
Intel Technology Journal Q1, 2001

Preface

Lin Chao
Editor
Intel Technology Journal

This Q1 2001 issue of the Intel® Technology Journal covers the very old and the very new at Intel. The first paper
reminisces about early chip development efforts at Intel. Have you ever wondered why Intel's microprocessors were
named 8086 or 80286 or what the 8 means? Read the first paper to find out. The authors have over 80 years of Intel
experience between them, and they are still going strong.

So what's new at Intel? The Pentium® 4 processor. Here is a short list of what makes this such an exciting product. It
runs at frequencies of 1.30, 1.40 and 1.50GHz and incorporates new hyper-pipelined technology that doubles the
pipeline depth to 20 stages, which significantly increases processor performance and frequency capability. Its rapid
execution engine pushes the processor's arithmetic logic units to twice the core frequency, giving higher execution
throughput. Moreover, it has a 400MHz system bus, Streaming SIMD Extensions 2 that extend MMXTM technology
and SSE technology, and an additional 144 new instructions. The six papers in this issue, written by Intel's engineers,
will give you an in-depth look at this new processor.

Also, starting with this issue you will find a new feature in the Intel Technology Journal. Each issue will have a
selected list of papers published by Intel's engineers and researchers in the previous three to four months. You can use
this list to find papers of interest to you. The list is located in the left top navigation bar under "Past Journals."

Copyright © Intel Corporation 2001. This publication was downloaded from http://www.intel.com/.
Legal notices at http://www.intel.com/sites/corporate/tradmarx.htm

http://www.intel.com/technology/itj/chao_bio.htm

The Pentium® 4 Processor – Advanced Technology for the
Internet and Beyond

By Ashwani Gupta

CPU Architecture Manager
Intel Corp.

The launch of a brand new microarchitecture
and supporting platform, such as the
Pentium® 4 processor platform, is an
especially proud and exciting moment for
Intel's engineers and technologists. Not only
is the product launch the pinnacle of a long
and intense development cycle, it is also the
moment when the innovations underlying the
product begin to alter the computing
landscape. This allows the innovator to
witness the effects of his or her ideas on the
world at large.

The Pentium 4 processor platform is the
beginning of a whole new family of products
from Intel. The range of new technologies
and innovations inherent in this platform is
breathtaking and constitutes the foundation
upon which Intel will be able to build for
years to come. I am confident that the
Pentium 4 processor will have a profound
effect on the computing industry, taking
performance to dizzying new heights and
enabling new uses for end users. In
particular, applications such as speech,
natural language processing, and video are
quite likely to become pervasive with the
arrival of the Pentium 4 processor platform.

Several of the key innovations and
technologies underlying the Pentium 4
processor-based platform are described in
this issue of the Intel® Technology Journal
by the engineers who first had the ideas and
then worked long and hard to turn those ideas
into reality. As you might expect, there were

tremendous challenges to be overcome in the
creation of these technologies. They included
a very high-frequency (1.5+GHz) design with
its attendant noise challenge, bucking the
power trend associated with increasing clock
frequencies, tuning and validating complex
microarchitectures, a highly optimized and
balanced system design that uses a novel
chipset, a quad-pumped processor system bus
and high-performance RDRAM memory, and
last but not least, compiler methods to
leverage new instructions introduced with the
Pentium 4 processor.

The papers in this issue offer an insight into
some of those challenges and how they were
overcome. At the center is the new Pentium 4
processor with great performance today and
enormous frequency and performance
headroom for the future. At its launch
frequency of 1.5GHz, the Pentium 4
processor is already in a class by itself for
multimedia performance, floating-point
performance, and the world's highest integer
performance. This is just the beginning. As
Moore's Law kicks in, and existing
applications get fine-tuned for the new
platform, and new applications get written
that leverage the new capabilities of the
Pentium 4 processor, the industry will begin
to experience and appreciate the full scope
and breadth of the Pentium 4 processor
team's vision for this first computing
platform of the 21st century.

The Pentium® 4 Processor – Advanced Technology for the Internet and Beyond 1

http://www.intel.com/technology/itj/q12001/gupta.htm

Intel Technology Journal Q1, 2001

Copyright © Intel Corporation 2001. This
publication was downloaded from
http://www.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmar
x.htm

The Pentium® 4 Processor – Advanced Technology for the Internet and Beyond 2

http://www.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm
http://www.intel.com/sites/corporate/tradmarx.htm

Recollections of Early Chip Development at Intel 1

Recollections of Early Chip
Development at Intel

Andrew M. Volk, Desktop Platforms Group, Intel Corp.
Peter A. Stoll, Technology & Manufacturing Group, Intel Corp.

Paul Metrovich, Desktop Platforms Group, Intel Corp.

Index words: history, products, naming, definition, validation, debug

ABSTRACT
In the early days of Intel, between the late 1960s and the
late 1970s, there was a regular product naming scheme by
which a process, product type, or product family could be
easily known. Few remain at Intel who remember this
scheme, and its source is all but forgotten. The naming
scheme and many stories of early products were
uncovered through interviews and reminiscences by the
authors, who among them have over 80 years of
experience at Intel. This is their story.

INTRODUCTION
The genesis for this paper came from a seemingly simple
inquiry to the Intel® Technology Journal. A reader
wanted to know why “80” was used in the name of all
microprocessors until the Intel Pentium processor.
This started a search for the origins of the naming system
used in the early days at Intel. It also got a few of us
thinking about the early products on which we worked.
In this paper, we discuss some interesting and little
known facts about products introduced in Intel’s first ten
years, the way they were defined, developed, verified, and
debugged, and how they contrast with the methods that
we use today.

EARLY INTEL® PRODUCT NAMING
SCHEME
It surprised us that something as simple and mundane as
the source of the early Intel® product naming scheme
could be so hard to track down, but it was. In the end, we
had to ask Dr. Andrew Grove, Chairman of the Board and
one of the founders of Intel, for the answer. Dr. Grove
said that he and Les Vadasz, then head of Engineering,
worked it out one day in 1968. “I distinctly remember us
concocting this scheme (minus 4XXX) sitting in his
office in Mountain View, California. It worked well until

marketing decided to jazz it up with 4’s and 8’s” [1]. Dr.
Gordon Moore also was “one of the cooks” that
developed the naming system [2]. So that’s how it
started.

Intel started with two processes: a PMOS polysilicon gate
and a Schottky barrier diode bipolar process. One goal of
the early products was to replace magnetic core memory
in computers with silicon memories. To that end, the first
products were a 64-bit bipolar memory and a 256-bit
PMOS memory. The PMOS products were given
numbers starting with 1xxx, and the bipolar products
were given numbers starting with 3xxx. The second digit
was a “1” for Random Access Memory (RAM), and the
last two digits were the product sequence number. The
sequence numbers of early products tended to start with
“01” and went up from there. So, the first PMOS RAM
was an 1101, and the first bipolar RAM was a 3101.

The 2xxx sequence started with an ambitious project to
put a decoder and four 1101 RAM chips on a silicon
substrate to make a 1-kilobit RAM module. The decoder
was a bipolar product, the 2201, and the 2000 series was
to be for hybrid products. However, the multichip
module was not a success because of manufacturing
difficulties and was therefore dropped. In 1971, the 2xxx
sequence was given over to NMOS products.

Another form of memory was the Read-Only Memory
(ROM). The first of these was a metal mask
programmable 1-kilobit (256 x 4) bipolar part. The
second digit “3” was assigned to ROMs. Therefore, the
first bipolar ROM became the 3301, which incidentally
proved to be a great source of revenue for Intel.

Intel also made shift register memory products. These
were used mostly in video displays including Intel’s own
Microcomputer Development Systems (MDS). Intel
made several early shift registers up to 1-kilobit in size.
These were all dynamic memories that required that the

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 2

clocks be kept running. The second digits “4” and “5”
were assigned to shift registers, i.e., 1402 and 1405/1505.

Programmable ROMs (PROMs) were, and continue to
be, key products for Intel. Again, both bipolar and
PMOS versions were developed in the early days. The
bipolar parts used polysilicon fuses that were blown by
pulses of high current. The PMOS memories stored
charge on a floating gate. PROMs that could only be
programmed once were given “6” as the second digit.
The PMOS PROMs could also be erased using ultraviolet
light. These erasable PROMs (EPROMs) were assigned
“7” as the second digit.

The very early products were sequentially numbered.
However, memory chips were soon numbered in a
manner to suggest their bit size, as can be seen in the
sequence of EPROM names: 2704, 2708, 2716, on up to
27512. Wanting to keep the name to no more than 5
numbers long, the 1-megabit EPROM became the 27010.

The story of the 4004 microprocessor is well known [3,
4]. The name was a marketing decision to make the 4-bit
architecture clear. It wasn’t an easy sell in 1971, and
even in 1975 the Intel® Data Catalog introduced the
Microcomputer section with two pages entitled “Why use
a Microcomputer?” [5] All products associated with the
4004 were given numbers in the 4xxx sequence. Even
existing products such as RAMs, ROMs, and PROMs
were given 4004 family numbers, besides their normal
family numbers.

In 1972, Intel acquired Microma Universal, Inc. and
started in the watch business. The circuits required for
these watches needed to be very low power.
Consequently, a CMOS process was developed. CMOS
products were assigned the “5xxx” designation. Chips
that didn’t have oscillators were “52xx”, and chips that
worked with a crystal were “58xx.” Later, this CMOS
process was also used for the 5101 RAM.

Also in 1972, Intel built a PMOS 8-bit microprocessor for
Computer Terminals Corporation (later Datapoint).
Using the same naming scheme as the 4004, this chip was
the 8008. Similarly, all support chips, RAM, ROM and
EPROM, for the 8008 were included in the “8xxx”
family. However, the 8008 was not particularly easy to
use, and a more powerful NMOS microprocessor was
introduced in 1974, the 8080. This name was a simple
manipulation of the same numbers. The 8080 required
+12, +5, and –5 volt supplies to run. Intel also produced
the three support chips that drove the 12-volt clocks and
decoded the bus control signals. In 1976, a 5-volt only
version that integrated the support chips was introduced.
Because it required only five volts, it was dubbed the
8085. This numbering scheme continued with the 8086,
introduced in 1978. Les Vadasz recalled that the name
sounded good to the marketing folks as it alluded to the
16-bit architecture [6]. The expense of having a 16-bit
system was reduced by the introduction of the 8088 a
year later. This was a quick spin of the 8086 to reduce
the external data bus to 8 bits (hence the name). IBM’s
choice of the 8086/88 architecture for its PC made the
8086 name extremely valuable. Subsequent processors

Table 1: The Intel® product naming scheme, digit by digit

 Used for: Examples: Used for: Examples:
0 Test chips n.a. 0 Processors 4004*, 4040
1 PMOS products 1101*, 1103 1 RAMs (static, dynamic) 3101*, 2102, 2104
2 NMOS products 2101, 2401, 2107B 2 Controllers 2201, 8251, 8253
3 Bipolar products 3101* 3 ROMs 3301*
4 4-bit microprocessors 4004*, 4008, 4009 4 Shift Registers† 1406*, 2401
5 CMOS products 5101, 5201* 5 EPLD†
6 (not used) 6 PROM 1601*
7 Bubble memory products 7110* 7 EPROM 1701*, 1702, 2716
8 8-bit and beyond

microprocessor and
microcontrollers

8008*, 8080, 8085,
8086, 8088
8048, 8051, 8096

 8 Watch chips and timing
circuits with oscillators

5801*, 5810

9 (not used) 9 Telecommunications 2910*, 2920

* First product in this category
† There were some early exceptions. 1406/1506 were military and commercial grade shift registers, respectively. The 3404 was a latch product for

memory subsystems, not a shift register.

Product Family Product Type

Sequence Number
Example Product: 2716 16K NMOS EPROM

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 3

went to 5-digit names to keep the 8086 name: 80286,
80386, and 80486. However, Intel could not get the
“x86” sequence trademarked, and so the Intel Pentium
processor name was born.

Because of the success of the microprocessor, the 8xxx
product family has the most diverse set of products,
including microcontrollers (8048, 8051, 8096) and
peripheral controllers for all forms of microprocessor
system functions and I/O. The first 8080 peripheral
controllers were a serial I/O controller, a parallel I/O port,
and a timer counter. The initial names for these chips
also started out as 8201, 8202 etc., as did the early RAM
chips. However, naming conflicts occurred when 3xxx
family support products were renamed for use in the 8xxx
family. These products were renamed 8251, 8255, and
8253 even before the designs were completed.

The last products to be assigned names were the
telecommunications and analog products that used the
second digit “9”. The 2910 was the first single chip
CODEC and was introduced in 1977. Intel also entered
the bubble memory business in 1977. The “7xxx”
product family was reserved for bubble memory products,
and the 7110 1-megabit bubble memory chip was
introduced in 1979.

And there you have it; that’s how the early products were
named and how the current naming scheme came about.
But this is not the end of our story. Behind these product
numbers are some little known histories, including some
stories of products that were never in Intel’s Data
Catalogs. Sit back as the authors reminisce and interview
other early Intel employees.

THE AUTHORS’ PATHS TO INTEL
Paul Metrovich joined Intel on a bet. He was working for
Union Carbide Semiconductor when that company
decided to relocate to San Diego. They had subleased the
building with most of the fab equipment intact to Intel.
The rumor mill had it that Intel had agreed with Union
Carbide not to take applications from their employees
until they were ready to move their operation to San
Diego. Paul bet his fellow employees $5 that the
agreement did not exist. He proceeded to apply for a job,
and after several interviews with Intel, he secured a
position. Paul started work on April 16, 1969. He never
collected on his bet.

Peter Stoll studied Electrical Engineering at MIT between
1967 and 1974, where he took several courses on circuit
design, integrated circuits, and semiconductor processing.
He also did a seven-month internship at Bell Telephone
Laboratories working in integrated circuit design. He was
not very pleased with the experience, and swore off

semiconductor work when he returned to MIT for
graduate school.

It did not help that the Electrical Engineering faculty at
MIT in the early 1970s regarded design work with deep
disdain. After a couple of years in biomedical
instrumentation development, Peter realized that he
didn’t have the heart to pursue a multiyear Ph.D. thesis.
He decided to leave school, and Intel was the only
company on the interview schedule between
Thanksgiving and Christmas that had compatible needs.
The Intel interviewers were much more interested in
Peter's design background than MIT had been and they
invited him to visit. The trip resulted in two job offers.
He joined in 1974 as a one-man design team designing a
watch chip for Microma: the 5810.

In 1971, Andrew Volk began working with a group of
students on a project to design a communication device
for the handicapped called the Autocomm1. This project
developed into his Master’s thesis and involved adding
the capability of typing whole words instead of letters.
The design required a programmable memory to store the
vocabulary. Intel had just released the 1702A EPROM
and it was perfect for the job (even though storing charge
on a floating gate sounded improbable to Andrew at the
time). Two EPROMs could hold 64 vocabulary words
(see Figure 1). Andrew called Les Vadasz and begged
parts and technical assistance. The local sales office
programmed the EPROMs and the design worked great.

Figure 1: Autocomm and the word store using 1702A

Intel was one of the companies to which Andrew applied
in 1974, and Les Vadasz came as one of the campus
interviewers. He requested to see the Autocomm, which
fortunately was working that day. It helped earn Andrew

1 This group grew and became the Trace Center at the
University of Wisconsin (http://trace.wisc.edu/).

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 4

a trip to California and a job offer. He started on July 1,
1974, working on the 8080A.

EARLY CUSTOM PRODUCTS
It takes time to build a market and revenue, so Intel
accepted several interesting custom products in the early
days. The most famous of these was the offer by
Busicomm to make a 12-chip calculator chipset. Of
course this led to the 4004 and microprocessor history2.
Even the 8008 was a custom job that turned into a
standard product.

Custom products also got Intel started in the dynamic
RAM business. Intel worked with Honeywell on a
product called the 1102 (PMOS RAM number 2). Bill
Regitz was with Honeywell at the time and was hired by
Intel to work on an improved part, the 1103. Everybody,
including Paul Metrovich, got in on the act of trying to
make this beast work reliably. Intel had a ready-made
market for those parts that didn’t quite meet the refresh
rate specification: its Memory Systems Division. They
just adjusted the refresh rate to whatever was necessary.
In the end, the 1103 was a tremendous financial success.

There are plenty of lesser-known products. Tom Innes,
Intel employee #38, recalls doing bipolar register and
arithmetic unit chips for Burroughs Corp in 1970 (the
3405 and 3406, respectively) [7]. These were
Complementary Transistor Logic (CTL) that used PNP
inputs and emitter-follower outputs for high-speed and
high-drive strength. Burroughs bought these chips for ten
years. Ted Jenkins, Intel employee #22, started
development on zinc-sulfide LEDs that emit blue light
[8]. Gerry Parker, Intel employee #99, finished the work,
and Intel sold it to Monsanto. We also developed a
custom 7-segment decoder driver for a digital voltmeter
they made. We only sold them 10,000 devices, a very
small number in our business.

In 1972, Intel’s EPROM technology attracted the interest
of Mars Money Systems (MMS) who wanted a chip for
an electronic coin changer. MMS was a wholly owned
subsidiary of Mars, Inc., the candy and food products
company. Mars had gotten into the vending business
quite early as a means to distribute their product.
Accurate coin handling was critical to getting good
revenue return as well as customer satisfaction.
However, a good coin changer was a real Rube Goldberg3
contraption of delicately balanced levers and magnets.

2 See this history and others at the Intel Museum. Visit it
on-line at http://www.intel.com/intel/intelis/museum/.
3 For those too young to know who Rube Goldberg is, see
the web page at http://www.rube-goldberg.com/.

Fred Heiman, President of MMS at the time, invented an
electronic means of differentiating coins using tuned
coils. Using this scheme, Intel developed the 1205 and
1206 chips for MMS. We know the part number only
because Paul Metrovich kept one as a souvenir in his
toolbox. Paul worked on a prototype of discrete parts
that proved the concept was feasible. Mr. Heiman recalls
that it took less than one year to get it working and
required about 3,000 transistors. He said that it worked
wonderfully and had a product life of about five to six
years. A coin reject solenoid was the only moving part in
the coin mechanism [9].

Because the 1205/06 chip had an erasable PROM, it was
self-calibrating. A replacement coin detector coil did not
necessarily react the same as the previous one. The
1205/06 could be erased with ultraviolet light and a set of
calibration coins fed through the coin changer to set the
limits of detection. The results were programmed into
the device while still in the vending machine. When new
slugs were detected, their characteristics could be studied
and new calibration coins developed to exclude them.
MMS is now Mars Electronics, Inc. and still a large
player in vending and coin, and in bill changing.

(Forest Mars, Sr., retiring head of Mars, Inc., visited Mr.
Heiman about one year after the electronic coin
mechanism went into production to understand it and its
capabilities. He asked Mr. Heiman to arrange a meeting
with the head of Intel and a meeting was set with Dr.
Noyce a week later. He sat and listened to Bob talk about
how Intel was growing and innovating on this “crest of
technology.” That was enough for Mr. Mars to decide
that he had no interest in buying Intel. He was used to
developing long-term products with steadier sales than
these new silicon devices that Intel was creating. Mr.
Heiman noted, “Perhaps if the pace of silicon technology
was a little slower, Intel might have become a division of
Mars, Inc” [10]. No one at Intel was aware of this
possibility, and as Les Vadasz noted “…we were not for
sale, anyway” [11].)

One of Paul’s favorite custom parts was the 8244. It was
a TV game chip that, when coupled with an 8048
microcontroller and a ROM, became the Magnavox
“Odyssey 2.” It had a great nine holes of golf! Intel
made good money on it. There was also an 8245 chip for
European PAL television that differed from the 8244 only
in the number of scan lines per frame and the timing of
the TV sync outputs.

PRODUCT DEVELOPMENT IN THE
DARK AGES
If we compare the tools we had available to us 25-30
years ago to the tools we have today, we would definitely

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 5

call that period the dark ages of silicon development. The
steps for developing a chip back then and now are much
the same in a broad sense: definition, logic and circuit
design, verification, layout and mask making, silicon
wafer fabrication (processing), and debug and test. But
that is where the similarity ends. In the early days,
design, verification, and testing were done manually for
the most part. Fortunately, the chip designs back then
contained fewer than 30,000 transistors instead of today’s
42 million.

Today, chip definitions require specifications hundreds of
pages long, logic design is largely a matter of writing
software code, computers run millions of verification
tests on logic and timing in a few days, and testing is
done on multi-million dollar testers. This section
describes some of our experiences with early chip
development.

Product Definition
When Peter joined Intel in 1974, he was the sole design
engineer on the 5810. The product definition process for
that chip illustrates a radical difference between the Intel
of then and the Intel of today. His boss, Joe Friedrich,
prepared a single page document called a Target
Specification (spec) that gave the four-digit name to the
product. It also gave the pinout and defined the function
in sufficient detail for the approving parties to decide
whether they wanted to build it. It described to Peter
what he had to build.

Figure 2: Peter Stoll’s prototype 5810 “watch”

The entire chain of command of Intel, from Robert Noyce
on down to Joe Friedrich, met in a room to decide
whether to approve development based on the 5810
Target Spec. In that single meeting, the decision was
made to proceed. The product name, 5810, remained
constant from that point forward throughout the product
life. The name appeared in the Target Spec, the
schematics, any memos, the actual layout, the masks, the

marketing printed materials, fab lot yield reports, and
anywhere else the part was discussed.

The initial 8085 Target Spec was also very simple since
we were integrating the functions of the 8080 with its
clock and system controller. Only a simple serial I/O and
some additional interrupts were added. It took only two
pages.

After the project got going, several attempts were made
to change the product, especially in light of rumors of a
product from Zilog (the Z80). There was an attempt by
our manager to make it into a micro-VAX. Eventually,
he gave up on the 8085 and turned his attention to the
next chip, the 8086.

The simplicity of the early decision process and
nomenclature stands in stark contrast to our practices
even in 1978. By that time, product definition took
months, engaged many committees, created multiple
distinct fat memoranda, and generally frustrated all
involved to no end. Also, by 1978 we had started our
current practice of confusing ourselves by referring to the
exact same product by many (and often changing) code
names. Certainly, the complexity of today’s products
requires more complete documentation, but we’ve also
made the job harder by not following some of the simple
rules of nomenclature we followed in earlier, simpler
times.

Logic and Circuit Design
There were no logic design tools when the authors started
at Intel, no VHDL or logic synthesis. The gate-level
design we learned in school was replaced by transistor-
level design in order to get the most efficient transistor
counts and the smallest layout area. Repeating functions
were designed as cells, but the cell was still optimized at
the transistor level.

About the only computer design tool we used in 1974 was
an in-house analog circuit simulation tool called SPULS.
In contrast to today's highly sophisticated and heavily
constrained computer design tool environment, a new
design engineer's entire training on our computer tools
took about half an hour. We were shown the common
terminal area, which consisted of a short row of dumb
terminals connected to the one central PDP-10. By the
end of the half-hour we knew how to log in and how to
run the simple text editor. We could specify a circuit of
five to a few dozen transistors and tell the circuit
simulator what input signals should be simulated and
what output signals should be monitored. The result was
provided as “line printer graphics” with a resolution in
both time and voltage of whole character cells. The y-
axis was limited to 70 or 120 points (characters)
depending on the printer’s carriage width.

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 6

In 1975-1977, when all of the original circuit design for
the 8085 and 8086 microprocessors was carried out, the
circuit size our central computer could handle was so
small that we never simulated complete circuits or entire
circuit paths. The circuit was decomposed into small
pieces of about 5-20 transistors, simulated, and then
added manually back together based on our
understanding of the overall subsystem. The simulator
was necessary for circuits such as RAM sense amplifiers,
input buffers, and internal precharge-discharge buses.

The circuit size was limited by computing constraints
such as memory. Another equally important size limit
was the mean time to the computer crashing, which
happened as often as every 15 minutes. If the computer
went down, we lost the whole run. This also applied to
file editing. There were no auto-backup files. We
learned by brutal experience to save our work frequently.

There was, of course, no computer tool to extract
parasitic capacitances from the actual layout, so accuracy
in speed simulation was largely dependent on the design
engineer's skill in guessing layout distances and routings.

Large portions of the logic circuitry of both the 8085 and
8086, as with other microprocessors and controller parts
at that time, were composed of simple n-channel,
depletion-load logic. On the 8085, Peter constructed a
table estimating the delay for each size of depletion load
transistor we used versus various circuit loads. This
“paper computer” was used in place of circuit simulations
for the overwhelming majority of the speed paths. The
errors from these tables were quite small when the layout
parasitic estimations were done reasonably well.

Breadboards and Prototypes
Since simulation was limited, many other means were
used to verify parts and new ideas. Paul remembers that
the PMOS EPROMs were first prototyped by Dov
Frohman, inventor of the EPROM, using a 4x4 array of
discrete transistors in TO-5 packages on a special
breadboard to enable programming and reading. A
similar 16-bit array was put on to the first 1701, but since
the full 256x8 array worked, the small array was never
really tested [12].

Quite a few parts, ranging from the 1850-transistor 5810
watch chip, up to at least the 6144-transistor 8085
microprocessor, used no logic verification technique
other than the engineer's brain. Andrew spent weeks in
1976 playing “computer” by running through all the 8085
instructions.

Several other development projects did construct a
prototype breadboard, typically using commercial logic
components such as 7400-series TTL to reproduce the

logic proposed for the chip. It was always difficult to get
the breadboard done before the part was ready to tape
out. Also, there were never commercial components
available to reproduce all the functions we used on the
chips. Breadboards were valuable to debug designs, and
they provided a pre-silicon device to check the tester
functionality. It was also valuable to check factors not
easily seen on a simulation. We liked to use prototypes
for human interface devices, like video displays or games.

Breadboarding was feasible until product device counts
numbered in the tens of thousands of transistors.
Eventually, the breadboard became too large and
complicated to keep up with the speed of the real silicon
product. The last custom breadboard Andrew and Paul
constructed was a video terminal device, one of the first
5-digit (82730) part numbers in the early 1980s.

Ironically, a new form of breadboarding called emulation
is being used now to verify chip designs with millions of
transistors. The chips’ functions can be programmed by
software into the emulator instead of having to solder or
wirewrap discrete logic. Now we are able to essentially
boot the PC without having to build any chips.

Logic Simulation
Intel's first in-house logic simulator was LOLA/LOCIS,
developed by a team headed by Mark Flomenhoft. It
became ready for first use just in time to be used on the
8086 microprocessor project. Our use of this tool on the
8086 helped us find dozens of logic errors before the first
stepping was taped out (although we did leave a few more
to find in the actual silicon!). A parallel breadboard
project consumed at least five times the staff, quite a bit
more equipment, money, and lab space than the logic
simulation effort, but the logic simulation effort found
more problems sooner. (Jim McKevitt, lead designer on
the 8086, found at least as many bugs using no tools other
than his brain, the schematics, and a large supply of well-
sharpened pencils.)

Layout and Mask Making
Schematic and layout for the first ten years of Intel was
done by hand. Engineers would produce draft schematics
that a schematic designer would transfer onto D-sized
vellum sheets. These would then be hand checked and
signed off by the engineer. All edits to the schematic
would be noted, checked, and signed off.

Layout planning was done between the engineers and the
layout designer (mask designers). The layout of the 8085
was easier than most chips since it followed the base
floorplan of the 8080. Peter guided most of the layout
work, while Andrew did the layout of the control logic
array. This was a ROM-like array based on a dual sum-

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 7

of-products structure. Andrew planned it out on graph
paper, carefully folding the terms together to meet layout
constraints while still minimizing the size. It took two
weeks to get the final layout plan. (Andrew still has those
planning sheets.)

Figure 3: Hand-drawn cell layout on Mylar

There was absolutely no computer assistance for design
rule verification or for logic vs. layout wiring correctness.
Physical layout proceeded as highly skilled mask
designers drew lines with pencils on very large sheets of
gridded Mylar (Figure 3). By 1974, the result was being
digitized on a Calma GDS I system so repeated cells
could be handled automatically, instead of being hand
drawn every time. But the crucial questions of whether
the drawn lines actually represented the same circuit
called for by the schematics, and also whether the drawn
lines honored the design rules, were entirely governed by
human diligence. Even after thoroughly checking the
layout, the most skilled of our mask designers left quite a
few errors in their initial work. Finding and removing all
errors was a very difficult part of the work.

We often built our own aids to try to make design rule
verification go a bit more efficiently. Peter drew
concentric square boxes on translucent Mylar as a visual
aid for design rule checking. He moved his drawing
around to every single contact drawn on the chip, trying

to find violations of the rules governing widths and
spaces around contacts.

The authors believe that most chips in those days shipped
with at least some design rule violations. But you really
couldn't expect the part to work if it was not wired up
correctly. So in addition to daily comparisons of the
schematics to the drawn layout, a lot of energy went into
a final check before digitizing and another before tape
out. Our usual practice was to start with a full schematic
of the entire chip, a yellow pencil, and a dark pencil. As
we matched up layout found on the plot created from the
digitized artwork with the schematic, we would mark the
matched circuits in yellow on the schematic and write in
signal names on the plot. We were still doing it this way
for the 8086 first stepping in 1977. That part had 20,000
transistors, and it took two weeks for each of the two
design engineers who performed the final task. Both
engineers (Peter and Chun-Kit Ng) found 19 of the same
20 errors, which was considered quite a good detection
rate for this particular technique. A few months later,
Todd Wagner provided Intel's first logic vs. layout
connectivity verification tool, which relieved future
generations of design engineers of this onerous task.

The first masks were made by transferring the drawings
on the Mylar to “rubylith.” Rubylith is a two-layered
material, which comes in huge sheets. The base layer is
heavy transparent dimensionally stable Mylar. A thin
film of deep red cellophane-like material covers the base
layer. The first chips at Intel used a machine called a
“Coordinatograph” to guide cutting of the ruby layer.
The coordinates and lengths had to be measured and
transferred by hand to the cutter. Later, a Xynetics
plotter with knives, instead of pens, was used to cut more
quickly and precisely.

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 8

Figure 4: Technicians transferring layout to rubylith

When the cutting was finished, the technicians had to
peel away only the desired geometries that made the mask
layers. The design engineer and mask designers would
spend days hand-checking the rubylith for peeling errors,
nicks, and unintended cuts. A final check was made for
design rule violations. The rubylith was sent to the mask
vendor to be made into masks for fabricating the silicon
die.

Missing a cut or forgetting to peel a geometry would
mean a bad part. Ted Jenkins remembers working on the
first Intel product, the 3101 64-bit RAM. Actually, the
first version was only a 63-bit RAM due to a simple error
peeling one layer on the rubylith [8].

The rubylith sheets had to be handled very carefully so
they were not damaged. Small areas of ruby could be
rubbed off. Andrew remembers a call from the 8080A
mask vendor saying that they had found a “floater,” an
unexplained piece of ruby stuck in a random place on the
Mylar. They feared that a piece had come off
somewhere. A several hour check against the layout
found no missing bits and the mask was taken as is.
Fortunately, the dice made with that mask were okay.

Adding or removing transistors and interconnect on
rubylith was definitely a manual task, not unlike surgery.
In fact, the technician who did the edits used a surgical
scalpel and a metal ruler (scale). Adding transistors or
interconnect involved cutting and peeling away bits of
ruby. Removing objects involved adding ruby-red tape to
the back of the heavy Mylar. Cuts had to be precise so as
to leave no nicks or cut marks on the Mylar that might
show on the mask. Verification was done with the metal

scale and a 7X-magnifying eyepiece with a calibrated
scale on the bottom.

