 15

number of registers available to an application. The
choice of this mode is independent of the use of ring
mode; all combinations are supported.

Local Memory (LM) is addressable storage located in the
ME. LM is read and written exclusively under program
control (i.e., it is private to the ME). The distinction
between LM and the registers described above is that the
LM address is computed by the program at run-time,
whereas the register addresses are determined at compile
time and bound in the instruction. Each thread has two
LM address registers, which are written by special
instructions. The specific LM location selected is based
on the value in one of the LM address registers, which is
specified in the instruction.

All of the registers described above, including LM, are
built using two-ported register files: one read port and one
write port. The area efficiency of two-ported registers
relative to multiport registers is important in allowing the
large number of registers to fit in the allocated silicon
area. Of course, the use of two-port registers places some
restrictions on which combinations of registers can source
operands for each instruction. The restrictions are
managed by the register allocator in the compiler and
assembler, and in practice there are no limitations found in
normal programs.

Instructions
The instruction set of the ME is similar to that of many
RISC microprocessors, with some additional features
tailored to the network processor task.

• Computation instructions can take one or two
operands, perform an operation, and optionally
write back a result. The sources and destinations
can be GPRs, transfer registers, next neighbor
registers, and local memory. The operations are
shifts, add/subtract, logical, multiply, byte align,
and find first one bit. There is also a Content-
Addressable-Memory (CAM), described below.

• Logical operations can be performed along with
shifting one of the operands in a single
instruction. This can often be used to collapse
two operations into one, for example, in masking
fields of a header.

• IO instructions are used to read and write various
memory units in the NPU, such as receive buffer,
transmit buffer, DRAM, and SRAM. There are
also a number of higher-level operations
available in the IO units, such as ring operations,
atomic read-modify-write, and linked-list queue
operations.

• Special instructions are provided for inserting
bytes into registers. These are useful for packet
header modification.

• Branches can be done, based on comparing a
byte within a register to a literal value. This can
be used to efficiently test for values in a header.
Branches can also be done on individual bits set
or clear within a register. This is useful for
efficiently testing status flags. The above are in
addition to the normal suite of branches on
numerical results, such as greater than, less than,
etc.

• Instructions can be placed into branch defer slots
to minimize the number of cycles lost due to
taken branches redirecting the ME pipeline. The
compiler is able to move instructions that are
executed, regardless of branch outcome into
those slots.

• Hardware support is provided for integer
multiply. Each instruction cycle can retire 8 bits
of operand. Taking this approach vs. providing a
full, autonomous multiply was a trade off of
performance vs. silicon area. One advantage of
this approach is that for small numbers, for
example, 8 bits or 16 bits, the compiler can insert
just enough cycles to complete the multiply.

• Hardware support is also provided for CRC
operations for several industry standard
polynomial values. The hardware can do a CRC
over 32 bits every other cycle. This is equivalent
to 22.4Gb/s at a ME frequency of 1.4GHz.

CAM
The CAM is a unique function that has a number of uses.
The CAM has 16 entries; and each entry stores a 32-bit
value. This allows a source operand to be compared
against 16 values in a single instruction. All entries are
compared in parallel, and the result of the lookup is
written into the destination register. There are two
outcomes (the lookup result is indicated by the value in a
destination register bit, which a branch instruction can test
in one cycle):

• A miss indicates that the lookup value was not
found in the CAM. The result also contains the
entry number of the least recently used entry
(which can be used as a suggested entry to
replace).

• A hit indicates that the lookup value was found in
the CAM. The result also contains the entry
number that holds the lookup value. In addition,

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 16

the result holds an additional 4 bits of state that
the program can define and use.

The CAM can be used to accelerate multi-way compares.
It can also be used to act as the tag store of a cache; in this
case, the entry number of a matching value can be used as
an index to data associated with the value (and stored, for
example, in SRAM or LM). Because the CAM does not
store any of the associated data, the hardware places no
limitation on the amount of data stored for each cached
entry. It could be as little as a few bits or as much as
needed, limited only by SRAM memory capacity. The
state bits can be used to store additional information about
a cache entry, for example, if it has been modified or how
many threads are making use of it.

Event Signals
The ME supports the concept of event signals. These are
signals that a thread can use to indicate the occurrence of
some event external to the ME; the thread can block (go to
sleep state) waiting on the event. Typical use of events
includes completion of IO and signals from other threads,
for example, to indicate that some data has arrived and is
ready for processing. Each thread has 15 event signals.
These can be allocated and scheduled by the compiler in
much the same way as registers are allocated. They allow
for a large number of outstanding events and, therefore,
concurrent processing of non-dependent tasks. For
example, the thread could start an IO to read packet data
from the receive buffer, start another IO to allocate a
buffer from a freelist, and start a third IO to read the next
task from a work list (on a ring). All of the IOs execute in
parallel. Many microprocessors can also schedule
multiple outstanding IOs; normally, that is handled in a
hardware-based scoreboard. By using event signals, the
ME places much of the burden on the compiler, which
simplifies the hardware.

Other microengine features useful to the network
processor task are the following:

• Timestamp–a 64-bit timestamp register that can
be used for real-time tasks. The timestamp is
guaranteed to be monotonically increasing for the
lifetime of an application; it will not wrap
around.

• Pseudo-random number–used for some
algorithms that need random numbers. Note that
this is pseudo-random and not suitable for
security applications.

CHALLENGES AT 10GB/S
For high-speed networking systems an extremely efficient
means for handling successive enqueue and dequeue
requests to the same linked list queue structure is required

to support a large number of queues (linked lists for
memory efficiency) at line rate (packet/cell arrivals at
~40ns). Consecutive enqueue operations to the same
linked list queue are latency constrained since the first
enqueue must create the link to a list tail pointer before a
subsequent entry can be linked on to that new tail.
Likewise, for consecutive dequeue operations, the head
pointer of the queue must be read to determine the new
head pointer for the list before a subsequent dequeue
operation is done. A control structure that can manage
requests to a large number of queues as well as successive
requests to only a few queues or to a single queue, plus a
memory controller data path capable of back-to-back
enqueue or dequeue to the same queue at the packet or
cell arrival rate are required.

A single microengine designated the queue manager
receives enqueue requests from the set of microengines
that are programmed to perform receive processing and
classification. The enqueue request specifies to which
output queue an arriving packet or cell should be added. A
microengine that functions as the transmit scheduler sends
dequeue requests to the queue manager microengine that
specifies the output queue from which a packet or cell is
to be taken and then transmitted to an output interface (see
Figure 6).

Each microengine contains a 16-entry Content
Addressable Memory (CAM) that tracks which entry is
the Least Recently Used (LRU). The queue manager
microengine uses the CAM to implement a software-
controlled cache containing the last 16 queue descriptors
used to enqueue and/or dequeue packets or cells. While
the CAM serves as the “tag store” holding the addresses
of the queue descriptors that are being cached, the “data
store” associated with each CAM entry is implemented in
the SRAM controller logic. The data store for each queue
descriptor contains the head pointer (address of the first
entry of a queue), the tail pointer (address of the last entry
of a queue), and a count entry (present “length” of the
queue). Locating the data store for the cache of queue
descriptors at the memory controller allows for low-
latency access to and from the queue descriptor data cache
and memory.

The queue manager microengine issues commands to
return queue descriptors to memory and fetch new queue
descriptors from memory such that the queue descriptor
data store located at the memory controller remains
coherent with the CAM tag store of queue descriptor
addresses. The queue manager issues enqueue and
dequeue commands indicating which of the 16 queue
descriptor data store locations to use for the memory
controller to perform the command.

All enqueue and dequeue commands are initiated in the
order in which they arrived at the memory controller, and

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 17

these reference 1 of 16 data store tail or head pointers. An
enqueue writes the address of the pointer to be added to
the queue to the address of the cached tail pointer, and
then updates the cached tail pointer to the address just
added. Since enqueue requires only a write, the data store
is updated in 2 cycles, and a subsequent enqueue even to
the same queue can then be initiated. For dequeue, the
address of the head pointer in the data store is returned to
the queue manager microengine (this is the address locator
for the buffer or cell to be transmitted), and a read of the
contents of the head pointer is initiated. When the read
data returns, it is loaded into the head pointer for specified
data store entry. A subsequent dequeue request to a
different queue can be initiated on the next cycle.
However, a dequeue request to a queue where a read of
the head pointer location is in progress must be held up
until the data store location for that entry’s head pointer is
updated. An enqueue to a queue with a dequeue in
progress can proceed since the tail pointer is not affected
by the dequeue.

Having the control structure for queueing in a microengine
allows for flexible high performance while using the
existing hardware of the microengine. Distributing the
data store part of the cache of queue descriptors allows for
the low-latency memory operations required for
successive enqueue and dequeue operations at high line
rates.

IXP Memory Controller

Queue descriptor “data store”

Entry, Head pntr, Tail pntr, Count

[0 :15] entries

Queue Manager Microengine

CAM of q descriptor addr

Entry --LRU replacement

[0 :15] entries

Enqueue and
dequeue

commands

Dequeue
pointers

Figure 6: Enqueue dequeue memory controller

DISCUSSION
There is a trade off between programmable flexibility and
software complexity. Flexibility provides great product

advantages for feature enhancements and future upgrade
capabilities. However, it also makes evaluation for
performance against customer requirements and
subsequent customer product development more
challenging. The IXP family is addressing these
challenges with tools and leadership silicon performance.

The IXP workbench is a state-of-the-art integrated
development environment. Users write their code,
compile (C language) or assemble (IXP macro language)
their code with advanced error reporting, then debug the
code on a very high-performance-cycle accurate simulator
(>500 cycles per second simulation performance). This
simulation environment provides advanced visualization
tools and debugging facilities for rapid code maturation.
The workbench environment can then be used to exercise
the IXP silicon with the developed code. Advances to the
workbench include rapid prototyping and static
performance evaluation, given simple user heuristics.

Providing leadership silicon performance requires less
software tuning to achieve given product goals. The
IXP2800 with 16 parallel processors at 1.4GHz delivers
on the promise of network processors. This promise
includes providing a multi-application hardware-based
platform for communication companies to leverage across
multiple market segments. Additionally, it promises
network processor customers differentiation by software.
Within a given company, the promise of common software
routines or functions to be leveraged by different product
groups is also now possible for IXP customers.

CONCLUSIONS
The IXP family provides a very powerful, flexible
hardware platform for a wide range of software-based
network processing applications. The range of
applications is widening and is identifying the opportunity
for certain IXP variations tuned to specific applications.
Recognizing this possibility, the design and
implementation methods for the IXP family have been
optimized for rapid future variations.

This is enabling a roadmap vision that is two-pronged.
One prong is providing greater performance through the
use of additional hardware multi-threading and additional
microengines, while also including new strategic hardware
acceleration engines such as the IXP2800 did with
advanced dataplane cryptography acceleration.

The second prong is leveraging the Intel Communication
Group’s silicon portfolio for greater system integration.
Integration is important when it can reduce system power,
cost, and board area. This prong can provide current IXP
customers with a product cost-reduction path.

Intel Technology Journal Vol. 6 Issue 3, 2002.

The Next Generation of Intel IXP Network Processors 18

Both of these prongs will leverage the silicon capabilities
afforded by 90nm and, subsequently, 65nm high-
performance CMOS.

Performance, integration, advanced tools, rapid software
prototyping, advanced strategic hardware acceleration,
extreme customer support: this is the roadmap vision for
the IXP family.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of Sanjeev
Jain, David Romano, John Cyr, Jim Guilford, Bob
Kushlis, Jose Niell, Milo Sprague, Kin-Yip Liu, Yim Pun,
John Wishneusky, Donald Hooper, Bill Wheeler and the
VMOD development team, John Sweeney, the IXP
verification teams, and the IXP implementation teams led
by John Beck (IXP2800) and Ahmad Zaidi (IXP2400).

REFERENCES
[1] Matthew Adiletta, et. al, “Packet over SONET: An

Overview of the Packet Processing Flow of a 10
Gigabit/sec Datastream Mapped to an IXP2800,” Intel
Technology Journal, Vol. 6 Issue 3, August 2002.

[2] Internet Network Working Group, RFC 2697,
September 1999.

[3] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM
Transactions on Networking, V.1 N.4, August 1993,
pp. 397-413.

[4] Internet Network Working Group, RFC 2863, April
1998.

[5] E. Johnson and A. Kunze, IXP1200 Programming,
Intel Press, ISBN 0-9702846-7-5, 2002.

AUTHORS’ BIOGRAPHIES
Matthew Adiletta is an Intel Fellow and Director of
Communication Processor Architecture. He led the
architectural development and implementation of the
IXP2800 and is driving the IXP roadmap. He is interested
in processor architecture and advanced implementation
techniques for rapid silicon development. He is also
intrigued with network security and classification. Adiletta
has been responsible for 12 previous silicon chips,
including silicon for VAXes, alphas, video, graphics, and
communication. The IX2800 is the lucky 13th. Adiletta
received his B.S. degree in electrical engineering, with
Honors, at the University of Connecticut. He resides in
Bolton, Massachusetts. His e-mail address is
matthew.Adiletta@intel.com.

Debra Bernstein is an architect for Intel’s Network
Processor Division. She worked on the architecture of the

IXP2000 series and the IXP1200. For the 2000 series,
Deb has been particularly focused on the queuing
problem. Previously, she worked on microprocessors in
the VAX and Alpha family at Digital Equipment
Corporation. She is a 1982 graduate from the University
of Massachusetts at Amherst. Her e-mail address is
debra.bernstein@intel.com.

Mark Rosenbluth is an architect in the Network
Processor Division. He has been at Intel for four years
and prior to that worked at Digital Equipment
Corporation, where he was architect for PCI Bridges and
also worked on VAX and Alpha microprocessors. He
received a B.S.E.E. degree from Rutgers University. He
resides in Uxbridge, Massachusetts, and can be reached
via e-mail at mark.rosenbluth@intel.com.

Hugh Wilkinson is a systems architect in the Network
Processor Division at Intel. Hugh’s technical interests
include switching fabrics, protocol design, software
decomposition, and high-speed signaling. He received his
B.S. degree in Computer Science from Boston University.
He works in Hudson, Massachusetts, and can be reached
at Hugh.Wilkinson@intel.com.

Gilbert Wolrich is a senior architect in the Network
Processor Group in Hudson. He has contributed to the
definition of both the IXP1200 and IXP2000 solutions.
Gil has worked on high-performance network and general-
purpose processors, numerous floating point units, and is
interested in network security. Gil received a B.S. degree
from R.P.I. and an M.S. degree from Northeastern
University in Electrical Engineering. He resides in
Framingham, Massachusetts, and can be reached via e-
mail at gilbert.wolrich@intel.com.

Copyright © Intel Corporation 2002. This publication
was downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

mailto:matthew.Adiletta@intel.com
mailto:mark.rosenbluth@intel.com
mailto:Hugh.Wilkinson@intel.com
mailto:gilbert.wolrich@intel.com
http://developer.intel.com/
http://developer.intel.com/sites/developer/tradmarx.htm

Network Processor Performance Analysis Methodology 19

Network Processor Performance Analysis Methodology

Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun,
Larry Huston, Uday Naik

Intel Communications Group, Intel Corporation

Index words: network processors, IXA, OC-48, MEv2, line-rate performance, IP DiffServ, benchmark,
IXP2400

ABSTRACT
This paper describes the performance analysis
methodology developed to analyze the performance of
various networking applications that are targeted for
running on the IXP2400 network processor, the second-
generation IXA network processor.

Traditionally, CPU benchmarks and system-level
benchmarks have been used to understand the
performance of general-purpose computer systems.
However, such standards are still evolving in the field of
network processors. Furthermore, network processors are
targeted to diverse applications, and their performance is
intricately tied to both the hardware features implemented
on-chip and the software running on them, posing
significant challenges in developing and using standard
benchmarks.

The methodology described in this paper addresses the
challenges in analyzing the performance of various
networking applications running on the IXP2400 network
processor. This methodology involves dividing the
application into pipeline blocks, estimating the compute
and IO requirements for each block, estimating the
available processing and latency budget for each pipeline
element, and mapping the application blocks to the
software paradigms and the hardware resources. This
methodology is validated by writing and tuning the
microcode blocks for the application.

This paper also describes a case study using the IPv4
forwarding + DiffServ application running on the IXP2400
to analyze and demonstrate OC-48 line-rate performance
for a 46B minimum-sized POS packet.

INTRODUCTION
Network processors are an emerging class of chips that
are highly programmable and optimized for processing

packets at wire speed. Specifically, these processors are
designed to handle deep packet inspection that spans
layers 3 through 7 of the Open Systems Interconnection
(OSI) network model and are targeted for applications in
the OC1 (55Mb/s) to OC192 (10Gb/s) data rates. Flexibility
and programmability make the network processor a good
candidate to replace expensive and inflexible ASIC chips
for all the fast-path (data plane) processing in network
equipment, as these network processors (NPU) can cover
a wider range of applications. This provides faster time-to-
market, increased flexibility, and lower costs to network
equipment Original Equipment Manufacturers (OEMs).

A key challenge in making NPUs successful is
establishing their performance capabilities. Traditional
CPU benchmarks such as the SPEC CPU2000 [1] suite
(comprised of the CINT2000 for integer benchmarks and
CFP2000 for floating point benchmarks) have been used
extensively to understand the performance of general-
purpose CPUs. For benchmarking computer systems, the
Transaction Processing Performance Council [2] has
developed system-level benchmarks such as TPC-C (On-
Line Transaction Processing benchmark), TPC-H (ad-hoc
decision support benchmark), and TPC-W (transactional
web e-commence benchmark). However, such standards
are still evolving in the field of network processors.
Furthermore, network processors are targeted to diverse
applications, and their performance is intricately tied to
both the hardware features and the software running on
them, posing significant challenges in developing and
using standard benchmarks. This paper describes a
methodology that addresses the challenges involved in
analyzing the performance of networking applications
running on the IXP2400 network processor and presents a
case study using the IPv4 forwarding + DiffServ
application.

A key ingredient of the performance analysis
methodology is a detailed data movement model of the

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 20

target application. This model describes the various
operations performed by the network processor on every
received packet. Depending on the application, these
operations could include protocol header error checks,
payload error checks, route lookup, flow identification,
complex rule-based filtering, header/payload
compression/encryption, policing, congestion
management, queuing, scheduling, rate shaping, rate
limiting, and transmitting.

The next step of the methodology uses the data movement
model to estimate the number of compute cycles and total
I/O references required for these operations on a per-
packet basis. The total compute cycles are determined by
the number of instructions that need to be executed for
completing the necessary tasks. The I/O references
include all operations to external memories to read and
write information required during the processing stage.
High-level pseudo-code is developed to arrive at these
estimates.

Another key ingredient of the methodology is the
estimation of the total available budget for packet
processing. This budget is determined based on the
packet inter-arrival time, and depends on the network
processor frequency, the data rate at which packets are
received by the network processor, and the smallest
packet size that could be received by the processor.

The results of the above estimation efforts, namely,

1. available budget per-stage based on the
processor frequency, data rate and the minimum
packet size and

2. total compute and I/O cycles required by the
application

determine how the functional blocks are mapped onto the
available h/w resources (microengine contexts, on-chip
scratch memory, external DRAM and SRAM) and how the
software concepts (hyper-task chaining, pool of threads,
functional pipeline, context pipeline) are used to meet the
performance goals.

The methodology is validated by implementing microcode
and tuning the code on the simulator and the hardware to
demonstrate line-rate performance.

This paper uses the above outlined methodology to
demonstrate OC-48 line-rate performance for 46B POS
minimum-sized packets for the IPv4 forwarding + DiffServ
application running on IXP2400. The following sections
provide a brief overview of the internal and external
architecture of IXP2400, describe the data movement
model for the IPv4 forwarding + DiffServ application, and
discuss the performance analysis and tuning of this
application.

IXP2400 NPU OVERVIEW
Figure 1 shows the external interfaces of the IXP2400 NPU.
The IXP2400 has two 32-bit interfaces to move network
data in and out of the chip. The RX and TX interfaces
support industry standard protocols for data movement
such as SPI3, POS-PHY-L2 for packet-based interface,
Utopia 1,2,3 for cell-based interface, and CSIX protocol for
the switch fabric interface
[3,4,5].

Utop ia 1 ,2 ,3
S P I – 3 (P O S -P L 3)

C S I X

U t o p i a 1 / 2 / 3 o r

P O S- P L 2 / 3

I n t e r f a c e

P C I 6 4 -b i t / 6 6 M H z

I X P 2 4 0 0

(I n g r e s s)

H o s t

C P U
(O p t i o n a l)

A T M / P O S
P H Y

or E therne t
M A C

Flash

M i c r o -
E n g i n e
C l u s t e r

S l o w P o r t

S w i t c h F a b r i c

Port Inter face

S a u s a l i t o

(E g r e s s)

F l o w C o n t r o l B u s

D D R D R A M

2 G B y t e

Q D R S R A M
2 0 G b p s

3 2 M B y t e

Utop ia 1 ,2 ,3
S P I – 3 (P O S -P L 3)

C S I X

U t o p i a 1 / 2 / 3 o r

P O S- P L 2 / 3

I n t e r f a c e

P C I 6 4 -b i t / 6 6 M H z

I X P 2 4 0 0

(I n g r e s s)

H o s t

C P U
(O p t i o n a l)

A T M / P O S
P H Y

or E therne t
M A C

Flash

M i c r o -
E n g i n e
C l u s t e r

S l o w P o r t

S w i t c h F a b r i c

Port Inter face

S a u s a l i t o

(E g r e s s)

F l o w C o n t r o l B u s

D D R D R A M

2 G B y t e

Q D R S R A M
2 0 G b p s

3 2 M B y t e

Figure 1: IXP2400 external interfaces

This interface can be independently configured to be 1x32,
2x16, 4x8, or 2x8+1x16 and can be clocked at 25MHz-
125MHz, providing full flexibility to use the processor in
any application ranging from OC-3 to OC-48 data rates. At
125MHz, the interface provides a peak bandwidth of 4Gb/s
in and out of the chip to support the overhead of switch
fabric encapsulation.

Since each IXP2400 provides only half-duplex OC-48
connectivity, two such chips are necessary for a full-
duplex line card. To support this configuration, the
IXP2400 also has a 4b/8b CSIX flow control bus that is
used to communicate fabric flow control information
between the two processors. At 125MHz, this interface
provides up to 1Gb/s of peak bandwidth for flow control
messages.

The IXP2400 has one channel of industry standard DDR
DRAM running at 150/300MHz, providing 19.2Gb/s of
peak DRAM bandwidth. The channel can support up to
2GB of DRAM. The DRAM is primarily used to buffer
packets.

In addition to the DRAM, the IXP2400 also provides two
channels of industry standard QDR SRAM running at

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 21

200/400MHz, providing 12.8Gb/s of read bandwidth and
12.8Gb/s of write bandwidth. Up to 32MB of SRAM can be
populated on the two channels. The SRAM is primarily
used for packet descriptors, queue descriptors, counters,
and other data structures.

The NPU can communicate with the host processor over
the 64b, 66MHz PCI. The slow port interface is used to
connect to the Flash memory and also provides the
general-purpose IO interface.

MEv2
6

MEv2
7

MEv2
5

MEv2
8

XScale
Core
32K IC
32K DC

Rbuf
64 @ 128B

Tbuf
64 @ 128B

Hash
64/48/128

Scratch
16KB

QDR
SRAM

1

QDR
SRAM

2

DDRAM

G
A
S
K
E

T

PCI

(64b)

66 MHz

1 81 8 1 81 81 81 8 1 81 8

7272

64b64b

S
P
I
3

or
C
S
I
X

Stripe/byte align

E/D Q E/D Q

MEv2
2

MEv2
3

MEv2
1

MEv2
4

CSRs

-Fast_wr -UART
-Timers -GPIO
-BootROM/Slow Port

MEv2
6

MEv2
7

MEv2
5

MEv2
8

XScale
Core
32K IC
32K DC

Rbuf
64 @ 128B

Tbuf
64 @ 128B

Hash
64/48/128

Scratch
16KB

QDR
SRAM

1

QDR
SRAM

2

DDRAM

G
A
S
K
E

T

PCI

(64b)

66 MHz

1 81 8 1 81 81 81 8 1 81 8

7272

64b64b

S
P
I
3

or
C
S
I
X

Stripe/byte align

E/D Q E/D Q

MEv2
2

MEv2
3

MEv2
1

MEv2
4

CSRs

-Fast_wr -UART
-Timers -GPIO
-BootROM/Slow Port

Figure 2: IXP2400 internal architecture

Figure 2 shows the internal architecture of the IXP2400.
IXP2400 contains eight multi-threaded, packet-processing
microengines. These eight microengines are highly
programmable packet processors and support multi-
threading of up to eight threads each. Each microengine
provides a variety of network processing functions in
hardware and provides the ability to process data at OC-48
wire-speed. IXP2400 also offers extensive communication
mechanisms between all on-chip processing units and
enables the microengines to readily form different
topologies of software pipelines that can be customized
for various target applications and network traffic
patterns. The memory controllers facilitate efficient
accesses to the off-chip SRAM and DRAM.

The IXP2400 microengine design includes additional
features to increase performance and simplify
development. These new features include the following:

• A multiplier for quality of service (QoS) algorithms
such as metering and traffic shaping.

• A pseudo-random number generator to accelerate
congestion avoidance algorithms like Weighted
Random Early Discard (WRED).

• Cyclic Redundancy Check (CRC) hardware that
verifies and generates Cyclic Redundancy Code
(CRC) for Asynchronous Transfer Mode (ATM),
ATM Adaptation Layer 5 (AAL5), Ethernet, Frame
Relay, and High-Level Data Link Control (HDLC)
protocols .

• 16-entry Content Addressable Memory (CAM) used
to implement a data cache in local memory. The CAM
facilitates efficient data sharing among microengine
threads, resulting in greater performance, as well as
reduced consumption of precious memory bandwidth.

• A 64-bit local timer with programmable time-out
signaling to enhance traffic scheduling and shaping.

• 640 words (4B) of local memory that is shared by all
the threads.

The IXP2400 also has an integrated low-power general-
purpose Intel® XScale microarchitecture core. The
integrated XScale processor offers ample processing
power for running control plane software.

IXP2400 also offers a variety of low-latency
communication mechanisms among the microengines and
the integrated XScale processor. These communication
mechanisms consist of dedicated high-speed data-paths
between neighboring microengines, data-paths between
all microengines, shared on-chip scratchpad memory, and
shared First-In-First-Out (FIFO) ring buffers in scratchpad
memory and SRAM. These innovations enable the
microengines to form various topologies of software
pipelines flexibly and efficiently, allowing processing to be
tuned to specific applications and traffic patterns. This
combination of programming flexibility and efficient inter-
process communication ensures performance headroom
while minimizing processing latency.

Network processing applications typically need to perform
extensive queue management. Depending on the
applications and algorithms used, the network processor
may manage thousands of packet queues. The network
processor must execute the desired scheduling algorithm
and select the appropriate packets out of these queues for
transmission at wire speed. As a result, effective queue
management is key to high-performance network
processing and to reducing development complexity. The
IXP2400 provides high-performance queue management
hardware that automates adding data to and removing
data from queues. Multiple threads can access queues
simultaneously. The size of each queue and the number of
queues is limited only by the amount of memory available.

Pentium® is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 22

XScale™ is a trademark of Intel Corporation or its
subsidiaries in t he United States and other countries.

IXP2400-BASED LINE CARD
CONFIGURATION
Figure 3 shows a full-duplex OC-48 line card configuration
using the IXP2400. The two IXP2400 processors labeled
ingress and egress processors execute the IPv4
forwarding + DiffServ application described in the next
section.

IXF6048
Framer

IXP2400
Ingress Processor

IXP2400
Egress Processor

Switch
Fabric
Gasket

SS
DD
RR
AA
MM

QQ
DD
RR

SS
DD
RR
AA
MM

QQ
DD
RR

DDR SDRAM
Packet
Memory

QDR SRAM
Queues &

Tables

DDR SDRAM
Packet
Memory

QDR SRAM
Queues &

Tables

1x OC-48 or
4x OC-12

OC-4 8 OC48

OC48OC48

QQ
DD
RR

QQ
DD
RR

TT
CC
AA
MM

Classification
Accelerator

TT
CC
AA
MM

Classification
Accelerator

Host CPU
(IOP or iA)

IXF6048
Framer

IXP2400
Ingress Processor

IXP2400
Egress Processor

Switch
Fabric
Gasket

SS
DD
RR
AA
MM

QQ
DD
RR

SS
DD
RR
AA
MM

QQ
DD
RR

DDR SDRAM
Packet
Memory

QDR SRAM
Queues &

Tables

DDR SDRAM
Packet
Memory

QDR SRAM
Queues &

Tables

1x OC-48 or
4x OC-12

OC-4 8 OC48

OC48OC48

QQ
DD
RR

QQ
DD
RR

TT
CC
AA
MM

Classification
Accelerator

TT
CC
AA
MM

Classification
Accelerator

Host CPU
(IOP or iA)

Figure 3: IXP2400-based OC-48 line card configuration

PERFORMANCE BUDGET
A key metric required for the performance analysis is to
estimate the available budget. The available compute
budget is calculated on a per microengine basis and
determines how much processing the network processor
can perform on each packet. The available IO latency
budget is determined by the number of threads used in a
processing block.

The compute budget for a given application is determined
by the size of the smallest packet that needs to be
processed and the targeted data rate. In other words, the
packet inter-arrival time determines how many cycles are
available for processing each packet. In order to keep up
with the arrival rate, no processing stage in the pipeline
can exceed this inter-arrival time.

On the POS interface, the smallest IP packet that can be
transferred is 40B (20B of IP header and 20B of TCP
header). Assuming a PPP protocol overhead of 6B, the
total size of the minimum POS packet becomes 46B. At an

OC-48 data rate of 2.5Gbps, the inter-arrival time between
two back-to-back minimum-sized POS packets is 147ns.

The following equation shows the relationship between
the various parameters in estimating this packet inter-
arrival time:

PacketInterArrivalTimeIn(ns) =
(PacketSizeInBytes*8)/(DataRateInGbps)

The packet inter-arrival time measured in nano-seconds
(ns) is obtained by dividing the packet size specified in
bits with the desired data rate where the units for the data
rate are specified as gigabits per second.

