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This Q1 2001 issue of the Intel® Technology Journal covers the very old and the very new at Intel. The first paper 
reminisces about early chip development efforts at Intel. Have you ever wondered why Intel's microprocessors were 
named 8086 or 80286 or what the 8 means? Read the first paper to find out. The authors have over 80 years of Intel 
experience between them, and they are still going strong.  
 
So what's new at Intel? The Pentium® 4 processor. Here is a short list of what makes this such an exciting product. It 
runs at frequencies of 1.30, 1.40 and 1.50GHz and incorporates new hyper-pipelined technology that doubles the 
pipeline depth to 20 stages, which significantly increases processor performance and frequency capability. Its rapid 
execution engine pushes the processor's arithmetic logic units to twice the core frequency, giving higher execution 
throughput. Moreover, it has a 400MHz system bus, Streaming SIMD Extensions 2 that extend MMXTM technology 
and SSE technology, and an additional 144 new instructions. The six papers in this issue, written by Intel's engineers, 
will give you an in-depth look at this new processor.  
 
Also, starting with this issue you will find a new feature in the Intel Technology Journal. Each issue will have a 
selected list of papers published by Intel's engineers and researchers in the previous three to four months. You can use 
this list to find papers of interest to you. The list is located in the left top navigation bar under "Past Journals."  
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The launch of a brand new microarchitecture 
and supporting platform, such as the 
Pentium® 4 processor platform, is an 
especially proud and exciting moment for 
Intel's engineers and technologists. Not only 
is the product launch the pinnacle of a long 
and intense development cycle, it is also the 
moment when the innovations underlying the 
product begin to alter the computing 
landscape. This allows the innovator to 
witness the effects of his or her ideas on the 
world at large.  

The Pentium 4 processor platform is the 
beginning of a whole new family of products 
from Intel. The range of new technologies 
and innovations inherent in this platform is 
breathtaking and constitutes the foundation 
upon which Intel will be able to build for 
years to come. I am confident that the 
Pentium 4 processor will have a profound 
effect on the computing industry, taking 
performance to dizzying new heights and 
enabling new uses for end users. In 
particular, applications such as speech, 
natural language processing, and video are 
quite likely to become pervasive with the 
arrival of the Pentium 4 processor platform.  

Several of the key innovations and 
technologies underlying the Pentium 4 
processor-based platform are described in 
this issue of the Intel® Technology Journal 
by the engineers who first had the ideas and 
then worked long and hard to turn those ideas 
into reality. As you might expect, there were 

tremendous challenges to be overcome in the 
creation of these technologies. They included 
a very high-frequency (1.5+GHz) design with 
its attendant noise challenge, bucking the 
power trend associated with increasing clock 
frequencies, tuning and validating complex 
microarchitectures, a highly optimized and 
balanced system design that uses a novel 
chipset, a quad-pumped processor system bus 
and high-performance RDRAM memory, and 
last but not least, compiler methods to 
leverage new instructions introduced with the 
Pentium 4 processor.  

The papers in this issue offer an insight into 
some of those challenges and how they were 
overcome. At the center is the new Pentium 4 
processor with great performance today and 
enormous frequency and performance 
headroom for the future. At its launch 
frequency of 1.5GHz, the Pentium 4 
processor is already in a class by itself for 
multimedia performance, floating-point 
performance, and the world's highest integer 
performance. This is just the beginning. As 
Moore's Law kicks in, and existing 
applications get fine-tuned for the new 
platform, and new applications get written 
that leverage the new capabilities of the 
Pentium 4 processor, the industry will begin 
to experience and appreciate the full scope 
and breadth of the Pentium 4 processor 
team's vision for this first computing 
platform of the 21st century.  

  

The Pentium® 4 Processor – Advanced Technology for the Internet and Beyond   1 

http://www.intel.com/technology/itj/q12001/gupta.htm


Intel Technology Journal Q1, 2001 
 

 
Copyright © Intel Corporation 2001. This 
publication was downloaded from 
http://www.intel.com/. 
 
Legal notices at 
http://www.intel.com/sites/corporate/tradmar
x.htm   

The Pentium® 4 Processor – Advanced Technology for the Internet and Beyond    2 

http://www.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm
http://www.intel.com/sites/corporate/tradmarx.htm


Recollections of Early Chip Development at Intel  1 

Recollections of Early Chip  
Development at Intel 

Andrew M. Volk, Desktop Platforms Group, Intel Corp. 
Peter A. Stoll, Technology & Manufacturing Group, Intel Corp. 

Paul Metrovich, Desktop Platforms Group, Intel Corp. 
 

Index words: history, products, naming, definition, validation, debug 
 

ABSTRACT 
In the early days of Intel, between the late 1960s and the 
late 1970s, there was a regular product naming scheme by 
which a process, product type, or product family could be 
easily known.  Few remain at Intel who remember this 
scheme, and its source is all but forgotten.  The naming 
scheme and many stories of early products were 
uncovered through interviews and reminiscences by the 
authors, who among them have over 80 years of 
experience at Intel.  This is their story. 

INTRODUCTION 
The genesis for this paper came from a seemingly simple 
inquiry to the Intel® Technology Journal.  A reader 
wanted to know why “80” was used in the name of all 
microprocessors until the Intel  Pentium  processor.  
This started a search for the origins of the naming system 
used in the early days at Intel.  It also got a few of us 
thinking about the early products on which we worked.  
In this paper, we discuss some interesting and little 
known facts about products introduced in Intel’s first ten 
years, the way they were defined, developed, verified, and 
debugged, and how they contrast with the methods that 
we use today.  

EARLY INTEL® PRODUCT NAMING 
SCHEME 
It surprised us that something as simple and mundane as 
the source of the early Intel® product naming scheme 
could be so hard to track down, but it was.  In the end, we 
had to ask Dr. Andrew Grove, Chairman of the Board and 
one of the founders of Intel, for the answer.  Dr. Grove 
said that he and Les Vadasz, then head of Engineering, 
worked it out one day in 1968.  “I distinctly remember us 
concocting this scheme (minus 4XXX) sitting in his 
office in Mountain View, California.  It worked well until 

marketing decided to jazz it up with 4’s and 8’s” [1].  Dr. 
Gordon Moore also was “one of the cooks” that 
developed the naming system [2].  So that’s how it 
started. 

Intel started with two processes: a PMOS polysilicon gate 
and a Schottky barrier diode bipolar process.  One goal of 
the early products was to replace magnetic core memory 
in computers with silicon memories.  To that end, the first 
products were a 64-bit bipolar memory and a 256-bit 
PMOS memory.  The PMOS products were given 
numbers starting with 1xxx, and the bipolar products 
were given numbers starting with 3xxx.  The second digit 
was a “1” for Random Access Memory (RAM), and the 
last two digits were the product sequence number.  The 
sequence numbers of early products tended to start with 
“01” and went up from there.  So, the first PMOS RAM 
was an 1101, and the first bipolar RAM was a 3101.   

The 2xxx sequence started with an ambitious project to 
put a decoder and four 1101 RAM chips on a silicon 
substrate to make a 1-kilobit RAM module.  The decoder 
was a bipolar product, the 2201, and the 2000 series was 
to be for hybrid products.  However, the multichip 
module was not a success because of manufacturing 
difficulties and was therefore dropped.  In 1971, the 2xxx 
sequence was given over to NMOS products.  

Another form of memory was the Read-Only Memory 
(ROM).  The first of these was a metal mask 
programmable 1-kilobit (256 x 4) bipolar part.  The 
second digit “3” was assigned to ROMs.  Therefore, the 
first bipolar ROM became the 3301, which incidentally 
proved to be a great source of revenue for Intel. 

Intel also made shift register memory products.  These 
were used mostly in video displays including Intel’s own 
Microcomputer Development Systems (MDS).  Intel 
made several early shift registers up to 1-kilobit in size.  
These were all dynamic memories that required that the 



Intel Technology Journal Q1, 2001 

Recollections of Early Chip Development at Intel  2 

clocks be kept running.  The second digits “4” and “5” 
were assigned to shift registers, i.e., 1402 and 1405/1505. 

Programmable ROMs (PROMs) were, and continue to 
be, key products for Intel.  Again, both bipolar and 
PMOS versions were developed in the early days.  The 
bipolar parts used polysilicon fuses that were blown by 
pulses of high current.  The PMOS memories stored 
charge on a floating gate.  PROMs that could only be 
programmed once were given “6” as the second digit.  
The PMOS PROMs could also be erased using ultraviolet 
light.  These erasable PROMs (EPROMs) were assigned 
“7” as the second digit. 

The very early products were sequentially numbered.  
However, memory chips were soon numbered in a 
manner to suggest their bit size, as can be seen in the 
sequence of EPROM names: 2704, 2708, 2716, on up to 
27512.  Wanting to keep the name to no more than 5 
numbers long, the 1-megabit EPROM became the 27010. 

The story of the 4004 microprocessor is well known [3, 
4].  The name was a marketing decision to make the 4-bit 
architecture clear.  It wasn’t an easy sell in 1971, and 
even in 1975 the Intel® Data Catalog introduced the 
Microcomputer section with two pages entitled “Why use 
a Microcomputer?” [5]  All products associated with the 
4004 were given numbers in the 4xxx sequence.  Even 
existing products such as RAMs, ROMs, and PROMs 
were given 4004 family numbers, besides their normal 
family numbers. 

In 1972, Intel acquired Microma Universal, Inc. and 
started in the watch business.  The circuits required for 
these watches needed to be very low power.   
Consequently, a CMOS process was developed.  CMOS 
products were assigned the “5xxx” designation.  Chips 
that didn’t have oscillators were “52xx”, and chips that 
worked with a crystal were “58xx.”  Later, this CMOS 
process was also used for the 5101 RAM.  

Also in 1972, Intel built a PMOS 8-bit microprocessor for 
Computer Terminals Corporation (later Datapoint).  
Using the same naming scheme as the 4004, this chip was 
the 8008.  Similarly, all support chips, RAM, ROM and 
EPROM, for the 8008 were included in the “8xxx” 
family.  However, the 8008 was not particularly easy to 
use, and a more powerful NMOS microprocessor was 
introduced in 1974, the 8080.  This name was a simple 
manipulation of the same numbers.  The 8080 required 
+12, +5, and –5 volt supplies to run.  Intel also produced 
the three support chips that drove the 12-volt clocks and 
decoded the bus control signals.  In 1976, a 5-volt only 
version that integrated the support chips was introduced.  
Because it required only five volts, it was dubbed the 
8085.  This numbering scheme continued with the 8086, 
introduced in 1978.  Les Vadasz recalled that the name 
sounded good to the marketing folks as it alluded to the 
16-bit architecture [6].  The expense of having a 16-bit 
system was reduced by the introduction of the 8088 a 
year later.  This was a quick spin of the 8086 to reduce 
the external data bus to 8 bits (hence the name).  IBM’s 
choice of the 8086/88 architecture for its PC made the 
8086 name extremely valuable.  Subsequent processors 

 

 

 

 

 

Table 1:  The Intel® product naming scheme, digit by digit 

 Used for:                 Examples:                Used for:              Examples:            
0 Test chips n.a.  0 Processors 4004*, 4040 
1 PMOS products 1101*, 1103  1 RAMs (static, dynamic) 3101*, 2102, 2104 
2 NMOS products 2101, 2401, 2107B  2 Controllers 2201, 8251, 8253 
3 Bipolar products 3101*  3 ROMs 3301* 
4 4-bit microprocessors  4004*, 4008, 4009  4 Shift Registers† 1406*, 2401 
5 CMOS products 5101, 5201*  5 EPLD†  
6 (not used)   6 PROM 1601* 
7 Bubble memory products  7110*  7 EPROM 1701*, 1702, 2716 
8 8-bit and beyond 

microprocessor and 
microcontrollers 

8008*, 8080, 8085, 
8086, 8088 
8048, 8051, 8096 

 8 Watch chips and timing 
circuits with oscillators 

5801*, 5810 

9 (not used)   9 Telecommunications  2910*, 2920 
 
* First product in this category 
† There were some early exceptions.  1406/1506 were military and commercial grade shift registers, respectively.  The 3404 was a latch product for 

memory subsystems, not a shift register. 

Product Family Product Type 

Sequence Number 
Example Product:  2716  16K NMOS EPROM 
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went to 5-digit names to keep the 8086 name: 80286, 
80386, and 80486.  However, Intel could not get the 
“x86” sequence trademarked, and so the Intel Pentium 
processor name was born. 

Because of the success of the microprocessor, the 8xxx 
product family has the most diverse set of products, 
including microcontrollers (8048, 8051, 8096) and 
peripheral controllers for all forms of microprocessor 
system functions and I/O.  The first 8080 peripheral 
controllers were a serial I/O controller, a parallel I/O port, 
and a timer counter.  The initial names for these chips 
also started out as 8201, 8202 etc., as did the early RAM 
chips.  However, naming conflicts occurred when 3xxx 
family support products were renamed for use in the 8xxx 
family.  These products were renamed 8251, 8255, and 
8253 even before the designs were completed. 

The last products to be assigned names were the 
telecommunications and analog products that used the 
second digit “9”.  The 2910 was the first single chip 
CODEC and was introduced in 1977.  Intel also entered 
the bubble memory business in 1977.  The “7xxx” 
product family was reserved for bubble memory products, 
and the 7110 1-megabit bubble memory chip was 
introduced in 1979.   

And there you have it; that’s how the early products were 
named and how the current naming scheme came about.  
But this is not the end of our story.  Behind these product 
numbers are some little known histories, including some 
stories of products that were never in Intel’s Data 
Catalogs.  Sit back as the authors reminisce and interview 
other early Intel employees.  

THE AUTHORS’ PATHS TO INTEL 
Paul Metrovich joined Intel on a bet.  He was working for 
Union Carbide Semiconductor when that company 
decided to relocate to San Diego.  They had subleased the 
building with most of the fab equipment intact to Intel.  
The rumor mill had it that Intel had agreed with Union 
Carbide not to take applications from their employees 
until they were ready to move their operation to San 
Diego.  Paul bet his fellow employees $5 that the 
agreement did not exist.  He proceeded to apply for a job, 
and after several interviews with Intel, he secured a 
position.  Paul started work on April 16, 1969.  He never 
collected on his bet.  

Peter Stoll studied Electrical Engineering at MIT between 
1967 and 1974, where he took several courses on circuit 
design, integrated circuits, and semiconductor processing.  
He also did a seven-month internship at Bell Telephone 
Laboratories working in integrated circuit design.  He was 
not very pleased with the experience, and swore off 

semiconductor work when he returned to MIT for 
graduate school. 

It did not help that the Electrical Engineering faculty at 
MIT in the early 1970s regarded design work with deep 
disdain.  After a couple of years in biomedical 
instrumentation development, Peter realized that he 
didn’t have the heart to pursue a multiyear Ph.D. thesis.  
He decided to leave school, and Intel was the only 
company on the interview schedule between 
Thanksgiving and Christmas that had compatible needs.  
The Intel interviewers were much more interested in 
Peter's design background than MIT had been and they 
invited him to visit.  The trip resulted in two job offers.  
He joined in 1974 as a one-man design team designing a 
watch chip for Microma: the 5810. 

In 1971, Andrew Volk began working with a group of 
students on a project to design a communication device 
for the handicapped called the Autocomm1.  This project 
developed into his Master’s thesis and involved adding 
the capability of typing whole words instead of letters.  
The design required a programmable memory to store the 
vocabulary.  Intel had just released the 1702A EPROM 
and it was perfect for the job (even though storing charge 
on a floating gate sounded improbable to Andrew at the 
time).  Two EPROMs could hold 64 vocabulary words 
(see Figure 1).  Andrew called Les Vadasz and begged 
parts and technical assistance.  The local sales office 
programmed the EPROMs and the design worked great. 

 

Figure 1:  Autocomm and the word store using 1702A 

Intel was one of the companies to which Andrew applied 
in 1974, and Les Vadasz came as one of the campus 
interviewers.  He requested to see the Autocomm, which 
fortunately was working that day.  It helped earn Andrew 

                                                           
1 This group grew and became the Trace Center at the 
University of Wisconsin (http://trace.wisc.edu/). 
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a trip to California and a job offer.  He started on July 1, 
1974, working on the 8080A. 

EARLY CUSTOM PRODUCTS 
It takes time to build a market and revenue, so Intel 
accepted several interesting custom products in the early 
days.  The most famous of these was the offer by 
Busicomm to make a 12-chip calculator chipset.  Of 
course this led to the 4004 and microprocessor history2.  
Even the 8008 was a custom job that turned into a 
standard product. 

Custom products also got Intel started in the dynamic 
RAM business.  Intel worked with Honeywell on a 
product called the 1102 (PMOS RAM number 2).  Bill 
Regitz was with Honeywell at the time and was hired by 
Intel to work on an improved part, the 1103.  Everybody, 
including Paul Metrovich, got in on the act of trying to 
make this beast work reliably.  Intel had a ready-made 
market for those parts that didn’t quite meet the refresh 
rate specification: its Memory Systems Division.  They 
just adjusted the refresh rate to whatever was necessary.  
In the end, the 1103 was a tremendous financial success.  

There are plenty of lesser-known products.  Tom Innes, 
Intel employee #38, recalls doing bipolar register and 
arithmetic unit chips for Burroughs Corp in 1970 (the 
3405 and 3406, respectively) [7].  These were 
Complementary Transistor Logic (CTL) that used PNP 
inputs and emitter-follower outputs for high-speed and 
high-drive strength.  Burroughs bought these chips for ten 
years.  Ted Jenkins, Intel employee #22, started 
development on zinc-sulfide LEDs that emit blue light 
[8].  Gerry Parker, Intel employee #99, finished the work, 
and Intel sold it to Monsanto.  We also developed a 
custom 7-segment decoder driver for a digital voltmeter 
they made.  We only sold them 10,000 devices, a very 
small number in our business.   

In 1972, Intel’s EPROM technology attracted the interest 
of Mars Money Systems (MMS) who wanted a chip for 
an electronic coin changer.  MMS was a wholly owned 
subsidiary of Mars, Inc., the candy and food products 
company.  Mars had gotten into the vending business 
quite early as a means to distribute their product.  
Accurate coin handling was critical to getting good 
revenue return as well as customer satisfaction.  
However, a good coin changer was a real Rube Goldberg3 
contraption of delicately balanced levers and magnets. 

                                                           
2 See this history and others at the Intel Museum. Visit it 
on-line at http://www.intel.com/intel/intelis/museum/. 
3 For those too young to know who Rube Goldberg is, see 
the web page at http://www.rube-goldberg.com/. 

Fred Heiman, President of MMS at the time, invented an 
electronic means of differentiating coins using tuned 
coils.  Using this scheme, Intel developed the 1205 and 
1206 chips for MMS.  We know the part number only 
because Paul Metrovich kept one as a souvenir in his 
toolbox.  Paul worked on a prototype of discrete parts 
that proved the concept was feasible.  Mr. Heiman recalls 
that it took less than one year to get it working and 
required about 3,000 transistors.  He said that it worked 
wonderfully and had a product life of about five to six 
years.  A coin reject solenoid was the only moving part in 
the coin mechanism [9].  

Because the 1205/06 chip had an erasable PROM, it was 
self-calibrating.  A replacement coin detector coil did not 
necessarily react the same as the previous one.  The 
1205/06 could be erased with ultraviolet light and a set of 
calibration coins fed through the coin changer to set the 
limits of detection.  The results were programmed into 
the device while still in the vending machine.  When new 
slugs were detected, their characteristics could be studied 
and new calibration coins developed to exclude them.  
MMS is now Mars Electronics, Inc. and still a large 
player in vending and coin, and in bill changing. 

(Forest Mars, Sr., retiring head of Mars, Inc., visited Mr. 
Heiman about one year after the electronic coin 
mechanism went into production to understand it and its 
capabilities.  He asked Mr. Heiman to arrange a meeting 
with the head of Intel and a meeting was set with Dr. 
Noyce a week later.  He sat and listened to Bob talk about 
how Intel was growing and innovating on this “crest of 
technology.”  That was enough for Mr. Mars to decide 
that he had no interest in buying Intel.  He was used to 
developing long-term products with steadier sales than 
these new silicon devices that Intel was creating.  Mr. 
Heiman noted, “Perhaps if the pace of silicon technology 
was a little slower, Intel might have become a division of 
Mars, Inc” [10].  No one at Intel was aware of this 
possibility, and as Les Vadasz noted “…we were not for 
sale, anyway” [11].) 

One of Paul’s favorite custom parts was the 8244.  It was 
a TV game chip that, when coupled with an 8048 
microcontroller and a ROM, became the Magnavox 
“Odyssey 2.”  It had a great nine holes of golf!  Intel 
made good money on it.  There was also an 8245 chip for 
European PAL television that differed from the 8244 only 
in the number of scan lines per frame and the timing of 
the TV sync outputs. 

PRODUCT DEVELOPMENT IN THE 
DARK AGES  
If we compare the tools we had available to us 25-30 
years ago to the tools we have today, we would definitely 
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call that period the dark ages of silicon development.  The 
steps for developing a chip back then and now are much 
the same in a broad sense: definition, logic and circuit 
design, verification, layout and mask making, silicon 
wafer fabrication (processing), and debug and test.  But 
that is where the similarity ends.  In the early days, 
design, verification, and testing were done manually for 
the most part.  Fortunately, the chip designs back then 
contained fewer than 30,000 transistors instead of today’s 
42 million.   

Today, chip definitions require specifications hundreds of 
pages long, logic design is largely a matter of writing 
software code, computers run millions of verification 
tests on logic and timing in a few days, and testing is 
done on multi-million dollar testers.  This section 
describes some of our experiences with early chip 
development. 

Product Definition  
When Peter joined Intel in 1974, he was the sole design 
engineer on the 5810.  The product definition process for 
that chip illustrates a radical difference between the Intel 
of then and the Intel of today.  His boss, Joe Friedrich, 
prepared a single page document called a Target 
Specification (spec) that gave the four-digit name to the 
product.  It also gave the pinout and defined the function 
in sufficient detail for the approving parties to decide 
whether they wanted to build it.  It described to Peter 
what he had to build. 

 

Figure 2:  Peter Stoll’s prototype 5810 “watch”  

The entire chain of command of Intel, from Robert Noyce 
on down to Joe Friedrich, met in a room to decide 
whether to approve development based on the 5810 
Target Spec.  In that single meeting, the decision was 
made to proceed.  The product name, 5810, remained 
constant from that point forward throughout the product 
life.  The name appeared in the Target Spec, the 
schematics, any memos, the actual layout, the masks, the 

marketing printed materials, fab lot yield reports, and 
anywhere else the part was discussed. 

The initial 8085 Target Spec was also very simple since 
we were integrating the functions of the 8080 with its 
clock and system controller.  Only a simple serial I/O and 
some additional interrupts were added.  It took only two 
pages.   

After the project got going, several attempts were made 
to change the product, especially in light of rumors of a 
product from Zilog (the Z80).  There was an attempt by 
our manager to make it into a micro-VAX.  Eventually, 
he gave up on the 8085 and turned his attention to the 
next chip, the 8086. 

The simplicity of the early decision process and 
nomenclature stands in stark contrast to our practices 
even in 1978.  By that time, product definition took 
months, engaged many committees, created multiple 
distinct fat memoranda, and generally frustrated all 
involved to no end.  Also, by 1978 we had started our 
current practice of confusing ourselves by referring to the 
exact same product by many (and often changing) code 
names.  Certainly, the complexity of today’s products 
requires more complete documentation, but we’ve also 
made the job harder by not following some of the simple 
rules of nomenclature we followed in earlier, simpler 
times. 

Logic and Circuit Design 
There were no logic design tools when the authors started 
at Intel, no VHDL or logic synthesis.  The gate-level 
design we learned in school was replaced by transistor-
level design in order to get the most efficient transistor 
counts and the smallest layout area.  Repeating functions 
were designed as cells, but the cell was still optimized at 
the transistor level. 

About the only computer design tool we used in 1974 was 
an in-house analog circuit simulation tool called SPULS.  
In contrast to today's highly sophisticated and heavily 
constrained computer design tool environment, a new 
design engineer's entire training on our computer tools 
took about half an hour.  We were shown the common 
terminal area, which consisted of a short row of dumb 
terminals connected to the one central PDP-10.  By the 
end of the half-hour we knew how to log in and how to 
run the simple text editor.  We could specify a circuit of 
five to a few dozen transistors and tell the circuit 
simulator what input signals should be simulated and 
what output signals should be monitored.  The result was 
provided as “line printer graphics” with a resolution in 
both time and voltage of whole character cells.  The y-
axis was limited to 70 or 120 points (characters) 
depending on the printer’s carriage width. 
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In 1975-1977, when all of the original circuit design for 
the 8085 and 8086 microprocessors was carried out, the 
circuit size our central computer could handle was so 
small that we never simulated complete circuits or entire 
circuit paths.  The circuit was decomposed into small 
pieces of about 5-20 transistors, simulated, and then 
added manually back together based on our 
understanding of the overall subsystem.  The simulator 
was necessary for circuits such as RAM sense amplifiers, 
input buffers, and internal precharge-discharge buses. 

The circuit size was limited by computing constraints 
such as memory.  Another equally important size limit 
was the mean time to the computer crashing, which 
happened as often as every 15 minutes.  If the computer 
went down, we lost the whole run.  This also applied to 
file editing.  There were no auto-backup files.  We 
learned by brutal experience to save our work frequently. 

There was, of course, no computer tool to extract 
parasitic capacitances from the actual layout, so accuracy 
in speed simulation was largely dependent on the design 
engineer's skill in guessing layout distances and routings. 

Large portions of the logic circuitry of both the 8085 and 
8086, as with other microprocessors and controller parts 
at that time, were composed of simple n-channel, 
depletion-load logic.  On the 8085, Peter constructed a 
table estimating the delay for each size of depletion load 
transistor we used versus various circuit loads.  This 
“paper computer” was used in place of circuit simulations 
for the overwhelming majority of the speed paths.  The 
errors from these tables were quite small when the layout 
parasitic estimations were done reasonably well. 

Breadboards and Prototypes 
Since simulation was limited, many other means were 
used to verify parts and new ideas.  Paul remembers that 
the PMOS EPROMs were first prototyped by Dov 
Frohman, inventor of the EPROM, using a 4x4 array of 
discrete transistors in TO-5 packages on a special 
breadboard to enable programming and reading.  A 
similar 16-bit array was put on to the first 1701, but since 
the full 256x8 array worked, the small array was never 
really tested [12]. 

Quite a few parts, ranging from the 1850-transistor 5810 
watch chip, up to at least the 6144-transistor 8085 
microprocessor, used no logic verification technique 
other than the engineer's brain.  Andrew spent weeks in 
1976 playing “computer” by running through all the 8085 
instructions. 

Several other development projects did construct a 
prototype breadboard, typically using commercial logic 
components such as 7400-series TTL to reproduce the 

logic proposed for the chip.  It was always difficult to get 
the breadboard done before the part was ready to tape 
out.  Also, there were never commercial components 
available to reproduce all the functions we used on the 
chips. Breadboards were valuable to debug designs, and 
they provided a pre-silicon device to check the tester 
functionality.  It was also valuable to check factors not 
easily seen on a simulation.  We liked to use prototypes 
for human interface devices, like video displays or games. 

Breadboarding was feasible until product device counts 
numbered in the tens of thousands of transistors.  
Eventually, the breadboard became too large and 
complicated to keep up with the speed of the real silicon 
product.  The last custom breadboard Andrew and Paul 
constructed was a video terminal device, one of the first 
5-digit (82730) part numbers in the early 1980s.  

Ironically, a new form of breadboarding called emulation 
is being used now to verify chip designs with millions of 
transistors.  The chips’ functions can be programmed by 
software into the emulator instead of having to solder or 
wirewrap discrete logic.  Now we are able to essentially 
boot the PC without having to build any chips. 

Logic Simulation  
Intel's first in-house logic simulator was LOLA/LOCIS, 
developed by a team headed by Mark Flomenhoft.  It 
became ready for first use just in time to be used on the 
8086 microprocessor project.  Our use of this tool on the 
8086 helped us find dozens of logic errors before the first 
stepping was taped out (although we did leave a few more 
to find in the actual silicon!).  A parallel breadboard 
project consumed at least five times the staff, quite a bit 
more equipment, money, and lab space than the logic 
simulation effort, but the logic simulation effort found 
more problems sooner.  (Jim McKevitt, lead designer on 
the 8086, found at least as many bugs using no tools other 
than his brain, the schematics, and a large supply of well-
sharpened pencils.) 