Processing
Ted Jenkins was responsible for developing Intel’s
CMOS process to support the watch business. Intel
needed ion implantation for CMOS, but didn’t have the
equipment. So, the first wafers were made at Extrion
(since acquired by Varian). The process was ready
before the first timing chip designs were ready.

The first P-MOS PROMs were in packages with metal
lids and could not be erased with ultraviolet (UV) light.
It was suggested that perhaps X-rays could be used and
this was tried. It was unsuccessful for two reasons. It
took a lot of X-rays to erase the memory properly and
when the process was complete, the X-rays had damaged
the transistors, permanently changing their electrical
characteristics.

Customers were skeptical of the reliability of the early
EPROMs and were afraid that sunlight would erase them.
To test the technology, 1702s were left on the roof of an
Intel® building in full sunlight for many days with no data
loss. (Later N-MOS EPROMs were, in fact, more
sensitive to ambient UV, so a yellow tape was applied to
the quartz lid to block the UV. The tape was removed for
erasure and reapplied for use.)

Tom Innes recalls an attempt to make a bipolar PROM
with floating gates! [7] A P-channel floating gate device
was inserted in the base of a PNP transistor, and it was
programmed by breaking down the collector-base
junction. The oxides were not good though and the
retention was from a few weeks at best to hours at worst.
Jean-Claude Cornet and Fred Tsang, early Intel
employees responsible for bipolar product development,
came up with the poly fuse concept that was used for
bipolar PROMs.

The 8085, 8086, and SRAMs used the same NMOS
processes. In the mid-70s, the SRAM business was seen
as a larger revenue source than the microprocessors.
Tweaks were made to the process to improve SRAM
performance without worrying about the impact on the
microprocessors. Today, it would be strange to think that
an SRAM process requirement was more important than
a microprocessor design.

A bit later, Intel developed its dual implant NMOS
process called “HMOS” for high-speed SRAMs. These
SRAMs were replacements for bipolar RAMs being
offered by a few competitors. Our parts were just as fast
(15 ns access time), but were much cheaper to build and
consumed a fraction of the power. One normally quiet
and reserved process engineer designed a T-shirt with

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 9

appropriate graphics and the slogan: “Cure your blazing
Bipolar itch with Preparation HMOS!”

HMOS was a very robust process. The first SRAMs
made with HMOS were packaged in a white ceramic
package. The parts were tested for reliability with a “life
test” of 1000 hours in a burn-in oven at 125°C. For one
batch of parts, the oven temperature control failed and
got to over twice that temperature before being shut
down. When the burn-in boards were removed, the
sockets holding the parts had melted down the boards like
wax. The parts themselves were the color of toasted
brown marshmallows. Incredibly, the vast majority of
parts survived quite well with little impact on their
performance.

Test and Debug
In the process of developing DRAMs, it became apparent
that there was a need for specialized test equipment.
Initially, engineers used simple switch boxes and fixtures
with signal generators and viewed results on an
oscilloscope. The wafer prober was operated by hand
and bad dice were marked with a felt-tip pen. However,
this arrangement soon proved too tedious, and
commercial LSI test systems were purchased. These
were rudimentary machines that came with a high price
tag.

Paul was chartered with the task of designing, building,
and operating an engineering-level LSI memory tester for
the MOS design team. The first product to be tested on
this unit was the 2107 4096 bit dynamic RAM, still in
design. He was given the substantial budget of $165,000
(quite large for a starting company) and some technical
and assembly people to help. The result was a rack with
lots of controls, and a central changeable fixture for
different types of devices.

Paul dubbed the machine the Tel-Tester. He started it in
the Mountain View facility and completed it in the Fall of
1971 after moving into the first site owned by Intel in
Santa Clara. The system was designed with Emitter-
Coupled Logic (ECL) allowing a basic clock of 100MHz
to be used to time the unit. The test system was unique in
several ways. Digital switches controlled the timing and
voltage levels. It also had an interface with automated
wafer-probing equipment, allowing sorting of pilot runs
of engineering-level memory products. An added feature
was a built-in oscilloscope with a raster scan display of
the memory array under test with errors or data patterns
highlighted for analysis. Some thought was given to a
computer interface, but it was not implemented due to
cost and time constraints.

Figure 5: The Tel-Tester for checking DRAMs

The Tel-Tester served well in the lab, lasting through
several generations of DRAMs. Others used it for several
more years in the memory products groups until lower-
cost commercial memory testers became available.

Paul moved on to the new microcomputer group that was
designing the 4004 and other computer system-related
devices. He was engaged in building breadboards of
products and providing a new way to test these devices.
We had neither the luxury of a long time nor a large
budget to develop bench test equipment, and he had to
find a faster, cheaper way to meet the needs of test.

Eventually, the idea came to Paul to make a standardized
desktop tester to evaluate and do design verification for
new products. It was called a Modular Test System or
MTS box, but was better known as a T-box.

Paul built these T-boxes from a standard metal chassis
and included a standard power supply module, an opens
and shorts parametric module, a matrix switching
module, and an open space for multiple custom boards to
do some functional testing on whatever product the
system was targeted to test. An MCS-4 microcomputer
module with a 4004 was used for the control system.

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 10

Figure 6: Paul Metrovich’s benchtop MDS test box

Several boxes were built during slow times. The custom
test module was designed when a new product was ready.
The parametric module was programmable as to which
device pins were to be tested and which were not.

Additionally, it was decided to provide a T-box to the
production test group with every new logic type device.
(Eventually, a group of engineers, technicians, and
assemblers were formed to do this, first with T-boxes and
later with the functional test modules of purchased
testers. This became Intel’s Test Engineering group.)

At first, the boxes were serialized, but they ended up
being named after the part number of the device to be
tested. For example, the tester for the 8080 was the T-80.
A simplified version of the T-box was built just to do an
opens/shorts test on products after assembly from wafers.

Another test concept was doing comparison functional
testing between a “golden” device and the Device Under
Test (DUT). This was a good idea, but it became a
chicken-and-egg contest to find a device that was, in fact,
golden against which all other devices could be tested.

Some of the “golden” device comparison testers
presented real technical challenges due to the
uncertainties of synchronizing various clocks and data
simultaneously in both the DUT and the “golden” device.
A case in point was the 8251 USART. The data word
was supposed to be aligned when the parallel data were
written into both parts. However, there was a timing
variation of up to 8 clocks before it came out the serial
data port of each device, which messed up direct
comparisons. (Besides this, the earliest version of the
8251 USART chips had a quirk in them. Millions of
bytes were written in and occasionally one byte would
never come out the serial port due to a bad internal
voltage level!)

The whole thing culminated in the fact that Intel was not
really interested in being in the test equipment business.

We needed the units, but could not purchase them, and
the large LSI testers were still in the design stages of
development. Intel was always ahead of the support
marketplace.

Steve Bissett, Andrew’s early mentor on the 8080A, was
working on getting the 8080A tested on the T-80. The T-
80 was not very reliable, and multiple passes of the same
set of parts would yield quite variable results. This led
Steve to believe there was a better way to test. He seized
the opportunity by leaving Intel and founding MegaTest.
He designed the MegaTest Q8K test box, a machine
similar to the MTS but with refinements. Intel bought
quite a few.

(One story Andrew will never forget was the day he asked
Steve what the 8080A die looked like. They were selling
for $360 each in those days. It was packaged in a
ceramic package with a gold-plated lid. “Steve selected
one of the parts he was testing on the bench, dropped it to
the floor and stepped on it, cracking open the package.
As he picked up the part and pulled it apart to show me
the die, all I could think was $360! He just stepped on
$360! That was a good chunk of my paycheck then.”)

Peter remembers the test setup commonly built to check
the functionality of initial samples of the product, and
even the testing of initial samples for shipment to
customers. For a watch chip, this generally meant
arranging a probe card to actually probe the dice on the
wafer, an interface cable, a watch display (LCD or LED),
a few switches, and power. Then the engineer for the
part, or a technician, would sit for endless hours at the lab
bench, flipping switches and watching the display,
deciding whether each die appeared to work or not.

Peter dreaded the prospect of spending weeks flipping
switches, and doubted the resulting product quality. He
spent several of the weeks between making masks and
getting the first wafers designing and building a small
informal tester. It checked whether the on-chip voltage
tripler could actually generate the required power supply
voltage, supplied an extremely simple set of input signals
to the watch chip, and checked whether the outputs were
correct by comparison to a known good reference. He
even added logic to mark each bad die and automatically
step the probe card across the wafer. He still had to flip
switches and look at the display for the very first chip he
tested, and it worked. Peter manually tested about 10
more chips, but after that, the improvised tester was good
enough to determine initial yield and to create initial
customer samples. The 5810 proved to be production
worthy on the first stepping of the die. Packaged parts
from this first lot were also provided to the T-box
developer to allow him to carry out tester development.

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 11

Peter got a bit of help in assembling his informal tester
from one of the lab technicians, but he did nearly the
entire chip checkout, evaluation, and sample generation
himself. In those days, a product design engineer could
expect to be heavily involved in nearly all phases of
product development. For many of us, this relationship
created a deep satisfaction and an intense sense of
ownership.

Peter and Andrew also designed a test setup for the 8085
chip that was, in essence, a small computer system where
the 8085 under test actually executed its own test
program. This was a dangerous strategy since the part
needed some functionality to even get the test started.
Both the part and tester worked well enough to allow us
to debug the chip from the start (after making an
allowance for an inversion on the chip’s address bus tri-
state control).

The dedication we all felt to the products can be
demonstrated by a final story. The stepping of the 8085
that was expected to allow volume production of the part
came out of the fab over a week earlier than expected, on
October 21, 1976 to be precise. Andrew remembers that
date well. It was the day before his wedding. But he still
stayed until midnight checking out the new stepping. He
left a short report on his boss’ chair saying that all the
bugs found in the previous stepping were checked and
working, and that he would do a more thorough
evaluation—in a week!

CONCLUSION
It is hard to end this story. Each time a name or event is
mentioned, it triggers yet another episode buried
somewhere in our memories. It has allowed us to briefly
revisit a time when we were heavily involved mentally,
physically, and emotionally in our work. It was a time
when we felt we were entirely responsible for a project.
Writing this has stirred feelings that have lain dormant for
a long time, yet come flooding back upon hearing the
stories, seeing the pictures, and talking with past
colleagues.

There are many more articles and histories floating
around in the minds of the good employees, present and
past, who contributed to building and sustaining the
corporation called Intel. Each individual has a story to
tell, a joke to make you laugh, an incident to relate that
evokes a touch of anger, and a personal anecdote that
makes a career a life experience. To discover and
recount all of these would take another lifetime and result
in a large book rather than a journal article. For now, we
just want to record some of our early experiences in a
young corporation by highlighting how products were
named and developed in the first years. We hope we

have done this in a way that brings across the fun we had,
the effort we put in, and the results we achieved.

ACKNOWLEDGEMENTS
It was a real challenge to find people who were around
during the first years of Intel Corporation to check the
information in this article. To those who contributed to
this paper, thank you for sharing your life work and
memories. Of particular assistance were Dr. Gordon
Moore, Tom Innes, Ted Jenkins, and Les Vadasz who
provided additional information and reviewed our article.
We also got a final verification of the naming system
from Dr. Andrew Grove (who was definitely here from
the beginning). Dov Frohman provided insight on
EPROM development and Mr. Fred Heiman gave us the
inside story on the 1205 Mars Money Systems chip.
Thanks also go to Tracey Mazur of the Intel® Museum
for help with reference material. Peggy Thompson and
Norman Strand get honors for still having examples of
hand-drawn layout, the most having been long since
scrapped. We also thank the Trace Center for providing
photos of an early Autocomm.

REFERENCES
[1] Grove, Andrew, “Question on history of product

numbering,” E-mail to Andrew Volk, Dec. 8, 2000.

[2] Moore, Gordon, telephone interview, Jan. 16, 2001.

[3] Noyce, R. and Hoff, T., “A History of
Microprocessor Development at Intel,” IEEE Micro,
Vol.1, No. 1, Feb. 1981, pp. 8-11, and 13-21.

[4] Freiberger, P. and Swaine, P., Fire in the Valley –
The Making of the Personal Computer, Second
Edition, McGraw-Hill, New York, NY, 2000, pp. 15-
23.

[5] Intel Corporation, 1975 Data Catalog, Sect. 6, pp.
3-4.

[6] Vadasz, Les, telephone interview, Dec. 4, 2000.

[7] Innes, Tom, telephone interview, Dec. 8, 2000.

[8] Jenkins, Ted, telephone interview, Dec. 7, 2000.

[9] Heiman, Fred, telephone interview, Dec. 5, 2000.

[10] Heiman, Fred, “Interview notes on Mars chip,” E-
mail to Andrew Volk, Dec. 7, 2000.

[11] Vadasz, Les, review comments on this paper for the
Q1 Intel Technology Journal, quoted in an e-mail to
Andrew Volk, Dec. 19, 2000.

[12] Frohman, Dov, “Search for old information,” e-mail
to Paul Metrovich, Dec. 8, 2000.

Intel Technology Journal Q1, 2001

Recollections of Early Chip Development at Intel 12

AUTHORS’ BIOGRAPHIES
Andrew Volk is a 26-year veteran of Intel. He started
his design work on the 8080A. He was responsible for
the logic design on the 8085 and has been lead designer
and project manager for several I/O products for
embedded control, bubble memories, and personal
computers. Currently, he is a Principal Engineer
responsible for developing special circuits especially as
they apply to new technologies. He specializes in circuit
design and physical interface definition for various buses.
He was responsible for the electrical bus definition for
the Universal Serial Bus (USB), Accelerated Graphics
Port (AGP), and the link interface for the Intel Hub
Architecture chipsets. Andrew is the holder of 19 patents
with 23 pending, has written several technical articles and
a chapter in a computer technology book, and has been a
speaker at industry conferences. He joined Intel after
receiving his Master's degree in Electrical and Computer
Engineering from the University of Wisconsin. He
enjoys reading, walking, fishing, and travel. His e-mail is
andrew.m.volk@intel.com.

Peter A. Stoll first joined Intel in 1974. He also joined
Intel in 1978 and 1987! Peter's design engineering work
included a watch chip, the circuit design of the 8085
microprocessor, and circuit design, logic simulation, and
speedup stepping work on the 8086 microprocessor; and,
a few days devising and implementing an emergency fix
to the 80386 32-bit multiply problem. Peter also worked
at Hewlett-Packard in high-speed GaAs logic circuit
design. At Daisy Systems he was the primary developer
of a hardware/software product allowing use of logic
parts as their own models in logic simulations. Since
1988, Peter has worked in the Intel® Albuquerque wafer
fabs in reliability, yield, and product engineering roles.
He has worked most frequently on the large-scale use of
available technical data from wafer and unit production to
help resolve yield and reliability problems. Peter holds
SB, SM, and EE degrees from the Massachusetts Institute
of Technology, where he was admitted as a Presidential
Scholar, and he was admitted to Eta Kappa Nu, Sigma Xi,
and Tau Beta Pi honoraries. His e-mail is
peter.a.stoll@intel.com.

Paul Metrovich joined Intel on April 16, 1969, working
in the Design Engineering department in the original
Intel® site in Mountain View, California. He worked on
the first dynamic shift registers and the 1103 DRAM. He
also designed and built internal engineering test
equipment (MTS) for DRAMs and early microprocessors,
emulation breadboards of microprocessor support
devices, and custom chips. Paul assisted with product
design validation on such products as the 8251 and other
system products based on the 8080/8085, along with

magnetic bubble memory support products and video
games. He moved to Folsom, California in 1985 with the
Peripherals group, assisting with debug and validation on
floppy disk controllers and the PC chipset devices. Paul
currently is the lab manager, designing and building
specialty labs for the Chipset Engineering and Validation
group. He received his electronics education in the U.S.
Navy, and he has had prior employment at Varian
Associates and Union Carbide Corp. His e-mail is
paul.t.metrovich@intel.com.

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm

The Microarchitecture of the Pentium 4 Processor 1

The Microarchitecture of the Pentium 4 Processor

Glenn Hinton, Desktop Platforms Group, Intel Corp.
Dave Sager, Desktop Platforms Group, Intel Corp.
Mike Upton, Desktop Platforms Group, Intel Corp.

Darrell Boggs, Desktop Platforms Group, Intel Corp.
Doug Carmean, Desktop Platforms Group, Intel Corp.

Alan Kyker, Desktop Platforms Group, Intel Corp.
Patrice Roussel, Desktop Platforms Group, Intel Corp.

Index words: Pentium® 4 processor, NetBurst™ microarchitecture, Trace Cache, double-pumped
ALU, deep pipelining

ABSTRACT
This paper describes the Intel® NetBurst™
microarchitecture of Intel’s new flagship Pentium® 4
processor. This microarchitecture is the basis of a new
family of processors from Intel starting with the Pentium
4 processor. The Pentium 4 processor provides a
substantial performance gain for many key application
areas where the end user can truly appreciate the
difference.

In this paper we describe the main features and functions
of the NetBurst microarchitecture. We present the front-
end of the machine, including its new form of instruction
cache called the Execution Trace Cache. We also
describe the out-of-order execution engine, including the
extremely low latency double-pumped Arithmetic Logic
Unit (ALU) that runs at 3GHz. We also discuss the
memory subsystem, including the very low latency Level
1 data cache that is accessed in just two clock cycles. We
then touch on some of the key features that allow the
Pentium 4 processor to have outstanding floating-point
and multi-media performance. We provide some key
performance numbers for this processor, comparing it to
the Pentium® III processor.

INTRODUCTION
The Pentium 4 processor is Intel’s new flagship
microprocessor that was introduced at 1.5GHz in
November of 2000. It implements the new Intel NetBurst
microarchitecture that features significantly higher clock
rates and world-class performance. It includes several
important new features and innovations that will allow the
Intel Pentium 4 processor to deliver industry-leading
performance for the next several years. This paper

provides an in-depth examination of the features and
functions of the Intel NetBurst microarchitecture.

The Pentium 4 processor is designed to deliver
performance across applications where end users can truly
appreciate and experience its performance. For example,
it allows a much better user experience in areas such as
Internet audio and streaming video, image processing,
video content creation, speech recognition, 3D
applications and games, multi-media, and multi-tasking
user environments. The Pentium 4 processor enables real-
time MPEG2 video encoding and near real-time MPEG4
encoding, allowing efficient video editing and video
conferencing. It delivers world-class performance on 3D
applications and games, such as Quake 3∗ , enabling a new
level of realism and visual quality to 3D applications.

The Pentium 4 processor has 42 million transistors
implemented on Intel’s 0.18u CMOS process, with six
levels of aluminum interconnect. It has a die size of 217
mm2 and it consumes 55 watts of power at 1.5GHz. Its
3.2 GB/second system bus helps provide the high data
bandwidths needed to supply data to today’s and
tomorrow’s demanding applications. It adds 144 new
128-bit Single Instruction Multiple Data (SIMD)
instructions called SSE2 (Streaming SIMD Extension 2)
that improve performance for multi-media, content
creation, scientific, and engineering applications.

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 2

OVERVIEW OF THE NETBURST™
MICROARCHITECTURE
A fast processor requires balancing and tuning of many
microarchitectural features that compete for processor die
cost and for design and validation efforts. Figure 1 shows
the basic Intel NetBurst microarchitecture of the Pentium
4 processor. As you can see, there are four main sections:
the in-order front end, the out-of-order execution engine,
the integer and floating-point execution units, and the
memory subsystem.

BTB/Branch Prediction

Out-of-order
execution

logic
RetirementFetch/Decode

Trace Cache

Microcode ROM

Front End

Branch History Update

Level 1 Data Cache

Execution Units

Bus Unit

Level 2 Cache

System Bus

Memory Subsystem

Out-of-order Engine

Integer and FP Execution Units

Figure 1: Basic block diagram

In-Order Front End
The in-order front end is the part of the machine that
fetches the instructions to be executed next in the program
and prepares them to be used later in the machine
pipeline. Its job is to supply a high-bandwidth stream of
decoded instructions to the out-of-order execution core,
which will do the actual completion of the instructions.
The front end has highly accurate branch prediction logic
that uses the past history of program execution to
speculate where the program is going to execute next.
The predicted instruction address, from this front-end
branch prediction logic, is used to fetch instruction bytes
from the Level 2 (L2) cache. These IA-32 instruction
bytes are then decoded into basic operations called uops
(micro-operations) that the execution core is able to
execute.

The NetBurst microarchitecture has an advanced form of
a Level 1 (L1) instruction cache called the Execution
Trace Cache. Unlike conventional instruction caches, the
Trace Cache sits between the instruction decode logic and
the execution core as shown in Figure 1. In this location
the Trace Cache is able to store the already decoded IA-
32 instructions or uops. Storing already decoded
instructions removes the IA-32 decoding from the main
execution loop. Typically the instructions are decoded

once and placed in the Trace Cache and then used
repeatedly from there like a normal instruction cache on
previous machines. The IA-32 instruction decoder is only
used when the machine misses the Trace Cache and needs
to go to the L2 cache to get and decode new IA-32
instruction bytes.

Out-of-Order Execution Logic
The out-of-order execution engine is where the
instructions are prepared for execution. The out-of-order
execution logic has several buffers that it uses to smooth
and re-order the flow of instructions to optimize
performance as they go down the pipeline and get
scheduled for execution. Instructions are aggressively re-
ordered to allow them to execute as quickly as their input
operands are ready. This out-of-order execution allows
instructions in the program following delayed instructions
to proceed around them as long as they do not depend on
those delayed instructions. Out-of-order execution allows
the execution resources such as the ALUs and the cache
to be kept as busy as possible executing independent
instructions that are ready to execute.

The retirement logic is what reorders the instructions,
executed in an out-of-order manner, back to the original
program order. This retirement logic receives the
completion status of the executed instructions from the
execution units and processes the results so that the proper
architectural state is committed (or retired) according to
the program order. The Pentium 4 processor can retire up
to three uops per clock cycle. This retirement logic
ensures that exceptions occur only if the operation
causing the exception is the oldest, non-retired operation
in the machine. This logic also reports branch history
information to the branch predictors at the front end of the
machine so they can train with the latest known-good
branch-history information.

Integer and Floating-Point Execution Units
The execution units are where the instructions are actually
executed. This section includes the register files that store
the integer and floating-point data operand values that the
instructions need to execute. The execution units include
several types of integer and floating-point execution units
that compute the results and also the L1 data cache that is
used for most load and store operations.

Memory Subsystem
Figure 1 also shows the memory subsystem. This
includes the L2 cache and the system bus. The L2 cache
stores both instructions and data that cannot fit in the
Execution Trace Cache and the L1 data cache. The
external system bus is connected to the backside of the
second-level cache and is used to access main memory
when the L2 cache has a cache miss, and to access the
system I/O resources.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 3

CLOCK RATES
Processor microarchitectures can be pipelined to different
degrees. The degree of pipelining is a microarchitectural
decision. The final frequency of a specific processor
pipeline on a given silicon process technology depends
heavily on how deeply the processor is pipelined. When
designing a new processor, a key design decision is the
target design frequency of operation. The frequency
target determines how many gates of logic can be
included per pipeline stage in the design. This then helps
determine how many pipeline stages there are in the
machine.

There are tradeoffs when designing for higher clock rates.
Higher clock rates need deeper pipelines so the efficiency
at the same clock rate goes down. Deeper pipelines make
many things take more clock cycles, such as mispredicted
branches and cache misses, but usually more than make
up for the lower per-clock efficiency by allowing the
design to run at a much higher clock rate. For example, a
50% increase in frequency might buy only a 30% increase
in net performance, but this frequency increase still
provides a significant overall performance increase.
High-frequency design also depends heavily on circuit
design techniques, design methodology, design tools,
silicon process technology, power and thermal
constraints, etc. At higher frequencies, clock skew and
jitter and latch delay become a much bigger percentage of
the clock cycle, reducing the percentage of the clock cycle
usable by actual logic. The deeper pipelines make the
machine more complicated and require it to have deeper
buffering to cover the longer pipelines.

Historical Trend of Processor Frequencies
Figure 2 shows the relative clock frequency of Intel’s last
six processor cores. The vertical axis shows the relative
clock frequency, and the horizontal axis shows the various
processors relative to each other.

1 1 1

1.5

2.5

1

0
0.5

1
1.5

2
2.5

3

286 386 486 P5 P6 P4P

R
el

at
iv

e
Fr

eq
ue

n
cy

Figure 2: Relative frequencies of Intel’s processors

Figure 2 shows that the 286, Intel386™, Intel486™ and
Pentium® (P5) processors had similar pipeline depths–
they would run at similar clock rates if they were all
implemented on the same silicon process technology.
They all have a similar number of gates of logic per clock
cycle. The P6 microarchitecture lengthened the processor
pipelines, allowing fewer gates of logic per pipeline stage,
which delivered significantly higher frequency and
performance. The P6 microarchitecture approximately
doubled the number of pipeline stages compared to the
earlier processors and was able to achieve about a 1.5
times higher frequency on the same process technology.

The NetBurst microarchitecture was designed to have an
even deeper pipeline (about two times the P6
microarchitecture) with even fewer gates of logic per
clock cycle to allow an industry-leading clock rate.
Compared to the P6 family of processors, the Pentium 4
processor was designed with a greater than 1.6 times
higher frequency target for its main clock rate, on the
same process technology. This allows it to operate at a
much higher frequency than the P6 family of processors
on the same silicon process technology. At its
introduction in November 2000, the Pentium 4 processor
was at 1.5 times the frequency of the Pentium III
processor. Over time this frequency delta will increase as
the Pentium 4 processor design matures.

Different parts of the Pentium 4 processor run at different
clock frequencies. The frequency of each section of logic
is set to be appropriate for the performance it needs to
achieve. The highest frequency section (fast clock) was
set equal to the speed of the critical ALU-bypass
execution loop that is used for most instructions in integer
programs. Most other parts of the chip run at half of the
3GHz fast clock since this makes these parts much easier
to design. A few sections of the chip run at a quarter of
this fast-clock frequency making them also easier to
design. The bus logic runs at 100MHz, to match the
system bus needs.

As an example of the pipelining differences, Figure 3
shows a key pipeline in both the P6 and the Pentium 4
processors: the mispredicted branch pipeline. This
pipeline covers the cycles it takes a processor to recover
from a branch that went a different direction than the
early fetch hardware predicted at the beginning of the
machine pipeline. As shown, the Pentium 4 processor has
a 20-stage misprediction pipeline while the P6
microarchitecture has a 10-stage misprediction pipeline.
By dividing the pipeline into smaller pieces, doing less
work during each pipeline stage (fewer gates of logic), the
clock rate can be a lot higher.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 4

11 22 33 44 55 66 77 88 99 1010

FetchFetch FetchFetch DecodeDecode DecodeDecode DecodeDecode RenameRename ROB RdROB Rd RdyRdy/Sch/Sch DispatchDispatch ExecExec

Basic Pentium III Processor Basic Pentium III Processor MispredictionMisprediction Pipeline Pipeline

Basic Pentium 4 Processor Basic Pentium 4 Processor MispredictionMisprediction Pipeline Pipeline

11 22 33 44 55 66 77 88 99 1010 1111 1212
TC TC Nxt Nxt IPIP TC FetchTC Fetch DriveDrive AllocAlloc RenameRename QueQue SchSch SchSch SchSch

1313 1414
DispDisp DispDisp

1515 1616 1717 1818 1919 2020
RFRF ExEx FlgsFlgs Br CkBr Ck Drive DriveRF RF

Figure 3: Misprediction Pipeline

Allocator / Register RenamerAllocator / Register Renamer

Memory Memory uopuop Queue Queue Integer/Floating Point Integer/Floating Point uop uop QueueQueue

FP Register / BypassFP Register / Bypass

FPFP
MMXMMX
SSESSE
SSE2SSE2

FPFP
MoveMove

Simple FPSimple FP

L1 Data Cache (8Kbyte 4-way)L1 Data Cache (8Kbyte 4-way)

Memory SchedulerMemory Scheduler FastFast Slow/General FP SchedulerSlow/General FP Scheduler

Integer Register File / Bypass NetworkInteger Register File / Bypass Network

ComplexComplex
Instr.Instr.

Slow ALUSlow ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

SimpleSimple
Instr.Instr.

2x ALU2x ALU

LoadLoad
AddressAddress

AGUAGU

StoreStore
AddressAddress

AGUAGU

256 bits256 bits

64-bits wide64-bits wide

QuadQuad
PumpedPumped
3.2 GB/s3.2 GB/s

BusBus
InterfaceInterface

UnitUnit

SystemSystem
BusBus

L2 CacheL2 Cache
(256K Byte(256K Byte

8-way)8-way)

48GB/s48GB/s

InstructionInstruction
TLB/TLB/PrefetcherPrefetcher

Front-End BTBFront-End BTB
(4K Entries)(4K Entries)

Instruction DecoderInstruction Decoder

Trace CacheTrace Cache
(12K (12K µµopsops))

Trace Cache BTBTrace Cache BTB
(512 Entries)(512 Entries)

MicrocodeMicrocode
ROMROM

µµopop Queue Queue

Figure 4: Pentium® 4 processor microarchitecture

NETBURST MICROARCHITECTURE
Figure 4 shows a more detailed block diagram of the
NetBurst microarchitecture of the Pentium 4 processor.
The top-left portion of the diagram shows the front end of
the machine. The middle of the diagram illustrates the
out-of-order buffering logic, and the bottom of the
diagram shows the integer and floating-point execution
units and the L1 data cache. On the right of the diagram
is the memory subsystem.

Front End
The front end of the Pentium 4 processor consists of
several units as shown in the upper part of Figure 4. It
has the Instruction TLB (ITLB), the front-end branch
predictor (labeled here Front-End BTB), the IA-32
Instruction Decoder, the Trace Cache, and the Microcode
ROM.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 5

Trace Cache
The Trace Cache is the primary or Level 1 (L1)
instruction cache of the Pentium 4 processor and delivers
up to three uops per clock to the out-of-order execution
logic. Most instructions in a program are fetched and
executed from the Trace Cache. Only when there is a
Trace Cache miss does the NetBurst microarchitecture
fetch and decode instructions from the Level 2 (L2)
cache. This occurs about as often as previous processors
miss their L1 instruction cache. The Trace Cache has a
capacity to hold up to 12K uops. It has a similar hit rate
to an 8K to 16K byte conventional instruction cache.

IA-32 instructions are cumbersome to decode. The
instructions have a variable number of bytes and have
many different options. The instruction decoding logic
needs to sort this all out and convert these complex
instructions into simple uops that the machine knows how
to execute. This decoding is especially difficult when
trying to decode several IA-32 instructions each clock
cycle when running at the high clock frequency of the
Pentium 4 processor. A high-bandwidth IA-32 decoder,
that is capable of decoding several instructions per clock
cycle, takes several pipeline stages to do its work. When
a branch is mispredicted, the recovery time is much
shorter if the machine does not have to re-decode the IA-
32 instructions needed to resume execution at the
corrected branch target location. By caching the uops of
the previously decoded instructions in the Trace Cache,
the NetBurst microarchitecture bypasses the instruction
decoder most of the time thereby reducing misprediction
latency and allowing the decoder to be simplified: it only
needs to decode one IA-32 instruction per clock cycle.

The Execution Trace Cache takes the already-decoded
uops from the IA-32 Instruction Decoder and assembles
or builds them into program-ordered sequences of uops
called traces. It packs the uops into groups of six uops per
trace line. There can be many trace lines in a single trace.
These traces consist of uops running sequentially down
the predicted path of the IA-32 program execution. This
allows the target of a branch to be included in the same
trace cache line as the branch itself even if the branch and
its target instructions are thousands of bytes apart in the
program.