The time in nano-seconds can be converted into
processor clocks using the following formula:

PacketArrivalTimeInProcessorClocks =
PacketInterArrivalTimeIn(ns)/ProcessorClockTickIn(ns)

The processor clock tick is the reciprocal of the processor
frequency. For example, if a processor is running at
100MHz, the processor clock tick equals 1/100MHz or
10ns. Similarly, 600MHz processor frequency translates to
a processor clock tick of 1/600MHz or 1.67ns.

Assuming a 600MHz clock on the MicroEngines (MEs) in
the IXP2400, the minimum packet inter-arrival time of 147ns
translates to 88 microengine cycles. In order to keep up
with the arrival rate, any processing stage of the pipeline
must complete all the required processing for a given
packet within this budget and should be able to process a
new packet every 88 cycles.

The compute cycle requirements for other data rates or
minimum-sized packets can be derived in a similar fashion.
For example, ATM cells have a fixed size of 53B. At the
OC-48 data rate, back-to-back ATM cells arrive every
170ns or 102 microengine cycles. This is the available
budget per microengine for processing ATM cells.

Reducing the data rate requirement or increasing the
packet size increases the available compute cycles per ME.
For example, the total available budget for handling POS
minimum packets at the OC-12 data rate (622Mbps) is 355
cycles per ME, four times the available budget compared
to OC-48 since the data rate of OC-12 is lower than the OC-
48 data rate by a factor of four. Similarly, the above
equations can be used to calculate the available budget
for handling 100B POS packets at OC-48 data rate. This
equals 192 cycles per ME.

Figure 4 shows the relationship between the data rate and
the packet size on the available budget per ME in terms of
available ME cycles. As indicated above, the available
budget increases as the packet size increases or the data
rate decreases.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 23

Compute Budget Per ME

0

350

700

1050

1400

1750

0 40 80 120 160 200

Packet Size in Bytes

A
v
a
il
a
b

le
 M

E
 c

y
c
le

s

OC12 (622 Mbps) OC48 (2.48Gbps)

Figure 4: ME compute budget estimate

As the IXP2400 has 8 microengines, the total available
compute cycles for the entire application is 8 times the
total available budget per ME. In other words, the total
available compute cycles on the ingress and egress
IXP2400 for the IP DiffServ application at OC-48 data rates
for handling minimum POS packets is 8*88 or 704 cycles.

Packet processing involves accesses to internal and
external memories such as scratch memory, SRAM,
DRAM, etc. The number of memory accesses per stage
depends on the data movement model for that stage.
Typically, the latency to access memory is several
minimum packet arrival times, i.e., SRAM access latency
would be 150 cycles (almost twice the POS minimum
packet arrival time), while DRAM access latency would be
250-300 cycles (>3 times the POS minimum packet arrival
time). The software-controlled multi-threaded features on
the ME provide the mechanism to hide these large
latencies. Using 8 threads on an ME provides an IO
latency budget of 8 times the packet arrival rate. In the
above situation of 150-cycle SRAM latency, a total budget
of 8*88 or 704 cycles (8 times the POS minimum packet
arrival time) allows the stage to support four dependent
SRAM operations. Assuming 250-cycle DRAM latency,
each stage can support two dependent DRAM operations
and still maintain line rate.

In the multi-threaded implementation, each thread within
the ME is assigned a new packet that arrives into the
system. Assuming M MEs and N threads per ME, a total
of M*N packets can be handled in parallel by these multi-
threaded engines before the first thread of the first ME
needs to be ready to process the M*N +1th packet. This
provides a mechanism to increase the total available
compute and IO budget.

Typically if M is 1, the software pipeline implementation is
referred to as a context pipeline. M >1 implies that several
MEs are grouped together to handle a given processing
block. Such a pipeline is referred to as a functional
pipeline. The following paragraph describes these
software pipeline models supported by the IXP2400.

The IXP2000 programming model provides two types of
software pipelining models:

• A context pipeline, in which different pipeline stages
are mapped to different MEs. Each ME constitutes a
context pipe-stage. A packet context is passed from
one pipe-stage to the next using the various inter-ME
communication mechanisms. The available compute
budget per context pipeline stage is the same as the
budget available per ME.

• A functional pipeline, in which a packet context
remains within an ME while different functions are
performed on the packet as the time progresses. The
ME execution time is divided into n pipe-stages and
each pipe-stage performs a different function.
Multiple MEs are assigned to the functional pipeline
to increase the available compute and IO times. For
example, if all 8 threads of 4 MEs are used in a
functional pipeline, the total compute budget for the
minimum POS packet will be 4*88 = 352 cycles, and
the total IO latency budget will be 4*88*8 = 2816.

The total compute and total IO operations required for a
given block determine the pipeline that would be used for
that stage.

IPV4 FORWARDING + DIFFSERV
APPLICATION
The line card configuration uses the SPI3 [3] interface to
receive Internet Protocol (IP) packets from the SONET
framer. This mode is also known as the Packet over
SONET mode (POS). The fabric interface for the line card
uses Common Switch Interface (CSIX) protocol [5],
standardized by the Network Processor Forum.

The data movement model definition for this application
involves identifying all the processing blocks that are
executed for each packet.

The ingress IXP2400 processor receives POS frames that
carry IP payload. Since the IXP2400 supports up to 16
logical ports on the framer, the IP packet segments can
arrive interleaved. The first pipeline stage reassembles
these segments into complete IP packets and stores the

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 24

packets into DRAM. In the subsequent pipe-stages, the
ingress processor performs the following tasks:

• Route lookup to determine the next hop forwarding
information by executing a Longest Prefix Match
(LPM) algorithm on the destination IP address.

• RFC 1812 [6] compliant IP header checks to validate
the IP header.

IP packet classification into flows and queues using either
a 5-tuple or a 7-tuple lookup, i.e., classification based on IP
source and destination address, Transmission Control
Protocol (TCP) source and destination ports, protocol
field, L2 port, etc.

• Execution of a Single-Rate Three-Color Marker
(SrTCM) [7] meter pipeline stage to meter the traffic
on a per-flow basis and mark the packet as green,
yellow, or red, based on the flow parameters and
arrival rate.

• Execution of a congestion avoidance algorithm such
as Weighted Random Early Discard (WRED) that will
randomly drop packets when the queue lengths
exceed certain thresholds with the goal of minimizing
congestion in the fabric.

Another challenge in obtaining OC-48 performance is the
ability to add and delete packets from the queue at twice
the packet arrival rate and still support a large number of
queues. This is achieved on the IXP2400 by using the on-
chip high-performance queue management hardware.

The transmit pipeline includes fully programmable
schedulers such as Weighted Round Robin to schedule
traffic into the fabric, and a transmit engine that adds
fabric encapsulation to the IP frame, segments the IP frame
into CSIX c-frames, moves c-frame data from memory and

to the transmit buffers, and enables data transmission on
the CSIX interface.

The data movement model for the egress processor is
constructed using a similar methodology. The first
pipeline stage of the egress processor receives the CSIX
c-frames and reassembles the original IP payload using the
fabric encapsulation information. Subsequent packet
processing stages of the egress processor perform further
classification, if required, and execute metering and
congestion avoidance algorithms. Sophisticated
scheduling algorithms such as Deficit Round Robin are
implemented on this processor to provide quality of
service (QoS) for the network-bound traffic. The final
transmit stage of the data movement model segments the
IP frame into transmit chunks called mpackets and enables
data transmission on the SPI3 interface.

Similar data movement models can be defined for
analyzing the performance of other applications such as
Asynchronous Transfer Mode (ATM), Segmentation and
Reassembly (SAR), ATM traffic management, voice over
ATM etc. The next section of this paper describes how
this data movement model is used to estimate the cycle
count and I/O requirements for each processing stage.

PERFORMANCE ANALYSIS
METHODOLOGY
Figure 5 shows the ME allocation and the software
pipeline chosen for each of the blocks in the ingress data
flow for the IPv4 forwarding + DiffServ application. This
partition is based on the cycle count estimates and IO
requirements that are derived from the pseudo-code that
corresponds to the data movement model described
above. The subsequent sections provide the details on
the pseudo-code-based analysis and the choice of the
pipeline for each of these stages.

Queue
Manager

POS RX WRR
Scheduler

CSIX
TX

1 x ME 4 x ME 1 x ME 1 x ME 1 x ME S
w

itc
h

 F
a

b
ric

Ingress IXP2400

OC48
POS

4 ME Functional Pipeline

Classification
SrTCM Meter

WRED

Figure 5: ME allocation for IP DiffServ application

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 25

Table 1: Pseudo-code for reassembly stage

Description Cycle Count Command SRAM Rd SRAM Wr DRAM Rd DRAM Wr

The receive thread wakes up, looks at the receive status word (RSW), and decides
what to do with the mpacket, based on SOP/EOP indicator within the RSW. 10
For all conditions (SOP/EOP) move the RBUF data to DRAM. ME updates the
reassembly context with the new DRAM location and offset. 30 1 64
For minimum-sized packets (and for EOP), update the buffer descriptor in SRAM

11 1 4
For EOP, Write SOP ptr, EOP ptr, L2 port, Next IP hop, Class, Payload length to
scratch ring for the next pipeline stage 11 1
Prefetch new buffer descriptor to be used in the next phase 2 1 4
Clean up, return the thread back to the thread freelist, free RBUF element 6 2
Total for frame reassembly 70 6 4 4 0 64

POS Receive Block
The first block in the ingress flow is responsible for
reassembly of the POS packets. On receiving a new
packet, each thread in this block checks the Start of Packet
(SOP) and End of Packet (EOP) bits of the packet,
identifies the port of the packet, allocates a DRAM buffer
for the packet on start of a new packet or when the
previous buffer is full, updates the reassembly context
with the current offset in the DRAM buffer, moves the
data from the receive buffer to the DRAM buffer, signals
the next stage of the pipeline on EOP, and cleans up the
state for the next round.

This stage requires the following four IO operations: 1)
SRAM read to allocate a new buffer; 2) DRAM write to
move the packet data into the DRAM buffer; 3) SRAM
write to update the packet descriptor information; and 4) a
scratch ring write to signal the next pipeline stage when
the entire packet has been reassembled with the packet
data.

The pseudo-code for this pipeline stage is captured in an
excel format and is shown in Table 1. Based on this
pseudo-code, the reassembly block for POS minimum
packets requires approximately 70 compute cycles and 4
IO operations. Since each ME has an 88-cycle compute
budget for handling POS minimum packets, the reassembly
function meets the cycle count budget for 1 ME. The next
step in the analysis involves estimating the total IP
latency for the reassembly block to determine
conformance to the 1 ME budget. Assuming 8 threads of
the ME are used, the total available IO budget is 704
cycles. Assuming the latency for the SRAM and scratch
operations is 125 cycles each, and the latency for the
DRAM operation is 250 cycles, the total latency for the 2
SRAM ops + 1 scratch operation + 1 DRAM operation is
2*125 + 1*125+ 1*250 is 625 cycles. This fits within the
704-cycle available budget.

Thus, based on the pseudo-code analysis and the latency
estimate, the POS receive block is implemented as a
context pipeline running on all 8 threads of a single ME.

Since the latency estimates used in this analysis are
approximate, establishing the actual performance of this
block requires successive refinement and tuning of the
actual microcode running on the IXP2400-cycle-accurate
simulator. This simulation environment provides the
dynamic latency value for each of the IO operations based
on the total load on the system. The code is tuned such
that the dynamic latency budget still fits within the total
available IO latency budget.

During the tuning effort, if the dynamic latencies exceed
the available budget, other tricks could be used to fit
within the budget. The available options include handling
multiple packets per thread such that the total available IO
budget is further increased. For example, if each thread
handles two packets concurrently (with each packet in a
different phase of execution), the total available IO budget
increases to 2*704 cycles. However, the flip side of
handling multiple packets per thread is the increase in the
actual cycle count per thread. Thus, a balance is required
to determine whether the compute budget or the IO
budget becomes the bottleneck.

In cases where the compute budget exceeds the available
cycles on the single ME, the context pipeline stage will be
required to be converted into a functional pipeline stage,
with additional MEs added to provide the necessary
headroom.

Classification Pipeline
The classification stage reads the message from the
previous reassembly stage and reads the IP/TCP header of
the packet from DRAM. This stage performs routing and
classification functions using the information in the
header.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 26

One example of packet classification used in the DiffServ
application is a 5-tuple exact match lookup to identify the
flow and queue ID of the packet. The fields used for the 5-
tuple search are IP source and destination addresses, the
TCP source and destination ports, and the protocol field.
Since the 5-tuple lookup uses 104 bits, a hash scheme is
used to efficiently store the necessary information in
SRAM. The hash key is generated using the hash
hardware on chip. The hash key is used to access SRAM.
On completion of the read, the original key is compared to
the retrieved key. When a hash collision occurs, multiple
dependent SRAM read operations are required to get the
flow and queue information.

Once the packet is classified, this pipeline stage also
executes all the checks mandated by RFC1812 including
decrementing the time-to-live field of the IP header and
updating the IP header checksum.

The pseudo-code-based analysis for the classification
stage shows that this stage requires 2 DRAM operations
plus 9-10 SRAM/scratch operations. Assuming similar
latency estimates that are used in the POS Rx analysis, this
block requires a total IO latency budget of approximately
1750 cycles, more than the total available IO budget for 2
MEs. Initial pseudo-code-based cycle count estimates
showed approximately 160 cycles for performing the 5-
tuple exact match and for executing all the header checks
mandated by RFC1812, within the budget for a 2 ME
functional pipeline.

The SrTCM meter block requires approximately 80
compute cycles and needs only 2 SRAM operations, reads
the meter parameters for the given flow, and updates the
relevant field of the flow data structure based on the
behavior of the current packet. Similarly, the WRED block
requires approximately 80 compute cycles and needs only
2 SRAM operations.

Since the classifier block requires more IO budget than the
available budget on 2 MEs, while the meter and WRED
blocks have a lot of IO budget headroom, the entire
pipeline is implemented as a 4 ME functional pipeline,
whereby the classification stage can use up the IO budget
allocated and unused by the other processing blocks.

Thus, the pseudo-code-based analysis allows the
application blocks to be partitioned appropriately to
maximize the use of all available resources.

Each thread on each ME handles one packet; thus a total
of 32 packets remains active in this pipeline, providing a
total latency budget of 4*8*88 = 2816 cycles to retire each
packet. In other words, each thread receives a new
minimum packet every 2816 cycles. In order to keep up
with the OC-48 line rate, each thread in the classification
stage must retire the previous packet within 2816 cycles.

Queue Manager
The Queue Manager (QM) is responsible for performing
enqueue and dequeue operations on the transmit queues
for all packets. The functionality of the QM is identical on
both the ingress and egress processors: to process
enqueue and dequeue requests from the other pipe-stages
and perform the necessary operations on the queue array
structures. The enqueue operation does not return any
data. The dequeue operation returns a pointer to the
buffer descriptor that was dequeued. This information is
transferred to the ME in the transmit pipeline via a scratch
ring. It is possible to request a dequeue from the QM
either before a schedule decision is made or after a
schedule decision is made. This is implementation specific
and depends on the number of queues supported,
scheduling algorithm used, etc. On the ingress processor,
the dequeue request is issued after the schedule decision,
while on the egress processor the dequeue request is
issued before the schedule decision

The pseudo-code-based analysis for the QM shows that
each enqueue and dequeue operation requires 4
SRAM/scratch operations each. This stage does not
require any DRAM operations. Each thread handles 1
enqueue operation and 1 dequeue operation in parallel;
thus the IO accesses required for the enqueue and
dequeue operations can be issued concurrently. Thus, the
total IO latency is determined by 4 dependent SRAM
operations. Assuming 125-cycle latency, this total latency
of 500 cycles fits within the latency budget for 1 ME. Thus
the QM is implemented as a context pipe-stage running on
1 microengine.

CSIX Transmit Scheduler
The Common Switch Interface (CSIX) scheduler schedules
packets to be transmitted to the CSIX fabric. The
scheduling algorithm implemented is Round Robin among
the ports on the fabric and optionally Weighted Round
Robin amo ng the queues on a port. The scheduling and
transmit is done a c-frame at a time.

The CSIX scheduler handles

• Flow control messages from the fabric. These
messages are sent by the fabric to the egress
IXP2400, which sends them on the c-bus to the
ingress IXP2400. If the fabric asserts Xoff on a
particular Virtual Output Queue (VoQ), the scheduler
stops scheduling for the queue.

• Queue transition messages from the queue manager.
A queue is scheduled only if the queue has data.

• MSF Transmit State Machine. The scheduler monitors
how many packet c-frames are in the pipeline, and if

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 27

the number of packets in the pipeline exceeds a
certain threshold, the scheduler stops scheduling.

For both the VoQ status and the transmit queue status,
the scheduler keeps hierarchical bit vectors and uses the
MEv2 Find First Bit Set (FFS) instruction to scan them
efficiently. During each loop, the scheduler

• Determines if the TX pipeline is within the threshold.

• Picks up from where it left off in the last iteration and
finds the next bit set and determines which queue to
schedule.

• Sends a dequeue message to the queue manager to
dequeue the head of that queue. The queue manager
dequeues a cell (c-frame) from the head of the queue
and sends a transmit request on a scratch ring to the
CSIX TX microblock.

Pseudo-code analysis of the scheduler block shows that
this block is compute intensive. In the worst-case
condition, the scheduler exceeds the 88-cycle budget if it
has to process fabric flow control messages, process QM
queue transition messages, check for MSF transmit count,
and schedule a c-frame at each minimum packet arrival
slot. However, the worst-case condition is not likely to
occur often, and by slowing down the processing task, the
scheduler alleviates some of the problems of the worst-
case condition, i.e., fabric flow control messages would
slow down if the scheduler slowed down the transmit
requests to the fabric, and QM queues would build up,
resulting in fewer queue transitions from 1->0 or 0->1 if the
scheduler falls behind.

The scheduler block has negligible IO operations. Thus,
the CSIX scheduler block is implemented as a context
pipe-stage executing on a single ME using only 4 threads.
One thread of this ME executes the actual scheduling
algorithm. Three support threads handle the fabric flow
control messages, the QM queue transition messages, and
the MSF transmit counter.

CSIX Transmit
The CSIX transmit engine handles the data movement
from DRAM to the transmit buffers. This block receives
transmit request messages from the queue manager. For
each transmit request, a c-frame is transferred into a
Transmit Buffer (TBUF), which is then transmitted into the
fabric by the MSF transmit state machine.

Every request has an associated packet, which is being
segmented into c-frames. The associated segmentation
state for the packet and the packet meta-data is cached in
local memory and is looked up using the CAM. The TX
microblock adds the CSIX header onto the c-frame along
with the packet data. Along with the CSIX header, a

Traffic Manager (TM) header is also added per c-frame,
carrying extra information (destination layer-2 port ID,
input blade ID, sequence number, next -hop ID, etc.) about
the packet to be passed to the Egress IXP2400. In
addition, the flow ID, class ID, input port, and some other
fields from the meta-data are passed along to the Egress
IXP2400 using a per-packet header pre-pended to the start
of the first c-frame of each packet.

Pseudo-code-based analysis of the CSIX transmit block
shows that this stage requires 3-4 SRAM/scratch
operations plus 1 DRAM operation for scheduling each c-
frame. For minimum POS packets, the latency budget is
tight. Tricks such as concurrently handling 2 c-frames per
thread are used to increase the total IO latency budget
such that this block fits as a context pipe-stage that runs
on a single microengine.

CONCLUSION
Analyzing the performance of network processors poses
major challenges since these chips are targeted to a wide
range of applications. A consistent methodology is
required to establish the performance capabilities of these
processors. This paper described a methodology for
analyzing the performance of diverse networking
applications that are targeted for the IXP2400 network
processor. This methodology involves estimation of the
available processing and latency budget per packet,
estimation of the total compute and IO operations required
per packet for the various pipeline stages of the target
application, and mapping the pipeline stages of the
application to the available hardware resources on the
IXP2400 and utilizing all the available software pipelining
techniques to hit the desired performance. The paper also
presented a case study using the IPv4 forwarding +
DiffServ application to validate the above methodology.
This performance analysis methodology can be easily
extended to evaluate the performance of other applications
running on the IXP2400 network processor or to evaluate
the performance of other network processors. The results
from this methodology helped establis h the performance
capabilities of the IXP2400 network processor for various
edge and access router applications.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of Mark
Rosenbluth, Deb Bernstein, Gil Wolrich, Hugh Wilkinson,
Chen-chi Kuo, Eswar Eduri, Muthiah Venkatachalam, and
Prashant Chandra.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Performance Analysis Methodology 28

REFERENCES
[1] http://www.spec.org/ Standard Performance

Evaluation Corporation.

[2] http://www.tpc.org/ Transaction Processing
Performance Council.

[3] http://www.oiforum.com/ Optical Internetworking
Forum.

[4] http://www.atmforum.org/ ATM Forum.

[5] http://www.npforum.org/ Network Processor Forum.

[6] http://www.ietf.org/rfc/rfc1812.txt?number=1812 IETF
RFC specifying requirements for IP version 4 routers.

[7] http://www.ietf.org/rfc/rfc2697.txt?number=2697 IETF
RFC specifying single -rate three-color marker.

[8]
http://developer.intel.com/design/netwo rk/products/npfa
mily

AUTHORS’ BIOGRAPHIES
Sridhar Lakshmanamurthy is a senior staff architect at
Intel's Network Processor Division, focusing on
understanding edge/access networking applications,
analyzing the performance of Intel's network processor
solutions, and defining future enhancements to these
solutions. Prior to joining the Network Processor Division,
Sridhar focused on platform performance analysis for Intel
server chipsets for Xeon & Itanium Product Family (IPF)
processors, and system bus specification for the IPF
processors. Sridhar joined Intel in 1993 after receiving an
M.S. degree in Computer Engineering from Rice University
in Houston, TX. He also holds a B.E. degree in Electronics
and Communication Engineering from Osmania University,
Hyderabad, India. He can be reached via e-mail at
sridhar.lakshmanamurthy@intel.com.

Kin-Yip Liu co-manages the NPD NPBU Architecture
team at San Jose, focusing on network processors for the
Access and Edge market segments. His prior assignments
include engineering and management positions in the
Itanium® Product Family architecture and firmware teams
and in the 386SL and 486SL microprocessor projects. Kin-
Yip Liu joined Intel in 1990 after completing his Master of
Engineering (EE), Bachelor of Science (EE), and Bachelor
of Arts (Economics) degrees from Cornell University. Kin-
Yip holds four US patents in microprocessor architecture.
His technical interests include network processing,
computer architecture, and simulator development. His e-
mail address is kin-yip.liu@intel.com.

Yim Pun is the chief architect for the IXP2400 network
processor. His technical interests include network

processor architecture, microprocessor architecture, and
network-processor-based system solutions for the
switching/routing/ATM/MPLS/IPsec/SSL/VoIP
applications in the metro/access/edge markets. He
received his Master of Engineering degree from Cornell
University in 1987, and a Bachelor of Electrical
Engineering-Computer Engineering degree from the
University of Wisconsin-Madison in 1986. He can be
reached via e-mail at yim.pun@intel.com.

Larry Huston is a principal software architect at Intel’s
Network Processor Division. He is responsible for defining
the software requirements for future network processors
as well as designing the advanced programming
framework. Prior to Intel, Larry was a software architect at
NetBoost where he helped design their programming
environment for accelerating network applications such as
firewalls and intrusion detection. Prior to NetBoost, Larry
was a member of the technical staff at Ipsilon Networks
where he designed and implemented Ipsilon’s protocols
for dis tributed IP switching and forwarding. Larry
received his Ph.D. degree in Computer Engineering from
the University of Michigan in 1995. He also holds M.S.E.
and B.S.E. degrees in Computer Engineering and
Aerospace Engineering from the University of Michigan.
Larry can be reached via e-mail at larry.huston@intel.com.

Uday Naik is a senior staff software engineer at Intel’s
Network Processor Division. His professional interests
include networking, embedded systems, and digital
television. Uday received his Master’s degree in Computer
Science from the University of Indiana, Bloomington in
1992. He also holds a Bachelor’s degree in Computer
Science and Engineering from the Indian Institute of
Technology (IIT), Bombay. Uday resides in San Jose,
California, and can be reached via e-mail at
uday.naik@intel.com.

Xeon™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Itanium® is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/.

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 29

Packet over SONET: Achieving 10 Gigabit/sec Packet
Processing with an IXP2800

Matthew Adiletta, Donald Hooper, Myles Wilde
Intel Communications Group, Intel Corporation

Index words: network processors, IXP, communication architecture, routing, switching, 10Gbs, Ethernet,

ATM, multi-service switches, multi-processors, microprocessor architecture, hardware-based multi-
threading, OC-192, OC-48

ABSTRACT

The IXP2800 is the high-end device of a family of
network processors developed by Intel Corporation. It is
designed for 10 Gigabit/sec data rates, with typical usage
in packet forwarding systems. It can be configured with
large amounts of dynamic and static storage for
buffering hundreds of thousands of packets for up to a
million Internet Transmission Control Protocol (TCP)
connections. The programmability and parallel nature of
this processor chip make it an ideal choice when high
performance and ability to quickly adapt to new network
standards are the requirements.

This paper describes the evolution of an OC-192 (10
Gigabit/sec) design for Packet over SONET (POS), using
the IXP2800. This was a particularly difficult challenge
due to the fact that the arrival rate of packets is one per
40nS (which equals 57 microengine processor cycles). At
this rate, for each packet, buffers must be allocated, the
packet must be received, reassembled, and stored in
DRAM, header verified, multi-field and destination
lookups performed, packet classified for destination,
timestamp saved, packet tagged (metered) by priority,
previous header stripped, IP header modified, evaluated
as to whether it should be dropped, statistic counters
updated, enqueued for transmit, new fabric header
prepended, transmitted, and buffers freed. This paper
chronicles the issues encountered and solutions devised
to achieve high packet-forwarding rates. The resulting
architectural concepts of context pipe stages, functional
pipe stages, phase interleaving, critical sections,
elasticity buffers, and pool of threads are defined. The
techniques of next -neighbor message passing, scratch
rings, signaling, CAM state caching, local memory link-
lists, SRAM link-lists, and reflected mailbox messages
are explored. The OC-192 POS pipe stages are described.

A performance summary is reported for a variety of
packet streams.

INTRODUCTION
The IXP2800 started with a simple marketing requirement:
Achieve a high-end device that supports 10 Gigabit/sec
data forwarding rates and is scalable to much higher
rates when configured with a switch fabric.

In parallel with developing the hardware architecture, the
IXP2800 design group decided also to develop a proof-
of-concept application to explore how programs could be
developed on this chip. Packet over SONET was chosen,
as this presented the most difficulty in achieving full wire
rate. When used over SONET, the minimum IP packet
size is 40 bytes. A PPP layer 2 encapsulation is used with
this, which adds another 9 bytes (4-byte header, 5-byte
trailer), for a total 49B minimum packet size. By
comparison, the minimum packet size for Ethernet is 64
bytes with an interpacket gap of 20 byte times.

We assume the reader is familiar with the Intel Network
Processor Family [1].

CHALLENGES AND SOLUTIONS
Several obstacles had to be overcome to achieve the
required performance. The following sections describe
each problem and a corresponding solution.

Context Pipe Stage
Some of the operations on packets are well defined, with
minimal interface to other functions or strict order
implementation. Examples include update-of-packet-state
information, such as the current address of packet data
in a DRAM buffer for sequential segments of a packet,
updating linked list pointers while enqueuing/dequeuing

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 30

for transmit, and policing or marking packets of a
connection flow. In these cases the operations can be
performed within the 57-cycle stage budget. Further
difficulty arises in keeping operations on successive
packets in strict order and at the same time achieving
cycle budget across many stages. A block of code
performing this type of functionality is called a context
pipe stage.

In a context pipeline, different functions are performed
on different Microengines (MEs) as time progresses and
the packet context is passed between the functions or
MEs. Each ME constitutes a context pipe stage (Figure
1). Cascading two or more context pipe stages
constitutes a context pipeline. The name context
pipeline is derived from the observation that it is the
context that moves through the pipeline.

Figure 1: Context stages

A context pipeline is ideally suited when either the
program store required to maintain this pipe-stage
pipeline function is large or the data set associated with
this function is large, or both. Additionally, it is
appropriate when the data set associated with the
function is greater than the data set associated with the
context. An example is the data set for a transmit
scheduler: keeping in the local memory up-to-date
prioritized link-lists containing state information for
active transmit queues. Such state information could
include queue cell counts and flow control status.

Storing the information locally enables a function to
efficiently maintain state, whereas the context for this
pipe stage concerns which queue is being tasked with
transmit. In this case it is obvious that the queue number
(context) is much less than the data associated with the
link lists (function data set).

Another advantage of the context pipeline is that the
entire ME program memory space can be dedicated to a
single function. This is important when a function
supports many variations that result in a large program
memory footprint. Cases in which the context pipeline is
not desirable are ones in which the amount of context

passed to and from the pipe stage is so large that it
affects system performance.

Each thread in an ME is assigned a packet, and each
performs the same function but on different packets. As
packets arrive, they are assigned to the ME threads in
strict order. There are eight threads typically assigned in
an IXP2800 ME context pipe stage. Each of the eight
packets assigned to the eight threads must complete its
first pipe stage within the arrival rate of all eight packets.

Figure 2: Interleaved phased piping

A more advanced context pipelining technique is shown
in Figure 2. This technique interleaves multiple packets
on the same thread, spaced eight packets apart. An
example would be ME0.1 completing pipe-stage 0 work
on packet 1, while starting pipe-stage 0 work on packet 9.
Similarly, ME0.2 would be working on packet 2 and 10. In
effect, 16 packets would be processed in a pipe stage at
one time. Pipe-stage 0 must still advance every 8-packet
arrival rates. The advantage of interleaving is that
memory latency is covered by a complete 8 packet arrival
rate.

Functional Pipe Stage
Another problem arises when the size of the packet state
information passed between functions is so large that it
is very costly (in cycles) to pass this information
between MEs.

Figure 3: Functional stages

Context pipes can also be wasteful of instruction cycles
if the functions being implemented are extremely simple.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 31

In these cases, blocks of code can be arranged in what is
known as a functional pipeline, a name derived from the
observation that functions mo ve through the pipeline.

In a functional pipeline, the context remains with an ME
while different functions are performed on the packet as
time progresses. The ME execution time is divided into n
pipe stages, and each pipe stage performs a different
function. As with the context pipeline, packets are
assigned to the ME threads in strict order.