Layout and Mask Making 
Schematic and layout for the first ten years of Intel was 
done by hand.  Engineers would produce draft schematics 
that a schematic designer would transfer onto D-sized 
vellum sheets.  These would then be hand checked and 
signed off by the engineer.  All edits to the schematic 
would be noted, checked, and signed off.   

Layout planning was done between the engineers and the 
layout designer (mask designers).  The layout of the 8085 
was easier than most chips since it followed the base 
floorplan of the 8080.  Peter guided most of the layout 
work, while Andrew did the layout of the control logic 
array.  This was a ROM-like array based on a dual sum-
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of-products structure.  Andrew planned it out on graph 
paper, carefully folding the terms together to meet layout 
constraints while still minimizing the size.  It took two 
weeks to get the final layout plan.  (Andrew still has those 
planning sheets.)   

 

Figure 3:  Hand-drawn cell layout on Mylar 

There was absolutely no computer assistance for design 
rule verification or for logic vs. layout wiring correctness.  
Physical layout proceeded as highly skilled mask 
designers drew lines with pencils on very large sheets of 
gridded Mylar (Figure 3).  By 1974, the result was being 
digitized on a Calma GDS I system so repeated cells 
could be handled automatically, instead of being hand 
drawn every time.  But the crucial questions of whether 
the drawn lines actually represented the same circuit 
called for by the schematics, and also whether the drawn 
lines honored the design rules, were entirely governed by 
human diligence.  Even after thoroughly checking the 
layout, the most skilled of our mask designers left quite a 
few errors in their initial work.  Finding and removing all 
errors was a very difficult part of the work. 

We often built our own aids to try to make design rule 
verification go a bit more efficiently.  Peter drew 
concentric square boxes on translucent Mylar as a visual 
aid for design rule checking.  He moved his drawing 
around to every single contact drawn on the chip, trying 

to find violations of the rules governing widths and 
spaces around contacts. 

The authors believe that most chips in those days shipped 
with at least some design rule violations.  But you really 
couldn't expect the part to work if it was not wired up 
correctly.  So in addition to daily comparisons of the 
schematics to the drawn layout, a lot of energy went into 
a final check before digitizing and another before tape 
out.  Our usual practice was to start with a full schematic 
of the entire chip, a yellow pencil, and a dark pencil.  As 
we matched up layout found on the plot created from the 
digitized artwork with the schematic, we would mark the 
matched circuits in yellow on the schematic and write in 
signal names on the plot.  We were still doing it this way 
for the 8086 first stepping in 1977.  That part had 20,000 
transistors, and it took two weeks for each of the two 
design engineers who performed the final task.  Both 
engineers (Peter and Chun-Kit Ng) found 19 of the same 
20 errors, which was considered quite a good detection 
rate for this particular technique.  A few months later, 
Todd Wagner provided Intel's first logic vs. layout 
connectivity verification tool, which relieved future 
generations of design engineers of this onerous task. 

The first masks were made by transferring the drawings 
on the Mylar to “rubylith.” Rubylith is a two-layered 
material, which comes in huge sheets.  The base layer is 
heavy transparent dimensionally stable Mylar.  A thin 
film of deep red cellophane-like material covers the base 
layer.  The first chips at Intel used a machine called a 
“Coordinatograph” to guide cutting of the ruby layer.  
The coordinates and lengths had to be measured and 
transferred by hand to the cutter.  Later, a Xynetics 
plotter with knives, instead of pens, was used to cut more 
quickly and precisely.  
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Figure 4:  Technicians transferring layout to rubylith  

When the cutting was finished, the technicians had to 
peel away only the desired geometries that made the mask 
layers.  The design engineer and mask designers would 
spend days hand-checking the rubylith for peeling errors, 
nicks, and unintended cuts.  A final check was made for 
design rule violations.  The rubylith was sent to the mask 
vendor to be made into masks for fabricating the silicon 
die. 

Missing a cut or forgetting to peel a geometry would 
mean a bad part.  Ted Jenkins remembers working on the 
first Intel product, the 3101 64-bit RAM.  Actually, the 
first version was only a 63-bit RAM due to a simple error 
peeling one layer on the rubylith [8]. 

The rubylith sheets had to be handled very carefully so 
they were not damaged.  Small areas of ruby could be 
rubbed off.  Andrew remembers a call from the 8080A 
mask vendor saying that they had found a “floater,” an 
unexplained piece of ruby stuck in a random place on the 
Mylar.  They feared that a piece had come off 
somewhere.  A several hour check against the layout 
found no missing bits and the mask was taken as is.  
Fortunately, the dice made with that mask were okay.  

Adding or removing transistors and interconnect on 
rubylith was definitely a manual task, not unlike surgery.  
In fact, the technician who did the edits used a surgical 
scalpel and a metal ruler (scale).  Adding transistors or 
interconnect involved cutting and peeling away bits of 
ruby.  Removing objects involved adding ruby-red tape to 
the back of the heavy Mylar.  Cuts had to be precise so as 
to leave no nicks or cut marks on the Mylar that might 
show on the mask.  Verification was done with the metal 

scale and a 7X-magnifying eyepiece with a calibrated 
scale on the bottom.  

Processing 
Ted Jenkins was responsible for developing Intel’s 
CMOS process to support the watch business.  Intel 
needed ion implantation for CMOS, but didn’t have the 
equipment.  So, the first wafers were made at Extrion 
(since acquired by Varian).  The process was ready 
before the first timing chip designs were ready. 

The first P-MOS PROMs were in packages with metal 
lids and could not be erased with ultraviolet (UV) light.  
It was suggested that perhaps X-rays could be used and 
this was tried.  It was unsuccessful for two reasons.  It 
took a lot of X-rays to erase the memory properly and 
when the process was complete, the X-rays had damaged 
the transistors, permanently changing their electrical 
characteristics. 

Customers were skeptical of the reliability of the early 
EPROMs and were afraid that sunlight would erase them.  
To test the technology, 1702s were left on the roof of an 
Intel® building in full sunlight for many days with no data 
loss.  (Later N-MOS EPROMs were, in fact, more 
sensitive to ambient UV, so a yellow tape was applied to 
the quartz lid to block the UV.  The tape was removed for 
erasure and reapplied for use.) 

Tom Innes recalls an attempt to make a bipolar PROM 
with floating gates! [7]  A P-channel floating gate device 
was inserted in the base of a PNP transistor, and it was 
programmed by breaking down the collector-base 
junction.  The oxides were not good though and the 
retention was from a few weeks at best to hours at worst.  
Jean-Claude Cornet and Fred Tsang, early Intel 
employees responsible for bipolar product development, 
came up with the poly fuse concept that was used for 
bipolar PROMs. 

The 8085, 8086, and SRAMs used the same NMOS 
processes.  In the mid-70s, the SRAM business was seen 
as a larger revenue source than the microprocessors.  
Tweaks were made to the process to improve SRAM 
performance without worrying about the impact on the 
microprocessors.  Today, it would be strange to think that 
an SRAM process requirement was more important than 
a microprocessor design. 

A bit later, Intel developed its dual implant NMOS 
process called “HMOS” for high-speed SRAMs.  These 
SRAMs were replacements for bipolar RAMs being 
offered by a few competitors.  Our parts were just as fast 
(15 ns access time), but were much cheaper to build and 
consumed a fraction of the power.  One normally quiet 
and reserved process engineer designed a T-shirt with 
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appropriate graphics and the slogan:  “Cure your blazing 
Bipolar itch with Preparation HMOS!” 

HMOS was a very robust process.  The first SRAMs 
made with HMOS were packaged in a white ceramic 
package.  The parts were tested for reliability with a “life 
test” of 1000 hours in a burn-in oven at 125°C.  For one 
batch of parts, the oven temperature control failed and 
got to over twice that temperature before being shut 
down.  When the burn-in boards were removed, the 
sockets holding the parts had melted down the boards like 
wax.  The parts themselves were the color of toasted 
brown marshmallows.  Incredibly, the vast majority of 
parts survived quite well with little impact on their 
performance. 

Test and Debug 
In the process of developing DRAMs, it became apparent 
that there was a need for specialized test equipment.  
Initially, engineers used simple switch boxes and fixtures 
with signal generators and viewed results on an 
oscilloscope.  The wafer prober was operated by hand 
and bad dice were marked with a felt-tip pen.  However, 
this arrangement soon proved too tedious, and 
commercial LSI test systems were purchased.  These 
were rudimentary machines that came with a high price 
tag.  

Paul was chartered with the task of designing, building, 
and operating an engineering-level LSI memory tester for 
the MOS design team.  The first product to be tested on 
this unit was the 2107 4096 bit dynamic RAM, still in 
design.  He was given the substantial budget of $165,000 
(quite large for a starting company) and some technical 
and assembly people to help.  The result was a rack with 
lots of controls, and a central changeable fixture for 
different types of devices. 

Paul dubbed the machine the Tel-Tester.  He started it in 
the Mountain View facility and completed it in the Fall of 
1971 after moving into the first site owned by Intel in 
Santa Clara.  The system was designed with Emitter-
Coupled Logic (ECL) allowing a basic clock of 100MHz 
to be used to time the unit.  The test system was unique in 
several ways.  Digital switches controlled the timing and 
voltage levels.  It also had an interface with automated 
wafer-probing equipment, allowing sorting of pilot runs 
of engineering-level memory products.  An added feature 
was a built-in oscilloscope with a raster scan display of 
the memory array under test with errors or data patterns 
highlighted for analysis.  Some thought was given to a 
computer interface, but it was not implemented due to 
cost and time constraints.   

 

Figure 5:  The Tel-Tester for checking DRAMs 

The Tel-Tester served well in the lab, lasting through 
several generations of DRAMs.  Others used it for several 
more years in the memory products groups until lower-
cost commercial memory testers became available. 

Paul moved on to the new microcomputer group that was 
designing the 4004 and other computer system-related 
devices.  He was engaged in building breadboards of 
products and providing a new way to test these devices.  
We had neither the luxury of a long time nor a large 
budget to develop bench test equipment, and he had to 
find a faster, cheaper way to meet the needs of test.   

Eventually, the idea came to Paul to make a standardized 
desktop tester to evaluate and do design verification for 
new products.  It was called a Modular Test System or 
MTS box, but was better known as a T-box. 

Paul built these T-boxes from a standard metal chassis 
and included a standard power supply module, an opens 
and shorts parametric module, a matrix switching 
module, and an open space for multiple custom boards to 
do some functional testing on whatever product the 
system was targeted to test.  An MCS-4 microcomputer 
module with a 4004 was used for the control system. 
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Figure 6:  Paul Metrovich’s benchtop MDS test box  

Several boxes were built during slow times.  The custom 
test module was designed when a new product was ready. 
The parametric module was programmable as to which 
device pins were to be tested and which were not.  

Additionally, it was decided to provide a T-box to the 
production test group with every new logic type device.  
(Eventually, a group of engineers, technicians, and 
assemblers were formed to do this, first with T-boxes and 
later with the functional test modules of purchased 
testers.  This became Intel’s Test Engineering group.) 

At first, the boxes were serialized, but they ended up 
being named after the part number of the device to be 
tested.  For example, the tester for the 8080 was the T-80. 
A simplified version of the T-box was built just to do an 
opens/shorts test on products after assembly from wafers. 

Another test concept was doing comparison functional 
testing between a “golden” device and the Device Under 
Test (DUT).  This was a good idea, but it became a 
chicken-and-egg contest to find a device that was, in fact, 
golden against which all other devices could be tested. 

Some of the “golden” device comparison testers 
presented real technical challenges due to the 
uncertainties of synchronizing various clocks and data 
simultaneously in both the DUT and the “golden” device.  
A case in point was the 8251 USART.  The data word 
was supposed to be aligned when the parallel data were 
written into both parts.  However, there was a timing 
variation of up to 8 clocks before it came out the serial 
data port of each device, which messed up direct 
comparisons.  (Besides this, the earliest version of the 
8251 USART chips had a quirk in them.  Millions of 
bytes were written in and occasionally one byte would 
never come out the serial port due to a bad internal 
voltage level!)   

The whole thing culminated in the fact that Intel was not 
really interested in being in the test equipment business.  

We needed the units, but could not purchase them, and 
the large LSI testers were still in the design stages of 
development.  Intel was always ahead of the support 
marketplace.   

Steve Bissett, Andrew’s early mentor on the 8080A, was 
working on getting the 8080A tested on the T-80.  The T-
80 was not very reliable, and multiple passes of the same 
set of parts would yield quite variable results.  This led 
Steve to believe there was a better way to test.  He seized 
the opportunity by leaving Intel and founding MegaTest.  
He designed the MegaTest Q8K test box, a machine 
similar to the MTS but with refinements.  Intel bought 
quite a few.   

(One story Andrew will never forget was the day he asked 
Steve what the 8080A die looked like.  They were selling 
for $360 each in those days.  It was packaged in a 
ceramic package with a gold-plated lid.  “Steve selected 
one of the parts he was testing on the bench, dropped it to 
the floor and stepped on it, cracking open the package.  
As he picked up the part and pulled it apart to show me 
the die, all I could think was $360!  He just stepped on 
$360! That was a good chunk of my paycheck then.”) 

Peter remembers the test setup commonly built to check 
the functionality of initial samples of the product, and 
even the testing of initial samples for shipment to 
customers. For a watch chip, this generally meant 
arranging a probe card to actually probe the dice on the 
wafer, an interface cable, a watch display (LCD or LED), 
a few switches, and power.  Then the engineer for the 
part, or a technician, would sit for endless hours at the lab 
bench, flipping switches and watching the display, 
deciding whether each die appeared to work or not.   

Peter dreaded the prospect of spending weeks flipping 
switches, and doubted the resulting product quality.  He 
spent several of the weeks between making masks and 
getting the first wafers designing and building a small 
informal tester.  It checked whether the on-chip voltage 
tripler could actually generate the required power supply 
voltage, supplied an extremely simple set of input signals 
to the watch chip, and checked whether the outputs were 
correct by comparison to a known good reference.  He 
even added logic to mark each bad die and automatically 
step the probe card across the wafer.  He still had to flip 
switches and look at the display for the very first chip he 
tested, and it worked.  Peter manually tested about 10 
more chips, but after that, the improvised tester was good 
enough to determine initial yield and to create initial 
customer samples.  The 5810 proved to be production 
worthy on the first stepping of the die.  Packaged parts 
from this first lot were also provided to the T-box 
developer to allow him to carry out tester development. 
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Peter got a bit of help in assembling his informal tester 
from one of the lab technicians, but he did nearly the 
entire chip checkout, evaluation, and sample generation 
himself.  In those days, a product design engineer could 
expect to be heavily involved in nearly all phases of 
product development.  For many of us, this relationship 
created a deep satisfaction and an intense sense of 
ownership. 

Peter and Andrew also designed a test setup for the 8085 
chip that was, in essence, a small computer system where 
the 8085 under test actually executed its own test 
program.  This was a dangerous strategy since the part 
needed some functionality to even get the test started. 
Both the part and tester worked well enough to allow us 
to debug the chip from the start (after making an 
allowance for an inversion on the chip’s address bus tri-
state control). 

The dedication we all felt to the products can be 
demonstrated by a final story.  The stepping of the 8085 
that was expected to allow volume production of the part 
came out of the fab over a week earlier than expected, on 
October 21, 1976 to be precise.  Andrew remembers that 
date well.  It was the day before his wedding.  But he still 
stayed until midnight checking out the new stepping.  He 
left a short report on his boss’ chair saying that all the 
bugs found in the previous stepping were checked and 
working, and that he would do a more thorough 
evaluation—in a week! 

CONCLUSION 
It is hard to end this story.  Each time a name or event is 
mentioned, it triggers yet another episode buried 
somewhere in our memories.  It has allowed us to briefly 
revisit a time when we were heavily involved mentally, 
physically, and emotionally in our work.  It was a time 
when we felt we were entirely responsible for a project.  
Writing this has stirred feelings that have lain dormant for 
a long time, yet come flooding back upon hearing the 
stories, seeing the pictures, and talking with past 
colleagues.  

There are many more articles and histories floating 
around in the minds of the good employees, present and 
past, who contributed to building and sustaining the 
corporation called Intel.  Each individual has a story to 
tell, a joke to make you laugh, an incident to relate that 
evokes a touch of anger, and a personal anecdote that 
makes a career a life experience.  To discover and 
recount all of these would take another lifetime and result 
in a large book rather than a journal article.  For now, we 
just want to record some of our early experiences in a 
young corporation by highlighting how products were 
named and developed in the first years.  We hope we 

have done this in a way that brings across the fun we had, 
the effort we put in, and the results we achieved. 
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ABSTRACT   
This paper describes the Intel® NetBurst™ 
microarchitecture of Intel’s new flagship Pentium® 4 
processor.  This microarchitecture is the basis of a new 
family of processors from Intel starting with the Pentium 
4 processor.  The Pentium 4 processor provides a 
substantial performance gain for many key application 
areas where the end user can truly appreciate the 
difference. 

In this paper we describe the main features and functions 
of the NetBurst microarchitecture.  We present the front-
end of the machine, including its new form of instruction 
cache called the Execution Trace Cache.  We also 
describe the out-of-order execution engine, including the 
extremely low latency double-pumped Arithmetic Logic 
Unit (ALU) that runs at 3GHz.  We also discuss the 
memory subsystem, including the very low latency Level 
1 data cache that is accessed in just two clock cycles.  We 
then touch on some of the key features that allow the 
Pentium 4 processor to have outstanding floating-point 
and multi-media performance.  We provide some key 
performance numbers for this processor, comparing it to 
the Pentium® III processor. 

INTRODUCTION 
The Pentium 4 processor is Intel’s new flagship 
microprocessor that was introduced at 1.5GHz in 
November of 2000.  It implements the new Intel NetBurst  
microarchitecture that features significantly higher clock 
rates and world-class performance.  It includes several 
important new features and innovations that will allow the 
Intel Pentium 4 processor to deliver industry-leading 
performance for the next several years.  This paper 

provides an in-depth examination of the features and 
functions of the Intel NetBurst microarchitecture. 

The Pentium 4 processor is designed to deliver 
performance across applications where end users can truly 
appreciate and experience its performance.  For example, 
it allows a much better user experience in areas such as 
Internet audio and streaming video, image processing, 
video content creation, speech recognition, 3D 
applications and games, multi-media, and multi-tasking 
user environments.  The Pentium 4 processor enables real-
time MPEG2 video encoding and near real-time MPEG4 
encoding, allowing efficient video editing and video 
conferencing.  It delivers world-class performance on 3D 
applications and games, such as Quake 3∗ , enabling a new 
level of realism and visual quality to 3D applications.  

The Pentium 4 processor has 42 million transistors 
implemented on Intel’s 0.18u CMOS process, with six 
levels of aluminum interconnect.  It has a die size of 217 
mm2 and it consumes 55 watts of power at 1.5GHz.  Its 
3.2 GB/second system bus helps provide the high data 
bandwidths needed to supply data to today’s and 
tomorrow’s demanding applications.  It adds 144 new 
128-bit Single Instruction Multiple Data (SIMD) 
instructions called SSE2 (Streaming SIMD Extension 2) 
that improve performance for multi-media, content 
creation, scientific, and engineering applications. 

                                                           
∗ Other brands and names are the property of their 
respective owners.  
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OVERVIEW OF THE NETBURST™ 
MICROARCHITECTURE  
A fast processor requires balancing and tuning of many 
microarchitectural features that compete for processor die 
cost and for design and validation efforts.  Figure 1 shows 
the basic Intel NetBurst microarchitecture of the Pentium 
4 processor.  As you can see, there are four main sections: 
the in-order front end, the out-of-order execution engine, 
the integer and floating-point execution units, and the 
memory subsystem. 

BTB/Branch Prediction

Out-of-order 
execution 

logic
RetirementFetch/Decode

Trace Cache

Microcode ROM

Front End

Branch History Update

Level 1 Data Cache

Execution Units 

Bus Unit

Level 2 Cache
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Memory Subsystem

Out-of-order Engine

Integer and FP Execution Units

 

Figure 1: Basic block diagram 

In-Order Front End 
The in-order front end is the part of the machine that 
fetches the instructions to be executed next in the program 
and prepares them to be used later in the machine 
pipeline.  Its job is to supply a high-bandwidth stream of 
decoded instructions to the out-of-order execution core, 
which will do the actual completion of the instructions.  
The front end has highly accurate branch prediction logic 
that uses the past history of program execution to 
speculate where the program is going to execute next.  
The predicted instruction address, from this front-end 
branch prediction logic, is used to fetch instruction bytes 
from the Level 2 (L2) cache.  These IA-32 instruction 
bytes are then decoded into basic operations called uops 
(micro-operations) that the execution core is able to 
execute. 

The NetBurst microarchitecture has an advanced form of 
a Level 1 (L1) instruction cache called the Execution 
Trace Cache.  Unlike conventional instruction caches, the 
Trace Cache sits between the instruction decode logic and 
the execution core as shown in Figure 1.  In this location 
the Trace Cache is able to store the already decoded IA-
32 instructions or uops.  Storing already decoded 
instructions removes the IA-32 decoding from the main 
execution loop.  Typically the instructions are decoded 

once and placed in the Trace Cache and then used 
repeatedly from there like a normal instruction cache on 
previous machines.  The IA-32 instruction decoder is only 
used when the machine misses the Trace Cache and needs 
to go to the L2 cache to get and decode new IA-32 
instruction bytes. 

Out-of-Order Execution Logic 
The out-of-order execution engine is where the 
instructions are prepared for execution.  The out-of-order 
execution logic has several buffers that it uses to smooth 
and re-order the flow of instructions to optimize 
performance as they go down the pipeline and get 
scheduled for execution.  Instructions are aggressively re-
ordered to allow them to execute as quickly as their input 
operands are ready.  This out-of-order execution allows 
instructions in the program following delayed instructions 
to proceed around them as long as they do not depend on 
those delayed instructions.  Out-of-order execution allows 
the execution resources such as the ALUs and the cache 
to be kept as busy as possible executing independent 
instructions that are ready to execute.  

The retirement logic is what reorders the instructions, 
executed in an out-of-order manner, back to the original 
program order.  This retirement logic receives the 
completion status of the executed instructions from the 
execution units and processes the results so that the proper 
architectural state is committed (or retired) according to 
the program order.  The Pentium 4 processor can retire up 
to three uops per clock cycle.  This retirement logic 
ensures that exceptions occur only if the operation 
causing the exception is the oldest, non-retired operation 
in the machine.  This logic also reports branch history 
information to the branch predictors at the front end of the 
machine so they can train with the latest known-good 
branch-history information. 

Integer and Floating-Point Execution Units 
The execution units are where the instructions are actually 
executed.  This section includes the register files that store 
the integer and floating-point data operand values that the 
instructions need to execute.  The execution units include 
several types of integer and floating-point execution units 
that compute the results and also the L1 data cache that is 
used for most load and store operations. 

Memory Subsystem 
Figure 1 also shows the memory subsystem.  This 
includes the L2 cache and the system bus.  The L2 cache 
stores both instructions and data that cannot fit in the 
Execution Trace Cache and the L1 data cache.  The 
external system bus is connected to the backside of the 
second-level cache and is used to access main memory 
when the L2 cache has a cache miss, and to access the 
system I/O resources. 
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CLOCK RATES 
Processor microarchitectures can be pipelined to different 
degrees.  The degree of pipelining is a microarchitectural 
decision.  The final frequency of a specific processor 
pipeline on a given silicon process technology depends 
heavily on how deeply the processor is pipelined.  When 
designing a new processor, a key design decision is the 
target design frequency of operation.  The frequency 
target determines how many gates of logic can be 
included per pipeline stage in the design.  This then helps 
determine how many pipeline stages there are in the 
machine. 

There are tradeoffs when designing for higher clock rates.  
Higher clock rates need deeper pipelines so the efficiency 
at the same clock rate goes down.  Deeper pipelines make 
many things take more clock cycles, such as mispredicted 
branches and cache misses, but usually more than make 
up for the lower per-clock efficiency by allowing the 
design to run at a much higher clock rate.  For example, a 
50% increase in frequency might buy only a 30% increase 
in net performance, but this frequency increase still 
provides a significant overall performance increase.  
High-frequency design also depends heavily on circuit 
design techniques, design methodology, design tools, 
silicon process technology, power and thermal 
constraints, etc. At higher frequencies, clock skew and 
jitter and latch delay become a much bigger percentage of 
the clock cycle, reducing the percentage of the clock cycle 
usable by actual logic.  The deeper pipelines make the 
machine more complicated and require it to have deeper 
buffering to cover the longer pipelines. 

Historical Trend of Processor Frequencies 
Figure 2 shows the relative clock frequency of Intel’s last 
six processor cores.  The vertical axis shows the relative 
clock frequency, and the horizontal axis shows the various 
processors relative to each other.   

1 1 1

1.5

2.5

1

0
0.5

1
1.5

2
2.5

3

286 386 486 P5 P6 P4P

R
el

at
iv

e 
Fr

eq
ue

n
cy

Figure 2: Relative frequencies of Intel’s processors 

Figure 2 shows that the 286, Intel386™, Intel486™ and 
Pentium® (P5) processors had similar pipeline depths–
they would run at similar clock rates if they were all 
implemented on the same silicon process technology.  
They all have a similar number of gates of logic per clock 
cycle.  The P6 microarchitecture lengthened the processor 
pipelines, allowing fewer gates of logic per pipeline stage, 
which delivered significantly higher frequency and 
performance.  The P6 microarchitecture approximately 
doubled the number of pipeline stages compared to the 
earlier processors and was able to achieve about a 1.5 
times higher frequency on the same process technology.   

The NetBurst microarchitecture was designed to have an 
even deeper pipeline (about two times the P6 
microarchitecture) with even fewer gates of logic per 
clock cycle to allow an industry-leading clock rate. 
Compared to the P6 family of processors, the Pentium 4 
processor was designed with a greater than 1.6 times 
higher frequency target for its main clock rate, on the 
same process technology.  This allows it to operate at a 
much higher frequency than the P6 family of processors 
on the same silicon process technology.  At its 
introduction in November 2000, the Pentium 4 processor 
was at 1.5 times the frequency of the Pentium III 
processor.  Over time this frequency delta will increase as 
the Pentium 4 processor design matures. 

Different parts of the Pentium 4 processor run at different 
clock frequencies.  The frequency of each section of logic 
is set to be appropriate for the performance it needs to 
achieve.  The highest frequency section (fast clock) was 
set equal to the speed of the critical ALU-bypass 
execution loop that is used for most instructions in integer 
programs.  Most other parts of the chip run at half of the 
3GHz fast clock since this makes these parts much easier 
to design.  A few sections of the chip run at a quarter of 
this fast-clock frequency making them also easier to 
design. The bus logic runs at 100MHz, to match the 
system bus needs.  

As an example of the pipelining differences, Figure 3 
shows a key pipeline in both the P6 and the Pentium 4 
processors: the mispredicted branch pipeline. This 
pipeline covers the cycles it takes a processor to recover 
from a branch that went a different direction than the 
early fetch hardware predicted at the beginning of the 
machine pipeline.  As shown, the Pentium 4 processor has 
a 20-stage misprediction pipeline while the P6 
microarchitecture has a 10-stage misprediction pipeline.  
By dividing the pipeline into smaller pieces, doing less 
work during each pipeline stage (fewer gates of logic), the 
clock rate can be a lot higher. 
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Figure 3: Misprediction Pipeline 
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Figure 4: Pentium® 4 processor microarchitecture

NETBURST MICROARCHITECTURE 
Figure 4 shows a more detailed block diagram of the 
NetBurst microarchitecture of the Pentium 4 processor.  
The top-left portion of the diagram shows the front end of 
the machine.  The middle of the diagram illustrates the 
out-of-order buffering logic, and the bottom of the 
diagram shows the integer and floating-point execution 
units and the L1 data cache.  On the right of the diagram 
is the memory subsystem. 

Front End 
The front end of the Pentium 4 processor consists of 
several units as shown in the upper part of Figure 4.  It 
has the Instruction TLB (ITLB), the front-end branch 
predictor (labeled here Front-End BTB), the IA-32 
Instruction Decoder, the Trace Cache, and the Microcode 
ROM. 
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Trace Cache 
The Trace Cache is the primary or Level 1 (L1) 
instruction cache of the Pentium 4 processor and delivers 
up to three uops per clock to the out-of-order execution 
logic.  Most instructions in a program are fetched and 
executed from the Trace Cache.  Only when there is a 
Trace Cache miss does the NetBurst microarchitecture 
fetch and decode instructions from the Level 2 (L2) 
cache.  This occurs about as often as previous processors 
miss their L1 instruction cache.  The Trace Cache has a 
capacity to hold up to 12K uops.  It has a similar hit rate 
to an 8K to 16K byte conventional instruction cache. 