Conventional instruction caches typically provide
instructions up to and including a taken branch instruction
but none after it during that clock cycle. If the branch is
the first instruction in a cache line, only the single branch
instruction is delivered that clock cycle. Conventional
instruction caches also often add a clock delay getting to
the target of the taken branch, due to delays getting
through the branch predictor and then accessing the new
location in the instruction cache. The Trace Cache avoids
both aspects of this instruction delivery delay for
programs that fit well in the Trace Cache.

The Trace Cache has its own branch predictor that directs
where instruction fetching needs to go next in the Trace
Cache. This Trace Cache predictor (labeled Trace BTB in
Figure 4) is smaller than the front-end predictor, since its
main purpose is to predict the branches in the subset of
the program that is currently in the Trace Cache. The
branch prediction logic includes a 16-entry return address
stack to efficiently predict return addresses, because often
the same procedure is called from several different call
sites. The Trace-Cache BTB, together with the front-end
BTB, use a highly advanced branch prediction algorithm
that reduces the branch misprediction rate by about 1/3
compared to the predictor in the P6 microarchitecture.

Microcode ROM
Near the Trace Cache is the microcode ROM. This ROM
is used for complex IA-32 instructions, such as string
move, and for fault and interrupt handling. When a
complex instruction is encountered, the Trace Cache
jumps into the microcode ROM which then issues the
uops needed to complete the operation. After the
microcode ROM finishes sequencing uops for the current
IA-32 instruction, the front end of the machine resumes
fetching uops from the Trace Cache.

The uops that come from the Trace Cache and the
microcode ROM are buffered in a simple, in-order uop
queue that helps smooth the flow of uops going to the out-
of-order execution engine.

ITLB and Front-End BTB
The IA-32 Instruction TLB and front-end BTB, shown at
the top of Figure 4, steer the front end when the machine
misses the Trace Cache. The ITLB translates the linear
instruction pointer addresses given to it into physical
addresses needed to access the L2 cache. The ITLB also
performs page-level protection checking.

Hardware instruction prefetching logic associated with the
front-end BTB fetches IA-32 instruction bytes from the
L2 cache that are predicted to be executed next. The fetch
logic attempts to keep the instruction decoder fed with the
next IA-32 instructions the program needs to execute.
This instruction prefetcher is guided by the branch
prediction logic (branch history table and branch target
buffer listed here as the front-end BTB) to know what to
fetch next. Branch prediction allows the processor to
begin fetching and executing instructions long before the
previous branch outcomes are certain. The front-end
branch predictor is quite large–4K branch target entries–to
capture most of the branch history information for the
program. If a branch is not found in the BTB, the branch
prediction hardware statically predicts the outcome of the
branch based on the direction of the branch displacement
(forward or backward). Backward branches are assumed

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 6

to be taken and forward branches are assumed to not be
taken.

IA-32 Instruction Decoder
The instruction decoder receives IA-32 instruction bytes
from the L2 cache 64-bits at a time and decodes them into
primitives, called uops, that the machine knows how to
execute. This single instruction decoder can decode at a
maximum rate of one IA-32 instruction per clock cycle.
Many IA-32 instructions are converted into a single uop,
and others need several uops to complete the full
operation. If more than four uops are needed to complete
an IA-32 instruction, the decoder sends the machine into
the microcode ROM to do the instruction. Most
instructions do not need to jump to the microcode ROM
to complete. An example of a many-uop instruction is
string move, which could have thousands of uops.

Out-of-Order Execution Logic
The out-of-order execution engine consists of the
allocation, renaming, and scheduling functions. This part
of the machine re-orders instructions to allow them to
execute as quickly as their input operands are ready.

The processor attempts to find as many instructions as
possible to execute each clock cycle. The out-of-order
execution engine will execute as many ready instructions
as possible each clock cycle, even if they are not in the
original program order. By looking at a larger number of
instructions from the program at once, the out-of-order
execution engine can usually find more ready-to-execute,
independent instructions to begin. The NetBurst
microarchitecture has much deeper buffering than the P6
microarchitecture to allow this. It can have up to 126
instructions in flight at a time and have up to 48 loads and
24 stores allocated in the machine at a time.

The Allocator
The out-of-order execution engine has several buffers to
perform its re-ordering, tracking, and sequencing
operations. The Allocator logic allocates many of the key
machine buffers needed by each uop to execute. If a
needed resource, such as a register file entry, is
unavailable for one of the three uops coming to the
Allocator this clock cycle, the Allocator will stall this part
of the machine. When the resources become available the
Allocator assigns them to the requesting uops and allows
these satisfied uops to flow down the pipeline to be
executed. The Allocator allocates a Reorder Buffer

(ROB) entry, which tracks the completion status of one of
the 126 uops that could be in flight simultaneously in the
machine. The Allocator also allocates one of the 128
integer or floating-point register entries for the result data
value of the uop, and possibly a load or store buffer used
to track one of the 48 loads or 24 stores in the machine
pipeline. In addition, the Allocator allocates an entry in
one of the two uop queues in front of the instruction
schedulers.

Register Renaming
The register renaming logic renames the logical IA-32
registers such as EAX onto the processors 128-entry
physical register file. This allows the small, 8-entry,
architecturally defined IA-32 register file to be
dynamically expanded to use the 128 physical registers in
the Pentium 4 processor. This renaming process removes
false conflicts caused by multiple instructions creating
their simultaneous but unique versions of a register such
as EAX. There could be dozens of unique instances of
EAX in the machine pipeline at one time. The renaming
logic remembers the most current version of each register,
such as EAX, in the Register Alias Table (RAT) so that a
new instruction coming down the pipeline can know
where to get the correct current instance of each of its
input operand registers.

As shown in Figure 5 the NetBurst microarchitecture
allocates and renames the registers somewhat differently
than the P6 microarchitecture. On the left of Figure 5, the
P6 scheme is shown. It allocates the data result registers
and the ROB entries as a single, wide entity with a data
and a status field. The ROB data field is used to store the
data result value of the uop, and the ROB status field is
used to track the status of the uop as it is executing in the
machine. These ROB entries are allocated and
deallocated sequentially and are pointed to by a sequence
number that indicates the relative age of these entries.
Upon retirement, the result data is physically copied from
the ROB data result field into the separate Retirement
Register File (RRF). The RAT points to the current
version of each of the architectural registers such as EAX.
This current register could be in the ROB or in the RRF.

The NetBurst microarchitecture allocation scheme is
shown on the right of Figure 5. It allocates the ROB
entries and the result data Register File (RF) entries
separately.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 7

Pentium III N etBurst

R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R R F

R O B
D ata Status

Frontend R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R etirem ent R A T
EAX

EBP
ESP
EDI
ESI
EDX
ECX
EBX

R O B
Status

R F
D ata

Figure 5: Pentium® III vs. Pentium® 4 processor register allocation

The ROB entries, which track uop status, consist only of
the status field and are allocated and deallocated
sequentially. A sequence number assigned to each uop
indicates its relative age. The sequence number points to
the uop’s entry in the ROB array, which is similar to the
P6 microarchitecture. The Register File entry is allocated
from a list of available registers in the 128-entry RF–not
sequentially like the ROB entries. Upon retirement, no
result data values are actually moved from one physical
structure to another.

Uop Scheduling
The uop schedulers determine when a uop is ready to
execute by tracking its input register operands. This is the
heart of the out-of-order execution engine. The uop
schedulers are what allow the instructions to be reordered
to execute as soon as they are ready, while still
maintaining the correct dependencies from the original
program. The NetBurst microarchitecture has two sets of
structures to aid in uop scheduling: the uop queues and
the actual uop schedulers.

There are two uop queues–one for memory operations
(loads and stores) and one for non-memory operations.
Each of these queues stores the uops in strict FIFO (first-
in, first-out) order with respect to the uops in its own
queue, but each queue is allowed to be read out-of-order
with respect to the other queue. This allows the dynamic
out-of-order scheduling window to be larger than just
having the uop schedulers do all the reordering work.

There are several individual uop schedulers that are used
to schedule different types of uops for the various
execution units on the Pentium 4 processor as shown in
Figure 6. These schedulers determine when uops are
ready to execute based on the readiness of their dependent
input register operand sources and the availability of the
execution resources the uops need to complete their
operation.

These schedulers are tied to four different dispatch ports.
There are two execution unit dispatch ports labeled port 0
and port 1 in Figure 6. These ports are fast: they can
dispatch up to two operations each main processor clock
cycle. Multiple schedulers share each of these two
dispatch ports. The fast ALU schedulers can schedule on
each half of the main clock cycle while the other
schedulers can only schedule once per main processor
clock cycle. They arbitrate for the dispatch port when
multiple schedulers have ready operations at once. There
is also a load and a store dispatch port that can dispatch a
ready load and store each clock cycle. Collectively, these
uop dispatch ports can dispatch up to six uops each main
clock cycle. This dispatch bandwidth exceeds the front-
end and retirement bandwidth, of three uops per clock, to
allow for peak bursts of greater than 3 uops per clock and
to allow higher flexibility in issuing uops to different
dispatch ports. Figure 6 also shows the types of
operations that can be dispatched to each port each clock
cycle.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 8

Exec
Port 0

Exec
Port 1

Load Port Store Port

ALU
(Double
Speed)

FP Move
Memory

Load
Memory

Store
FP

execute
Integer

Operation

ALU
(Double
Speed)

Add/Sub
Logic
Store Data
Branches

FP/SSE Move
FP/SSE Store
FXCH

Add/Sub Shift/rotate FP/SSE-Add
FP/SSE-Mul
FP/SSE-Div
MMX

All loads
LEA
SW prefetch

Store Address

Figure 6: Dispatch ports in the Pentium® 4 processor

Integer and Floating-Point Execution Units
The execution units are where the instructions are actually
executed. The execution units are designed to optimize
overall performance by handling the most common cases
as fast as possible. There are several different execution
units in the NetBurst microarchitecture. The units used to
execute integer operations include the low-latency integer
ALUs, the complex integer instruction unit, the load and
store address generation units, and the L1 data cache.

Floating-Point (x87), MMX, SSE (Streaming SIMD
Extension), and SSE2 (Streaming SIMD Extension 2)
operations are executed by the two floating-point
execution blocks. MMX instructions are 64-bit packed
integer SIMD operations that operate on 8, 16, or 32-bit
operands. The SSE instructions are 128-bit packed IEEE
single-precision floating-point operations. The Pentium 4
processor adds new forms of 128-bit SIMD instructions
called SSE2. The SSE2 instructions support 128-bit
packed IEEE double-precision SIMD floating-point
operations and 128-bit packed integer SIMD operations.
The packed integer operations support 8, 16, 32, and 64-
bit operands. See IA-32 Intel Architecture Software
Developer’s Manual Volume 1: Basic Architecture [3] for
more detail on these SIMD operations.

The Integer and floating-point register files sit between
the schedulers and the execution units. There is a separate
128-entry register file for both the integer and the
floating-point/SSE operations. Each register file also has
a multi-clock bypass network that bypasses or forwards
just-completed results, which have not yet been written
into the register file, to the new dependent uops. This
multi-clock bypass network is needed because of the very
high frequency of the design.

Low Latency Integer ALU
The Pentium 4 processor execution units are designed to
optimize overall performance by handling the most
common cases as fast as possible. The Pentium 4
processor can do fully dependent ALU operations at twice
the main clock rate. The ALU-bypass loop is a key
closed loop in the processor pipeline. Approximately 60-
70% of all uops in typical integer programs use this key
integer ALU loop. Executing these operations at ½ the
latency of the main clock helps speed up program
execution for most programs. Doing the ALU operations
in one half a clock cycle does not buy a 2x performance
increase, but it does improve the performance for most
integer applications.

This high-speed ALU core is kept as small as possible to
minimize the metal length and loading. Only the essential
hardware necessary to perform the frequent ALU
operations is included in this high-speed ALU execution
loop. Functions that are not used very frequently, for
most integer programs, are not put in this key low-latency
ALU loop but are put elsewhere. Some examples of
integer execution hardware put elsewhere are the
multiplier, shifts, flag logic, and branch processing.

The processor does ALU operations with an effective
latency of one-half of a clock cycle. It does this operation
in a sequence of three fast clock cycles (the fast clock
runs at 2x the main clock rate) as shown in Figure 7. In
the first fast clock cycle, the low order 16-bits are
computed and are immediately available to feed the low
16-bits of a dependent operation the very next fast clock
cycle. The high-order 16 bits are processed in the next
fast cycle, using the carry out just generated by the low
16-bit operation. This upper 16-bit result will be
available to the next dependent operation exactly when
needed. This is called a staggered add. The ALU flags

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 9

are processed in the third fast cycle. This staggered add
means that only a 16-bit adder and its input muxes need to
be completed in a fast clock cycle. The low order 16 bits
are needed at one time in order to begin the access of the
L1 data cache when used as an address input.

Bits <15:0>

Bits <31:16>

Flags

Figure 7: Staggered ALU add

Complex Integer Operations
The simple, very frequent ALU operations go to the high-
speed integer ALU execution units described above.
Integer operations that are more complex go to separate
hardware for completion. Most integer shift or rotate
operations go to the complex integer dispatch port. These
shift operations have a latency of four clocks. Integer
multiply and divide operations also have a long latency.
Typical forms of multiply and divide have a latency of
about 14 and 60 clocks, respectively.

Low Latency Level 1 (L1) Data Cache
The Level 1 (LI) data cache is an 8K-byte cache that is
used for both integer and floating-point/SSE loads and
stores. It is organized as a 4-way set-associative cache
that has 64 bytes per cache line. It is a write-through
cache, which means that writes to it are always copied
into the L2 cache. It can do one load and one store per
clock cycle.

The latency of load operations is a key aspect of processor
performance. This is especially true for IA-32 programs
that have a lot of loads and stores because of the limited
number of registers in the instruction set. The NetBurst
microarchitecture optimizes for the lowest overall load-
access latency with a small, very low latency 8K byte
cache backed up by a large, high-bandwidth second-level
cache with medium latency. For most IA-32 programs
this configuration of a small, but very low latency, L1
data cache followed by a large medium-latency L2 cache

gives lower net load-access latency and therefore higher
performance than a bigger, slower L1 cache. The L1 data
cache operates with a 2-clock load-use latency for integer
loads and a 6-clock load-use latency for floating-
point/SSE loads.

This 2-clock load latency is hard to achieve with the very
high clock rates of the Pentium 4 processor. This cache
uses new access algorithms to enable this very low load-
access latency. The new algorithm leverages the fact that
almost all accesses hit the first-level data cache and the
data TLB (DTLB).

At this high frequency and with this deep machine
pipeline, the distance in clocks, from the load scheduler to
execution, is longer than the load execution latency itself.
The uop schedulers dispatch dependent operations before
the parent load has finished executing. In most cases, the
scheduler assumes that the load will hit the L1 data cache.
If the load misses the L1 data cache, there will be
dependent operations in flight in the pipeline. These
dependent operations that have left the scheduler will get
temporarily incorrect data. This is a form of data
speculation. Using a mechanism known as replay, logic
tracks and re-executes instructions that use incorrect data.
Only the dependent operations are replayed: the
independent ones are allowed to complete.

There can be up to four outstanding load misses from the
L1 data cache pending at any one time in the memory
subsystem.

Store-to-Load Forwarding
In an out-of-order-execution processor, stores are not
allowed to be committed to permanent machine state (the
L1 data cache, etc.) until after the store has retired.
Waiting until retirement means that all other preceding
operations have completely finished. All faults,
interrupts, mispredicted branches, etc. must have been
signaled beforehand to make sure this store is safe to
perform. With the very deep pipeline of the Pentium 4
processor it takes many clock cycles for a store to make it
to retirement. Also, stores that are at retirement often
have to wait for previous stores to complete their update
of the data cache. This machine can have up to 24 stores
in the pipeline at a time. Sometimes many of them have
retired but have not yet committed their state into the L1
data cache. Other stores may have completed, but have
not yet retired, so their results are also not yet in the L1
data cache. Often loads must use the result of one of
these pending stores, especially for IA-32 programs, due
to the limited number of registers available. To enable
this use of pending stores, modern out-of-order execution
processors have a pending store buffer that allows loads to
use the pending store results before the stores have been

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 10

written into the L1 data cache. This process is called
store-to-load forwarding.

To make this store-to-load-forwarding process efficient,
this pending store buffer is optimized to allow efficient
and quick forwarding of data to dependent loads from the
pending stores. The Pentium 4 processor has a 24-entry
store-forwarding buffer to match the number of stores that
can be in flight at once. This forwarding is allowed if a
load hits the same address as a proceeding, completed,
pending store that is still in the store-forwarding buffer.
The load must also be the same size or smaller than the
pending store and have the same beginning physical
address as the store, for the forwarding to take place. This
is by far the most common forwarding case. If the bytes
requested by a load only partially overlap a pending store
or need to have some bytes come simultaneously from
more than one pending store, this store-to-load forwarding
is not allowed. The load must get its data from the cache
and cannot complete until the store has committed its state
to the cache.

This disallowed store-to-load forwarding case can be
quite costly, in terms of performance loss, if it happens
very often. When it occurs, it tends to happen on older
P5-core optimized applications that have not been
optimized for modern, out-of-order execution
microarchitectures. The newer versions of the IA-32
compilers remove most or all of these bad store-to-load
forwarding cases but they are still found in many old
legacy P5 optimized applications and benchmarks. This
bad store-forwarding case is a big performance issue for
P6-based processors and other modern processors, but due
to the even deeper pipeline of the Pentium 4 processor,
these cases are even more costly in performance.

FP/SSE Execution Units
The Floating-Point (FP) execution cluster of the Pentium
4 processor is where the floating-point, MMX, SSE, and
SSE2 instructions are executed. These instructions
typically have operands from 64 to 128 bits in width. The
FP/SSE register file has 128 entries and each register is
128 bits wide. This execution cluster has two 128-bit
execution ports that can each begin a new operation every
clock cycle. One execution port is for 128-bit general
execution and one is for 128-bit register-to-register moves
and memory stores. The FP/SSE engine can also
complete a full 128-bit load each clock cycle.

Early in the development cycle of the Pentium 4
processor, we had two full FP/SSE execution units, but
this cost a lot of hardware and did not buy very much
performance for most FP/SSE applications. Instead, we
optimized the cost/performance tradeoff with a simple
second port that does FP/SSE moves and FP/SSE store
data primitives. This tradeoff was shown to buy most of

the performance of a second full-featured port with much
less die size and power cost.

Many FP/multi-media applications have a fairly balanced
set of multiplies and adds. The machine can usually keep
busy interleaving a multiply and an add every two clock
cycles at much less cost than fully pipelining all the
FP/SSE execution hardware. In the Pentium 4 processor,
the FP adder can execute one Extended-Precision (EP)
addition, one Double-Precision (DP) addition, or two
Single-Precision (SP) additions every clock cycle. This
allows it to complete a 128-bit SSE/SSE2 packed SP or
DP add uop every two clock cycles. The FP multiplier
can execute either one EP multiply every two clocks, or it
can execute one DP multiply or two SP multiplies every
clock. This allows it to complete a 128-bit IEEE
SSE/SSE2 packed SP or DP multiply uop every two clock
cycles giving a peak 6 GFLOPS for single precision or 3
GFLOPS for double precision floating-point at 1.5GHz.

Many multi-media applications interleave adds,
multiplies, and pack/unpack/shuffle operations. For
integer SIMD operations, which are the 64-bit wide MMX
or 128-bit wide SSE2 instructions, there are three
execution units that can run in parallel. The SIMD integer
ALU execution hardware can process 64 SIMD integer
bits per clock cycle. This allows the unit to do a new 128-
bit SSE2 packed integer add uop every two clock cycles.
A separate shuffle/unpack execution unit can also process
64 SIMD integer bits per clock cycle allowing it to do a
full 128-bit shuffle/unpack uop operation each two clock
cycles. MMX/SSE2 SIMD integer multiply instructions
use the FP multiply hardware mentioned above to also do
a 128-bit packed integer multiply uop every two clock
cycles.

The FP divider executes all divide, square root, and
remainder uops. It is based on a double-pumped SRT
radix-2 algorithm, producing two bits of quotient (or
square root) every clock cycle.

Achieving significantly higher floating-point and multi-
media performance requires much more than just fast
execution units. It requires a balanced set of capabilities
that work together. These programs often have many
long latency operations in their inner loops. The very
deep buffering of the Pentium 4 processor (126 uops and
48 loads in flight) allows the machine to examine a large
section of the program at once. The out-of-order-
execution hardware often unrolls the inner execution loop
of these programs numerous times in its execution
window. This dynamic unrolling allows the Pentium 4
processor to overlap the long-latency FP/SSE and
memory instructions by finding many independent
instructions to work on simultaneously. This deep
window buys a lot more performance for most FP/multi-
media applications than more execution units would.

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 11

FP/multi-media applications usually need a very high
bandwidth memory subsystem. Sometimes FP and multi-
media applications do not fit well in the L1 data cache but
do fit in the L2 cache. To optimize these applications the
Pentium 4 processor has a high bandwidth path from the
L2 data cache to the L1 data. Some FP/multi-media
applications stream data from memory–no practical cache
size will hold the data. They need a high bandwidth path
to main memory to perform well. The long 128-byte L2
cache lines together with the hardware prefetcher
described below help to prefetch the data that the
application will soon need, effectively hiding the long
memory latency. The high bandwidth system bus of the
Pentium 4 processor allows this prefetching to help keep
the execution engine well fed with streaming data.

Memory Subsystem
The Pentium 4 processor has a highly capable memory
subsystem to enable the new, emerging, high-bandwidth
stream-oriented applications such as 3D, video, and
content creation. The memory subsystem includes the
Level 2 (L2) cache and the system bus. The L2 cache
stores data that cannot fit in the Level 1 (L1) caches. The
external system bus is used to access main memory when
the L2 cache has a cache miss and also to access the
system I/O devices.

Level 2 Instruction and Data Cache
The L2 cache is a 256K-byte cache that holds both
instructions that miss the Trace Cache and data that miss
the L1 data cache. The L2 cache is organized as an 8-way
set-associative cache with 128 bytes per cache line.
These 128-byte cache lines consist of two 64-byte sectors.
A miss in the L2 cache typically initiates two 64-byte
access requests to the system bus to fill both halves of the
cache line. The L2 cache is a write-back cache that
allocates new cache lines on load or store misses. It has a
net load-use access latency of seven clock cycles. A new
cache operation can begin every two processor clock
cycles for a peak bandwidth of 48Gbytes per second,
when running at 1.5GHz.

Associated with the L2 cache is a hardware prefetcher that
monitors data access patterns and prefetches data
automatically into the L2 cache. It attempts to stay 256
bytes ahead of the current data access locations. This
prefetcher remembers the history of cache misses to
detect concurrent, independent streams of data that it tries
to prefetch ahead of use in the program. The prefetcher
also tries to minimize prefetching unwanted data that can
cause over utilization of the memory system and delay the
real accesses the program needs.

400MHz System Bus
The Pentium 4 processor has a system bus with 3.2
Gbytes per second of bandwidth. This high bandwidth is
a key enabler for applications that stream data from
memory. This bandwidth is achieved with a 64-bit wide
bus capable of transferring data at a rate of 400MHz. It
uses a source-synchronous protocol that quad-pumps the
100MHz bus to give 400 million data transfers per
second. It has a split-transaction, deeply pipelined
protocol to allow the memory subsystem to overlap many
simultaneous requests to actually deliver high memory
bandwidths in a real system. The bus protocol has a 64-
byte access length.

PERFORMANCE
The Pentium 4 processor delivers the highest
SPECint_base performance of any processor in the world.
It also delivers world-class SPECfp2000 performance.
These are industry standard benchmarks that evaluate
general integer and floating-point application
performance.

Figure 8 shows the performance comparison of a Pentium
4 processor at 1.5GHz compared to a Pentium III
processor at 1GHz for various applications. The integer
applications are in the 15-20% performance gain while
the FP and multi-media applications are in the 30-70%
performance advantage range. For FSPEC 2000 the new
SSE/SSE2 instructions buy about 5% performance gain
compared to an x87-only version. As the compiler
improves over time the gain from these new instructions
will increase. Also, as the relative frequency of the
Pentium 4 processor increases over time (as its design
matures), all these performance deltas will increase.

1.20 1.13

1.75

1.47 1.43 1.38
1.25

0.0

0.5

1.0

1.5

2.0

ISP EC2000 Wins tone
2000 CC

FSP EC2000 Video
Enc oding

3D Gaming Video Editing MP 3
Enc oding

R
el

at
iv

e
P

er
fo

rm
an

ce

P3-1GHz
P4P-1.5GHz

Figure 8: Performance comparison

For a more complete performance brief covering many
application performance areas on the Pentium 4
processor, go to
http://www.intel.com/procs/perf/pentium4/.

CONCLUSION
The Pentium 4 processor is a new, state-of-the-art

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 12

processor microarchitecture and design. It is the
beginning of a new family of processors that utilize the
new Intel NetBurst microarchitecture. Its deeply
pipelined design delivers world-leading frequencies and
performance. It uses many novel microarchitectural ideas
including a Trace Cache, double-clocked ALU, new low-
latency L1 data cache algorithms, and a new high
bandwidth system bus. It delivers world-class
performance in the areas where added performance makes
a difference including media rich environments (video,
sound, and speech), 3D applications, workstation
applications, and content creation.

ACKNOWLEDGMENTS
The authors thank all the architects, designers, and
validators who contributed to making this processor into a
real product.

REFERENCES
1. D. Sager, G. Hinton, M. Upton, T. Chappell, T.

Fletcher, S. Samaan, and R. Murray, “A 0.18um
CMOS IA32 Microprocessor with a 4GHz Integer
Execution Unit,” International Solid State Circuits
Conference, Feb 2001.

2. Doug Carmean, “Inside the High-Performance Intel®
Pentium® 4 Processor Micro-architecture” Intel
Developer Forum, Fall 2000 at
ftp://download.intel.com/design/idf/fall2000/presenta
tions/pda/pda_s01_cd.pdf

3. IA-32 Intel Architecture Software Developer’s
Manual Volume 1: Basic Architecture at
http://developer.intel.com/design/pentium4/manuals/
245470.htm.

4. Intel® Pentium® 4 Processor Optimization Reference
Manual at
http://developer.intel.com/design/pentium4/manuals/
248966.htm.

AUTHORS’ BIOGRAPHIES
Glenn Hinton is an Intel Fellow and Director of IA-32
Microarchitecture Development in the Intel Architecture
Group. Hinton joined Intel in 1983. He was one of three
senior architects in 1990 responsible for the P6 processor
microarchitecture, which became the Pentium® Pro,
Pentium® II, Pentium® III, and Celeron™ processors. He
was responsible for the microarchitecture development of
the Pentium® 4 processor. Hinton received a master's
degree in Electrical Engineering from Brigham Young
University in 1983. His e-mail address is
glenn.hinton@intel.com.

Dave Sager is a Principal Engineer/Architect in Intel’s
Desktop Platforms Group, and is one of the overall

architects of the Intel® Pentium 4 processor. He joined
Intel in 1995. Dave also worked for 17 years at Digital
Equipment Corporation in their processor research labs.
He graduated from Princeton University with a Ph.D. in
Physics in 1973. His e-mail address is
dave.sager@intel.com.

Michael Upton is a Principal Engineer/Architect in Intel's
Desktop Platforms Group, and is one of the architects of
the Intel® Pentium 4 processor. He completed B.S. and
M.S. degrees in Electrical Engineering from the
University of Washington in 1985 and 1990. After a
number of years in IC design and CAD tool development,
he entered the University of Michigan to study computer
architecture. Upon completion of his Ph.D degree in 1994,
he joined Intel to work on the Pentium® Pro and Pentium
4 processors. His e-mail address is
mike.upton@intel.com.

Darrell Boggs is a Principal Engineer/Architect with Intel
Corporation and has been working as a microarchitect for
nearly 10 years. He graduated from Brigham Young
University with a M.S. in Electrical Engineering. Darrell
played a key role on the Pentium® Pro Processor design,
and was one of the key architects of the Pentium 4
Processor. Darrell holds many patents in the areas of
register renaming; instruction decoding; events and state
recovery mechanisms. His e-mail address is
darrell.boggs@intel.com.

Douglas M. Carmean is a Principal Engineer/Architect
with Intel's Desktop Products Group in Oregon. Doug
was one of the key architects, responsible for definition of
the Intel Pentium® 4 processor. He has been with Intel for
12 years, working on IA-32 processors from the 80486 to
the Intel Pentium 4 processor and beyond. Prior to
joining Intel, Doug worked at ROSS Technology, Sun
Microsystems, Cypress Semiconductor and Lattice
Semiconductor. Doug enjoys fast cars and scary, Italian
motorcycles. His e-mail address is
douglas.m.carmean@intel.com.

Patrice Roussel graduated from the University of Rennes
in 1980 and L'Ecole Superieure d'Electricite in 1982 with
a M.S. degree in signal processing and VLSI design.
Upon graduation, he worked at Cimatel, an Intel/Matra
Harris joint design center. He moved to the USA in 1988
to join Intel in Arizona and worked on the 960CA chip. In
late 1991, he moved to Intel in Oregon to work on the P6
processors. Since 1995, he has been the floating-point
architect of the Pentium® 4 processor. His e-mail address
is patrice.roussel@intel.com.

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm

Intel Technology Journal Q1, 2001

The Microarchitecture of the Pentium 4 Processor 13

Validating The Intel Pentium 4 Processor 1

Validating The Intel® Pentium® 4 Processor

Bob Bentley, Desktop Platforms Group, Intel Corp.
Rand Gray, Desktop Platforms Group, Intel Corp.

Index words: microprocessor, validation, bugs, verification

ABSTRACT
Developing a new leading-edge Intel® Architecture
microprocessor is an immensely complicated undertaking.
The microarchitecture of the Pentium 4 processor is
significantly more complex than any previous Intel
Architecture microprocessor, so the challenge of
validating the logical correctness of the design in a timely
fashion was indeed a daunting one. In order to meet this
challenge, we applied a number of innovative tools and
methodologies, which enabled us to keep functional
validation off the critical path to tapeout while meeting
our goal of ensuring that first silicon was functional
enough to boot operating systems and run applications.
This in turn enabled the post-silicon validation teams to
quickly “peel the onion”, resulting in an elapsed time of
only ten months from initial tapeout to production
shipment qualification, an Intel record for a new IA-32
microarchitecture.

This paper describes how we went about the task of
validating the Pentium 4 processor and what we found
along the way. We hope that other microprocessor
designers and validators will be able to benefit from our
experience and insights. As Doug Clark has remarked
“Finding a bug should be a cause for celebration. Each
discovery is a small victory; each marks an incremental
improvement in the design.” [1]

INTRODUCTION
The Pentium 4 processor is Intel’s most advanced IA-32
microprocessor, incorporating a host of new
microarchitectural features including a 400MHz system
bus, hyper pipelined technology, advanced dynamic
execution, rapid execution engine, advanced transfer
cache, execution trace cache, and Streaming Single
Instruction, Multiple Data (SIMD) Extensions 2 (SSE2).

PRE-SILICON VALIDATION
CHALLENGES AND ISSUES
The first thing that we had to do was build a validation
team. Fortunately, we had a nucleus of people who had
worked on the Pentium Pro processor and who could do
the initial planning for the Pentium 4 processor while at

the same time working with the architects and designers
who were refining the basic microarchitectural concepts.
However, it was clear that a larger team would be needed,
so we mounted an extensive recruitment campaign
focused mostly on new college graduates. Not only did
this take a large amount of effort from the original core
team (at one stage we were spending an aggregate 25% of
our total effort on recruiting!), but it also meant that we
faced the monumental task of training these new team
members. However, this investment paid off handsomely
over the next few years as the team matured into a highly
effective bug-finding machine that found more than 60%
of all the logic bugs that were filed prior to tapeout. In
doing so, they developed an in-depth knowledge of the
Pentium 4 processor’s NetBurst™ microarchitecture that
has proved to be invaluable in post-silicon logic and
speedpath debug and also in fault grade test writing.