There is little benefit to dividing a single ME execution
time into functional pipe stages. The real benefit comes
from having more than one ME execute the same
functional pipeline in parallel. Figure 3 shows four
functional pipe stages distributed across 4 MEs, each
ME executing with eight threads.

A packet remains with a thread for a longer period of time
as more MEs are added to the functional pipe stage. In
this example, the packet remains with a thread-32 packet
arrival time (8 threads x 4 MEs) because thread ME0.0 is
not required to accept another packet until all the other
threads get their packets.

The number of pipe stages is equal to the number of
MEs in the pipeline. This ensures that a particular pipe
stage executes only in one ME at any one time. This is
required to provide a pipeline model that supports critical
sections. A critical section is one in which an ME thread
is provided exclusive access to a resource (such as CRC
residue, reassembly context, or a statistic) in external
memory. Critical sections are described in more detail
later.

Functions can be distributed across one or more pipe
stages; however, the exclusive access to resources as

described above cannot be supported in these pipe
stages.

The goal when designing a functional pipeline is to
identify critical sections and place them into their own
pipe stages. The non-critical sections of code then
naturally fall into pipe stages that become interleaved
with the critical sections. Non-critical code that takes
longer than a pipe-stage time to execute must be
allocated to more than one pipe stage.

The advantages of functional pipelines are these:

1. Unlike the context pipeline, there is no need to
pass the context between each pipe stage, since
it remains locally within the ME.

2. Functional pipelines support a longer execution
period than context pipe stages.

The disadvantages of functional pipelines are these:

1. The entire ME program memory space must
support multiple functions.

2. The latency of the functional pipeline is fixed at
the worst-case path through any sequence of
functions. If this time is exceeded, the packet
must either be dropped or handed off to a slow
path (e.g., to Xscale™) to complete packet
processing.

Mixed Pipelines
Mixed pipelines employ elasticity buffers between
pipelines. Figure 4 shows a context pipeline feeding a
ring elasticity buffer that feeds a functional pipeline. The
Functional pipeline subsequently feeds another ring
elasticity buffer and finally a context pipeline.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 32

Pipe-stage 0
Function 0

ME0.1
ME0.2

...
ME0.i

packet 1
packet 2

...
packet n

Critical Data
"A"

Critical Section

Elasticity
Buffer

Ring

Elasticity
Buffer

Ring

Pipe-stage 0
Function 0

ME0.1
ME0.2

...
ME0.i

Critical Data
"A"

Critical Section

Pipe-stage
0

Function 0

Pipe-stage
...

Pipe-stage
x

Function y

ME0.1
ME0.2

...
ME0.i

packet n+1
packet n+2

...
packet 2n

Critical Data"B"

Critical Section

Critical Data"A"

Critical Section

Function 1

Pipe-stage
1

Pipe-stage
2

packet 1
packet 2

...
packet n

Pipe-stage
0

Function 0

Pipe-stage
...

Pipe-stage
x

Function y

ME1.1
ME1.2

...
ME1.i

Critical Data"B"

Critical Section

Critical Data"A"

Critical Section

Function 1

Pipe-stage
1

Pipe-stage
2

Pipe-stage
0

Function 0

Pipe-stage
...

Pipe-stage
x

Function y

ME2.1
ME2.2

...
ME2.i

Critical Data"B"

Critical Section

Critical Data"A"

Critical Section

Function 1

Pipe-stage
1

Pipe-stage
2

Pipe-stage
0

Function 0

Pipe-stage
...

Pipe-stage
x

Function y

ME3.1
ME3.2

...
ME3.i

Critical Data"B"

Critical Section

Critical Data"A"

Critical Section

Function 1

Pipe-stage
1

Pipe-stage
2

Pipe-stage
0

Function 0

Pipe-stage
...

Pipe-stage
x

Function y

ME4.1
ME4.2

...
ME4.i

Critical Data"B"

Critical Section

Critical Data"A"

Critical Section

Function 1

Pipe-stage
1

Pipe-stage
2

packet 4n+1
packet 4n+2

...
packet 5n

packet 2n+1
packet2 n+2

...
packet 3n

packet 3n+1
packet 3n+2

...
packet 4n

Figure 4: Ring elasticity buffers

Elasticity Buffers
When a pipeline transition occurs, pipeline lock-step
execution is not required, and an elasticity buffer
(implemented as a ring) can be used. Each pipeline must
keep up with line rate. Each pipeline may have multiple
pipe stages. The pipeline writing the ring is the producer.
The pipeline reading the ring is the consumer. The
IXP2800 has hardware assist for maintaining producer
consumer rings. The problem to be solved is that there
may be single or many producers, and single or many
consumers and packet order for both producer and
consumer must be maintained. The hardware assist
includes hardware-maintained head and tail pointers for
multiple rings in either scratch or SRAM memory. When
a single producer communicates with a single consumer,
Next Neighbor Register Rings can be employed. This is
a very low latency private data path.

A pipeline that contains many producers (a multi-ME
functional pipeline) can use software techniques in order
to maintain order. MEv2 provides a Generalized Thread
Signaling (GTS) mechanism for optimized order
maintenance among the threads (defined below).

The advantage of using elasticity buffers is twofold. By
decoupling producer/consumer heartbeats, independent

software development teams can develop different pipe
stages independently and connect them using an API to
the ring. Secondly, ring buffers allow short-term line rate
processing anomalies/jitter to be hidden.

Synch Section Signaling and Critical Signaling
In a functional pipeline, an ME should not transition into
a critical section pipe-stage unless it can be assured that
the previous ME has transitioned out of that critical
section. In addition, the previous critical section must
make sure its write data has progressed such that the next
pipe stage reading the data gets the latest coherent data.
This can be accomplished by placing a fence around the
critical section using inter-thread signaling. There are
four ways to signal another thread using inter-thread
signaling, as listed in Table 1.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 33

Table 1: Interthread signaling methods

Thread-Signaling
Method

Mechanism

Signal next thread in the
same ME

Local csr write

Signal a specific thread
in the same ME

Local csr write

Signal the thread in the
next or previous ME

Local csr write

Signal any thread in an
ME

CSR write to CSR
Access Proxy Unit
(CAP)

Synch Sections
A synch section is a write-dominated section of code in
which multiple writers to the shared resource must be
sequenced correctly. This is the feather-passing problem.
In order to provide strict thread sequencing, a feather is
passed from one thread to the next, and a thread can only
begin execution when it owns the feather (Figure 5). The
IXP2800 uses General Thread Signalling (GTS) to pass
the feather. An example of a synch section is code that
writes to a ring for enqueue requests while maintaining
packet order. The next thread does not have a read
conflict with the prior thread, but it must not write to the
ring before the prior thread completes its write.

Pipe-stage n

Synch Section

Write x

Pipe-stage n + 1

Time
Write x

Figure 5: Synch section

Critical Sections
A critical section is a section of code that has only one
ME thread with exclusive modification privileges for a
global resource (such as a location in memory) at any
one time (Figure 6). This is to protect coherency during
read-modify-write operations. The following discussion
focuses on providing exclusive modification privileges

between the MEs and providing exclusive access
between the threads in an ME.

Pipe-stage n
(Modify x)

Critical Section

Read x Write x
Pipe-stage n + 1

(uses X)

Read xTime

Figure 6: Critical section

Exclusive Modification Privileges between MEs
To ensure exclusive modification privileges between
MEs, the following requirements must be met.

• Requirement 1: Only one function modifies the
critical section resource.

• Requirement 2: The function that modifies the
critical section resource executes in a single
pipe stage.

• Requirement 3: The pipeline is designed so that
only one ME executes a pipe stage at any one
time.

Pipe-stage 0
Function 0

ME0.1
ME0.2

...
ME0.3

packet 1
packet 2

...
packet n

Pipe-stage 1
Function 1

ME1.1
ME1.2

...
ME1.3

MEz.1
MEz.2

...
MEz.3

Pipe-stage x
Function y

Critical Data
"A"

Critical Section

Critical Data
"B"

Critical Section

Figure 7: Context pipe with critical sections

Figure 7 shows a context pipeline that supports two
critical sections. Each ME is assigned exclusive
modification privileges to the critical data, satisfying
requirement 1. Requirements 2 and 3 are satisfied
because each pipe stage is partitioned into different
functions and only one ME executes a specific function.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 34

Figure 8: Folding

Folding – Exclusive Modification Privile ges
between Threads in an ME
Figure 4 also shows a 5 pipe-stage functional pipeline
that supports two critical sections. Each pipe stage is
assigned exclusive modification privileges to the critical
data, satisfying requirement 1. Requirements 2 and 3 are
satisfied in the cases shown in the figure; however, it
should be noted that a critical section could not be
supported by function 1 because it does not satisfy
requirements 2 and 3; therefore, two MEs could access
the critical data at the same time.

A critical section involves three steps:

1. Reading a resource.

2. Modifying the resource.

3. Writing back the modified data.

As shown in Figure 8, if more that one thread in a pipe
stage is required to modify the same critical data, a
latency penalty will be incurred if each thread reads the
data from external memory, modifies it, and writes the
data back. To reduce the latency penalty associated with
the read and write, the ME threads can use the MEv2
Content-Addressable-Memory (CAM) to fold these
operations into a single read and one or more
modifications

A context pipe stage is the only ME that uses the critical
data. Therefore the replacement policy for CAM entries
is to replace the LRU only on CAM misses. Functional
pipelines perform the same function in multiple MEs and
therefore are required to evict all the critical data to

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 35

external memory before it exits the critical section pipe
stage. It should also ensure that the CAM is cleared at
the beginning of the pipe stage before any of the threads
use the CAM.

Before a thread reads the critical data, it searches the
CAM using a critical data identifier such as a memory
address. The search will result in one of three
possibilities.

1. Miss: When the result is a CAM miss, the critical data
is not saved locally, and the thread must read it from
external memory. The miss status also includes a Least
Recently Used (LRU) CAM entry number.

An ME that executes a context pipe stage will be the
only ME that uses the critical data. Therefore, the CAM
replacement policy is to replace the LRU only on CAM
misses. So the first thing a context pipe stage does on a
CAM miss is to evict the LRU data from the local
memory back to external memory. Functional pipelines
perform the same function in multiple MEs and therefore
are required to evict all the critical data to external
memory before it exits the critical section pipe stage.
Therefore, it can be assured that on CAM miss, the data
will already have been evicted. (Note: It is a good
programming practice for a functional pipe stage to
ensure that the CAM clear instruction is executed at the
beginning of the pipe stage before any of the threads use
the CAM).

The ME thread then locks the CAM entry and issues a
read to get the new critical data. The lock is asserted to
indicate to other threads that the data is in the process of
being read into local memory. Once the critical data is
returned, the thread processes the data, makes any
modification to the data, writes the critical data into local
memory, and then unlocks the CAM entry.

2. Lock: When the result is a CAM lock, another ME
thread is in the process of reading the critical data, and
that thread should not attempt to read the data. Instead, it
should test the CAM at a later time and use the data
when the lock is removed

3. Hit: When the result is a CAM hit, the critical data
resides in local memory.

In all cases, the ME thread is assured exclusive access to
the data by performing the modification and write
operations on the critical data without swapping out.

Pool of Threads
One of the problems with a functional pipeline is that it
has a fixed maximum latency, at which time the packet
must either be dropped or handed off to a slow path for
processing. To get around this, the pool-of-threads
concept is proposed.

In place of the functional pipe are 3 blocks:

1. A dispatcher, which assigns packets to available
free processing threads.

2. A pool of threads. Each thread makes itself
available to the dispatcher for processing tasks.
The thread receives a task from the dispatcher,
performs the functions of the functional
pipeline, then writes results to a re-
synchronizing ring.

3. An Asynchronous Insert Synchronous Read
(AISR) ring for reordering packets and passing
control to the next stage of pipeline. This
replaces the elasticity buffer ring.

XScale™ is a trademark of Intel Corporation or its subsidiaries
in the United States and other countries.

INGRESS: IP PACKETS TO CSIX
This section describes the implementation of the
10Gb/sec Packet over SONET design. Table 2 lists
seven fundamental tasks performed in the ingress
processor. Figure 8 illustrates these tasks mapped to
MEs.

Table 2: POS ingress fundamental tasks

Task Stage Type

Frame
Assembly
Classification

Functional Performs cell and frame
reassembly. Performs IP
destination and 5-tuple
classification.
Maintains the individual
data flow contexts.
ATM AAL5 CRC checking.

Meter/policing Context Single-Rate Tri-color Marker
ACLs and flow-based
policing.

Congestion
management

Context WRED.

Statistics Context Updates statistics counters.

Transmit
scheduler

Context Schedules dequeue for
transmit operations. 4-class
round robin.

Queue
manager

Context Performs both enqueue and
dequeue functions.

Transmit data Context Simple transmit to
Media Switch Fabric
Unit (MSF).
buffer management.
CSIX segmentation.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 36

Queue
Manager

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
Pipestage

(1ME)

Scratch

Meter
1

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
 Pipestage

(1ME)

Meter
2

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
Pipestage

(1ME)

Congestion
Avoidance

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
Pipestage

(1ME)

Stats

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
Pipestage

(1ME)

NN
CTX

Mode

Data
Transmit

1

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
Pipestage

(1ME)

Transmit
Scheduler

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
Pipestage

(1ME)

Data
Transmit

2

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Ctx
Pipestage

(1ME)

RPTR
(Re-assembly

Pointer Search)

RUPD
(Reassembly

Update)

Thd0
Thd1
Thd2
Thd3
Thd4
Thd5
Thd6
Thd7

Receive Functional Pipeline
(8MEs)

PktProc1 PktProc2 PktProc3 PktProc4 PktProc5

Packet Processing

PktProc6

NN
CTX

Mode

NN
CTX

Mode

Scratch

Figure 9: Proof of concept stages

Reassembly Pointer Stage (RPTR)
The RPTR pipe stage finds the pointer to the reassembly
state information in SRAM so that the Reassembly
Update (RUPD) critical section can perform its read-
modify-write on the data as fast as possible. The SPI-4
and CSIX interfaces segment packets into smaller SPI-4
and CSIX frames. The RPTR, RUPD, and packet
processing pipe stages work together to reassemble these
segmented frames back into full packets. The reassembly
state information is used to keep track of the reassembly
process.

The RPTR pipe stage also looks at the L2 header, to
determine the offset into the IP header. This offset is
used by the next pipe stage (RUPD) during reassembly.
It is not included in the RUPD because the RUPD is a
critical section.

Reassembly State Update Stage (RUPD)
RUPD pipe stage is a critical section that provides the
packet processing pipe stage with a pointer to the
location in DRAM where the network data should be
assembled. It is a critical section because it modifies the

reassembly state information that is maintained in
SRAM. The RUPD pipe stage manages this data
structure exclusively. Managing the reassembly state
involves allocating buffers and calculating offsets, byte
counts, and other variables. The MEv2 CAM is used to
maintain a coherency of the reassembly state between the
eight threads. If is important to note that if the RBUF
Control indicates that the complete packet is in the
RBUF element, the reassembly information does not
need to be accessed and updated. This greatly reduces
the memory system bandwidth for packets of 128 bytes
or less.

Packet Processing (PPR)
The packet processing pipe-stage threads complete the
reassembly process by writing the data to the buffer and
also looking at the L2 through L7 packet headers to
process the packet. This pipe stage is very application
dependent and is expected to change from one
application to another. The initial reference design will
support the following:

• Stripping the PPP header from the packet.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 37

• Verifying the IP header.

• Determining the destination port with an IP
destination search.

• Identifying flows and support access lists with a
7-tuple search.

• Modifying the IP header TTL and checksum.

• Appending a new level-2 header for the packet,
containing the classification state to be used by
the egress processor.

The packet processing pipe stage is not a critical section.
It executes six times longer than the other pipe stages in
the functional pipeline. The packet processing pipe stage
ends with a synch section to ensure that packet order is
maintained.

Metering 1 and Metering 2
The Single-Rate Three-Color Marker (srTCM) meters an
IP packet stream and marks its packets either green,
yellow, or red. Marking is based on a Committed
Information Rate (CIR) and two associated burst sizes: a
Committed Burst Size (CBS) and an Excess Burst Size
(EBS). A packet is marked green if it doesn't exceed the
CBS, yellow if it does exceed the CBS but not the EBS,
and red otherwise [2].

Metering is performed when an EOP is received for a
packet. The packet processing pipe stage performs a
flow identification search and gets a pointer to the
metering information. This pointer is passed to the
metering functions. Metering is performed in two pipe
stages (Meter 1 and Meter 2). The first stage reads the
pointer from a scratch ring, reads the metering
parameters, and calculates the number of tokens
collected. The second metering pipe stage performs the
actual metering function and writes the updated meter
information back to memory. Note that the two pipe
stages access and use the same metering parameters. The
MEv2 CAM in both pipe stages is used to maintain
coherency of the parameters between the threads with an
ME and between the two pipe stages. This is possible
because the ME threads process packets in strict order
and any CAM hit in the first pipe stage is guaranteed to
be in the CAM of the second pipe stage. Note that the
reverse is not true since the first pipe stage will be
working on eight new packets while the second stage is
processing its pipe stage.

Congestion Avoidance
Congestion avoidance techniques monitor network
traffic loads in an effort to anticipate and avoid
congestion at common network bottlenecks [1]. One of

the ways in IP QoS is through packet dropping1. This
requires a way to estimate the average queue size on
each packet arrival. Basically, after the packet is
classified and before it is enqueued, this block looks at
the average size of the queue, compares it to certain
thresholds, and makes a decision on accepting or
dropping the packet.

RED
The Random Early Detection (RED) was originated
from S. Floyd and V. Jacobson [3]. According to their
paper, the gateway detects incipient congestion by
computing the average queue size. The gateway could
notify connections of congestion either by dropping
packets arriving at the gateway or by setting a bit in
packet headers. When the average queue size exceeds a
preset threshold, the gateway drops or marks each
arriving packet with a certain probability, where the
exact probability is a function of the average queue size.

RED gateways keep the average queue size low, while
allowing occasional bursts of packets in the queue.
During congestion, the probability that the gateway
notifies a particular connection to reduce its window is
roughly proportional to that connection’s share of the
bandwidth through the gateway. RED gateways are
designed to accompany a transport-layer congestion
control protocol such as TCP. The RED gateway has no
bias against bursty traffic and avoids the global
synchronization of many connections, decreasing the
connections’ window at the same time.

WRED
WRED combines the capabilities of the RED algorithm
with flow-specific DSCP and associated RED
parameters. This combination provides for preferential
traffic handling for higher-priority packets. It can
selectively discard lower-priority traffic when the
interface starts to get congested and provide
differentiated performance characteristics for different
classes of service.

Statistics
The ingress processor supports statistics for incoming
traffic, while the egress processor supports statistics for
traffic from the switch fabric. Statistics for the flow
based on the 7-tuple lookup are also kept for
packets_transmitted and packets_dropped. This section
applies to both the ingress and egress processors.

1 Floyd and Jacobson [3] suggest marking instead of
dropping. The congestion and ECN-capable bit are only
recently being defined in RFC 2481 as an experimental
protocol.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 38

RFC2863 [4] states that 64-bit counters must be
supported for interfaces that operate at data rates greater
than 650Mbps; otherwise, the rollover rate will be too
frequent for a monitor program to maintain. Although
the standard states that 64-bit statistics are required, it is
not absolutely necessary since the rollover rate is 468
years. The POS Proof of Concept implementation uses
63-bit statistics that roll over once every 234 years.

The POS Proof of Concept design includes various
assumptions concerning statistics:

1. There are two separate types of statistics maintained
for data arriving from the media interface: those
associated with an IP interface and those associated with
a flow.

2. The IP interface statistics are limited to one set per
physical port.

3. Each of the flow and IP interface statistics requires
one byte count, one packet count, and one timestamp
indicating the last time something was received.

4. Both the flow and IP interface statistics may require
63-bit statistics.

Transmit Scheduler
The transmit pipeline begins with the transmit (Tx)
scheduler context pipe stage. The Tx scheduler
schedules packets to be transmitted to the CSIX fabric
and passes an enqueue and dequeue request onto the
next pipe stage (queue manager). The transmit scheduler
is also responsible for maintaining the queue status state.

The scheduling algorithm is implemented in software
and can be modified per customer requirements. The
assumption made for the example design is that the
scheduler is transmitting into a switch fabric that
supports 16 line cards, each line card having eight ports,
and that each port on a line card supports four class
types. The total number of ports in the system is 16 x 8
or 128. The example design implements a hierarchical
scheduling algorithm. There are four class (priority)
wheels, each with 128 entries. The 128 entries each
represent a port. Each class wheel is serviced with a
Round Robin (RR) scheduling algorithm. A
programmable distribution wheel is used to select which
ring gets service at each scheduling interval. The
programmable distribution wheel provides an anti-
starvation mechanism that ensures fairness with some
degree of programmability. The example design uses a
work-conserving algorithm (it searches for work to do
during each scheduling time). If no work is found on a
particular class wheel, then the search moves to the next
wheel entry.

The transmit scheduler is made up of two threads:
schedule (Thread 0) and flow control (Thread 2). Note
that the scheduler ME is configured to operate in 4
context mode; therefore, the four threads are numbered
0,2,4,6. Threads 4 and 6 of the scheduler ME are
unused.

The scheduler thread uses a singly linked list in local
memory (LM) to determine the next eligible schedule for
each class. Each class wheel has a 32-bit control register
that is stored in LM. This control register is made up of a
16-bit previous queue pointer and a 16-bit current queue
pointer that maintain the active links for the class wheel.
Each link list entry is made up of an 8-bit next queue
pointer, 23-bit queue cell count, and 1-bit flow control
status that is stored in LM.

Enqueue information is passed from the receive pipeline
through the statistics ME to the scheduler ME. The
statistics ME computes the number of cells that each
enqueue packet contains from its enqueue state. The
statistics ME encodes the computed cell count in one of
four enqueue words that are passed to the scheduler ME
via a Next Neighbor (NN) FIFO. The scheduler ME uses
the cell count information to maintain the queue status
for each queue.

Queue Manager
The queue manager is responsible for performing
enqueue and dequeue operations on the transmit queues
for all packets. Although IXP2800 can support either a
linked list or ring queue structures, this implementation
of the queue manager is designed to support the linked
list queue structure.

Transmit 1 and Transmit 2
The transmit data pipe stages receive a transmit request
from the queue manager and, in response, segment the
buffer packet data into c-frame segments and moves the
data into a TBUF so that the MSF transmit state machine
can send the data to the fabric. When all the data in a
buffer is transmitted, it frees the buffer by placing it onto
a buffer free list.

The queue manager places transmit requests onto a next-
neighbor ring. The transmit data pipe stage reads the
request and processes the request.

To process the request, the transmit data thread must
first check the CAM to see if the buffer descriptor is
cached in local memory. If not, it evicts the LRU buffer
descriptor to SRAM and reads in the new buffer
descriptor. When the buffer descriptor is local, the
transmit data thread checks to see if it is an SOP. If so, it
finds the current packet data location and offset into the
buffer and reads the IP header into transfer registers,

Intel Technology Journal Vol. 6 Issue 3, 2002.

Packet over SONET: Achieving 10 Gigabit/sec Packet Processing with an IXP2800 39

updates the IP TOS field with the DSCP, and updates the
IP header checksum. Then it submits the data to the MSF
for transmit, with the following steps:

1. Writes the IP header and the CSIX L2 A and B
headers to the TBUF element data.

2. Moves the remaining data from the DRAM to
the TBUF.

3. Validates the TBUF element so that the MSF
transmit state machine knows to send the data
to the fabric.

If the request is not an SOP, the transmit data thread
finds the current packet data location and offset into the
buffer and moves all the data from the DRAM to the
TBUF and validates the TBUF element. If the request is
not an EOP, it places the buffer address onto a buffer
free list after the entire packet has been transmitted.

CONCLUSION
Performance was measured for a variety of packet
streams, notably single OC-192 flow, 16 flow, and >16
flow cases for minimum-sized packets, and a distribution
of packet sizes for non-minimum-sized packets. The
context pipe stages tend to govern performance that is a
steady rate of one packet per 55.6 ME cycles.

The elasticity buffers need to accumulate messages
before the following context pipes could achieve a full
rate without getting empty ring messages.

The 10 Gigabit/sec performance is achievable with
careful attention to the instruction counts for context
pipe stages, and the overall latency/number of threads
for the functional pipe stages.

ACKNOWLEDGMENTS
The authors acknowledge Gil Wolrich, Hugh Wilkinson,
Deb Bernstein, Michael Fallon, Sanjeev Jain, Stepanie
Hirnak, David Romano, Mark Rosenbluth, and John
Wishnewski.

REFERENCES
[1] Matthew Adiletta, et al., “The Next-Generation

Family of Intel Network Processors,” Intel
Technology Journal, Q3, 2002, V6 Issue 3.

[2] Internet Network Working Group, RFC 2697,
September 1999.

[3] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM
Transactions on Networking, V.1 N.4, August 1993,
pp. 397-413.

[4] Internet Network Working Group, RFC 2863, April
1998.

AUTHORS’ BIOGRAPHIES
Matthew Adiletta is an Intel Fellow and Director of
Communication Processor Architecture. He led the
architectural development and implementation of the
IXP2800 and is driving the IXP roadmap. He is
interested in processor architecture and advanced
implementation techniques for rapid silicon
development. He is also intrigued with the semantic web
and network security. Adiletta received his B.S. degree
in Electrical Engineering, with Honors, at the University
of Connecticut. He resides in Bolton, Massachusetts.
His e-mail is matthew.Adiletta@intel.com.

Donald Hooper is a senior software architect in the
Network Processor Group. He has led many projects
including Logic Synthesis, Video Servers, MPEG 2 and
DAVIC Standards, IXP1200 Software Tools and
Libraries, IXP2800 Proof of Concept Designs, and NPG
Coding Standards. His professional interests include
networking, artificial intelligence, and object-oriented
languages. He attended four colleges with cumulative
B.S.E.E. degree credits finishing at UCLA. He resides in
Shrewsbury, Massachusetts. His e-mail is
donald.hooper@intel.com.

Copyright © Intel Corporation 2002. This publication
was downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

mailto:matthew.Adiletta@intel.com
mailto:donald.hooper@intel.com
http://developer.intel.com/
http://developer.intel.com/sites/developer/tradmarx.htm

Security: Adding Protection to the Network via the Network Processor 40

Security: Adding Protection to the Network
via the Network Processor

Wajdi Feghali, Brad Burres, Gilbert Wolrich, Douglas Carrigan
Intel Communications Group, Intel Corporation

Index words: security, encryption, authentication, 3DES, AES, SHA-1

ABSTRACT
As information security becomes more important in
today’s world, it is necessary for networking equipment to
enable cryptographic functions. The Intel IXP28xx network
processor integrates the appropriate set of features to
enable the addition of security functionality with
significant advantages over a discrete solution.

The integration of security functionality in the IXP28xx
network processor was initiated by the investigation of
cryptographic systems requirements. Several possible
architectures were investigated, but they all lacked certain
key elements. It was proposed that an integrated solution
capable of network processing and security processing
offered the most advantages.

After determining that an integrated solution had the most
advantages, we found it necessary to understand what
new functions needed to be integrated and what existing
IXP2800 functions could be leveraged. The new functions
were identified, implemented, and interfaced to the rest of
the network processor. These new functions, combined
with the baseline IXP28xx, make it possible to provide
secure traffic at 10Gigabits/second.

INTRODUCTION
With the increasing reliance of businesses and individuals
on computer networks, there is a corresponding increase
in the importance of information security. This increase
requires that some base security functionality, such as
data confidentiality and data integrity, be afforded to
every packet placed on the network. Despite this
requirement, security is sometimes an after-thought in
many networking equipment designs. It is essential to
provide security functionality as part of the networking
building blocks from the beginning of the design cycle.

Previous designs have added security to the network
through either a co-processor or an inline security
processor. As data rates go up, the co-processor solution

becomes less and less practical. Inline security
processors can actually scale to the higher data rates but
must perform many of the same functions as the network
processor does to achieve the high data rate.

Integrating security functions onto the IXP28xx makes it
possible to provide secure network traffic at 10Gigabits
/second while using the same system designs as for an
ordinary network processor. This enables the design of
security functionality in network equipment from the start
and at a lower overall system cost in terms of power
consumption, board real estate, and silicon investment.

This paper describes how security functionality is added
to the IXP2800 network processor in order to support data
confidentiality and data integrity. Specifically, it
discusses the hardware features added and how these
features can work in cooperation with the rest of the
network processor functionality.

SECURITY SYSTEMS ARCHITECTURES
There are three primary ways to add security functions to
networking hardware equipment.

The first and most common method today is to use a
co-processor coupled with a network processor or a
general processor. As data rates go up, this method
becomes less practical because the packet must traverse
shared resources such as data buses or memory four
times.

The second method is to add a security processor inline
with a network processor. While this approach can
achieve high data rates, the inline security processor must
perform many of the same functions that the network
processor must do such as packet reassembly; thus work
must be repeated and silicon area must be duplicated.

The third method is to add the security functionality into
the same silicon as the network processor, thus adding
security functionality into the network processor while
maintaining wire rate and minimizing new silicon area. As

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 41

new network line cards are designed, an integrated
solution will prove beneficial.

Look-aside Architecture
The look-aside architecture is attractive because it places
fewer burdens on the security processor to completely
implement protocol processing. For a simpler security
processor design, a greater burden is placed on the
network processor. Current security processors require
that the entire packet be available before processing can
begin. This implies that the network processor mu st

assemble the packet in memory before sending it to the
security processor and that the packet is then placed in
memory before being transmitted. Although the bus
between the network processor and the security processor
must be able to handle twice the line data rate, requiring
many more pins on the network processor, the network
processor memory must be traversed four times, and that
is not desirable for high packet rates. It is important that
the bulk of the data traverse the memory just twice: once
for write and once for read.

Figure 1 shows a network processor and a security
processor in the look-aside configuration. The packet data
must typically traverse the memory four times, as opposed
to two times, and the bus between the network processor
and security processor must be capable of doing at least
twice the desired wire rate.

Flow-through Architecture
The flow-through architecture solves the performance
problems of the look-aside architecture, but it requires the
security processor to do many of the functions that the
network processor is targeted for. Some of these tasks
include reassembly of packets, protocol processing, and
exception handling.