IA-32 instructions are cumbersome to decode.  The 
instructions have a variable number of bytes and have 
many different options.  The instruction decoding logic 
needs to sort this all out and convert these complex 
instructions into simple uops that the machine knows how 
to execute.  This decoding is especially difficult when 
trying to decode several IA-32 instructions each clock 
cycle when running at the high clock frequency of the 
Pentium 4 processor.  A high-bandwidth IA-32 decoder, 
that is capable of decoding several instructions per clock 
cycle, takes several pipeline stages to do its work.  When 
a branch is mispredicted, the recovery time is much 
shorter if the machine does not have to re-decode the IA-
32 instructions needed to resume execution at the 
corrected branch target location.  By caching the uops of 
the previously decoded instructions in the Trace Cache, 
the NetBurst microarchitecture bypasses the instruction 
decoder most of the time thereby reducing misprediction 
latency and allowing the decoder to be simplified: it only 
needs to decode one IA-32 instruction per clock cycle.  

The Execution Trace Cache takes the already-decoded 
uops from the IA-32 Instruction Decoder and assembles 
or builds them into program-ordered sequences of uops 
called traces.  It packs the uops into groups of six uops per 
trace line.  There can be many trace lines in a single trace.  
These traces consist of uops running sequentially down 
the predicted path of the IA-32 program execution.  This 
allows the target of a branch to be included in the same 
trace cache line as the branch itself even if the branch and 
its target instructions are thousands of bytes apart in the 
program.  

Conventional instruction caches typically provide 
instructions up to and including a taken branch instruction 
but none after it during that clock cycle.  If the branch is 
the first instruction in a cache line, only the single branch 
instruction is delivered that clock cycle.  Conventional 
instruction caches also often add a clock delay getting to 
the target of the taken branch, due to delays getting 
through the branch predictor and then accessing the new 
location in the instruction cache.  The Trace Cache avoids 
both aspects of this instruction delivery delay for 
programs that fit well in the Trace Cache. 

The Trace Cache has its own branch predictor that directs 
where instruction fetching needs to go next in the Trace 
Cache.  This Trace Cache predictor (labeled Trace BTB in 
Figure 4) is smaller than the front-end predictor, since its 
main purpose is to predict the branches in the subset of 
the program that is currently in the Trace Cache.  The 
branch prediction logic includes a 16-entry return address 
stack to efficiently predict return addresses, because often 
the same procedure is called from several different call 
sites.  The Trace-Cache BTB, together with the front-end 
BTB, use a highly advanced branch prediction algorithm 
that reduces the branch misprediction rate by about 1/3 
compared to the predictor in the P6 microarchitecture.  

Microcode ROM 
Near the Trace Cache is the microcode ROM.  This ROM 
is used for complex IA-32 instructions, such as string 
move, and for fault and interrupt handling.  When a 
complex instruction is encountered, the Trace Cache 
jumps into the microcode ROM which then issues the 
uops needed to complete the operation.  After the 
microcode ROM finishes sequencing uops for the current 
IA-32 instruction, the front end of the machine resumes 
fetching uops from the Trace Cache. 

The uops that come from the Trace Cache and the 
microcode ROM are buffered in a simple, in-order uop 
queue that helps smooth the flow of uops going to the out-
of-order execution engine.  

ITLB and Front-End BTB 
The IA-32 Instruction TLB and front-end BTB, shown at 
the top of Figure 4, steer the front end when the machine 
misses the Trace Cache.  The ITLB translates the linear 
instruction pointer addresses given to it into physical 
addresses needed to access the L2 cache.  The ITLB also 
performs page-level protection checking.  

Hardware instruction prefetching logic associated with the 
front-end BTB fetches IA-32 instruction bytes from the 
L2 cache that are predicted to be executed next.  The fetch 
logic attempts to keep the instruction decoder fed with the 
next IA-32 instructions the program needs to execute. 
This instruction prefetcher is guided by the branch 
prediction logic (branch history table and branch target 
buffer listed here as the front-end BTB) to know what to 
fetch next.  Branch prediction allows the processor to 
begin fetching and executing instructions long before the 
previous branch outcomes are certain.  The front-end 
branch predictor is quite large–4K branch target entries–to 
capture most of the branch history information for the 
program.  If a branch is not found in the BTB, the branch 
prediction hardware statically predicts the outcome of the 
branch based on the direction of the branch displacement 
(forward or backward).  Backward branches are assumed 
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to be taken and forward branches are assumed to not be 
taken.  

IA-32 Instruction Decoder 
The instruction decoder receives IA-32 instruction bytes 
from the L2 cache 64-bits at a time and decodes them into 
primitives, called uops, that the machine knows how to 
execute.  This single instruction decoder can decode at a 
maximum rate of one IA-32 instruction per clock cycle. 
Many IA-32 instructions are converted into a single uop, 
and others need several uops to complete the full 
operation.  If more than four uops are needed to complete 
an IA-32 instruction, the decoder sends the machine into 
the microcode ROM to do the instruction.  Most 
instructions do not need to jump to the microcode ROM 
to complete.  An example of a many-uop instruction is 
string move, which could have thousands of uops. 

Out-of-Order Execution Logic 
The out-of-order execution engine consists of the 
allocation, renaming, and scheduling functions.  This part 
of the machine re-orders instructions to allow them to 
execute as quickly as their input operands are ready. 

The processor attempts to find as many instructions as 
possible to execute each clock cycle.  The out-of-order 
execution engine will execute as many ready instructions 
as possible each clock cycle, even if they are not in the 
original program order.  By looking at a larger number of 
instructions from the program at once, the out-of-order 
execution engine can usually find more ready-to-execute, 
independent instructions to begin.  The NetBurst 
microarchitecture has much deeper buffering than the P6 
microarchitecture to allow this.  It can have up to 126 
instructions in flight at a time and have up to 48 loads and 
24 stores allocated in the machine at a time. 

The Allocator 
The out-of-order execution engine has several buffers to 
perform its re-ordering, tracking, and sequencing 
operations.  The Allocator logic allocates many of the key 
machine buffers needed by each uop to execute.  If a 
needed resource, such as a register file entry, is 
unavailable for one of the three uops coming to the 
Allocator this clock cycle, the Allocator will stall this part 
of the machine.  When the resources become available the 
Allocator assigns them to the requesting uops and allows 
these satisfied uops to flow down the pipeline to be 
executed.  The Allocator allocates a Reorder Buffer 

(ROB) entry, which tracks the completion status of one of 
the 126 uops that could be in flight simultaneously in the 
machine.  The Allocator also allocates one of the 128 
integer or floating-point register entries for the result data 
value of the uop, and possibly a load or store buffer used 
to track one of the 48 loads or 24 stores in the machine 
pipeline.  In addition, the Allocator allocates an entry in 
one of the two uop queues in front of the instruction 
schedulers.   

Register Renaming 
The register renaming logic renames the logical IA-32 
registers such as EAX onto the processors 128-entry 
physical register file.  This allows the small, 8-entry, 
architecturally defined IA-32 register file to be 
dynamically expanded to use the 128 physical registers in 
the Pentium 4 processor.  This renaming process removes 
false conflicts caused by multiple instructions creating 
their simultaneous but unique versions of a register such 
as EAX.  There could be dozens of unique instances of 
EAX in the machine pipeline at one time.  The renaming 
logic remembers the most current version of each register, 
such as EAX, in the Register Alias Table (RAT) so that a 
new instruction coming down the pipeline can know 
where to get the correct current instance of each of its 
input operand registers. 

As shown in Figure 5 the NetBurst microarchitecture 
allocates and renames the registers somewhat differently 
than the P6 microarchitecture.  On the left of Figure 5, the 
P6 scheme is shown.  It allocates the data result registers 
and the ROB entries as a single, wide entity with a data 
and a status field.  The ROB data field is used to store the 
data result value of the uop, and the ROB status field is 
used to track the status of the uop as it is executing in the 
machine.  These ROB entries are allocated and 
deallocated sequentially and are pointed to by a sequence 
number that indicates the relative age of these entries.  
Upon retirement, the result data is physically copied from 
the ROB data result field into the separate Retirement 
Register File (RRF).  The RAT points to the current 
version of each of the architectural registers such as EAX.  
This current register could be in the ROB or in the RRF. 

The NetBurst microarchitecture allocation scheme is 
shown on the right of Figure 5.  It allocates the ROB 
entries and the result data Register File (RF) entries 
separately.   
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Figure 5: Pentium® III vs. Pentium® 4 processor register allocation 

The ROB entries, which track uop status, consist only of 
the status field and are allocated and deallocated 
sequentially.  A sequence number assigned to each uop 
indicates its relative age.  The sequence number points to 
the uop’s entry in the ROB array, which is similar to the 
P6 microarchitecture.  The Register File entry is allocated 
from a list of available registers in the 128-entry RF–not 
sequentially like the ROB entries.  Upon retirement, no 
result data values are actually moved from one physical 
structure to another. 

Uop Scheduling 
The uop schedulers determine when a uop is ready to 
execute by tracking its input register operands.  This is the 
heart of the out-of-order execution engine.  The uop 
schedulers are what allow the instructions to be reordered 
to execute as soon as they are ready, while still 
maintaining the correct dependencies from the original 
program.  The NetBurst microarchitecture has two sets of 
structures to aid in uop scheduling: the uop queues and 
the actual uop schedulers. 

There are two uop queues–one for memory operations 
(loads and stores) and one for non-memory operations.  
Each of these queues stores the uops in strict FIFO (first-
in, first-out) order with respect to the uops in its own 
queue, but each queue is allowed to be read out-of-order 
with respect to the other queue.  This allows the dynamic 
out-of-order scheduling window to be larger than just 
having the uop schedulers do all the reordering work.   

There are several individual uop schedulers that are used 
to schedule different types of uops for the various 
execution units on the Pentium 4 processor as shown in 
Figure 6.  These schedulers determine when uops are 
ready to execute based on the readiness of their dependent 
input register operand sources and the availability of the 
execution resources the uops need to complete their 
operation.   

These schedulers are tied to four different dispatch ports.  
There are two execution unit dispatch ports labeled port 0 
and port 1 in Figure 6.  These ports are fast: they can 
dispatch up to two operations each main processor clock 
cycle.  Multiple schedulers share each of these two 
dispatch ports.  The fast ALU schedulers can schedule on 
each half of the main clock cycle while the other 
schedulers can only schedule once per main processor 
clock cycle.  They arbitrate for the dispatch port when 
multiple schedulers have ready operations at once.  There 
is also a load and a store dispatch port that can dispatch a 
ready load and store each clock cycle.  Collectively, these 
uop dispatch ports can dispatch up to six uops each main 
clock cycle.  This dispatch bandwidth exceeds the front-
end and retirement bandwidth, of three uops per clock, to 
allow for peak bursts of greater than 3 uops per clock and 
to allow higher flexibility in issuing uops to different 
dispatch ports.  Figure 6 also shows the types of 
operations that can be dispatched to each port each clock 
cycle.  
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Figure 6: Dispatch ports in the Pentium® 4 processor

Integer and Floating-Point Execution Units 
The execution units are where the instructions are actually 
executed.  The execution units are designed to optimize 
overall performance by handling the most common cases 
as fast as possible.  There are several different execution 
units in the NetBurst microarchitecture.  The units used to 
execute integer operations include the low-latency integer 
ALUs, the complex integer instruction unit, the load and 
store address generation units, and the L1 data cache.  

Floating-Point (x87), MMX, SSE (Streaming SIMD 
Extension), and SSE2 (Streaming SIMD Extension 2) 
operations are executed by the two floating-point 
execution blocks.  MMX instructions are 64-bit packed 
integer SIMD operations that operate on 8, 16, or 32-bit 
operands.  The SSE instructions are 128-bit packed IEEE 
single-precision floating-point operations.  The Pentium 4 
processor adds new forms of 128-bit SIMD instructions 
called SSE2.  The SSE2 instructions support 128-bit 
packed IEEE double-precision SIMD floating-point 
operations and 128-bit packed integer SIMD operations.  
The packed integer operations support 8, 16, 32, and 64-
bit operands. See  IA-32 Intel Architecture Software 
Developer’s Manual Volume 1: Basic Architecture [3] for 
more detail on these SIMD operations. 

The Integer and floating-point register files sit between 
the schedulers and the execution units.  There is a separate 
128-entry register file for both the integer and the 
floating-point/SSE operations.  Each register file also has 
a multi-clock bypass network that bypasses or forwards 
just-completed results, which have not yet been written 
into the register file, to the new dependent uops.  This 
multi-clock bypass network is needed because of the very 
high frequency of the design. 

Low Latency Integer ALU 
The Pentium 4 processor execution units are designed to 
optimize overall performance by handling the most 
common cases as fast as possible.  The Pentium 4 
processor can do fully dependent ALU operations at twice 
the main clock rate.  The ALU-bypass loop is a key 
closed loop in the processor pipeline.  Approximately 60-
70% of all uops in typical integer programs use this key 
integer ALU loop.  Executing these operations at ½ the 
latency of the main clock helps speed up program 
execution for most programs.  Doing the ALU operations 
in one half a clock cycle does not buy a 2x performance 
increase, but it does improve the performance for most 
integer applications. 

This high-speed ALU core is kept as small as possible to 
minimize the metal length and loading.  Only the essential 
hardware necessary to perform the frequent ALU 
operations is included in this high-speed ALU execution 
loop.  Functions that are not used very frequently, for 
most integer programs, are not put in this key low-latency 
ALU loop but are put elsewhere.  Some examples of 
integer execution hardware put elsewhere are the 
multiplier, shifts, flag logic, and branch processing.   

The processor does ALU operations with an effective 
latency of one-half of a clock cycle.  It does this operation 
in a sequence of three fast clock cycles (the fast clock 
runs at 2x the main clock rate) as shown in Figure 7.  In 
the first fast clock cycle, the low order 16-bits are 
computed and are immediately available to feed the low 
16-bits of a dependent operation the very next fast clock 
cycle.  The high-order 16 bits are processed in the next 
fast cycle, using the carry out just generated by the low 
16-bit operation.  This upper 16-bit result will be 
available to the next dependent operation exactly when 
needed.  This is called a staggered add.  The ALU flags 
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are processed in the third fast cycle.  This staggered add 
means that only a 16-bit adder and its input muxes need to 
be completed in a fast clock cycle.  The low order 16 bits 
are needed at one time in order to begin the access of the 
L1 data cache when used as an address input.  

Bits <15:0>

Bits <31:16>

Flags

 

Figure 7: Staggered ALU add 

Complex Integer Operations 
The simple, very frequent ALU operations go to the high-
speed integer ALU execution units described above.  
Integer operations that are more complex go to separate 
hardware for completion.  Most integer shift or rotate 
operations go to the complex integer dispatch port.  These 
shift operations have a latency of four clocks.  Integer 
multiply and divide operations also have a long latency.  
Typical forms of multiply and divide have a latency of 
about 14 and 60 clocks, respectively. 

Low Latency Level 1 (L1) Data Cache 
The Level 1 (LI) data cache is an 8K-byte cache that is 
used for both integer and floating-point/SSE loads and 
stores.  It is organized as a 4-way set-associative cache 
that has 64 bytes per cache line.  It is a write-through 
cache, which means that writes to it are always copied 
into the L2 cache.  It can do one load and one store per 
clock cycle.   

The latency of load operations is a key aspect of processor 
performance.  This is especially true for IA-32 programs 
that have a lot of loads and stores because of the limited 
number of registers in the instruction set.  The NetBurst 
microarchitecture optimizes for the lowest overall load-
access latency with a small, very low latency 8K byte 
cache backed up by a large, high-bandwidth second-level 
cache with medium latency.  For most IA-32 programs 
this configuration of a small, but very low latency, L1 
data cache followed by a large medium-latency L2 cache 

gives lower net load-access latency and therefore higher 
performance than a bigger, slower L1 cache.  The L1 data 
cache operates with a 2-clock load-use latency for integer 
loads and a 6-clock load-use latency for floating-
point/SSE loads. 

This 2-clock load latency is hard to achieve with the very 
high clock rates of the Pentium 4 processor.  This cache 
uses new access algorithms to enable this very low load-
access latency.  The new algorithm leverages the fact that 
almost all accesses hit the first-level data cache and the 
data TLB (DTLB).   

At this high frequency and with this deep machine 
pipeline, the distance in clocks, from the load scheduler to 
execution, is longer than the load execution latency itself. 
The uop schedulers dispatch dependent operations before 
the parent load has finished executing.  In most cases, the 
scheduler assumes that the load will hit the L1 data cache.  
If the load misses the L1 data cache, there will be 
dependent operations in flight in the pipeline.  These 
dependent operations that have left the scheduler will get 
temporarily incorrect data.  This is a form of data 
speculation.  Using a mechanism known as replay, logic 
tracks and re-executes instructions that use incorrect data. 
Only the dependent operations are replayed: the 
independent ones are allowed to complete. 

There can be up to four outstanding load misses from the 
L1 data cache pending at any one time in the memory 
subsystem. 

Store-to-Load Forwarding 
In an out-of-order-execution processor, stores are not 
allowed to be committed to permanent machine state (the 
L1 data cache, etc.) until after the store has retired.  
Waiting until retirement means that all other preceding 
operations have completely finished.  All faults, 
interrupts, mispredicted branches, etc. must have been 
signaled beforehand to make sure this store is safe to 
perform.  With the very deep pipeline of the Pentium 4 
processor it takes many clock cycles for a store to make it 
to retirement.  Also, stores that are at retirement often 
have to wait for previous stores to complete their update 
of the data cache.  This machine can have up to 24 stores 
in the pipeline at a time.  Sometimes many of them have 
retired but have not yet committed their state into the L1 
data cache.  Other stores may have completed, but have 
not yet retired, so their results are also not yet in the L1 
data cache.  Often loads must use the result of one of 
these pending stores, especially for IA-32 programs, due 
to the limited number of registers available.  To enable 
this use of pending stores, modern out-of-order execution 
processors have a pending store buffer that allows loads to 
use the pending store results before the stores have been 
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written into the L1 data cache.  This process is called 
store-to-load forwarding. 

To make this store-to-load-forwarding process efficient, 
this pending store buffer is optimized to allow efficient 
and quick forwarding of data to dependent loads from the 
pending stores.  The Pentium 4 processor has a 24-entry 
store-forwarding buffer to match the number of stores that 
can be in flight at once.  This forwarding is allowed if a 
load hits the same address as a proceeding, completed, 
pending store that is still in the store-forwarding buffer. 
The load must also be the same size or smaller than the 
pending store and have the same beginning physical 
address as the store, for the forwarding to take place.  This 
is by far the most common forwarding case.  If the bytes 
requested by a load only partially overlap a pending store 
or need to have some bytes come simultaneously from 
more than one pending store, this store-to-load forwarding 
is not allowed.  The load must get its data from the cache 
and cannot complete until the store has committed its state 
to the cache. 

This disallowed store-to-load forwarding case can be 
quite costly, in terms of performance loss, if it happens 
very often.  When it occurs, it tends to happen on older 
P5-core optimized applications that have not been 
optimized for modern, out-of-order execution 
microarchitectures.  The newer versions of the IA-32 
compilers remove most or all of these bad store-to-load 
forwarding cases but they are still found in many old 
legacy P5 optimized applications and benchmarks.  This 
bad store-forwarding case is a big performance issue for 
P6-based processors and other modern processors, but due 
to the even deeper pipeline of the Pentium 4 processor, 
these cases are even more costly in performance. 

FP/SSE Execution Units 
The Floating-Point (FP) execution cluster of the Pentium 
4 processor is where the floating-point, MMX, SSE, and 
SSE2 instructions are executed.  These instructions 
typically have operands from 64 to 128 bits in width.  The 
FP/SSE register file has 128 entries and each register is 
128 bits wide.  This execution cluster has two 128-bit 
execution ports that can each begin a new operation every 
clock cycle.  One execution port is for 128-bit general 
execution and one is for 128-bit register-to-register moves 
and memory stores.  The FP/SSE engine can also 
complete a full 128-bit load each clock cycle.   

Early in the development cycle of the Pentium 4 
processor, we had two full FP/SSE execution units, but 
this cost a lot of hardware and did not buy very much 
performance for most FP/SSE applications.  Instead, we 
optimized the cost/performance tradeoff with a simple 
second port that does FP/SSE moves and FP/SSE store 
data primitives.  This tradeoff was shown to buy most of 

the performance of a second full-featured port with much 
less die size and power cost.  

Many FP/multi-media applications have a fairly balanced 
set of multiplies and adds.  The machine can usually keep 
busy interleaving a multiply and an add every two clock 
cycles at much less cost than fully pipelining all the 
FP/SSE execution hardware.  In the Pentium 4 processor, 
the FP adder can execute one Extended-Precision (EP) 
addition, one Double-Precision (DP) addition, or two 
Single-Precision (SP) additions every clock cycle.  This 
allows it to complete a 128-bit SSE/SSE2 packed SP or 
DP add uop every two clock cycles.  The FP multiplier 
can execute either one EP multiply every two clocks, or it 
can execute one DP multiply or two SP multiplies every 
clock.  This allows it to complete a 128-bit IEEE 
SSE/SSE2 packed SP or DP multiply uop every two clock 
cycles giving a peak 6 GFLOPS for single precision or 3 
GFLOPS for double precision floating-point at 1.5GHz. 

Many multi-media applications interleave adds, 
multiplies, and pack/unpack/shuffle operations.  For 
integer SIMD operations, which are the 64-bit wide MMX 
or 128-bit wide SSE2 instructions, there are three 
execution units that can run in parallel.  The SIMD integer 
ALU execution hardware can process 64 SIMD integer 
bits per clock cycle.  This allows the unit to do a new 128-
bit SSE2 packed integer add uop every two clock cycles. 
A separate shuffle/unpack execution unit can also process 
64 SIMD integer bits per clock cycle allowing it to do a 
full 128-bit shuffle/unpack uop operation each two clock 
cycles.  MMX/SSE2 SIMD integer multiply instructions 
use the FP multiply hardware mentioned above to also do 
a 128-bit packed integer multiply uop every two clock 
cycles.  

The FP divider executes all divide, square root, and 
remainder uops.  It is based on a double-pumped SRT 
radix-2 algorithm, producing two bits of quotient (or 
square root) every clock cycle. 

Achieving significantly higher floating-point and multi-
media performance requires much more than just fast 
execution units.  It requires a balanced set of capabilities 
that work together.  These programs often have many 
long latency operations in their inner loops.  The very 
deep buffering of the Pentium 4 processor (126 uops and 
48 loads in flight) allows the machine to examine a large 
section of the program at once.  The out-of-order-
execution hardware often unrolls the inner execution loop 
of these programs numerous times in its execution 
window.  This dynamic unrolling allows the Pentium 4 
processor to overlap the long-latency FP/SSE and 
memory instructions by finding many independent 
instructions to work on simultaneously.  This deep 
window buys a lot more performance for most FP/multi-
media applications than more execution units would.  
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FP/multi-media applications usually need a very high 
bandwidth memory subsystem.  Sometimes FP and multi-
media applications do not fit well in the L1 data cache but 
do fit in the L2 cache.  To optimize these applications the 
Pentium 4 processor has a high bandwidth path from the 
L2 data cache to the L1 data.  Some FP/multi-media 
applications stream data from memory–no practical cache 
size will hold the data.  They need a high bandwidth path 
to main memory to perform well.  The long 128-byte L2 
cache lines together with the hardware prefetcher 
described below help to prefetch the data that the 
application will soon need, effectively hiding the long 
memory latency.  The high bandwidth system bus of the 
Pentium 4 processor allows this prefetching to help keep 
the execution engine well fed with streaming data. 

Memory Subsystem 
The Pentium 4 processor has a highly capable memory 
subsystem to enable the new, emerging, high-bandwidth 
stream-oriented applications such as 3D, video, and 
content creation.  The memory subsystem includes the 
Level 2 (L2) cache and the system bus.  The L2 cache 
stores data that cannot fit in the Level 1 (L1) caches.  The 
external system bus is used to access main memory when 
the L2 cache has a cache miss and also to access the 
system I/O devices. 

Level 2 Instruction and Data Cache 
The L2 cache is a 256K-byte cache that holds both 
instructions that miss the Trace Cache and data that miss 
the L1 data cache.  The L2 cache is organized as an 8-way 
set-associative cache with 128 bytes per cache line.  
These 128-byte cache lines consist of two 64-byte sectors. 
A miss in the L2 cache typically initiates two 64-byte 
access requests to the system bus to fill both halves of the 
cache line.  The L2 cache is a write-back cache that 
allocates new cache lines on load or store misses.  It has a 
net load-use access latency of seven clock cycles.  A new 
cache operation can begin every two processor clock 
cycles for a peak bandwidth of 48Gbytes per second, 
when running at 1.5GHz.  

Associated with the L2 cache is a hardware prefetcher that 
monitors data access patterns and prefetches data 
automatically into the L2 cache.  It attempts to stay 256 
bytes ahead of the current data access locations.  This 
prefetcher remembers the history of cache misses to 
detect concurrent, independent streams of data that it tries 
to prefetch ahead of use in the program.  The prefetcher 
also tries to minimize prefetching unwanted data that can 
cause over utilization of the memory system and delay the 
real accesses the program needs. 

400MHz System Bus 
The Pentium 4 processor has a system bus with 3.2 
Gbytes per second of bandwidth.  This high bandwidth is 
a key enabler for applications that stream data from 
memory.  This bandwidth is achieved with a 64-bit wide 
bus capable of transferring data at a rate of 400MHz.  It 
uses a source-synchronous protocol that quad-pumps the 
100MHz bus to give 400 million data transfers per 
second.  It has a split-transaction, deeply pipelined 
protocol to allow the memory subsystem to overlap many 
simultaneous requests to actually deliver high memory 
bandwidths in a real system.  The bus protocol has a 64-
byte access length.  

PERFORMANCE 
The Pentium 4 processor delivers the highest 
SPECint_base performance of any processor in the world. 
It also delivers world-class SPECfp2000 performance.  
These are industry standard benchmarks that evaluate 
general integer and floating-point application 
performance. 

Figure 8 shows the performance comparison of a Pentium 
4 processor at 1.5GHz compared to a Pentium III 
processor at 1GHz for various applications.  The integer 
applications are in the 15-20% performance gain while 
the FP and multi-media applications are in the 30-70% 
performance advantage range.  For FSPEC 2000 the new 
SSE/SSE2 instructions buy about 5% performance gain 
compared to an x87-only version. As the compiler 
improves over time the gain from these new instructions 
will increase. Also, as the relative frequency of the 
Pentium 4 processor increases over time (as its design 
matures), all these performance deltas will increase.  
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Figure 8: Performance comparison 

For a more complete performance brief covering many 
application performance areas on the Pentium 4 
processor, go to 
http://www.intel.com/procs/perf/pentium4/.   

CONCLUSION 
The Pentium 4 processor is a new, state-of-the-art 
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processor microarchitecture and design.  It is the 
beginning of a new family of processors that utilize the 
new Intel NetBurst microarchitecture.  Its deeply 
pipelined design delivers world-leading frequencies and 
performance.  It uses many novel microarchitectural ideas 
including a Trace Cache, double-clocked ALU, new low-
latency L1 data cache algorithms, and a new high 
bandwidth system bus.  It delivers world-class 
performance in the areas where added performance makes 
a difference including media rich environments (video, 
sound, and speech), 3D applications, workstation 
applications, and content creation. 

ACKNOWLEDGMENTS 
The authors thank all the architects, designers, and 
validators who contributed to making this processor into a 
real product. 

REFERENCES 
1. D. Sager, G. Hinton, M. Upton, T. Chappell, T. 

Fletcher, S. Samaan, and R. Murray, “A 0.18um 
CMOS IA32 Microprocessor with a 4GHz Integer 
Execution Unit,” International Solid State Circuits 
Conference, Feb 2001.  

2. Doug Carmean, “Inside the High-Performance Intel® 
Pentium® 4 Processor Micro-architecture”  Intel 
Developer  Forum, Fall 2000 at 
ftp://download.intel.com/design/idf/fall2000/presenta
tions/pda/pda_s01_cd.pdf 

3. IA-32 Intel Architecture Software Developer’s 
Manual Volume 1: Basic Architecture at 
http://developer.intel.com/design/pentium4/manuals/
245470.htm. 