For the most part, we applied the same or similar tools
and methodologies that were used on the Pentium Pro
processor to validate the Pentium 4 processor. However,
we did develop new methodologies and tools in response
to lessons learnt from previous projects and also to
address some new challenges raised by the Pentium 4
processor design. In particular, the use of Formal
Verification, Cluster Test Environments, and focused
Power Reduction Validation was either new or a greatly
extended form than that used on previous projects. These
methodologies and tools are discussed in detail in later
sections of this paper.

Pre-Silicon Validation Environment
Except for Formal Verification (FV), all pre-silicon
validation was done using either a cluster-level or full-
chip SRTL model running in the CSIM simulation
environment developed by Intel Design Technology. We
ran these simulation models on either interactive
workstations or compute servers. Initially, these were
legacy IBM RS/6000s* running AIX*, but over the course
of the project we switched to systems based on the
Pentium III processor, running Linux*. Our computing
pool grew to encompass several thousand systems by the
end of the project, most of them compute servers. We
used an internal tool called Netbatch to submit large
numbers of batch simulations to these systems, which we

Intel Technology Journal Q1, 2001

Validating The Intel Pentium 4 Processor 2

were able to keep utilized at over 90% of their maximum
24/7 capacity. By tapeout we were averaging 5-6 billion
cycles per week and had accumulated over 200 billion (to
be precise, 2.384 * 1011) SRTL simulation cycles of all
types.

Formal Verification
The Pentium 4 processor was the first project of its kind
at Intel to apply FV on a large scale. We decided early in
the project that the FV field had matured to the point
where we could consider trying to use it as an integral
part of the design verification process rather than only
applying it retroactively, as had been done on previous
products such as the Pentium Pro processor. However, it
was clear from the start that we couldn’t formally verify
the entire design—that was (and still is) way beyond the
state of the art for today’s tools. We therefore decided to
focus on the areas of the design where we believed FV
could make a significant contribution; in particular, we
focused on the floating-point execution units and the
instruction decode logic. Because these areas had been
sources of bugs in the past that escaped early detection,
using FV allowed us to apply this technology to some real
problems with real payback.

One of the major challenges for the FV team was to
develop the tools and methodology needed to handle a
large number of proofs in a highly dynamic environment.
For the most part we took a model-checking approach to
FV, using the Prover tool from Intel’s Design Technology
group to compare SRTL against separate specifications
written in Formal Specification Language (FSL). By the
time we taped out we had over 10,000 of these proofs in
our proof database, each of which had to be maintained
and regressed as the SRTL changed over the life of the
project. Along the way, we found over 100 logic
bugs—not a large number in the overall scheme of things,
but 20 of them were “high-quality” bugs that we believe
would not have been found by any of our other pre-silicon
validation activities. Two of these bugs were classic
floating-point data space problems:

1. The FADD instruction had a bug where, for a specific
combination of source operands, the 72-bit FP adder
was setting the carryout bit to 1 when there was no
actual carryout.

2. The FMUL instruction had a bug where, when the
rounding mode was set to “round up”, the sticky bit
was not set correctly for certain combinations of
source operand mantissa values, specifically:

src1[67:0] := X*2(i+15) + 1*2i

src2[67:0] := Y*2(j+15) + 1*2j

where i+j = 54, and {X,Y} are any integers that fit in
the 68-bit range.

Either of these bugs could easily have gone undetected1,
not just in the pre-silicon environment but also in post-
silicon testing.

We put a lot of effort into making the regression of the
FV proof database as push-button as possible, not only to
simplify the task of running regressions against a moving
SRTL target but because we viewed reuse as being one of
the keys to proliferating the quality of the original design.
This approach has had an immediate payoff: a regression
of the database of 10,000 proofs on an early SRTL model
of a proliferation of the Pentium 4 processor yielded a
complex floating-point bug.

Cluster-Level Testing
One of the fundamental decisions that we took early in the
Pentium 4 processor development program was to
develop Cluster Test Environments (CTEs) and maintain
them for the life of the project. There is a CTE for each
of the six clusters into which the Pentium 4 processor
design is logically subdivided (actually, microcode can be
considered to be a seventh logical cluster, and it too has a
test environment equivalent to the other CTEs). These
CTEs are groupings of logically related units (e.g., all the
execution units of the machine constitute one CTE)
surrounded by code that emulates the interfaces to
adjacent units outside of the cluster and provides an
environment for creating and running tests and checking
results.

These CTEs took a good deal of effort to develop and
maintain, and were themselves a source of a significant
number of bugs. However, they provided a number of
key advantages:

First and foremost, they provided controllability that was
otherwise lacking at the full-chip level. An out of order,
speculative execution engine like the Pentium ® Pro or
Pentium 4 processor is inherently difficult to control at
the instruction set architecture level. Assembly-language
instructions (macroinstructions) are broken down by the
machine into sequences of microinstructions that may be
executed in any order (subject to data dependencies)
relative to one another and to microinstructions from
other preceding or following macroinstructions. Trying to
produce precise microarchitectural behavior from
macroinstruction sequences has been likened to pushing
on a piece of string. This problem is particularly acute for
the back end of the machine, the memory and bus clusters
that lie beyond the out-of-order section of the
microarchitecture pipeline. CTEs allowed us to provoke
specific microarchitectural behavior on demand.

Second, CTEs allowed us to make significant strides in
early validation of the Pentium 4 processor SRTL even

1 We calculated that the probability of hitting the FMUL
condition with purely random operands was
approximately 1 in 5*1020, or 1 in 500 million trillion!

Intel Technology Journal Q1, 2001

Validating The Intel Pentium 4 Processor 3

before a full-chip model was available. As described
below, integrating and debugging all the logic and
microcode needed to produce even a minimally functional
full-chip model was a major undertaking; it took more
than six months from the time we started until we had a
“mostly functional” IA-32 machine that we could start to
target for aggressive full-chip testing. Because we had
the CTEs, we were able to start testing as soon as there
was released code in a particular unit, long before we
could have even tried to exercise it at the full-chip level.

Even after we had a full-chip model, the CTEs essentially
decoupled validation of individual unit features from the
health of the full-chip model. A blocking bug in, for
example, the front end of the machine did not prevent us
from continuing to validate in other areas. In actual fact,
we rarely encountered this kind of blockage because our
development methodology required that all changes be
released at cluster level first, and only when they had
been validated there did we propagate them to the full-
chip level. Even then, we required that all full-chip model
builds pass a mini-regression test suite before they could
be released to the general population. This caught most
major cross-unit failures that could not be detected at the
CTE level.

One measure of the success of the CTEs is that they
caught almost 60% of the bugs found by dynamic testing
at the SRTL level. Another is that, unlike the Pentium
Pro processor and some other new microarchitecture
developments, the Pentium 4 processor never needed an
SRTL “get-well plan” at the full-chip level where new
development is halted until the health of the full-chip
model can be stabilized.

POWER REDUCTION VALIDATION
From the earliest days of the Pentium 4 processor design,
power consumption was a concern. Even with the lower
operating voltages offered by P858, it was clear that at the
operating frequencies we were targeting we would have
difficulty staying within the “thermal envelope” that was
needed to prevent a desktop system from requiring exotic
and expensive cooling technology. This led us to include
two main mechanisms for active power reduction in the
design: clock gating and thermal management. Each of
these is discussed in other papers in this issue of the Intel
Technology Journal. Each presented validation
challenges—in particular, clock gating.

Clock gating as a concept is not new: previous designs
have attempted to power down discrete structures such as
caches when there were no accesses pending. What was
different about the Pentium 4 processor design was the
extent to which clock gating was used. Every unit on the
chip had a power reduction plan, and almost every
Functional Unit Block (FUB) contained clock gating
logic. In all, there were several hundred unique clock
gating conditions identified, and each one of them needed
to be validated from several different perspectives:

1 . We needed to verify that each condition was
implemented as per plan and that it functioned as
originally intended. We needed to verify this not
once, but continually throughout the development of
the Pentium 4 processor, as otherwise it was possible
for power savings to be eroded over time as an
unintended side effect of other bug or speedpath
fixes. We tackled this problem by constructing a
master list of all the planned clock-gating features,
and writing checkers in proto for each condition to
tell us if the condition had occurred and to make sure
that the power down had occurred when it should
have. We ran these checkers on cluster regressions
and low-power tests to develop baseline coverage,
and then wrote additional tests as necessary to hit
uncovered conditions.

2. While establishing this coverage, we had to make
sure that the clock-gating conditions did not
themselves introduce new logic bugs into the design.
It is not hard to imagine all sorts of nightmare
scenarios: unit A is late returning data to unit B
because part of A was clock gated, or unit C samples
a signal from unit D that is undriven because of clock
gating, or other variations on this theme. In fact, we
found many such bugs, mostly as a result of (unit-
level) design validation or full-chip microarchitecture
validation, using the standard set of checkers that we
employed to catch such implementation-level errors.
We had the ability to override clock gating either
selectively or globally, and we developed a random
power down application programming intereface
(API) that could be used by any of the validation
teams to piggyback clock gating on top of their
regular testing. Once we had developed confidence
that the mechanism was fundamentally sound, we
built all our SRTL models to have clock gating
enabled by default.

3 . Once we had implemented all the planned clock-
gating conditions, and verified that they were
functioning correctly, we relied primarily on
measures of clock activity to make sure that we
didn’t lose our hard-won power savings. We used a
special set of tests that attempted to power down as
much of each cluster as possible, and collected data
to see what percentage of the time each clock in the
machine was toggling. We did this at the cluster
level and at the full-chip level. We investigated any
appreciable increase in clock activity from model to
model, and made sure that it was explainable and not
due to designer error.

4. Last, but by no means least, we tried to make sure
that the design was cycle-for-cycle equivalent with
clock gating enabled and disabled. We had
established this as a project requirement, to lessen the
likelihood of undetected logic bugs or performance
degradation caused by clock gating. To do this, we
developed a methodology for temporal divergence

Intel Technology Journal Q1, 2001

Validating The Intel Pentium 4 Processor 4

testing, which essentially ran the same set of tests
twice, with clock gating enabled and disabled, and
compared the results on a cycle-by-cycle basis.

We organized a dedicated Power Validation team to focus
exclusively on this task, and they filed numerous bugs as
a result of their pre-silicon validation (we filed “power
bugs” whenever the design did not implement a power-
saving feature correctly, whether or not it resulted in a
functional failure). The results exceeded our fondest
expectations: not only was clock gating fully functional
on A-0 silicon, but we were able to measure
approximately 20W of power saving in a system running
typical workloads.

Full-chip Integration and Testing
With a design as complex as the Pentium 4 processor,
integrating the pieces of SRTL code together to get a
functioning full-chip model (let alone one capable of
executing IA-32 code) is not a trivial task. We developed
an elaborate staging plan that detailed just what features
were to be available in each stage and phased in this plan
over a 12-month period. The Architecture Validation
(AV) team took the lead in developing tests that would
exercise the new features as they became available in
each phase, but did not depend upon any as-yet
unimplemented IA-32 features. These tests were
throwaway work—their main purpose was to drive the
integration effort, not to find bugs. Along with these tests
we developed a methodology which we called feature
pioneering: when a new feature was released to full-chip
for the first time, a validator took responsibility for
running his or her feature exercise tests, debugging the
failures, and working with designers to rapidly drive fixes
into graft (experimental) models, thereby bypassing the
normal code turn-in procedure, until an acceptable level
of stability was achieved. Only then was the feature made
available for more widespread use by other validators.
We found that this methodology greatly speeded up the
integration process. It also had a side effect: it helped the
AV team develop their full-chip debugging skills much
more rapidly than might otherwise have occurred.

Once a fully functional full-chip SRTL model was
available, these feature pioneering tests were discarded
and replaced by a new suite of IA-32 tests developed by
the AV team, whose purpose was to fully explore the
architecture space. Previous projects up to and including
the Pentium Pro processor had relied on an “ancestral”
test base inherited from past projects, but these tests had
little or no documentation, unknown coverage, and
doubtful quality (in fact, many of them turned out to be
bug tests from previous implementations that had little
architectural value). We did eventually run the
“ancestral” suite as a late cross-check, after the new suite
had been run and the resulting bugs fixed, but we found
nothing of consequence as a result.

Coverage-Based Validation
Recognizing the truth of the saying: “If it isn’t tested, it
doesn’t work” we attempted wherever possible to use
coverage data to provide feedback on the effectiveness of
our tests and tell us what we had and had not tested. This
in turn helped direct future testing towards the uncovered
areas. Since we relied very heavily on direct random test
generators for most of our microarchitectural testing,
coverage feedback was an absolute necessity if we were
to avoid “spinning our wheels” and testing the same areas
over and over again while leaving others completely
untouched. In fact, we used the tuple of cycles run,
coverage gained, and bugs found as our first-order gauge
of the health of the SRTL model and its readiness for
tapeout.

Our primary coverage tool was Proto from Intel Design
Technology, which we used to create coverage monitors
and measure coverage for a large number of
microarchitecture conditions. By tapeout we were
tracking almost 2.5 million unit-level conditions and more
than 250,000 inter-unit conditions, and we succeeded in
hitting almost 90% of the former and 75% of the latter.
For the conditions that we were unable to hit prior to
tapeout, we made sure that they were scattered throughout
the entire coverage space and not concentrated in a few
areas; and we also made sure that the System Validation
(SV) team targeted these areas in their post-silicon
validation plans. We also used Proto to instrument
several thousand multiprocessor memory coherency
conditions (combinations of microarchitecture states for
caches, load and store buffers, etc.), and, as mentioned
above, all the clock-gating conditions that had been
identified in the unit power reduction plans. We used the
Pathfinder tool from Intel’s Central Validation
Capabilities group to measure how well we were
exercising all the possible microcode paths in the
machine. Much to our surprise, running all of the AV test
suite yielded coverage of less than 10%; further analysis
revealed that many of the untouched paths involved
memory-related faults (e.g., page fault) or assists (e.g.,
A/D bit assist). This made sense, as the test writers had
(reasonably enough) set up their page tables and
descriptors so as to avoid these time-consuming functions
(at SRTL simulation speeds, every little bit helps!), but it
did reinforce the value of collecting coverage feedback
and not just assuming that our tests were hitting specified
conditions.

POST-SILICON VALIDATION
As soon as the A-0 silicon was available, validation
moved into the “post-silicon” phase. In post-silicon
validation, the processor is tested in a system setting.
Validation in this setting concentrates not only on the
processor, but its interaction with the chipset, memory
system, and peripherals. In this environment, the testing
is done at real-time processor speeds, unlike the
simulation environment that must be used prior to the

Intel Technology Journal Q1, 2001

Validating The Intel Pentium 4 Processor 5

arrival of the actual silicon. This is good news for test
coverage, as much longer and more complex tests can be
run in real-time, but it is bad news for debugging. In the
SRTL simulator, all of the internal signals of the
processor are available for inspection, but in the actual
silicon, the primary visibility is from the transactions on
the processor system bus. A significant effort went into
preparing for the availability of the A-0 processor silicon.
Hardware engineering teams developed and constructed
validation platforms to provide execution and test
vehicles for the processor silicon. The SV team assigned
engineers to learn the microarchitecture of the processor
and develop specific tests for the silicon. The
Compatibility Validation (CV) team constructed an
elaborate test infrastructure for testing the processor
silicon using industry-standard operating systems,
application software, and popular peripheral cards. The
Circuit Marginality Validation (CMV) team prepared a
test infrastructure for correlating tester schmoo plots with
actual operational characteristics in systems capable of
running standard operating systems as well as SV tests.
All of these preparations were completed prior to the
actual receipt of the A-0 processor silicon such that
testing could proceed without delay as soon as the first
silicon samples arrived.

Arrival of First Silicon
Systems developed for post-silicon validation included
uniprocessor desktop systems, dual-processor workstation
boards, 4MP server boards, and 4MP system validation
platforms that include extensive test assistance circuitry
(although the Pentium 4 processor is a uniprocessor
product, we have found that certain types of
multiprocessor testing can be good at exposing
uniprocessor bugs). A few of each of these systems were
available in the Pentium 4 processor system validation lab
a few weeks prior to the arrival of first silicon samples.
Within a few days after receiving the initial samples of A-
0 processor silicon, we had successfully booted a number
of operating systems including MS- DOS*, MS Windows*

98, MS Windows NT* 4.0, and Linux*.

The most complex and flexible validation platform was
the 4MP system validation platform. This platform
included the following key features:

• logic analyzer connectors

• SV hooks card that permits direct stimulus of FSB
signals

• a software-controllable clock board that permits
setting the processor system bus frequency in 1MHz
steps

*Other brands and names are the property of their
respective owners.

• software-controllable voltage regulators for both the
CPU and chipset components

• built-in connectors for the In-Target Probe (ITP)
debugging port

• four PCI hublink boards to support a large number of
synthetic I/O agents

• sockets for the processor and chipset component
silicon

System Validation
In parallel with the hardware system design, a team of
System Validation (SV) engineers was assembled from a
small core of experienced system validators. Learning
from previous SV experiences, the team was assembled
early to provide sufficient time for the engineers to learn
the microarchitecture of the Pentium 4 processor and to
develop an effective test suite. The team was also
chartered with improving the effectiveness of system
validation. A variety of test strategies, environments, and
tools were developed to meet the challenge of
accelerating the post-silicon validation schedule while
achieving the same or a higher level of test coverage. The
SV organization comprised a number of teams that
targeted major CPU attributes:

• architecture—including the Instruction Set
Architecture (ISA), floating-point unit, data space,
and virtual memory

• microarchitecture—focusing on boundary conditions
between microarchitectural units

• multi-processor—focusing on memory coherency,
consistency, and synchronization

Different test methodologies were developed to test the
various processor attributes. SV methodologies and test
environments include

• Random Instruction Test (RIT) generators, which are
highly effective for ISA testing, especially the
interactions between series of instructions

• directed (focused) tests

• directed random tests (algorithmic tests with random
code blocks inserted strategically)

• data space (or data domain) tests for testing boundary
and random floating-point operands

SV tests are developed to run directly on the processor
without an operating system run-time environment. Due
to this, and the fact that the full test source is available
and understood by the team, SV tests are relatively
straightforward to debug in the system environment.

Random Instruction Testing
An especially effective method for testing the interactions
between sequences of instructions is the Random

Intel Technology Journal Q1, 2001

Validating The Intel Pentium 4 Processor 6

Instruction Test (RIT) environment. It is not
mathematically feasible to even test just the possible
combinations of a single instruction with all possible
operands and processor states. Add to this the possibility
of virtually limitless combinations of instruction
sequences and it becomes clear that a systematic and
exhaustive test strategy is wholly impractical. A practical
and effective alternative is to construct an RIT
environment. An RIT environment works in this way:

• The RIT tool generates a highly random sequence of
instructions, sometimes described as a series of
instructions that no sane programmer would ever
devise.

• The instructions are presented in sequence to an
architectural simulator, which constructs a memory
image of the processor state (whenever memory is
affected by a store, a push, or an exception frame).

• Once the test generation is concluded, the resulting
test object and memory image are saved.

• The test is loaded onto the SV platform and executed.

• Following the conclusion of the test, the SV platform
memory is compared against the memory image
obtained from the architectural simulator. If the
images match, the test passes; otherwise it fails.
Another failure possibility is a “hang;” for example,
the processor may experience a livelock condition
and fail to complete the test.

A number of key requirements drove the development of
such a test environment for the Pentium 4 processor:

• The first one was the ability to fully warm up the very
long Pentium 4 processor pipeline. This is
particularly difficult in an RIT environment, as truly
random instruction combinations tend to cause
frequent exceptions or other control-flow
discontinuities. Typical RIT tools available before
the new tool was developed would typically
encounter a pipeline hazard within 3 to 20
instructions on average. This could result in missing
bugs that might exist in actual application or
operating system software.

• The second one was the ability to avoid “false”
failures, e.g., failures occurring due to undefined
processor states or other differences between an
architectural simulator and the actual processor
silicon. This is an extremely important feature, as a
high false failure rate will limit the useful throughput
of such a tool. Every failure must be examined,
whether false or real (otherwise, how does one know
if a real failure has occurred?).

• The third one was the ability of the RIT environment
to fully propagate the processor state to the memory
image file without unduly affecting the randomness
of the instruction stream. Lacking this feature it is

possible to miss failures due to the tendency of RIT
tools to frequently overwrite state, thus potentially
hiding the failing signature of a bug.

• The fourth one was the ability of the tool to greatly
increase RIT throughput. The new tool increased the
throughput by a factor of 100 over existing tools.
This was essential to find rarely occurring or highly
intermittent bugs.

The new tool, known as Pipe-X (for Pipeline Exerciser)
proved to be extremely effective, logging the most bugs
of any SV test environment or test suite. It has effectively
a zero false failure rate, without which the high
throughput would prove to be unmanageable from a
debugging standpoint. For a given processor stepping
that requires production qualification, one billion tests
(each 10,000 instructions in length) are executed in
approximately eight weeks. To date, approximately 10
billion RIT tests have been executed on the Pentium 4
processor, compared with the approximately 10 million
RIT tests that have been executed on all versions of the
Pentium II and Pentium® III processor families. Pipe-X
has been found to be effective in finding both
architectural and microarchitectural logic bugs.

Focused SV Testing
We used directed or focused testing to complement RIT.
It is important to perform algorithmic testing of major
processor components. A comprehensive set of focused
tests was available from the Pentium Pro, Pentium II, and
Pentium III processor families. This test suite is known as
the Focus Test Suite (FTS) and is particularly effective at
finding cache bugs, Programmable Interrupt Controller
(PIC) bugs, and general functional bugs. The focus test
suite has been in continuous development for many years,
and was effectively doubled in size to prepare for Pentium
4 processor validation. It has found almost the same
number of bugs as Pipe-X.

Compatibility Validation
Although SV finds most post-silicon bugs (approximately
71%), and those bugs are the most straightforward to
debug, it is vital to ensure that the new processor, chipset,
and memory system works correctly with standard
operating systems using a wide variety of software
applications and peripheral cards. For this reason, an
extremely elaborate Compatibility Validation (CV)
laboratory was assembled. CV tests are designed to
particularly stress interactions between the processor and
chipset, concentrating on causing high levels of FSB
traffic. The CV staff often work closely with Original
Equipment Manufacturers (OEMs) to resolve problems
sighted at the OEM and assist in performance validation
by running standard benchmark workloads. CV tests also
help to weed out software problems in BIOS. The CV
team will see most of the bugs that the SV team uncovers,
but due to the difficult nature of debugging in the CV

Intel Technology Journal Q1, 2001

Validating The Intel Pentium 4 Processor 7

environment, the bugs found in SV are resolved much
more quickly.

Debugging in the System Environment
Debugging in the laboratory using actual Pentium 4
processor silicon installed in a validation platform or PC-
like test vehicle is difficult in the extreme. The very best
place to debug a processor bug is in the processor
simulator, where all signals are available for scrutiny.
Unfortunately, in the system environment almost no
internal signals are visible to the system debugger. A
suite of tools was developed for use in the Pentium 4
processor, using both architectural and microarchitectural
features of the processor:

The In-Target Probe (ITP) consists of a scan-chain
interface with the processor that connects to a host PC
system. Using the ITP, the debugger can set breakpoints,
examine memory and CPU registers, and start and stop
processor program execution. This tool is helpful for
interactive patching of test programs, for single-stepping
program execution, and for loading small test fragments.
In other words, for blatant functional bugs in the
processor this tool is effective. However, many bugs only
happen when the processor is running at full speed with
multiple processors and threads executing, and frequently
a bug will immediately disappear when inserting a
breakpoint near the failure point.

Scan chain-based array dumps can be used to construct
limited watch windows of a small set of select internal
signals. This can be especially useful for identifying the
signature of some bugs.

Logic analyzer trace captures of the processor system bus
can be translated into code streams that can be run on a
hardware-accelerated processor RTL model. Such a
methodology is based upon forcing all instructions to be
fetched on the bus due to periodic invalidation of
processor caches.

Validation platform features permit the schmooing of
voltage, temperature, and frequency to help accelerate the
occurrence of circuit bugs. However, the most effective
environment for debugging circuit problems is the
semiconductor tester lab.

Due to the extremely complex and lengthy Pentium 4
processor pipeline, many bugs are extremely difficult to
reproduce. Being able to capture such failures on a logic
analyzer and subsequently running the resulting program
fragment on a hardware-accelerated RTL model has time
and again proven to be almost the only method for
isolating highly intermittent bugs.

Debugging has historically been the primary limiter to
post-silicon validation throughput, and despite significant
improvements in debugging based on the use of the logic
analyzer, it is usually on the critical path to production
qualification.

BUG DISCUSSION
Comparing the development of the Pentium® 4 processor
with the Pentium Pro processor, there was a 350%
increase in the number of bugs filed against SRTL prior to
tapeout. The breakdown of bugs by cluster was also
different: on the Pentium Pro processor [2] microcode
was the largest single source of bugs, accounting for over
30% of the total, whereas on the Pentium 4 processor,
microcode accounted for less than 14% of the bugs. For
both designs, the Memory Cluster was the largest source
of hardware bugs, accounting for around 25% of the total
in both cases. This is consistent with data from other
projects, and it indicates that for future projects we should
continue to focus on preventing bugs in this area. We
also determined that almost 20% of all the bugs filed prior
to tapeout were found by code inspection.

We did a statistical study [3] to try to determine how the
bugs came to be in the Pentium 4 processor design, so that
we could improve our processes for preventing bugs from
getting into future designs. The major categories were as
follows:

• RTL Coding (18.1%)—These were things like typos,
cut and paste errors, incorrect assertions
(instrumentation) in the SRTL code, or the designer
misunderstood what he/she was supposed to
implement.

• Microarchitecture (25.1%)—This covered several
categories: problems in the microarchitecture
definition, architects not communicating their
expectations clearly to designers, and incorrect
documentation of algorithms, protocols, etc.

• Logic/Microcode Changes (18.4%)—These were
bugs that occurred because: the design was changed,
usually to fix bugs or timing problems, or state was
not properly cleared or initialized at reset, or these
were bugs related to clock gating.

• Architecture (2.8%)—Certain features were not
defined until late in the project. This led to
shoehorning them into working functionality.

Post-Silicon Bugs
An examination of where bugs have been found in the
post-silicon environment reveals the following data:

• System Validation (71%)—The dominance of SV is
intentional, as it is definitely the best environment in
which to debug post-silicon bugs. A wide spectrum
of logic and circuit bugs is found in this environment.

• Compatibility Validation (7%)—Although this team
doesn’t find as many bugs as SV, the bugs found are
in systems running real-world operating systems and
applications. Most of the bugs found in SV will also
be seen in the CV environment.

Intel Technology Journal Q1, 2001

Validating The Intel Pentium 4 Processor 8

• Debug Tools Team (6%)—The preponderance of
bugs found by the debug tools team were found in the
first few weeks after A-0 processor silicon arrived.
This stems from the fact that getting the debug tools
working is one of the earliest priorities of silicon
validation.

• Chipset Validation (5%)—The chipset validation
teams concentrate on bus and I/O operations, and the
bugs found by this team reflect that focus: they are
typically related to bus protocol problems.

• Processor Architecture Team (4%)—The processor
architecture team spends much time in the laboratory
once silicon arrives, examining processor
performance and general system testing. This team
also plays a central role in debugging problems
discovered by the SV, CV, and other validation
teams.

• Platform Design Teams and Others (7%)—This
group includes the hardware design teams that
develop and deploy validation and reference
platforms, the processor design team, the pre-silicon
validation team, and software enabling teams.

CONCLUSION
The Pentium® 4 processor was highly functional on A-0
silicon and received production qualification in only ten
months from tapeout. The work described here is a major
reason why we were able to maintain such a tight
schedule and enable Intel to realize early revenue from
the Pentium 4 processor in today’s highly competitive
marketplace.

ACKNOWLEDGMENTS
The results described in this paper are the work of many
people over a multi-year period. It is impossible to list
here the names of everyone who contributed to this effort,
but they deserve all the credit for the success of the
Pentium® 4 processor validation program.

REFERENCES

[1] Clark, D, “Bugs Are Good: A Problem-Oriented
Approach To The Management Of Design
Engineering,” Research-Technology Management,
33(3), May 1990, pp. 23-27.

[2] Bentley, R., and Milburn, B., “Analysis of Pentium®

Pro Processor Bugs,” Intel Design and Test
Technology Conference, June 1996. Intel Internal
Document.

[3] Zucker, R., “Bug Root Cause Analysis for
Willamette,” Intel Design and Test Technology
Conference, August 2000. Intel Internal Document.

AUTHORS’ BIOGRAPHIES
Bob Bentley is the Pre-Silicon Validation Manager for
the DPG CPU Design organization in Oregon. In his 17-
year career at Intel he has worked on system performance
evaluation, processor architecture, microprocessor logic
validation and system validation in both pre- and post-
silicon environments. He has a B.S. degree in Computer
Science from the University of St. Andrews. His e-mail
address is bob.bentley@intel.com

Rand Gray is a System Validation Manager for the DPG
Validation organization in Oregon. He has more than 20
years of experience with microprocessors, including
processor design, debug tool development, and systems
validation. He has a B.S. degree in Computer Science
from the University of the State of New York. His e-mail
address is rand.gray@intel.com .

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/ .

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm

Managing the Impact of Increasing Microprocessor Power Consumption 1

Managing the Impact of Increasing
Microprocessor Power Consumption

Stephen H. Gunther, Desktop Platforms Group, Intel Corp.
Frank Binns, Desktop Platforms Group, Intel Corp.

Douglas M. Carmean, Desktop Platforms Group, Intel Corp.
Jonathan C. Hall, Desktop Platforms Group, Intel Corp.

Index words: Pentium® 4 processor, power, power simulation, thermal management, thermal design,
heat-sinks

ABSTRACT
The power dissipation of modern processors has been
rapidly increasing along with increasing transistor count
and clock frequencies. At the same time, there is a
growing disparity between the maximum power
consumption of a processor and the “typical” power
consumed by that processor; i.e., power consumed while
running typical applications. This trend is the result of
the significant increase in transistor count required to
reach the desired peak performance targets.

Designing a processor with the intent of minimizing
system costs, especially those arising from high power
consumption, while retaining a high level of reliability
requires attention at all stages of the design. In the case
of the Pentium® 4 processor, the design team focused
from the beginning on reducing power consumption
without negatively impacting either the performance or
reliability of the processor in any significant way. Many
techniques, both innovative and pre-existing, were applied
across the entire processor in an effort to eliminate
unnecessary power consumption. The mass adoption of
these techniques resulted in a significant reduction in both
maximum and typical processor power dissipation.

INTRODUCTION
The total power dissipation of recently introduced, new-
generation, microprocessors has been rapidly increasing,
pushing desktop system cooling technology close to its
limits. The Pentium 4 processor is the first n e w-
generation IA-32 microarchitecture processor to
significantly improve upon the historical IA-32 processor
power trends. The power savings achieved in the design
of the Pentium 4 processor will translate into lower cost
systems, higher frequency processors, and improved
manufacturing yield while maintaining the high level of
reliability and quality for which Intel is known.

This paper outlines the guiding principles that were set in
place when the Pentium 4 processor was first defined.
We first describe an engineering process and tool chain
that made the low-power aspects of the design visible and
supported a feedback path to the design team. We also
briefly touch on the key lessons that were learned in the
design, validation, and debugging of clock gating and
other power-conserving elements of the Pentium 4
processor.