It is very desirable to be able to use the same underlying
hardware architecture to target multiple applications. This
would be possible if the security functionality were added
to the network processor.

Figure 2 shows partitioning of flow-through architectures.
Some applications require that the network processor be
placed before the security processor, some require that the
security processor be placed before the network

processor, and some require a network processor before
and after the security processor. For example, an SSL
proxy application requires termination of a TCP
connection, SSL processing, and then the establishment
of a new TCP connection.

Memory

Network
Processor

Security
Processor

Figure 1: Look-aside architecture

Network
Processor

Security
Processor

Network
Processor

Figure 2: Flow-through architecture

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 42

Protocol and Cryptographic Processing
The securing of network traffic can essentially be
portioned into two partitions: protocol processing and
cryptographic algorithm processing.

Protocol processing would include Encapsulating Security
Protocol (ESP), Authentication Header (AH), Secure
Sockets Layer (SSL), Transport Layer Security (TLS), and
other non-security protocols such as Transmission
Control Protocol (TCP) and the Internet Protocol (IP)
processing.

Cryptographic algorithm processing includes the data
manipulation that would need to be done on the entirety
of the payloads, such as confidentiality and integrity.

The flow-through architecture requires the security
processor to do similar functions as the network
processor, mainly protocol processing. This can be done
with dedicated hardware or perhaps one or many protocol
processors integrated in the security processor.

An interesting question is raised: Is it better to add the
necessary functions to a network processor to enable it to
target security processing, or add network processor
functions to the security processor to enable it to
completely handle protocol processing?

We decided to leverage the extensive functionality and
flexibility of the IXP2800 network processor and add to it
the necessary cryptographic algorithms.

LEVERAGING THE IXP2800
The IXP2800 consists of several units that are connected
via the chassis. The chassis connects the following units
that can be directly used for security processing:
microengines, SRAM, DRAM, lookup hash, PCI, and
XScale™, via a set of command buses and data buses.
The cryptography units are added to the chassis and are
accessible by the microengines and the media switch
fabric interface for data, and by the microengines for
commands. For details on the chassis, see reference [7].

Microengines
Microengines are used to do the protocol processing,
such as ESP processing for IPSec traffic. That processing
includes constructing new headers, copying fields from
one header to another, and modifying security state
information. The microengines are designed for packet
processing. For example, during replay checks on
incoming ESP packets, it is necessary to read the
sequence number state, modify the replay window, and
write the data back to memory.

The microengine CAM is used to effectively manage the
reading, make multiple modifications across several
microengine threads, and write back the sequence number
state to memory. This technique is called folding [6].

DRAM
The IXP2800 provides three independent channels of
DRAM memory, yielding enough capacity to handle
millions of security associations and enough throughput
to handle 10Gigabit/second IPSec wire rates.

Hash for Lookups
Hashing for lookups can be used to find the required
security association information for a given packet.
Although other methods can be applied, combining a
dedicated lookup hash unit with the use of external SRAM
yields a cost-effective mechanism to conduct many
required lookups.

SRAM
An important aspect of security processing is to find
security associations in order to apply the appropriate
cryptographic algorithms for a given flow. The four SRAM
channels that the IXP2800 supports can be used to store
hash tables.

PCI
When establishing security association, some operations,
such as public key computations, are required. A co-
processor that is connected to the PCI bus can conduct
these operations.

XScale
The IXP2800 includes an XScale processor that executes
general-purpose code. The XScale processor can be used
for exception handling for packet processing or session
setup protocols such as the Internet Key Exchange (IKE)
protocol.

IXP2800 Feature Benefits
The IXP2800 allows several feature benefits for security
processing. These benefits include flexibility of the
implementation of the protocols, optimization of the
protocols for certain applications, and the implementation
of different applications using the same underlying
hardware.

Protocol Flexibility
The security functionality is designed to allow support for
many protocols, such as IPSec, SSL/TLS, ATM, and
future protocols that use 3DES, AES, and SHA-1.

It has been proposed that the ESP protocol support larger
sequence numbers. This can be achieved when combining
the flexibility of the microengines and the flexibility of the
cryptography unit. It is also possible to support IPv4 and
IPv6 while using the underlying cryptographic hardware.

This flexibility is achieved by relying on the microengines
to provide the packet processing such as header
manipulation policy enforcement and post decryption
payload inspection.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 43

Protocol Optimizations
It is also possible to make optimizations depending on the
application being targeted. For example, when optimizing
for storage applications, large packets and few sessions
are required. This makes it possible to use the
microengines for adding more features. The flexibility of
the network processor is key for enabling new
applications because it is possible to allocate the available
resources, given the new application requirements.

Merging Packet Processing and Security
When designing a network security product, one must
consider both the packet-processing requirements and the
security requirements. A general-purpose processor
coupled with a security co-processor will not be fast
enough to achieve 10Gigabit/second rates with existing
products. It is possible to couple an existing network
processor, such as the Intel IXP1200, with a security co-
processor, but today’s security ICs offer only co-
processor architectures, and these are insufficient.

Pipelining Security Processing
It is important to add the cryptographic functionality in
such a way as to leverage the network processor features,
such as multiple threads per microengine and multiple
microengines.

Figure 3 shows pipelining of the functions that need to be
executed to encrypt and hash data. Each color represents
a different packet. The cipher key, IV, SHA-1 state and
data loading can be viewed as one stage of the pipeline.
While the red packet segment is being encrypted, new
state is loaded for the yellow packet. While the red packet
segment is being hashed, the yellow segment is being
encrypted, and new state is being loaded for the green
packet. For longer packets, no new state needs to be
loaded, and only the data manipulation is pipelined.

Each microengine can have up to eight threads of
execution running. While this multi-threaded model is one
of the strengths of the architecture that we chose to

leverage, it definitely provided some design challenges.
Since the security functions are somewhat orthogonal–
depending on the configuration–it is desirable to fully
utilize all security hardware in parallel. Enabling this
parallelism in hardware requires careful management of
common components such as global buses, local memory,
and data stalling methods. It also requires substantial
dexterity in switching the IVs, keys, and other state
information when switching packet flows, without
sacrificing performance.

It is also important to pipeline the protocol processing. For
example, when processing IPSec tunnel mode packets, it is
possible to pipeline all the required processing.

Aggregating without Reassembly
Figure 4 shows a 3DES core with access to three IVs and
three cipher keys. It is possible to choose which IV and
key pair is used on a block-per-block basis without
incurring any overhead cycles.

Although it is important to achieve 10Gigabits/second
rates on a single interface, it is also important to
aggregate, for example, ten 1Gigabit/second interfaces.
When multiple interfaces are connected to the network
processor, the data of a particular packet might be
interleaved with other packet data in the receive buffer.
Typically, the network processor reassembles the packet

Load Key

Load IV

Load State

Load Data

Cipher

Load Key

Load IV

Load State

Load Data

Cipher

Hash

Load Key

Load IV

Load State

Load Data

Cipher

Hash

Cipher Cipher Cipher

Hash HashHash Hash

Cipher Cipher Cipher

HashHash Hash

Time

Load Data Load Data Load Data Load Data Load Data Load Data

Figure 3: Security processing, pipelining, and interleaving using three wires and one core

Data In Data Out
3DES
Core

Key

Key

KeyIV

IV

IV

Figure 4: Multiple keys and IVs

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 44

in memory. If encryption needs to be performed on the
packet, then the packet must necessarily traverse the
memory four times before it is sent off-chip.

Figure 5 shows aggregation of three wires. The packets on
each wire are contiguous, but they are presented to the
IXP2800 network processor interleaved with packet
segments of other wires.

To avoid the reassembly before encryption, the
cryptography unit supports enciphering several packets
while maintaining state, such as cipher keys, cipher IVs
and SHA-1 state, internally to the cryptography unit. This
avoids having to reassemble the packet in memory and
hence saves memory bandwidth. The states can be
swapped on each block of an algorithm without any
overhead cycles.

The IXP2800 supports software techniques to handle
reassembly of segmented packets. The techniques are
divided into two stages: Reassembly Pointer Stage (RPTR)
and Reassembly State Update (RUPD). More information
on RPTR and RUPD techniques can be found in [6].

Post-Decryption Processing
Given that once a packet is decrypted, further processing
is required. To reduce latency, it is important that the
post-encryption processing can be started before the
packet is fully decrypted. This is very important for larger
packets.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

CRYPTOGRAPHY UNIT
MICRO-ARCHITECTURE
The cryptography unit is comprised of several algorithms
that in conjunction provide data confidentiality and data
integrity. Each algorithm has its own set of trade-offs and
challenges, in terms of silicon area, parallelism, and
symmetry.

The added security functionality supports the Data
Encryption Standard (DES), 3DES, and the Advanced
Encryption Standard (AES) algorithms along with the
Secure Hash Algorithm (SHA-1) for data authentication
directly in hardware.

Figure 6 shows the data path of a cryptography unit. It
consists of two 3DES cores, one AES core, and two
SHA-1 cores. It is possible to process the data via the
SHA-1 cores either before or after the ciphers have
processed the data. The IXP2800 has two such cores.

Pipelining Around Cipher Block Chaining
During Cipher Block Chaining (CBC), encryption
pipelining across several blocks of the same packet is not
possible. This is because the results of the previous
cipher operation are used in the calculation of the next
block of data.

147

258

369

1

2

3

4

5

6

7

8

9

Receive
Buffers

3 Ethernet Wires

Figure 5: Multiple wire aggregation

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 45

Figure 7 shows the dependency in cipher block chaining
that requires the cipher text to be XORed with the next
clear text block. This makes it very desirable to provide a
low latency cipher algorithm implementation.

By providing each core with access to multiple keys and
IVs with no overhead on transitions and by using more
than one core, it is possible to overcome the CBC problem.

Cipher

Algorithm

XOR

IV

Clear Text

Key

Cipher Text

Figure 7: Cipher block chaining critical path

Although newer modes of operation do not have such a
direct dependency between clear text and cipher text, it is
important to support legacy modes.

Data Encryption Standard
This cipher block algorithm is a straightforward design.
Since 3DES requires the performance of three DES rounds
with different keys in varying modes, the hardware grabs
all required keys and uses the same DES round hardware
three times. The hardest design challenge was the SBOX
implementation. The SBOX is a 64-entry lookup that is
arrayed out 24 times and is used three times serially. In
order to optimize the performance, a custom designed
lookup table implemented as a passgate mux structure was
used.

Advanced Encryption Standard
The AES algorithm represents unique challenges: 1) it is
designed to favor encryption speed; 2) the encryption and
decryption, at a first glance, require different circuits; and
3) the AES algorithm is the support for multiple key
lengths.

AES is implemented both to give the same speed between
encryption and decryption and to use the same circuit for
all key sizes. This was challenging from an analysis and
implementation point of view.

AES Key Scheduler
The key scheduler needs to support both encryption and
decryption and all three key sizes. Figure 8 shows the key
scheduler circuit. It is possible to load either a 128-bit, 192-
bit, or 256-bit key in the available 32-bit registers. Once the
key is loaded, it is possible to output the round keys for
both encryption and decryption. For decryption it is
necessary to compute the encryption key schedule at
setup time and then load the end of the encryption key
schedule for decryption processing. The same hardware is

AES

3DES
Core 1

SHA-1
Core 0

3DES
Core 0

SHA-1
Core 1

Data OutData In

Figure 6: Cryptography unit overview

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 46

capable of doing both the encryption and the decryption
key schedule on the fly.

Secure Hash Algorithm and HMAC
The secure hash algorithm is used for data authentication.
Depending on the current protocol, SHA-1 can operate
either on the unmodified packet data or on the packet data
after it has been modified by one of the cipher algorithms.
It operates on a 512-bit block size and requires a data
buffer to accumulate ciphered data. The data buffer design
is important because it breaks the dependency between
the data source and the actual hashing algorithm. By
breaking this dependency, it creates a less complex design
that enables the cipher algorithms and the SHA-1
algorithm to run at different rates.

The secure hash algorithm is used in the HMAC protocol
and adds significant overhead on short packets. For
example, processing a 40-byte IP packet with IPSec
requires that 3 hashes be processed, assuming that the
inner pad and outer pad XORed with the key are
precomputed.

Figure 9 shows the start of the SHA-1 critical path
analysis. This was done to exploit as much parallelism
from the algorithm as possible while minimizing the
required silicon area. The critical path analysis is then
converted into a circuit.

Verification
Verification of the cryptography unit was conducted using
multiple approaches. Given the amount of parallelism, it
was important to validate functionality with different
instruction sequences, and it was also important to
validate the algorithms independently.

Cycle -Accurate Model
A C++ cycle accurate model was hand-written to provide a
concrete model and a method for comparing the AES key
scheduler against known results and for providing
intermediate data for circuit debugging. The C++ cycle-
accurate model also provided an initial overview of the
control logic that would be required.

This model proved to be very successful in allowing us to
try out new ideas in a short time and to validate the circuit
implementation.

6 7

4 5

2 3

0 1

AES
Key Scheduler

Round Keys

Figure 8: AES key scheduler

^ <<<5<<<30 +

+

+

+

B C D

B

A
K

X
0

E
B

^
f2(B,C,D)

E

<<<5

^+

+

K

X
1

+

+

A

^

C

f2(A,B,C)

D

D

<<<5

+

<<<30

A

A

^ +
K

X
2

+

+

E

^

B

f2(A,B,C)

D

C

Figure 9: SHA-1 critical path

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 47

Instruction-Accurate Model
An important aspect of the cryptography unit architecture
was the amount of parallelism that was provided.
Although the individual algorithms can be verified with
the cycle-accurate model, it was also important to verify
that a sequence of commands produced the appropriate
results. The instruction-accurate model served that
purpose. Given the initial state of the cryptography unit, a
sequence of commands, and the final state of the
cryptography unit, it was possible to verify that the
appropriate steps were carried through appropriately.

PERFORMANCE
The cryptography unit is designed to achieve
10Gigabits/second Ethernet performance when using
IPSec. Although packet rate performance is important,
consideration must be given as to the overall power
consumption and the key agility of the system.

IPSec Performance
The cipher data path delivers over 25 million IPSec packets
per second with a 40-byte clear text payload.

The SHA-1 data path delivers over 10 million HMACs per
second for 40-byte clear text payloads.

This is sufficient performance to encrypt and authenticate
IPSec at 10Gigabit/second Ethernet rates when 100% of
the traffic needs to be secured.

Figure 10 shows the IPSec performance for a 10
Gigabit/second Ethernet wire. When securing packets with

IPSec tunnel mode, the original packet is encapsulated in a
new packet, and the secure packet grows in size. The
graph shows the IPSec and clear packet rate in
Gigabits/second and the IPSec packet rate in millions of
packets/second.

Power Consumption
One big benefit of adding security functions to the
IXP2800 is a dramatic savings in power consumption for
the overall solution. If current security processors were
scaled to 10Gigabits/second rates, they would require
between 13 and 30 Watts. Between the meticulous
attention given to reducing power consumption during the
design phase and, more importantly, the lack of I/O
devices and overlapping silicon functionality, the IXP2800
with the Cryptography Unit reduces power by a 10X factor
over its competitors. This is a tremendous benefit given
the tight power constraints facing many networking
equipment manufactures.

Key Agility
Key agility is important when considering the small packet
rates of 10 Gigabit/second networks. The cryptography
unit allows loading keys while the cryptographic
algorithms are running. The cipher algorithm key
schedulers run independently from the ciphers data
circuits. This enables the encryption of all traffic, even
minimum packet sizes, without sacrificing performance.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 48

CONCLUSIONS
The problem of providing a secure network is one that
networking equipment manufactures must tackle. The
integration of security functionality onto the IXP28xx
enables these manufacturers to easily solve the problem of
providing that security.

The cryptographic algorithms that are implemented in
silicon work closely with the other IXP28xx silicon and
software resources to achieve secure data rates of up to
10Gigabits/second. Achieving the security processing
requirements on a network processor makes it possible to
provide not only a high-speed secure connection but also
one that is achievable at a relatively low cost.

Due to the flexible nature of the IXP28xx network
processor, future generations will integrate more security
functionality. These functions might include public key
acceleration, random number generation, and intrusion
detection.

By providing both the general-purpose network processor
and the security processing integrated onto a single
silicon die, Intel is working to secure its position as the
leading silicon provider for the networking equipment
manufacturers.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of John Cyr
and Matthew Adiletta.

REFERENCES
[1] Federal Information Processing Standards Publication

180-1, Secure Hash Standard, May 11, 1993.

[2] Federal Information Processing Standards Publication
46-3, Data Encryption Standard, October 25, 1999.

[3] Federal Information Processing Standards Publication
197, Advanced Encryption Standard, November 26,
2001.

[4] A. Menezes, P. van Oorshot, and S. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1996.

[5] W. Feghali and B. Burres, IXP2000 Cryptography Unit,
Engineering and Architecture Specification, April 30,
2002, Intel internal document.

[6] “Packet over SONET: Achieving 10 Gigabit/sec Packet
Processing with an IXP2800,” Intel Technology
Journal, Vol. 6 issue 3, August 2002.

-

2

4

6

8

10

12

64 128 256 512 1024 1500

Packet Size (bytes)

IP
S

e
c

G
ig

a
b

it
s
/S

 o
r

M
P

a
c
k
e
ts

/S

IPSec

Clear

Packets

Figure 10: Performance estimates of the cryptography units doing IPSec ESP 3DES SHA-1 for 10Gigabits/second

Intel Technology Journal Vol. 6 Issue 3, 2002.

Security: Adding Protection to the Network via the Network Processor 49

[7] M. Adiletta, et. al,“The Next Generation of Intel IXP
Network Processors,” Intel Technology Journal, Vol. 6
issue 3, August 2002.

AUTHORS’ BIOGRAPHIES
Wajdi Feghali is a security architect in the Network
Processor Group. He has been with Intel for two years
leading the IXP2800 hardware and software security
architecture. Prior to Intel, Wajdi worked for TimeStep and
then NewBridge Corporations, developing secure VPN
gateways. Wajdi attended the University of Ottawa and
obtained a degree in mathematics in 1997. He resides in
Ottawa, Ontario, and can be reached via e-mail at the at
wajdi.k.feghali@intel.com.

Brad Burres is a senior component design engineer in the
Network Processor Group in Hudson. He is a five-year
veteran at Intel, having spent four of those years working
on network processors, including the IXP12xx and IXP28xx
families. Brad did the micro-architecture and ASIC
implementation for the IXP28xx security solution. Brad
received a B.S. degree in Computer Engineering from the
University of Arizona. He resides in Cambridge,
Massachusetts, and can be reached via e-mail at
brad.a.burres@intel.com.

Gilbert Wolrich is a senior architect in the Network
Processor Group in Hudson. He has contributed to the
definition of both the IXP1200 and IXP2000 solutions. Gil
has worked on high-performance network and general-
purpose processors, and numerous floating-point units,
and is interested in network security. Gil received a B.S.
degree from R.P.I. and an M.S. from Northeastern
University in electrical engineering. He resides in
Framingham, Massachusetts, and can be reached via e-
mail at gilbert.wolrich@intel.com.

Douglas Carrigan is a strategic marketing manager in the
Network Processing Group in Hudson, Massachusetts.
His e-mail address is douglas.carrigan@intel.com.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 50

IXA Portability Framework: Preserving Software Investment
in Network Processor Applications

Uday Naik, Alex Shoykhet, Larry Huston, Donald Hooper, Raj Yavatkar, Duke Tallam,
Travis Schluessler, Prashant Chandra, Adrian Georgescu

Intel Communications Group, Intel Corporation

Index words: software framework, network processor, data plane, microblocks

ABSTRACT
Network processors are being targeted at a wide range of
applications with varying packet processing and
throughput requirements. The programmability and
flexibility of a network processor make it suitable for
applications ranging from Voice over IP to mobile IPv6
with data rates spanning OC-3 to OC-192. In such an
environment, the investment made in software
development by equipment manufacturers is increasingly
significant. Preserving this investment and leveraging it
across multiple projects are key considerations when
making the right choice of a network processor.

The IXP family of processors provides a very powerful
and scalable solution for the network processor market.
The IXP2400 targets data rates from OC-3 to OC-48, while
the IXP2800 is designed for applications with data rates
ranging from OC-48 to OC-192. The IXA portability
framework provides the associated software infrastructure
to help develop modular, reusable software building
blocks for these processors.

This paper describes how the IXA portability framework
helps accelerate software development and improves code
reuse across applications. The paper details how
applications written to the IXA portability framework may
be scaled up or down to fit the needs of a specific
application.

The paper describes a reference application–IP forwarding
with DiffServ–and its implementation in a number of
different configurations including dual-chip IXP2400 at
OC-48 rates, single-chip IXP2400 at 2 x OC-12 rates and
single-chip IXP2800 at 2 x OC-48 rates.

The paper illustrates how the design of the application
may be structured to facilitate reuse of software blocks

across these configurations. Using this design as an
example, the paper describes various features of the IXA
framework and its value in the software development
cycle.

The paper assumes that the reader is familiar with the Intel
Network Processor Family [1].

INTRODUCTION
A networking application typically operates on three
logical planes (Figure 1):

Control Plane

Management
Plane

Data Plane

Figure 1: Logical planes in a networking application

1. The data plane processes and forwards packets at high
speed. It is typically the most performance sensitive since
all packets processed by the device must pass through
here. In the IXP family, the data plane consists of

• the fast path, i.e., the MEv2 microengines, which
handle most of the packets. For example, the fast path
handles the simple forwarding of Ipv4 packets.

• the slow path, i.e., the XScale™ core. This handles a
few packets that cannot be handled on the fast path
because of the complexity of the processing involved.

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 51

These packets are called exception packets. Examples
include forwarding IP packets with options in the
header, packets that need to be fragmented, etc.

2. The control plane handles protocol messages and is
responsible for the setup, configuration, and update of
tables and data sets used by the data plane for lookups.
For example, the control plane processes Routing
Information Protocol (RIP) packets and updates the IPv4
forwarding table used by the data plane. In the IXP
environment, the XScale core may function as the control
plane, or this functionality could be supported by an
external processor.

3. The management plane is responsible for system
configuration, gathering and reporting statistics, and
stopping or starting applications in response to user input
or messages from other applications.

The IXA portability framework is used primarily to
develop data plane software and to help interface with
code running on the control plane.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

FAST PATH: MICROENGINE
FRAMEWORK
Developers writing microengine code must consider the
tradeoffs between modular, easy-to-maintain, and reusable
code versus performance. For bleeding edge applications,
it may be important to get the highest level of performance
possible. For applications in which new features will be
added over time, modularity and code maintenance are
likely to be more important.

The IXA portability framework is intended to help address
both these needs for customers by offering a tiered
solution where the programmer can use as much of the
framework as appropriate for the application. As more of
the framework is included, the developer will get more
modular and reusable code.

The IXA portability framework consists of different layers
that the developer can choose to incorporate into the
design. One layer consists of the tools including support
for a high-level programming language. The next layer is a
set of libraries that are optimized for the particular network
processor. The last layer is a programming model called
microblocks.

We describe each of these layers in the following
sections.

High-Level Language Support: Microengine C
Compiler
At the lowest level of the framework are the tools. The
IXA portability framework provides both an assembler and

a C compiler for the microengines. By providing a high-
level language through C, the framework helps to abstract
some of the underlying hardware details from the
programmer. There are significant advantages to using C
over microengine assembly.

• C is the programming language of choice for most
embedded system and network application
developers. Availability of a C compiler reduces the
learning curve for programmers new to the IXP
environment.

• A high-level language is much more effective at
abstracting and hiding the details of the microengine
instruction set from programmers.

• It is typically easier and faster to write modular code
and maintain it in a high-level language with its
superior support for data types, type checking, etc.

However, since code running on the microengines is on
the packet processing critical path, it is extremely
important to generate very efficient code that meets the
performance requirements of the application.

Intel’s Microengine C Compiler is specially optimized for
the IXP2400 and IXP2800 microengine environment. For
example:

• The compiler allows the programmer to specify which
variables must be stored in registers and which may
be stored in memory.

• The compiler allows the programmer to specify the
type of memory (off-chip SRAM, DRAM, or on-chip
scratch memory) that should be used to allocate a
specific variable or data structure. Each type of
memory has different latency and access
characteristics, and the compiler gives developers
more control in laying out the data structures across
different types of memory.

• To handle hardware specific features, the compiler
supports intrinsics and inline assembly. The use of
these, however, undermines the portability of the
code to future generations of network processors. In
this case, the data plane libraries provide the only
isolation from the hardware and are critical for code
portability. For this reason, the IXA portability
framework supports the data plane libraries in both
microengine assembly and microengine C.

• The compiler has a packet format for bitfield
structures. Unlike standard C bitfield structures,
where the fields must line up with a 32-bit boundary,
the fields of a packed structure in microengine C have
no such restriction. This is highly suitable for
defining and accessing fields of protocol headers.

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 52

In summary, the Microengine C Compiler allows
developers to write code in a high-level language while
still meeting the performance expectations of fast-path
packet processing.

Low-Level Support APIs: Data Plane Libraries
The next component of the IXA portability framework
consists of the data plane libraries. These are libraries that
abstract out some of the implementation details of the
hardware, as well as provide common building blocks that
many applications will need. These libraries are provided
as assembler macros and C functions.

The data plane libraries are optimized for maximum
performance and minimal code space utilization. They are
the foundation for all MEv2 microengine code. The
libraries consist of several portions that enhance code
portability and reuse (Figure 2).

Utility LibraryProtocol Library

OS Emulation

Instruction Simplification

Hardware Abstraction Layer

Figure 2: Low-level libraries on the microengine

The instruction simplification library provides assembler
macros that simplify common microengine operations such
as loading constants, accessing Chip-Specific Control and
Status Registers (CSRs), and performing indirect
operations. This library isolates developer and the
software they write from changes to the instruction set.
The use of the data plane library ensures that the code is
not only portable to the new processor but also able to
perform better with the latest instruction set.

The Operating System (OS) emulation library contains
support for services that would normally be provided by
an OS. This library uses the underlying hardware to
support inter-thread signaling, messaging,
synchronization (locking and critical sections), queuing,
buffer management, timers, etc. As with instruction

simplification, the use of the library isolates the
programmer from changes to future hardware
implementations.

The utility library includes support for hash table lookups,
endian swaps, CRC (Cyclic Redundancy Check), and other
useful functions.

The protocol library provides an optimized implementation
of many common networking functions. Some examples of
these are functions that parse and modify IP packet
headers.

Modular Building Blocks: Microblocks
The highest layer of the IXA portability framework for the
microengines is the programming model and associated
support. In this programming model, the developer divides
the fast-path processing of the application into high-level
logical components called microblocks.

The programming model enables and requires microblocks
to be written such that each microblock is independent of
others. By providing clean boundaries between these
blocks, the programming model makes it possible to
modify, add, or remove more microblocks without affecting
the behavior of the other blocks. This improves reusability
and allows developers to combine microblocks and create
different applications. The net benefit is that the task of
writing fast-path code is simplified and time-to-market is
accelerated.

Each microblock is an assembler macro or C function
written using the underlying low-level data plane libraries.
Note that as opposed to a low-level function, e.g.,
ipv4_checksum(), a microblock is coarse-grained and has
state and associated data structures typically shared with
the XScale™ core. Examples of microblocks include IPv4
forwarding, Ethernet layer-2 filtering, 5-tuple classification,
Multiprotocol Label Switching (MPLS) label insertion, etc.

A microblock has an associated management component
on the XScale core. The application is typically written so
that the microblock will process most common cases and
pass exception cases to the XScale component for further
processing.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

DESIGNING FOR MODULARITY AND
REUSE
Figure 3 shows an IP DiffServ application implemented
using microblocks. We will use this application to
illustrate some important design considerations for
modular code.

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 53

Ethernet
Receive

Scheduler

Queue
Manager

Ethernet
Transmit Classifier Meter WRED

Figure 3: Single-chip DiffServ application using microblocks

Separate Application-Specific Code from
Reusable Code
Applications written to the IXA framework include
modular reusable microblocks and glue code that
combines these blocks and implements the data flow
between them. This glue code is referred to as the
dispatch loop. The dispatch loop combines microblocks
running on the same microengine thread and implements
the packet data flow between them.

The same dispatch loop may be instantiated on more than
one microengine thread to process multiple packets at the
same time. For example, in Figure 3, the classifier, meter
and Weighted Random Early Detection (WRED) blocks
are combined by a dispatch loop and run on several
microengine threads in parallel.

In the IXA framework, application-specific code is
implemented in the dispatch loop, while care is taken to
preserve the reusability of microblocks across
applications.

Support for Shared State between Microblocks
An important aspect of the framework is the mechanism by
which state is shared between microblocks. This includes
per-packet state, referred to in IXA terminology as packet
meta-data (packet size), offset to the packet data in
memory, destination port, etc. Another example of shared
state is packet headers that are read and modified by
different microblocks in the pipeline. In the IXA
framework, the dispatch loop caches packet meta-data and
other shared state in registers and provides access to
them through an API. The dispatch loop also supports
caching packet headers in local memory or registers.
Across microengines, the cached information is flushed to
memory or passed along in the message queue between

the microengines. The dispatch loop populates the cache
by reading information either from memory or from the
message queue. This isolates the microblocks from the
layout of the meta-data in memory and from the format of
the messages on the message queue between
microengines. In addition, the packet header cache and
meta-data cache considerably improve performance.

For example, in the DiffServ application in Figure 3, the
dispatch loop reads in the IP header from memory and
caches it in local memory. This header is then used by the
classifier to do a lookup and determine the flow and class
information for the packet. The same header is also used
by the meter stage, which modifies the TOS/DSCP field in
the IP header and recalculates the checksum. The modified
packet header is written back by the dis patch loop after
the WRED microblock. The dispatch loop caches the
packet header and per packet information such as flow and
class id in registers. The microblocks (classifier, meter,
WRED) simply access these through well-defined API’s
exported by the dis patch loop.

Decouple Application Data Flow from
Microblock Design
Typically, the classification and processing performed in a
microblock determines to which microblock the packet
goes next. For example, based on the processing in a filter
block, the packet may either be sent to an IPv4 forwarding
microblock or be dropped.

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 54

Care must be taken to decouple this data flow from the
design of a specific microblock. To preserve its reusability
across applications, a microblock must not require a
specific microblock to be run before or after this block. In
the IXA framework, the dispatch loop implements the data
flow between microblocks. Each microblock indicates only
the logical result of its classification.