4. Intel® Pentium® 4 Processor Optimization Reference 
Manual at 
http://developer.intel.com/design/pentium4/manuals/
248966.htm. 

AUTHORS’ BIOGRAPHIES 
Glenn Hinton is an Intel Fellow and Director of IA-32 
Microarchitecture Development in the Intel Architecture 
Group. Hinton joined Intel in 1983. He was one of three 
senior architects in 1990 responsible for the P6 processor 
microarchitecture, which became the Pentium® Pro, 
Pentium® II, Pentium® III, and Celeron™ processors. He 
was responsible for the microarchitecture development of 
the Pentium® 4 processor. Hinton received a master's 
degree in Electrical Engineering from Brigham Young 
University in 1983. His e-mail address is 
glenn.hinton@intel.com. 

Dave Sager is a Principal Engineer/Architect in Intel’s 
Desktop Platforms Group, and is one of the overall 

architects of the Intel® Pentium 4 processor. He joined 
Intel in 1995. Dave also worked for 17 years at Digital 
Equipment Corporation in their processor research labs. 
He graduated from Princeton University with a Ph.D. in 
Physics in 1973. His e-mail address is 
dave.sager@intel.com. 

Michael Upton is a Principal Engineer/Architect in Intel's 
Desktop Platforms Group, and is one of the architects of 
the Intel® Pentium 4 processor. He completed B.S. and 
M.S. degrees in Electrical Engineering from the 
University of Washington in 1985 and 1990. After a 
number of years in IC design and CAD tool development, 
he entered the University of Michigan to study computer 
architecture. Upon completion of his Ph.D degree in 1994, 
he joined Intel to work on the Pentium® Pro and Pentium 
4 processors. His e-mail address is 
mike.upton@intel.com. 

Darrell Boggs is a Principal Engineer/Architect with Intel 
Corporation and has been working as a microarchitect for 
nearly 10 years.  He graduated from Brigham Young 
University with a M.S. in Electrical Engineering.  Darrell 
played a key role on the Pentium® Pro Processor design, 
and was one of the key architects of the Pentium 4 
Processor.  Darrell holds many patents in the areas of 
register renaming; instruction decoding; events and state 
recovery mechanisms. His e-mail address is 
darrell.boggs@intel.com. 

Douglas M. Carmean is a Principal Engineer/Architect 
with Intel's Desktop Products Group in Oregon.  Doug 
was one of the key architects, responsible for definition of 
the Intel Pentium® 4 processor.  He has been with Intel for 
12 years, working on IA-32 processors from the 80486 to 
the Intel Pentium 4 processor and beyond.  Prior to 
joining Intel, Doug worked at ROSS Technology, Sun 
Microsystems, Cypress Semiconductor and Lattice 
Semiconductor.  Doug enjoys fast cars and scary, Italian 
motorcycles.  His e-mail address is 
douglas.m.carmean@intel.com. 

Patrice Roussel graduated from the University of Rennes 
in 1980 and L'Ecole Superieure d'Electricite in 1982 with 
a M.S. degree in signal processing and VLSI design. 
Upon graduation, he worked at Cimatel, an Intel/Matra 
Harris joint design center. He moved to the USA in 1988 
to join Intel in Arizona and worked on the 960CA chip. In 
late 1991, he moved to Intel in Oregon to work on the P6 
processors.  Since 1995, he has been the floating-point 
architect of the Pentium® 4 processor. His e-mail address 
is patrice.roussel@intel.com. 

Copyright © Intel Corporation 2001.  This publication 
was downloaded from http://developer.intel.com/. 

Legal notices at 
http://developer.intel.com/sites/developer/tradmarx.htm



Intel Technology Journal Q1, 2001 

The Microarchitecture of the Pentium  4 Processor 13 

 



Validating The Intel Pentium 4 Processor 1

Validating The Intel® Pentium® 4 Processor

Bob Bentley, Desktop Platforms Group, Intel Corp.
Rand Gray, Desktop Platforms Group, Intel Corp.

Index words: microprocessor, validation, bugs, verification

ABSTRACT
Developing a new leading-edge Intel® Architecture
microprocessor is an immensely complicated undertaking.
The microarchitecture of the Pentium 4 processor is
significantly more complex than any previous Intel
Architecture microprocessor, so the challenge of
validating the logical correctness of the design in a timely
fashion was indeed a daunting one.  In order to meet this
challenge, we applied a number of innovative tools and
methodologies, which enabled us to keep functional
validation off the critical path to tapeout while meeting
our goal of ensuring that first silicon was functional
enough to boot operating systems and run applications.
This in turn enabled the post-silicon validation teams to
quickly “peel the onion”, resulting in an elapsed time of
only ten months from initial tapeout to production
shipment qualification, an Intel record for a new IA-32
microarchitecture.

This paper describes how we went about the task of
validating the Pentium 4 processor and what we found
along the way.  We hope that other microprocessor
designers and validators will be able to benefit from our
experience and insights.  As Doug Clark has remarked
“Finding a bug should be a cause for celebration.  Each
discovery is a small victory; each marks an incremental
improvement in the design.” [1]

INTRODUCTION
The Pentium 4 processor is Intel’s most advanced IA-32
microprocessor, incorporating a host of new
microarchitectural features including a 400MHz system
bus, hyper pipelined technology, advanced dynamic
execution, rapid execution engine, advanced transfer
cache, execution trace cache, and Streaming Single
Instruction, Multiple Data (SIMD) Extensions 2 (SSE2).

PRE-SILICON VALIDATION
CHALLENGES AND ISSUES
The first thing that we had to do was build a validation
team.  Fortunately, we had a nucleus of people who had
worked on the Pentium Pro processor and who could do
the initial planning for the Pentium 4 processor while at

the same time working with the architects and designers
who were refining the basic microarchitectural concepts.
However, it was clear that a larger team would be needed,
so we mounted an extensive recruitment campaign
focused mostly on new college graduates.  Not only did
this take a large amount of effort from the original core
team (at one stage we were spending an aggregate 25% of
our total effort on recruiting!), but it also meant that we
faced the monumental task of training these new team
members.  However, this investment paid off handsomely
over the next few years as the team matured into a highly
effective bug-finding machine that found more than 60%
of all the logic bugs that were filed prior to tapeout.  In
doing so, they developed an in-depth knowledge of the
Pentium 4 processor’s NetBurst™ microarchitecture that
has proved to be invaluable in post-silicon logic and
speedpath debug and also in fault grade test writing.

For the most part, we applied the same or similar tools
and methodologies that were used on the Pentium Pro
processor to validate the Pentium 4 processor.  However,
we did develop new methodologies and tools in response
to lessons learnt from previous projects and also to
address some new challenges raised by the Pentium 4
processor design.  In particular, the use of Formal
Verification, Cluster Test Environments, and focused
Power Reduction Validation was either new or a greatly
extended form than that used on previous projects.  These
methodologies and tools are discussed in detail in later
sections of this paper.

Pre-Silicon Validation Environment
Except for Formal Verification (FV), all pre-silicon
validation was done using either a cluster-level or full-
chip SRTL model running in the CSIM simulation
environment developed by Intel Design Technology.  We
ran these simulation models on either interactive
workstations or compute servers.  Initially, these were
legacy IBM RS/6000s* running AIX*, but over the course
of the project we switched to systems based on the
Pentium III processor, running Linux*.  Our computing
pool grew to encompass several thousand systems by the
end of the project, most of them compute servers.  We
used an internal tool called Netbatch to submit large
numbers of batch simulations to these systems, which we
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were able to keep utilized at over 90% of their maximum
24/7 capacity.  By tapeout we were averaging 5-6 billion
cycles per week and had accumulated over 200 billion (to
be precise, 2.384 * 1011) SRTL simulation cycles of all
types.

Formal Verification
The Pentium 4 processor was the first project of its kind
at Intel to apply FV on a large scale.  We decided early in
the project that the FV field had matured to the point
where we could consider trying to use it as an integral
part of the design verification process rather than only
applying it retroactively, as had been done on previous
products such as the Pentium Pro processor.  However, it
was clear from the start that we couldn’t formally verify
the entire design—that was (and still is) way beyond the
state of the art for today’s tools.  We therefore decided to
focus on the areas of the design where we believed FV
could make a significant contribution; in particular, we
focused on the floating-point execution units and the
instruction decode logic.  Because these areas had been
sources of bugs in the past that escaped early detection,
using FV allowed us to apply this technology to some real
problems with real payback.

One of the major challenges for the FV team was to
develop the tools and methodology needed to handle a
large number of proofs in a highly dynamic environment.
For the most part we took a model-checking approach to
FV, using the Prover tool from Intel’s Design Technology
group to compare SRTL against separate specifications
written in Formal Specification Language (FSL).  By the
time we taped out we had over 10,000 of these proofs in
our proof database, each of which had to be maintained
and regressed as the SRTL changed over the life of the
project.  Along the way, we found over 100 logic
bugs—not a large number in the overall scheme of things,
but 20 of them were “high-quality” bugs that we believe
would not have been found by any of our other pre-silicon
validation activities.  Two of these bugs were classic
floating-point data space problems:

1. The FADD instruction had a bug where, for a specific
combination of source operands, the 72-bit FP adder
was setting the carryout bit to 1 when there was no
actual carryout.

2. The FMUL instruction had a bug where, when the
rounding mode was set to “round up”, the sticky bit
was not set correctly for certain combinations of
source operand mantissa values, specifically:

src1[67:0] := X*2(i+15) + 1*2i

src2[67:0] := Y*2(j+15) + 1*2j

where i+j = 54, and {X,Y} are any integers that fit in
the 68-bit range.

Either of these bugs could easily have gone undetected1,
not just in the pre-silicon environment but also in post-
silicon testing.

We put a lot of effort into making the regression of the
FV proof database as push-button as possible, not only to
simplify the task of running regressions against a moving
SRTL target but because we viewed reuse as being one of
the keys to proliferating the quality of the original design.
This approach has had an immediate payoff: a regression
of the database of 10,000 proofs on an early SRTL model
of a proliferation of the Pentium 4 processor yielded a
complex floating-point bug.

Cluster-Level Testing
One of the fundamental decisions that we took early in the
Pentium 4 processor development program was to
develop Cluster Test Environments (CTEs) and maintain
them for the life of the project.  There is a CTE for each
of the six clusters into which the Pentium 4 processor
design is logically subdivided (actually, microcode can be
considered to be a seventh logical cluster, and it too has a
test environment equivalent to the other CTEs).  These
CTEs are groupings of logically related units (e.g., all the
execution units of the machine constitute one CTE)
surrounded by code that emulates the interfaces to
adjacent units outside of the cluster and provides an
environment for creating and running tests and checking
results.

These CTEs took a good deal of effort to develop and
maintain, and were themselves a source of a significant
number of bugs.  However, they provided a number of
key advantages:

First and foremost, they provided controllability that was
otherwise lacking at the full-chip level.  An out of order,
speculative execution engine like the Pentium ® Pro or
Pentium 4 processor is inherently difficult to control at
the instruction set architecture level.  Assembly-language
instructions (macroinstructions) are broken down by the
machine into sequences of microinstructions that may be
executed in any order (subject to data dependencies)
relative to one another and to microinstructions from
other preceding or following macroinstructions.  Trying to
produce precise microarchitectural behavior from
macroinstruction sequences has been likened to pushing
on a piece of string.  This problem is particularly acute for
the back end of the machine, the memory and bus clusters
that lie beyond the out-of-order section of the
microarchitecture pipeline.  CTEs allowed us to provoke
specific microarchitectural behavior on demand.

Second, CTEs allowed us to make significant strides in
early validation  of the Pentium 4 processor SRTL even

                                                                        
1 We calculated that the probability of hitting the FMUL
condition with purely random operands was
approximately 1 in 5*1020, or 1 in 500 million trillion!
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before a full-chip model was available.  As described
below, integrating and debugging all the logic and
microcode needed to produce even a minimally functional
full-chip model was a major undertaking; it took more
than six months from the time we started until we had a
“mostly functional” IA-32 machine that we could start to
target for aggressive full-chip testing.  Because we had
the CTEs, we were able to start testing as soon as there
was released code in a particular unit, long before we
could have even tried to exercise it at the full-chip level.

Even after we had a full-chip model, the CTEs essentially
decoupled validation of individual unit features from the
health of the full-chip model.  A blocking bug in, for
example, the front end of the machine did not prevent us
from continuing to validate in other areas.  In actual fact,
we rarely encountered this kind of blockage because our
development methodology required that all changes be
released at cluster level first, and only when they had
been validated there did we propagate them to the full-
chip level.  Even then, we required that all full-chip model
builds pass a mini-regression test suite before they could
be released to the general population.  This caught most
major cross-unit failures that could not be detected at the
CTE level.

One measure of the success of the CTEs is that they
caught almost 60% of the bugs found by dynamic testing
at the SRTL level.  Another is that, unlike the Pentium
Pro processor and some other new microarchitecture
developments, the Pentium 4 processor never needed an
SRTL “get-well plan” at the full-chip level where new
development is halted until the health of the full-chip
model can be stabilized.

POWER REDUCTION VALIDATION
From the earliest days of the Pentium 4 processor design,
power consumption was a concern.  Even with the lower
operating voltages offered by P858, it was clear that at the
operating frequencies we were targeting we would have
difficulty staying within the “thermal envelope” that was
needed to prevent a desktop system from requiring exotic
and expensive cooling technology.  This led us to include
two main mechanisms for active power reduction in the
design: clock gating and thermal management.  Each of
these is discussed in other papers in this issue of the Intel
Technology Journal.  Each presented validation
challenges—in particular, clock gating.

Clock gating as a concept is not new: previous designs
have attempted to power down discrete structures such as
caches when there were no accesses pending.  What was
different about the Pentium 4 processor design was the
extent to which clock gating was used.  Every unit on the
chip had a power reduction plan, and almost every
Functional Unit Block (FUB) contained clock gating
logic.  In all, there were several hundred unique clock
gating conditions identified, and each one of them needed
to be validated from several different perspectives:

1 .  We needed to verify that each condition was
implemented as per plan and that it functioned as
originally intended.  We needed to verify this not
once, but continually throughout the development of
the Pentium 4 processor, as otherwise it was possible
for power savings to be eroded over time as an
unintended side effect of other bug or speedpath
fixes.  We tackled this problem by constructing a
master list of all the planned clock-gating features,
and writing checkers in proto for each condition to
tell us if the condition had occurred and to make sure
that the power down had occurred when it should
have.  We ran these checkers on cluster regressions
and low-power tests to develop baseline coverage,
and then wrote additional tests as necessary to hit
uncovered conditions.

2.  While establishing this coverage, we had to make
sure that the clock-gating conditions did not
themselves introduce new logic bugs into the design.
It is not hard to imagine all sorts of nightmare
scenarios: unit A is late returning data to unit B
because part of A was clock gated, or unit C samples
a signal from unit D that is undriven because of clock
gating, or other variations on this theme.  In fact, we
found many such bugs, mostly as a result of (unit-
level) design validation or full-chip microarchitecture
validation, using the standard set of checkers that we
employed to catch such implementation-level errors.
We had the ability to override clock gating either
selectively or globally, and we developed a random
power down application programming intereface
(API) that could be used by any of the validation
teams to piggyback clock gating on top of their
regular testing.  Once we had developed confidence
that the mechanism was fundamentally sound, we
built all our SRTL models to have clock gating
enabled by default.

3 .  Once we had implemented all the planned clock-
gating conditions, and verified that they were
functioning correctly, we relied primarily on
measures of clock activity to make sure that we
didn’t lose our hard-won power savings.  We used a
special set of tests that attempted to power down as
much of each cluster as possible, and collected data
to see what percentage of the time each clock in the
machine was toggling.  We did this at the cluster
level and at the full-chip level.  We investigated any
appreciable increase in clock activity from model to
model, and made sure that it was explainable and not
due to designer error.

4. Last, but by no means least, we tried to make sure
that the design was cycle-for-cycle equivalent with
clock gating enabled and disabled.  We had
established this as a project requirement, to lessen the
likelihood of undetected logic bugs or performance
degradation caused by clock gating.  To do this, we
developed a methodology for temporal divergence
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testing, which essentially ran the same set of tests
twice, with clock gating enabled and disabled, and
compared the results on a cycle-by-cycle basis.

We organized a dedicated Power Validation team to focus
exclusively on this task, and they filed numerous bugs as
a result of their pre-silicon validation (we filed “power
bugs” whenever the design did not implement a power-
saving feature correctly, whether or not it resulted in a
functional failure). The results exceeded our fondest
expectations: not only was clock gating fully functional
on A-0 silicon, but we were able to measure
approximately 20W of power saving in a system running
typical workloads.

Full-chip Integration and Testing
With a design as complex as the Pentium 4 processor,
integrating the pieces of SRTL code together to get a
functioning full-chip model (let alone one capable of
executing IA-32 code) is not a trivial task.  We developed
an elaborate staging plan that detailed just what features
were to be available in each stage and phased in this plan
over a 12-month period.  The Architecture Validation
(AV) team took the lead in developing tests that would
exercise the new features as they became available in
each phase, but did not depend upon any as-yet
unimplemented IA-32 features.  These tests were
throwaway work—their main purpose was to drive the
integration effort, not to find bugs.  Along with these tests
we developed a methodology which we called feature
pioneering: when a new feature was released to full-chip
for the first time, a validator took responsibility for
running his or her feature exercise tests, debugging the
failures, and working with designers to rapidly drive fixes
into graft (experimental) models, thereby bypassing the
normal code turn-in procedure, until an acceptable level
of stability was achieved.  Only then was the feature made
available for more widespread use by other validators.
We found that this methodology greatly speeded up the
integration process.  It also had a side effect: it helped the
AV team develop their full-chip debugging skills much
more rapidly than might otherwise have occurred.

Once a fully functional full-chip SRTL model was
available, these feature pioneering tests were discarded
and replaced by a new suite of IA-32 tests developed by
the AV team, whose purpose was to fully explore the
architecture space.  Previous projects up to and including
the Pentium Pro processor had relied on an “ancestral”
test base inherited from past projects, but these tests had
little or no documentation, unknown coverage, and
doubtful quality (in fact, many of them turned out to be
bug tests from previous implementations that had little
architectural value).  We did eventually run the
“ancestral” suite as a late cross-check, after the new suite
had been run and the resulting bugs fixed, but we found
nothing of consequence as a result.

Coverage-Based Validation
Recognizing the truth of the saying: “If it isn’t tested, it
doesn’t work” we attempted wherever possible to use
coverage data to provide feedback on the effectiveness of
our tests and tell us what we had and had not tested.  This
in turn helped direct future testing towards the uncovered
areas.  Since we relied very heavily on direct random test
generators for most of our microarchitectural testing,
coverage feedback was an absolute necessity if we were
to avoid “spinning our wheels” and testing the same areas
over and over again while leaving others completely
untouched.  In fact, we used the tuple of cycles run,
coverage gained, and bugs found as our first-order gauge
of the health of the SRTL model and its readiness for
tapeout.

Our primary coverage tool was Proto from Intel Design
Technology, which we used to create coverage monitors
and measure coverage for a large number of
microarchitecture conditions.  By tapeout we were
tracking almost 2.5 million unit-level conditions and more
than 250,000 inter-unit conditions, and we succeeded in
hitting almost 90% of the former and 75% of the latter.
For the conditions that we were unable to hit prior to
tapeout, we made sure that they were scattered throughout
the entire coverage space and not concentrated in a few
areas; and we also made sure that the System Validation
(SV) team targeted these areas in their post-silicon
validation plans.  We also used Proto to instrument
several thousand multiprocessor memory coherency
conditions (combinations of microarchitecture states for
caches, load and store buffers, etc.), and, as mentioned
above, all the clock-gating conditions that had been
identified in the unit power reduction plans.  We used the
Pathfinder tool from Intel’s Central Validation
Capabilities group to measure how well we were
exercising all the possible microcode paths in the
machine.  Much to our surprise, running all of the AV test
suite yielded coverage of less than 10%; further analysis
revealed that many of the untouched paths involved
memory-related faults (e.g., page fault) or assists (e.g.,
A/D bit assist).  This made sense, as the test writers had
(reasonably enough) set up their page tables and
descriptors so as to avoid these time-consuming functions
(at SRTL simulation speeds, every little bit helps!), but it
did reinforce the value of collecting coverage feedback
and not just assuming that our tests were hitting specified
conditions.

POST-SILICON VALIDATION
As soon as the A-0 silicon was available, validation
moved into the “post-silicon” phase.  In post-silicon
validation, the processor is tested in a system setting.
Validation in this setting concentrates not only on the
processor, but its interaction with the chipset, memory
system, and peripherals.  In this environment, the testing
is done at real-time processor speeds, unlike the
simulation environment that must be used prior to the
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arrival of the actual silicon.  This is good news for test
coverage, as much longer and more complex tests can be
run in real-time, but it is bad news for debugging.  In the
SRTL simulator, all of the internal signals of the
processor are available for inspection, but in the actual
silicon, the primary visibility is from the transactions on
the processor system bus.  A significant effort went into
preparing for the availability of the A-0 processor silicon.
Hardware engineering teams developed and constructed
validation platforms to provide execution and test
vehicles for the processor silicon.  The SV team assigned
engineers to learn the microarchitecture of the processor
and develop specific tests for the silicon.  The
Compatibility Validation (CV) team constructed an
elaborate test infrastructure for testing the processor
silicon using industry-standard operating systems,
application software, and popular peripheral cards.  The
Circuit Marginality Validation (CMV) team prepared a
test infrastructure for correlating tester schmoo plots with
actual operational characteristics in systems capable of
running standard operating systems as well as SV tests.
All of these preparations were completed prior to the
actual receipt of the A-0 processor silicon such that
testing could proceed without delay as soon as the first
silicon samples arrived.

Arrival of First Silicon
Systems developed for post-silicon validation included
uniprocessor desktop systems, dual-processor workstation
boards, 4MP server boards, and 4MP system validation
platforms that include extensive test assistance circuitry
(although the Pentium 4 processor is a uniprocessor
product, we have found that certain types of
multiprocessor testing can be good at exposing
uniprocessor bugs).  A few of each of these systems were
available in the Pentium 4 processor system validation lab
a few weeks prior to the arrival of first silicon samples.
Within a few days after receiving the initial samples of A-
0 processor silicon, we had successfully booted a number
of operating systems including MS- DOS*, MS Windows*

98, MS Windows NT* 4.0, and Linux*.

The most complex and flexible validation platform was
the 4MP system validation platform.  This platform
included the following key features:

• logic analyzer connectors

•  SV hooks card that permits direct stimulus of FSB
signals

•  a software-controllable clock board that permits
setting the processor system bus frequency in 1MHz
steps

                                                                        
*Other brands and names are the property of their
respective owners.

•  software-controllable voltage regulators for both the
CPU and chipset components

•  built-in connectors for the In-Target Probe (ITP)
debugging port

• four PCI hublink boards to support a large number of
synthetic I/O agents

•  sockets for the processor and chipset component
silicon

System Validation
In parallel with the hardware system design, a team of
System Validation (SV) engineers was assembled from a
small core of experienced system validators.  Learning
from previous SV experiences, the team was assembled
early to provide sufficient time for the engineers to learn
the microarchitecture of the Pentium 4 processor and to
develop an effective test suite.  The team was also
chartered with improving the effectiveness of system
validation.  A variety of test strategies, environments, and
tools were developed to meet the challenge of
accelerating the post-silicon validation schedule while
achieving the same or a higher level of test coverage.  The
SV organization comprised a number of teams that
targeted major CPU attributes:

•  architecture—including the Instruction Set
Architecture (ISA), floating-point unit, data space,
and virtual memory

•  microarchitecture—focusing on boundary conditions
between microarchitectural units

•  multi-processor—focusing on memory coherency,
consistency, and synchronization

Different test methodologies were developed to test the
various processor attributes.  SV methodologies and test
environments include

• Random Instruction Test (RIT) generators, which are
highly effective for ISA testing, especially the
interactions between series of instructions

• directed (focused) tests

• directed random tests (algorithmic tests with random
code blocks inserted strategically)

• data space (or data domain) tests for testing boundary
and random floating-point operands

SV tests are developed to run directly on the processor
without an operating system run-time environment.  Due
to this, and the fact that the full test source is available
and understood by the team, SV tests are relatively
straightforward to debug in the system environment.

Random Instruction Testing
An especially effective method for testing the interactions
between sequences of instructions is the Random
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Instruction Test (RIT) environment.  It is not
mathematically feasible to even test just the possible
combinations of a single instruction with all possible
operands and processor states.  Add to this the possibility
of virtually limitless combinations of instruction
sequences and it becomes clear that a systematic and
exhaustive test strategy is wholly impractical.  A practical
and effective alternative is to construct an RIT
environment.  An RIT environment works in this way:

• The RIT tool generates a highly random sequence of
instructions, sometimes described as a series of
instructions that no sane programmer would ever
devise.

•  The instructions are presented in sequence to an
architectural simulator, which constructs a memory
image of the processor state (whenever memory is
affected by a store, a push, or an exception frame).

•  Once the test generation is concluded, the resulting
test object and memory image are saved.

• The test is loaded onto the SV platform and executed.

• Following the conclusion of the test, the SV platform
memory is compared against the memory image
obtained from the architectural simulator.  If the
images match, the test passes; otherwise it fails.
Another failure possibility is a “hang;” for example,
the processor may experience a livelock condition
and fail to complete the test.

A number of key requirements drove the development of
such a test environment for the Pentium 4 processor:

• The first one was the ability to fully warm up the very
long Pentium 4 processor pipeline.  This is
particularly difficult in an RIT environment, as truly
random instruction combinations tend to cause
frequent exceptions or other control-flow
discontinuities.  Typical RIT tools available before
the new tool was developed would typically
encounter a pipeline hazard within 3 to 20
instructions on average.  This could result in missing
bugs that might exist in actual application or
operating system software.

•  The second one was the ability to avoid “false”
failures, e.g., failures occurring due to undefined
processor states or other differences between an
architectural simulator and the actual processor
silicon.  This is an extremely important feature, as a
high false failure rate will limit the useful throughput
of such a tool.  Every failure must be examined,
whether false or real (otherwise, how does one know
if a real failure has occurred?).

• The third one was the ability of the RIT environment
to fully propagate the processor state to the memory
image file without unduly affecting the randomness
of the instruction stream.  Lacking this feature it is

possible to miss failures due to the tendency of RIT
tools to frequently overwrite state, thus potentially
hiding the failing signature of a bug.

• The fourth one was the ability of the tool to greatly
increase RIT throughput.  The new tool increased the
throughput by a factor of 100 over existing tools.
This was essential to find rarely occurring or highly
intermittent bugs.

The new tool, known as Pipe-X (for Pipeline Exerciser)
proved to be extremely effective, logging the most bugs
of any SV test environment or test suite.  It has effectively
a zero false failure rate, without which the high
throughput would prove to be unmanageable from a
debugging standpoint.  For a given processor stepping
that requires production qualification, one billion tests
(each 10,000 instructions in length) are executed in
approximately eight weeks.  To date, approximately 10
billion RIT tests have been executed on the Pentium 4
processor, compared with the approximately 10 million
RIT tests that have been executed on all versions of the
Pentium II and Pentium® III processor families.  Pipe-X
has been found to be effective in finding both
architectural and microarchitectural logic bugs.

Focused SV Testing
We used directed or focused testing to complement RIT.
It is important to perform algorithmic testing of major
processor components.  A comprehensive set of focused
tests was available from the Pentium Pro, Pentium II, and
Pentium III processor families.  This test suite is known as
the Focus Test Suite (FTS) and is particularly effective at
finding cache bugs, Programmable Interrupt Controller
(PIC) bugs, and general functional bugs.  The focus test
suite has been in continuous development for many years,
and was effectively doubled in size to prepare for Pentium
4 processor validation.  It has found almost the same
number of bugs as Pipe-X.

Compatibility Validation
Although SV finds most post-silicon bugs (approximately
71%), and those bugs are the most straightforward to
debug, it is vital to ensure that the new processor, chipset,
and memory system works correctly with standard
operating systems using a wide variety of software
applications and peripheral cards.  For this reason, an
extremely elaborate Compatibility Validation (CV)
laboratory was assembled.  CV tests are designed to
particularly stress interactions between the processor and
chipset, concentrating on causing high levels of FSB
traffic.  The CV staff often work closely with Original
Equipment Manufacturers (OEMs) to resolve problems
sighted at the OEM and assist in performance validation
by running standard benchmark workloads.  CV tests also
help to weed out software problems in BIOS.  The CV
team will see most of the bugs that the SV team uncovers,
but due to the difficult nature of debugging in the CV
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environment, the bugs found in SV are resolved much
more quickly.