We then present a processor power-monitoring and
control mechanism that is entirely contained on the
processor die. No off-chip hardware or software
interaction is required to guarantee that a pre-determined
temperature threshold is not exceeded during processor
operation. The architecture of this thermal monitor
control logic closely maps to the existing Advanced
Configuration and Power Interface (ACPI) specifications.
The monitoring and control mechanism consists of three
separate but related functions: a temperature detection
mechanism, a power reduction mechanism, and control
and visibility logic. Each of these functions, and the
implementation constraints, are described in detail in this
paper.

PROCESSOR POWER TRENDS
The power dissipation of modern processors is rapidly
increasing as both clock frequency and the number of
transistors required for a given implementation grow.
Figure 1 shows the power consumption trend of
processors introduced by Intel over the past 15 years. As
can be seen, the general trend is for maximum processor
power consumption to increase by a factor of a little more
than 2X every four years.

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 2

Figure 1: Trends in CPU power consumption

The second trend to note, also shown in Figure 1, is the
increasing disparity between the maximum power
consumption of a processor and the power consumed by
that same processor while running more typical
applications. For a typical Intel® processor introduced
from 1996 onwards, the power consumed when running a
synthetic high-power workload was 20% higher than the
power consumed by the same processor while running a
high-power section of a real application.

The disparity between maximum power and typical power
consumed presents a particularly difficult problem to the
system designer. The system must be designed to ensure
that the processor does not exceed the maximum specified
operating temperature, even when it is dissipating the
maximum power. While designing an elaborate heat sink,
or forcing more air through the system can usually meet
this constraint, there is usually significant cost associated
with more elaborate solutions and environmental
regulations that limit system (fan) noises.

Cooling cost vs Thermal dissipation

0

5

10

15

20

25

30

35

40

20 30 40 50 60 70 80

Thermal Dissipation (W)

C
o

o
lin

g
 S

o
lu

ti
o

n
 C

o
st

 (
$)

Figure 2: The cost of removing heat from a
microprocessor

Figure 2 shows the relative implementation cost of
various cooling solutions ranging from a simple extruded
aluminum heat sink to a more elaborate heat pipe
technology. It is important to observe that as power
increases, there is a non-linear relationship between the
cooling capabilities and the cost of the solution. This

emphasizes the importance of limiting maximum power
consumption to a specific envelope, one defined by the
cost structure of the platform for which the processor is
intended.

PROCESSOR FEATURE DEFINITION
AND TRACKING
The Pentium 4 processor team started on the journey to a
lower power design by defining power reduction features
during the definition phase of the processor. The overall
processor power reduction was to be achieved with a
combination of architectural (i.e., thermal monitor)
techniques and microarchitectural/circuit (i.e., clock-
gating and low-power circuit) techniques. Once the
power reduction features were defined, it became
important to track the actual power savings of each
microarchitectural feature in a manner synergistic with
microprocessor development techniques.

A well-defined infrastructure was put in place to track
various aspects of the Pentium 4 processor power
reduction effort. The infrastructure included a series of
interactive reviews, indicators, and regression tests. The
first review was put in place as a checkpoint prior to the
start of code development. This review examined the
basic power plan and identified the specific set of power-
saving features. The output of the review was a common
format, easy to read summary of the power-reduction
plan.

An internal design indicator, dubbed the Wattmeter, see
Figure 3, was developed to track the implementation
status and the power savings achieved by each feature.
The Wattmeter was used to track progress toward specific
power goals. The data for the Wattmeter were based on
the unit-level power reduction plans, RTL coding
information, and the specific circuit style utilized for each
Functional Unit Block (FUB). The relative impact of
each feature was combined with the expected power
consumption of the FUB in question, and an architectural-
level activity factor was applied to yield an estimate of the
power saved by that feature in Watts. As specific features
were coded, the impact of those features on power
consumption was added to the Wattmeter to influence the
power-savings indicator.

Power Trends

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1985 1987 1989 1991 1993 1995 1997 1999

Year of Intro

Po
we
r
(W
att
s)

Max Power
Typical Power
Max Power Trend

Typical Power Trend

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 3

0

1

2

3

4

5

6

Processor Development Timeline

W
at

ts
Savings Reviewed Savings Verified Savings Coded

c

Figure 3: The Wattmeter

The Pentium 4 processor team identified more than 400
individual power-reduction opportunities that were
ultimately implemented in the processor. According to
projections from the various tools, some of these features
resulted in a significant reduction in power, while most
had a smaller impact. Power reduction features
implemented in roughly 20% of the FUBs accounted for
75% of the total power savings achieved on the processor.

ARCHITECTURAL-LEVEL POWER
SIMULATION
A new power estimation tool was developed to facilitate
the evaluation of various power reduction features prior to
the availability of a fully featured RTL model. This tool,
referred to in this paper as the Architectural-Level Power
Simulator (ALPS), allowed the Pentium 4 processor team
to profile power consumption at any hierarchical level
from an individual FUB to the full chip. The ALPS
allowed power profiling of everything, from a simple
microbenchmark written in assembler code, to
application-level execution traces gathered on real
systems.

At the most abstract level, the ALPS methodology
consists of combining an energy cost associated with
performing a given function with an estimate of the
number of times that the specific function is executed.
The energy cost is dependent on the design of the product,
while the frequency of occurrence for each event is
dependent on both the product design and the workload of
interest. Once these two pieces of data are available,
generating a power estimate is simple: multiply the
energy cost for an operation (function) by the number of
occurrences of that function, sum over all functions that a
design performs, and then divide by the total amount of
time required to execute the workload of interest.

The difficulty comes in gathering each of the required
pieces of data. The benefit of being able to estimate

power consumption is highest early in the design, yet
detailed data on event frequency and energy cost are often
not available. Therefore, it is often necessary to make
significant approximations based on the data that are
available.

Block
Power
Models

Application
 Trace

Performance
 Simulator

ALPS

 Power
Projection

Figure 4: The ALPS flow

The ALPS methodology, flow charted in Figure 4, utilizes
data from several sources. First of all, a high-level
description of the design is used to identify which
functional events are likely to have a significant impact
on chip power consumption. This behavioral description
is coupled with historical data on the power consumption
of different types of functional blocks, as well as designer
estimates, to approximate the energy cost of performing
each of the functions associated with a given logic block.
This results in a power model for each logic block of
interest. We can then measure the frequency of
occurrence for each of these events by utilizing the
statistics generated by an architectural-level performance
simulator for the design. The actual power estimate for a
given instruction sequence is then made by ALPS as it
executes the equation shown in Figure 5.

Total Power

Energy
n

Occurrences
n

↔()
Event 1

Event
n

↵
√
√



Execution Time
---- ------ ------ ------ ------- ------ ------ ------ ------- ------ ------=

Figure 5: Equation for total power

DEVELOPING THE BLOCK POWER
MODELS
In order to focus model development efforts, it is
necessary to understand the behavior of the processor to a
level of detail sufficient to identify which functional
events have the greatest impact on total power

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 4

consumption. By initially focusing only on those events
that were expected to result in significant power
consumption, we were able to quickly generate a simple
power model, which allowed for incremental
improvements as additional data became available. To
clarify, it is known that each access to a large memory
array (such as an on-chip cache) will cause the
simultaneous transition of many address and data lines
and have a noticeable impact on total power consumed.
Conversely, the power associated with a small state
machine that controls those cache accesses may have
much less of an impact.

For similar reasons, events that are expected to occur very
infrequently are also less important to model. As a
further example, based on the frequency of occurrence,
developing a power model for a logic block that generates
a physical memory address for each load instruction is
probably far more important than having a power model
for a logic block that detects floating-point exceptions.

From a data collection standpoint, the functional-block-
level information can be broken into two parts:
information used to determine the activity level of a
particular logic block and data to facilitate estimating the
energy cost of each type of activity.

Each logic block in the design may perform one or more
distinct logical functions. The activity level of the block
as a whole is dependent on how often these functions are
performed, the percentage of the logic that is associated
with each function, and the length of time it takes to
perform the function.

In the case of the Pentium 4 processor, we initially
considered each unit to have five to eight key functions,
and then added to this list, as additional design
information became available. The initial list of activities
was first based on a general understanding of the
microarchitecture; it was later refined as the high-level
processor definition code as the RTL for the block took
form. Typically, extensive interaction with unit architects
and designers was needed to clarify the events and
activities key to each logic block.

POWER VALIDATION
Clock gating refers to activating the clocks in a logic
block only when there is work to be done, and it is one of
the key power-saving techniques employed on the
Pentium 4 processor. When performing clock gating on a
massive scale, two validation concerns arise. With
overaggressive clock gating, logic failures can arise,
where a block should have been awake, but either did not
turn on quickly enough, or is turned off too soon. On the
other hand, conservative clock gating will not disrupt
correct functionality, but will result in wasted power.
Functional checkers such as an architectural simulator do
not report on such failures.

As one might anticipate, not all power-saving features
have equivalent value. Therefore, a two-pronged
approach was taken to finding these logic problems. One
was fine-grained, carefully focusing on just the key
power-saving features. The other was coarse-grained,
examining all gated clocks for abnormal activity. For
each approach, specific tools and methodologies were
created to automate the process of finding these power-
wasting logic problems. Use of these tools continued
throughout the entire design process.

To uncover logical failures associated with clock gating,
each Pentium 4 processor unit's Design Validation (DV)
Test Plan was reviewed to ensure that the validator
addressed the power down corner cases, and that such
cases are included in the overall validation coverage
figures.

THERMAL MONITOR OVERVIEW
Implementing a traditional thermal solution that
accommodates the maximum power consumption of a
leading-edge microprocessor like the Pentium 4 processor
would have a significant impact on the system cost. To
reduce this cost but retain a high level of reliability, an
enhanced version of an existing mechanism used in the
mobile computing segment, processor power modulation,
was used in the Pentium 4 processor.

The processor power modulation mechanisms employed
in mobile systems have taken two forms, both of which
require the cooperation of external logic. The first
mechanism involves slowly reducing the processor clock
frequency, typically from its maximum supported
frequency down to a lower frequency. The second
mechanism involves the modulation of the processor
STOPCLOCK signal (the pin named STPCLK#, while
asserted, has the effect of stopping the clock to many
internal elements of the processor) . Since power
consumption is proportional to operating frequency, both
mechanisms have a similar effect on the power consumed
by the processor.

The external logic that controls the power modulation of
the processor could be activated by numerous stimuli,
including detection of high processor or system
temperatures, detection of low available battery power, or
simply by a user selecting a low-power operating mode
(with the goal of extending battery life).

In the case of a desktop computing system, one of the key
constraints is the requirement to control the operating
temperature of the processor. This requires being able to
accurately measure the temperature of the processor
silicon. Unfortunately, this is difficult to achieve with
external temperature sensors. There is a significant delay
between the time at which the processor silicon reaches a
given temperature and the time at which an external
temperature sensor notices the temperature change.
Several solutions have previously been pursued, varying
from attaching the temperature sensors to heat sinks, to

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 5

the processor package, or mounting it underneath the
processor. Each solution has the same problem: reliable
high-volume manufacturing is difficult.

More recently, portions of the thermal sensor (e.g., the
thermal diode) have been located on the processor die.
Even this approach has clear limitations. The temperature
from one corner of the die to another can vary by a
significant amount, so understanding sensor placement on
the die is critical. Additionally, the rate at which the die
temperature can change is increasing to the point that the
currently available thermal sensor interface logic is too
slow to allow reliable die temperature measurement or
closed loop thermal control.

With the Pentium 4 processor, the objective was to enable
accurate control of processor die temperature. The
solution chosen integrates all portions of the power
modulation mechanism including temperature detection
through power control. When this feature is enabled, the
processor is capable of operating with no further software
intervention. In anticipation that software will eventually
be required to control processor power dissipation, the
architecture of the thermal monitor control logic has been
created in such a way that it closely maps to the existing
Advanced Configuration and Power Interface (ACPI)
specification and software.

The thermal monitor architecture implemented on the
Pentium 4 processor can be described as three separate
but related functions: a mechanism for determining
temperature, a mechanism for reducing the power
consumption of the processor, and a means of controlling
and providing visibility into each of these mechanisms.
Each of these three functions is described in detail in the
following sections.

TEMPERATURE DETECTION
MECHANISM
All integrated circuits are designed to operate reliably
within a defined temperature range. Outside of this range,
there is no assurance that the integrated circuits will
continue to function correctly. The die temperature at any
given point in time is a function of the power consumed
by the device (both at a given instant in time and in the
relatively recent past), the collective thermal coefficient
from the die through the heat sink, and the ambient
environmental conditions.

The temperature at any given point on the die can be
measured with the use of a diode and a precise current
source. The voltage drop across a diode is dependent on
both the current flowing through the diode and the
temperature of the diode. By supplying a constant
current, and measuring the voltage drop across a diode,
we can get a reasonably accurate measurement of the
temperature at which the diode is currently operating. By
comparing this voltage to a reference point, we can
determine when the temperature of the diode (and hence
the portion of the die that contains the diode) is just below

the maximum specified operating temperature. This is the
only temperature with which we are concerned.

There are a couple of key factors that significantly impact
the accuracy of such a thermal sensor. The characteristics
of both the diode used as the thermal sensor and the
transistors used to create the current source are dependent
on the specific parameters of the manufacturing process.
Many of the process parameters change slightly from one
wafer to another or from one area on the wafer to another,
affecting the temperature recorded by the thermal sensor.

The second factor impacting the accuracy of the thermal
sensor is the fluctuation in the processor operating voltage
(measured on the die rather than at the pins of the
processor package) . This noise can result in the thermal
sensor comparator (which determines whether the die
temperature has reached the maximum operating
temperature) signaling that the die is too hot, when in fact
it has not yet reached the critical temperature.
Alternatively, this noise could also cause the comparator
to incorrectly signal that the die is below the critical
temperature.

The Pentium 4 processor implements mechanisms to
account for both of these sources of error in the output of
the thermal sensor. In the case of a microprocessor, the
power consumed is a function of the application being
executed. In a large design, different functional blocks
will consume vastly different amounts of power, with the
power consumption of each block also dependent on the
workload. While the heat generated on a specific part of
the die is dissipated to the surrounding silicon, as well as
the package, the inefficiency of heat transfer in silicon
and between the die and the package results in
temperature gradients across the surface of the die.
Therefore, while one area of the die may have a
temperature well below the design point, another area of
the die may exceed the maximum temperature at which
the design will function reliably. Figure 6 is an example
of a simulated temperature plot of the Pentium 4
processor.

As a result of the cross die temperature variations; it is
very important that the temperature detection mechanism
(the integrated thermal sensor in the case of the Pentium 4
processor) be located at the hottest spot on the die. As
can be seen from Figure 6, there are clearly optimal
locations for placement of the thermal sensor.

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 6

oolest Die Area

Figure 6: Simulated thermal plot of processor die

Because the hottest location on the die may change from
application to application, it is important to confirm
theoretical thermal maps of the die with actual measured
data taken while various types of applications are
executing. By evaluating the thermal maps for several
classes of applications, it is possible to confirm the
optimal location for the thermal sensor. Evaluation of
these thermal maps also guides the selection of
appropriate guard bands to be applied to the thermal
sensor trip temperature. These guard bands are intended
to ensure that as long as the temperature measured by the
thermal sensor is below the maximum reliable operating
temperature, there will be no location on the die that
exceeds the maximum reliable operating temperature.

POWER REDUCTION MECHANISM
Once it has been determined that the die temperature is
approaching the critical point, a mechanism is needed to
quickly reduce power consumption, causing a drop in
temperature. There are several key constraints in the
design of this mechanism.

First, the latency between critical temperature detection
and power reduction should be low. In this case, low
latency refers to periods on the order of 100's of
microseconds. Reaction times significantly longer than
this would allow the die temperature to potentially reach a
point at which it no longer operates reliably.

Second, the mechanism should be efficient. Here,
efficiency refers to the ratio between power reduction and
performance loss. An ideal mechanism results in a power
vs. performance curve that is linear and crosses both axes
at 0. In other words, if the power modulation mechanism
results in a 10% performance loss while operating, it
would also provide a 10% reduction in power

consumption. Note an ideal relationship is only possible
if frequency is the only variable.

Finally, the mechanism should add little or no cost to the
design. Costs include those associated with die size,
validation, platform impact, and risk.

After evaluation of a number of potential options, the
Pentium 4 processor design team chose a mechanism that
utilizes the existing architectural low-power logic (the
StopClock architecture). The chosen mechanism
essentially provides an internal STOPCLOCK request to
the processor core.

This STOPCLOCK request results in the clock signal to
the bulk of the processor logic being stopped for a short
time period. While this clock signal is stopped, the power
consumption of the processor is reduced to a small
fraction of the maximum processor power consumption.
Because the STOPCLOCK request is a relatively high
priority interrupt, the delay between the request and the
resulting power decrease is relatively short, typically
much less than 1 microsecond.

In order to minimize any potential impact to the platform,
the time period during which the clock is stopped is kept
small. The design target limits the total time during
which the processor is not executing useful code to a few
microseconds. This includes both the time the clock is
actually stopped and the overhead associated with
stopping and restarting the clock signal.

THERMAL MONITOR CONTROL
The behavior of the power modulation mechanism can be
controlled with an enable bit in a model-specific register.
When enabled, the power modulation mechanism is
automatically invoked whenever the thermal sensor
indicates that the die is hot. The power modulation
mechanism remains engaged until the die temperature
drops below the critical value. While the default
condition has this bit set to ”disabled”, it is required that
the normal usage model would enable the thermal monitor
functionality during the initialization process, and leave it
enabled for as long as the system is powered on. This
usage model provides the most robust processor thermal
solution, as the processor can protect itself from most
causes of overheating without any interaction by system
hardware or software. The thermal monitor mechanism
can also be invoked via the ACPI compatibility registers
(see the section on ACPI interaction for details).

THERMAL MONITOR VISIBILITY
Although the thermal monitor mechanism implemented
on the Pentium 4 processor can be configured to engage
automatically and transparently, it may still be desirable
to signal the thermal monitor state to the system hardware
and operating system. In the Pentium 4 processor
implementation, this signaling is provided via three
means.

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 7

Figure 7: Example simulated system design curve

On the hardware side, an output signal reflects the state of
the thermal sensor comparator. This signal is asserted
while the thermal sensor indicates that the die temperature
is at the maximum operating temperature, and is de-
asserted while the temperature is below this point. This
signal could be used by system hardware to take some
action when the die temperature reaches the critical
temperature. Note, however, if the closed loop thermal
control is disabled, any cooling oriented action must be
effective very quickly to prevent the processor from
overheating and failing (see the section on the power-
reduction mechanism). For example, using this signal to
turn on an additional fan in the system would not be a
sensible solution as the processor temperature could
easily exceed its maximum operating temperature before
the cooling effect of the fan is noticed.

On the software side, there are two, model-specific
register-based, status bits of interest. The first reflects the
state of the thermal sensor comparator. This information
is identical to that provided by the output signal. The
second bit is a “sticky” bit, which is set the first time the
thermal sensor reaches the critical temperature, and it
must be explicitly cleared by software or through a
processor reset. An example use of the “sticky” bit would
be for diagnostic software to determine if the processor
has ever reached the critical temperature, which could be
used as an indicator that the thermal solution performance
has changed.

The final visibility mechanism consists of the ability to
generate an interrupt request whenever there is a change
in the output of the thermal sensor comparator. These
interrupts can be generated in either direction; i.e., an
interrupt can be generated when the thermal sensor output
transitions from the “not hot” state to the “hot” state,
and/or when the thermal sensor output transitions from
the “hot” state to the “not hot” state. Each of these
interrupts can be individually enabled or disabled.

PERFORMANCE
One of the primary themes behind the development of the
described thermal monitor mechanism is the ability to

reduce system thermal design costs without a perceivable
impact on performance. Because the thermal monitor
mechanism could impact performance if the processor
reaches the critical temperature, it is valuable to
understand how often, and for how long, the critical
temperature could be reached while running real
application code. These data allow system designers to
design a solution that optimally balances system cost and
the thermal performance required.

The performance impact resulting from the thermal
monitor is dependent on both the processor power
consumption and the thermal solution. By generating a
curve of thermal monitor performance impact vs. system
thermal capability, the system designers can determine the
design point that is optimal for their target market.

During the development process of the Pentium 4
processor, the Architectural-Level Power Simulator
(ALPS) was used to project the power consumption of a
range of applications. By using the power-consumption
projections of the ALPS, along with the expected thermal
characteristics of the Pentium 4 processor package, it was
possible to project the temperature of the Pentium 4
processor die at a given point in time while running the
applications of interest.

The resulting temperature vs. time data could then be used
to project when the processor would reach the critical
temperature. Using the characteristics of the thermal
monitor mechanism, along with the package
characteristics, it is possible to project how long the
thermal monitor mechanism would remain active. The
process described was automated and was used to
generate curves of processor performance vs. system
thermal design capability. Figure 7 shows an example of
one of these curves. As can be seen from Figure 7, the
thermal monitor mechanism implemented has the
potential for significantly reducing the system thermal
design point, without perceivably impacting processor
performance.

INTERACTION WITH THE ADVANCED
CONFIGURATION AND POWER
INTERFACE SPECIFICATION
The Advanced Configuration and Power Interface (ACPI)
specification defines a hardware and software
environment that allows operating system software
complete visibility and control of system configuration
and power management. The specification describes a set
of valid processor operating states and the allowable
transitions between them. The upper four states defined
for the processor are as follows:

1. C0—normal operation

2. C1—a low-power, low-latency state that assumes no
support from chipset logic that retains all cached
context

0.5

0.6

0.7

0.8

0.9

1.0

1.1

35% 45% 55% 65% 75% 85% 95%

System Thermal Design Point as a Percentage of Max Power

R
el

at
iv

e
P

er
fo

rm
an

ce

Ambient Temperature

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 8

3. C2—a lower-power, slightly longer latency state than
C1 that requires chipset support but still retains
cached context

4. C3—a still lower power, longer latency state that also
requires chipset support but one in which the cached
context may be lost

Systems based on the IA-32 architecture will typically
map the use of the HALT (HLT) instruction to the C1
state, the STOPCLOCK assertion to C2, and Deep Sleep
(removal of the processor clock input signal) operation to
the C3 state.

A documented sub-mode of the ACPI, C0 state is known
as Clock Throttling (the thermal control functionality on
the Pentium 4 processor would map to this sub-mode of
the ACPI spec). In this mode, the operating system
accesses logic to assert the STOPCLOCK signal with
some predetermined duty cycle prior to the Pentium 4
processor, this logic had been resident in the chipset).
The term "duty cycle" is used to refer to the
characteristics of the signal applied by the chipset to the
processor’s STOPCLOCK pin in order to reduce
processor power dissipation.

The register that is defined to enable and configure Clock
Throttling is named the Processor Control register
(P_CNT) by the ACPI specification. This 32-bit register
has bits defined to both set the Clock Throttle (power
control) duty cycle and force the thermal control to begin.
The actual width and offset within P_CNT of the duty
cycle field can be configured by a system developer. The
Pentium 4 processor has implemented this P_CNT
register in internal Model Specific Register (MSR) space.
The three duty cycle bits implemented in the Pentium 4
processor’s control register give software the ability to
define seven levels of power control, with one value (0)
reserved.

The incorporation of the P_CNT register in the processor
provides the operating system with the ability to perform
thermal control on a per processor basis even when there
are multiple processors in a system. The Pentium 4
processor does not support Multi-Processor (MP) system
configurations; however, there will be future MP capable
IA-32 processors based on this same microarchitecture
targeted at the server and workstation market. It should be
noted that, to date, chipsets have only implemented a
single set of ACPI Clock-Throttling registers, and that
chipsets have a single STOPCLOCK pin. The net impact
is that a per processor Clock Throttle solution does not
currently exist for MP systems. Incorporation of a
P_CNT register into the processor solves this issue
without requiring the addition of multiple STOPCLOCK
pins in the chipset.

P entium¤ Pro C PU - 200

Pentium¤ Pro CPU - 150

Pentium¤ 4 CPU
Target

Pentium¤ 4 CPU -Scaled
From Pentium¤ III CPU
Silicon

Pentium¤ 4 CPU
Actual

0
1986 1988 1990 1992 1994 1996 1998 2000

I ntroduction Date

Th
er

m
al

 D
es

ig
n

P
ow

er
 (W

at
ts

)

Intel 386 processor

Intel 486 processors
Pentium ¤ processors
Pentium ¤ Pro processors
Pentium ¤ 4 processors

Pentium¤ proc - 66

i486 - 25
i486 - 25

Figure 8: Pentium® 4 processor power with historical
trends

It is interesting to observe that the Thermal Monitor and
Clock Throttle functions, although similar and intended to
cooperate/inter-operate, are designed to allow control of
fundamentally different system parameters. The Thermal
Monitor is intended to very closely control the processor
die temperature, ensuring that the processor temperature
remains within the specified range. The Clock Throttling
defined by ACPI is intended to allow the operating
system to modulate the processors’ power dissipation in
order to control the ambient temperatures that may impact
other components within the system.

CONCLUSION
At the start of the Pentium 4 processor project, the design
team formally committed themselves to lowering the
processor power consumption by 20% from initial power
projections . The team also committed to lower the
thermal design point of the system by 40% without
perceivably impacting application performance, while
maintaining processor reliability. These commitments
were met in the initial version of the Pentium 4 processor.
For reference, Figure 8 depicts the level of power savings
that the Pentium 4 processor achieved, superimposed on
historical thermal design power data.

The power reduction achieved resulted largely from the
extensive application of clock gating and unit power-
down techniques. The addition of the thermal monitor
feature enables what is essentially a processor that is
capable of managing its own thermal profile to operate
efficiently within almost all thermal environments.

ACKNOWLEDGMENTS
The authors thank the Pentium 4 processor design team
for their significant effort to minimize the power
consumption o f the processor, with special thanks to
Bindu Lalitha, Kimberly Weier, Bret Toll, Kan Chu, and
Linda Rankin.

Intel Technology Journal Q1, 2001

Managing the Impact of Increasing Microprocessor Power Consumption 9

AUTHORS’ BIOGRAPHIES
Stephen H. Gunther joined Intel in 1992. He has spent
much of the last eight years in the Desktop Processor
Group working on techniques for reducing the power
consumption of Intel microprocessors. Steve received his
B.S. degree in Computer Engineering from Oregon State
University in 1987. He is currently involved in the
development of future microprocessors. His e-mail is
steve.h.gunther@intel.com

Frank Binns obtained a B.S. degree in electrical
engineering from Salford University, England. He joined
Intel in 1984 after holding research-engineering positions
with Marconi Research Laboratories and the Diamond
Trading Company Research Laboratory both of the U.K.
Frank has spent the last 16 years with Intel, initially
holding technical management positions in the
Development Tool, Multibus Systems and PC Systems
divisions. Frank’s last eight years have been spent in the
Desktop Processor Group in Technical Marketing and
Processor Architecture roles. His e-mail is
frank.binns@intel.com

Douglas M. Carmean is a principal architect with Intel's
Desktop Products Group in Oregon. Doug was one of the
key architects, responsible for definition of the Intel®

Pentium® 4 processor. He has been with Intel for 12
years, working on IA-32 processors from the 80486
through the generation beyond the Intel Pentium 4
processor. Prior to joining Intel, Doug worked at ROSS
Technology, Sun Microsystems, Cypress Semiconductor
and Lattice Semiconductor. Doug enjoys fast cars and
scary, Italian motorcycles. His e-mail address is
douglas.m.carmean@intel.com

Jonathan C. Hall graduated from Pennsylvania State
University with a B.S. degree in Computer Engineering in
1993. He completed his Master's degree in computer
science at Rice University in 1996. For the last four years
he has worked for the IA-32 architecture and performance
team in the Desktop Processor Group at Intel. Jonathan is
interested in processor power, performance, and
compilation. His e-mail is jonathan.c.hall@intel.com

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm .

Interconnect and Noise Design for the Pentium 4 Processor 1

Interconnect and Noise Immunity Design for the Pentium 4
Processor

Rajesh Kumar, Desktop Platforms Group-Circuit Technology, Intel Corp.

Index words interconnect, coupling, noise, inductance, domino, cell library

ABSTRACT
For high-performance chip design in deep submicron
technology, interconnect delay and circuit noise immunity
have become design metrics of comparable importance to
speed, area, and power. Interconnect coupling has
increased dramatically due to higher metal aspect ratios
with process shrinks. Reduction of transistor lengths and
thresholds has led to a drastic increase in subthreshold
leakage. The Pentium 4 processor is Intel’s fastest
processor so far. It contains aggressive domino pipelines,
pulsed circuits, and novel circuit families that attain very
high speed at the cost of reduced-noise margins.
Controlling interconnect RC delay is of paramount
importance at such high frequencies. At the same time,
the need for a high-volume ramp in the desktop segment
necessitates high-density wiring constraints that prevent
us from spacing or shielding all critical wires to manage
coupling noise. All of these made the task of
interconnect and noise design and verification quite
challenging.

This paper describes the key innovations and learning in
methodology and CAD tools. We first describe our
approach to the interconnect high-frequency design
problem and our silicon results. We then describe a new
proprietary noise simulator (NoisePad) and our noise
robust cell library, both of which enabled detailed noise
design and analysis for the first time in industry and were
critical to our success. Finally, inductance is a major
design problem at these high speeds. Our use of a
distributed power grid to manage this problem is
described.

INTERCONNECT DELAY AND
CROSSCAPACITANCE SCALING
With traditional process scaling, interconnect delays have
not kept pace with the speedup obtained in transistors.
The problem has become significant enough to require
entire architectural pipe stages in the Pentium 4 processor

for interconnect communication. At the circuit level,
widespread use of repeaters has become necessary. To
avoid degrading interconnect resistance, the vertical
dimension of metals has scaled very weakly compared to
the horizontal dimension, leading to extremely high
height/width aspect ratios (2-2.2). See Figure 1.

0.5 um technology
m3

0.25 um technology
m3

m2 m2 m2 m2.95

.75 .77

.98 .89

.48

.45

.75

Figure 1: Wire aspect ratio scaling with technology

Nowadays, most of the wire capacitance is to parallel
neighboring wires in the same layer (Figure 2), which can
get routed together for long distances. This can either
lead to a large increase in delay, coupling noise, or min
delay problems, depending on the switching direction of
neighboring wires. As can be seen from Figure 2,
avoiding these delay and noise problems would involve
drastically increased wire spacing or extensive shielding.
Further, studies on both the Pentium III and Pentium 4
processor floor plans have clearly shown that we tend to
be interconnect limited for die area, which increases the
penalty for spacing and shielding.

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.2 1.4 1.6 1.8 2

0.5 um
0.25 um
0.18 um

spacing/ min spacing

Csame layer/ Ctotal

Figure 2: Coupling capacitance scaling with

technology

Thus, there is a fundamental design tradeoff between a
simple, robust, wiring solution employing extensive
spacing and shielding vs. an aggressive solution
employing short wiring with only judicious shielding
leading to high density. The latter requires sophisticated
CAD tools, has more risks, but ultimately is much more
optimal for a high-volume product. It was therefore the
choice for the Intel Pentium 4 processor.

Figure 3: Dedicated repeater banks in the Pentium 4
processor effectively form a virtual repeater grid

WIRE AND REPEATER DESIGN
METHODOLOGY FOR THE PENTIUM 4
PROCESSOR
Delay, noise, slope limits, and gate oxide wearout were
all considered when drafting the guidelines for the wire
and repeater methodology. Notable features were an
increased emphasis on noise robustness and “pushed
process” considerations for delay (repeater distance
guidelines were made shorter than optimal for delay with
the existing process, in anticipation of end-of-life process
trending when transistors speed up a lot compared to
wires). Repeater sizing, rather than best delay
optimization for non-coupled wires, was picked to be
optimal for noise rejection, for equal rise and fall delays,
and for better delay in the presence of coupling.