For example, the filter block indicates the next block-PASS
or DENY using a dispatch loop state variable. Based on
this variable, the dispatch loop may decide that if the next
block is PASS, the packet is sent to the IPv4 forwarding
microblock, and if it is DENY, the packet is dropped.
Alternatively, the dispatch loop may be modified such that
instead of dropping packets that are denied, these packets
are sent to the XScale™ core.

Separating Packet-Processing Blocks from
Network Interface-Specific Blocks
In any networking application, we can clearly differentiate
between blocks that are hardware or network interface
specific and blocks that process packets.

Network interface-specific blocks include the receive and
transmit blocks for the different media interfaces (POS,
ATM, Ethernet, etc). Other hardware-specific blocks
include the queue manager block that handles the queuing
hardware on the IXP2400/IXP2800. Packet-processing
blocks are protocol specific, e.g., IPv4/v6 forwarding,
Network Address Translation (NAT), layer-2 bridging, etc.

Network interface-specific blocks (receive and transmit)
are typically involved in segmentation and reassembly of a

packet. It is a good design practice to decouple the
packet-processing microblocks from the
segmentation/reassembly of packets by placing them on
separate microengines.

For example, in the IP DiffServ application shown in Figure
3, the classifier, meter and WRED blocks are placed on
separate microengines from the receive block and interface
to it using a message queue.

This has a couple of advantages:

• It builds some elasticity into the packet-processing
pipeline and allows sudden bursts of received data to
be absorbed. For example, typically, the packet
pipeline is expected to sustain an average rate lower
than the peak arrival rate of traffic. With this design,
only the receive/transmit blocks need to be able to
sustain the peak rate. As long as the elasticity
provided by the message queue between
microengines is sufficient, the packet-processing
blocks can run at a lower rate.

• The packet-processing blocks may be modified or
replaced easily without affecting the rest of the
pipeline. Figure 4 shows how the packet-processing
blocks in the DiffServ application shown in Figure 3
may be replaced by an IPv4 forwarding block, while
reusing the rest of the blocks in the pipeline.

• The network interface blocks may change in future
revisions of the processor. For example, future
revisions of the processor may implement the
reassembly in hardware. This design hides these
hardware changes from the packet-processing code.

Ethernet
Receive

Scheduler

Queue
Manager

Ethernet
Transmit

IPv4 Forwarder

Figure 4: IPv4 forwarding application using microblocks

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 55

• The network interface blocks may be different
depending on the media and bus configurations.
These blocks are also slightly different between
IXP2400 and IXP2800. The packet-processing blocks,
on the other hand, remain the same in all
configurations. By separating the two, the design
allows for maximum reuse of code.

• Since the receive/transmit blocks may need to sustain
bursts of traffic, they need to be highly optimized. For
this reason, they may be implemented entirely in
assembly. By moving the packet processing code to a
different microengine, we eliminate the need to mix
assembly and C code while combining blocks.

While this approach has the many advantages indicated
above, it also implies an extra read and write of the packet
header when a minimum size packet is received. For this
reason, applications that target full-line rate at OC-192 data
rates for minimum size packets may choose to combine the
packet-processing code with the packet reassembly [2].

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

SLOW PATH: XSCALE™ CORE
FRAMEWORK
In the IXP environment, the XScale may be used for
management, control, and even packet processing (Figure
5).

A core component is the slow path or XScale counterpart
of the microblock and is responsible for its configuration
and management. In addition, core components may
handle packets that cannot be processed on the
microengines because of the complexity involved.

The IXA portability framework provides the support
infrastructure and APIs required to develop core
components.

Network application developers are commonly faced with
the challenge and opportunity to leverage existing code
for the slow path and interface it with code written to the
IXA portability framework. For this reason, the services
provided by the framework on the XScale are divided into
discrete layers of functionality. At the lowest layer, the
IXA core framework supports a set of APIs called the
resource manager APIs. These APIs provide support for
hardware initialization, configuration, and resource
management. They also support communication between
the microengines and code running on the XScale. The
resource manager APIs isolate the XScale developer from

the specifics of hardware and from the details of
microengine to XScale communication.

While a slow path application may be written entirely to
the resource manager APIs, the IXA framework also
defines a standard modular way of writing XScale core
components. The core component infrastructure library
defines the structure and canonical design of an XScale
core component and the mechanism by which messages
and packets are passed between core components.
Architecturally, a clean interface separates a core
component from the rest of the system.

Resource Manager

XScale Core
Component Library

XScale Core Components and
Applications

OSSL

Figure 5: XScale core framework

In most cases, a core component manages a single
microblock. The core component/microblock pair may be
viewed by the control plane and the rest of the data plane
as a single unit of packet processing and reused in a
variety of processing configurations. Viewing the pair as a
single unit allows an intelligent and highly flexible split of
packet processing between the core component and the
microblock, depending on the needs of specific
applications.

Another important aspect of code reusability on the
XScale core is abstraction from the operating system (OS)
involved. Depending on the application, the same network
vendor may choose a small footprint proprietary micro-
kernel for one product and a much more mature industry
standard Real-Time OS (RTOS) for another.

For this reason, the IXA Framework defines an OS
Services Layer (OSSL) that provides APIs for commonly

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 56

used OS services (e.g., timers, threads, semaphores, etc).
Consistent use of this API greatly enhances the
portability of the framework (and code written to the
framework) to different operating systems.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

INTERFACING WITH THE CONTROL
PLANE
Data plane processing is controlled and managed by
control plane software and stacks. In most legacy
systems, these typically reside on a separate processor
and exchange protocol packets and control messages with
the data plane over a control bus or a backplane.

On the IXP family of network processors, some of that
functionality may be moved to the XScale™ core. It is
important, however, that the control plane is logically
separated from the data plane. If the two planes are
separated by a set of standard APIs and protocols,
equipment manufacturers can choose and upgrade control
stacks independent of data plane software. These stacks
may come from any vendor who supports these APIs.
Upgrades of network processors and migration to newer
generations will not require any changes to control plane
software.

The Network Processor Forum (NPF), of which Intel is a
prominent member, is actively working on defining such
standards and APIs. The NPF API that is emerging from
this body abstracts the data plane as seen by the control
plane and defines per-protocol management interfaces
between the two planes.

A working group within the Internet Engineering Task
Force (IETF) called Forwarding Control Element
Separation (ForCES) is in the process of defining a
messaging protocol for control plane or data plane
communication. The interconnect-independent nature of
this protocol makes it easy to change the bus or the
backplane without affecting the software layers that are
above this protocol. In fact, the control plane and the data
plane software may become located on the same network
processor with no changes required, other than to the
implementation of the ForCES protocol.

The IXA portability framework provides a Control Plane
Product Development Kit (CP-PDK), which supports
industry standards such as the ones described above and
enables data plane software to interface with the Control
Plane.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

SCALING APPLICATIONS TO HIGHER
DATA RATES
This section describes how the IXP family of network
processors allows an application to be scaled to higher
data rates and the challenges involved.

Moving from Single-Chip to Dual-Chip
Configurations
A common way to scale an application to higher data rates
is to use more microengines running in parallel. The
IXP2400 and IXP2800 may be used in both single-chip and
two-chip configurations, thereby allowing the developer
to increase the number of microengines available.

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 57

Ingress IXP2400

POS

Receive

Scheduler

Queue
Manager

Ethernet
Fabric
Transmit

Classifier Meter WRED

Egress IXP2400

POS

Transmit

Scheduler

Queue
Manager

Ethernet
Fabric
Receive

WRED

Figure 6: OC-48 DiffServ with dual-chip IXP2400

Figure 6 shows the implementation of DiffServ at OC-48
data rates using two IXP2400 processors. The ingress
processor receives from a POS network interface and
transmits into an Ethernet fabric. The egress processor
receives from the Ethernet fabric and transmits into the
POS network interface.

The same application may be run on a single IXP2400 chip
at OC-24 data rates, simply by combining the pipelines on
the ingress and egress processors onto a single
processor. For example, in the single-chip pipeline a single
microengine would implement both the POS receive and
transmit processing using four threads for each function.

Challenges

There are some limitations to this approach that must be
addressed and overcome at design time.

• Combining blocks onto a single microengine may not
always be possible due to conflicts in usage of
resources like CAM and local memory. For example, it
may not be possible to combine two schedulers onto
a single microengine because both make extensive
use of local memory. Similarly, combining the ingress
and egress queue managers may not be possible
since both use the CAM. However, the developer can
combine the scheduler and the queue manager blocks

into a single microengine, since the scheduler does
not use the CAM and the queue manager does not
use too much local memory.

• Another possible problem while combining blocks
onto a single microengine is to run out of instruction
code store. Again, the only solution is to intelligently
pick and combine blocks for which this is not an
issue.

Moving from IXP2400 to IXP2800
While the IXP2400 can handle up to OC-48 data rates, the
IXP2800 provides the upgrade path to 2 x OC-48 with a
single-chip configuration and OC-192 with a dual-chip
configuration.

Moving an application from IXP2400 to IXP2800 is greatly
simplified by the fact that the instruction set and
microengine architecture are identical. The IXP2800 runs at
a higher clock frequency (1.4GHz versus 600MHz for the
IXP2400) and supports a greater number of microengines
(16 versus 8 on the IXP2400).

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 58

Table 1 compares the per-packet instruction count and
latency constraints for an IXP2400 targeting single-chip
2xOC-12 and dual-chip OC-48 versus an IXP2800 targeting
single-chip 2xOC-48 and dual-chip OC-192.

The table indicates that an IXP2800 running in single-chip
mode has approximately the same number of instruction
cycles (114 cycles) to process a minimum-size POS packet
as an IXP2400 in a dual-chip configuration (97 cycles).

This, along with the fact that a single-chip IXP2800 has
the same number of microengines as a two-chip IXP2400
(Table 2), implies that at least at an instruction count level,
an application running at OC-48 rates on a dual-chip
IXP2400 will scale to 2xOC-48 rates on a single-chip
IXP2800. Similar considerations may apply to the OC-192
application running on a dual-chip IXP2800 with 32
available microengines.

CHALLENGES
While the code reuse between applications running at the
different data rates is good, there are some limitations that
must be considered at design time when moving from an
IXP2400 to the IXP2800.

• Some blocks cannot be run in parallel on more
than one microengine. So the availability of more
microengines does not help. The queue manager
is an example of such a block. It manages the
queuing hardware on the IXP2800 using the
CAM local to the microengine. Since it cannot be
executed in parallel on more than one
microengine, the code for the dual-chip IXP2800

must be optimized to fit the OC-192 (57 cycle)
instruction budget.

• Even though the IXP2800 runs at a higher clock
frequency, the memory speed does not scale up
the same way. This implies that memory table
accesses (relative to the number of instructions
executed) take longer on the IXP2800.

• There are some differences in the Media Switch
Fabric (MSF) between IXP2400 and IXP2800. The
differences are minor and may be handled with
processor-specific switches in the receive and
transmit code.

. Table 1: Comparison of the IXP2400 and IXP2800 for a DiffServ application

Parameter IXP2400
single chip

IXP2400
dual chip

IXP2800
single chip

IXP2800
dual chip

Line rate 1.2 Gbps 2.408 Gbps 2 x 2.408 Gbps 4x2.408Gbps

Min POS packet size 49 49 49 49

Packet throughput 3.071 million
packets/sec

6.14 million
packets/sec

12.28 million
packets/sec

24.57 million
packets/sec

Clock frequency 600 MHz 600 MHz 1.4 GHz 1.4 GHz

Inter-packet arrival time 195.37 cycles 97.68 cycles 114 cycles 57 cycles

Compute cycles per packet for a
context pipe stage (microengine)

195.37 cycles 97.68 cycles 114 cycles 57 cycles

Latency per packet for a context pipe
stage (microengine)

195.37*8
cycles

97.68*8
cycles

114*8
cycles

57*8
cycles

Compute cycles per packet for a
functional pipeline of n microengines
running in parallel

195.37*n
cycles

97.68*n
cycles

114*n
cycles

57*n
cycles

Latency per packet for a functional
pipeline of n microengines running in
parallel

195.37*n*8
cycles

97.68*n*8
cycles

114*n*8
cycles

57*n*8
cycles

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 59

• The receive and transmit blocks run on a single
microengine for the OC-48 and 2 x OC-48 cases,
whereas they are executed on two microengines
in the OC-192 case. This implies that some of the
receive or transmit context stored in local memory
may need to be flushed out to SRAM in the OC-
192 case.

The implication of these challenges is that while it is very
easy to get code written for an IXP2400 to work on an
IXP2800, special optimizations may be needed to get the
maximum performance from the chip.

CONCLUSION
When network equipment vendors select a network
processor, they make a significant commitment to use it for
years to come. It is important to ensure that the network
processor environment selected is flexible and can be
scaled to protect the vendor’s investment. Software
reusability and the tools and framework that enable it
should be a key consideration when selecting a network
processor.

The IXP family of network processors provides a powerful
and scalable solution to the problem of programmable
network devices. The IXA portability framework provides
the associated software infrastructure to help develop
modular and reusable software building blocks for these
processors.

By providing the necessary infrastructure to help
accelerate software development and by improving code
reuse across applications, the IXA framework adds
considerable value to Intel’s network processor solution.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of Ameya
Varde, Senthil Nathan, Eswar Eduri, and Sridhar
Lakshmanamurthy.

REFERENCES
[1] Matthew Adiletta, et al., “The Next Generation Family

of Intel Network Processors,” Intel Technology
Journal, Vol. 6 issue 3, August 2002.

[2] Matthew Adiletta, et al., “Packet over SONET:
Achieving 10 Gigabit/sec Packet Processing with an
IXP2800,” Intel Technology Journal, Vol. 6 issue 3,
August 2002.

[3] S. Blake, et al, “An Architecture for Differentiated
Services ,” IETF RFC 2475, December 1998.

AUTHORS’ BIOGRAPHIES
Uday Naik is a senior staff software engineer at Intel's
Network Processor Division. His professional interests
include networking, embedded systems and digital
television. Uday received his Master’s degree in Computer
Science from the University of Indiana Bloomington in
1992. He also holds a Bachelor’s degree in Computer
Science and Engineering from the Indian Institute of
Technology (IIT) Bombay. Uday resides in Fremont,
California, and can be reached via e-mail at
uday.naik@intel.com.

Larry Huston is a principal software architect at Intel’s
Network Processor Division. He is responsible for defining
the software requirements for future network processors,

Table 2: Microengine allocation for the DiffServ application

Function IXP2400
single chip

IXP2400
dual chip

IXP2800
single chip

IXP2800
dual chip

POS receive ½ 1 1 2

POS transmit ½ 1 1 2

Classifier/meter/WRED 2 4 6 8

Ingress queue manager ½ 1 1 1

Egress queue manager ½ 1 1 1

Ingress scheduler ½ 1 1 2

Egress scheduler ½ 1 1 2

Egress WRED block ½ 1 2 4

Ethernet fabric receive ½ 1 1 2

Intel Technology Journal Vol. 6 Issue 3, 2002.

IXA Portability Framework: Preserving Software Investment in Network Processor Applications 60

as well as designing the advanced programming
framework. Prior to Intel, Larry was a software architect at
NetBoost, where he helped design their programming
environment for accelerating network applications such as
firewalls and intrusion detection. Prior to NetBoost, Larry
was a member of the technical staff at Ipsilon Networks,
where he designed and implemented Ipsilon's protocols
for distributed IP switching and forwarding. Larry
received his Ph.D. degree in Computer Engineering from
the University of Michigan in 1995. He also holds M.S.E.
and B.S.E. degrees in Computer Engineering and
Aerospace Engineering from the University of Michigan.
Larry can be reached via e-mail at larry.huston@intel.com.

Prashant Chandra is a senior staff network architect in the
Network Processor Division at Intel Corporation. His
interests are in the areas of programmable networks,
signaling protocols, and traffic management. He received
his B.E degree in Electronics Engineering from Bangalore
University in 1991, an M.S. degree in Computer
Engineering from West Virginia University in 1994, and a
Ph.D. degree in Computer Engineering from Carnegie
Mellon University in 2000. His e-mail is
prashant.chandra@intel.com.

Donald Hooper is a senior software architect in the
Network Processor Group. He has led many projects
including logic synthesis, video servers, MPEG-2 and
DAVIC standards, IXP1200 software tools and libraries,
IXP2800 proof of concept designs, and NPG coding
standards. His professional interests include networking,
artificial intelligence, and object-oriented languages. He
attended four colleges with cumulative B.S.E.E. credits
finishing at UCLA. He resides in Shrewsbury
Massachusetts. His e-mail is donald.hooper@intel.com.

Travis Schluessler is an engineering project lead at Intel's
Network Processor Division. Professional interests
include networking and embedded systems. Travis
received his Bachelor’s degree in Electrical and Computer
Engineering from Carnegie Mellon University in 1992. He
resides in Cupertino, California, and can be reached via e-
mail at travis.schluessler@intel.com.

Adrian Georgescu is a staff network software engineer at
Intel’s Network Processor Division. Adrian received a
Master’s degree from Polytechnic Institute, Bucharest,
Romania, in Aerospace Engineering. His professional
interests are networking, OO programming, and numerical
algorithms. Currently, he lives in Palo Alto, California, and
can be reached by e-mail at adrian.georgescu@intel.com.

Duke Tallam is a software engineering manager in the
Network Processor Division at Intel Corporation. Duke has
over 20 years of software development experience in a
wide variety of fields spanning deeply embedded to huge

turnkey systems. Duke received his Master’s degree in
Electrical Engineering from South Dakota School of Mines
and Technology in 1983. He holds a Bachelor’s degree in
Electronics from Bangalore University. Duke resides in
Fremont, California, and can be reached via e-mail at
duke.tallam@intel.com.

Alex Shoykhet is a senior software product manager at
Intel’s Network Processor Division. He can be reached at
alex.shoykhet@intel.com.

Raj Yavatkar is chief software architect for Intel’s
Network Processor Group. He can be reached at
raj.yavatkar@intel.com.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

Network Processor Building Blocks for All-IP Wireless Networks 61

Network Processor Building Blocks for All-IP Wireless
Networks

Harsh Vipat, Philip Mathew, Manohar Ruben Castelino, Auro Tripathy
Intel Commuications Group, Intel Corporation

Index words: IXP2400, network processor, 3G, RNC, IPv6, microblock

ABSTRACT
The focus of this paper will be on the hardware features of
the IXP2400 network processors and how they help to
accelerate the key processing needs of wireless networks.
The first part of the paper will explain the 3G wireless
network topology and the role of network nodes such as
base stations, radio network controllers, and routing
gateways. The next part of the paper will identify a wide
range of packet processing functions performed at the
radio network controller (RNC) node. The heart of the
article will delve into the inter-workings of seminal
reusable network-processor-based building blocks such
as packet forwarding at layer-3, bandwidth-saving header
compression and decompression schemes, IPv6-to-IPv4
tunneling, and QoS. The article will conclude by asserting
that all this, coupled with programmability and hardware
acceleration capability, meets the evolutionary needs of
wireless networks.

INTRODUCTION
Traditional wireless telecommunication networks and data
communication networks will converge. The most recent
specification of the converged network (also known as

3GPP Release 5) specifies a wireless network where the
transport layer utilizes Internet Protocol (IP) networking as
much as possible. In this all-IP network, both user data
flows and control flows will be based on IP, thus making
the end-to-end network a packet-switched IP network. In
practice, the single most important packet data protocol to
be supported is IPv6. A simplified reference model for the
General Packet Radio Service (GPRS) network is shown in
Figure 1.

The role of the mobile terminal in an all-IP network is to
originate and terminate both connection-oriented (TCP/IP)
and connectionless (UDP/IP) real-time and non-real-time
services such as web browsing and VoIP calls.

The rest of the components of a wireless network can be
broadly categorized into the Radio Access Network
(RAN), comprised of the Base Station and the Radio
Network Controller (RNC) and the Packet-Switched Core
Network comprised of the Serving GPRS Support Node
(SGSN) and the Gateway GPRS Support Node (GGSN).

Base stations (also known as Node Bs) link the mobile
terminal to the rest of the fixed and mobile network. Each
base station provides radio coverage to a geographical

Packet-Switched
Core Network

Mobile
Terminal

3G SGSN

Mobile
Terminal

Mobile
Terminal

3G GGSN

Radio Access Network

Base Station
(NodeB)

Base Station

Base Station

Radio
Network

Controller

Figure 1: Nodes of 3G wireless network

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 62

area known as a cell. A typical network may be visualized
as consisting of a mesh of hexagonal cells, each with a
base station at its center. Base stations are connected to
one another by central switching centers known as Radio
Network Controllers (RNCs). The RNC (Figure 2) manages
the wireless radio interfaces of the base stations and
controls handoff, sending data from the core network to
one or more base stations in the forward direction, and
selects the best signal from several base stations and
sends it to the core network in the reverse direction. For
example, if a mobile terminal user moves out of one cell
and into another, the RNC hands over communication to
the adjacent base station (the switching function).
Alternately, the RNC may route calls (packets) to another
RNC in the network.

In the core network, the SGSN takes care of routing,
handover, and IP address assignment. For example, if you
were in a car on the highway and were browsing the
Internet on a mobile terminal, you would pass through
many different cells. The SGSN routes the packets to the
appropriate base station and maintains a seamless
connection.

The GGSN is the “port of last call” in the Core Network
before a connection to an ISP or corporate network’s

router occurs. The GGSN is basically a gateway, router,
and firewall rolled into one.

While the packet processing needs of various nodes in a
wireless network are unique, the processing needs of the
Radio Network Controller (RNC) are most challenging. The
RNC serves as a transition point between the
predominantly IPv6 Radio Access Network (RAN) and the
Core Network (CN), which has both IPv6 as well as IPv4
traffic. The RNC also handles both packetized voice and
data packet flows, which have different requirements in
terms of delay and loss characteristics. The processing
functions at the RNC therefore include IPv6 routing, IPv4
routing, header compression and decompression,
tunneling and QoS. All these functions can be
implemented as reusable building blocks on IXP2400.

The rest of the paper is organized as follows. First, we
take a brief detour and provide overview of the IXP2400
network processor and a possible software architecture for
implementing the building blocks. The remaining sections
cover the processing functions of RNC nodes and
highlight the specific hardware features of IXP2400 that
can be utilized to implement them efficiently.

4 X 1 GbE
MAC SPI-3

FLASH SDRAM SRAM

Control Plane
Processor64/66 PCI

XScale

IXP2400

Microengines

Hash

Scratch

10/100/
1000
Mbps

Figure 2: Conceptual block diagram of IXP2400-based RNC

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 63

OVERVIEW OF THE IXP2400 PROCESSOR
The IXP2400 has eight programmable second-generation
microengines (MEv2) and an integrated XScale™ core.
The common processing, called fast-path processing,
performed on a majority of the packets, is implemented on
microengines. Housekeeping functions and exception
processing (performed on a minority of the packets) are
typically implemented on the XScale.

Each microengine has eight threads, and each thread has
its own hardware context consisting of a register set,
program counter, etc. The context swaps are therefore
very inexpensive. The threads are scheduled non-
preemptively by the hardware. The microengines also
have a fully associative 16-entry CAM and 640 32-bit
words of local memory to speed up stateful packet
processing.

On a network processor, the packets can arrive at a
specified maximum line rate. The processor must perform
the required processing on these packets and must
transmit the processed packets in sequence at the desired
rate. When the time required to process each packet far
exceeds the inter-packet arrival time, a software pipeline
architecture can be deployed to achieve required line
rates.

 In a software pipeline model, the processing required for a
packet is divided into several sequential stages. Each
stage provides only a part of the entire processing, and
the packets therefore go through all the stages to
complete entire processing. There are two basic pipelining
approaches: context pipelining and functional pipelining.
In a context pipeline, each stage is implemented on a
microengine, and each microengine therefore works on
different stages of a packet. In functional pipelining, the
same microengine processes different stages of a given
packet.

Fundamental to implementing software context pipelines
across microengines are IXP2400 features such as
hardware-assisted scratch-memory resident
producer/consumer rings (referred to as scratch rings) and
private registers between adjacent microengines (referred
to as next -neighbor register rings) that allow efficient
implementation of producer and consumer communication.
These hardware-managed mechanisms rapidly pass state
from one microengine to the next. The IXA SDK provides
a framework for implementing processing functions as
reusable building blocks (microblocks) and for combining
them in desired fashion to form functional pipelines. The
following sections describes how the functions of RNC
nodes can be implemented using a combination of context
and functional pipelining.

PROCESSING REQUIREMENTS OF RNC
NODES
The packet processing in an RNC node (Figure 3) can be
divided into four major stages: the receive stage (Rx), the
header processing stage, the QoS stage, and the transmit
stage (Tx). The receive stage is responsible for layer-2
reassembly and framing. The header processing stage can
include a variety of functions such as layer-3 forwarding,
header compression, etc. The QoS stage provides priority
queuing of packets based on classes. The transmit stage
is responsible for transmission of the frames. Each of
these steps can be implemented as a context pipeline stage
on a set of microengines on IXP2400.

The Rx and Tx functions are link-layer specific and can be
easily implemented with the help of features provided by
the media and switch fabric interface available on IXP2400.
The header processing and QoS stages involve more
complex and stateful processing and will be the focus of
following subsections.

Header Processing

Rx
Header Processing

Header Processing

Receive
Stage

Header ProcessingHeader
Compress/Decompress

IPv6 Forwarding
IPv4 Forwarding

Tunneling
WRED

QoS
Quality of

Service

Traffic Shaping

Tx

Header Processing
Stage

QoS
Stage

Transmit
Stage

Figure 3: RNC processing stages

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 64

Header Processing Stage
Figure 4 shows the block diagram of the header
processing stage. The header processing stage can be
implemented as a functional pipeline, and each processing
function is therefore implemented as a microblock. The
following sections describe details of each block and the
hardware features that are relevant for the efficient
implementation of the block.

Link-Layer Decapsulation and Classification
Since the RNC connects the radio networks to the core
network, the packets arriving at the RNC may have
different link-layer encapsulations. This poses a challenge
for the next stage, namely, header processing. All the
processing blocks in the header-processing stage
primarily process layer-3 and higher layer headers. Due to
different sizes of link headers, the offset of the layer-3

header can only be determined at run-time. This
unnecessarily requires each processing block to know
about different link encapsulations and deal with
unaligned headers. The link classify block solves this
problem by aligning and caching the layer-3 and higher
headers in the local memory of the microengine. This is
advantageous in many ways. The processing blocks can
access the header fields with a minimum of one cycle
latency. The headers can be treated as global data
structures and can be shared by all the processing blocks
in the pipeline without the copying and aligning overhead
that each block downstream must undertake. Lastly, this
approach also makes the processing blocks link-layer
independent and enhances their reuse potential.

The key architectural features that allow efficient
implementation of the aligning and caching functionality

are the byte_align instruction, index mode addressing of
registers, and local memory. The byte_align instruction
allows concatenation of data in two 32-bit registers and
extraction of any four bytes from a concatenated string
into the destination register. The byte index for alignment
can be selected by setting a control status register (CSR).
The IXP2400 also allows indirect referencing of the
transfer registers. An index pointer can be set to point to
a particular transfer register by writing to a control status
register. The transfer register can then be accessed by
indirect referencing through the index pointer. Auto
increments and decrements of the index pointer are also
supported.

The local memory is addressable storage located in the
microengine. The local memory can be accessed at long-
word (32-bit) granularity, and the latency cost of an access
is the same as accessing general-purpose registers. Two

index registers are available to the programmer, which can
be set to point to any of the 640 long-words of local
memory. The local memory can be accessed by de-
referencing the index register, or by specifying offset
using array notation.

IPv4 and IPv6 Layer-3 Forwarding
The RNC has to route packets between the predominantly
IPv6 RAN and the Core Network (CN), which has both
IPv6 as well as IPv4 nodes. The IPv6 and IPv4 forwarding
are therefore the key functions of the header-processing
stage. The aggregation of IP address space requires use
of a special search technique called Longest Prefix Match
(LPM). Routing prefixe s (route entries) are stored in a
route table along with their associated next -hop
forwarding information. The route table is searched to find

IPv6
Decompressor

Interop

IPv4
Decompressor

IPv6
Forwarder

IPv4
Forwarder

IPv6
Compressor

IPv4
Compressor

Link
Classify/Decap

Link
Encap

From
Receive

To
QoS

Figure 4: Flow diagram of the header processing stage

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 65

a longest prefix that matches with the destination address.
The next hop information associated with the matched
routing prefix is used to forward the packet. In order to
facilitate LPM, routing prefixes are usually stored in
complex tree-like data structures in SRAM. As a result,
SRAM is accessed several times during the LPM.

Hardware-assisted multi-threading available on IXP2400
processors allows efficient implementation of memory-
intensive algorithms such as LPM. A thread-issuing
memory operation can explicitly yield control to other
thread and allow some other processing to take place
while the memory operation completes. The effective
latency cost of the memory operations can thus be
reduced or even be eliminated with the help of hardware-
assisted multi-threading. Large numbers of GPRs allow
efficient handling of long 128-bit IPv6 addresses. Since
IPv6 supports hierarchical addressing and address
aggregation in a structured way, the local memory can
play an important role in optimizing the IPv6 LPM.
Depending on the position of the router in the address
hierarchy, the aggregation information can be cached in
the local memory, and the route lookup can be speeded up
substantially.

The layer-3 forwarders also have to handle a variety of
exception conditions. These include processing of IP
options, dealing with fragmentation and reassembly,
processing dynamic route update requests, and
responding to Address Resolution Protocol (ARP) or
neighbor discovery messages. All these functions can be
implemented on the XScale™ core. Once again, hardware-
assisted scratch rings help in implementing
communication between microengines doing the fast-path
processing and the XScale core doing the exception path
processing.

Header Compression and Decompression
Two factors contribute to the use of header compression
schemes in wireless network. The first factor is that, for
the IPv6 packet, the IPv6/UDP/RTP header is 60 bytes in
size and a typical speech payload is about 20 bytes in size,
a 300% overhead! The second factor is that wireless
spectrum is expensive. Header compression schemes
reduce the header to three bytes, yielding a manageable
overhead of 15%.

Header compression schemes are based on the
observation that many fields of the protocol headers rarely
change during the life of a session. Also, many other
fields change only in small, predictable quantities.