Debugging in the System Environment
Debugging in the laboratory using actual Pentium 4
processor silicon installed in a validation platform or PC-
like test vehicle is difficult in the extreme.  The very best
place to debug a processor bug is in the processor
simulator, where all signals are available for scrutiny.
Unfortunately, in the system environment almost no
internal signals are visible to the system debugger.  A
suite of tools was developed for use in the Pentium 4
processor, using both architectural and microarchitectural
features of the processor:

The In-Target Probe (ITP) consists of a scan-chain
interface with the processor that connects to a host PC
system.  Using the ITP, the debugger can set breakpoints,
examine memory and CPU registers, and start and stop
processor program execution.  This tool is helpful for
interactive patching of test programs, for single-stepping
program execution, and for loading small test fragments.
In other words, for blatant functional bugs in the
processor this tool is effective.  However, many bugs only
happen when the processor is running at full speed with
multiple processors and threads executing, and frequently
a bug will immediately disappear when inserting a
breakpoint near the failure point.

Scan chain-based array dumps can be used to construct
limited watch windows of a small set of select internal
signals.  This can be especially useful for identifying the
signature of some bugs.

Logic analyzer trace captures of the processor system bus
can be translated into code streams that can be run on a
hardware-accelerated processor RTL model.  Such a
methodology is based upon forcing all instructions to be
fetched on the bus due to periodic invalidation of
processor caches.

Validation platform features permit the schmooing of
voltage, temperature, and frequency to help accelerate the
occurrence of circuit bugs.  However, the most effective
environment for debugging circuit problems is the
semiconductor tester lab.

Due to the extremely complex and lengthy Pentium 4
processor pipeline, many bugs are extremely difficult to
reproduce.  Being able to capture such failures on a logic
analyzer and subsequently running the resulting program
fragment on a hardware-accelerated RTL model has time
and again proven to be almost the only method for
isolating highly intermittent bugs.

Debugging has historically been the primary limiter to
post-silicon validation throughput, and despite significant
improvements in debugging based on the use of the logic
analyzer, it is usually on the critical path to production
qualification.

BUG DISCUSSION
Comparing the development of the Pentium® 4 processor
with the Pentium Pro processor, there was a 350%
increase in the number of bugs filed against SRTL prior to
tapeout.  The breakdown of bugs by cluster was also
different: on the Pentium Pro processor [2] microcode
was the largest single source of bugs, accounting for over
30% of the total, whereas on the Pentium 4 processor,
microcode accounted for less than 14% of the bugs.  For
both designs, the Memory Cluster was the largest source
of hardware bugs, accounting for around 25% of the total
in both cases.  This is consistent with data from other
projects, and it indicates that for future projects we should
continue to focus on preventing bugs in this area.  We
also determined that almost 20% of all the bugs filed prior
to tapeout were found by code inspection.

We did a statistical study [3] to try to determine how the
bugs came to be in the Pentium 4 processor design, so that
we could improve our processes for preventing bugs from
getting into future designs.  The major categories were as
follows:

• RTL Coding (18.1%)—These were things like typos,
cut and paste errors, incorrect assertions
(instrumentation) in the SRTL code, or the designer
misunderstood what he/she was supposed to
implement.

•  Microarchitecture (25.1%)—This covered several
categories: problems in the microarchitecture
definition, architects not communicating their
expectations clearly to designers, and incorrect
documentation of algorithms, protocols, etc.

•  Logic/Microcode Changes (18.4%)—These were
bugs that occurred because: the design was changed,
usually to fix bugs or timing problems, or state was
not properly cleared or initialized at reset, or these
were bugs related to clock gating.

•  Architecture (2.8%)—Certain features were not
defined until late in the project.  This led to
shoehorning them into working functionality.

Post-Silicon Bugs
An examination of where bugs have been found in the
post-silicon environment reveals the following data:

•  System Validation (71%)—The dominance of SV is
intentional, as it is definitely the best environment in
which to debug post-silicon bugs.  A wide spectrum
of logic and circuit bugs is found in this environment.

•  Compatibility Validation (7%)—Although this team
doesn’t find as many bugs as SV, the bugs found are
in systems running real-world operating systems and
applications.  Most of the bugs found in SV will also
be seen in the CV environment.
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•  Debug Tools Team (6%)—The preponderance of
bugs found by the debug tools team were found in the
first few weeks after A-0 processor silicon arrived.
This stems from the fact that getting the debug tools
working is one of the earliest priorities of silicon
validation.

•  Chipset Validation (5%)—The chipset validation
teams concentrate on bus and I/O operations, and the
bugs found by this team reflect that focus: they are
typically related to bus protocol problems.

•  Processor Architecture Team (4%)—The processor
architecture team spends much time in the laboratory
once silicon arrives, examining processor
performance and general system testing.  This team
also plays a central role in debugging problems
discovered by the SV, CV, and other validation
teams.

•  Platform Design Teams and Others (7%)—This
group includes the hardware design teams that
develop and deploy validation and reference
platforms, the processor design team, the pre-silicon
validation team, and software enabling teams.

CONCLUSION
The Pentium® 4 processor was highly functional on A-0
silicon and received production qualification in only ten
months from tapeout.  The work described here is a major
reason why we were able to maintain such a tight
schedule and enable Intel to realize early revenue from
the Pentium 4 processor in today’s highly competitive
marketplace.
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ABSTRACT
The power dissipation of modern processors has been
rapidly increasing along with increasing transistor count
and clock frequencies.  At the same time, there is a
growing disparity between the maximum power
consumption of a processor and the “typical” power
consumed by that processor; i.e., power consumed while
running typical applications.  This trend is the result of
the significant increase in transistor count required to
reach the desired peak performance targets.

Designing a processor with the intent of minimizing
system costs, especially those arising from high power
consumption, while retaining a high level of reliability
requires attention at all stages of the design.  In the case
of the Pentium® 4 processor, the design team focused
from the beginning on reducing  power consumption
without negatively impacting either the performance or
reliability of the processor in any significant way.  Many
techniques, both innovative and pre-existing, were applied
across the entire processor in an effort to eliminate
unnecessary power consumption.  The mass adoption of
these techniques resulted in a significant reduction in both
maximum and typical processor power dissipation.

INTRODUCTION
The total power dissipation of recently introduced, new-
generation, microprocessors has been rapidly increasing,
pushing desktop system cooling technology close to its
limits.  The Pentium 4 processor is the first n e w-
generation IA-32 microarchitecture processor to
significantly improve upon the historical IA-32 processor
power trends.  The  power savings achieved in the design
of the Pentium 4 processor will translate into lower cost
systems, higher frequency processors, and improved
manufacturing yield while maintaining the high level of
reliability and quality for which Intel is known.

This paper outlines the guiding principles that were set in
place when the Pentium 4 processor was first defined.
We first describe an engineering process and tool chain
that made the low-power aspects of the design visible and
supported a feedback path to the design team.  We also
briefly touch on the key lessons that were learned in the
design, validation, and debugging of clock gating and
other power-conserving elements of the Pentium 4
processor.

We then present a processor power-monitoring and
control mechanism that is entirely contained on the
processor die.  No off-chip hardware or software
interaction is required to guarantee that a pre-determined
temperature threshold is not exceeded during processor
operation.  The architecture of this thermal monitor
control logic closely maps to the existing Advanced
Configuration and Power Interface (ACPI) specifications.
The monitoring and control mechanism consists of three
separate but related functions: a temperature detection
mechanism, a power reduction mechanism, and control
and visibility logic.  Each of these functions, and the
implementation constraints, are described in detail in this
paper.

PROCESSOR POWER TRENDS
The power dissipation of modern processors is rapidly
increasing as both clock frequency and the number of
transistors required for a given implementation grow.
Figure 1 shows the power consumption trend of
processors introduced by Intel over the past 15 years.  As
can be seen, the general trend is for maximum processor
power consumption to increase by a factor of a little more
than 2X every four years.
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Figure 1: Trends in CPU power consumption

The second trend to note, also shown in Figure 1, is the
increasing disparity between the maximum power
consumption of a processor and the power consumed by
that same processor while running more typical
applications.  For a typical Intel® processor introduced
from 1996 onwards, the power consumed when running a
synthetic high-power workload was 20% higher than the
power consumed by the same processor while running a
high-power section of a real application.

The disparity between maximum power and typical power
consumed presents a particularly difficult problem to the
system designer.  The system must be designed to ensure
that the processor does not exceed the maximum specified
operating temperature, even when it is dissipating the
maximum power. While designing an elaborate heat sink,
or forcing more air through the system can usually meet
this constraint, there is usually significant cost associated
with more elaborate solutions and environmental
regulations that limit system (fan) noises.

Cooling cost vs Thermal dissipation

0

5

10

15

20

25

30

35

40

20 30 40 50 60 70 80

Thermal Dissipation (W)

C
o

o
lin

g
 S

o
lu

ti
o

n
 C

o
st

 (
$)

Figure 2: The cost of removing heat from a
microprocessor

Figure 2 shows the relative implementation cost of
various cooling solutions ranging from a simple extruded
aluminum heat sink to a more elaborate heat pipe
technology. It is important to observe that as power
increases, there is a non-linear relationship between the
cooling capabilities and the cost of the solution.  This

emphasizes the importance of limiting maximum power
consumption to a specific envelope, one defined by the
cost structure of the platform for which the processor is
intended.

PROCESSOR FEATURE DEFINITION
AND TRACKING
The Pentium 4 processor team started on the journey to a
lower power design by defining power reduction features
during the definition phase of the processor.  The overall
processor power reduction was to be achieved with a
combination of architectural (i.e., thermal monitor)
techniques and microarchitectural/circuit (i.e., clock-
gating and low-power circuit) techniques.  Once the
power reduction features were defined, it became
important to track the actual power savings of each
microarchitectural feature in a manner synergistic with
microprocessor development techniques.

A well-defined infrastructure was put in place to track
various aspects of the Pentium 4 processor power
reduction effort.  The infrastructure included a series of
interactive reviews, indicators, and regression tests.  The
first review was put in place as a checkpoint prior to the
start of code development.  This review examined the
basic power plan and identified the specific set of power-
saving features.  The output of the review was a common
format, easy to read summary of the power-reduction
plan.

An internal design indicator, dubbed the Wattmeter, see
Figure 3, was developed to track the implementation
status and the power savings achieved by each feature.
The Wattmeter was used to track progress toward specific
power goals.  The data for the Wattmeter were based on
the unit-level power reduction plans, RTL coding
information, and the specific circuit style utilized for each
Functional Unit Block (FUB).  The relative impact of
each feature was combined with the expected power
consumption of the FUB in question, and an architectural-
level activity factor was applied to yield an estimate of the
power saved by that feature in Watts.  As specific features
were coded, the impact of those features on power
consumption was added to the Wattmeter to influence the
power-savings indicator.
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Figure 3: The Wattmeter

The Pentium 4 processor team identified more than 400
individual power-reduction opportunities that were
ultimately implemented in the processor.  According to
projections from the various tools, some of these features
resulted in a significant reduction in power, while most
had a smaller impact.  Power reduction features
implemented in roughly 20% of the FUBs accounted for
75% of the total power savings achieved on the processor.

ARCHITECTURAL-LEVEL POWER
SIMULATION
A new power estimation tool was developed to facilitate
the evaluation of various power reduction features prior to
the availability of a fully featured RTL model.  This tool,
referred to in this paper as the Architectural-Level Power
Simulator (ALPS), allowed the Pentium 4 processor team
to profile power consumption at any hierarchical level
from an individual FUB to the full chip.  The ALPS
allowed power profiling of everything, from a simple
microbenchmark written in assembler code, to
application-level execution traces gathered on real
systems.

At the most abstract level, the ALPS methodology
consists of combining an energy cost associated with
performing a given function with an estimate of the
number of times that the specific function is executed.
The energy cost is dependent on the design of the product,
while the frequency of occurrence for each event is
dependent on both the product design and the workload of
interest.  Once these two pieces of data are available,
generating a power estimate is simple: multiply the
energy cost for an operation (function) by the number of
occurrences of that function, sum over all functions that a
design performs, and then divide by the total amount of
time required to execute the workload of interest.

The difficulty comes in gathering each of the required
pieces of data.  The benefit of being able to estimate

power consumption is highest early in the design, yet
detailed data on event frequency and energy cost are often
not available.  Therefore, it is often necessary to make
significant approximations based on the data that are
available.

Block
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Performance
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Projection

  

Figure 4: The ALPS flow

The ALPS methodology, flow charted in Figure 4, utilizes
data from several sources.  First of all, a high-level
description of the design is used to identify which
functional events are likely to have a significant impact
on chip power consumption.  This behavioral description
is coupled with historical data on the power consumption
of different types of functional blocks, as well as designer
estimates, to approximate the energy cost of performing
each of the functions associated with a given logic block.
This results in a power model for each logic block of
interest.  We can then measure the frequency of
occurrence for each of these events by utilizing the
statistics generated by an architectural-level performance
simulator for the design.  The actual power estimate for a
given instruction sequence is then made by ALPS as it
executes the equation shown in Figure 5.
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Figure 5: Equation for total power

DEVELOPING THE BLOCK POWER
MODELS
In order to focus model development efforts, it is
necessary to understand the behavior of the processor to a
level of detail sufficient to identify which functional
events have the greatest impact on total power
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consumption.  By initially focusing only on those events
that were expected to result in significant power
consumption, we were able to quickly generate a simple
power model, which allowed for incremental
improvements as additional data became available.  To
clarify, it is known that each access to a large memory
array (such as an on-chip cache) will cause the
simultaneous transition of many address and data lines
and have a noticeable impact on total power consumed.
Conversely, the power associated with a small state
machine that controls those cache accesses may have
much less of an impact.

For similar reasons, events that are expected to occur very
infrequently are also less important to model.  As a
further example, based on the frequency of occurrence,
developing a power model for a logic block that generates
a physical memory address for each load instruction is
probably far more important than having a power model
for a logic block that detects floating-point exceptions.

From a data collection standpoint, the functional-block-
level information can be broken into two parts:
information used to determine the activity level of a
particular logic block and data to facilitate estimating the
energy cost of each type of activity.

Each logic block in the design may perform one or more
distinct logical functions.  The activity level of the block
as a whole is dependent on how often these functions are
performed, the percentage of the logic that is associated
with each function, and the length of time it takes to
perform the function.

In the case of the Pentium 4 processor, we initially
considered each unit to have five to eight key functions,
and then added to this list, as additional design
information became available.  The initial list of activities
was first based on a general understanding of the
microarchitecture; it was later refined as the high-level
processor definition code as the RTL for the block took
form.  Typically, extensive interaction with unit architects
and designers was needed to clarify the events and
activities key to each logic block.

POWER VALIDATION
Clock gating refers to activating the clocks in a logic
block only when there is work to be done, and it is one of
the key power-saving techniques employed on the
Pentium 4 processor.  When performing clock gating on a
massive scale, two validation concerns arise.  With
overaggressive clock gating, logic failures can arise,
where a block should have been awake, but either did not
turn on quickly enough, or is turned off too soon.  On the
other hand, conservative clock gating will not disrupt
correct functionality, but will result in wasted power.
Functional checkers such as an architectural simulator do
not report on such failures.

As one might anticipate, not all power-saving features
have equivalent value.  Therefore, a two-pronged
approach was taken to finding these logic problems.  One
was fine-grained, carefully focusing on just the key
power-saving features.  The other was coarse-grained,
examining all gated clocks for abnormal activity.  For
each approach, specific tools and methodologies were
created to automate the process of finding these power-
wasting logic problems.  Use of these tools continued
throughout the entire design process.

To uncover logical failures associated with clock gating,
each Pentium 4 processor unit's Design Validation (DV)
Test Plan was reviewed to ensure that the validator
addressed the power down corner cases, and that such
cases are included in the overall validation coverage
figures.

THERMAL MONITOR OVERVIEW
Implementing a traditional thermal solution that
accommodates the maximum power consumption of a
leading-edge microprocessor like the Pentium 4 processor
would have a significant impact on the system cost.  To
reduce this cost but retain a high level of reliability, an
enhanced version of an existing mechanism used in the
mobile computing segment, processor power modulation,
was used in the Pentium 4 processor.

The processor power modulation mechanisms employed
in mobile systems have taken two forms, both of which
require the cooperation of external logic.  The first
mechanism involves slowly reducing the processor clock
frequency, typically from its maximum supported
frequency down to a lower frequency.  The second
mechanism involves the modulation of the processor
STOPCLOCK signal (the pin named STPCLK#, while
asserted, has the effect of stopping the clock to many
internal elements of the processor) .  Since power
consumption is proportional to operating frequency, both
mechanisms have a similar effect on the power consumed
by the processor.

The external logic that controls the power modulation of
the processor could be activated by numerous stimuli,
including detection of high processor or system
temperatures, detection of low available battery power, or
simply by a user selecting a low-power operating mode
(with the goal of extending battery life).

In the case of a desktop computing system, one of the key
constraints is the requirement to control the operating
temperature of the processor.  This requires being able to
accurately measure the temperature of the processor
silicon.  Unfortunately, this is difficult to achieve with
external temperature sensors.  There is a significant delay
between the time at which the processor silicon reaches a
given temperature and the time at which an external
temperature sensor notices the temperature change.
Several solutions have previously been pursued, varying
from attaching the temperature sensors to heat sinks, to
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the processor package, or mounting it underneath the
processor.  Each solution has the same problem: reliable
high-volume manufacturing is difficult.

More recently, portions of the thermal sensor (e.g., the
thermal diode) have been located on the processor die.
Even this approach has clear limitations.  The temperature
from one corner of the die to another can vary by a
significant amount, so understanding sensor placement on
the die is critical.  Additionally, the rate at which the die
temperature can change is increasing to the point that the
currently available thermal sensor interface logic is too
slow to allow reliable die temperature measurement or
closed loop thermal control.

With the Pentium 4 processor, the objective was to enable
accurate control of processor die temperature.  The
solution chosen integrates all portions of the power
modulation mechanism including temperature detection
through power control.  When this feature is enabled, the
processor is capable of operating with no further software
intervention.  In anticipation that software will eventually
be required to control processor power dissipation, the
architecture of the thermal monitor control logic has been
created in such a way that it closely maps to the existing
Advanced Configuration and Power Interface (ACPI)
specification and software.

The thermal monitor architecture implemented on the
Pentium 4 processor can be described as three separate
but related functions: a mechanism for determining
temperature, a mechanism for reducing the power
consumption of the processor, and a means of controlling
and providing visibility into each of these mechanisms.
Each of these three functions is described in detail in the
following sections.

TEMPERATURE DETECTION
MECHANISM
All integrated circuits are designed to operate reliably
within a defined temperature range.  Outside of this range,
there is no assurance that the integrated circuits will
continue to function correctly.  The die temperature at any
given point in time is a function of the power consumed
by the device (both at a given instant in time and in the
relatively recent past), the collective thermal coefficient
from the die through the heat sink, and the ambient
environmental conditions.

The temperature at any given point on the die can be
measured with the use of a diode and a precise current
source.  The voltage drop across a diode is dependent on
both the current flowing through the diode and the
temperature of the diode.  By supplying a constant
current, and measuring the voltage drop across a diode,
we can get a reasonably accurate measurement of the
temperature at which the diode is currently operating.  By
comparing this voltage to a reference point, we can
determine when the temperature of the diode (and hence
the portion of the die that contains the diode) is just below

the maximum specified operating temperature. This is the
only temperature with which we are concerned.

There are a couple of key factors that significantly impact
the accuracy of such a thermal sensor.  The characteristics
of both the diode used as the thermal sensor and the
transistors used to create the current source are dependent
on the specific parameters of the manufacturing process.
Many of the process parameters change slightly from one
wafer to another or from one area on the wafer to another,
affecting the temperature recorded by the thermal sensor.

The second factor impacting the accuracy of the thermal
sensor is the fluctuation in the processor operating voltage
(measured on the die rather than at the pins of the
processor package) .  This noise can result in the thermal
sensor comparator (which determines whether the die
temperature has reached the maximum operating
temperature) signaling that the die is too hot, when in fact
it has not yet reached the critical temperature.
Alternatively, this noise could also cause the comparator
to incorrectly signal that the die is below the critical
temperature.

The Pentium 4 processor implements mechanisms to
account for both of these sources of error in the output of
the thermal sensor.  In the case of a microprocessor, the
power consumed is a function of the application being
executed.  In a large design, different functional blocks
will consume vastly different amounts of power, with the
power consumption of each block also dependent on the
workload.  While the heat generated on a specific part of
the die is dissipated to the surrounding silicon, as well as
the package, the inefficiency of heat transfer in silicon
and between the die and the package results in
temperature gradients across the surface of the die.
Therefore, while one area of the die may have a
temperature well below the design point, another area of
the die may exceed the maximum temperature at which
the design will function reliably.  Figure 6 is an example
of a simulated temperature plot of the Pentium 4
processor.

As a result of the cross die temperature variations; it is
very important that the temperature detection mechanism
(the integrated thermal sensor in the case of the Pentium 4
processor) be located at the hottest spot on the die.  As
can be seen from Figure 6, there are clearly optimal
locations for placement of the thermal sensor.
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Figure 6: Simulated thermal plot of processor die

Because the hottest location on the die may change from
application to application, it is important to confirm
theoretical thermal maps of the die with actual measured
data taken while various types of applications are
executing.  By evaluating the thermal maps for several
classes of applications, it is possible to confirm the
optimal location for the thermal sensor.  Evaluation of
these thermal maps also guides the selection of
appropriate guard bands to be applied to the thermal
sensor trip temperature.  These guard bands are intended
to ensure that as long as the temperature measured by the
thermal sensor is below the maximum reliable operating
temperature, there will be no location on the die that
exceeds the maximum reliable operating temperature.

POWER REDUCTION MECHANISM
Once it has been determined that the die temperature is
approaching the critical point, a mechanism is needed to
quickly reduce power consumption, causing a drop in
temperature.  There are several key constraints in the
design of this mechanism.

First, the latency between critical temperature detection
and power reduction should be low.  In this case, low
latency refers to periods on the order of 100's of
microseconds.  Reaction times significantly longer than
this would allow the die temperature to potentially reach a
point at which it no longer operates reliably.

Second, the mechanism should be efficient. Here,
efficiency refers to the ratio between power reduction and
performance loss.  An ideal mechanism results in a power
vs. performance curve that is linear and crosses both axes
at 0.  In other words, if the power modulation mechanism
results in a 10% performance loss while operating, it
would also provide a 10% reduction in power

consumption.  Note an ideal relationship is only possible
if frequency is the only variable.

Finally, the mechanism should add little or no cost to the
design.  Costs include those associated with die size,
validation, platform impact, and risk.

After evaluation of a number of potential options, the
Pentium 4 processor design team chose a mechanism that
utilizes the existing architectural low-power logic (the
StopClock architecture).  The chosen mechanism
essentially provides an internal STOPCLOCK request to
the processor core.

This STOPCLOCK request results in the clock signal to
the bulk of the processor logic being stopped for a short
time period.  While this clock signal is stopped, the power
consumption of the processor is reduced to a small
fraction of the maximum processor power consumption.
Because the STOPCLOCK request is a relatively high
priority interrupt, the delay between the request and the
resulting power decrease is relatively short, typically
much less than 1 microsecond.

In order to minimize any potential impact to the platform,
the time period during which the clock is stopped is kept
small.  The design target limits the total time during
which the processor is not executing useful code to a few
microseconds.  This includes both the time the clock is
actually stopped and the overhead associated with
stopping and restarting the clock signal.

THERMAL MONITOR CONTROL
The behavior of the power modulation mechanism can be
controlled with an enable bit in a model-specific register.
When enabled, the power modulation mechanism is
automatically invoked whenever the thermal sensor
indicates that the die is hot.  The power modulation
mechanism remains engaged until the die temperature
drops below the critical value.  While the default
condition has this bit set to ”disabled”, it is required that
the normal usage model would enable the thermal monitor
functionality during the initialization process, and leave it
enabled for as long as the system is powered on.  This
usage model provides the most robust processor thermal
solution, as the processor can protect itself from most
causes of overheating without any interaction by system
hardware or software.  The thermal monitor mechanism
can also be invoked via the ACPI compatibility registers
(see the section on ACPI interaction for details).

THERMAL MONITOR VISIBILITY
Although the thermal monitor mechanism implemented
on the Pentium 4 processor can be configured to engage
automatically and transparently, it may still be desirable
to signal the thermal monitor state to the system hardware
and operating system.  In the Pentium 4 processor
implementation, this signaling is provided via three
means.
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Figure 7: Example simulated system design curve

On the hardware side, an output signal reflects the state of
the thermal sensor comparator.  This signal is asserted
while the thermal sensor indicates that the die temperature
is at the maximum operating temperature, and is de-
asserted while the temperature is below this point.  This
signal could be used by system hardware to take some
action when the die temperature reaches the critical
temperature.  Note, however, if the closed loop thermal
control is disabled, any cooling oriented action must be
effective very quickly to prevent the processor from
overheating and failing (see the section on the power-
reduction mechanism).  For example, using this signal to
turn on an additional fan in the system would not be a
sensible solution as the processor temperature could
easily exceed its maximum operating temperature before
the cooling effect of the fan is noticed.

On the software side, there are two, model-specific
register-based, status bits of interest.  The first reflects the
state of the thermal sensor comparator.  This information
is identical to that provided by the output signal.  The
second bit is a “sticky” bit, which is set the first time the
thermal sensor reaches the critical temperature, and it
must be explicitly cleared by software or through a
processor reset.  An example use of the “sticky” bit would
be for diagnostic software to determine if the processor
has ever reached the critical temperature, which could be
used as an indicator that the thermal solution performance
has changed.

The final visibility mechanism consists of the ability to
generate an interrupt request whenever there is a change
in the output of the thermal sensor comparator.  These
interrupts can be generated in either direction; i.e., an
interrupt can be generated when the thermal sensor output
transitions from the “not hot” state to the “hot” state,
and/or when the thermal sensor output transitions from
the “hot” state to the “not hot” state.  Each of these
interrupts can be individually enabled or disabled.

PERFORMANCE
One of the primary themes behind the development of the
described thermal monitor mechanism is the ability to

reduce system thermal design costs without a perceivable
impact on performance.  Because the thermal monitor
mechanism could impact performance if the processor
reaches the critical temperature, it is valuable to
understand how often, and for how long, the critical
temperature could be reached while running real
application code.  These data allow system designers to
design a solution that optimally balances system cost and
the thermal performance required.

The performance impact resulting from the thermal
monitor is dependent on both the processor power
consumption and the thermal solution.  By generating a
curve of thermal monitor performance impact vs. system
thermal capability, the system designers can determine the
design point that is optimal for their target market.

During the development process of the Pentium 4
processor, the Architectural-Level Power Simulator
(ALPS) was used to project the power consumption of a
range of applications.  By using the power-consumption
projections of the ALPS, along with the expected thermal
characteristics of the Pentium 4 processor package, it was
possible to project the temperature of the Pentium 4
processor die at a given point in time while running the
applications of interest.

The resulting temperature vs. time data could then be used
to project when the processor would reach the critical
temperature.  Using the characteristics of the thermal
monitor mechanism, along with the package
characteristics, it is possible to project how long the
thermal monitor mechanism would remain active.  The
process described was automated and was used to
generate curves of processor performance vs. system
thermal design capability.  Figure 7 shows an example of
one of these curves.  As can be seen from Figure 7, the
thermal monitor mechanism implemented has the
potential for significantly reducing the system thermal
design point, without perceivably impacting processor
performance.

INTERACTION WITH THE ADVANCED
CONFIGURATION AND POWER
INTERFACE SPECIFICATION
The Advanced Configuration and Power Interface (ACPI)
specification defines a hardware and software
environment that allows operating system software
complete visibility and control of system configuration
and power management.  The specification describes a set
of valid processor operating states and the allowable
transitions between them.  The upper four states defined
for the processor are as follows:

1. C0—normal operation

2. C1—a low-power, low-latency state that assumes no
support from chipset logic that retains all cached
context
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3. C2—a lower-power, slightly longer latency state than
C1 that requires chipset support but still retains
cached context

4. C3—a still lower power, longer latency state that also
requires chipset support but one in which the cached
context may be lost

Systems based on the IA-32 architecture will typically
map the use of the HALT (HLT) instruction to the C1
state, the STOPCLOCK assertion to C2, and Deep Sleep
(removal of the processor clock input signal) operation to
the C3 state.