Stringent limitations were put on maximum sizing of
repeaters, especially in buses, to reduce power supply
collapse caused by a simultaneously switching bank of
repeaters. The methodology and tools allowed us to use
both inverting and non-inverting repeaters. Simple
length-based design rules were provided for repeaters,
and further optimization was possible through internally
developed proprietary tools: NoisePad, ROSES, and
Visualizer (net routing and timing) analysis.

The extensive use of dedicated repeater blocks is evident
in the Pentium 4 processor floorplan (with repeater
blocks highlighted) shown in Figure 3. Further, the net
length comparison in Figure 4 shows that although the
Pentium 4 processor is a much larger chip, there are very
few long nets in it compared to previous-generation chips
such as the Pentium III processor. This is even more
notable given that the Pentium 4 processor has more than
twice as many full-chip nets as the Pentium III processor
and has architecturally bigger blocks. If we compare the
M5 wire segments of the Pentium III, and Pentium 4
processors, we note that 90% of the M5 wire segments of
the Pentium 4 processor are shorter than 2000 microns
while the same percentage of Pentium III processor wires
are 3500 microns long. These short wires are a key to
enabling high-frequency operation.

0

500

1000

1500

2000

2500

3000

3500

Pentium 4 Pentium III

Figure 4: M5 length comparison of global wires for
different processors using the same 0.18 um

technology

Crosscapacitance and Density Comparative
Results of the Pentium 4 Processor
Interconnect
The Pentium 4 processor designers’ wiring philosophy
was to allow short, tight wires. High crosscapacitance
was tolerated as the price that had to be paid for dense
wiring. Tolerating high crosscapacitance is necessary
especially in congested areas of the chip to avoid die
growth.

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 3

Cumulative %Xcap for long wires

0

1000

2000

3000

4000

5000

6000

%Xcap or more

N
o

 o
f

n
et

s

Pentium III

Pentium 4

Pentium III 2694 1474 819 122 15 0

Pentium 4 5261 4147 3222 2104 474 25

0.5 0.6 0.7 0.8 0.9 >0.9

Figure 5: Coupling comparison of Pentium 4
processor/Pentium III processor wires

Figure 5 clearly shows that the Pentium 4 processor has
significantly more wires with high crosscapacitance than
does the Pentium III processor. This aggressive wiring
makes additional accuracy in noise CAD tools (discussed
later) even more important.

NOISE SOURCES AND TECHNOLOGY
TRENDS
There exists a fundamental duality between circuit speed
and noise robustness in that we can always make circuits
faster by tolerating smaller noise margins. Before
looking at this issue specifically from the perspective of
the Pentium 4 processor, let us look at noise sources and
their scaling.

Interconnect Crosscapacitance noise refers to charge
injected in quiet wires by neighboring switching wires
through the capacitance between them
(crosscapacitance). This is perceived to be the most
significant source of noise in current processes (see
Figure 6). It is intimately tied to interconnect design for
delay and was discussed in the previous section. Device
scaling is making the problem worse due to near-end vs.
far-end noise effects on resistive metal lines.

Domino StageDomino StageDomino StageCMOS driverCMOS driver

power supply
noise
power supply
noise

crosscapacitancecrosscapacitancecrosscapacitancecrosscapacitance

charge sharingcharge sharingcharge sharing

subthreshold leakagesubthreshold leakage

propagated noise

Figure 6: Various noise sources for digital circuits

Charge Sharing Noise is caused by charge redistribution
between a weakly held evaluation node and intermediate

nodes in a logic stack. This primarily impacts domino
nodes, weakly driven pass gate latches, and dynamic
latches. The primary technology variable here is the ratio
of junction capacitance to gate and interconnect
capacitance. For most circuits, this noise is not getting
significantly worse with new technology generations.

Charge Leakage Noise in our current processes is mainly
composed of subthreshold conduction in nominally off
transistors. This current can either charge/discharge a
dynamic node or cause the stable state of a weakly held
node to be significantly different from rails. This is
mainly a concern for wide domino NOR, PLA, and
memory arrays. This current increases exponentially with
decreasing thresholds and is becoming very significant
from 0.18um onwards.

Power Supply Noise is the difference between the local
voltage references of the driver and receiver, which can
appear as a spurious signal to the receiver and cause
circuit failure. It has both low-frequency and high-
frequency components. The low-frequency component
(IR drop) is managed well by flip-chip C4 packaging,
which provides a very low resistance current path. For
high-speed transients, the large inductance of the package
return causes significant return current to flow through
the on-die power grid. For simultaneous switching of
wide busses, the impedances in the signal and current
return path can be of comparable magnitude leading to
large power supply bounce. Power supply noise is a
dominant factor in the design of wide domino circuits and
in circuits using contention where the AC logic level is
shifted with respect to power supply rails.

Mutual Inductance noise occurs when signal switching
causes transient current to flow through the loop formed
by the signal wire and current return path, thus creating a
changing magnetic field (see Figure 7). This induces a
voltage on a quiet line, which is in or near this loop. For
several signals in a bus switching simultaneously, these
noise sources can be cumulative. Unlike
crosscapacitance, which is a short-range phenomenon,
mutual inductance can be a long-range phenomenon and
hence is worse in the presence of wide busses. Faster
switching speeds and wider, synchronous bus structures
are making this noise very significant in current
technologies.

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 4

Return path

current
loop

Quiet Bitsimultaneous
switching bus

Figure 7: Mutual inductance noise from simultaneous
switching on a wide bus

Inductive noise can combine with capacitive noise to
cause even worse noise than shown in Figure 7. Because
the analysis of inductive effects is highly dependent on
layout and is quite complex, the approach is usually to
design the problem out through rules rather than analyze
arbitrary configurations.

NOISE CHALLENGES ON THE PENTIUM
4 PROCESSOR
The performance goals of the Intel Pentium 4 processor
compared to the Pentium III processor were 1.5X–2X
higher frequency on the normal (medium) part of the chip
and 3X–4X the frequency on the fast (rapid execution
engine) part of the chip. These targets require aggressive
domino pipelines. In the rapid execution engine, the
pipeline is only eight stages deep with the last stage
usually feeding the first domino stage after considerable
routing. Traditional techniques such as not allowing
routing into domino receivers or buffering domino inputs
would have added an additional 10-20% latency to the
pipe.

Accurate noise analysis using NoisePad and circuit styles
such as pseudo-CMOS logic shown in Figure 8 (which
provide the logic capability of domino logic and the noise
robustness of CMOS) were employed.

noisy signal A after
long route

local signal B local signal C

noisy signal A after
long route

local signal B local signal C

Pseudo CMOS
P device for noise reduction
Pseudo CMOS
P device for noise reduction

Figure 8: Pseudo CMOS circuit for input noise
protection

Pulsed clocking was used in the Pentium 4 processor for
lower clock power and load. This made charge sharing

protection rather difficult. To reduce power and area,
dynamic latches were used extensively as mindelay
blockers. These pulsed circuits have no keepers;
therefore, increased noise sensitivity and charge leakage
had to be verified by noise tools.

A new form of latch called the set-dominant latch was
used in the Pentium 4 processor for speed optimization.
This weakly held circuit node could get routed into a
domino receiver causing increased noise sensitivity.

Process Optimization Consideration for
Noise and Leakage
Most design rules and circuit decisions for the Pentium 4
processor, were based on early 0.18 um process specs.
We wanted a robust part, which could be pushed for
speed later. We expected that the transistor length and
leakage targets would be aggressively pushed in our quest
for speed in a mature process. Due to these
considerations, we employed very large Ioff numbers for
our design rules and CAD tools. As shown in Figure 9 by
the process trend over time, this was indeed a wise
choice: the Pentium 4 processor has scaled well in
frequency and still has considerable frequency headroom
speed.

0

1

2

3

4

5

6

7

1997 1998 1999 2000

Early SpecEarly Spec Process
Push

Design rules and CAD

R
el

at
iv

e
Io

ff

Figure 9: Impact of process push on subthreshold
leakage

NOISE ANALYSIS ALGORITHMS
Some amount of noise is unavoidable in digital circuits.
The question is deciding when it causes functional
failure.

Strongly held static nodes recover after a noise transient
and usually incur only a frequency slowdown. Dynamic
latches and domino nodes, however, show true functional
failure. The node goes to the wrong logic state and may
not recover even after the frequency has been slowed
down. Latches and other circuits with feedback show a
similar failure mechanism.

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 5

Small Signal Unity Gain
Prior to our work on the Pentium 4 processor, traditional
analysis of noise margins relied on the small signal unity
gain failure criteria.

Figure 10: DC transfer function of an inverter
illustrating small signal unity gain

As illustrated in Figure 10, for a small change in input
noise to a circuit biased at an operating point, the
resultant change in output noise is measured. If |d
(Output)/ d (Input)| > 1 then the circuit is considered
unstable.

Unity gain is a good design metric but is neither
necessary nor sufficient for noise immunity. Most
aggressively designed paths have some noise-sensitive
stages interspersed with quiet stages. We need to allow
some noise amplification in the sensitive stage knowing
that the quiet stages will finally attenuate it.

Failure Criteria: Noise Propagation
As was mentioned in the previous section, failure criteria
based on unity gain tend to be extremely conservative in
most cases and are still not proven to be conservative in
all cases. Alternately, the entire circuit can be broken
into circuit stages, across which noise propagation can be
tracked. To do this, we perform an AC circuit simulation
of each circuit stage, with noise sources injected in worst-
case temporal fashion, combined with noise propagated
from previous stages, and measure if any circuit stage
failed as a result. In this case, noise can be made to
propagate across any number of stages, eliminating the
need for any unity gain budgeting. Failure is observed at
weakly held nodes such as domino nodes and latches,
where the node does not recover after sufficient time.
This is very similar to path-based static timing analysis,
which allows time borrowing. The computational
complexity and memory cost of this approach is the main
issue. We made significant CAD innovations to reduce
the computational complexity of this approach and
implemented this for the Pentium 4 processor in the form
of a new noise simulator called NoisePad.

Combination of Noise Sources
Traditionally, different noise sources such as charge
sharing, coupling, etc., were characterized separately, and
individual maximum budgets were allocated for each
source. This is rather conservative. A wide D2 domino
NOR node, for example, is very sensitive to coupling at
its inputs but has no charge sharing. Some ad hoc
approaches to combining noise budgets exist, but the
desirable solution is to simulate all noise sources together
with no accounting for individual budgets. The simplest
way to achieve this is linear superposition. The biggest
nonlinear effect is the finite threshold of transistors. For
example, a combination of ground bounce and coupling
at the input of a transistor leads to a much larger
transistor current than does an addition of currents
resulting from separate ground bounce and coupling.
Another nonlinearity is transistor resistance as a function
of drain-source voltage. For example, the peak noise in
the event of two simultaneous couplers on a line is larger
than the sum of these two events, because the couplee
driver resistance increases with an increase in noise
magnitude. A third nonlinearity is caused by voltage-
dependent parasitics. These are important, for example,
when combining charge sharing with coupling effects.

Simultaneous Noise on Multiple Inputs
For multifanin circuits we have to consider not only
different noise phenomena, but also their simultaneous
occurrence on different parallel inputs. Traditionally, the
injection of the same noise on all parallel paths was the
worst-case scenario. There are several important cases
such as register file arrays where this pessimism can be
the deciding factor in the feasibility of the circuit. For
example, in a multi-ported register file with a segmented
bitline, maximum coupling cannot simultaneously occur
on multiple word lines on the same port. Some
background noise such as power supply noise may still be
present on the other inputs.

DC vs. AC Noise Analysis
Some components of noise such as charge leakage and
the low-frequency components of power supply noise
have time constants much larger than those of most
digital circuits. Effectively, these can be treated as DC
waveforms. DC analysis and library characterization are
relatively straightforward. Further, it is easy to combine
noise sources; e.g., two couplers or coupling with charge
sharing, with a DC approach as no computationally costly
temporal shifting is required. However, noise sources
such as interconnect coupling, charge sharing, etc., have
pulsewidths of the same order as those required to charge
or discharge most circuits. In this case, approximation of
the true waveform with its peak amplitude DC produces

Vout

Vin

d(Vout)/d(Vin)

Vin

1
Noise Amplification

Noise attenuation

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 6

gross conservatism. Digital circuits work as “low pass
filters” for noise due to their finite transistor resistances
and load capacitances. In many matched high-speed
circuits, this approximation can lead to a 2X difference in
tolerable noise levels. In spite of the severe
computational overhead, AC waveform analysis is
necessary for the design/verification of sensitive high-
speed circuits.

NOISE ROBUST CELL LIBRARY DESIGN
Traditionally, our chips have been designed with fixed
cell sizes. The ability to drive different loads has been
achieved by providing a finite number of different sizes
and in some cases of different P/N skew. For the
Pentium 4 processor, we found that additional
performance, and area and power optimization, were
possible by having a stretchable cell library that didn’t
have the constraints of fixed cell sizes. Noise robustness
was an important consideration for sequential and domino
cells. A key innovation for noise robustness was the use
of stretchable keepers for domino nodes and sequentials.
Traditionally, when assembling domino libraries, keepers
were designed to keep additional delay within tolerable
limits. For the Pentium 4 processor, instead of the size of
keepers being hard-coded, each cell had symbolic
constraints describing its leakage and noise metric (no. of
pull downs, stacking, etc.), along with its delay metric.
The default keeper tried to maximize noise immunity
while keeping tolerable delay. As an example, wide fanin
domino NORs were provided with significantly larger
keepers. Similarly, stacked configurations had larger
keepers. However, a designer using NoisePad,
optimizing for the actual instance-based noise and speed
requirements, could easily adjust this keeper strength.
This did not involve creating a new custom cell (unlike
other chips) and was widely used for noise suppression.

Each cell could be tuned for its noise environment (as
needed) and did not have to follow conservative rules.
The symbolic constraints also made the task of process
conversion trivial instead of significant since the entire
library did not have to be redesigned when leakage
changed from a 0.18 to a 0.13 um process.

Another key decision made regarding the cell library was
forecasting the optimum leakage of future processes. We
predicted that leakage would get much higher for
optimized 0.18 and 0.13 um technologies and therefore
designed the library to combat this increase. Specifically,
for the design of wide domino nodes and array and
register file structures, we went with segmented bit-line
architecture and disallowed circuits with large numbers of
parallel pull downs (except PLA waivers). This design
rule allowed us to tolerate significantly higher leakage in

the process, which is necessary for transistor
performance.

Noise CAD Tool Requirements for the
Pentium 4 Processor
In the Pentium 4 processor, we treat charge leakage as
DC noise. Interconnect coupling, charge sharing, and
noise propagation need to be handled with AC waveform
analysis. All noise sources are simulated together without
linear superposition. The analysis does not assume
maximum budgets on individual noise sources.
Regarding simultaneous noise on multiple inputs, by
default the same noise is applied to all parallel paths.
This can be overridden for speed or area critical paths; in
which case, transient noise is analyzed on specified paths
with background power supply noise on other paths.

The Pentium 4 processor is primarily custom designed
with a library of parameterized/stretchable cells. In past
methodologies, custom design resulted in a large
overhead for noise analysis because of required
characterization. In the Pentium 4 methodology, all cells
are treated as custom cells with “on the fly” analysis.
This requires no library pre-characterization and thus
places no extra overhead on custom design.

NOISEPAD: NOISE CAD TOOLS AND
METHODOLOGY
Using the technique of noise propagation, any path can be
broken into small circuit stages, which can be analyzed
sequentially. Technically, we could perform this analysis
with industry-standard SPICE-type simulators.
Unfortunately, the throughput available in the Pentium 4
processor design timeframe was not acceptable for either
interactive design or batch mode verification. A new
transistor-level simulator was developed that allowed a
throughput that was orders of magnitude higher than the
traditional SPICE approach. The key innovations were
symbolic circuit simulation and simplified noise analysis
of distributed interconnect.

Symbolic Circuit Template Simulation
To achieve high throughput, the noise simulator
reduces/matches circuits to a list of predefined
parameterized circuit templates. The differential
equations governing these circuit templates have been
solved symbolically in a piecewise linear manner and
don’t need to be solved at runtime. The simulation
consists of evaluating these piecewise linear analytical
solutions at succeeding time points. Device nonlinearities
and voltage-dependent parasitics are dealt with because
the model is “piecewise linear” and not just linear.
Circuit relaxation is used for DC bias point calculations

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 7

to handle the DC noise sources. Templates exist for
drivers and receivers of CMOS, domino, pass gate, and
novel logic types.

Figure 11: Circuit template idea for a domino
receiver

In Figure 11, a piecewise linear waveform of input noise
voltage added to the power supply noise creates a
piecewise linear current in the receiver. This current is
added to other current sources such as charge leakage,
charge sharing, and current injected through the
gate/drain miller capacitance. The differential equation
governing this circuit has a closed form solution, which is
known a priori.

Transistor Models
For noise analysis, simple transistor models are often
adequate. In this context, some transistors are normally
“on”, in which case they try to keep a node in its correct
logic state, e.g., a domino keeper. These are
characterized by a large |VGS| and small |VDS|, meaning
they operate in the linear region. Normally, “off”
transistors are ones that try to upset the logic state of a
node by current conduction. For small or reasonable
values of noise, these are characterized by large |VDS|
and small |VGS|, meaning they operate in the saturation
region. Depending on the gate input noise, these can
either be in the subthreshold or strong inversion region.
With these simplifications, very computationally
inexpensive transistor I-V models were developed and
implemented with a precharacterized transistor table
look-up model. We used a non-uniform grid to optimize
for noise sensitive regions of operation; for example, we
used much finer gridding in the subthreshold/weak
inversion region.

Distributed Interconnect Noise Analysis
The computational complexity of noise analysis is often
dominated by the coupling analysis of the distributed
interconnect. In the past, interconnect coupling has been
dealt with, in a lumped fashion, by putting all coupling
capacitance at the end of a line. This produces significant

conservatism. Further, for interconnect with side
branches, there are no straightforward solutions.

For handling complex interconnect networks, especially
from post layout, Asymptotic Waveform Evaluation
(AWE) analysis using iRICE has been integrated into our
noise simulator.

Elmore Noise Model
To drastically increase the throughput of distributed
interconnect noise analysis, a new analytical closed form
approximation has been developed for multiple aggressor
coupling on a distributed network.

Figure 12: Elmore approximation for noise analysis

This is called the “Elmore model” due to the analogy with
Elmore delay used in timing analysis. The idea here is to
make the analysis much simpler by reducing the network
moments or, in other words, finding the dominant time
constant of the network. In Figure 12, ctotj is the sum of
the total switching and non-switching capacitance on the
jthnode. All couplers are aligned for worst-case
temporal shifts, and they finish switching at time t = 0.
NoisePad analysis switches between this simple model
and more expensive AWE models, based on heuristics.

FULL-CHIP WIRE NOISE
VERIFICATION
The key idea behind the Pentium 4 processor full-chip
noise verification is “strobed signaling.” A non-restoring
node for noise is defined as a node, which if falsely
tripped due to noise, will not recover with the passage of
time (e.g., domino node or off pass gate latch). A signal
is called “strobed,” if its logic cone leading to a non-
restoring noise node is controlled with a clock (e.g., D1k
domino). In this case, the effect of noise on this node
may be dependent on clock frequency.

charge sharing

charge leakage

Domino receiver circuit

keeper

charge sharingcharge sharingcharge sharing

charge leakagecharge leakagecharge leakage

Domino receiver circuit

keeper

Domino receiver template

R(keeper)

Iinput +
Imiller +
Ichargesharing +
Ichargeleakage

Cload +
Cmiller

Domino receiver template

R(keeper)

Iinput +
Imiller +
Ichargesharing +
Ichargeleakage

Cload +
Cmiller

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 8

eval clk

A as a result of coupling

eval node

High Frequency

eval node

eval clk

A as a result of coupling

low frequencyA

eval clk

eval node

C

A, B, C are from same phase.

B

Figure 13: Impact of frequency on noise failure

As shown with the D1-k example in Figure 13, at a lower
frequency, the noise will settle down before the signal is
sampled and as such will not fail at the lower frequency.
In most cases, the timing of aggressors switching for
noise is earlier than predicted by max delay timing
analysis due to a reduced Miller Coupling Factor (MCF)
in the noise case. Further, the worst noise case is usually
on fast silicon at high voltage (good for speed). As such,
in most cases, we can ignore the cases leading to a slight
frequency slowdown in our analysis. The tricky
situations are those that lead to excessive frequency
slowdown or even worse, frequency shmoo holes. Before
spending valuable CAD tool resources on these non-
trivial cases, we needed to convince ourselves that the
common benign case is indeed the dominant one and
therefore the one on which to base our full-chip wiring
methodology.

Most full-chip signals are busses (~59,000 out of 72,000
nets), and less than 10% of full-chip signals are
“sensitive” (feeding domino receivers or direct pass gate,
etc.). Most busses have similar timing among different
bits, which should ease the frequency slowdown and
shmoo problem. Figure 14 shows the significant effect of
this analysis. Most of the effect of this filtering was due
to the “required filtering” that characterized frequency
slowdown, and very little was due to “valid filtering,”
which looks for aggressors not switching together.

TBPU results of filtering

0

200

400

600

800

1000

1200

%Xcap

N
o

 o
f

si
g

n
al

s

pre filter

post filter

pre filter 2 246 100 669 443 552 650 880 596 6

post filter 843 1077 785 740 273 170 102 114 38 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 >0.9

Figure 14: Impact of frequency independent timing
filtering

Frequency Independent Filtering
To solve the rare cases of real noise problems on a
strobed signal, we decided to classify noise issues as
follows: 1) functional failure at all frequencies; 2) slight
slowdown; 3) large slowdown; 4) frequency shmoo hole
at a lower frequency as shown in Figure 15; 5) mindelay
switching induced noise failure; and 6) excessive
coupling causing gate oxide wearout. Issue number 6
was achieved simply through a VCC/2 coupling noise
clamp, which was used as a warning. For the rest, we had
to implement timing filtering, which understood changing
timing relations at different frequencies. Timing filtering
was first implemented for the Intel Pentium Pro
processor as the tool Crosswind [4], and it introduced the
concept of valid and required time window filtering; valid
window noise ‘profiling’ or juxtaposition of aggressor
noise over the clock period; and rudimentary modeling of
drive ratios with fixed thresholds for noise sensitization.
Later implementations developed for the Pentium II and
Pentium III processors improved on several aspects of
driver and interconnect modeling.

Figure 15: Frequency shmoo hole

The novel features of timing filtering for the Pentium 4
processor include three modes of frequency analysis (low
frequency for burn-in analysis, high frequency for at-
frequency noise and delay tests, and all-frequency sweep
for noise effects); timing skew between victim and
aggressors; required-time filtering with victim recovery;
and an interactive graphical waveform interface for
timing filter debug.

The design of the Pentium 4 processor brought new
challenges to timing filtering because of the complexity
of its clocking system. In earlier clocking styles, an
excessive slowdown or shmoo hole was usually caused by
a very late signal coupling into a signal with early-
required time or by the interaction between signals from

��
fast

medium ph2

medium ph1

slow ph1

���������������������������������������
���������������������������������������

���������������������������������������
��

���������������������������������������
���������������������������������������
��

���

�� �� ��
�� ��

��
�������������������������������������
��

���

1500 Mhz medium frequency

fast

medium ph2

medium ph1

slow ph1

1200 Mhz medium frequency

signals do not intersect at spec operating frequency

signals intersect at a slightly lower frequency

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 9

opposite phases. In the Pentium 4 processor, however,
the design incorporates several clocks that are multiples
of each other: signals are F(ast), M(edium), and S(low)
clocked signals. Not only do signals occur in different
phases, but also with different periods. In addition, these
differently clocked signals interact as they are not a priori
restricted to different regions of the chip. Thus, mid-
frequency shmoo holes are much more probable in such a
design.

The new approach handles a clocking system with an
arbitrary number of phases and an arbitrary number of
synchronous clock frequencies by using a Multi-
Frequency Algorithm.

At very low frequencies, signals activated by different
phases are widely separated in time, so much so that they
do not interact. This represents the low end of all
frequencies to be considered, while the target operating
frequency represents the high end. Sweeping frequencies
at a small enough increment to catch waveform overlaps
is prohibitive due to the complexity of the internal scan.
We, therefore, needed a more adaptive algorithm. Here is
the entire algorithm with an all-frequency sweep as its
outer loop:

For each victim net:

1. Collect aggressor set for a given victim and skew
timings appropriately.

2. Map clock edge references onto phases of an
appropriate clocking system. For example, a set of
aggressors with M and F rising edge references
requires a two-phase system.

3. Perform a noise sweep, computing aggressor
interaction sets and generating timing “filter table.”

4. Compute the next highest frequency of interaction
among signals.

5. Return to step 2 until there is no more interaction
among signals.

��
��
��
��
��

a
b

d
e

c

List of possible switching
sets at this frequency

abcde
11100
01010
00101

Figure 16: Illustrating logical switching set groups

The most difficult part of the algorithm is to compute the
frequencies of interaction, as illustrated in Figure 16.
Given that an O(N log N) scan is in the internal loop, the
algorithm cannot afford to sweep with a very fine grain to
catch all interactions.

The key to computing the next frequency of interaction is
to comprehend the relative velocity of timing edge
references as one slows the primary clock. By carefully
searching the edges most close to one another and
keeping track of their relative velocities, this algorithm
can be made reasonably efficient. One difficulty is
handling edges that refer to a previous clock phase that
are actually moving backward with respect to other
timing edges as frequency is increased. To handle this
and other difficulties, we developed a general approach to
handling both the modular nature of signal timings and
measuring the frequency at which they may intersect,
based on the concept of relative edge velocity.

Full-Chip Noise Convergence
Detailed noise verification requires a lot of data: circuits,
timing information, detailed parasitics, interconnect, etc.
For a lead processor like the Pentium 4 processor, “clean”
data for all nets are available only very close to tapeout.
Further, this detailed model is too slow to turn and,
moreover, it is serial in nature. After finding a violation,
one has to backtrack through numerous files, models, and
schematics to verify if a real problem exists (needle in a
haystack scenario). With these incomplete data, trending
and schedule predictions are difficult.

To circumvent these problems, simple “perturbation”-
based models were built using mathematical spreadsheet
software. Parallel probes gather all relevant information
about a net (timing, parasitics, length, circuit, etc.) to a
total of 87 relevant metrics for each net! Approximately
40 full-chip models were built in one week for various
“what if”(perturbation) scenarios. These models looked
at tweaking various knobs: number of aggressors,
switching probabilities of small aggressors,
synchronization of noise propagation with coupling,
probability of multiple noise events on same gate, various
clock skew assumptions for timing filtering, various
frequencies for allowed frequency slowdown, etc., to find
reasonable settings and really serious problems but not
produce too many false violations. A detailed NoisePad
model was used as the starting point for these models.
After this analysis, the new noise was assumed to be a
slight perturbation around its NoisePad value and
predicted by the change in the knob (e.g., changing
lumped %xcap from 100% to 50%).

Although these fast models were very crude, they were
surprisingly accurate because they did not try to predict
the real noise but rather the perturbation (much smaller
error). Based on these fast models, another detailed
NoisePad model was built with correct knob settings and
used for final convergence. As can be clearly seen from
Figure 18, this exercise helped us greatly with
convergence and saved us an estimated one to two

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 10

months in our noise convergence schedule. The dramatic
decrease in noise violations seen in Figure 17 involved no
work from the design team!

Full chip Noise violations on WMT

0

500

1000

1500

2000

2500

3000

3500

4000

noise model

ve
ct

o
r

co
m

pr
es

se
d

 f
ai

lu
re

s

0 to 100 mv

101 to 250 mv

250 mv and worse

0 to 100 mv 3155 3200 3475 248

101 to 250 mv 1957 1864 1201 172

250 mv and worse 1649 1650 926 79

ww3099g ww3299b ww3599b ww3899d

False transitions filtering

Fast perturbation
based model work

Figure 17: Road to noise convergence on the
Pentium 4 processor

MUTUAL INDUCTANCE
METHODOLOGY
At low frequencies, flip-chip C4 packaging provides a
very low resistance current return path. For high-speed
transients, the large inductance of the package return
causes significant return current to flow through the on-
die power grid, as shown in Figure 18. For simultaneous
switching of wide busses, the impedances in the signal
and current return path can be of comparable magnitude
leading to large inductive noise.

Figure 18: Signal inductance problem with flip-chip

packaging

A test chip was fabricated with test structures to measure
mutual inductance noise on wide busses. In this chip,
signal busses of varying width could be made to switch in
any combination, with several combinations of return
scenarios, one of which is shown in Figure 19. We were
also able to measure simultaneous capacitive and
inductive noise, which helped us develop empirical
design rules. To keep the area impact small while

reducing inductance, a scheme of distributed power
supply was chosen for the Pentium 4 processor, where for
top-level metals (M6 and M5), a power signal was routed
after every 5 signal wires, thus providing a nearby current
return and reducing the loop area for inductance.
Towards tapeout, a tool for crude inductance estimation
was written. This looked for any sensitive circuits (e.g.,
domino) routed for appreciable distance in the
neighborhood and parallel to long, wide busses. By
taking the width of the bus, distance from the bus, and
length of overlap, an inductance noise metric was used to
flag any possible problems. This check was not restricted
to wires routed in the same metal layer.

Figure 19: Silicon measurements showing inductive
noise

TIMING AND NOISE INTEGRATION
Traditionally, timing analysis (PV) has remained
decoupled from noise analysis. As we push both timing
and noise limits, there is increasing interaction between
the two.

Currently, min delay analysis verifies that all circuits
meet their hold time limits while a pulse width/delay
check verifies that pulses are wide enough for circuits. In
the 0.18 um technology generation, the tool Pathmill* is
used for min delay analysis. The common algorithm for
hold time checks is to ensure the switching data signal
does not reach its 50% point before the going away clock
reaches its 50% point.

*Other brands and names are the property of their
respective owners.

far aggressors

near aggressors

victim

c4
bump

on die
power
grid

on die
power
grid

signal lines

C4 package Power Plane

high inductance
loop due
to large separation.

high inductance
loop due
to large separation.

skin depthskin depth

current
return
current
return

current

100u
Diagram not
to scale

60u

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 11

Data_1

Data_2

Data_3

Eclk

Dip_1

Dip_2

Dip_3

Eclk

Data

Pclk

Out

Figure 20: Timing-induced noise

There are some other algorithms, which change the
threshold (50% point) or move the check to data output
rather than input. These algorithms are inherently flawed
because they do not take into account the context-
dependent noise robustness of the circuit.

In Figure 20, taking any of the measured values as hold
time for a circuit would be completely arbitrary if you
didn’t know the circuit’s noise margin and the other
sources of noise that were present. A pulse width/delay
checks that the pulse to a circuit is wide enough for it to
reach within a certain voltage of a full transition. This
check is again arbitrary, without knowing how sensitive
that circuit is to incomplete transitions (noise). As an
example, we found that a default mindelay Pathmill
analysis of the Pentium 4 processor domino library
showed several instances where a D1k circuit passing
default mindelay (hold checks) would leave a glitch at the
domino output that was large enough to cause a complete
false transition after the high-skewed static stage.
Currently, no design flow would catch these problems,
thus causing potential silicon bugs.

Our response was to treat hold checks and pulse width
checks as an analog glitch check. The glitch amplitude
corresponding to a certain hold time is automatically
injected into the noise tools and propagated to succeeding
stages to ensure circuit functionality. Thus, we can make
tradeoffs between min delay and noise requirements.
This new source of noise is combined intelligently and
not just added to other traditional sources of noise, such
as coupling, taking into account events that are possible
logically at the same time. This tradeoff was used quite
widely for critical circuits.