Compression and decompression are enabled by creating
and storing a compression context for the RTP session at
the compressor and the decompressor. A compression
context has two parts: the context identifier and the

context information. The context identifier, a unique
number denoting an RTP session, is derived from several
fields of the header. For example, for RTP-based voice
packets, the context identifier is derived from the source IP
address, destination IP address, source port, destination
port, and Synchronization Source Identifier (SSRC) fields.
The context information includes all the fields in the IP,
UDP, and RTP header. The very first packet of a session
transmits the context identifier embedded in the
uncompressed packet. Once the compressor and the
decompressor get the context information associated with
that context, compressed packets carry only the context
identifier (pertaining to that RTP session) and the
differences of the changing fields. The decompressor
uses the context identifier to regenerate the full header.

In the IXP2400, multiple threads perform packet
compression or decompression in parallel. The challenge
is to ensure that the packets are exiting the compressor or
the decompressor in the same order in which they entered.
For every packet, threads need atomic access to the
context information tables. This involves multiple
accesses to high-latency external memory such as SRAM
or SDRAM. Yet another factor slowing down performance
is ensuring that packets are received by the threads in
order, i.e., the first thread receives the packets, completes
the critical section, and then signals the second thread,
and so on. A method called folding described in the next
section addresses this.

Folding
The principle of folding (or memory coalescing) provides
that if a thread has already requested access to an external
memory location (to be fetched into local memory), then
other threads requesting access to that same memory
location can simply wait to access it in local memory. In
the meantime, they can yield to other threads. A
combination of the microengine Content Addressable
Memory unit (CAM unit) and local memory unit can be
used to implement folding. A lookup into the 16-entry
CAM results in a CAM miss or a CAM hit coupled with an
index into local memory where the data resides. Thus, the
microengine local memory acts as a cache, and the CAM
aids in the cache lookup for every packet before accessing
the external memory unit.

Folding can reduce accesses to external memory. The
context identifier (uniquely identifying the context
information of an RTP session) resides in the CAM and is
used as a tag to the context information residing in local
memory. The CAM holds the local memory index and a
reference count. Processing is divided into two phases: a
read or populate phase and a consume phase. In the read
or populate phase, each thread of a microengine looks up
the context identifier in the CAM and, in the case of a

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 66

miss, adds the identifier to the CAM. In the case of a miss,
it also issues a read to the external memory unit for loading
the context information associated with the context
identifier to the local memory. In the case of a CAM hit,
the thread simply increments the reference count of the
CAM indicating its interest in the same data.

In the consume phase, threads access the data already
available in the local memory and decrement the reference
count. If the reference count of the CAM entry is zero, it is
the last thread accessing this data; hence, it flushes this
data to the SRAM unit. The benefit of this scheme is that

multiple packets refer to the same context information in
local memory (instead of SRAM). Data is read only once
from the external memory unit into the local memory. All
subsequent modification of the data occurs in the local
memory. Finally, one or more writes from local memory to
external memory are performed depending on the CAM
eviction policy. Figure 5 illustrates this approach in detail.

The hash engine or the CRC engine available in the
IXP2400 can be used to generate the 32-bit unique context
identifier given a 5-tuple from the RTP header.

Get n-tuple from packet
CAM tag = Hash(n-tuple)
Do CAM lookup with CAM tag
 If (CAM hit)
 CAM Reference Count ++
 Signal Next Thread
 else //CAM miss
 Add CAM tag to CAM
 Set CAM Reference Count to one
 Read SRAM data to Local Memory
 Signal Next Thread
 Wait(SRAM)
 endif

Get n-tuple from packet
CAM tag = Hash(n-tuple)
Do CAM lookup with CAM tag
 If (CAM hit)
 CAM Reference Count ++
 Signal Next Thread
 else //CAM miss
 Add CAM tag to CAM
 Set CAM Reference Count to one
 Read SRAM data to Local Memory
 Signal Next Thread
 Wait(SRAM)
 endif

Get n-tuple from packet
CAM tag = Hash(n-tuple)
Do CAM lookup with CAM tag
 If (CAM hit)
 CAM Reference Count ++
 Signal First Thread
 else //CAM miss
 Add CAM tag to CAM
 Set CAM Reference Count to one
 Read SRAM data to Local Memory
 Signal First Thread
 Wait(SRAM)
 endif

Do CAM lookup with CAM tag
CAM Reference Count --
Update data in Local Memory
 If (Reference Count == 0)
 Flush Local Memory data to SRAM
 endif
Signal Next Thread

Do CAM lookup with CAM tag
CAM Reference Count --
Update data in Local Memory
 If (Reference Count == 0)
 Flush Local Memory data to SRAM
 endif
Signal Next Thread

Do CAM lookup with CAM tag
CAM Reference Count --
Update data in Local Memory
 If (Reference Count == 0)
 Flush Local Memory data to SRAM
 endif
Signal Next ME Thread

. . . .

. . . .

Thread 2

R
ea

d/
P

op
ul

at
e

P

ha
se

C
on

su
m

e
 P

ha
se

Thread 1 Thread 8

Figure 5: Using the IXP2400 microengine CAM and local memory to implement folding

Another technique to speed up processing is to cache the
compressed/decompressed packet headers in the
microengine local memory so that the
compressor/decompressor need not access the packet
header from the external memory unit.

IPv6 over IPv4 Tunneling (Interoperability)
Driven by a need for large numbers of uniquely
addressable wireless devices, IP networks will gradually
transition from a pure IPv4-based network to an IPv6-
based network. The key to a successful transition is

interoperability with the large installed base of IPv4 hosts
and routers. Maintaining interoperability with IPv4 while
deploying IPv6 will streamline the task of transitioning the
Internet to IPv6. This can be achieved using multiple
mechanisms. The IPv6-IPv4 interoperability block (see
Figure 4) uses IPv6 over IPv4 tunneling (encapsulating
IPv6 packets within IPv4 headers to carry them over IPv4
routing infrastructure) to help realize this transition.

The main function of this block is to provide
encapsulation and decapsulation of IPv6 datagrams. The

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 67

functionality includes removing and attaching appropriate
IPv4 headers to IPv6 datagrams. Similar to link-classify
and encapsulate blocks, the challenge is to be able to read
or write layer-3 headers at arbitrary byte offsets. Once
again, byte_align instruction, index mode addressing, and
caching of protocol headers in local memory allow efficient
implementation of these blocks.

This block integrates seamlessly with the IPv4 and IPv6
forwarding blocks. The IPv6 over IPv4 tunnels are
configured by using special IPv6 and IPv4 route table
entries. Hence the IPv6 and IPv4 forwarders are used to
direct traffic transitioning from IPv6 to IPv4 networks and
vice-versa to the interop block (see Figure 4). The IPv6
and IPv4 forwarders can also be configured to run
independently (dual IP layer) on the same router. This dual
IP layer functionality is also a requirement for successful
transition from an IPv4 to IPv6 Internet.

Additional transition blocks can leverage the existing
blocks to support advanced mechanisms like Network
Address Translation-Protocol Translation (NAT-PT).
Also, as the transition mechanisms are evolving, the
programmable IXP2400 makes the task of adding software
blocks supporting newer and more efficient transition
mechanisms relatively painless. The possibility of being
able to reprogram the IXP2400 in the field to support
evolving networking standards is key to achieving rapid
transition to the new standards.

THE QoS PROCESSING STAGE
The 3G wireless network defines four QoS classes: a low-
delay conversational class for voice traffic, a constant
delay streaming class for streaming video, a payload-
preserving interactive class for web browsing, and a best-
effort background class for e-mails and downloads. While
the IXP2400 is fully programmable, the QoS software
building blocks can be designed to be configurable to
meet the needs of the 3G QoS classes. This section
describes QoS building blocks on the IXP2400 and how
they can be configured for 3G QoS.

The three functional blocks associated with QoS
processing are the queue manager, the scheduler, and the
rate shaper (Figure 6).

The queue manager block performs the packet enqueue
and dequeue operations and updates and maintains
queues. Fortunately, the SRAM Q-Array hardware-assist
can be used for this purpose. The SRAM Q-Array
hardware is used to cache the most recently used 64
queues in the SRAM controller. The Q-array data
structure caches the head and tail pointers of the queue,
as well as the number of entries currently present in that
queue. Caching queue entries (in the memory controller)
helps components like WRED and QoS, which manipulate
large number of queues. The Q-Array hardware along with
the CAM (local to each microengine) enables them to
cache and access these queues efficiently.

Classify

WRED
Packets

from
Receive

block

Packet,
Queue ID

Queue
Manager

Scheduler

Rate Shaper

Rate
Shaper

Drop
Packet

To
 Transmit

MinMax

Threshold

Enqueue
Packet

Figure 6: QoS functional blocks

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 68

The queue manager receives requests to enqueue packets
from the packet processing threads through the hardware-
assisted producer consumer rings. Requests contain
packet handle and queue number, to which packets must
be enqueued. The queue manager also processes requests
from the scheduler to dequeue packets.

In addition, the queue manager maintains the queue
transition information that will be used by the scheduler.
A queue transition occurs either when a packet is
enqueued to an empty queue or when the queue is
emptied out by dequeue of the last packet in a queue.
Furthermore, the queue manager uses payload size
information returned from dequeue operations to update
credit information used for scheduling decisions and to
update rate-shaping information.

The packet scheduler can be configured for Deficit Round
Robin (DRR), Round Robin (RR), multi-level hierarchy (as
in DiffServ), or any other proprietary scheduling scheme.
Because the scheduler cannot tolerate any inherent
delays, all its internal data structures such as queue status
vectors, credit status vectors, shaping status vectors, and
Round Robin masks are maintained in single-cycle access
local memory.

The rate shaping is used to limit the rate at which packets
are sent out on a virtual interface. This is needed when a
single physical link aggregates one or more virtual links
that are demultiplexed at the other end of the link. When a
packet is scheduled to transmit on an interface, the shaper
calculates the time slot at which packet transmission can
be allowed the next time and registers that interface in the
timing calendar queue. The rate shaper also turns the
interface off to stop any further scheduling on this
interface. When the timer reaches the appropriate time-slot
entry in the timer calendar, it turns on the interface again.
The microengine architecture provides a hardware timer
capable of signalling at a period of 16 clock cycles. The
current time (in ME cycles) is accessible in 3 cycles and
can be used to accurately control the rate at which packets
are sent out.

In addition, congestion avoidance mechanisms such as
Weighted Random Early Detection (WRED) can also be
implemented in the packet processing stage. The IXP2400
microengines use the well-known technique of using the
Linear Feedback Shift Register (LFSR) hardware to
generate extremely good 32-bit pseudo-random patterns.
This hardware supplies the random-number to the
microengines in two clock cycles. The pseudo random
number generator is used in components such as WRED,
which require an efficient random number generator to
compute packet drop probability.

Each queue or interface on the system can be configured
to have a different set of WRED thresholds, drop
probabilities, and scheduler priorities. The rate shaper can
also be configured to support a different transmit rate on
each logical interface.

This ability to configure WRED, scheduler, and rate
shaper allows the implementation of the 3G QoS classes.
For instance, the low-delay conversational class traffic can
be classified and placed into queues that have lower
WRED thresholds and higher scheduler priorities. The
lower WRED thresholds ensure lower latencies. The
higher priority assigned to these queues ensures that the
packets are transmitted ahead of others. On the other
hand, best-effort traffic can be classified into queues with
high WRED thresholds and placed in the best effort
queue.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries .

CONCLUSION
The IXP2400, a programmable network processor with a
comprehensive set of hardware assists (summarized
below) is ideal for present as well as future needs of
evolving all-IP 3G wireless networks. Even after
implementing the key processing functions, sufficient
headroom remains available for adding new services such
as Multi Protocol Label Switching (MPLS), and the
upgrades can be performed in the field. This allows nodes
such as RNCs to grow and evolve with the upcoming roll
out of wireless services.

Table 1 summarizes packet processing functions and the
IXP2400 hardware feature that can be utilized to implement
them efficiently.

Table 1: Packet processing functions

Processing Block IXP2400 Hardware Assists

Link-layer classify
and encapsulation/
decapsulation

Hardware-assisted scratch rings
to dequeue packets from Rx.

Single-cycle byte-align
instructions and index-mode
addressing to read layer-3
headers at arbitrary offset.

Local memory to cache headers
so that other blocks can use
them.

Layer-3 forwarding Hardware multi-threading to hide
memory latencies.

Caching packet headers and

Intel Technology Journal Vol. 6 Issue 3, 2002.

Network Processor Building Blocks for All-IP Wireless Networks 69

Processing Block IXP2400 Hardware Assists

route-table data in local memory.

Hardware-assisted scratch rings
for sending exception packets to
and from ME to XScale™.

Header
compression/
decompression

CAM and local memory for
caching.

Hardware-assisted hashing for
generating compression
contexts.

QoS SRAM Q-array for hardware-
assisted enqueue and dequeue.

CAM and local memory for
caching the most active queues.

Fine granularity timer to shape
traffic.

Local memory for real-time
access to scheduling and
shaping data structures.

WRED Pseudo-random number
generator to calculate drop
probability.

IPv6 over IPv4
Tunneling

Local memory to cache layer-3
headers.

Single-cycle byte-align
instructions to assist
encapsulation and decapsulation
of IPv6 frames in IPv4 frames at
arbitrary offsets.

XScale to dynamically configure
tunnels and routes.

XScale™ is a trademark of Intel Corporation or its subsidiaries in
the United States and other countries.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of Uday Naik,
Alok Kumar, Chen-Chi Kuo, Larry Huston, Philip J. Young,
Sridhar Lakshmanamurthy, and Makaram Raghunandan.

REFERENCES
[1] Third-Generation Partnership Project, Technical

Specification Group Services and System Aspects,
QoS Concept and Architecture (Release 5), 3GPP TS
23.105 V5.1.0.

[2] Third-Generation Partnership Project, Technical
Specification Group Radio Access network, IP
Transport in UTRAN (Release 5), 3GPP TR 25.933
V5.0.0.

[3] “Compressing IP/UDP/RTP Headers for Low-Speed
Serial Links,” IETF RFC 2508.

[4] Sally Floyd and Van Jacobson, “Random Early
Detection Gateways for Congestion Avoidance,”
IEEE/ACM Transaction on Networking, August 1993.

AUTHORS’ BIOGRAPHIES
Harsh Vipat is an applications engineer in the Network
Processor Group. His interests include networking,
operating systems and distributed systems. He has a
Master’s degree in Computer Science from Arizona State
University. He can be reached via e-mail at
harshawardhan.vipat@intel.com.

Manohar Ruben Castelino is an applications engineer in
the Network Processor Group. He has worked in projects
primarily in the networking and network management
areas. His interests include networking and compiler
design. He has a B. E. degree from KREC India. He can be
reached at manohar.castelino@intel.com.

Philip Mathew is a network application software engineer
at Intel’s Network Processor Division. His professional
interests include computer networking, embedded
programming and object-oriented programming. He
received his Master’s degree in Computer Applications
from the University of Calicut, India, in 1994. He can be
reached via e-mail at philip.mathew@intel.com.

Auro Tripathy is an applications engineering manager in
the Network Processor Group. He has led projects in the
wireless and broadband access aggregation areas. His
interests include networking, digital video, and embedded
developments tools and languages. He has a B. Tech
degree from IIT Kharagpur, India, and an MSCS degree
from Wayne State University, Detroit. He resides in
Milpitas, California, and can be reached via e-mail at
auro.tripathy@intel.com.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

Implementing Voice over AAL2 on a Network Processor 70

Implementing Voice over AAL2 on a Network Processor

Jaroslaw Sydir, Prashant Chandra, Alok Kumar,
Sridhar Lakshmanamurthy, Longsong Lin, Muthaiah Venkatachalam

Intel Communications Group, Intel Corporation

Index words: MEv2, IXP2400, IXA, network processor, VoAAL2, VoP, VoATM, VoIP, TM4.1, AAL2,
AAL5, SAR

ABSTRACT
Programmable network processors are emerging as a
versatile component for building telecommunications
equipment because they can be programmed to perform a
variety of different packet-processing functions, while
allowing the equipment vendor to differentiate their
products by supporting unique value-added features. A
variety of applications with rather different characteristics
and requirements can be deployed on a network
processor. This ability to support a broad range of
applications is one of the keys to the success of network
processor products in the marketplace.

In this paper we describe a Voice over AAL2 (VoAAL2)
processing application, as specified in International
Telecommunications Union (ITU) recommendations I363.2
and I366.2. This application must satisfy the real-time
requirements inherent in voice applications. It must use a
jitter buffer and scheduler to remove jitter introduced in
the network and a timer-based scheduler to ensure that
voice packets do not incur too large of a processing delay.
Also, because packets from low-data-rate voice channels
are aggregated into high-data-rate Asynchronous
Transfer Mode Virtual Circuits (ATM VCs) and vice versa,
different components within the application must operate
at different rates (some dealing with voice packets, others
dealing with ATM cells). These requirements present
some unique challenges to network processors that have
traditionally been designed to support high-speed
applications such as basic IP processing, where the
processing of packets is very uniform and can be
performed in a deterministically ordered pipeline.
Applications such as VoAAL2, on the other hand, are a
lot more asynchronous in nature. We discuss the
requirements that applications like VoAAL2 place on
network processor design and provide an example of how

a VoAAL2 application can be implemented on the IXP2400
processor.

INTRODUCTION
Programmable Network Processors (NPUs) offer
telecommunications equipment manufacturers a flexible
platform for building a variety of different equipment. The
power of NPUs is that they can be programmed to perform
many different packet-processing functions to support a
variety of different protocols and standards. This
flexibility allows equipment manufacturers to utilize the
same NPU or family of NPUs across different product
lines. It also allows them to easily evolve their products to
support evolving standards and to provide unique value-
added features within these products.

Until recently, most network processors have been
designed mainly to perform basic IP packet processing, as
described in RFC 1812 [5], at very high line rates. This
basic IP packet processing is fairly simple and
deterministic. All packets are subject to roughly the same
processing. Quality of Service (QoS) guarantees are either
not provided at all or are provided on a course, per-class
granularity with no guarantees on packet delay or packet
delay variation (jitter).

Unfortunately, real-world packet-processing applications
are much more complex and diverse than this basic IP
processing application. IP processing performed by
today’s routers includes many additional features such as
DiffServ QoS, policy-based routing, and packet filtering
that make the packet processing applications much more
complex and less uniform. Other packet processing
applications deal with real-time traffic and therefore have
stricter real-time processing requirements.

In order to provide the level of flexibility sought by
equipment manufacturers, an NPU must be able to support
diverse packet-processing applications dealing with

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 71

connectionless and connection-oriented protocols with a
variety of quality of service models and requirements.
Different applications require different programming
models, which must be supported by an NPU.

An example of an application that presents a different set
of requirements than the basic IP forwarding application is
the Voice over AAL2 (VoAAL2) application. In this paper
we discuss the special requirements and challenges
presented by the VoAAL2 application. We describe the
architecture and design of a VoAAL2 application that we
have developed for the Intel IXP2400 processor and
discuss the features of an NPU that are required to
support this type of application.

IXP2400 NETWORK PROCESSOR
The IXP2400 is a next -generation network processor
developed by Intel Corporation. It is fully programmable,
offering a very flexible programming model and support for
a broad range of diverse packet processing applications.
In this section we highlight some of the IXP2400 features
that are utilized by the Voice over AAL2 (VoAAL2)
application. “Network Processor Performance Analysis
Methodology,” by Sridhar Lakshmanamurthy, et. al,
provides a complete overview of the IXP2400 architecture
[1].

 The IXP2400 is a multi-threaded multi-processor system.
Packets enter the IXP2400 through a configurable industry
standard interface that supports Packet over SONET and
UTOPIA interfaces. Packet processing is performed by
eight packet-processing engines called MicroEngines
(MEs). Each ME has eight hardware execution contexts
(alternately referred to as threads). Each context has its
own register set, so that swapping between them is a very
fast (one instruction cycle) operation. The MEs use a non-
preemptive context scheduling model, where the swapping
out of contexts occurs under software control, and ready-
to-run contexts are scheduled using a Round Robin
scheduling discipline.

Each ME contain an Arithmetic Logic Unit (ALU) and a
Content Associated Memory (CAM) unit, which allows
the application to compare a key value to the keys of all
CAM entries in one instruction cycle. The MEs also
provide byte-alignment support to allow applications to
manipulate packet headers and data that are not always
aligned on four-byte boundaries. Each ME contains 640
longwords of local memory, where packet headers can be
stored temporarily while they are processed. Finally, the

MEs provide real-time timers, which allow a thread to
specify a time in the future when it should be awakened.

The IXP2400 contains interfaces to external SRAM and
SDRAM memories.

VOICE SERVICE REQUIREMENTS
Transmitting voice signals over a network places some
specific real-time requirements on the network. Voice (for
example, a telephone call) is sampled at periodic intervals,
and those samples are transmitted across the network and
replayed at the other end at the same rate. Each voice
sample is subject to a transmission and propagation delay
as it traverses the network. This delay cannot be too large
if the conversation is to flow at a normal pace. More
importantly, variations in the delay experienced by
different samples (referred to as jitter) cannot cause the
replay of those samples to occur at a variable rate, or the
quality of the voice experience by the listener will degrade.

Traditional voice networks, Time Division Multiplexing
(TDM) networks, solve this problem by reserving the
capacity for the voice samples of a call at the time the call
is set up and synchronizing the transmission of voice
samples throughout the network. This provides a very
predictable environment for voice applications and
guarantees that the jitter and delay experienced by voice
samples is within specified limits and yields the voice
quality that we are used to when using the telephone. The
drawback of this approach is that a 64Kb/s channel is
reserved for the duration of the voice call and cannot be
used to carry voice samples from other calls even during
periods of silence.

Transmitting voice over packet networks, such as ATM,
can solve this resource usage efficiency problem because
voice samples from different calls are allowed to use the
bandwidth from a call during periods of silence. The
challenge is to allow this type of bandwidth sharing while
still providing the same delay and jitter guarantees in order
to maintain the same level of voice quality as a traditional
voice network.

VoAAL2 SERVICE

Typical VoAAL2 Deployment
Figure 1 illustrates the typical configuration of a Voice
over AAL2 (VoAAL2) service in a network. Voice calls
originate on the Time Division Multiplexing (TDM)
network.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 72

TDM
Network

TDM
NetworkATM Network

VoATM
Gateway
(Trunk
Interface)

VoATM
Gateway
(Trunk
Interface)

VoATM
Gateway
(Trunk
Interface)

TDM
Network

AAL2 Trunk

AAL2 Trunk

Telephone

Telephone
voice
packets

voice
packetsAAL2

Cells

Figure 1: Configuration of a Voice over AAL2 (VoAAL2) service

The analog voice signal is sampled and digitized in the
VoATM gateway to produce a stream of voice packets.
(Note: TDM networks also carry digitized voice and other
traffic.) These voice packets are transported across the
ATM network in AAL2 trunks. An AAL2 trunk is an
ATM Virtual Circuit (VC) used to transport AAL2 traffic.
At the far end of the ATM network, the voice packets are
converted back to an analog signal and transmitted over
an analog voice network.

Figure 2 illustrates the relationship between voice calls,
AAL2 channels, AAL2 Trunks, and ATM VCs. There are
many Digital Signal Processors (DSPs) within a VoATM
Gateway. Each DSP processes a given number of voice

calls. Each voice call is mapped to an AAL2 channel
within an AAL2 trunk. There are 256 AAL2 channels
within each AAL2 trunk. The AAL2 channel is identified
by the Channel Identifier (CID). There are many AAL2
trunks in the system. Different voice calls from a given
DSP can correspond to AAL2 channels within the same
or different AAL2 trunks. The inverse relationship holds
at the far end of the ATM network, where packets from
each AAL2 channel are transformed into voice packets
destined for a specific DSP. The VoAAL2 application
transforms voice packets to AAL2 packets and transmits
them on the correct AAL2 channel. At the other end of
the ATM network, the VoAAL2 application performs the
inverse operation.

voice calls

AAL2 Trunk

AAL2 Trunk

AAL2 channels

DSP

DSP

Figure 2: Relationship between voice calls and AAL2 channels

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 73

AAL2 Standards
The Voice over VoAAL2 service is specified by the
International Telecommunications Union (ITU). AAL type
2 is subdivided into the Common Part Sublayer (CPS) and
the Service-Specific Convergence Sublayer (SSCS).
Recommendation I.363.2 specifies the CPS layer for all
AAL type 2 applications [2]. This layer defines a packet
format with a three-byte packet header, which contains the
length of the packet, a User-to-User Indication (UUI) field,
whose content is specified by the layer above, and a
header error correction field. Recommendation I.366.2
specifies an SSCS layer for trunking of traffic from narrow
band networks (ISDN or analog networks) over AAL2 [3].
I.366.2 defines a number of services for transporting audio
and data traffic, and signaling over an AAL2 network. For

the audio service, the SSCS layer does not define its own
header. It simply specifies the format and values that are
passed to the CPS layer and transmitted in the UUI field of
the CPS header.

PACKET PROCESSING IN THE VoAAL2
APPLICATION
Figure 3 illustrates the relationship between the different
types of packets. In the Digital Signal Processor (DSP) to
Asynchronous Transfer Mode (ATM) direction, digitized
voice packets are received from the DSP chip. Each voice
packet is mapped to one Service-Specific Convergence
Sublayer (SSCS)/Common Part Sublayer (CPS) packet.
Multiple CPS packets are multiplexed within an AAL2 cell.

voice datavoice voice dataCPS
hdr

voice packet SSCS / CPS Packet

CPS PacketsATM
hdr

voice dataCPS
hdr

AAL2
STF

hdr

voice datavoice
hdr

to/from
ATM
Networkto/from

Voice
Processor

Figure 3: Voice over AAL2 packet transformations

The voice packets contain a header that indicates the
identity of the voice channel, the length of the packet, and
the encoding algorithm that was used. The voice header is
a software convention established between the Voice over
AAL2 (VoAAL2) application and the DSP and is not part
of the standards. The information contained in this header
could also be communicated by some out-of-band
communication mechanism.

The application looks up the AAL2 channel, within a
specific ATM Virtual Circuit (VC), that is used to transport
this call. The DSP header is stripped off of the voice
packet and SSCS processing is performed. SSCS
processing involves generating the proper sequence
number that is carried in the User-to-User Indication (UUI)
field of the CPS header. This sequence number is
maintained on a per-voice-call basis.

Next, CPS processing is performed. This entails the
creation of the CPS header and the generation of a CRC-5-
based header error correction field. Multiple CPS packets
can be packed into the payload of an ATM cell, and the
contents of a given CPS packet can be split across
successive ATM cells (within the same VC). The first byte
of AAL2 ATM cells contains a field called the Start Field
(STF), which indicates the length of the data and offset to
the start of the first CPS packet within the cell.

CPS packets destined for the same VC are accumulated
until either a cell is completely filled or until the timer_CU
has expired. Recommendation I.363.2 specifies the use of
the timer_CU to force a cell to be sent after a certain
amount of time, even if it is not full. The time_CU is used
to make certain that the processing delay incurred by a
CPS packet (voice packet) is less than a specified number.
A timer_CU is maintained for each VC. When the first CPS
packet is received (for a cell on that VC) the timer_CU is
started for that VC. When additional CPS packets are
received and the cell is filled, the timer_CU is canceled (or
restarted if there is enough data to start a new cell). If the
timer expires before the cell is full, the empty part of the
cell is padded with zeros and the cell is sent even though
it is not full.

The processing in the ATM to DSP direction is the
inverse of the processing in the DSP to ATM direction. A
cell is received on a particular VC. Within the cell are one
or more CPS packets. The first packet may be a partial
packet, part of which may have come in the previous cell
on the same VC. Also, the last CPS packet may not be
complete. The CPS packets within a cell can be destined
for the same AAL2 channel or different channels.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 74

The CPS packets are extracted from the ATM cell and
reconstructed, and the CPS headers are verified using the
CRC5 value in the header. For each packet the voice
channel to which it belongs is determined as a function of
the VC and AAL2 CID. The SSCS sequence number is also
verified, and the packet is discarded if it is corrupted or
misordered. The DSP header is prepended to the payload
of the SSCS packet to create a DSP packet.

Each voice packet encodes a specified time interval of the
voice signal. The timestamp for a packet represents the
beginning of this interval. The SSCS sequence number
captures the time of a packet relative to the time of the
previous packet. The timestamp for packet n (Tn) is given
by the formula: Tn = Tn-1 + ((Sn – Sn-1)*I) , where Tn-1
is the timestamp of packet n-1, Sn and Sn-1 are the
sequence numbers of packets n and n-1 respectively, and
I is the interval length for this call.

 When a packet is received, its SSCS sequence number is
used to generate a timestamp, which is used to perform
jitter removal from the stream of voice packets that make
up a call. Jitter is the variable inter-packet gap caused by
network queuing and transmission delays experienced by
successive packets or cells from one connection. Network
jitter causes voice packets from a channel to be either
bunched together or spread out in time, thereby making
the inter-packet gap smaller than or greater than the codec
sampling interval. Before the voice packets can be played
out to the listener or transmitted over a TDM link, this
variability in the inter-packet gap must be removed.
Removing jitter requires collecting enough voice packets
from a channel in a buffer so that the voice packets can be
played out with a constant inter-packet gap corresponding
to the codec interval. This dejittering operation must be
performed individually for each voice call.

QoS CONSIDERATIONS
Traffic management in Asynchronous Transfer Mode
(ATM) networks is specified by the ATM forum in the
Traffic Management Specification [4]. The TM4.1
specification defines six service categories that are used to
provide different levels of QoS guarantees to different
types of traffic. Each service category is defined in terms
of the characteristics of the traffic that can be afforded this
service (called the traffic contract) and the types of QoS
guarantees that traffic which conforms to the traffic
contract will receive.

The Constant Bit Rate (CBR) service category provides a
service similar to that provided by a TDM network. CBR
traffic is characterized by a peak cell rate. A conformant
CBR traffic stream cannot exceed its peak rate or a
maximum cell delay variation. The traffic is guaranteed

very low losses and a maximum cell transfer delay. Voice
and circuit emulation services are potential users of this
service.