A documented sub-mode of the ACPI, C0 state is known
as Clock Throttling (the thermal control functionality on
the Pentium 4 processor would map to this sub-mode of
the ACPI spec).  In this mode, the operating system
accesses logic to assert the STOPCLOCK signal with
some predetermined duty cycle prior to the Pentium 4
processor, this logic had been resident in the chipset).
The term "duty cycle" is used to refer to the
characteristics of the signal applied by the chipset to the
processor’s STOPCLOCK pin in order to reduce
processor power dissipation.

The register that is defined to enable and configure Clock
Throttling is named the Processor Control register
(P_CNT) by the ACPI specification.  This 32-bit register
has bits defined to both set the Clock Throttle  (power
control) duty cycle and force the thermal control to begin.
The actual width and offset within P_CNT of the duty
cycle field can be configured by a system developer.  The
Pentium 4 processor has implemented this P_CNT
register in internal Model Specific Register (MSR) space.
The three duty cycle bits implemented in the Pentium 4
processor’s control register give software the ability to
define seven levels of power control, with one value (0)
reserved.

The incorporation of the P_CNT register in the processor
provides the operating system with the ability to perform
thermal control on a per processor basis even when there
are multiple processors in a system.  The Pentium 4
processor does not support Multi-Processor (MP) system
configurations; however, there will be future MP capable
IA-32 processors based on this same microarchitecture
targeted at the server and workstation market. It should be
noted that, to date, chipsets have only implemented a
single set of ACPI Clock-Throttling registers, and that
chipsets have a single STOPCLOCK pin.  The net impact
is that a per processor Clock Throttle solution does not
currently exist for MP systems.  Incorporation of a
P_CNT register into the processor solves this issue
without requiring the addition of multiple STOPCLOCK
pins in the chipset.
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It is interesting to observe that the Thermal Monitor and
Clock Throttle functions, although similar and intended to
cooperate/inter-operate, are designed to allow control of
fundamentally different system parameters.  The Thermal
Monitor is intended to very closely control the processor
die temperature, ensuring that the processor temperature
remains within the specified range.  The Clock Throttling
defined by ACPI is intended to allow the operating
system to modulate the processors’ power dissipation in
order to control the ambient temperatures that may impact
other components within the system.

CONCLUSION
At the start of the Pentium 4 processor project, the design
team formally committed themselves to lowering the
processor power consumption by 20% from initial power
projections .  The team also committed to lower the
thermal design point of the system by 40% without
perceivably impacting application performance, while
maintaining processor reliability.  These commitments
were met in the initial version of the Pentium 4 processor.
For reference, Figure 8 depicts the level of power savings
that the Pentium 4 processor achieved, superimposed on
historical thermal design power data.

The power reduction achieved resulted largely from the
extensive application of clock gating and unit power-
down techniques.  The addition of the thermal monitor
feature enables what is essentially a processor that is
capable of managing its own thermal profile to operate
efficiently within almost all thermal environments.
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ABSTRACT 
For high-performance chip design in deep submicron 
technology, interconnect delay and circuit noise immunity 
have become design metrics of comparable importance to 
speed, area, and power.  Interconnect coupling has 
increased dramatically due to higher metal aspect ratios 
with process shrinks.  Reduction of transistor lengths and 
thresholds has led to a drastic increase in subthreshold 
leakage.  The Pentium  4 processor is Intel’s fastest 
processor so far.  It contains aggressive domino pipelines, 
pulsed circuits, and novel circuit families that attain very 
high speed at the cost of reduced-noise margins.  
Controlling interconnect RC delay is of paramount 
importance at such high frequencies.  At the same time, 
the need for a high-volume ramp in the desktop segment 
necessitates high-density wiring constraints that prevent 
us from spacing or shielding all critical wires to manage 
coupling noise.  All of these made the task of 
interconnect and noise design and verification quite 
challenging. 

This paper describes the key innovations and learning in 
methodology and CAD tools.  We first describe our 
approach to the interconnect high-frequency design 
problem and our silicon results.  We then describe a new 
proprietary noise simulator (NoisePad) and our noise 
robust cell library, both of which enabled detailed noise 
design and analysis for the first time in industry and were 
critical to our success.  Finally, inductance is a major 
design problem at these high speeds.  Our use of a 
distributed power grid to manage this problem is 
described.  

INTERCONNECT DELAY AND 
CROSSCAPACITANCE SCALING 
With traditional process scaling, interconnect delays have 
not kept pace with the speedup obtained in transistors. 
The problem has become significant enough to require 
entire architectural pipe stages in the Pentium 4 processor 

for interconnect communication.  At the circuit level, 
widespread use of repeaters has become necessary. To 
avoid degrading interconnect resistance, the vertical 
dimension of metals has scaled very weakly compared to 
the horizontal dimension, leading to extremely high 
height/width aspect ratios (2-2.2).  See Figure 1. 
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Figure 1: Wire aspect ratio scaling with technology 

Nowadays, most of the wire capacitance is to parallel 
neighboring wires in the same layer (Figure 2), which can 
get routed together for long distances.  This can either 
lead to a large increase in delay, coupling noise, or min 
delay problems, depending on the switching direction of 
neighboring wires.  As can be seen from Figure 2, 
avoiding these delay and noise problems would involve 
drastically increased wire spacing or extensive shielding.  
Further, studies on both the Pentium  III and Pentium 4 
processor floor plans have clearly shown that we tend to 
be interconnect limited for die area, which increases the 
penalty for spacing and shielding.  
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Figure 2: Coupling capacitance scaling with 

technology 

Thus, there is a fundamental design tradeoff between a 
simple, robust, wiring solution employing extensive 
spacing and shielding vs. an aggressive solution 
employing short wiring with only judicious shielding 
leading to high density.  The latter requires sophisticated 
CAD tools, has more risks, but ultimately is much more 
optimal for a high-volume product.  It was therefore the 
choice for the Intel  Pentium 4 processor.  

 

Figure 3: Dedicated repeater banks in the Pentium  4 
processor effectively form a virtual repeater grid 

WIRE AND REPEATER DESIGN 
METHODOLOGY FOR THE PENTIUM  4 
PROCESSOR 
Delay, noise, slope limits, and gate oxide wearout were 
all considered when drafting the guidelines for  the wire 
and repeater methodology.  Notable features were an 
increased emphasis on noise robustness and “pushed 
process” considerations for delay (repeater distance 
guidelines were made shorter than optimal for delay with 
the existing process, in anticipation of end-of-life process 
trending when transistors speed up a lot compared to 
wires).  Repeater sizing, rather than best delay 
optimization for non-coupled wires, was picked to be 
optimal for noise rejection, for equal rise and fall delays, 
and for better delay in the presence of coupling.  

Stringent limitations were put on maximum sizing of 
repeaters, especially in buses, to reduce power supply 
collapse caused by a simultaneously switching bank of 
repeaters.  The methodology and tools allowed us to use 
both inverting and non-inverting repeaters.  Simple 
length-based design rules were provided for repeaters, 
and further optimization was possible through internally 
developed proprietary tools: NoisePad, ROSES, and 
Visualizer (net routing and timing) analysis. 

The extensive use of dedicated repeater blocks is evident 
in the Pentium 4 processor floorplan (with repeater 
blocks highlighted) shown in Figure 3.  Further, the net 
length comparison in Figure 4 shows that although the 
Pentium 4 processor is a much larger chip, there are very 
few long nets in it compared to previous-generation chips 
such as the Pentium III processor.  This is even more 
notable given that the Pentium 4 processor has more than 
twice as many full-chip nets as the Pentium III processor 
and has architecturally bigger blocks.  If we compare the 
M5 wire segments of the Pentium III, and Pentium 4 
processors, we note that 90% of the M5 wire segments of 
the Pentium 4 processor are shorter than 2000 microns 
while the same percentage of Pentium III processor wires 
are 3500 microns long.  These short  wires are a key to 
enabling high-frequency operation. 
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Figure 4: M5 length comparison of global wires for 
different processors using the same 0.18 um 

technology 

Crosscapacitance and Density Comparative 
Results of the Pentium 4 Processor 
Interconnect 
The Pentium 4 processor designers’ wiring philosophy 
was to allow short, tight wires.  High crosscapacitance 
was tolerated as the price that had to be paid for dense 
wiring.  Tolerating high crosscapacitance is necessary 
especially in congested areas of the chip to avoid die 
growth.  
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Figure  5: Coupling comparison of Pentium  4 
processor/Pentium  III processor wires 

Figure 5 clearly shows that the Pentium 4 processor has 
significantly more wires with high crosscapacitance than 
does the Pentium III processor.  This aggressive wiring 
makes additional accuracy in noise CAD tools (discussed 
later) even more important. 

NOISE SOURCES AND TECHNOLOGY 
TRENDS 
There exists a fundamental duality between circuit speed 
and noise robustness in that we can always make circuits 
faster by tolerating smaller noise margins.  Before 
looking at this issue specifically from the perspective of 
the Pentium 4 processor, let us look at noise sources and 
their scaling. 

Interconnect Crosscapacitance noise refers to charge 
injected in quiet wires by neighboring switching wires 
through the capacitance between them 
(crosscapacitance).  This is perceived to be the most 
significant source of noise in current processes (see 
Figure 6).  It is intimately tied to interconnect design for 
delay and was discussed in the previous section.  Device 
scaling is making the problem worse due to near-end vs. 
far-end noise effects on resistive metal lines. 

Domino StageDomino StageDomino StageCMOS driverCMOS driver

power supply
noise
power supply
noise

crosscapacitancecrosscapacitancecrosscapacitancecrosscapacitance

charge sharingcharge sharingcharge sharing

subthreshold leakagesubthreshold leakage

propagated noise

 

Figure 6: Various noise sources for digital circuits 

Charge Sharing Noise is caused by charge redistribution 
between a weakly held evaluation node and intermediate 

nodes in a logic stack.  This primarily impacts domino 
nodes, weakly driven pass gate latches, and dynamic 
latches.  The primary technology variable here is the ratio 
of junction capacitance to gate and interconnect 
capacitance.  For most circuits, this noise is not getting 
significantly worse with new technology generations. 

Charge Leakage Noise in our current processes is mainly 
composed of subthreshold conduction in nominally off 
transistors.  This current can either charge/discharge a 
dynamic node or cause the stable state of a weakly held 
node to be significantly different from rails.  This is 
mainly a concern for wide domino NOR, PLA, and 
memory arrays.  This current increases exponentially with 
decreasing thresholds and is becoming very significant 
from 0.18um onwards.  

Power Supply Noise is the difference between the local 
voltage references of the driver and receiver, which can 
appear as a spurious signal to the receiver and cause 
circuit failure.  It has both low-frequency and high-
frequency components.  The low-frequency component 
(IR drop) is managed well by flip-chip C4 packaging, 
which provides a very low resistance current path.  For 
high-speed transients, the large inductance of the package 
return causes significant return current to flow through 
the on-die power grid.  For simultaneous switching of 
wide busses, the impedances in the signal and current 
return path can be of comparable magnitude leading to 
large power supply bounce.  Power supply noise is a 
dominant factor in the design of wide domino circuits and 
in circuits using contention where the AC logic level is 
shifted with respect to power supply rails.  

Mutual Inductance noise occurs when signal switching 
causes transient current to flow through the loop formed 
by the signal wire and current return path, thus creating a 
changing magnetic field (see Figure 7).  This induces a 
voltage on a quiet line, which is in or near this loop.  For 
several signals in a bus switching simultaneously, these 
noise sources can be cumulative.  Unlike 
crosscapacitance, which is a short-range phenomenon, 
mutual inductance can be a long-range phenomenon and 
hence is worse in the presence of wide busses.  Faster 
switching speeds and wider, synchronous bus structures 
are making this noise very significant in current 
technologies. 
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Figure 7: Mutual inductance noise from simultaneous 
switching on a wide bus 

Inductive noise can combine with capacitive noise to 
cause even worse noise than shown in Figure 7.  Because 
the analysis of inductive effects is highly dependent on 
layout and is quite complex, the approach is usually to 
design the problem out through rules rather than analyze 
arbitrary configurations. 

NOISE CHALLENGES ON THE PENTIUM 
4 PROCESSOR   
The performance goals of the Intel Pentium 4 processor 
compared to the Pentium III processor were 1.5X–2X 
higher frequency on the normal (medium) part of the chip 
and 3X–4X the frequency on the fast (rapid execution 
engine) part of the chip.  These targets require aggressive 
domino pipelines.  In the rapid execution engine, the 
pipeline is only eight stages deep with the last stage 
usually feeding the first domino stage after considerable 
routing.  Traditional techniques such as not allowing 
routing into domino receivers or buffering domino inputs 
would have added an additional 10-20% latency to the 
pipe.  

Accurate noise analysis using NoisePad and circuit styles 
such as pseudo-CMOS logic shown in Figure 8 (which 
provide the logic capability of domino logic and the noise 
robustness of CMOS) were employed.   

noisy signal A after
long route

local signal B local signal C

noisy signal A after
long route

local signal B local signal C

Pseudo CMOS
P device for noise reduction
Pseudo CMOS
P device for noise reduction

 

Figure 8: Pseudo CMOS circuit for input noise 
protection 

Pulsed clocking was used in the Pentium 4 processor for 
lower clock power and load.  This made charge sharing 

protection rather difficult.  To reduce power and area, 
dynamic latches were used extensively as mindelay 
blockers.  These pulsed circuits have no keepers; 
therefore, increased noise sensitivity and charge leakage 
had to be verified by noise tools.  

A new form of latch called the set-dominant latch was 
used in the Pentium 4 processor for speed optimization.  
This weakly held circuit node could get routed into a 
domino receiver causing increased noise sensitivity. 

Process Optimization Consideration for 
Noise and Leakage 
Most design rules and circuit decisions for the Pentium 4 
processor, were based on early 0.18 um process specs.  
We wanted a robust part, which could be pushed for 
speed later.  We expected that the transistor length and 
leakage targets would be aggressively pushed in our quest 
for speed in a mature process.  Due to these 
considerations, we employed very large Ioff numbers for 
our design rules and CAD tools.  As shown in Figure 9 by 
the process trend over time, this was indeed a wise 
choice: the Pentium 4 processor has scaled well in 
frequency and still has considerable frequency headroom 
speed.  
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Figure 9: Impact of process push on subthreshold 
leakage 

NOISE ANALYSIS ALGORITHMS 
Some amount of noise is unavoidable in digital circuits. 
The question is deciding when it causes functional 
failure. 

Strongly held static nodes recover after a noise transient 
and usually incur only a frequency slowdown.  Dynamic 
latches and domino nodes, however, show true functional 
failure.  The node goes to the wrong logic state and may 
not recover even after the frequency has been slowed 
down.  Latches and other circuits with feedback show a 
similar failure mechanism.  
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Small Signal Unity Gain 
Prior to our work on the Pentium 4 processor, traditional 
analysis of noise margins relied on the small signal unity 
gain failure criteria.  

Figure 10: DC transfer function of an inverter 
illustrating small signal unity gain 

As illustrated in Figure 10, for a small change in input 
noise to a circuit biased at an operating point, the 
resultant change in output noise is measured.  If |d 
(Output)/ d (Input)| > 1 then the circuit is considered 
unstable. 

Unity gain is a good design metric but is neither 
necessary nor sufficient for noise immunity.  Most 
aggressively designed paths have some noise-sensitive 
stages interspersed with quiet stages.  We need to allow 
some noise amplification in the sensitive stage knowing 
that the quiet stages will finally attenuate it. 

Failure Criteria: Noise Propagation 
As was mentioned in the previous section, failure criteria 
based on unity gain tend to be extremely conservative in 
most cases and are still not proven to be conservative in 
all cases.  Alternately, the entire circuit can be broken 
into circuit stages, across which noise propagation can be 
tracked.  To do this, we perform an AC circuit simulation 
of each circuit stage, with noise sources injected in worst-
case temporal fashion, combined with noise propagated 
from previous stages, and measure if any circuit stage 
failed as a result.  In this case, noise can be made to 
propagate across any number of stages, eliminating the 
need for any unity gain budgeting.  Failure is observed at 
weakly held nodes such as domino nodes and latches, 
where the node does not recover after sufficient time.  
This is very similar to path-based static timing analysis, 
which allows time borrowing.  The computational 
complexity and memory cost of this approach is the main 
issue.  We made significant CAD innovations to reduce 
the computational complexity of this approach and 
implemented this for the Pentium 4 processor in the form 
of a new noise simulator called NoisePad.  

Combination of Noise Sources  
Traditionally, different noise sources such as charge 
sharing, coupling, etc., were characterized separately, and 
individual maximum budgets were allocated for each 
source.  This is rather conservative.  A wide D2 domino 
NOR node, for example, is very sensitive to coupling at 
its inputs but has no charge sharing.  Some ad hoc 
approaches to combining noise budgets exist, but the 
desirable solution is to simulate all noise sources together 
with no accounting for individual budgets.  The simplest 
way to achieve this is linear superposition.  The biggest 
nonlinear effect is the finite threshold of transistors.  For 
example, a combination of ground bounce and coupling 
at the input of a transistor leads to a much larger 
transistor current than does an addition of currents 
resulting from separate ground bounce and coupling.  
Another nonlinearity is transistor resistance as a function 
of drain-source voltage.  For example, the peak noise in 
the event of two simultaneous couplers on a line is larger 
than the sum of these two events, because the couplee 
driver resistance increases with an increase in noise 
magnitude.  A third nonlinearity is caused by voltage-
dependent parasitics.  These are important, for example, 
when combining charge sharing with coupling effects.  

Simultaneous Noise on Multiple Inputs 
For multifanin circuits we have to consider not only 
different noise phenomena, but also their simultaneous 
occurrence on different parallel inputs.  Traditionally, the 
injection of the same noise on all parallel paths was the 
worst-case scenario.  There are several important cases 
such as register file arrays where this pessimism can be 
the deciding factor in the feasibility of the circuit.  For 
example, in a multi-ported register file with a segmented 
bitline, maximum coupling cannot simultaneously occur 
on multiple word lines on the same port.  Some 
background noise such as power supply noise may still be 
present on the other inputs.    

DC vs. AC Noise Analysis   
Some components of noise such as charge leakage and 
the low-frequency components of power supply noise 
have time constants much larger than those of most 
digital circuits.  Effectively, these can be treated as DC 
waveforms.  DC analysis and library characterization are 
relatively straightforward.  Further, it is easy to combine 
noise sources; e.g., two couplers or coupling with charge 
sharing, with a DC approach as no computationally costly 
temporal shifting is required.  However, noise sources 
such as interconnect coupling, charge sharing, etc., have 
pulsewidths of the same order as those required to charge 
or discharge most circuits.  In this case, approximation of 
the true waveform with its peak amplitude DC produces 
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gross conservatism.  Digital circuits work as “low pass 
filters” for noise due to their finite transistor resistances 
and load capacitances.  In many matched high-speed 
circuits, this approximation can lead to a 2X difference in 
tolerable noise levels.  In spite of the severe 
computational overhead, AC waveform analysis is 
necessary for the design/verification of sensitive high-
speed circuits.  

NOISE ROBUST CELL LIBRARY DESIGN  
Traditionally, our chips have been designed with fixed 
cell sizes.  The ability to drive different loads has been 
achieved by providing a finite number of different sizes 
and in some cases of different P/N skew.  For the 
Pentium 4 processor, we found that additional 
performance, and area and power optimization, were 
possible by having a stretchable cell library that didn’t 
have the constraints of fixed cell sizes.  Noise robustness 
was an important consideration for sequential and domino 
cells.  A key innovation for noise robustness was the use 
of stretchable keepers for domino nodes and sequentials.  
Traditionally, when assembling domino libraries, keepers 
were designed to keep additional delay within tolerable 
limits.  For the Pentium 4 processor, instead of the size of 
keepers being hard-coded, each cell had symbolic 
constraints describing its leakage and noise metric (no. of 
pull downs, stacking, etc.), along with its delay metric.  
The default keeper tried to maximize noise immunity 
while keeping tolerable delay.  As an example, wide fanin 
domino NORs were provided with significantly larger 
keepers.  Similarly, stacked configurations had larger 
keepers.  However, a designer using NoisePad, 
optimizing for the actual instance-based noise and speed 
requirements, could easily adjust this keeper strength.  
This did not involve creating a new custom cell (unlike 
other chips) and was widely used for noise suppression.  

Each cell could be tuned for its noise environment (as 
needed) and did not have to follow conservative rules.  
The symbolic constraints also made the task of process 
conversion trivial instead of significant since the entire 
library did not have to be redesigned when leakage 
changed from a 0.18 to a 0.13 um process. 

Another key decision made regarding the cell library was 
forecasting the optimum leakage of future processes.  We 
predicted that leakage would get much higher for 
optimized 0.18 and 0.13 um technologies and therefore 
designed the library to combat this increase.  Specifically, 
for the design of wide domino nodes and array and 
register file structures, we went with segmented bit-line 
architecture and disallowed circuits with large numbers of 
parallel pull downs (except PLA waivers).  This design 
rule allowed us to tolerate significantly higher leakage in 

the process, which is necessary for transistor 
performance. 

Noise CAD Tool Requirements for the 
Pentium 4 Processor 
In the Pentium 4 processor, we treat charge leakage as 
DC noise.  Interconnect coupling, charge sharing, and 
noise propagation need to be handled with AC waveform 
analysis.  All noise sources are simulated together without 
linear superposition.  The analysis does not assume 
maximum budgets on individual noise sources.  
Regarding simultaneous noise on multiple inputs, by 
default the same noise is applied to all parallel paths.  
This can be overridden for speed or area critical paths; in 
which case, transient noise is analyzed on specified paths 
with background power supply noise on other paths. 

The Pentium 4 processor is primarily custom designed 
with a library of parameterized/stretchable cells.  In past 
methodologies, custom design resulted in a large 
overhead for noise analysis because of required 
characterization.  In the Pentium 4 methodology, all cells 
are treated as custom cells with “on the fly” analysis.  
This requires no library pre-characterization and thus 
places no extra overhead on custom design.  

NOISEPAD: NOISE CAD TOOLS AND 
METHODOLOGY 
Using the technique of noise propagation, any path can be 
broken into small circuit stages, which can be analyzed 
sequentially.  Technically, we could perform this analysis 
with industry-standard SPICE-type simulators.  
Unfortunately, the throughput available in the Pentium 4 
processor design timeframe was not acceptable for either 
interactive design or batch mode verification.  A new 
transistor-level simulator was developed that allowed a 
throughput that was orders of magnitude higher than the 
traditional SPICE approach.  The key innovations were 
symbolic circuit simulation and simplified noise analysis 
of distributed interconnect.   

Symbolic Circuit Template Simulation 
To achieve high throughput, the noise simulator 
reduces/matches circuits to a list of predefined 
parameterized circuit templates.  The differential 
equations governing these circuit templates have been 
solved symbolically in a piecewise linear manner and 
don’t need to be solved at runtime.  The simulation 
consists of evaluating these piecewise linear analytical 
solutions at succeeding time points.  Device nonlinearities 
and voltage-dependent parasitics are dealt with because 
the model is “piecewise linear” and not just linear.  
Circuit relaxation is used for DC bias point calculations 
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to handle the DC noise sources.  Templates exist for 
drivers and receivers of CMOS, domino, pass gate, and 
novel logic types.  

Figure 11: Circuit template idea for a domino 
receiver 

In Figure 11, a piecewise linear waveform of input noise 
voltage added to the power supply noise creates a 
piecewise linear current in the receiver.  This current is 
added to other current sources such as charge leakage, 
charge sharing, and current injected through the 
gate/drain miller capacitance.  The differential equation 
governing this circuit has a closed form solution, which is 
known a priori.  

Transistor Models 
For noise analysis, simple transistor models are often 
adequate.  In this context, some transistors are  normally 
“on”, in which case they try to keep a node in its correct 
logic state, e.g., a domino keeper.  These are 
characterized by a large |VGS| and small |VDS|, meaning 
they operate in the linear region.  Normally, “off” 
transistors are ones that try to upset the logic state of a 
node by current conduction.  For small or reasonable 
values of noise, these are characterized by large |VDS| 
and small |VGS|, meaning they operate in the saturation 
region.  Depending on the gate input noise, these can 
either be in the subthreshold or strong inversion region. 
With these simplifications, very computationally 
inexpensive transistor I-V models were developed and 
implemented with a precharacterized transistor table 
look-up model.  We used a non-uniform grid to optimize 
for noise sensitive regions of operation; for example, we 
used much finer gridding in the subthreshold/weak 
inversion region. 

Distributed Interconnect Noise Analysis 
The computational complexity of noise analysis is often 
dominated by the coupling analysis of the distributed 
interconnect.  In the past, interconnect coupling has been 
dealt with, in a lumped fashion, by putting all coupling 
capacitance at the end of a line.  This produces significant 

conservatism.  Further, for interconnect with side 
branches, there are no straightforward solutions.  

For handling complex interconnect networks, especially 
from post layout, Asymptotic Waveform Evaluation 
(AWE) analysis using iRICE has been integrated into our 
noise simulator.  

Elmore Noise Model 
To drastically increase the throughput of distributed 
interconnect noise analysis, a new analytical closed form 
approximation has been developed for multiple aggressor 
coupling on a distributed network.  

Figure 12: Elmore approximation for noise analysis 

This is called the “Elmore model” due to the analogy with 
Elmore delay used in timing analysis.  The idea here is to 
make the analysis much simpler by reducing the network 
moments or, in other words, finding the dominant time 
constant of the network.  In Figure 12, ctotj is the sum of 
the total switching and non-switching capacitance on the 
jthnode.  All couplers are aligned for  worst-case 
temporal shifts, and they finish switching at time t = 0.  
NoisePad analysis switches between this simple model 
and more expensive AWE models, based on heuristics. 

FULL-CHIP WIRE NOISE 
VERIFICATION   
The key idea behind the Pentium 4 processor full-chip 
noise verification is “strobed signaling.”  A non-restoring 
node for noise is defined as a node, which if falsely 
tripped due to noise, will not recover with the passage of 
time (e.g., domino node or off pass gate latch).  A signal 
is called “strobed,” if its logic cone leading to a non-
restoring noise node is controlled with a clock (e.g., D1k 
domino).  In this case, the effect of noise on this node 
may be dependent on clock frequency.  
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Figure 13: Impact of frequency on noise failure 

As shown with the D1-k example in Figure 13, at a lower 
frequency, the noise will settle down before the signal is 
sampled and as such will not fail at the lower frequency. 
In most cases, the timing of aggressors switching for 
noise is earlier than predicted by max delay timing 
analysis due to a reduced Miller Coupling Factor (MCF) 
in the noise case.  Further, the worst noise case is usually 
on fast silicon at high voltage (good for speed).  As such, 
in most cases, we can ignore the cases leading to a slight 
frequency slowdown in our analysis.  The tricky 
situations are those that lead to excessive frequency 
slowdown or even worse, frequency shmoo holes.  Before 
spending valuable CAD tool resources on these non-
trivial cases, we needed to convince ourselves that the 
common benign case is indeed the dominant one and 
therefore the one on which to base our full-chip wiring 
methodology. 

Most full-chip signals are busses (~59,000 out of 72,000 
nets), and less than 10% of full-chip signals are 
“sensitive” (feeding domino receivers or direct pass gate, 
etc.).  Most busses have similar timing among different 
bits, which should ease the frequency slowdown and 
shmoo problem.  Figure 14 shows the significant effect of 
this analysis.  Most of the effect of this filtering was due 
to the “required filtering” that characterized frequency 
slowdown, and very little was due to “valid filtering,” 
which looks for aggressors not switching together.    

TBPU results of filtering

0

200

400

600

800

1000

1200

%Xcap

N
o

 o
f 

si
g

n
al

s

pre filter

post filter

pre filter 2 246 100 669 443 552 650 880 596 6

post filter 843 1077 785 740 273 170 102 114 38 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 >0.9

 

Figure 14: Impact of frequency independent timing 
filtering 

Frequency Independent Filtering 
To solve the rare cases of real noise problems on a 
strobed signal, we decided to classify noise issues as 
follows: 1) functional failure at all frequencies; 2) slight 
slowdown; 3) large slowdown; 4) frequency shmoo hole 
at a lower frequency as shown in Figure 15; 5) mindelay 
switching induced noise failure; and 6) excessive 
coupling causing gate oxide wearout.  Issue number 6 
was achieved simply through a VCC/2 coupling noise 
clamp, which was used as a warning.  For the rest, we had 
to implement timing filtering, which understood changing 
timing relations at different frequencies. Timing filtering 
was first implemented for the Intel  Pentium  Pro 
processor as the tool Crosswind [4], and it introduced the 
concept of valid and required time window filtering; valid 
window noise ‘profiling’ or juxtaposition of aggressor 
noise over the clock period; and rudimentary modeling of 
drive ratios with fixed thresholds for noise sensitization.  
Later implementations developed for the Pentium  II and 
Pentium III processors improved on several aspects of 
driver and interconnect modeling. 