Since the design of the Pentium 4 processor, all Intel®
timing characterization tools take simultaneous noise
margins into account when doing timing analysis for hold,
set up, and pulsewidth checks.

SUMMARY
Key findings from the Pentium 4 processor noise and wire
design methodologies and CAD tools have been
presented. By a combination of aggressive circuit design,
short, high-density wiring and noise methodology, and the
appropriate CAD tools to help design and verify these,
the Intel Pentium 4 processor looks poised to be a
successful, fast, reasonably small die product. We have
shown that an architecturally larger chip need not lead to
longer physical wires if careful methodology and repeater
design are used, thus enabling higher frequency. Very
aggressive circuit styles have been allowed by
innovations in noise CAD tools, which will enable even
higher frequencies. High density has been enabled by
improved noise methodology, thus allowing aggressive,
dense wiring with judicious use of spacing and shielding.
The inductance problem, although significant, has been
accounted for in the design by our distributed power grid.
Circuit styles and a methodology that are robust for
leakage will allow us to push the process for speed.
Tradeoffs between timing and noise have been enabled by
innovations in CAD tools. In general, a lot of care and
effort has been put into noise immunity to create a chip
that should work robustly in the field Much of this
methodology and CAD tool ideas can be incorporated
into future chip designs.

ACKNOWLEDGMENTS
We acknowledge all present and past members of our
noise group for the all-nighters and Brad Hoyt for
discussions. We also acknowledge our DT co-
development partners. We acknowledge Paul Madland
for guidance and for having a feel for where the silicon
problems would really be. And, we acknowledge our
management for sticking with our full-chip wire/noise
direction, even though at the time, it looked quite risky.

REFERENCES
1. Rajesh Kumar, Eitan Zahavi, Desmond Kirkpatrick,

“Accurate design and analysis of Noise Immunity for
high-performance circuit design,” Design and Test
Technology Conference (DTTC) 1997. Intel internal
document.

2. Eitan Zahavi, Rajesh Kumar et. al., “Novel
Methodology and Tools for Noise Immunity Design and
Verification,” DTTC 1998. Intel internal document.

3. Madhu Swarna et. al., “Integrated timing and noise
characterization of sequentials for accuracy and
increased design space,” DTTC 2000. Intel internal
document.

Intel Technology Journal Q1, 2001

Interconnect and Noise Design for the Pentium 4 Processor 12

4. Conley, Kirkpatrick et. al., DTTC 1995. Intel internal
document.

AUTHOR’S BIOGRAPHY
Rajesh Kumar is currently a Principal Engineer in the
Desktop Platforms Group. He received an MSEE degree
from the California Institute of Technology (CalTech)
and a BTech degree in EE from the Indian Institute of
Technology. He joined Intel in 1992 as a designer of the
X86 Instruction Decoder of the Pentium Pro processor,
working in the areas of microarchitecture, logic, circuit
design, and silicon debug. He did the initial research on
fundamental circuit limits to high-frequency pipelining,
enabling the rapid execution engine for the Pentium® 4
processor. He led the methodology and CAD work for
noise, inductance, interconnect, leakage etc., for the
Pentium 4 processor. He was the founder and initial
chair of Intel’s taskforce on crosscapacitance. His current
interests are in high-speed/low-power design,
parallel/DSP computing architectures, novel non
MOSFET devices and conscious computers. His e-mail
is rajesh.kumar@intel.com.

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 1

Efficient Exploitation of Parallelism on Pentium® III and
Pentium® 4 Processor-Based Systems

Aart Bik, Microcomputer Software Laboratories, Intel Corp.
Milind Girkar, Microcomputer Software Laboratories, Intel Corp.

Paul Grey, Microcomputer Software Laboratories, Intel Corp.
Xinmin Tian, Microcomputer Software Laboratories, Intel Corp.

Index words: compiler optimization, parallelization, vectorization, SIMD, multithreading

ABSTRACT
Systems based on the Pentium® III and Pentium® 4
processors enable the exploitation of parallelism at a fine-
and medium-grained level. Dual- and quad-processor
systems, for example, enable the exploitation of medium-
grained parallelism by using multithreaded code that takes
advantage of multiple control and arithmetic logic units.
Streaming Single-Instruction-Multiple-Data (SIMD)
extensions, on the other hand, enable the exploitation of
fine-grained SIMD parallelism by vectorizing loops that
perform a single operation on multiple elements in a data
set. This paper provides a high-level overview of the
automatic parallelization and vectorization methods used
by the Intel® C++/Fortran compiler developed at the
Microcomputer Software Labs.

INTRODUCTION
The Pentium III and Pentium 4 processors are designed to
boost application performance and to provide
performance scalability. The rich features of the Intel®

microprocessors, such as the streaming SIMD extensions
[9,10], enable compilers to exploit fine-grained
parallelism by vectorizing loops that perform a single
operation on multiple elements in a data set. The
performance of the majority of scientific, engineering,
and multimedia applications with characteristics such as
inherent parallelism, a data independent control flow,
regular and re-occurring memory access patterns, and
localized re-occurring operations performed on the data
can be improved by taking advantage of the streaming
SIMD extensions. Dual- and quad-processor systems
based on the 32-bit Intel® architecture provide
opportunities for the compiler to exploit medium-grained
parallelism by generating multithreaded code that uses
multiple control and arithmetic logic units.

In this paper, we present the high-level software
architecture of the automatic parallelization and
vectorization methods used by the Intel C++/Fortran
compiler developed at the Microcomputer Software Labs.

We describe the static and dynamic analysis technologies
implemented to enable the efficient generation of parallel
code. We follow this with a description of multithreaded
and vector code generation. A number of optimization
technologies, such as alignment optimizations, advanced
instruction selection, multi-entry threading technique, and
Profile-Guided-Optimization (PGO) of parallel code, are
also presented. We also discuss the results of experiments
with automatic vectorization and parallelization on
systems based on the Pentium III and Pentium 4
processors.

COMPILER ARCHITECTURE
OVERVIEW
The approach taken by the Intel C++/Fortran compiler to
exploit implicit parallelism in serial code is organized into
three stages: program analysis, program restructuring, and
parallel code generation.

Program Analysis
Program analysis performs a control flow, data flow, and
data dependence analysis [1,3,4,11,12] to provide the
compiler with useful information on where implicit
parallelism in the input program can be exploited.

The data dependence analyzer is organized as a series of
tests, progressively increasing in accuracy as well as time
and space costs. First, the compiler tries to prove
independence between memory references by means of
simple, inexpensive tests. If the simple tests fail, more
expensive tests are used.

Eventually, the compiler resorts to solving the data
dependence problem as an integer linear programming
problem that is attacked by the powerful but potentially
expensive Fourier-Motzkin elimination method [7].

Program Restructuring
Program restructuring focuses on converting the input
program into a form that is more amenable to

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 2

parallelization. For example, if static data dependence
analysis of a program fails to prove independence, then
the Intel C++/Fortran compiler has the ability to generate
dynamic data dependence tests to increase the
opportunities for exploiting implicit parallelism in a
program. An example of this is given below.

void init(char *p, char *q) {
 int i;
 for (i = 0; i <= 255; i++) p[i] = q[i];
}

Without any further information, the compiler must
conservatively assume that the two pointers could refer to
overlapping regions in memory. Conversion into multi-
version code, however, yields a fully data-independent
loop in the true branch that can be optimized accordingly.

void init(char *p, char *q) {
 int i;
 if (p+255 < q || p > q+255)
 for (i = 0; i <= 255; i++) p[i] = q[i]; /* dependence free */
 else
 for (i = 0; i <= 255; i++) p[i] = q[i];
}

Other examples of transformations that are done during
program restructuring are traditional compiler
optimizations (such as constant/copy propagation and
constant folding [1,3]), loop transformations (such as loop
interchanging or loop distribution [11,12]), and idiom
recognition (such as the detection of reductions or other
operations). An example of the latter category is shown
below, where converting an if-statement into a “MAX”-
operator makes the loop more amenable for analysis and,
eventually, parallelization.

for (i = 0; i < N; i++) { for (i = 0; i < N; i++) {
 if (a[i] > x) x = a[i]; ◊ x = MAX(a[i], x);
} }

Parallel Code Generation
Finally, parallel code generation consists of converting
serial code into semantically equivalent multithreaded
code or SIMD instructions. Both these conversions are
outlined in the next sections. An in-depth presentation of
vectorization is given in [5].

AUTOMATIC PARALLELIZATION
Automatic parallelization is a promising technique that
can take advantage of shared-memory multiprocessors
based on the Pentium III and Pentium 4 processors.

These systems can potentially deliver near supercomputer
performance to mainstream computing. On a
multiprocessor system, however, parallelizing inner loops
usually does not provide sufficient granularity of
parallelism. Thus, our focus for automatic parallelization
is to exploit medium-grained parallelism to utilize a
multiprocessor effectively. In this section, we describe
the parallelization methods used by the Intel C++/Fortran
compiler for automatic multithreaded code generation.

Finding Parallel Loops
Finding effective parallelism is one of the critical steps in
generating efficient multithreaded code [6,8,11,12]. Based
on the control flow graph, the data flow graph and the
symbol table, the loop analyzer takes the following steps:

• Finds all loops within the serial code and builds a
loop hierarchy structure. It fills up loop parameters
such as trip count, lower bound, upper bound, and
pre-header.

• Performs data dependence analysis to classify loops.
Loops without loop-carried data dependencies are
marked as loops that can be made parallel.

• Performs static or dynamic granularity estimation for
each loop that can be made parallel. Multithreaded
code for a parallel loop will be generated if and only
if parallelization of the loop is profitable.

An example of the optimization is shown below.

for (k=0; k < 1000; k++) {
 x[k] = k;
 w = x[k];
 y[k] = w + x[k];
}

Parallel loop detection marks this loop as follows.

parallel for (k=0; k < 1000; k++) {
 private (k, w), shared (x, y)
 x[k] = k;
 w = x[k];
 y[k] = w + x[k];
}

In this example, the loop is marked as a loop that can be
made parallel, and the variables “k” and “w” are marked
as private. The arrays “x” and “y” are marked as shared.
In the next section, we discuss variable classification
based on liveness analysis.

Variable Classification
Liveness analysis [1,3] is well known and used in many
optimizations and transformations. We use liveness
analysis to classify the variables in the lexical extent of a
loop that can be made parallel.

The private, firstprivate, and lastprivate attributes of
variables direct the multithreaded code generator to
implement privatization accordingly.

The shared attribute of a variable tells the multithreaded
code generator to generate code that shares the memory
location of this variable amongst multiple threads.

The following compilation rules are used to classify all
variables referenced in a parallel loop:

1. A variable is marked private if and only if it is not
live-in and not live-out on the current loop.

2. A variable is marked firstprivate if and only if it is
live-in and not live-out on the current loop.

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 3

3. A variable is marked lastprivate if and only if it is
live-out and not live-in on the current loop.

4. A variable is marked shared if and only if it is live-in
and live-out on the current loop.

For the following example, the loop can be made parallel.
Liveness analysis yields var-set = {a, b, c, k, n, x}, live-
in-set = {a, b, c, n}, and live-out-set = {a, c, x}.

int foo(int b, int n, float c[]) {
 int x = 101, k, a = 10;
 for (k=0, k < n; k++) {
 x = 5;
 c[k] = x + a – b * k
 }
 return (a + x + c[0]);
}

Using compilation rules 1-4, variables “n” and “b” are
marked firstprivate. Variables “a” and “c” are marked
shared. Variable “x” is marked lastprivate. Variable
“k” is a special form of a private variable: it is an
induction variable. The data-race condition introduced by
such variables is removed by induction variable
privatization.

Static Granularity Estimation
Parallelizing a loop can result in slower execution if the
overhead of dispatching/scheduling threads and sharing
resources is significant compared to the total workload
performed by the loop. The Intel C++/Fortran compiler
handles this by examining all the operations in the loop
body, estimating the grain-size per loop iteration on the
targeted microarchitecture, and multiplying this by the
loop trip count to arrive at an estimate of the total
workload of the loop.

For loops with known trip counts, this value is compared,
at compile time, to an experimentally determined
profitable workload threshold to see if the loop should be
multithreaded. Loops with a workload exceeding this
profitable workload threshold will normally speed up
when executed in parallel threads. For loops with
unknown trip counts, the workload is expressed as a
function of the trip count, and the compiler generates code
to dynamically evaluate this expression to determine
whether the loop should be executed with multiple
threads.

Note that this solution avoids all dispatching/scheduling
overhead and sharing of resources, if multithreaded
execution is not profitable.

For the following example, the compiler generates an
expression “(upper - lower) * grain-size” to compute the
workload at runtime, based on the lower and upper bound
and estimated grain-size.

 void foo(int lower, int upper) {
 int i;
 for (i=lower; i<upper; i++) {
 /* grain-size (in units of ops) */
 }
 }

The granularity estimation has the following form.

 trip_count = upper - lower;
 workload = trip_count * grain-size;

 if (workload > (profit_probability *
 PROFIT_WORKLOAD_THRESHOLD) {
 /* multithreaded execution of the loop */
 }
 else {
 /* serial execution of the loop */
 }

The profitable workload threshold (expressed in units of
ops) is a global constant applicable to all loops. The
threshold comparison can be modified with a command
line option that sets the probability of profitable parallel
execution (“profit_probability”). The workload is then
compared to the experimentally determined profitable
workload threshold multiplied by this probability. The
value “0.0” causes the loop to be always executed as a
multithreaded loop, whereas the value “1.0” causes
multithreading to be used only if the workload exceeds
the profitable workload threshold. The user can use any
intermediate value to cause multithreaded execution of
loops with low workloads that may still benefit from
being made parallel.

Profile-Guided Granularity Estimation
Beyond the static granularity estimation, in the PGO
mode of our compiler, we have implemented profile-
guided granularity estimation to evaluate the workload,
based on the execution count of basic blocks and branch
probability. It is well known that compilers are often able
to generate better code with the knowledge of likely
execution paths. It is even more important for a
parallelizing compiler to have the knowledge of the most
frequently executed regions in a program, in order to
determine if generating multithreaded code is profitable
or not. Suppose that for the following code sample, we
have the train data set “lower = 0” and “upper = 100.”
The profiler computes a “branch-taken” probability of
“0.98” on the true branch and “0.02” on the false branch.
The execution count of the loop pre-header (viz “i =
lower”) is “1”, and the execution count of the loop header
is “100.”

 void foo(int lower, int upper) {
 int i;
 for (i=lower; i<upper; i++) {
 if (i>lower+1) {
 /* TRUE-grain-size (in units of ops) */
 }
 else {
 /* FALSE-grain-size (in units of ops) */
 }
 }
 }

When these gathered execution measurements are fed
back into the second pass of PGO compilation, the
compiler compares “100 * (TRUE-grain-size * 0.98 +
FALSE-grain-size * 0.02)” with the profitable workload
threshold at compile time. Multithreaded code will not be
generated if the comparison shows that parallelization is

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 4

not profitable. If, for example, the expression “TRUE-
grain-size” is very small, PGO may avoid the slowdown
introduced by parallelization.

MULTI-ENTRY THREADING
TECHNIQUE
The conventional technology for generating multithreaded
code is to generate an independent subroutine for each
parallel loop. This is known as the outlining technology
[6]. In contrast to this conventional technology, we
propose a new technology called the mult i -entry
threading technique, which introduces three new concepts
in the control flow graph: T-entry (threaded-entry), T-ret
(threaded-return), and T-region (threaded-code-block).
The ideas behind the new technology are as follows:

• The T-entry node contains the data environment for
each thread that is necessary to build communication
between the invoker (master thread) and the invokee
(worker thread).

• The T-ret node informs the multithreaded runtime
system about termination of the thread.

• A T-region is defined by a [T-entry, T-ret] pair and is
kept inlined in the user-defined subroutine.

• Within a single user-defined subroutine, multiple [T-
entry, T-ret] pairs are permitted to represent multiple
T-regions.

• The [T-entry, T-ret] pairs can be nested (e.g., [T-
entry, [T-entry, T-ret], T-ret]) to represent nested
parallelism.

The main feature of the multi-entry threading technique is
to keep all newly generated T-regions for parallel loops
inlined in the same user-defined subroutine, without
splitting them into independent subroutines. This
technique provides subsequent compiler phases with more
potential to optimize the code.

The following is an example of multithreaded code
generation using the multi-entry threading technique.

float z[10000], w[10000];
void foo(void) {
 int k, m, x[5000], y[5000];
 … …
 for (k=0; k<5000; k++) {
 x[k] = x[k] + y[k] ;
 }
 for (m=0; m<10000; m++) {
 z[m] = z[m] * w[m];
 }
… …
}

There are two parallelizable loops in the subroutine “foo.”
The variables “k” and “m” are marked as private
induction variables; the arrays “x”, “y”, “z”, and “w” are
marked as shared. The resulting multithreaded code is
illustrated below. The Intel C++/Fortran compiler has

adopted the KAI* Guide runtime library for thread
creation and management.

float z[10000], w[10000];
void foo(void)
{ int k, m, x[5000], y[5000];
 … …
 __kmpc_fork_call(loc, 2, T-entry(_foo_ploop_0), x, y)
 goto L1:
 T-entry _foo_ploop_0(loc, tid, x[], y[]) {
 lower_k = 0;
 upper_k = 5000;
 __kmpc_for_static_init(loc, tid, s, &lower_k, &upper_k, …);
 for (par_k=lower_k, par_k<=upper_k; par_k++) {
 x[par_k] = x[par_k] + y[par_k] ;
 }
 __kmpc_for_static_fini(loc, tid);
 T-ret;
 }
L1:
 __kmpc_fork_call(loc, 0, T-entry(_foo_ploop_1));
 goto L2:
 T-entry _foo_ploop_1(loc, tid) {
 lower_m = 0;
 upper_m = 10000;
 __kmpc_for_static_init(loc, tid, s, &lower_m, &upper_m, …);
 for (par_m=lower_m; par_m<=upper_m; par_m++) {
 z[par_m] = z[par_m] * w[par_m];
 }
 __kmpc_for_static_fini(loc, tid);
 T-ret;
 }
 L2:
 … …
}

The multithreaded code generator inserts the thread
invocation call “__kmpc_fork_call” with the T-entry
point and data environment (e.g., line number “loc”) for
each loop. This call into the KAI runtime library will fork
a number of threads that execute the iterations of the loop
in parallel.

The serial loops are converted to multithreaded code by
localizing the loop lower and upper bound, and by
privatizing the induction variable. Finally, multithreading
runtime initialization and synchronization code is
generated for each T-region defined by a [T-entry, T-ret]
pair. The library call “__kmpc_for_static_init” computes
the localized loop lower bound, upper bound, and stride
for each thread according to a scheduling policy. The
library call “__kmpc_for_static_fini” informs the runtime
system that the current thread has completed one loop
chunk.

Compared with the existing outlining technology, there
are three advantages to the multi-entry threading
technique for generating efficient multithreaded code:

• The multi-entry threading technique does not create
separate compilation units for parallel loops, and the
required program transformations are very natural
and simple. It reduces the complexity of handling
separate routines in the optimizer.

•
* Kuck and Associates, Inc., an Intel Corporation.

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 5

• All generated T-regions for parallel loops are kept
inlined in the same compilation unit. This minimizes
the impact on other optimizations such as constant
propagation, scalar replacement, loop transformation,
common expression elimination, and interprocedural
optimization.

• Besides global and file-scope static variables, the
memory location of a local shared static variable can
be accessed naturally by multiple threads without
passing an argument on T-entry, since the generated
multithreaded code is kept inlined in the user-defined
subroutine.

AUTOMATIC VECTORIZATION
The Pentium III and Pentium 4 processors feature a rich
set of SIMD instructions on packed integers and floating-
point numbers that can be used to boost the performance
of loops that perform a single operation on different
elements in a data set.

The Pentium III processor introduced the 128-bit
streaming SIMD extensions [10], supporting floating-
point operations on 4 single-precision floating-point
numbers and some more instructions for the 64-bit integer
MMX™ technology. The Pentium 4 processor further
extended this support for floating-point operations on two
double-precision floating-point numbers and widened the
integer MMX technology into 128-bit [9]. Because a
single instruction processes multiple data elements in
parallel, all these extensions are very useful to utilize
SIMD parallelism in numerical and multimedia
applications.

The Intel C++/Fortran compiler follows the standard
approach to the vectorization of inner loops [2,11,12].
First, statements in a loop are reordered according to a
topological sort of the acyclic condensation of the data
dependence graph for this loop. Then, statements
involved in a data dependence cycle are either recognized
as certain idioms that can be vectorized, or distributed out
into a loop that will remain serial. Finally, vectorizable
loops are translated into SIMD instructions.

Consider as an example the loop shown below.

double a[100], b[100], c[100]; /* assume arrays start at
 16-byte boundaries */
…
for (i = 0; i < 100; i++) {
 a[i] = b[i] - c[i];
}

Since there are no data dependencies in this loop, the Intel
C++/Fortran compiler translates this loop into the
following SIMD instructions for the Pentium 4 processor.
Note that because double elements are eight bytes wide
and the vector loop processes two elements in each
iteration, the upper bound and stride for the offsets into
the arrays are 100x8=800 and 2x8=16, respectively.

SUB:
 movapd xmm0, b[ecx] ; load 2 DP FP numbers

 subpd xmm0, c[ecx] ; subtract 2 DP FP numbers
 movapd a[ecx], xmm0 ; store 2 DP FP numbers
 add ecx, 16
 cmp ecx, 800
 jl SUB ; looping logic

For loops with a trip count that cannot be evenly divided
by the vector length, a cleanup loop is used to execute any
remaining iteration serially. In the PGO mode, a profile-
guided estimation of statically unknown trip counts is
used to determine whether vectorization is actually
worthwhile.

Alignment Optimizations
In the previous example, the aligned data movement
instruction “movapd” can be used because the compiler
has aligned the first elements of the three arrays at a 16-
byte boundary. For unaligned (or unknown) access
patterns, the compiler must use unaligned data movement
instructions, like “movupd.” Because there can be a
substantial performance penalty for unaligned data
references, the Intel C++/Fortran compiler has at its
disposal a variety of static and dynamic alignment
optimizations.

In the loop shown below, for instance, the compiler will
statically peel off one iteration to align all access patterns.

double a[100], b[100]; /* 16-byte aligned */
… a[1] = b[1] - 1;
for (i = 1; i < 100; i++) { for (i = 2; i < 100; i++) {
 a[i] = b[i] – 1; ◊ a[i] = b[i] – 1;
} }

For cases where the alignment of data structures cannot
be determined at compile time, the compiler uses a
dynamic loop peeling alignment strategy in which, at
runtime, first a few iterations are executed serially until
one or several access patterns become 16-byte aligned.

Consider, for instance, a simple initialization loop.

char *p = …;
…
for (i = 0; i < 100; i++) p[i] = 0;

Without any further points-to information for “p”, the
compiler would have to conservatively assume that the
access pattern is unaligned. Dynamically peeling off
some iterations based on the starting address of the array,
can, nevertheless, enforce aligned references.

peel = p & 0x0f;
if (peel != 0) {
 peel = 16 - peel;
 for (i = 0; i < peel; i++) p[i] = 0;
}
/* aligned access pattern */
for (i = peel; i < 100; i++) p[i] = 0;

Reductions
Although reductions give rise to data dependence cycles,
such idioms can be translated into SIMD instructions that
compute partial results in parallel. Consider, for example,
the accumulation that occurs in the DDOT kernel.

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 6

double d = 0.0;
for (i = 0; i < N; i++) {
 d += a[i] * b[i];
}

This reduction can be implemented as follows. Note that
in this fragment, the size of double elements is accounted
for in the effective address computations. As stated
before, serial cleanup code is generated after the vector
loop to deal with odd values of N.

 xorpd xmm1, xmm1 ; reset accumulator
DDOT:
 movapd xmm0, a[ecx*8] ; load,
 mulpd xmm0, b[ecx*8] ; multiply,
 addpd xmm1, xmm0 ; and accumulate
 add ecx, 2 ; 2 DP FP numbers
 cmp ecx, N
 jl DDOT ; looping logic

 movapd xmm0, xmm1 ; postlude:
 unpckhpd xmm0, xmm1 ; add 2 partial
 addpd xmm1, xmm0 ; results into
 movsd [esp], xmm1 ; scalar d

Other reductions (based on any of the operators “+”, “-”,
“*”, “&”, “|”, “MIN” or “MAX”) are handled similarly.

Short Vector Mathematical Library
The Intel C++/Fortran compiler comes with a Short
Vector Mathematical Library (SVML), developed at
Intel® Nizhny Novgorad Labs in Russia (INNL), that
provides efficient software implementations for
computing (inverse) trigonometric, (inverse) hyperbolic,
exponential, and logarithmic functions on (sub)arrays.
This library provides a clean interface to operate on
packed floating-point numbers.

The library allows the vectorization of loops that contain
any of these mathematical functions. Consider, for
example, the following loop.

for (i = 0; i < 100; i++) {
 a[i] = sin(b[i]) + c[i];
}

Using the SVML allows the compiler to proceed with
vectorization of this loop as follows (an implementation
that passes arguments and results in the xmm-registers is
planned as well).

SIN:
 lea ecx, b[esi]
 lea eax, [esp+16]
 mov [esp], ecx ; define input address
 mov [esp+4], eax ; define output address
 call _vmldSin2 ; call SVML
 movapd xmm0, [esp+16] ; read result
 addpd xmm0, c[esi]
 movapd a[esi], xmm0
 add esi, 16
 cmp esi, 800
 jl SIN ; looping logic

Advanced Instruction Selection
Advanced instruction selection is used to vectorize certain
frequently occurring operations that can be efficiently
mapped onto the SIMD instructions of the Intel

architecture. Consider, for example, the following loop
(the suffix letter “u” denotes an unsigned constant).

unsigned char x[256];
…
for (i = 0; i < 256; i++)
 x[i] = (x[i] >= 20u) ? x[i] - 20u : 0u;
}

The Intel C++/Fortran compiler recognizes the saturation
arithmetic done in this code fragment (if the result of the
subtraction would be negative, the result is saturated to
zero) and converts the serial loop into the following
SIMD instructions that operate on 16 unsigned characters
in each iteration.

 movdqa xmm0, CONVEC ; load <20u,….,20u>
SAT:
 movdqa xmm1, x[eax]
 psubusb xmm1, xmm0 ; perform 16 saturated
 movdqa x[eax], xmm1 ; subtractions
 add eax, 16
 cmp eax, 256
 jl SAT ; looping logic

The compiler also carefully selects the instructions that
are used to implement scalar expansions, certain type
conversions, and non-unit stride references. In addition,
the use of bit-masks supports the vectorization of singly
nested conditional statements.

For a detailed presentation of all the vectorization
methods used by the Intel C++/Fortran compiler, we must
refer to [5].

EXPERIMENTAL RESULTS
In this section, we discuss the results of some experiments
with automatic vectorization and parallelization.
Consider, for instance, the following code that computes
the product of a double-precision floating-point matrix
and vector.

for (i = 0; i < n; i++) {
 double d = 0.0;
 for (j = 0; j < n; j++) {
 d += a[i][j] * y[j];
 }
 x[i] = d;
 }

In the graph shown in Figure 1, we present the speedup
(uniprocessor vs. multiprocessor execution time) obtained
by automatic parallelization of the outermost loop in this
kernel on a dual 500MHz. Pentium III processor for
varying matrix orders. In the same figure, we also show
the speedup of serial vs. parallel execution obtained on a
quad 550MHz. Pentium III processor. Speedups up to 3.2
and 1.6 are obtained for the quad and dual system,
respectively.

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 7

0

1

2

3

4

Matrix Order

S
p

ee
d

u
p

quad

dual

Figure 1: Speedup for matrix x vector on a dual and
quad Pentium® III processor

As another example of automatic parallelization, consider
LU-factorization without pivoting.

 for (k = 0; k < n-1; k++) {
 for (i = k+1; i < n; i++) {
 a[i][k] = a[i][k] / a[k][k];
 for (j = k+1; j < n; j++)
 a[i][j] = a[i][j] - a[i][k] * a[k][j];
 }
 }

In this fragment, loop-carried data dependencies prohibit
parallelization of the outermost k-loop. The iterations of
the i-loop, on the other hand, can be executed in parallel.
In Figure 2, we show the corresponding speedup on a dual
and quad shared-memory multiprocessor for varying
matrix orders. Despite the fact that the outermost loop has
to remain serial, speedups up to 1.3 and 2.6, respectively,
are still obtained.

0

0.5

1

1.5

2

2.5

3

Matrix Order

S
p

ee
d

u
p

quad

dual

Figure 2: Speedup for LU-factorization on a dual and
quad Pentium® III processor

In Figure 3, we show the speedup (serial vs. vector
execution time) obtained on a 1.5GHz. Pentium 4
processor by automatic vectorization of a single-precision
dot-product kernel (SDOT) and a double-precision dot-
product kernel (DDOT) for array lengths ranging from 1
to 64K. For comparison, we also present the speedup
obtained by a hand-coded assembly version of the latter
kernel (ASM, courtesy Henry Ou). Execution times were
obtained by running the kernel many times and dividing
the total execution time accordingly, so that for data sizes

that fit in the 256KB L1 cache, effectively “warm cache
behavior” is measured.

0

1

2

3

4

5

6

7

Array Length

S
p

ee
d

u
p

SDOT

DDOT

ASM

Figure 3: Speedup for dot-product on a Pentium® 4
processor

The performance of the SDOT and DDOT kernels
observed after automatic vectorization (counting one
floating-point addition and multiplication per iteration)
exceeded 3.3 GFLOPS and 1.8 GFLOPS, respectively.

Automatic vectorization of a LINPACK benchmark
(available at http://www.netlib.org.benchmark/) boosted
the performance of solving a system of linear equations
defined by a 100x100 double-precision matrix on a
1.5GHz. Pentium 4 processor from 582 MFLOPS to 700
MFLOPS.

In the last graph shown in Figure 4, we show the speedup
obtained on a 1.5GHz. Pentium 4 processor by automatic
vectorization of kernels of the form “x[i] = F(y[i])”. The
experiments are done for three different double-precision
floating-point functions, supported by SVML, and array
lengths varying from 1 to 256, with input sets consisting
of uniformly distributed values in the range 0 through
2*_.

0

1

2

3

4

5

Array Length

S
p

ee
d

u
p

SIN

COS

EXP

Figure 4: Speedup for math functions on a Pentium®
4 processor

DISCUSSION
The experiments reveal that the automatic detection of
implicit parallelism in serial software can provide a very

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 8

portable way of effectively exploiting SIMD instructions
or multiple CPUs on systems that are based on the
Pentium III and Pentium 4 processors. Automatic
parallelization of the outermost loop in the matrix times
vector product starts to speed up for matrices with an
order that exceeds 32 on both the dual and quad
multiprocessor with an efficiency (Speedup / #processors
x 100%) going up to over 80% for larger matrices.
Likewise, automatic parallelization of the second
outermost loop in an implementation of LU factorization,
without pivoting, yields efficiencies of over 60%.

Automatic vectorization of the DDOT kernel yields
speedup comparable to the speedup obtained by a hand-
optimized assembly implementation. Combining
vectorization with efficient software implementations of
frequently used mathematical functions already exhibits
speedup for arrays with a length of only 2. Another clear
advantage of having a vector implementation of
mathematical functions is that vectorization of a loop does
not have to bail out in the presence of such function calls.