The Real-Time Variable Bit Rate (rtVBR) service category
provides loss and delay guarantees to traffic whose bit
rate is variable. The traffic is characterized by a peak rate, a
sustainable rate, and a maximum burst size. A conformant
traffic stream must not exceed its sustainable rate over
long timescales; it can burst at rates up to its peak rate, up
to its maximum burst size. The traffic is guaranteed very
low losses and a maximum cell transfer delay. Real-time
applications such as voice and video are potential users of
this service.

The Non-Real-Time Variable Bit Rate (nrtVBR) service
category is intended for non-real-time applications with a
bursty traffic pattern. The traffic and conformance criteria
for this service are characterized in the same way for the
rtVBR service category. The network offers a loss
guarantee, but no packet delay guarantees.

The Unspecified Bit Rate (UBR), Available Bit Rate (ABR),
and Guaranteed Frame Rate (GFR) service categories are
intended for that transport of data traffic. UBR is a best-
effort service, where no restrictions are placed on the
traffic and no guarantees are provided by the network.
ABR provides a loss guarantee and utilizes closed loop
feedback control to throttle the traffic sources in order to
avoid losses in the network. Finally, GFR is intended to
provide a service similar to that offered by frame relay for
IP applications.

The TM4.1 specification describes a number of
mechanisms for implementing traffic management within
the network. Call Admission Control (CAC) is used to
determine whether the network has the resources to
support a connection and to reserve these resources for
the connection. Policing is performed at the edges of the
network to make certain that the traffic entering the
network conforms to its traffic contract. Shaping is used to
transform a traffic stream into one that meets a different
traffic contract. Finally, scheduling is used to ensure that
the resources reserved by a connection are made available
to the cells traversing that connection.

From a traffic management perspective the VoAAL2
application is a user of the network. AAL2 trunks (VCs)
are generally established as CBR or rtVBR connections,
and the traffic stream produced by the VoAAL2
application for each VC must conform to the traffic
contract for that VC. TM4.1 uses the Generic Cell Rate
Algorithm (GCRA) for defining the conformance of a
traffic stream to its traffic contract. GCRA has two
parameters T and τ. T is the inverse of the rate allocated to
the flow by the network. The rate here could mean either

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 75

peak rate or average rate, depending upon the service
class. The second parameter τ represents the deviation
from the theoretical arrival times of the cells in a flow that
can be tolerated by the network. The algorithm maintains
the theoretical earliest arrival time for the next cell. When a
cell arrives, its actual arrival time is compared to the
theoretical arrival time. If the cell has arrived later than the
theoretical earliest arrival time or less than τ units of time
earlier than this time, then the packet conforms. Otherwise,
it does not. The theoretical arrival time is calculated as a
function of the actual arrival time of the current cell and
the parameter T.

VoAAL2 APPLICATION ON IXP2400
We have implemented the Voice over AAL2 (VoAAL2)
application on the Intel IXP2400 processor. In this section
we describe the design of this application and discuss
some of the challenges involved.

DSP to ATM Processing Design
Figure 4 illustrates the major components, data structures
and control and data flow for the Digital Signal Processor
(DSP) to Asynchronous Transfer Mode (ATM) direction.
Thin dotted lines within the figure represent a relationship
between data items. Solid lines represent data flow, and
thick dashed lines represent control flow.

SSCS Channel
Table

points to

points to

VC
Context

DSP Rx CPS Tx

Timer_CU

Voice
 packet

Received

CU timer
Expired

get and update
VC context

write CPS
packet into
cell buffers

get and update
VC context

Timer Data
Structure

set/cancel timer,
read expired

timers

read ATM
cell payload

from cell
buffer

VC Cell Buffers

SSCS Tx
SSCS

 packet
Received

voice
packet

get and update
entry for this channel

ATM Tx
ATM
Cell

Ready

Set, Cancel,
Reset CU Timer

profile table

points to

Queue
Manager

TM4.1
shaper

Figure 4: DSP to ATM processing

The DSP Rx component receives voice packets from the
DSPs. It reads the header that is created by the DSP and
extracts the relevant meta-data that describes the voice
packet. It then places this meta-data into a message to the
SSCS Tx component. It is important to separate out the
processing of voice packets from the voice processor

because in other versions of this application, the voice
packets may come from a different source, such as another
AAL2 connection (AAL2 switching), or from a voice-over-
IP connection.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 76

The SSCS Tx component receives messages from the DSP
Rx component, indicating that a voice packet is ready to
be processed and performs SSCS processing to produce
the value of the User-to-User Indication (UUI) and length
fields that go into the Common Part Sublayer (CPS)
header. It accesses two main data structures in performing
this processing. First, it looks up the entry in the SSCS
channel table that corresponds to the AAL2 channel over
which the voice packet is to be transported. The SSCS
channel table contains an entry for each SSCS channel.
Each entry contains the Channel Identifier (CID) of this
channel, the Virtual Circuit (VC) within which it exis ts, the
profile for this call, and the SSCS sequence number. Next,
the SSCS Tx component searches the profile table that
describes the profile used for this channel for the entry
that correspond to this voice packet. The profile tables are
read-only tables that describe the UUI field encoding,
sequence number interval, and length for each audio
encoding algorithm that can be used within the profile.
Within a profile table there is an entry for each encoding
algorithm supported in the profile. Each voice packet must
match one of the entries with the profile. A profile table
exists for every profile supported by the application.

When it had completed the SSCS processing, the SSCS Tx
component sends a message to the CPS Tx component
indicating that a SSCS packet has been received.

The CPS Tx component encapsulates SSCS packets in
CPS packets and packs CPS packets into AAL2 cells. It is
driven by the arrival of two types of messages. Messages
indicating that an SSCS packet has been received are sent
by the SSCS Tx component. In response to these
messages, this component gets the VC context that
corresponds to the VC on which the packet has arrived.
The VC context stores the state of an AAL2 VC. It
contains information that is required to determine if the
timer for a VC should be set, canceled, reset, or left alone,
and information about the cell buffer in which the current
cell is being assembled. The CPS Tx component first
performs the bookkeeping in order to determine what
should be done with the timer_CU for this VC, and sends a
message to the timer_CU component indicating the
required action. The timer_CU can be set, canceled, reset,
or left alone, depending on whether it was previously set
and whether the data from the new packet has partially
filled a new cell. The CPS Tx component then creates the
CPS header to produce a CPS packet that contains an
SSCS packet, which contains the voice packet. The CPS
packet is written into the current cell buffer immediately
following the previous CPS packet destined for this VC.
The packet may not entirely fit into the current cell, in

which case the part that fits into the current cell is written
there and a message is sent to the Queue manager
component, indicating that the cell is ready to be sent. The
remainder of the CPS packet is written to the next cell
buffer. (A maximum size CPS packet can fill up two ATM
cells.) The VC context is updated and written back to
memory.

Messages indicating that the timer_CU for a VC has
expired are sent to the CPS Tx component by the timer_CU
component. In response to these messages the CPS Tx
component gets the VC context that corresponds to the
VC whose timer_CU has expired. It determines how many
bytes of padding must be written to complete the cell,
writes this padding to the cell buffer, and sends a message
to the queue manager component indicating that the cell is
ready to be sent. Finally, it updates the VC context to
account for the actions that were taken.

The timer_CU component implements the timer_CU
functionality. It accepts requests to set, cancel, and reset
the timer for specific VCs. It is also responsible for firing
the individual timer_CUs that are set (and canceled) for
individual VCs. The timer_CU structure is a calendar
queue data structure used to store the timer_CU entries
for active VCs. The timers are stored in buckets, and each
bucket is associated with a time interval. The timer_CU
component wakes up at the end of each time interval and
sends timer_CU-expired messages to the CPS Tx
component for each VC that had a timer_CU set to go off
during the previous time interval.

The queue manager component manages a set of queues
in SRAM. There is a queue for each ATM VC. Cells are
placed into the queue by the CPS Tx component and
removed by the TM4.1 shaper component.

The TM4.1 shaper/scheduler component consists of
three blocks. The TM4.1 shaper block receives input from
the queue manager when a cell from a particular VC Queue
(VCQ) has been dequeued and there are cells remaining in
that VCQ (this is called cell dequeue without transition)
or when cells are enqueued into an empty VCQ (this is
called enqueue with transition). The shaper computes the
earliest departure time for the cell using the Generic Cell
Rate Algorithm (GCRA) traffic descriptors. It passes on
the earliest departure time, the VCQ number, and the
service category for the cell onto the TM4.1 writeout
block.

The design uses time queues to achieve compliance and
provide TM4.1 functionality. Time queues are depicted in
Figure 5. The time axis can be divided into small units of
cell transmission slots. In each slot, one or no cells depart.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 77

 RTQ N-1

RTQ1

 NRTQN-1

RTQ0

NRTQ 1

NRTQ 0

Cur_RTQ_ptr

Cur_NRTQ_ptr

RDQ

IPQ

NRDQ

UBRQ

Set of real-time queues
per port

Set of non-real-time
queues per port

priority

Figure 5: TM4.1 scheduler time queues

A time queue is the aggregation of several cell
transmis sion slots and hence represents an interval of
time. The time queue holds the cells that are meant to be
transmitted during this time interval. There are a fixed
number of time queues in the system (that can be derived
based on the link rate), the slowest VC bit rate, and the
aggregation level of the time queue. The sum total of all
the time intervals represented by the all-time queues
would constitute the time horizon. The time horizon is
nothing but the time after which the time queues wrap
around. There are two sets of time queues: one for real-
time traffic (called the real-time time queue), such as
CBR and rt-VBR, and the other for non-real-time traffic
(called the non-real-time time queue), such as nrt-VBR
and GFR.

The TM4.1 writeout block computes the time queue into
which the cell needs to be written based on the earliest
departure time. Once the time queue is computed for the
cell, it writes out the cell into the real-time time queue if
the traffic is CBR or rt-VBR and the non-real-time time-
queue if the traffic is nrt-VBR. If no space is available in
the time queues, the writeout block writes into a different
data structure called the Intermediate Priority Queue
(IPQ).

The scheduler block schedules out cells from the time
queues, IPQ, and the UBR queues. It is essentially a
priority scheduler with the highest priority for the real-
time time queue, the next priority for IPQ, next for non-
real-time time–queue, and the lowest priority for UBR.

When scheduling from a time queue, the scheduler is
always in sync with or behind the real time. The design
ensures that cells are not scheduled ahead of real-time,
since this would violate the traffic contracts of the VC
and create unfairness in the system.

Finally, the ATM Tx component performs the ATM
header processing and transmits the cell.

ATM to DSP Design
Figure 6 illustrates the major components, data
structures, and control and data flow in the ATM to DSP
direction. The ATM and CPS Rx component receives
ATM cells. When a cell is received, the ATM and CPS
Rx component determine the VC to which this cell
belongs. The VC context for this VC is then read in from
SRAM. Since it is possible that a CPS packet was split
across cells, this context contains information about
such a split CPS packet. The ATM and CPS Rx
component reads the contents of the ATM cell into the
microengine and steps through the CPS packets
contained within. It copies each CPS packet into a packet
buffer, maps the Virtual Path Indicator (VPI), Virtual
Circuit Indicator (VCI), and CID fields to the channel id,
and queues each packet buffer for the SSCS Rx
component to process. If a CPS packet is split across
ATM cells, the ATM and CPS Rx component stores the
reassembly context in the VC context, in order to allow
the packet to be completed when the next cell for this VC
arrives.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 78

VC
Context

SSCS
Connection

Context points to

ATM and
CPS Rx SSCS2IXS

CPS
 packet

Received

get and update
SSCS Connection context

Jitter Buffer
Data

Structure

Packet Buffer

SSCS Rx
voice

 packet
Received

ATM
cell

get and
update

VC context

DSP Tx
Scheduler

enqueue
packet

Jitter Buffer

Get packet

Profile Tablewrite packet
into buffer

enqueue and
dequeue
packet

to/from jitter
buffer

DSP Tx

Send
packet

IXS
packet

Flow Control
Messages from

IXS

read packet
from buffer

Figure 6: ATM to DSP processing

The SSCS Rx component performs the SSCS processing.
It uses the channel id to access the SSCS connection
context for this channel. The context contains the
sequence number of the previously received SSCS packet
and a pointer to the table that describes the profile for this
connection. The structure of the profile tables was
described in the previous section. The SSCS Rx
component accesses the entry in the profile table that
corresponds to the UUI field and length of the SSCS
packet (in the CPS header). This entry specifies the
encoding algorithm that was used, along with information
used to determine the expected sequence number and
corresponding timestamp for this packet. SSCS Rx checks
the sequence number against the one received in the
packet and generates the timestamp. If there are no errors,
the packet is passed to the SSCS2DSP component.

The SSCS2DSP component creates a DSP packet header
from the information that the ATM and CPS Rx and SSCS
Rx components have extracted from the packet and profile
table. It then passes the packet to the jitter buffer
component.

The jitter buffer component enqueues the packet into a
per-channel queue. The purpose of the Jitter Buffer
component is to eliminate some of the jitter introduced

into the voice packet stream in the ATM network. It does
this by placing packets into proper time sequential order,
applying a specified jitter delay, and playing them back at
the proper rate (with jitter removed).

The DSP Tx scheduler component is responsible for
scheduling the transmission of DSP packets to the DSP.
This component registers itself with the MSF in order to
receive flow control messages from the DSP. In each flow
control message, the DSP indicates one or more channels,
on which it is ready to receive a packet. For each such
channel, the DSP Tx scheduler component asks the jitter
buffer component to dequeue a packet from the jitter
buffer. The jitter buffer returns either a buffer handle or an
error. If the jitter buffer returns a buffer handle, the DSP Tx
scheduler component passes this handle to the DSP Tx
component. If the jitter buffer component returns an error,
the DSP Tx scheduler component creates a DSP packet
that indicates silence (an SID) and passes it to the DSP Tx.

The jitter buffer component receives requests from the
DSP Tx scheduler to dequeue a packet on a specific
channel. It determines if a packet is queued and ready to
send for that channel and responds with the buffer handle
of that packet or an error.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 79

Finally, the DSP Tx component transmits voice packets to
the voice processors.

CHALLENGES AND LESSONS LEARNED
In this section we discuss some of the challenges that
must be surmounted in developing a Voice over AAL2
(VoAAL2 application) on a Network Processor Unit
(NPU).

Processing Asynchronous Inputs within Many
Contexts
The VoAAL2 application must support a large number of
AAL2 Virtual Circuits (VCs). There is a requirement that
within each VC, cells/packets be processed in the order in
which they were received. (In the DSP to ATM direction,
voice packets destined for a VC should be processed in
order, while in the ATM to DSP direction, ATM cells
received on a VC must be processed in order.) The data
rates within VCs can be fairly small, so at any given
moment the application is holding/processing
cells/packets from a small subset of this total number of
VCs. Because there are many VCs, the packets that the
application is processing/holding at a given time are most
likely all from different VCs, although this is not
guaranteed and cannot be assumed by the application.
The challenge is how to serialize the processing of
cells/packets within each VC, while allowing cells/packets
from different VCs to be processed in parallel.

Another problem is that the CPS Tx component must
process voice packets received by the system as well as
react to the expiration of the timer_CU. Timer_CU
expiration events are not regular or predictable, since they
are a function of the traffic patterns on individual VCs.
The amount of processing required to process a packet
that has arrived is much larger than that required to react
to the expiration of the timer_CU.

We solve the problem of having to serialize the processing
of packets/cells within each VC by dynamically binding
VCs to threads. A thread receives a packet or message,
determines which VC it belongs to, checks to see if any
other thread is already processing packets/messages for
that VC, and locks the VC if it is not already locked by
another thread. The thread then processes the packet or
message. When it has completed processing the packet or
message, it checks to see if any other packets or messages
have been queued for it to process (associated with this
same VC). The thread processes any packets or messages
that have been queued, and when there is none left, it
unlocks the VC. On the other hand, if another thread has
already locked the VC, the packet or message is queued
for this other thread to process.

The process of locking a VC, unlocking a VC, and
checking to determine if a VC is locked must be performed
in an atomic fashion in order to ensure that two threads do
not lock the same VC. In our design the entire component
is implemented within a single ME, so we use a built-in
CAM for storing the identity of the VC that is locked by
each thread, allowing the operations of locking, unlocking,
and checking to see if a VC is locked to be performed in
one operation .

We found that the IXP2400 provides good support for the
asynchronous programming model used in the VoAAL2
application. Central to this support are the CAM and local
memory that are included in each ME. The IXP2400 also
provides the basic support required to distributed this
type of processing across multiple MEs. It provides
atomic test and set operations in the shared SRAM, which
can be used to implement locks. However, SRAM
operations have a fairly large latency, making it difficult to
use this mechanism for locking in high-performance
applications. Additional hardware support for performing
distributed locking from threads on multiple MEs would
make it easier to implement such multi-ME asynchronous
applications. On the other hand, it is generally possible to
partition an application into components in such a way as
to avoid asynchronous components that run on more than
one ME.

Bit- and Byte-Level Memory Access
The CPS header and AAL2 cell are tightly packed
structures, where fields are not aligned on four-, eight-, or
even one-byte boundaries. This means that the VoAAL2
application must read and write from/to arbitrary bit and
byte addresses as it creates/parses CPS packet headers
and packs/unpacks CPS packets from AAL2 cells. This
presents a challenge for any processor because memory
systems generally support reads/writes of four- or eight-
byte chunks of data, addressed on four- or eight-byte
boundaries.

Our implementation utilizes specialized byte alignment
hardware of the IXP2400 processor to merge and align the
CPS packets as we pack/unpack them into/from AAL2
cells. Bit fields are accessed utilizing mask and shift
operations provided by the Arithmetic Logic Unit (ALU).
Efficient support for such data access is critical to support
applications such as VoAAL2, where packets are small
and protocol overhead must be minimized.

The problem of having to access unaligned data is solved
by some combination of providing specialized hardware
instructions and simply providing sufficient processor
speed to allow the applications to perform the required
data manipulations within the required time budget. We
found that the IXP2400 provides a reasonable combination

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 80

of processing speed and specialized instructions to
support this application.

Jitter Buffer
The purpose of the jitter buffer is to receive voice packets,
place them in proper time sequential order, provide a
specified jitter delay, and then present them for
transmission. The jitter buffer must be large enough so
that the slowest packets can arrive in time to be played out
in the correct sequence. On the other hand, the jitter
buffer must be small enough such that the delay
introduced is minimized. In order to address these
conflicting requirements, the jitter buffer can be
dynamically resized based on measurements of actual
network jitter. On lightly loaded paths, this allows for a
minimum jitter delay and a higher quality of speech with
less noticeable turnaround delay. On congested paths, the
jitter delay can be increased so that fewer packets are
missed or dropped due to the irregularity of their timing
but with a more noticeable turnaround delay.

Implementing a jitter buffer offers some new challenges
when compared to traditional First In First Out (FIFO)
queues. The jitter buffer is a sorted queue based on the
timestamps of arriving voice packets. Therefore, packets
can be inserted in the middle of the jitter buffer. Packets
can be dropped from a jitter buffer for two reasons: 1) the
buffer is full; or 2) the packet is received too late. When
packets are dropped because the queue is full, they are
dropped from the front of the queue (packets with the
oldest timestamp are dropped). Because the queue is
allowed to contain packets representing a fixed time
interval (the jitter delay value), the arrival of one voice
packet may cause multiple older voice packets to be
dropped if the time difference between the newest
packet’s timestamp and the oldest packet’s timestamp is
greater than the jitter delay value. Packets with duplicate
timestamps are dropped. A further challenge is that a
separate queue must be maintained for each of the many
thousands of voice channels that are handled by the
application.

Our implementation uses circular queues to implement the
jitter buffer. Each circular queue has pointers to the
packets with the oldest and newest timestamps. The
position into which a new packet is inserted is a function
of the difference between the packet’s timestamp and the
oldest packet’s timestamp, along with the codec interval.
To calculate this position we need to divide the timestamp
difference by the coded interval. We implement this using
fast reciprocal multiplication utilizing the multiplier of the
IXP2400 MEs. Once the position is calculated, the
insertion of the packet into the jitter buffer is the same as
an insert into an array of the order O(1).

The circular queues may have “holes,” positions with no
packets. When a packet must be removed from the jitter
buffer, it is necessary to quickly skip over the holes to get
to the position with a valid packet. We implement this
search for a valid packet in O(1) time by making use of the
Find First Bit Set (FFS) instruction provided by the
IXP2400 MEs. By maintaining a bit-mask of positions in
the circular queue with valid packets, and using the FFS
instruction, we can remove the next valid packet from the
jitter buffer in constant time.

In summary, the jitter buffer implementation takes
advantage of the hardware features provided by the
IXP2400 network processor to implement, insert, and
remove operations in O(1) time. This allows for an
efficient jitter buffer implementation that scales to a large
number of voice channels.

TM4.1 Real-Time Scheduler

There are many challenges that must be overcome in
developing a TM4.1-compliant scheduler. TM4.1 requires
per-VC shaping and scheduling, and the number of VCs
can be very large. Also, the implementation must scale
with increases in line rate, as well as numbers of VCs.

The most interesting challenge is in providing the real-time
scheduling required to support the CBR and rtVBR service
classes. When servicing CBR and rtVBR traffic, the packet
scheduler must transmit each cell within a certain time
window in order for it to conform to the traffic contract.

Because the IXP2400 performs non-preemptive Round
Robin scheduling, it is difficult for the software to perform
such real-time scheduling. When a thread sets a timer and
goes to sleep, expecting to be awakened when the timer
has expired, it cannot be guaranteed that it will get
awakened the instant that the timer expires, because
another thread might be executing at the time that the timer
expires, and other threads might be ahead of this thread in
the Round Robin schedule. We found that TM4.1
scheduling is still possible, although the software must be
carefully tuned to place an upper bound on the time
between the expiration of a timer and the time that the
thread is awakened, and the schedule must take this
bound into account when setting its timers.

CONCLUSION
The flexibility and programmability of next -generation
Network Processor Units (NPUs) will make them a key
component of next -generation telecommunications
equipment. NPUs can support a variety of packet-
processing applications, with a variety of different
requirements. The Voice over AAL2 (VoAAL2)
application that we discussed in this paper presents a

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 81

number of challenges. We have demonstrated that these
challenges can be overcome and that applications such as
VoAAL2, with strict Quality of Service (QoS) requirements
and asynchronous inputs, can be performed on an NPU.

The VoAAL2 application is most naturally implemented
using an asynchronous programming model. We found
that the IXP2400 naturally supports such a programming
model. Support for asynchronous components that span
MEs could be improved by adding support for a
distributed lock manager.

The AAL2 application requires a lot of bit- and byte-level
data access. The IXP2400 provides all of the necessary
facilities to perform these operations while meeting the
performance requirements of the application. Finally, the
VoAAL2 application requires real-time scheduling to
conform to the TM4.1 traffic contract. Although the
IXP2400 does not support preemptive scheduling, the
software can be tuned to perform the required scheduling
in conformance with TM4.1.

REFERENCES
[1] S. Lakshmanamurthy, et. al, “Network Processor

Performance Analysis Methodology,” Intel
Technology Journal, Vol. 6 issue 3, August 2002.

[2] ITU-T Recommendation I.363.2, Series I: B-ISDN ATM
Adaptation Layer Specification: Type 2 AAL, ITU,
Geneva, Switzerland, 1997.

[3] ITU-T Recommendation I.366.2, AAL Type 2 Service
Specific Convergence Sublayer for Trunking ITU,
Geneva, Switzerland, 1999.

[4] The ATM Forum, “Traffic Management Specification
Version 4.1,” af-tm-0121.000, April 1999.

[5] F. Baker, “RFC 1812 Requirements for IP Version 4
Routers,” IETF, June 1995.

AUTHORS’ BIOGRAPHIES
Jaroslaw J. Sydir is a network architect in the Silicon
Development Group of the Network Processor Division at
Intel Corporation. His interests are in the areas of
signaling protocols, traffic management, and distributed
real-time systems. He received his B.S. in Computer
Engineering from Case Western Reserve University in
1988, and an M.S. degree in Systems Engineering from
Case Western Reserve University in 1989. He can be
reached at jerry.sydir@intel.com.

Prashant Chandra is a senior staff network architect in the
Software and Systems Engineering group of the Network
Processor Division at Intel Corporation. His interests are
in the areas of programmable networks, signaling

protocols, and traffic management. He received his B.E.
degree in Electronics Engineering from Bangalore
University in 1991, an M.S. degree in Computer
Engineering from West Virginia University in 1994, and a
Ph.D. degree in Computer Engineering from Carnegie
Mellon University in 2000. He can be reached at
prashant.chandra@intel.com.

Alok Kumar is a staff software architect in the Software
and Systems Engineering group of the Network Processor
Division at Intel Corporation. His interests are in the areas
of high-speed programmable routers, quality of service,
and computer graphics. He received his B.Tech degree in
Computer Science from the Indian Institute of
Technology, Delhi, in 1999, and his M.S. degree in
Computer Science from the University of Texas at Austin
in 2001. He can be reached at alok.kumar@intel.com.

Sridhar Lakshmanamurthy is a senior staff architect in
the Silicon Development Group of the Processor Division
at Intel Corporation, focusing on understanding
edge/access networking applications, analyzing the
performance of Intel's network processor solutions, and
defining future enhancements to these solutions. Prior to
joining the Network Processor Division, Sridhar focused
on platform performance analysis for Intel server chipsets
for Xeon™ & Itanium® Product Family (IPF) processors,
and system bus specifications for the IPF processors.
Sridhar joined Intel in 1993 after receiving an M.S. degree
in Computer Engineering from Rice University in Houston,
Texas. He can be reached at
sridhar.lakshmanamurthy@intel.com.

Longsong Lin is the senior staff network architect in the
NPG technology office. He was the principal system
architecture at AMCC, CTO at Opix Networks, senior
research staff and architect at NEC, Japan, scientist at
Swiss Federal Institute of Technology, Switzerland, VP of
Engineering at Jato International Inc., professor and
chairman at National Yunlin University of Science and
Technology, Taiwan, visiting professor at the University
of Illinois, Urbana Champaign, visiting scholar at Purdue
university, and a member of the Taiwan Public TV
Organizing Committee. He received his Ph.D. degree and
M.S. degree in Electrical Engineering at Purdue University.
He is currently involved with several projects at Intel,
including modular system platforms and next -generation
network processor architecture, as well as business and
technology developments in APAC. He can be reached at
longsong.lin@intel.com.

Muthu Venkatachalam is a network architect in the
Software and Systems Engineering group of the Network

Intel Technology Journal Vol. 6 Issue 3, 2002.

Implementing Voice over AAL2 on a Network Processor 82

Processor Division at Intel Corporation. His interests lie in
network processor architecture and programming, QoS
algorithms, traffic management, systems modeling and
analysis, and keeping pace with the innovations in
today’s networking industry. He can be reached at
muthaiah.venkatachalam@intel.com.

Xeon™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
Itanium® is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

Challenges and Methodologies for Implementing High-Performance Network Processors 83

 Challenges and Methodologies for Implementing High-

Performance Network Processors

Ram Bhamidipati, Ahmad Zaidi, Siva Makineni, Kah K. Low,
Robert Chen, Kin-Yip Liu, Jack Dahlgren

Intel Communications Group, Intel Corporation

Index words: network processors, reuse, verification, clock architecture, hierarchical flow, transactor, simulator

ABSTRACT

Moore’s law has been the guiding principle for
performance and transistor density improvements over the
years. While this is true, in the context of network
processor development, the challenge is multi-faceted to
keep the silicon development on the curve.

This paper describes the challenges for a network
processor implementation in each facet of design. The
network processor designs adopted the following
implementation techniques to manage the design
challenges and the Time-to-Market (TTM) schedule:

• Reuse of Intellectual Property (IP).

• Extensive functional validation.

• High-performance clock architecture and design.

• Streamlined hierarchical physical design flow.

• Efficient and cycle-accurate c-model for
performance simulation.

A case study of implementation on the IXP2400 design is
presented with the above strategies in detail.

The silicon results show that the IXP2400 is a successful
design following the stated methods.

INTRODUCTION
Network processors are the emerging class of chips that
offer Original Equipment Manufacturers’ (OEM) flexibility
in creating a wide range of applications. They are targeted
to replace expensive and inflexible fixed-function silicon
Application-Specific Integrated Circuits (ASIC). The
implementation of network processors has to form-fit to
the schedule needs of a telecommunication industry

moving at the Internet speed. At Intel, we chose the
architectural approach of providing a highly integrated
and highly programmable solution to customers. This
means a lot of functionality is packed into the silicon,
thereby increasing its complexity for implementation. In
addition to the functionality, the network processor has to
operate at the targeted line rates, often running multiple
tasks as demanded by the end-user applications. The
applications may range from basic L3 forwarding to
sophisticated algorithms that are more compute-intensive,
as in the case of creating firewalls and intrusion detection
services.

Network processors interface to a host of devices to
perform their functions: media/switch fabric, PCI for
control interface, DRAM for packet storage, Quad Data
Rate (QDR) as a fast memory for queues and table lookup,
and miscellaneous device support including Universal
Asynchronous Receiver/Transmitter (UART) and General
Purpose Input/Output (GPIO). A number of parallel
microengines work on the data packets executing a
specific microcode sequence downloaded into their
memories by the control processor. The microengines, the
control units, and I/O interfaces are connected via an
internal chassis bus, and data movement happens in an
efficient manner through arbitration schemes. This is akin
to a system-on-chip design.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 84

Figure 1: Constantly increasing processing power is
required even as the market requires shorter design

cycles and time-to-market

A number of challenges for implementation are already
evident. As the demand for performance scales up (Figure
1), the number of transistors increases with collateral
increases in power and physical design complexity. As an
example, the IXP2400 design on p859 packs ~60 million
transistors, which is comparable to a high-performance
IA32 processor. Further, to meet the performance goals,
the critical processing elements such as the microengines
and the XScale™ control processor are working at the
highest clock rate possible (600MHz in IXP2400). The
high-frequency operation requires custom design of
Arithmetic and Logic Unit (ALU) and memory elements.

Given the varied usage models in the field, extended
temperature range (-40deg.C to 85deg.C) is a Plan Of
Record (POR) for network processor implementation at
Intel. The power requirements are also stringent, with
applications ranging from fully enclosed boxes, as in
cellular base stations, to heat-sink solutions on high-
performance blades (line cards) in a rack system. These
requirements pose a significant challenge for reliability
and robustness of the design.

Since network processors have to interface to a lot of I/Os,
the result is complexity of package, I/O design, and board
design. The requirements on design may be more stringent
here in network processors than on a CPU, due to the
proprietary nature of designs from OEMs.