Figure 15: Frequency shmoo hole 

The novel features of timing filtering for the Pentium 4 
processor include three modes of frequency analysis (low 
frequency for burn-in analysis, high frequency for at-
frequency noise and delay tests, and all-frequency sweep 
for noise effects); timing skew between victim and 
aggressors; required-time filtering with victim recovery; 
and an interactive graphical waveform interface for 
timing filter debug. 

The design of the Pentium 4 processor brought new 
challenges to timing filtering because of the complexity 
of its clocking system.  In earlier clocking styles, an 
excessive slowdown or shmoo hole was usually caused by 
a very late signal coupling into a signal with early-
required time or by the interaction between signals from 
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opposite phases.  In the Pentium 4 processor, however, 
the design incorporates several clocks that are multiples 
of each other: signals are F(ast), M(edium), and S(low) 
clocked signals.  Not only do signals occur in different 
phases, but also with different periods.  In addition, these 
differently clocked signals interact as they are not a priori 
restricted to different regions of the chip.  Thus, mid-
frequency shmoo holes are much more probable in such a 
design.   

The new approach handles a clocking system with an 
arbitrary number of phases and an arbitrary number of 
synchronous clock frequencies by using a Multi-
Frequency Algorithm.  

At very low frequencies, signals activated by different 
phases are widely separated in time, so much so that they 
do not interact.  This represents the low end of all 
frequencies to be considered, while the target operating 
frequency represents the high end.  Sweeping frequencies 
at a small enough increment to catch waveform overlaps 
is prohibitive due to the complexity of the internal scan. 
We, therefore, needed a more adaptive algorithm.  Here is 
the entire algorithm with an all-frequency sweep as its 
outer loop: 

For each victim net: 

1. Collect aggressor set for a given victim and skew 
timings appropriately. 

2. Map clock edge references onto phases of an 
appropriate clocking system.  For example, a set of 
aggressors with M and F rising edge references 
requires a two-phase system. 

3. Perform a noise sweep, computing aggressor 
interaction sets and generating timing “filter table.” 

4. Compute the next highest frequency of interaction 
among signals. 

5. Return to step 2 until there is no more interaction 
among signals. 

��������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������

a
b

d
e

c

List of possible switching 
sets at this frequency

abcde
11100
01010
00101

 
Figure 16: Illustrating logical switching set groups 

The most difficult part of the algorithm is to compute the 
frequencies of interaction, as illustrated in Figure 16.  
Given that an O(N log N) scan is in the internal loop, the 
algorithm cannot afford to sweep with a very fine grain to 
catch all interactions. 

The key to computing the next frequency of interaction is 
to comprehend the relative velocity of timing edge 
references as one slows the primary clock.  By carefully 
searching the edges most close to one another and 
keeping track of their relative velocities, this algorithm 
can be made reasonably efficient.  One difficulty is 
handling edges that refer to a previous clock phase that 
are actually moving backward with respect to other 
timing edges as frequency is increased.  To handle this 
and other difficulties, we developed a general approach to 
handling both the modular nature of signal timings and 
measuring the frequency at which they may intersect, 
based on the concept of relative edge velocity. 

Full-Chip Noise Convergence 
Detailed noise verification requires a lot of data: circuits, 
timing information, detailed parasitics, interconnect, etc. 
For a lead processor like the Pentium 4 processor, “clean” 
data for all nets are available only very close to tapeout.  
Further, this detailed model is too slow to turn and, 
moreover, it is serial in nature.  After finding a violation, 
one has to backtrack through numerous files, models, and 
schematics to verify if a real problem exists (needle in a 
haystack scenario).  With these incomplete data, trending 
and schedule predictions are difficult.  

To circumvent these problems, simple “perturbation”-
based models were built using mathematical spreadsheet 
software.  Parallel probes gather all relevant information 
about a net (timing, parasitics, length, circuit, etc.) to a 
total of 87 relevant metrics for each net!  Approximately 
40 full-chip models were built in one week for various 
“what if”(perturbation) scenarios.  These models looked 
at tweaking various knobs: number of aggressors, 
switching probabilities of small aggressors, 
synchronization of noise propagation with coupling, 
probability of multiple noise events on same gate, various 
clock skew assumptions for timing filtering, various 
frequencies for allowed frequency slowdown, etc., to find 
reasonable settings and really serious problems but not 
produce too many false violations.  A detailed NoisePad 
model was used as the starting point for these models.  
After this analysis, the new noise was assumed to be a 
slight perturbation around its NoisePad value and 
predicted by the change in the knob (e.g., changing 
lumped %xcap from 100% to 50%).  

Although these fast models were very crude, they were 
surprisingly accurate because they did not try to predict 
the real noise but rather the perturbation (much smaller 
error).  Based on these fast models, another detailed 
NoisePad model was built with correct knob settings and 
used for final convergence.  As can be clearly seen from 
Figure 18, this exercise helped us greatly with 
convergence and saved us an estimated one to two 
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months in our noise convergence schedule.  The dramatic 
decrease in noise violations seen in Figure 17 involved no 
work from the design team! 
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MUTUAL INDUCTANCE 
METHODOLOGY 
At low frequencies, flip-chip C4 packaging provides a 
very low resistance current return path.  For high-speed 
transients, the large inductance of the package return 
causes significant return current to flow through the on-
die power grid, as shown in Figure 18.  For simultaneous 
switching of wide busses, the impedances in the signal 
and current return path can be of comparable magnitude 
leading to large inductive noise. 

 
Figure 18: Signal inductance problem with flip-chip 

packaging 

A test chip was fabricated with test structures to measure 
mutual inductance noise on wide busses.  In this chip, 
signal busses of varying width could be made to switch in 
any combination, with several combinations of return 
scenarios, one of which is shown in Figure 19.  We were 
also able to measure simultaneous capacitive and 
inductive noise, which helped us develop empirical 
design rules. To keep the area impact small while 

reducing inductance, a scheme of distributed power 
supply was chosen for the Pentium 4 processor, where for 
top-level metals (M6 and M5), a power signal was routed 
after every 5 signal wires, thus providing a nearby current 
return and reducing the loop area for inductance.  
Towards tapeout, a tool for crude inductance estimation 
was written.  This looked for any sensitive circuits (e.g., 
domino) routed for appreciable distance in the 
neighborhood and parallel to long, wide busses.  By 
taking the width of the bus, distance from the bus, and 
length of overlap, an inductance noise metric was used to 
flag any possible problems.  This check was not restricted 
to wires routed in the same metal layer.  

Figure 19: Silicon measurements showing inductive 
noise 

TIMING AND NOISE INTEGRATION 
Traditionally, timing analysis (PV) has remained 
decoupled from noise analysis.  As we push both timing 
and noise limits, there is increasing interaction between 
the two.  

Currently, min delay analysis verifies that all circuits 
meet their hold time limits while a pulse width/delay 
check verifies that pulses are wide enough for circuits.  In 
the 0.18 um technology generation, the tool Pathmill* is 
used for min delay analysis.  The common algorithm for 
hold time checks is to ensure the switching data signal 
does not reach its 50% point before the going away clock 
reaches its 50% point.  

                                                           
*Other brands and names are the property of their 
respective owners.  
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Figure 20: Timing-induced noise 

There are some other algorithms, which change the 
threshold (50% point) or move the check to data output 
rather than input.  These algorithms are inherently flawed 
because they do not take into account the context-
dependent noise robustness of the circuit. 

In Figure 20, taking any of the measured values as hold 
time for a circuit would be completely arbitrary if you 
didn’t know the circuit’s noise margin and the other 
sources of noise that were present.  A pulse width/delay 
checks that the pulse to a circuit is wide enough for it to 
reach within a certain voltage of a full transition.  This 
check is again arbitrary, without knowing how sensitive 
that circuit is to incomplete transitions (noise).  As an 
example, we found that a default mindelay Pathmill 
analysis of the Pentium 4 processor domino library 
showed several instances where a D1k circuit passing 
default mindelay (hold checks) would leave a glitch at the 
domino output that was large enough to cause a complete 
false transition after the high-skewed static stage.  
Currently, no design flow would catch these problems, 
thus causing potential silicon bugs. 

Our response was to treat hold checks and pulse width 
checks as an analog glitch check.  The glitch amplitude 
corresponding to a certain hold time is automatically 
injected into the noise tools and propagated to succeeding 
stages to ensure circuit functionality.  Thus, we can make 
tradeoffs between min delay and noise requirements.  
This new source of noise is combined intelligently and 
not just added to other traditional sources of noise, such 
as coupling, taking into account events that are possible 
logically at the same time.  This tradeoff was used quite 
widely for critical circuits. 

Since the design of the Pentium 4 processor, all Intel® 
timing characterization tools take simultaneous noise 
margins into account when doing timing analysis for hold, 
set up, and pulsewidth checks. 

SUMMARY 
Key findings from the Pentium 4 processor noise and wire 
design methodologies and CAD tools have been 
presented.  By a combination of aggressive circuit design, 
short, high-density wiring and noise methodology, and the 
appropriate CAD tools to help design and verify these, 
the Intel Pentium 4 processor looks poised to be a 
successful, fast, reasonably small die product.  We have 
shown that an architecturally larger chip need not lead to 
longer physical wires if careful methodology and repeater 
design are used, thus enabling higher frequency.  Very 
aggressive circuit styles have been allowed by 
innovations in noise CAD tools, which will enable even 
higher frequencies.  High density has been enabled by 
improved noise methodology, thus allowing aggressive, 
dense wiring with judicious use of spacing and shielding.  
The inductance problem, although significant, has been 
accounted for in the design by our distributed power grid.  
Circuit styles and a methodology that are robust for 
leakage will allow us to push the process for speed. 
Tradeoffs between timing and noise have been enabled by 
innovations in CAD tools.  In general, a lot of care and 
effort has been put into noise immunity to create a chip 
that should work robustly in the field  Much of this 
methodology and CAD tool ideas can be incorporated 
into future chip designs. 
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ABSTRACT
Systems based on the Pentium® III and Pentium® 4
processors enable the exploitation of parallelism at a fine-
and medium-grained level.  Dual- and quad-processor
systems, for example, enable the exploitation of medium-
grained parallelism by using multithreaded code that takes
advantage of multiple control and arithmetic logic units.
Streaming Single-Instruction-Multiple-Data (SIMD)
extensions, on the other hand, enable the exploitation of
fine-grained SIMD parallelism by vectorizing loops that
perform a single operation on multiple elements in a data
set.  This paper provides a high-level overview of the
automatic parallelization and vectorization methods used
by the Intel® C++/Fortran compiler developed at the
Microcomputer Software Labs.

INTRODUCTION
The Pentium III and Pentium 4 processors are designed to
boost application performance and to provide
performance scalability.  The rich features of the Intel®

microprocessors, such as the streaming SIMD extensions
[9,10], enable compilers to exploit fine-grained
parallelism by vectorizing loops that perform a single
operation on multiple elements in a data set.  The
performance of the majority of scientific, engineering,
and multimedia applications with characteristics such as
inherent parallelism, a data independent control flow,
regular and re-occurring memory access patterns, and
localized re-occurring operations performed on the data
can be improved by taking advantage of the streaming
SIMD extensions.  Dual- and quad-processor systems
based on the 32-bit Intel® architecture provide
opportunities for the compiler to exploit medium-grained
parallelism by generating multithreaded code that uses
multiple control and arithmetic logic units.

In this paper, we present the high-level software
architecture of the automatic parallelization and
vectorization methods used by the Intel C++/Fortran
compiler developed at the Microcomputer Software Labs.

We describe the static and dynamic analysis technologies
implemented to enable the efficient generation of parallel
code.  We follow this with a description of multithreaded
and vector code generation.  A number of optimization
technologies, such as alignment optimizations, advanced
instruction selection, multi-entry threading technique, and
Profile-Guided-Optimization (PGO) of parallel code, are
also presented.  We also discuss the results of experiments
with automatic vectorization and parallelization on
systems based on the Pentium III and Pentium 4
processors.

COMPILER ARCHITECTURE
OVERVIEW
The approach taken by the Intel C++/Fortran compiler to
exploit implicit parallelism in serial code is organized into
three stages: program analysis, program restructuring, and
parallel code generation.

Program Analysis
Program analysis performs a control flow, data flow, and
data dependence analysis [1,3,4,11,12] to provide the
compiler with useful information on where implicit
parallelism in the input program can be exploited.

The data dependence analyzer is organized as a series of
tests, progressively increasing in accuracy as well as time
and space costs.  First, the compiler tries to prove
independence between memory references by means of
simple, inexpensive tests.  If the simple tests fail, more
expensive tests are used.

Eventually, the compiler resorts to solving the data
dependence problem as an integer linear programming
problem that is attacked by the powerful but potentially
expensive Fourier-Motzkin elimination method [7].

Program Restructuring
Program restructuring focuses on converting the input
program into a form that is more amenable to
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parallelization.  For example, if static data dependence
analysis of a program fails to prove independence, then
the Intel C++/Fortran compiler has the ability to generate
dynamic data dependence tests to increase the
opportunities for exploiting implicit parallelism in a
program.  An example of this is given below.

void init(char *p, char *q) {
      int i;
      for (i = 0; i <= 255; i++) p[i] = q[i];
}

Without any further information, the compiler must
conservatively assume that the two pointers could refer to
overlapping regions in memory.  Conversion into multi-
version code, however, yields a fully data-independent
loop in the true branch that can be optimized accordingly.

void init(char *p, char *q) {
   int i;
   if (p+255 < q || p > q+255)
     for (i = 0; i <= 255; i++) p[i] = q[i]; /* dependence free */
   else
     for (i = 0; i <= 255; i++) p[i] = q[i];
}

Other examples of transformations that are done during
program restructuring are traditional compiler
optimizations (such as constant/copy propagation and
constant folding [1,3]), loop transformations (such as loop
interchanging or loop distribution [11,12]), and idiom
recognition (such as the detection of reductions or other
operations).  An example of the latter category is shown
below, where converting an if-statement into a “MAX”-
operator makes the loop more amenable for analysis and,
eventually, parallelization.

for (i = 0; i < N; i++) {                     for (i = 0; i < N; i++) {
    if (a[i] > x)  x = a[i];         ◊             x = MAX(a[i], x);
}                                                       }

Parallel Code Generation
Finally, parallel code generation consists of converting
serial code into semantically equivalent multithreaded
code or SIMD instructions.  Both these conversions are
outlined in the next sections.  An in-depth presentation of
vectorization is given in [5].

AUTOMATIC PARALLELIZATION
Automatic parallelization is a promising technique that
can take advantage of shared-memory multiprocessors
based on the Pentium III and Pentium 4 processors.

These systems can potentially deliver near supercomputer
performance to mainstream computing.  On a
multiprocessor system, however, parallelizing inner loops
usually does not provide sufficient granularity of
parallelism.  Thus, our focus for automatic parallelization
is to exploit medium-grained parallelism to utilize a
multiprocessor effectively.  In this section, we describe
the parallelization methods used by the Intel C++/Fortran
compiler for automatic multithreaded code generation.

Finding Parallel Loops
Finding effective parallelism is one of the critical steps in
generating efficient multithreaded code [6,8,11,12]. Based
on the control flow graph, the data flow graph and the
symbol table, the loop analyzer takes the following steps:

•  Finds all loops within the serial code and builds a
loop hierarchy structure.  It fills up loop parameters
such as trip count, lower bound, upper bound, and
pre-header.

• Performs data dependence analysis to classify loops.
Loops without loop-carried data dependencies are
marked as loops that can be made parallel.

• Performs static or dynamic granularity estimation for
each loop that can be made parallel.  Multithreaded
code for a parallel loop will be generated if and only
if parallelization of the loop is profitable.

An example of the optimization is shown below.

for (k=0; k < 1000; k++) {
       x[k] = k;
       w     = x[k];
       y[k] = w + x[k];
}

Parallel loop detection marks this loop as follows.

parallel for (k=0; k < 1000; k++) {
        private (k, w), shared (x, y)
        x[k] = k;
        w     = x[k];
        y[k] = w + x[k];
}

In this example, the loop is marked as a loop that can be
made parallel, and the variables “k” and “w” are marked
as private.  The arrays “x” and “y” are marked as shared.
In the next section, we discuss variable classification
based on liveness analysis.

Variable Classification
Liveness analysis [1,3] is well known and used in many
optimizations and transformations.  We use liveness
analysis to classify the variables in the lexical extent of a
loop that can be made parallel.

The private, firstprivate, and lastprivate attributes of
variables direct the multithreaded code generator to
implement privatization accordingly.

The shared attribute of a variable tells the multithreaded
code generator to generate code that shares the memory
location of this variable amongst multiple threads.

The following compilation rules are used to classify all
variables referenced in a parallel loop:

1. A variable is marked private if and only if it is not
live-in and not live-out on the current loop.

2. A variable is marked firstprivate if and only if it is
live-in and not live-out on the current loop.
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3. A variable is marked lastprivate if and only if it is
live-out and not live-in on the current loop.

4. A variable is marked shared if and only if it is live-in
and live-out on the current loop.

For the following example, the loop can be made parallel.
Liveness analysis yields var-set = {a, b, c, k, n, x}, live-
in-set = {a, b, c, n}, and live-out-set = {a, c, x}.

int foo(int b, int n, float c[]) {
      int   x = 101, k, a = 10;
      for (k=0, k < n; k++) {
            x = 5;
           c[k] =  x + a – b * k
      }
      return (a + x + c[0]);
}

Using compilation rules 1-4, variables “n” and “b” are
marked firstprivate.  Variables “a” and “c” are marked
shared.  Variable “x” is marked lastprivate.  Variable
“k” is a special form of a private variable: it is an
induction variable.  The data-race condition introduced by
such variables is removed by induction variable
privatization.

Static Granularity Estimation
Parallelizing a loop can result in slower execution if the
overhead of dispatching/scheduling threads and sharing
resources is significant compared to the total workload
performed by the loop.  The Intel C++/Fortran compiler
handles this by examining all the operations in the loop
body, estimating the grain-size per loop iteration on the
targeted microarchitecture, and multiplying this by the
loop trip count to arrive at an estimate of the total
workload of the loop.

For loops with known trip counts, this value is compared,
at compile time, to an experimentally determined
profitable workload threshold to see if the loop should be
multithreaded.  Loops with a workload exceeding this
profitable workload threshold will normally speed up
when executed in parallel threads.  For loops with
unknown trip counts, the workload is expressed as a
function of the trip count, and the compiler generates code
to dynamically evaluate this expression to determine
whether the loop should be executed with multiple
threads.

Note that this solution avoids all dispatching/scheduling
overhead and sharing of resources, if multithreaded
execution is not profitable.

For the following example, the compiler generates an
expression “(upper - lower) * grain-size” to compute the
workload at runtime, based on the lower and upper bound
and estimated grain-size.

       void  foo(int lower, int upper) {
                int i;
                for (i=lower; i<upper; i++) {
                   /* grain-size (in units of ops) */
                }
      }

The granularity estimation has the following form.

      trip_count  = upper - lower;
      workload   =  trip_count * grain-size;

      if (workload > (profit_probability *
                             PROFIT_WORKLOAD_THRESHOLD) {
             /* multithreaded execution of the loop */
      }
      else {
             /* serial execution of the loop */
      }

The profitable workload threshold (expressed in units of
ops) is a global constant applicable to all loops.  The
threshold comparison can be modified with a command
line option that sets the probability of profitable parallel
execution (“profit_probability”).  The workload is then
compared to the experimentally determined profitable
workload threshold multiplied by this probability.  The
value “0.0” causes the loop to be always executed as a
multithreaded loop, whereas the value “1.0” causes
multithreading to be used only if the workload exceeds
the profitable workload threshold.  The user can use any
intermediate value to cause multithreaded execution of
loops with low workloads that may still benefit from
being made parallel.

Profile-Guided Granularity Estimation
Beyond the static granularity estimation, in the PGO
mode of our compiler, we have implemented profile-
guided granularity estimation to evaluate the workload,
based on the execution count of basic blocks and branch
probability.  It is well known that compilers are often able
to generate better code with the knowledge of likely
execution paths.  It is even more important for a
parallelizing compiler to have the knowledge of the most
frequently executed regions in a program, in order to
determine if generating multithreaded code is profitable
or not.  Suppose that for the following code sample, we
have the train data set “lower = 0” and “upper = 100.”
The profiler computes a “branch-taken” probability of
“0.98” on the true branch and “0.02” on the false branch.
The execution count of the loop pre-header (viz “i =
lower”) is “1”, and the execution count of the loop header
is “100.”

       void  foo(int lower, int upper) {
                int i;
                for (i=lower; i<upper; i++) {
                    if (i>lower+1) {
                          /* TRUE-grain-size (in units of ops) */
                   }
                    else {
                           /* FALSE-grain-size (in units of ops) */
                    }
              }
      }

When these gathered execution measurements are fed
back into the second pass of PGO compilation, the
compiler compares “100 * (TRUE-grain-size * 0.98 +
FALSE-grain-size * 0.02)” with the profitable workload
threshold at compile time.  Multithreaded code will not be
generated if the comparison shows that parallelization is
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not profitable.  If, for example, the expression “TRUE-
grain-size” is very small, PGO may avoid the slowdown
introduced by parallelization.

MULTI-ENTRY THREADING
TECHNIQUE
The conventional technology for generating multithreaded
code is to generate an independent subroutine for each
parallel loop.  This is known as the outlining technology
[6].  In contrast to this conventional technology, we
propose a new technology called the mult i -entry
threading technique, which introduces three new concepts
in the control flow graph: T-entry (threaded-entry), T-ret
(threaded-return), and T-region (threaded-code-block).
The ideas behind the new technology are as follows:

•  The T-entry node contains the data environment for
each thread that is necessary to build communication
between the invoker (master thread) and the invokee
(worker thread).

•  The T-ret node informs the multithreaded runtime
system about termination of the thread.

• A T-region is defined by a [T-entry, T-ret] pair and is
kept inlined in the user-defined subroutine.

• Within a single user-defined subroutine, multiple [T-
entry, T-ret] pairs are permitted to represent multiple
T-regions.

•  The [T-entry, T-ret] pairs can be nested (e.g., [T-
entry, [T-entry, T-ret], T-ret]) to represent nested
parallelism.

The main feature of the multi-entry threading technique is
to keep all newly generated T-regions for parallel loops
inlined in the same user-defined subroutine, without
splitting them into independent subroutines.  This
technique provides subsequent compiler phases with more
potential to optimize the code.

The following is an example of multithreaded code
generation using the multi-entry threading technique.

float z[10000], w[10000];
void  foo(void) {
    int k, m, x[5000], y[5000];
    … …
    for (k=0;  k<5000; k++) {
        x[k] = x[k] + y[k] ;
    }
     for (m=0; m<10000; m++) {
        z[m] = z[m] * w[m];
    }
… …
}

There are two parallelizable loops in the subroutine “foo.”
The variables “k” and “m” are marked as private
induction variables; the arrays “x”, “y”, “z”, and “w” are
marked as shared.  The resulting multithreaded code is
illustrated below.  The Intel C++/Fortran compiler has

adopted the KAI* Guide runtime library for thread
creation and management.

float z[10000], w[10000];
void  foo(void)
{    int k, m, x[5000], y[5000];
      … …
     __kmpc_fork_call(loc, 2, T-entry(_foo_ploop_0), x, y)
     goto L1:
     T-entry _foo_ploop_0(loc, tid, x[], y[]) {
         lower_k = 0;
         upper_k = 5000;
        __kmpc_for_static_init(loc, tid, s, &lower_k, &upper_k, …);
        for (par_k=lower_k,  par_k<=upper_k; par_k++)  {
                   x[par_k] = x[par_k] + y[par_k] ;
        }
       __kmpc_for_static_fini(loc, tid);
       T-ret;
    }
L1:
    __kmpc_fork_call(loc, 0, T-entry(_foo_ploop_1));
    goto L2:
    T-entry _foo_ploop_1(loc, tid) {
        lower_m  = 0;
        upper_m = 10000;
        __kmpc_for_static_init(loc, tid, s, &lower_m, &upper_m, …);
        for (par_m=lower_m; par_m<=upper_m; par_m++)  {
             z[par_m] = z[par_m] * w[par_m];
        }
        __kmpc_for_static_fini(loc, tid);
        T-ret;
    }
 L2:
    … …
}

The multithreaded code generator inserts the thread
invocation call “__kmpc_fork_call” with the T-entry
point and data environment (e.g., line number “loc”) for
each loop.  This call into the KAI runtime library will fork
a number of threads that execute the iterations of the loop
in parallel.

The serial loops are converted to multithreaded code by
localizing the loop lower and upper bound, and by
privatizing the induction variable. Finally, multithreading
runtime initialization and synchronization code is
generated for each T-region defined by a [T-entry, T-ret]
pair.  The library call “__kmpc_for_static_init” computes
the localized loop lower bound, upper bound, and stride
for each thread according to a scheduling policy.  The
library call “__kmpc_for_static_fini” informs the runtime
system that the current thread has completed one loop
chunk.

Compared with the existing outlining technology, there
are three advantages to the multi-entry threading
technique for generating efficient multithreaded code:

•  The multi-entry threading technique does not create
separate compilation units for parallel loops, and the
required program transformations are very natural
and simple.  It reduces the complexity of handling
separate routines in the optimizer.

•                                                                         
* Kuck and Associates, Inc., an Intel Corporation.
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•  All generated T-regions for parallel loops are kept
inlined in the same compilation unit.  This minimizes
the impact on other optimizations such as constant
propagation, scalar replacement, loop transformation,
common expression elimination, and interprocedural
optimization.

•  Besides global and file-scope static variables, the
memory location of a local shared static variable can
be accessed naturally by multiple threads without
passing an argument on T-entry, since the generated
multithreaded code is kept inlined in the user-defined
subroutine.

AUTOMATIC VECTORIZATION
The Pentium III and Pentium 4 processors feature a rich
set of SIMD instructions on packed integers and floating-
point numbers that can be used to boost the performance
of loops that perform a single operation on different
elements in a data set.

The Pentium III processor introduced the 128-bit
streaming SIMD extensions [10], supporting floating-
point operations on 4 single-precision floating-point
numbers and some more instructions for the 64-bit integer
MMX™ technology.  The Pentium 4 processor further
extended this support for floating-point operations on two
double-precision floating-point numbers and widened the
integer MMX technology into 128-bit [9].  Because a
single instruction processes multiple data elements in
parallel, all these extensions are very useful to utilize
SIMD parallelism in numerical and multimedia
applications.

The Intel C++/Fortran compiler follows the standard
approach to the vectorization of inner loops [2,11,12].
First, statements in a loop are reordered according to a
topological sort of the acyclic condensation of the data
dependence graph for this loop.  Then, statements
involved in a data dependence cycle are either recognized
as certain idioms that can be vectorized, or distributed out
into a loop that will remain serial.  Finally, vectorizable
loops are translated into SIMD instructions.

Consider as an example the loop shown below.

double a[100], b[100], c[100];  /* assume arrays start at
                                                       16-byte boundaries */
…
for (i = 0; i < 100; i++) {
     a[i] = b[i] - c[i];
}

Since there are no data dependencies in this loop, the Intel
C++/Fortran compiler translates this loop into the
following SIMD instructions for the Pentium 4 processor.
Note that because double elements are eight bytes wide
and the vector loop processes two elements in each
iteration, the upper bound and stride for the offsets into
the arrays are 100x8=800 and 2x8=16, respectively.

SUB:
    movapd   xmm0, b[ecx]        ;   load       2 DP FP numbers

    subpd      xmm0, c[ecx]        ;   subtract 2 DP FP numbers
    movapd   a[ecx], xmm0        ;   store      2 DP FP numbers
    add          ecx, 16
    cmp         ecx, 800
    jl              SUB                      ;  looping logic

For loops with a trip count that cannot be evenly divided
by the vector length, a cleanup loop is used to execute any
remaining iteration serially.  In the PGO mode, a profile-
guided estimation of statically unknown trip counts is
used to determine whether vectorization is actually
worthwhile.