CONCLUSION
Explicitly exploiting parallelism in a program can be a
cumbersome and error-prone task. It may require the use
of inline assembly to generate the appropriate SIMD
instructions or the use of a complicated threading library
to take advantage of the computing power available on a
multiprocessor. Although such explicit techniques can be
extremely effective, they are not portable and greatly
complicate program development and maintenance. An
alternative approach is to let a compiler do (at least part
of) the exploitation of fine- and medium-grained
parallelism automatically. With this approach, the
compiler analyzes a program that is written in a sequential
language for implicit opportunities to exploit parallelism,
and it generates code that takes advantage of this implicit
parallelism.

In this paper, we provided a high-level overview of the
automatic parallelization and vectorization methods used
by the Intel C++/Fortran compiler developed at the
Microcomputer Software Labs. We have shown that
these methods can obtain good speedup on systems based
on the Pentium III and Pentium 4 processors, without the
need for any source code modifications. Hence,
automatically exploiting implicit parallelism provides a
convenient way for programmers who are not familiar
with the Intel architecture to boost the performance of
their applications. In addition, it may even assist expert
programmers by minimizing the number of loops that
have to be hand optimized to exploit all available
parallelism. Finally, the approach allows the automatic
parallelization and vectorization of existing serial
software, thereby avoiding the potentially huge
investments that would be required to hand optimize this
code.

More information on Intel’s high-performance compilers
can be found at

http://developer.intel.com/software/products/

ACKNOWLEDGMENTS
The authors thank the other members of the Proton team
for their hard work to implement and test the Intel
C++/Fortran compiler. We thank the compiler group at
KAI for providing Guide, the multithreading runtime
library, and INNL for providing SVML. Both these
libraries are currently part of the Intel C++/Fortran
compiler.

REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,

Compilers—Principles, Techniques and Tools,
Addison-Wesley Publishing Company, Boston,
Massachusetts, 1986.

[2] John Randal Allen and Ken Kennedy, “Automatic
Translation of Fortran Programs into Vector Form,”
ACM Transactions on Programming Languages and
Systems: 9:491-542, 1987.

[3] Andrew W. Appel, Modern Compiler Implementation
in C, Cambridge University Press, Cambridge, UK,
1998.

[4] Utpal Banerjee, Dependence Analysis, Kluwer
Academic Publishers, Boston, Massachusetts, 1997.

[5] Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian,
“An Auto-Vectorizing Compiler for the Intel®
Architecture,” Submitted to the ACM Transactions on
Programming Languages and Systems, 2000.

[6] Jyh-Herng Chow, Leonard E. Lyon, and Vivek Sarkar,
“Automatic Parallelization for Symmetric Shared-
Memory Multiprocessors,” in Proceedings of
CASCON: 76-89, Toronto, ON, November 12-14,
1996.

[7] George B. Dantzig and B. Curtis, “Fourier-Motzkin
Elimination and its Dual,” Journal of Combinatorial
Theory: 14:288-297, 1973.

[8] Mary W. Hall, Saman P. Amarasinghe, Brian R.
Murphy, Shih-Wei Liao, and Monica S. Lam.
“Detecting Coarse-Grain Parallelism using an
Interprocedural Parallelizing Compiler,” i n
Proceedings of Supercomputing, San Diego,
California, December, 1995.

 [9] Intel Corporation, Intel® Architecture Software
Developer's Manual With Preliminary Willamette
Architecture Information, manual available at
http://developer.intel.com/ .

[10] Shreekant Thakkar and Tom Huff. “Internet
Streaming SIMD Extensions,” IEEE Computer:
32:26-34, 1999.

Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 9

[11] Michael J. Wolfe, High Performance Compilers for
Parallel Computer, Addison-Wesley Publishing
Company, Redwood City, California, 1996.

[12] Hans Zima, Supercompilers for Parallel and Vector
Computers, ACM Press, New York, NY, 1990.

AUTHORS’ BIOGRAPHIES
Aart Bik received his M.Sc. degree in Computer Science
from Utrecht University, The Netherlands, in 1992, and
his Ph.D. degree from Leiden University, The
Netherlands, in 1996. In 1997, he did a post-doc at
Indiana University, Bloomington, Indiana, where he
conducted research in high-performance compilers for
Java*. In 1998, he joined Intel Corporation where he is
currently working in the vectorization and parallelization
group of the Microcomputer Software Labs. His e-mail is
aart.bik@intel.com

Milind Girkar received a B.Tech. from the Indian
Institute of Technology, Mumbai, an M.Sc. degree from
Vanderbilt University, and a Ph.D. degree from the
University of Illinois at Urbana-Champaign, all in
Computer Science. Currently, he manages the
vectorization and parallelization group in Intel's
Microcomputer Software Labs. Before joining Intel, he
worked on a compiler for the UltraSPARC platform at
Sun Microsystems. His e-mail is milind.girkar@intel.com

Paul Grey did his B.Sc. degree in Applied Physics at the
University of the West Indies and his M.Sc. degree in
Computer Engineering at the University of Southern
California. Currently he is working in Intel's
Microcomputer Software Labs, researching compiler
optimizations for parallel computing. Before joining
Intel, he worked on parallel compilers, parallel
programming tools, and graphics system software at Kuck
and Associates, Inc., Sun Microsystems, and Silicon
Graphics. His research interests include optimizing
compilers, advanced microarchitectures and parallel
computer systems. His e-mail is paul.grey@intel.com

Xinmin Tian is currently working in the vectorization
and parallelization group at Intel's Microcomputer
Software Labs where he works on compiler
parallelization and optimization. He holds B.Sc., M.Sc.,
and Ph.D. degrees in Computer Science from Tsinghua
University. He was a postdoctoral researcher in the
School of Computer Science at McGill University,
Montreal. Before joining Intel, he worked on
parallelizing compilers, code generation, and performance
opt imizat ion at IBM. His e-mai l is
xinmin.tian@intel.com

•
*Other brands and names are the property of their
respective owners.

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 1

A Discussion of PC Platform Balance: the Intel Pentium 4
Processor-Based Platform Solutions

R. Scott Tetrick, Blaise Fanning, Robert Greiner, Tom Huff, Lance Hacking, David Hill, Srinivas
Chennupaty, David Koufaty, Subba Palacharla, Jeff Rabe, Mike Derr

Desktop Platforms Group, Intel Corporation

Index words: Pentium® 4 processor, platform, STREAM, performance, architecture

ABSTRACT

The quest for the balanced PC platform has been with us
since the advent of the Personal Computer (PC) in 1982.
The basic PC has been dramatically successful, such that
a 200-fold increase in computing power has been
required. At the same time, the platform has had to
improve its capabilities to support these uses, and provide
growth for new applications. To restore balance in the
platform, processor buses, memory interfaces, and
advanced platform capabilities must keep pace with, and
even lead, advancements in the processor. This paper
describes the technological advances made in the
development of the first platform for the Intel® Pentium®

4 processor. After a brief look at PC platform partitioning
through the years, the platform partitioning developed for
the first Pentium 4 processor platform is discussed,
beginning with an understanding of the performance of
the processor, and how that is dependent on aspects of the
platform. We then present two primary platform
improvements for the high-performance PC platform: the
400MHz system bus and the Intel® 850 Memory
Controller Hub. After providing an understanding of
these platform advancements, we show how these two
improvements together complement the Pentium 4
processor computational capabilities by concentrating on
results obtained in the standard SPEC CPU20001 and
STREAM2 benchmarks. This combines the high-speed
processing of the Intel Pentium 4 processor with platform
improvements to provide a dramatic increase in overall
performance.

1The next-generation industry-standardized CPU-
intensive benchmark suite. SPEC designed CPU2000 to
provide a comparative measure of compute-intensive
performance across the widest practical range of
hardware.
2A simple synthetic benchmark that measures sustainable
memory bandwidth and the corresponding computation
rate for simple vector kernels.

INTRODUCTION
With the first IBM Personal Computer (PC) in 1982, the
basic platform architecture of today’s PC platform was
established. Improvements to this platform were
necessitated by improvements to the microprocessor, as
dictated by Moore’s Law. While some of these
improvements were small, others were major, moving
also at the pace of Moore’s Law. In this paper, we first
describe the substantial platform changes that allow us
today to support the latest Intel Pentium 4 processor.

In order to understand the impact of these improvements
on the Pentium 4 processor platforms, we need to see how
these improvements impact the performance of the
applications. Previous discussions of the performance of
the Pentium 4 processor have described the processor
performance as the product of two values, frequency and
Instructions Per Clock (IPC). While the increase in
frequency is strictly due to advances in microarchitecture
and an improved silicon process, the IPC value has a
strong platform-level component as well.

In this paper, we highlight two platform advances in the
Pentium 4 processor. First, the 400MHz system bus of
the Pentium 4 processor, responsible for all data into and
out of the processor, is discussed. This high-bandwidth
connection provides the necessary throughput for today’s
performance applications, with headroom for new
applications in the coming years. Second, the system bus
advanced protocol is discussed. This improved
parallelism is best shown by a careful examination of the
82850 Memory Controller Hub. The 82850 is responsible
for balancing the bandwidth demands of graphics, I/O,
and the processor with two channels of Direct RDRAM.

An obvious question at this point is whether these
platform improvements are necessary. We present case
studies to show that these platform improvements add to
bottom-line performance. This is represented graphically
to show how the platform’s failure to meet the peak
bandwidth demand of the application impacts the overall
performance of the microprocessor. For many
applications, even average bandwidths can show that the

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 2

high-performance aspects of the platform of the Pentium
4 processor are required. Finally, we carefully examine
the STREAM benchmark, which combines the high-
performance computational capabilities with the high
bandwidth supplied by the platform of Intel’s Pentium 4
processor.

THE ARCHITECTURE OF THE FIRST
PERSONAL COMPUTERS
In 1982, the first IBM Personal Computer (PC) was
introduced. This relatively simple design has held steady
for all PC platforms since then. The processor was the
Intel® 8088, running at a clock rate of about 5MHz and
providing a processor bus connection of about 1.2
megabytes/second. Figure 1 shows a simplified block
diagram of the early IBM PC. Moreover, it should be
noted that all bandwidth in the system was routed through
this processor bus. The bandwidth of this bus provided a
ceiling for all the graphics and the I/O in the system.

Contrast this to the 1995 version of the PC architecture,
which shows how much the platform architecture changed
in just five years. The processor bus had improved 500-
fold to over 500 megabytes/second. Moreover, a major
platform improvement was made with the addition of the
Advanced Graphics Port (AGP) interface. This
repartitioning of the platform removed the graphics
bandwidth from the I/O interface. This greatly improved
the platform capabilities, but complicated the function of
the chipset, the 82440BX.

The 2000 PC block diagram shows the platform of the
Pentium 4 processor. As you can see, there have been the
usual improvements to the interfaces, but a continued
repartitioning of the platform. This repartitioning
represents a continued improvement in the platform, as a
result of advanced speeds and feeds. The growth
requirements of the platform are shown in Table 1. We
explore the reasons for these platform changes and how
they contribute to improved platform performance.

Processor

P
ro

ce
ss

or
 B

us

Legacy
Bridge

Memory
Interface

Legacy Devices
and Slots

AGP
Graphics

AGP

Processor

P
ro

ce
ss

or
 B

us

440BX
Memory
Interface

P
C

I

Legacy Devices
and Slots

Legacy
Bridge

Le
ga

cy

1982 1995

AGP
Graphics

AGP 2.0

Processor

P
ro

ce
ss

or
 B

us

82850
Memory

Controller
Hub

2x DRDRAM Memory
Interface

H
ub

 I/
F

Legacy Devices
and Slots

82xxx I/O
Controller

Hub

Le
ga

cy

2000

Figure 1: PC architecture over time

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 3

Platform
Interface

1982 1995 2000

Processor
Bus
Bandwidth

1.2 MB/s 533 MB/s 3200 MB/s

Graphics
Bandwidth

N/A 533 MB/s 1066 MB/s

I/O
Connection

N/A 133 MB/s 533 MB/s

I/O Bus 1.2 MB/s Same as I/O
Connection

133 MB/s

Table 1: Bandwidth increases over time

How the Platform Contributes to
Performance
Before looking at results, let us take a look at the
theoretical basis for the impact of the platform on
performance. Fundamentally, the time to run an
application is

Execution Time = Instructions * CPI/Frequency

Where:

Execution Time = application run time
Instructions = number of instructions
CPI = clocks per instruction
Frequency = CPU core frequency

CPI varies with the application, cache hierarchy, and I/O
use. It can be further defined as

i
i

ibase CPCPICPI +=

Req 1 Req 2 Req 3

Data 3Data 2Data 1

Req 3Req 2Req 1

Data 3Data 2Data 1

Req 3Req 2Req 1

Data 1 Data 2 Data 3

Clocks per access = 2, no pipelining

Pipelining, but with bandwidth limited data
return, Clocks per access = 3

Clocks per access = 2, with pipelining

Figure 2: System bus impacts to clocks per access

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 4

CPIbase is a figure of merit for the application and the core
processor microarchitecture. Pi is the probability of event
i occurring which has an additional latency in clocks of
Ci. Ci values may be very large; for example, if the core
clock is 1GHz and the average memory access is 100 ns,
Ci is 100 clocks. Unfortunately, Ci for a fixed latency
device varies with frequency (doubling our core
frequency in the example above also doubles our Ci to
200 clocks). Ci can also be dependent on system state, the
ability of the platform to support pipelining, and the
queuing impact due to demanded bandwidth mismatches.
Examples of these Ci cases are shown in Figure 2.

The examples presented in Figure 2 clearly lead us to the
following conclusions, as we want to scale to high
frequencies in the processor.

• The connection to the processor must be highly
pipelined to improve bus efficiency and avoid
queuing requests.

• The bandwidth to the processor must closely
match the request rate to queuing responses.

HIGH-PERFORMANCE INTERFACE TO
THE PROCESSOR
The STREAM benchmark, along with various SPEC
benchmarks, is used to show how the platform impacts
the overall performance of the system.

The STREAM benchmark is a simple synthetic benchmark
that measures sustainable memory bandwidth and the
corresponding computation rate for simple vector kernels.
It represents a balance between memory bandwidth and
floating-point operations. While the benchmark is
artificial, it is similar to a number of applications of
interest. Applications with streaming data, such as video
editing, format conversion of audio and video, and
encryption primitives all have behaviors common to those
of the STREAM benchmark.

PLATFORM IMPROVEMENTS TO KEEP
PACE WITH PROCESSOR
As processor clock speeds continue to grow
exponentially, the system memory bandwidth required
keeping these processors busy doing useful work grows as
well. Ideally, when CPU frequency is doubled,
application execution time should be halved. On a given
processor architecture with a fixed cache size and caching
strategy, the instantaneous system memory bandwidths
would double, since the execution engine would still
require access to all of the same pieces of memory data.
It would, however, require access to them in half of the
time required by the slower processor.

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 5

System memory application bandwidth vs. application
execution time is plotted in Figure 3. The yellow area of
the graph indicates the memory bandwidth demanded
over time of the applications. If bandwidth is
unconstrained, the processor will request memory twice
as fast and obtain twice the bandwidth, and scale
perfectly. In other words, it completes the application in
one-half the time. However, let us assume that the
memory bandwidth is constrained as indicated by the dark
blue band. The increased memory demand can only be
met by an increase in the execution time, as shown in the
shaded area. Due to the limited memory bandwidth, the
processor that is twice as fast yields less than the 2x
speedup due to the finite memory bandwidth. During this
process, the area under the bandwidth profile remains
constant. Since the application requires its data more
quickly, the bandwidth required to satisfy processor
requests increases.

It is important to note that this demand profile for
memory bandwidth is application specific. Many
applications demand memory resources at a fairly low
rate, and the platform can accommodate the processor
speedup without degradation. Examples of applications
that do not demand high bandwidths include word
processing and presentation software, such as those
components of the SYSmark 20003 benchmark.

Systems whose memory and bus implementations limit
the amount of bandwidth available to the system
execution engines decrease the ability of applications to
scale with processor frequency increases. A memory

3 An application-based benchmark that reflects today’s
leading-edge software applications for Internet Content
Creation and Office Productivity. SYSmark is a
registered trademark of The Business Applications
Performance Corporation.

B
an

dw
id

th
 D

em
an

d

Time

B
an

dw
id

th
 D

em
an

d

Time

2x
 D

em
an

d

1/2 Duration

Bandwidth Limit

Incremental time
due to bandwidth
oversubscription

Figure 3: Frequency scaling and memory limitations

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 6

subsystem implemented with a 64-bit PC133 SDRAM or
with a 133MHz Pentium  III processor bus would limit
the ability of the above example application to scale
linearly with processor frequency. Such memory systems
and processor buses can ideally deliver only 1.066GB/sec.
As a result of this “ceiling”, the CPU is forced to wait for
some of the pieces of data that it requires during the time
the bandwidth limit is exceeded, as indicated by the
shaded areas in Figure 3. While the processor is waiting,
it is doing no useful work and is not contributing to
increased application speed.

In order to analyze the effects on the system of limited
and expanded bandwidth, measurements were taken on a
system with a Pentium III processor running different
components of the SPEC CPU benchmark suite. As one
might expect, there was wide variation in the amount and
profile of memory bandwidth required by the discrete
benchmark components. However, the benchmarks could
basically be divided into two categories: benchmarks that
were already bandwidth limited or nearly bandwidth
limited and benchmark components that required very
little bandwidth and would scale well even without the
bus and system enhancements brought by the Pentium 4
processor, the Intel850, and RDRAM memory.

The first class of benchmarks, those with low-bandwidth
requirements in the Pentium III processor generation,
included a number of the integer benchmarks, such as the
197.parser and the 168.wupwise. Their execution profiles
on a 1GHz platform with a Pentium III processor, using an
Intel840 chipset, showed fairly low system bandwidth
consumption. The bandwidth results for the 197.parser
are illustrated Figure 4. Note that Figure 4 illustrates the
average bandwidth consumption in a 1-second slice using
a solid dot, while the high- and low-bandwidth limits
during that same slice are shown with a gray line.

The bandwidth profile for the 197.parser demonstrates a
fairly consistent average bandwidth requirement of
around 250MB/sec, over the duration of the benchmark
execution time. During this time, the peak data
requirements stay below 500MB/sec. As a result,
memory and processor bus implementations that limit
processor data to around 1GB/sec should not limit even a
2GHz execution engine.

The other class of applications found in the SPEC CPU
benchmark suite are those that are clearly bandwidth
limited on the Pentium III processor platforms. Floating-
point applications such as the 179.art, the 171.swim, and
the 172.mgrid illustrate the problem most vividly,
although integer applications such as the 181.mcf also

Bandwidth Profile for 197.parser

0

500

1000

1500

2000

2500

3000

3500
1

20 39 58 77 96
11

5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

38
1

40
0

41
9

43
8

45
7

47
6

49
5

51
4

Time

B
an

d
w

id
th

Min

Max

Average

Figure 4: Pentium® III processor 197.parser bandwidth profile

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 7

demonstrate serious bandwidth “hunger.” Figure 5
illustrates the bandwidth profile for the 171.swim.

The graph clearly illustrates the bandwidth limitation of
the existing Pentium III processor bus, since its average
processor bus utilization is around 800MB/sec or 80% of
the ideal processor bus bandwidth. If processor frequency
scaling is to return benefits on this application, the bus
and memory system bandwidth capabilities must clearly
be increased. Existing structures do not support
application runtime scaling, and applications such as the
171.swim executing on Pentium III processor platforms
clearly fall into the class of being “bandwidth-limited.”

Given vectors a, b and c, and scalar q, the STREAM
benchmark measures the memory bandwidths for the
following operations.

Function Vector Operations
Copy ba =
Scale ba q=
Sum cba +=
Triad cba += q

The sizes of the arrays are set much larger than processor
cache sizes to guarantee memory is exercised. By
performing both floating-point and bus operations,
platform balance can be assessed. STREAM operations

are typical for a number of new application classes, where
streaming data are required to be delivered to the
processor, computed, and delivered to a peripheral at high
speed. This new workload is required in such things as
speech recognition, video editing, and Internet servers
with streaming datatypes.

Bandwidth Profile for 171.swim

0

500

1000

1500

2000

2500

3000

3500

1

27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7

31
3

33
9

36
5

39
1

41
7

44
3

46
9

49
5

52
1

54
7

57
3

59
9

62
5

65
1

67
7

70
3

Time

B
an

d
w

id
th

Min

Max

Average

Figure 5: Pentium® III processor bandwidth profile for 171.swim

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 8

PLATFORM IMPROVEMENTS DELIVER
PERFORMANCE
As we have seen in the previous analysis of benchmarks,
it is clear that system bus bandwidth is a limiter for the
performance of the platform when high bandwidth is
required by the application. This was foremost in the
minds of the designers of the Intel Pentium 4 processor
when developing the system bus. The system bus used in
the Pentium 4 processor delivers unprecedented
bandwidth for the PC platform, as can be seen in Figure 6.
In addition, the system bus protocol has been improved to
allow more deeply pipelined operations, memory
prefetching, and glueless multiprocessing.

0

500

1000

1500

2000

2500

3000

3500

F
S

B
 B

an
d

w
id

th
 (

M
B

/s
ec

)

IBM PC Pentium Pro Pentium II Pentium III Pentium4

Processor

Front Side Bus Bandwidths

Figure 6: PC processor system bus bandwidths

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 9

The elevated execution speed and processor bus transfer
rate of the Pentium 4 processor offer the opportunity for
greatly enhanced application performance. This is
illustrated by its performance on some benchmarks. To
reiterate, one class of benchmarks would see reduced
execution time solely because of processor frequency
increases. On the other hand, different benchmarks might
have found their achievable performance limited by the
bandwidth on the processor bus without the advantage of
the enhanced bus speed of the Pentium 4 processor. The
first class of applications is typified by the 197.parser
component of SpecINT, whose average and extreme
bandwidths on a 1.4GHz Pentium 4 processor are plotted
in Figure 7.

Bandwidth Profile for 197.parser

0

500

1000

1500

2000

2500

3000

3500

1

21 41 61 81
10

1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

Time

B
an

d
w

id
th

Min

Max

Average

Figure 7: Pentium® 4 processor 197. parser bandwidth profile

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 10

Note that the bandwidth required by the 197.parser
increases dramatically from the Pentium III to the Pentium
4 processor. Where the average bandwidth of the
Pentium III processor hovered around 300MB/sec, the
bandwidth of the Pentium 4 processor requires around
400MB/sec during its reduced execution time.

Applications that were limited by the Pentium I I I
processor bus experience the greatest speedup. 171.swim
was shown in Figure 5 to be demanding memory
bandwidth nearly equal to that of the Pentium III
processor bus bandwidth. The corresponding results on a
Pentium 4 system are shown in Figure 8. The bandwidth
demanded by the Pentium 4 processor is nearly doubled
over that of the Pentium® II processor. Since the Pentium
4 processor platform is able to satisfy the higher demand,
the execution time of 171.swim is greatly reduced.

Note that systems with Pentium III processors simply did
not support this high-bandwidth rate. Their maximum
theoretical data transfer rate peaked at 1066MB/sec on a
133MHz bus.

Bandwidth Profile for 171.swim

0

500

1000

1500

2000

2500

3000

3500
1 27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7

31
3

33
9

36
5

39
1

41
7

44
3

46
9

49
5

52
1

54
7

57
3

59
9

62
5

65
1

67
7

70
3

Time

B
an

d
w

id
th

Min

Max

Average

Figure 8: Pentium® 4 processor 171.swim profile

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 11

The analysis of the STREAM results is similar, but
presented in a different format. Figure 9 shows that 80%
of the memory requests are delivered at a 3.2GB/sec data
rate. Recall too that this must be matched by the floating-
point processing capability of the processor to sustain this
level of performance. The high-performance floating -
point unit of the Pentium 4 processor more than matches
the computation task. As was the case with the SPEC
trace results, any platform incapable of supporting the
requested memory bandwidth of STREAM will have
lower benchmark results. It should also be noted that
STREAM analysis shows the parallelism of the Pentium 4
processor system bus, since the average number of
outstanding memory requests over the duration of the
benchmark is almost six, indicating that the 82850
memory controller is simultaneously processing that
number of memory requests at all times. Figure 10 shows
the STREAM results for the Pentium III processor at 1GHz
and the Pentium 4 processor at 1.5GHz, demonstrating the
advantages of both the high-performance execution
engine of the Pentium 4 processor and the platform
improvements of the system bus and memory controller.

It should be noted that this methodology is independent of
the memory technology. The two technologies presented
here, SDRAM or PC133 and RDRAM merely represent
two different technologies that are able to provide
different memory bandwidths. This analysis could
equally well be applied to different memory technologies,
such as DDR SDRAM.

Should the memory demand of the application be unmet
by the platform, the microarchitecture of the Pentium 4

processor can still compensate to some degree.
Prefetching of memory requests allows the memory
controller to more efficiently serve the requests. The
high-performance pipeline of the Pentium 4 processor
allows much higher processor frequencies to improve
performance as the processor frequency increases.

CONCLUSION
It is not sufficient merely for the microprocessor to
advance down its Moore’s Law trajectory. In this paper,
we have discussed the need for the platform components
to move in concert with the microprocessors’
technological advances. While there have been
significant improvements in platform capabilities over
time, the platform of the Intel Pentium 4 processor
provides a significant leap forward for current platform
capabilities. It is important to understand that it is the
responsibility of the platform to meet the processor’s
demand for memory bandwidth with an appropriate
supply. The system bus of the Pentium 4 processor
provides a high-bandwidth channel for this brokerage
function of the platform.

For the large body of existing applications, memory
bandwidth demanded by the application is relatively low,
so performance improvements can be realized with
processor scaling alone. However, new applications and
benchmarks require that the platform capabilities meet
higher requirements to deliver performance. The Pentium
4 processor with its high-performance microarchitecture
is capable of generating high demands for memory
bandwidth, should the application require it. To fulfill

Stream Bandwidth Demand

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

32
0016

00
10

67
80

0
64

0
53

3
45

7
40

0
35

6
32

0
29

1
26

7
24

6
22

9
21

3
20

0

Bandwidth Requested (MB/second)

P
er

ce
n

ta
g

e
o

f
T

o
ta

l T
im

e

Figure 9: STREAM memory bandwidth demands

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 12

this demand, the platform components, primarily the
system bus and memory connection, have been
dramatically improved to supply this demand.

REFERENCES
1. McCalpin, John D., “Sustainable Memory Bandwidth

in Current High-Performance Computers,” October
12, 1995.

2. Hennessy, John L., and Patterson, David A., Computer
Architecture: A Quantitative Approach, Second
Edition, Morgan Kaufmann Publishers, ISBN:
1558603298.

3. SPEC CPU2000 information can be found at
http://www.spec.org/osg/cpu2000/ .

4. SYSmark 2000 information can be found at
http://www.bapco.com/sysmark2000primer.htm .

5. Information on the 82850 Memory Controller hub can
be downloaded from
http://developer.intel.com/design/chipsets/datashts/29
0691.htm .

AUTHORS’ BIOGRAPHIES
R. Scott Tetrick is responsible for CPU Platform
Architecture in the Desktop Products Group. He has been
involved with bus development at Intel since 1979. He
holds ten patents on platform architecture. While at Intel,
he has developed platforms from single board computer
systems to supercomputers and embedded controllers to

multiprocessing servers. His e-mail address is
stetrick@ichips.intel.com .

Blaise Fanning is a Platform Architect in DPG's chipset
engineering group. He received his B.S. and M.S. degrees
in computer engineering from Boston University in 1987.
He joined Intel in 1997 and was the architect of the
Intel840 workstation chipset. He is currently responsible
for platform performance issues and developing next-
generation I/O interconnects. His e-mail address is
blaise.fanning@intel.com .

Robert Greiner is a platform architect with the DPG
Oregon Architecture team. He helped develop the quad
pumped system bus for the Pentium® 4 processor. He
also contributed to the performance simulators for the
Pentium 4 processor. He has worked on high-speed,
scalable interconnect protocols for Futurebus+, MIT, and
others. He graduated with a B.S. degree in Mathematics
from Michigan State University. His e-mail address is
rgreiner@ichips.intel.com .

Tom Huff is an architect in the Intel® Architecture Group
in Oregon. He was one of the architects in the core team
that defined the Streaming SIMD Extensions for the IA-
32 architecture. He also worked on multimedia
performance analysis for the Pentium® 4 processor. He
holds M.S. and Ph.D. degrees in Electrical Engineering
from the University of Michigan. His e-mail address is
thuff@ichips.intel.com .

Lance Hacking joined Intel's IA-32 Architecture Group
in Oregon in 1994 after completing undergraduate studies

•

0

200

400

600

800

1000

1200

1400

1600
M

eg
ab

yt
es

/S
ec

o
n

d

Copy Scale Add Triad

Stream Functions

Stream Benchmark Results

Pentium III 1GHz with 815 Chipset Pentium 4 1.5GHz with 82850 Chipset

Figure 10: STREAM benchmark results

Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 13

at Brigham Young University. His focus on multimedia
performance began with the Pentium® Pro processor,
includes the Streaming SIMD Extensions defininition,
and continues today with the current Pentium® 4
p r o c e s s o r . H i s e - m a i l a d d r e s s i s
Lance.Hacking@intel.com .

Dave L. Hill joined Intel’s DPG team in 1993, and has
been the bus cluster microarchitect on P4 Willamette and
Foster projects. Dave has 20 years industry experience
primarily in high-performance memory system
microarchitecture, logic design, and system debug. His e-
mail address is dlhill@ichips.intel.com .

Srinivas Chennupaty is a processor architect in the
Desktop Products Group in Oregon. He was one of the
architects in the core team that defined the Internet
Streaming SIMD Extensions for the IA-32 architecture.
He is currently working on multimedia performance
analysis for the Pentium® 4 processor. He holds a M.S.
degree in Computer Engineering from the University of
Texas at Austin. His e-mail address is
chennu@ichips.intel.com .

David A. Koufaty received B.S. and M.S. degrees from
the Simon Bolivar University, Venezuela in 1988 and
1991, respectively. He then received a Ph.D. degree in
Computer Science from the University of Illinois at
Urbana-Champaign in 1997. For the last three years he
has worked for the DPG CPU Architecture organization.
His main interests are in multiprocessor architecture and
software, performance, and compilation. His e-mail
address is dkoufaty@ichips.intel.com .

Subba Palacharla joined Intel in 1998. Since then he
has been a member of the DPG Architecture team
working on performance evaluation of Willamette and
Foster systems. Subba graduated from the Indian Institute
of Technology, Kharagpur, India in 1991 with a B.Tech
degree in Computer Science and Engineering. Subba
received his Ph.D. degree in Computer Science from the
University of Wisconsin at Madison in 1998. His e-mail
address is subbarao@ichips.intel.com .

Jeff Rabe is a chipset architect in the Desktop Product
Group, and was the lead architect for the 82850 chipset.
He joined Intel in 1980, and has worked as a Yield
Analysis engineer, Product Engineer, and Application
Engineer prior to his chipset architecture role. His e-mail
address is jeff.l.rabe@intel.com .

Mike Derr is an architect working on the I/O Controller
Hub (ICH) product line within the Desktop Platforms
Group. He has eight years of experience in Intel® chipset
development and holds four U.S. patents related to chipset
technology. He received a B.S.E.E. degree from
Tennessee Technological University and an M.S.E.E.
degree from the Georgia Institute of Technology. His e-
mail address is mike.n.derr@intel.com .

Copyright © Intel Corporation 2001. This publication
was downloaded from http://developer.intel.com/ .

Legal notices at
http://developer.intel.com/sites/developer/tradmarx.htm .

	preface
	forward
	art_1
	art_2
	art_3
	art_4
	art_5
	art_6
	art_7