Functional verification of a network processor is also a
very challenging task due to the fact that it has several
interfaces (PCI, DRAM, QDR, slowport, media, switch
fabric, etc.) and supports several network protocols.
Several on-chip clock domains, both synchronous and
asynchronous, make the task even more complicated.

One of the essential deliverables of a network processor
design project is a simulator that models the functionality
of the network processor with execution-cycle-level
accuracy. To external customers and internal software
teams, this simulator enables application software
development and performance optimization long before
the network processor product becomes available in
silicon. To the internal design team, this simulator
facilitates conducting performance analysis and
architecture/microarchitecture studies. The unique nature
of network processors poses significant challenges and
imposes special requirements on the development of such
a simulator. The requirements for the simulator are best
illustrated by reviewing the architecture of network
processors and the complexity and paradigm of the
application development. The simulator must minimize the
application development complexity. Furthermore, due to
lack of network processor performance benchmarks, the
simulator and reference applications must become
available at least three quarters before silicon sample date.
This schedule enables the potential customers to evaluate
the capability of the network processor effectively, and
facilitates the committed customers to gain time-to-market
advantage by starting application development early. It
helps Intel to engage the customers with an architecture
before the silicon is available.

In a competitive environment of network processor silicon
solutions, Time-to-Market (TTM) becomes a compelling
factor for Original Equipment Manufacturers (OEMs) in
picking an architecture for product design. For silicon
providers, as the performance demand is increasing and
the transistor count is thereby increasing, the RTL to
GDS2 design cycle times are staying flat. One way to form-
fit the complexity of design into the same schedule is by
increasing the size of design teams. Studies show that this
leads to inefficiencies and increased cost of product
development beyond a point.

In response to these challenges, the network processor
design teams at Intel have focused on increasing
productivity and efficiency in design through reuse, co-
development, innovative methodologies, and streamlined
tool flows.

The following sections describe IXP2400 as a case study,
going into the details of each phase of the network
processor design from RTL to GDS2.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 85

IXP2400 DESIGN: A CASE STUDY

Reuse
The strategy for front-end RTL development was co-
development with IXP2800 and reuse of design modules
from an Intellectual Property (IP) repository. The design
modules for RTL coding were partitioned between
IXP2400 and IXP2800 at the beginning of the project
execution. The originating project that developed a
functional block assigned primary logic owners who are
completely responsible for functional correctness. The
receiving project assigned secondary owners who are
responsible for physical implementation at their end. This
co-development was managed well through good
interaction at engineering-peer-to-engineering-peer level
and between management at the schedule level. Project-
specific sub-modules were clearly identified (e.g., reset
module). For these sub-modules, a common interface was
worked out ahead of time to make it an easily swappable
block of code. The least common denomination of memory
elements in size and usage was also worked out in this
manner. High-performance custom datapath blocks in the
microengine were isolated from synthesizable blocks with
clear interface partitioning to allow parallel development. It
is to be noted here that the IXP2400 and IXP2800 have
different process and performance goals. Therefore, the
sharing is limited to RTL code.

A number of other functional blocks and sub-blocks have
been reused from an IP repository. These include the PCI
core, Universal Asynchronous Receiver/Transmitter
(UART), XScale™ core (Elkhart) and Double Data Rate
(DDR) I/O as shown in Figure 2.

Several IP were harvested for the physical implementation
for reuse. For the I/O design, good inventory of IP was
available from chipset groups for DDR I/O and a basic I/O
buffer design for all the others: Media Switch Fabric
(MSF), PCI, and miscellaneous I/O. Quad Data Rate (QDR)
I/O was generated by modifying the DDR I/O design.
Much of the I/O effort then was focused on integrating
the I/O blocks for the chip floorplan and for doing signal
integrity checks for the board reference designs.

The analog high-frequency Phase Locked Loop (PLL)
design was imported from the chipset group and tuned
extensively to IXP2400 requirements.

The basic cells for the SRAM memory elements and the
SRAM architecture were reused from a CPU group. This
cut down the development time to two quarters.

Figure 2: The IXP2400 design is a mix of reuse and co-
development

Functional Verification
This section describes some of the methodologies the
team adopted to successfully complete verification of the
IXP2400 network processor.

Verification of the IXP2400 started with choosing the right
tools and verification platform, and defining the
verification methodology. The team evaluated several
alternatives and chose Cadence’s* NCSIM for logic
simulator, Verisity’s* SPECMAN for test bench
automation, X86 Linux platforms for computing servers,
Debussy* waveform viewer for debug, and Denali*
memory models. A clear methodology was defined and
documented with two main goals :

1) The primary goal was to make sure that A0
silicon had adequate functionality that enabled
the team to build a system-level environment and
run software.

2) The secondary goal was to enable customer
sampling on the A-dash stepping.

An extensive upfront methodology was documented with
various milestones and exit criteria for each of these
milestones. This methodology document defined the rules
and guidelines to be followed while developing the
verification components to make them extendable,
expandable, and readily usable as an IP by another project.
IXP2400 and IXP2800 projects used this methodology and

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 86

seamlessly shared the verification components. Figure 3 shows the validation view of the Sausalito architecture.

IXP2400
Chip& Gasket

RTL

RTL

devices that
connect to GPIO,BFM

uEngine
RTL

SRAM
RTL

QDR
Memory Model

DRAM
RTL

UTOPIA, POS, CSIX

U1, U2, U3, POS2

BFM

CPPSlaveBFM

BFM
Gasket RTL

CAM

SHAC
APBM
BFM

CPP bus

BFM

Model

U1, U2, U3, POS2

BFM

CPPSlaveBFM

APBM
BFM

Figure 3: Validation view of IXP2400 architecture

Following are some of the salient features of the IXP2400
verification methodology.

1. Testing design at multiple levels of integration,
namely, block level, full-chip, and system levels:
System level simulation puts together an IXP2400
full-chip RTL model with the ecosystem
surrounding the chip in some real-life
applications. The intent of system-level
simulation is to make sure that the chip is
compatible with ECO system components such
as framers, and compliant with industry standard
protocols such as UTOPIA and POS-PHY.

2. Monitor-Based Testing (MBT): The real power of
SPECMAN lies in its built-in random generator,
and this power is used during test plan
implementation. Tests are developed in a three-
phase approach. In phase 1, simple, directed tests
are written to cover the breadth of design. In the
second phase, the random power of SPECMAN
is unleashed to generate interesting test cases.
For each of the test cases in the test plan,
monitors are written to make sure that the test
case is covered. Hence, all the test cases whose
monitors got triggered during this random run are
checked off. The coverage report is analyzed to
identify the test cases that are not covered.
These uncovered test cases are the focus of the
third phase, in which directed tests are written to
cover them.

3. Random testing: To increase confidence in the
model, SPECMAN’s random generator was put to
use. A concurrent random test environment was

built to generate random transactions on a bus
with multiple masters and slaves. This
environment is highly configurable to choose
specific master(s), slave(s), and type(s) of
transactions.

4. Gate-level verification: This was used to weed
out initialization deficiencies and synthesis bugs.

5. Error checking that uses three methods: 1)
extensive score-boarding techniques were used
in packet generators; shadow memory techniques
were used for memory data checks during and at
the end of each test, 2) for microengine
verification, a reference model was written in C
and was used to validate the RTL model, and 3)
protocol checkers were used to verify the
behavior of the design for compliance with
certain protocols.

6. Structural and functional coverage monitoring
techniques.

7. Automation scripts and web-based regression
methodology: these used netbatch tools to
balance and distribute jobs across multiple
servers.

8. Complete debug: the verification team took a goal
to debug the RTL failures in order to determine
the root cause. In several cases, the team not
only root-caused the failure but also identified
the fix. This enabled the team to gain extensive
knowledge of the design, which helped during
later stages of per-silicon debug and also helping
post-silicon debug.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 87

9. Rigorous quality and progress measurement
indicators: various indicators were developed to
measure the quality and progress. The two kinds
of indicators used were 1) trend and 2) snapshot.
Trends were useful for determining progress
against the plan over several weeks. Snapshots
were used to get the status at a single point in
time and were used to point out problems in a
specific block or area of testing.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other brands and names are the property of their
respective owners.

IXP2400 CLOCK ARCHITECTURE
OVERVIEW
To support operations of various memory interfaces,
communication interfaces, and internal computing
hardware, IXP2400 has 16 clock domains, not to include
various test clocks. The highest clock rate is used by a
microengine and the on-die XScale™ core, up to 720MHz,
to generate high-computing performance for packet
processing. The global communication buses for major
internal hardware units operate up to 360MHz. To assist
sending and receiving data to external memory devices,
including both DRAMs and SRAMs, 1X, 2X and 4X
clocks are generated for the memory device controller and
IO devices. IXP2400 also has four independent media
interface clock regions, operating from 25MHz to 125MHz.
The clock rates for communication interfaces and memo ry
interfaces are all programmed through control registers.
For boot up and host processor communications, IXP2400
has PCI and slow port interfaces running up to 66MHz and
60MHz, respectively.

To support all these clock domains, IXP2400 has a total of
5 Phase Locked Loops (PLLs). Four of them are for
generating independent asynchronous clocks for the four
media communication interfaces, and the remaining one is
for generating all internal clocks for packet processing and
all memory interfaces (Figure 4). With various clock
domains, data crossing is done through extensive use of a
stepping stone control scheme to ensure safe data
crossing, in the presence of higher clock skew between
different clock domains. Stepping stone control is also
enforced in test mo de between clock domains that are
normally asynchronous in nature.

The clocking in IXP2400 has numerous features to support
testing and debug. A debug counter that counts up to 67
million cycles is incorporated to support a count-down
and clock-stopping function, so that the device can stop
at a particular cycle and SCAN out of internal states can
begin. The clock distribution system supports bypassing
of external SYS_CLK, SCAN clocks, and JTAG clock.

IXP2400 Clock Design
The IXP2400 clock design can be grouped into two parts:
the clock generation and the clock distribution.

The clock generation consists of a PLL and a clock
divider. The PLL is a leveraged IP that we adapted to fit
into the IXP2400 area constraint. The divider was custom
built by the IXP2400 team to meet the more stringent
requirement of low latency by the IXP2400 chip. Lower
latency means lower full-chip clock skew. The reduction
of the full-chip clock skew from the divider is estimated at
60ps. To design a fast divider, non-critical paths were
carefully designed to still meet their timing yet, more
importantly, have minimum impact on or even help speed
up critical paths. Logics were combined innovatively and
carefully optimized using custom techniques. As a result,
the divider clocks are generated after just one latch delay
from receiving the source clock.

Figure 4: The IXP 2400 clocking scheme

Clock balancing within the divider was made more
challenging; given the quest for low latency, more design
efforts on balancing were spent after low latency was
achieved. Layout was also carefully scrutinized for
balancing. A local pre-divide grid was used to reduce RC.
Delay elements were added to allow further fine-tuning of
the clocks, if necessary. The frequency range of the
clocks on IXP2400 is wide; thus a high-ratio divider was
designed. An important part of the divider is the error-

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 88

correction circuit, which combats noise and ensures clock
alignment. The clock dividers are also programmable.

The clock network design challenges were evident from
the beginning. The number of clocks in a network
processor chip is high compared with general-purpose
microprocessors. In addition, the IXP2400 has a large die
size; so, inherently, the clock skew would be large if not
carefully designed. Low power was another consideration.
Tight schedule was another challenge, and quick turn-
around time was another goal. These were some of the
challenges in designing the IXP2400 full-chip clock
network.

For low-power consideration, a balance tree clock network
style was selected. It uses a fixed route to stabilize RC and
reduce iteration impact to full-chip layout. The large
number of clock drivers is grouped into clock station
macrocells. Layouts were done with easy programming in
mind. Most of the clock stations were designed to drive a
fixed load to ease clock tuning. At the chip level, all
clocks were routed with shielding. The full-chip clock
network RC was extracted and simulated in SPICE. Scripts
and automation were developed to quickly tune the clock
networks once the block-level clock data are in.
Eventually, towards tape-out, the full-chip clock network
tuning turn-around time is just one day. At the block level,
a pre-grid clock scheme was used to reduce clock skew.
RC extraction data were fed back from the block to the full
chip for top-level clock tuning. Block-level-clock tuning
was automated for smaller blocks and carried out by hand
for large blocks and I/Os. SPICE was the primary
simulation engine for accuracy of the results. Place and
route blocks were tuned by a clock tree synthesis tool for
the last two stages of clock networks just before reaching
the flops. Clocks lines were plotted and reviewed by the
clock owner and the individual block designers.

XScale™ is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

IXP2400 HIERARCHICAL DESIGN
METHODOLOGY AND FLOW
The primary requirement on the design flow is to enable
short Time-to-Market (TTM). Therefore, it is imperative to
employ a high level of design automation to increase
productivity. We employed the following basic strategies
to help achieve the TTM goal:

• Top-down-driven hierarchical design flow.
• Cell-based methodology.
• Streamlined custom circuit-design flow.

We began by performing careful floorplanning at the chip
level to obtain an accurate wire model of major/critical
signals/busses, block sizes/placements, and location of
the block-level pins. A full-chip timing budget was then
done to allocate timing constraints to the blocks. The
block-level constraints were then passed on to the block
designers, who then performed an initial design and
provided the feedback to the full-chip designer. By
performing upfront planning and getting early bottom-up
feedback, we reduced the number of iterations needed to
converge on the final design goals.

Secondly, through the use of cell-based methodology with
only static CMOS logic, we were able to take advantage of
the industry standard Application-Specific Integrated
Circuits (ASIC) design tools, namely, logic synthesis and
automatic place and route tools, which offer a relatively
fast design cycle. These tools were used on most of the
blocks, with the exception of the timing critical datapath
blocks of the microengines, memory arrays, and IO pads.
In addition, we were careful to ensure that flip-flops were
used at all block boundaries to minimize inter-block
interactions.

The key enabler for achieving high productivity in our
custom design flow is a tool suite from MicroMagic (now
part of Juniper* Networks). Coupled with the cell-based
design methodology, the tool allowed us to specify the
relative placements of the cells while composing the
schematics of the datapath blocks. The tool automatically
generates the block layouts with placed cells. Timing
analysis is then done with global routings to obtain the
performance of the physical design. The placements of
the cells can then be fine-tuned to improve timing where
necessary. Once the timing goal is met, an automatic
detailed router is used to complete the layout. In this
manner, the datapath block layouts were completed with
less than one-third the amount of effort compared to full
custom-design methodology. Likewise, the memory arrays
were constructed through the use of MicroMagic tools,
which automatically assemble the array layouts based on a
set of high-level commands. Furthermore, the command
scripts were parameterized so that arrays of different sizes
(within a pre-defined range) could be compiled
automatically with minimal efforts.

Last, but not least, the design project was managed using
a structured design flow with a series of discrete
milestones. The flow diagram in Figure 5 depicts the high-
level view of the design flow.

*Other brands and names are the property of their
respective owners.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 89

Figure 5: The IXP2400 team used this flow to rapidly

converge on the final implementation while
maintaining control of the data

IXP2400 Design-for-Test Methodology
IXP2400 is a complex System on a Chip (SOC) design with
more than 300 embedded arrays and 88 scan chains
encompassing 120K flip-flops spanning across 14 different
clocks running and configurable from 33 to 600MHz. The
complexity of the system requires a carefully planned
Design For Test (DFT) methodology to enable
manufacturing and silicon debug. To achieve high test
coverage, full-scan design methodology is used
throughout the entire chip. Embedded memory arrays are
tested using either memory built-in self-tests (MemBIST)
or scan-collars. In scan-collared arrays, scan flops are
placed on both the input and output stages and are used
to control and monitor the arrays. All of the scan-collared
arrays are part of the 88 scan chains. Also, boundary scan
is implemented on the IO pads to facilitate system-level
testing.

To assist in silicon debug, we included a novel scan-
debug feature on the chip. This feature allows the chip to
run at full speed from reset and stop at a user-defined
cycle. The internal state of the machine, i.e., the content
of each scanned register, can then be shifted out through
the scan chains.

Network Processor Cycle-Accurate Simulator
This section describes the challenges, the requirements,
and the successful development strategy and tools that
the IXP2400 development team employed.

Architecturally, a network processor consists of clusters
of packet processors, co-processors with specific
functions, on-chip memory, various kinds of memory and

bus interface controllers, and many mechanisms that
provide fast communication and signaling among these
hardware elements, and a general-purpose CPU, all on a
single chip. In the case of IXP2400, the packet processors
are called microengines. A microengine is a multi-threaded
processor that excels in processing packets at line rate.
Each IXP2400 microengine supports up to eight threads of
execution. Thread switching is controlled by software and
poses zero cycle penalty. IXP2400 contains integrated
SRAM and DRAM controllers. Moreover, IXP2400 offers
hardware acceleration for managing queues and First In
First Out (FIFO) rings, and supports atomic operations for
the SRAM and on-chip memory address spaces.
Furthermore, IXP2400 provides highly flexible network
media and switch fabric interfaces for receiving and
transmitting packets.

From the user’s perspective, application development for
network processors is an exercise of real-time, multi-
threaded, and multi-processor programming at the same
time. The performance of the application must ensure that
the throughput of packet processing exceeds the desired
line rate so that packets do not get dropped. In order to
create optimized and efficient applications, developers
must account for the latency and sequence of all the
transactions, as well as the interactions among the various
execution threads and hardware units. As a result, the
simulator must offer both functional and cycle accuracy.
Furthermore, the simulator must monitor a rich list of
performance statistics and all the transactions every clock
cycle, and must enable the developers to visualize them
through an effective Graphical User Interface (GUI).

For the Intel IXP family of network processor products,
the simulator is called Transactor, and the GUI tool is
called Workbench. Workbench offers the single GUI for
code development using assembly or microengine C
language, for running simulations to debug and
performance-tune applications, and for debugging with
the real network processor hardware.

The complexity of network processors, the requirement of
100% cycle accuracy, and the fact that external Transactor
releases begin during the early phase of the project all
pose significant challenges to the Transactor development
team. In addition, the team must achieve excellent
development efficiency and quality.

The development strategy that the IXP2400 project
employed is based on an internal tool called VMOD.
Conceptually, VMOD accepts a logic design at the RTL
level and generates the corresponding cycle-accurate C++
model, i.e., Transactor. Moreover, this C++ model
supports an API for interfacing Transactor with the
workbench. This API relays user commands to Transactor
and facilitates communication of model states,

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 90

performance statistics, and status of transactions under
simulation between Transactor and Workbench.

RTL code presents the functional and cycle-count
behavior of a logic design to VMOD. However, RTL code
describes only the low-level hardware and does not
convey model states at the architecture level. For instance,
Transactor users operate with architectural registers, but a
register in RTL may be a group of flip-flops that are
individually addressed through signal names with long
hierarchies. In addition, the RTL code of a logic design
does not include performance statistics and does not
monitor transactions that execute on top of the hardware
that the very RTL code models.

In order to enable Transactor to present architectural
states and performance statistics to the users, and to track
all the simulated transactions, VMOD accepts C++ code in
addition to RTL. This C++ code can read and write
individual RTL signals and runs in lock-step with the
simulation of the RTL. During simulation, this C++ code
collects performance statistics and tracks all the
transactions by accessing the relevant RTL signals.
Moreover, when the Transactor user wants to access an
architectural state, this C++ code translates the mapping
of the requested architectural state to the actual collection
of RTL signals that make up the architectural state.

Within the IXP2400 design team, the Transactor team
owns the development of the Transactor, and the logic
design team owns the development of the RTL model. The
Transactor team develops the C++ code for all the
architectural states, performance statistics, and tracking of
transactions. In addition, the Transactor team inputs both
the C++ code and the RTL of the logic design into VMOD
for Transactor generation. In addition, to ensure excellent
quality, the Transactor team builds a thorough regression
suite for validating Transactor.

RESULTS

Reuse
Reuse has been a tremendous win overall for the IXP
design program. In particular for IXP2400, it cut down the
development times for critical elements of design, for
example, in I/O and clock design. Co-development of RTL
in the front-end has helped IXP2400 and IXP2800 to
synergize and develop designs that are completely
compatible from the microarchitecture level to the cycle-
accurate models on simulators. The sharing of knowledge
and resources helped to avoid duplication of effort and
kept the design cost low with beneficial affect on the time-
to-market schedule.

Pre-Silicon Verification Effort
Sausalito RTL verification was done very efficiently by
following a robust methodology. The team completed the
pre-silicon verification in approximately nine months after
the first RTL model. Sharing verification across IXP2400
and IXP2800 was very beneficial. Quality was never
compromised in the verification effort. Results of the work
are as follows:

• No functional bug escaped pre-silicon
verification after seven weeks of extensive
testing on three platforms, namely, the Omaha
validation platform, the Angel Island evaluation
platform, and the IX/IMS testers.

• Though the two projects IXP2400 and IXP2800
used different simulators and validation
platforms, the pre-defined methodology and
guidelines allowed then to share the verification
components seamlessly.

• Using Linux machines saved several hundreds of
thousands of dollars to the division, and it
proved that risk-taking pays off.

Clock Architecture
A low clock skew well-balanced clock architecture was
achieved through the methodology at the end of the
IXP2400 design. The clock tuning also converged rapidly
at the end. The silicon probing confirmed the simulated
results.

Hierarchical Flow and Methodology
The high-end ASIC design flow that emerged from the
IXP2400 design flow enabled rapid physical design
convergence at the end of design. The time from RTL
closure to the GDS2 database freeze for tapeout was less
than one quarter.

Using the hierarchical design methodology and flow
described in this paper, the IXP2400 design team was able
to implement and complete the chip design in 12 months.
This represents a tremendous achievement, considering
the complexity and performance level of the chip. The
design flow is further validated by a functional first
silicon. This proves that a high level of quality is possible
with the TTM design flow.

Transactor
With this effective development strategy and the
capability of VMOD, the IXP2400 Transactor project has
been on schedule since the first external SDK release,
which happened more than three quarters before the
IXP2400 sample date. Moreover, architects successfully

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 91

completed performance analysis by developing reference
applications and validating that IXP2400 meets the
performance goals during the chip design phase by using
Transactor.

Figure 6: IXP2400 die plot

CONCLUSION
In an emerging and competitive environment of network
processor solutions, it is imperative to keep the customers
engaged continuously. This interaction starts for the
design team with providing an accurate simulator months
ahead of time to the actual functional silicon availability. It
is also essential to keep the network processor
development times on the scale of Moore’s law or face
extinction.

The network processor design teams have embraced the
best-of-class practices to manage the unique design
challenges and deliver the products in line with customer
expectations. The IXP2400 design (Figure 6) was
completed in four quarters from the Implementation Plan
Approval (IPA), a goal set at the start of the project. The
A0 post-silicon was obtained on schedule. After one
quarter of extensive testing on three different platforms,
no functional issues have been found. The first customer
samples, based on A0 silicon, were shipped out one week
ahead of the plan established at IPA.

ACKNOWLEDGMENTS
The authors acknowledge the contributions of Suri
Medapati, Tim W. Chan, Jianhui Huang, and Kamal
Koshy. The authors also acknowledge the contributions
of Bill Wheeler, Chris Clark and Tim Fennell in the
deployment of VMOD tool for IXP2400.

REFERENCES
 [1] C. Narad and L. Huston, “Introduction to Network

Processors,” Hotchips-12 Presentation, August 2000.

[2] S. Batzer, et. al, “Modeling the Cost Avoidance
Potential of a Structured Approach to IP Reuse at
Intel,” DTTC papers, July 2002.

AUTHORS’ BIOGRAPHIES
Ram Bhamidipati joined Intel in 1989, after completing his
M.S. in Electrical Engineering from N.C.A.&T. State
University. He has worked on processor design groups for
the development of i486™, Pentium® II, and Itanium®
processors. He holds two US patents in design. Currently,
he is managing the back-end design of the IXP2400
network processor. His e-mail address is
sriram.bhamidipati@intel.com.

Ahmad Zaidi joined Intel in 1987, after comp leting his
Master of Electrical Engineering degree from Virginia Tech
University. Ahmad is currently Director of Silicon
Engineering for NPD-San Jose, focusing on architecture,
design, program management, and manufacturing of
network processors for the Access and Edge market
segments. His prior assignments include engineering
management positions on the Itanium Processor, and
engineering positions in the i386™, i486, and Pentium®
microprocessor projects. Ahmad holds nine US patents in
microprocessor design and architecture. His e-mail
address is ahmad.zaidi@intel.com.

Siva Makineni joined Intel in 1992, after completing his
Master of Engineering (E.E.) degree from Worcester
Polytechnic Institute in Worcester, Massachusetts. Prior
to joining the IXP2400 team as pre-silicon verification
manager, Siva held several engineering and management
positions in Itanium, Pentium, and 486SL projects. Most
recently, he designed floating point arithmetic units on the
Itanium processor and managed the SIMD floating point
implementation team. Siva holds ten US patents in
floating point and integer arithmetic. His technical
interests include high-speed floating point architecture
and design, computer arithmetic, and developing effective
verification strategies. His e-mail address is
siva.makineni@intel.com.

Intel Technology Journal Vol. 6 Issue 3, 2002.

Challenges and Methodologies for Implementing High-Performance Network Processors 92

Kah K. Low is currently the design center manager of
Intel’s Malaysia Network Development Center, where he
leads the development of next -generation network
processors. Previously, he was the global design manager
in the IXP2400 design project. He joined Intel in 1995 to
work on the Itanium design project, where he managed the
circuit design automation group. Prior to Intel, Kah K. was
with Motorola, Inc. from 1989-1995, where he worked on
statistical design, device modeling/characterization, CAD,
digital signal processors, and where he served as a project
manager in SEMATECH’s phase-shifting mask program.
He holds three US patents and received his B.S. degree
from the University of Massachusetts, and his M.S. and
Ph.D. degrees from Carnegie Mellon University, all in
Electrical Engineering. His technical interests include
network processor design, VLSI design methodology,
CAD tools, and communication networks. His e-mail
address is kah.k.low@intel.com.

Robert Chen received his Ph.D. degree in Electrical
Engineering from the University of Notre Dame in 1993.
Since then, he has worked in various areas of IC design:
library, SRAM, register files, TLB and CAM, low power,
clocks, place and route, and logic design. He received
“Top Gun Award” from Sun Microsystems, Inc. in 1995,
and “IA-64 Processor Division Award” from Intel in 2000
for his work on McKinley power reduction. Currently,
Robert is working on the clock design for the next
generation of IXP2400. His e-mail is
robert.chen@intel.com.

Kin-Yip Liu joined Intel in 1990, after completing his
Master of Engineering (E.E.), Bachelor of Science (E.E.),
and Bachelor of Arts (Economics) degrees from Cornell
University. Kin-Yip now co-manages the NPD NPBU
Architecture team at San Jose, focusing on network
processors for the Access and Edge market segments. His
prior assignments include engineering and management
positions in the Itanium Product Family architecture and
firmware teams and in the 386SL and 486SL
microprocessor projects. Kin-Yip holds four US patents in
microprocessor architecture. His technical interests
include network processing, computer architecture, and
simulator development. His e-mail address is kin-
yip.liu@intel.com.

Jack Dahlgren joined Intel in 1997, after ten years in the
architecture and construction management industries. He
has provided project control services on several projects
including development of Itanium and the Mobile Intel®
Pentium® III Processor. His educational background
includes Master’s degrees in Architecture and Civil
Engineering from the University of California at Berkeley.
His e-mail address is jack.dahlgren@intel.com.

i486™ and i386™ are trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Pentium® II, Itanium®, and Mobile Intel® Pentium® III
Processor are registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Copyright © Intel Corporation 2002. This publication was
downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm.

Copyright © 2002, Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

Cover.qxd 8/2/02 2:31 PM Page 3

http://developer.intel.com/technology/itj/index.htm

	1_Adiletta_NextGen_Web3QA1.pdf
	ABSTRACT
	INTRODUCTION
	IXP2800 SYSTEM EXAMPLES
	Metro-LAN 10 Gigabit Ethernet Switching or OC-192 Packet over SONET Switching Blade

	10GB/S MULTI-SERVICE SWITCH BLADE
	OC-48 (4 X OC-12 OR 16 X OC-3) SWITCHING BLADE
	THE IXP2800 MICROARCHITECTURE
	The Media-Switch-Fabric Interface
	The IXP Chassis

	THE MICROENGINE CLUSTERS
	The SRAM cluster
	The DRAM Cluster
	The Cryptography Unit
	The Hash Unit
	The Scratch Unit
	The Xscale™ Processor
	The PCI Unit

	THE IXP2XXX MICROENGINE
	
	Registers
	Instructions
	CAM
	Event Signals

	CHALLENGES AT 10GB/S
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	3_ADIL~1.PDF
	INTRODUCTION
	CHALLENGES/SOLUTIONS
	Context Pipe Stage
	Functional Pipe Stage
	Mixed Pipelines
	E
	Elasticity Buffers

	Synch Section Signaling and Critical Signaling
	Synch Sections
	Critical Sections
	Exclusive Modification Privileges between MEs

	Folding – Exclusive Modification Privileges between threads in an ME
	Pool of Threads

	INGRESS: IP PACKETS TO CSIX
	Reassembly Pointer Stage (RPTR)
	Reassembly State Update Stage (RUPD)
	Packet Processing (PPR)
	Metering 1 and Metering 2
	Congestion Avoidance
	RED
	WRED

	Statistics
	Transmit Scheduler
	Queue Manager
	Transmit 1 and Transmit 2

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	1_ADIL~3.PDF
	ABSTRACT
	INTRODUCTION
	IXP2800 SYSTEM EXAMPLES
	Metro-LAN 10 Gigabit Ethernet Switching or OC-192 Packet over SONET Switching Blade

	10GB/S MULTI-SERVICE SWITCH BLADE
	OC-48 (4 X OC-12 OR 16 X OC-3) SWITCHING BLADE
	THE IXP2800 MICROARCHITECTURE
	The Media-Switch-Fabric Interface
	The IXP Chassis

	THE MICROENGINE CLUSTERS
	The SRAM cluster
	The DRAM Cluster
	The Cryptography Unit
	The Hash Unit
	The Scratch Unit
	The XScale™ Processor
	The PCI Unit

	THE IXP2XXX MICROENGINE
	
	Registers
	Instructions
	CAM
	Event Signals

	CHALLENGES AT 10GB/S
	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