Alignment Optimizations
In the previous example, the aligned data movement
instruction “movapd” can be used because the compiler
has aligned the first elements of the three arrays at a 16-
byte boundary.  For unaligned (or unknown) access
patterns, the compiler must use unaligned data movement
instructions, like “movupd.”  Because there can be a
substantial performance penalty for unaligned data
references, the Intel C++/Fortran compiler has at its
disposal a variety of static and dynamic alignment
optimizations.

In the loop shown below, for instance, the compiler will
statically peel off one iteration to align all access patterns.

double a[100], b[100];   /* 16-byte aligned */
…                                                    a[1] = b[1] - 1;
for (i = 1; i < 100; i++) {                 for (i = 2; i < 100; i++) {
   a[i] = b[i] – 1;                   ◊              a[i] = b[i] – 1;
}                                                      }

For cases where the alignment of data structures cannot
be determined at compile time, the compiler uses a
dynamic loop peeling alignment strategy in which, at
runtime, first a few iterations are executed serially until
one or several access patterns become 16-byte aligned.

Consider, for instance, a simple initialization loop.

char *p = …;
…
for (i = 0; i < 100; i++)  p[i] = 0;

Without any further points-to information for “p”, the
compiler would have to conservatively assume that the
access pattern is unaligned.  Dynamically peeling off
some iterations based on the starting address of the array,
can, nevertheless, enforce aligned references.

peel = p & 0x0f;
if (peel != 0) {
    peel = 16 - peel;
    for (i = 0; i < peel; i++) p[i] = 0;
}
/* aligned access pattern */
for (i = peel; i < 100; i++) p[i] = 0;

Reductions
Although reductions give rise to data dependence cycles,
such idioms can be translated into SIMD instructions that
compute partial results in parallel.  Consider, for example,
the accumulation that occurs in the DDOT kernel.



Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 6

double d = 0.0;
for (i = 0; i < N; i++) {
     d += a[i] * b[i];
}

This reduction can be implemented as follows.  Note that
in this fragment, the size of double elements is accounted
for in the effective address computations.  As stated
before, serial cleanup code is generated after the vector
loop to deal with odd values of N.

        xorpd         xmm1, xmm1          ;   reset accumulator
DDOT:
        movapd     xmm0, a[ecx*8]        ;  load,
        mulpd        xmm0, b[ecx*8]       ;    multiply,
        addpd        xmm1, xmm0           ;      and accumulate
        add            ecx, 2                        ;       2 DP FP numbers
        cmp           ecx, N
        jl               DDOT                       ;  looping logic

        movapd     xmm0, xmm1          ;   postlude:
        unpckhpd  xmm0, xmm1          ;    add 2 partial
        addpd        xmm1, xmm0          ;       results into
        movsd       [esp], xmm1            ;              scalar d

Other reductions (based on any of the operators “+”, “-”,
“*”, “&”, “|”,  “MIN” or “MAX”) are handled similarly.

Short Vector Mathematical Library
The Intel C++/Fortran compiler comes with a Short
Vector Mathematical Library (SVML), developed at
Intel® Nizhny Novgorad Labs in Russia (INNL), that
provides efficient software implementations for
computing (inverse) trigonometric, (inverse) hyperbolic,
exponential, and logarithmic functions on (sub)arrays.
This library provides a clean interface to operate on
packed floating-point numbers.

The library allows the vectorization of loops that contain
any of these mathematical functions.  Consider, for
example, the following loop.

for (i = 0; i < 100; i++) {
      a[i] = sin(b[i]) + c[i];
}

Using the SVML allows the compiler to proceed with
vectorization of this loop as follows (an implementation
that passes arguments and results in the xmm-registers is
planned as well).

SIN:
        lea            ecx, b[esi]
        lea            eax, [esp+16]
        mov          [esp], ecx                  ;   define input address
        mov          [esp+4], eax              ;   define output address
        call           _vmldSin2                ;    call SVML
        movapd    xmm0, [esp+16]       ;    read result
        addpd       xmm0, c[esi]
        movapd    a[esi], xmm0
        add           esi, 16
        cmp          esi, 800
        jl              SIN                            ;   looping logic

Advanced Instruction Selection
Advanced instruction selection is used to vectorize certain
frequently occurring operations that can be efficiently
mapped onto the SIMD instructions of the Intel

architecture.  Consider, for example, the following loop
(the suffix letter “u” denotes an unsigned constant).

unsigned char x[256];
…
for (i = 0; i < 256; i++)
      x[i] = (x[i] >= 20u) ? x[i] - 20u : 0u;
}

The Intel C++/Fortran compiler recognizes the saturation
arithmetic done in this code fragment (if the result of the
subtraction would be negative, the result is saturated to
zero) and converts the serial loop into the following
SIMD instructions that operate on 16 unsigned characters
in each iteration.

        movdqa    xmm0, CONVEC  ;   load <20u,….,20u>
SAT:
        movdqa    xmm1, x[eax]
        psubusb    xmm1, xmm0        ;   perform  16 saturated
        movdqa    x[eax], xmm1        ;        subtractions
        add           eax, 16
        cmp          eax, 256
        jl              SAT                       ;   looping logic

The compiler also carefully selects the instructions that
are used to implement scalar expansions, certain type
conversions, and non-unit stride references. In addition,
the use of bit-masks supports the vectorization of singly
nested conditional statements.

For a detailed presentation of all the vectorization
methods used by the Intel C++/Fortran compiler, we must
refer to [5].

EXPERIMENTAL RESULTS
In this section, we discuss the results of some experiments
with automatic vectorization and parallelization.
Consider, for instance, the following code that computes
the product of a double-precision floating-point matrix
and vector.

for (i = 0; i < n; i++) {
   double d = 0.0;
   for (j = 0; j < n; j++) {
       d += a[i][j] * y[j];
   }
   x[i] = d;
 }

In the graph shown in Figure 1, we present the speedup
(uniprocessor vs. multiprocessor execution time) obtained
by automatic parallelization of the outermost loop in this
kernel on a dual 500MHz. Pentium III processor for
varying matrix orders. In the same figure, we also show
the speedup of serial vs. parallel execution obtained on a
quad 550MHz. Pentium III processor.  Speedups up to 3.2
and 1.6 are obtained for the quad and dual system,
respectively.
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Figure 1: Speedup for matrix x vector on a dual and
quad Pentium® III processor

As another example of automatic parallelization, consider
LU-factorization without pivoting.

  for (k = 0; k < n-1; k++) {
     for (i = k+1; i < n; i++) {
          a[i][k] = a[i][k] / a[k][k];
          for (j = k+1; j < n; j++)
               a[i][j] = a[i][j] - a[i][k] * a[k][j];
     }
  }

In this fragment, loop-carried data dependencies prohibit
parallelization of the outermost k-loop.  The iterations of
the i-loop, on the other hand, can be executed in parallel.
In Figure 2, we show the corresponding speedup on a dual
and quad shared-memory multiprocessor for varying
matrix orders. Despite the fact that the outermost loop has
to remain serial, speedups up to 1.3 and 2.6, respectively,
are still obtained.
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Figure 2: Speedup for LU-factorization on a dual and
quad Pentium® III processor

In Figure 3, we show the speedup (serial vs. vector
execution time) obtained on a 1.5GHz. Pentium 4
processor by automatic vectorization of a single-precision
dot-product kernel (SDOT) and a double-precision dot-
product kernel (DDOT) for array lengths ranging from 1
to 64K. For comparison, we also present the speedup
obtained by a hand-coded assembly version of the latter
kernel (ASM, courtesy Henry Ou).  Execution times were
obtained by running the kernel many times and dividing
the total execution time accordingly, so that for data sizes

that fit in the 256KB L1 cache, effectively “warm cache
behavior” is measured.
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Figure 3: Speedup for dot-product on a Pentium® 4
processor

The performance of the SDOT and DDOT kernels
observed after automatic vectorization (counting one
floating-point addition and multiplication per iteration)
exceeded 3.3 GFLOPS and 1.8 GFLOPS, respectively.

Automatic vectorization of a LINPACK benchmark
(available at   http://www.netlib.org.benchmark/  ) boosted
the performance of solving a system of linear equations
defined by a 100x100 double-precision matrix on a
1.5GHz. Pentium 4 processor from 582 MFLOPS to 700
MFLOPS.

In the last graph shown in Figure 4, we show the speedup
obtained on a 1.5GHz. Pentium 4 processor by automatic
vectorization of kernels of the form “x[i] = F(y[i])”.  The
experiments are done for three different double-precision
floating-point functions, supported by SVML, and array
lengths varying from 1 to 256, with input sets consisting
of uniformly distributed values in the range 0 through
2*_.
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Figure 4: Speedup for math functions on a Pentium®
4 processor

DISCUSSION
The experiments reveal that the automatic detection of
implicit parallelism in serial software can provide a very
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portable way of effectively exploiting SIMD instructions
or multiple CPUs on systems that are based on the
Pentium III and Pentium 4 processors.  Automatic
parallelization of the outermost loop in the matrix times
vector product starts to speed up for matrices with an
order that exceeds 32 on both the dual and quad
multiprocessor with an efficiency (Speedup / #processors
x 100%) going up to over 80% for larger matrices.
Likewise, automatic parallelization of the second
outermost loop in an implementation of LU factorization,
without pivoting, yields efficiencies of over 60%.

Automatic vectorization of the DDOT kernel yields
speedup comparable to the speedup obtained by a hand-
optimized assembly implementation.  Combining
vectorization with efficient software implementations of
frequently used mathematical functions already exhibits
speedup for arrays with a length of only 2.  Another clear
advantage of having a vector implementation of
mathematical functions is that vectorization of a loop does
not have to bail out in the presence of such function calls.

CONCLUSION
Explicitly exploiting parallelism in a program can be a
cumbersome and error-prone task.  It may require the use
of inline assembly to generate the appropriate SIMD
instructions or the use of a complicated threading library
to take advantage of the computing power available on a
multiprocessor.  Although such explicit techniques can be
extremely effective, they are not portable and greatly
complicate program development and maintenance.  An
alternative approach is to let a compiler do (at least part
of) the exploitation of fine- and medium-grained
parallelism automatically.  With this approach, the
compiler analyzes a program that is written in a sequential
language for implicit opportunities to exploit parallelism,
and it generates code that takes advantage of this implicit
parallelism.

In this paper, we provided a high-level overview of the
automatic parallelization and vectorization methods used
by the Intel C++/Fortran compiler developed at the
Microcomputer Software Labs.  We have shown that
these methods can obtain good speedup on systems based
on the Pentium III and Pentium 4 processors, without the
need for any source code modifications.  Hence,
automatically exploiting implicit parallelism provides a
convenient way for programmers who are not familiar
with the Intel architecture to boost the performance of
their applications.  In addition, it may even assist expert
programmers by minimizing the number of loops that
have to be hand optimized to exploit all available
parallelism.  Finally, the approach allows the automatic
parallelization and vectorization of existing serial
software, thereby avoiding the potentially huge
investments that would be required to hand optimize this
code.

More information on Intel’s high-performance compilers
can be found at

http://developer.intel.com/software/products/  
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ABSTRACT

The quest for the balanced PC platform has been with us
since the advent of the Personal Computer (PC) in 1982.
The basic PC has been dramatically successful, such that
a 200-fold increase in computing power has been
required.  At the same time, the platform has had to
improve its capabilities to support these uses, and provide
growth for new applications.  To restore balance in the
platform, processor buses, memory interfaces, and
advanced platform capabilities must keep pace with, and
even lead, advancements in the processor.  This paper
describes the technological advances made in the
development of the first platform for the Intel® Pentium®

4 processor.  After a brief look at PC platform partitioning
through the years, the platform partitioning developed for
the first Pentium 4 processor platform is discussed,
beginning with an understanding of the performance of
the processor, and how that is dependent on aspects of the
platform.  We then present two primary platform
improvements for the high-performance PC platform: the
400MHz system bus and the Intel® 850 Memory
Controller Hub.  After providing an understanding of
these platform advancements, we show how these two
improvements together complement the Pentium 4
processor computational capabilities by concentrating on
results obtained in the standard SPEC CPU20001 and
STREAM2 benchmarks.  This combines the high-speed
processing of the Intel Pentium 4 processor with platform
improvements to provide a dramatic increase in overall
performance.

                                                                        
1The next-generation industry-standardized CPU-
intensive benchmark suite. SPEC designed CPU2000 to
provide a comparative measure of compute-intensive
performance across the widest practical range of
hardware.
2A simple synthetic benchmark that measures sustainable
memory bandwidth and the corresponding computation
rate for simple vector kernels.

INTRODUCTION
With the first IBM Personal Computer (PC) in 1982, the
basic platform architecture of today’s PC platform was
established.  Improvements to this platform were
necessitated by improvements to the microprocessor, as
dictated by Moore’s Law.  While some of these
improvements were small, others were major, moving
also at the pace of Moore’s Law.  In this paper, we first
describe the substantial platform changes that allow us
today to support the latest Intel Pentium 4 processor.

In order to understand the impact of these improvements
on the Pentium 4 processor platforms, we need to see how
these improvements impact the performance of the
applications.  Previous discussions of the performance of
the Pentium 4 processor have described the processor
performance as the product of two values, frequency and
Instructions Per Clock (IPC).  While the increase in
frequency is strictly due to advances in microarchitecture
and an improved silicon process, the IPC value has a
strong platform-level component as well.

In this paper, we highlight two platform advances in the
Pentium 4 processor.  First, the 400MHz system bus of
the Pentium 4 processor, responsible for all data into and
out of the processor, is discussed.  This high-bandwidth
connection provides the necessary throughput for today’s
performance applications, with headroom for new
applications in the coming years.  Second, the system bus
advanced protocol is discussed.  This improved
parallelism is best shown by a careful examination of the
82850 Memory Controller Hub.  The 82850 is responsible
for balancing the bandwidth demands of graphics, I/O,
and the processor with two channels of Direct RDRAM.

An obvious question at this point is whether these
platform improvements are necessary. We present case
studies to show that these platform improvements add to
bottom-line performance.  This is represented graphically
to show how the platform’s failure to meet the peak
bandwidth demand of the application impacts the overall
performance of the microprocessor.  For many
applications, even average bandwidths can show that the
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high-performance aspects of the platform of the Pentium
4 processor are required.  Finally, we carefully examine
the STREAM benchmark, which combines the high-
performance computational capabilities with the high
bandwidth supplied by the platform of Intel’s Pentium 4
processor.

THE ARCHITECTURE OF THE FIRST
PERSONAL COMPUTERS
In 1982, the first IBM Personal Computer (PC) was
introduced.  This relatively simple design has held steady
for all PC platforms since then.  The processor was the
Intel® 8088, running at a clock rate of about 5MHz and
providing a processor bus connection of about 1.2
megabytes/second.  Figure 1 shows a simplified block
diagram of the early IBM PC.  Moreover, it should be
noted that all bandwidth in the system was routed through
this processor bus.  The bandwidth of this bus provided a
ceiling for all the graphics and the I/O in the system.

Contrast this to the 1995 version of the PC architecture,
which shows how much the platform architecture changed
in just five years.  The processor bus had improved 500-
fold to over 500 megabytes/second.  Moreover, a major
platform improvement was made with the addition of the
Advanced Graphics Port (AGP) interface.  This
repartitioning of the platform removed the graphics
bandwidth from the I/O interface.  This greatly improved
the platform capabilities, but complicated the function of
the chipset, the 82440BX.

The 2000 PC block diagram shows the platform of the
Pentium 4 processor.  As you can see, there have been the
usual improvements to the interfaces, but a continued
repartitioning of the platform.  This repartitioning
represents a continued improvement in the platform, as a
result of advanced speeds and feeds.  The growth
requirements of the platform are shown in Table 1.  We
explore the reasons for these platform changes and how
they contribute to improved platform performance.
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Platform
Interface

1982 1995 2000

Processor
Bus
Bandwidth

1.2 MB/s 533 MB/s 3200 MB/s

Graphics
Bandwidth

N/A 533 MB/s 1066 MB/s

I/O
Connection

N/A 133 MB/s 533 MB/s

I/O Bus 1.2 MB/s Same as I/O
Connection

133 MB/s

Table 1: Bandwidth increases over time

How the Platform Contributes to
Performance
Before looking at results, let us take a look at the
theoretical basis for the impact of the platform on
performance.  Fundamentally, the time to run an
application is

Execution Time = Instructions * CPI/Frequency

Where:

Execution Time = application run time
Instructions = number of instructions
CPI = clocks per instruction
Frequency = CPU core frequency

CPI varies with the application, cache hierarchy, and I/O
use.  It can be further defined as

i
i

ibase CPCPICPI +=

Req 1 Req 2 Req 3

Data 3Data 2Data 1

Req 3Req 2Req 1

Data 3Data 2Data 1

Req 3Req 2Req 1

Data 1 Data 2 Data 3

Clocks per access = 2, no pipelining

Pipelining, but with bandwidth limited data
return, Clocks per access = 3

Clocks per access = 2, with pipelining

Figure 2: System bus impacts to clocks per access



Intel Technology Journal Q1, 2001

A Discussion of PC Platform Balance: the Intel® Pentium® 4 Processor-Based Platform Solutions 4

CPIbase is a figure of merit for the application and the core
processor microarchitecture.  Pi is the probability of event
i occurring which has an additional latency in clocks of
Ci.  Ci values may be very large; for example, if the core
clock is 1GHz and the average memory access is 100 ns,
Ci is 100 clocks.  Unfortunately, Ci for a fixed latency
device varies with frequency (doubling our core
frequency in the example above also doubles our Ci to
200 clocks).  Ci can also be dependent on system state, the
ability of the platform to support pipelining, and the
queuing impact due to demanded bandwidth mismatches.
Examples of these Ci cases are shown in Figure 2.

The examples presented in Figure 2 clearly lead us to the
following conclusions, as we want to scale to high
frequencies in the processor.

• The connection to the processor must be highly
pipelined to improve bus efficiency and avoid
queuing requests.

•  The bandwidth to the processor must closely
match the request rate to queuing responses.

HIGH-PERFORMANCE INTERFACE TO
THE PROCESSOR
The STREAM  benchmark, along with various SPEC
benchmarks, is used to show how the platform impacts
the overall performance of the system.

The STREAM benchmark is a simple synthetic benchmark
that measures sustainable memory bandwidth and the
corresponding computation rate for simple vector kernels.
It represents a balance between memory bandwidth and
floating-point operations.  While the benchmark is
artificial, it is similar to a number of applications of
interest.  Applications with streaming data, such as video
editing, format conversion of audio and video, and
encryption primitives all have behaviors common to those
of the STREAM benchmark.

PLATFORM IMPROVEMENTS TO KEEP
PACE WITH PROCESSOR
As processor clock speeds continue to grow
exponentially, the system memory bandwidth required
keeping these processors busy doing useful work grows as
well.  Ideally, when CPU frequency is doubled,
application execution time should be halved.  On a given
processor architecture with a fixed cache size and caching
strategy, the instantaneous system memory bandwidths
would double, since the execution engine would still
require access to all of the same pieces of memory data.
It would, however, require access to them in half of the
time required by the slower processor.
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System memory application bandwidth vs. application
execution time is plotted in Figure 3.  The yellow area of
the graph indicates the memory bandwidth demanded
over time of the applications.  If bandwidth is
unconstrained, the processor will request memory twice
as fast and obtain twice the bandwidth, and scale
perfectly.  In other words, it completes the application in
one-half the time.  However, let us assume that the
memory bandwidth is constrained as indicated by the dark
blue band.  The increased memory demand can only be
met by an increase in the execution time, as shown in the
shaded area.  Due to the limited memory bandwidth, the
processor that is twice as fast yields less than the 2x
speedup due to the finite memory bandwidth.  During this
process, the area under the bandwidth profile remains
constant.  Since the application requires its data more
quickly, the bandwidth required to satisfy processor
requests increases.

It is important to note that this demand profile for
memory bandwidth is application specific.  Many
applications demand memory resources at a fairly low
rate, and the platform can accommodate the processor
speedup without degradation.  Examples of applications
that do not demand high bandwidths include word
processing and presentation software, such as those
components of the SYSmark 20003 benchmark.

Systems whose memory and bus implementations limit
the amount of bandwidth available to the system
execution engines decrease the ability of applications to
scale with processor frequency increases.  A memory
                                                                        
3 An application-based benchmark that reflects today’s
leading-edge software applications for Internet Content
Creation and Office Productivity.  SYSmark is a
registered trademark of The Business Applications
Performance Corporation.
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subsystem implemented with a 64-bit PC133 SDRAM or
with a 133MHz Pentium  III processor bus would limit
the ability of the above example application to scale
linearly with processor frequency.  Such memory systems
and processor buses can ideally deliver only 1.066GB/sec.
As a result of this “ceiling”, the CPU is forced to wait for
some of the pieces of data that it requires during the time
the bandwidth limit is exceeded, as indicated by the
shaded areas in Figure 3.  While the processor is waiting,
it is doing no useful work and is not contributing to
increased application speed.

In order to analyze the effects on the system of limited
and expanded bandwidth, measurements were taken on a
system with a Pentium III processor running different
components of the SPEC CPU benchmark suite.  As one
might expect, there was wide variation in the amount and
profile of memory bandwidth required by the discrete
benchmark components.  However, the benchmarks could
basically be divided into two categories: benchmarks that
were already bandwidth limited or nearly bandwidth
limited and benchmark components that required very
little bandwidth and would scale well even without the
bus and system enhancements brought by the Pentium 4
processor, the Intel850, and RDRAM memory.

The first class of benchmarks, those with low-bandwidth
requirements in the Pentium III processor generation,
included a number of the integer benchmarks, such as the
197.parser and the 168.wupwise.  Their execution profiles
on a 1GHz platform with a Pentium III processor, using an
Intel840 chipset, showed fairly low system bandwidth
consumption.  The bandwidth results for the 197.parser
are illustrated Figure 4.  Note that Figure 4 illustrates the
average bandwidth consumption in a 1-second slice using
a solid dot, while the high- and low-bandwidth limits
during that same slice are shown with a gray line.

The bandwidth profile for the 197.parser demonstrates a
fairly consistent average bandwidth requirement of
around 250MB/sec, over the duration of the benchmark
execution time.  During this time, the peak data
requirements stay below 500MB/sec.  As a result,
memory and processor bus implementations that limit
processor data to around 1GB/sec should not limit even a
2GHz execution engine.

The other class of applications found in the SPEC CPU
benchmark suite are those that are clearly bandwidth
limited on the Pentium III processor platforms.  Floating-
point applications such as the 179.art, the 171.swim, and
the 172.mgrid illustrate the problem most vividly,
although integer applications such as the 181.mcf also

Bandwidth Profile for 197.parser
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demonstrate serious bandwidth “hunger.”  Figure 5
illustrates the bandwidth profile for the 171.swim.

The graph clearly illustrates the bandwidth limitation of
the existing Pentium III processor bus, since its average
processor bus utilization is around 800MB/sec or 80% of
the ideal processor bus bandwidth.  If processor frequency
scaling is to return benefits on this application, the bus
and memory system bandwidth capabilities must clearly
be increased.  Existing structures do not support
application runtime scaling, and applications such as the
171.swim executing on Pentium III processor platforms
clearly fall into the class of being “bandwidth-limited.”

Given vectors a, b and c, and scalar q, the STREAM
benchmark measures the memory bandwidths for the
following operations.

Function Vector Operations
Copy ba =
Scale ba q=
Sum cba +=
Triad cba += q

The sizes of the arrays are set much larger than processor
cache sizes to guarantee memory is exercised.  By
performing both floating-point and bus operations,
platform balance can be assessed.  STREAM operations

are typical for a number of new application classes, where
streaming data are required to be delivered to the
processor, computed, and delivered to a peripheral at high
speed.  This new workload is required in such things as
speech recognition, video editing, and Internet servers
with streaming datatypes.

Bandwidth Profile for 171.swim
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PLATFORM IMPROVEMENTS DELIVER
PERFORMANCE
As we have seen in the previous analysis of benchmarks,
it is clear that system bus bandwidth is a limiter for the
performance of the platform when high bandwidth is
required by the application.  This was foremost in the
minds of the designers of the Intel Pentium 4 processor
when developing the system bus.  The system bus used in
the Pentium 4 processor delivers unprecedented
bandwidth for the PC platform, as can be seen in Figure 6.
In addition, the system bus protocol has been improved to
allow more deeply pipelined operations, memory
prefetching, and glueless multiprocessing.
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The elevated execution speed and processor bus transfer
rate of the Pentium 4 processor offer the opportunity for
greatly enhanced application performance.  This is
illustrated by its performance on some benchmarks.  To
reiterate, one class of benchmarks would see reduced
execution time solely because of processor frequency
increases.  On the other hand, different benchmarks might
have found their achievable performance limited by the
bandwidth on the processor bus without the advantage of
the enhanced bus speed of the Pentium 4 processor.  The
first class of applications is typified by the 197.parser
component of SpecINT, whose average and extreme
bandwidths on a 1.4GHz Pentium 4 processor are plotted
in Figure 7.
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Note that the bandwidth required by the 197.parser
increases dramatically from the Pentium III to the Pentium
4 processor.  Where the average bandwidth of the
Pentium III processor hovered around 300MB/sec, the
bandwidth of the Pentium 4 processor requires around
400MB/sec during its reduced execution time.

Applications that were limited by the Pentium I I I
processor bus experience the greatest speedup.   171.swim
was shown in Figure 5 to be demanding memory
bandwidth nearly equal to that of the Pentium III
processor bus bandwidth.  The corresponding results on a
Pentium 4 system are shown in Figure 8.  The bandwidth
demanded by the Pentium 4 processor is nearly doubled
over that of the Pentium® II processor.  Since the Pentium
4 processor platform is able to satisfy the higher demand,
the execution time of 171.swim is greatly reduced.

Note that systems with Pentium III processors simply did
not support this high-bandwidth rate.  Their maximum
theoretical data transfer rate peaked at 1066MB/sec on a
133MHz bus.
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The analysis of the STREAM results is similar, but
presented in a different format.  Figure 9 shows that 80%
of the memory requests are delivered at a 3.2GB/sec data
rate.  Recall too that this must be matched by the floating-
point processing capability of the processor to sustain this
level of performance.  The high-performance floating -
point unit of the Pentium 4 processor more than matches
the computation task.  As was the case with the SPEC
trace results, any platform incapable of supporting the
requested memory bandwidth of STREAM  will have
lower benchmark results.  It should also be noted that
STREAM analysis shows the parallelism of the Pentium 4
processor system bus, since the average number of
outstanding memory requests over the duration of the
benchmark is almost six, indicating that the 82850
memory controller is simultaneously processing that
number of memory requests at all times.  Figure 10 shows
the STREAM results for the Pentium III processor at 1GHz
and the Pentium 4 processor at 1.5GHz, demonstrating the
advantages of both the high-performance execution
engine of the Pentium 4 processor and the platform
improvements of the system bus and memory controller.

It should be noted that this methodology is independent of
the memory technology.  The two technologies presented
here, SDRAM or PC133 and RDRAM merely represent
two different technologies that are able to provide
different memory bandwidths.  This analysis could
equally well be applied to different memory technologies,
such as DDR SDRAM.

Should the memory demand of the application be unmet
by the platform, the microarchitecture of the Pentium 4

processor can still compensate to some degree.
Prefetching of memory requests allows the memory
controller to more efficiently serve the requests.  The
high-performance pipeline of the Pentium 4 processor
allows much higher processor frequencies to improve
performance as the processor frequency increases.

CONCLUSION
It is not sufficient merely for the microprocessor to
advance down its Moore’s Law trajectory.  In this paper,
we have discussed the need for the platform components
to move in concert with the microprocessors’
technological advances.  While there have been
significant improvements in platform capabilities over
time, the platform of the Intel Pentium 4 processor
provides a significant leap forward for current platform
capabilities.  It is important to understand that it is the
responsibility of the platform to meet the processor’s
demand for memory bandwidth with an appropriate
supply.  The system bus of the Pentium 4 processor
provides a high-bandwidth channel for this brokerage
function of the platform.

For the large body of existing applications, memory
bandwidth demanded by the application is relatively low,
so performance improvements can be realized with
processor scaling alone.  However, new applications and
benchmarks require that the platform capabilities meet
higher requirements to deliver performance.  The Pentium
4 processor with its high-performance microarchitecture
is capable of generating high demands for memory
bandwidth, should the application require it.  To fulfill
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this demand, the platform components, primarily the
system bus and memory connection, have been
dramatically improved to supply this demand.
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