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With the close of the year 1999, it is appropriate that we look forward to Intel's next generation architecture--the Intel 
Architecture (IA)-64. The IA-64 represents a significant shift for Intel architecture: it moves from 32-bits to 64-bits. 
Targeted for production in mid-2000, the Itanium™ processor will be the first IA-64 processor. One of Intel's key aims 
is to facilitate a transition of this magnitude. To this end, Intel and key industry suppliers are working to ensure that a 
complete set of "ingredients" is available for the IA-64 architecture. This includes operating systems, compilers, and 
application development tools that are "64-bit capable." In this issue of the Intel Technology Journal, you will learn 
about Intel's efforts in IA-64 software technology.  
 
In the first papers, Intel's own IA-64 compiler efforts are discussed. The first paper gives an overview of Intel's 
production compiler, code named "Electron." We then move to the second and third papers where software 
development tools for the IA-64 architecture are discussed. As is often the case with a brand new architecture, 
software companies start developing software in advance of actual hardware. SoftSDV (a software-based system 
development vehicle) is a tool that simulates IA-64 hardware platforms in lieu of actually having the hardware. This 
tool assists engineers in porting commercial operating systems and applications to the IA-64. Intel's IA-64 Assembler 
is described in the fourth paper. The Assembler can simplify IA-64 assembly language programming.  
 
Validation is a critical function in the testing of new circuits such as those on IA-64 silicon. The fourth paper describes 
the porting of the Linux* and Mach* operating systems and how they run on software simulators to exercise operating 
system related functionality in the IA-64 architecture.  
 
The final two papers discuss the floating-point functions on the IA-64 architecture. Fast and accurate computation of 
transcendental functions (e.g. sin, cos, and exp) and the implementation of floating-point operations are also discussed. 
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In this Q4, 1999 issue of the Intel Technology 
Journal, we look at some of the software 
efforts that have gone into bringing out the 
new IA-64 architecture. Early in the 
development of the IA-64 architecture, we set 
very aggressive goals for the software 
compilers, floating point performance, and 
simulation environment.  

Over the years, the compiler has become a 
very important factor in contributing to the 
utilization of a processor's architecture. The 
Intel IA-64 compiler, code named Electron, 
was considered part of the IA-64 architecture. 
We had compiler architects working side by 
side with CPU architects. This was very 
important since the IA-64 is a new 
architecture that exploits many new concepts, 
and the microarchitecture depends on the 
compiler to manage many of the resource 
dependencies. Not only has this compiler 
served to bring up many of the initial 
operating systems and applications, it has 
also served to help other third party compiler 
vendors to understand how to generate code 
for this new architecture. The compiler has 
met the challenge of pushing the boundaries 
and of achieving our initial architecture 
goals.  

Being a new architecture, the IA-64 
architecture provided Intel with the 
opportunity to take another look at the 
floating point on the IA-64 architecture. We 
set a goal of making it faster, making it fully 
IEEE compliant, and of achieving a near 0.5 
units in the last place of precision for the 

transcendental functions libraries. The width 
of the architecture allowed us to take another 
look at the traditional algorithms. Since 
divide and square root are executed in 
software in the Itanium™ processor 
implementation of the IA-64 architecture, we 
have also formally proven the algorithms 
used.  

Perhaps the biggest challenge was to 
simultaneously bring up and debug a new 
architecture, new chipsets, new compilers, 
and new versions of the operating systems. 
To do this, we set our sights on building a 
full system-level simulator that functionally 
behaved faithfully at the register and I/O 
ports levels as the first platforms were being 
built. Additionally, we wanted to be able to 
add performance simulators for the CPU, 
caches, and chipsets. The software simulator 
became known as the SoftSDV. It met its 
requirements to be functionally equivalent to 
the first software development vehicles 
manufactured for use by the ISVs and OS 
venders. Well before first silicon was 
available for the Itanium processor, we were 
running the firmware, all the major operating 
systems, and many major applications on the 
SoftSDV. This served its purpose very well, 
as we were able to run the same binaries on 
the real SDVs, using new silicon, within 
hours of their availability from Intel's 
manufacturing fabs.  

With this issue of the Intel Technology 
Journal, we hope you will get a better insight 
into the software behind Intel's new 64-bit 
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architecture and gain an appreciation of the 
outstanding efforts of the many people on the 
software teams that contributed to the IA-64 
software technologies. 
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ABSTRACT

The IA-64 architecture is designed with a unique
combination of rich features so that it overcomes the
limitations of traditional architectures and provides
performance scalability for the future.  The IA-64 features
expose new opportunities for the compiler to optimize
applications.  We have incorporated into the Intel IA-64
compiler the key technology necessary to exploit these
new optimization opportunities and to boost the
performance of applications on the IA-64 hardware.  In
this paper, we provide an overview of the Intel IA-64
compiler, discuss and illustrate several optimization
techniques, and explain how these optimizations help
harness the power of IA-64 for higher application
performance.

INTRODUCTION
The IA-64 architecture has a rich set of features including
control and data speculation, predication, large register
files, and an advanced branch architecture
[7, 13].  These features allow the compiler to optimize
applications in new ways.  To this end, the Intel IA-64
compiler incorporates the key technology necessary to
exploit new optimization opportunities and to boost the
performance of applications on IA-64 systems.

The Intel IA-64 compiler targets three main goals while
compiling an application: i) to minimize the overhead of
memory accesses, ii) to minimize the overhead of
branches, and iii) to maximize instruction-level parallelism.
The compilation techniques in the compiler take
advantage of the IA-64 architectural features that are

expressly designed to alleviate these very overheads.  For
instance, memory operations are eliminated by effectively
using the large register file.  Optimizations use rotating
registers to reduce the overhead of software register
renaming in loops.  Predication is used in many situations,
such as removing hard-to-predict branches and
implementing an efficient prefetching policy.  The compiler
uses control and data speculation to eliminate redundant
loads, stores, and computations.

In the first section of this paper, we present the high-level
software architecture of the Intel IA-64 compiler.  We then
describe profile-guided and interprocedural optimizations,
respectively.  Memory disambiguation, a key analysis
technique that enables several optimizations, is then
discussed.  We follow this with a description of memory
optimizations.  The design provisions for supporting
parallelism at both coarse and fine granularity are
discussed next followed by a section on scalar
optimizations, which are aimed at eliminating redundant
computations and expressions.  Finally, we briefly
describe code generation and scheduling techniques in
the compiler.

THE ARCHITECTURE OF THE INTEL
IA-64 COMPILER
The software architecture of the Intel IA-64 compiler is
shown in Figure 1.  The compiler incorporates i) state-of-
the-art optimization techniques known in the compiler
community, ii) optimization techniques that are extended
to include the resources and features in the IA-64, and iii)
new optimization techniques designed to fully leverage
the IA-64 features for higher application performance.
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Many of these techniques are described in subsequent
sections of this paper.

The compiler has a common intermediate representation
for C*, C++*, and FORTRAN90*, so that a majority of the
optimization techniques are applicable irrespective of the
source language (although certain optimization techniques
take advantage of the special aspects of the source
language).

Information about the program execution behavior, profile
information, can be very useful in optimizing programs.
The components in the Intel IA-64 compiler are designed
to be aware of profile information [22], so that the
compiler can select and tune optimizations for the target
application when run-time profile information is available.
Interprocedural analysis and optimization [16] have
proven to be effective in optimizing applications by
exposing opportunities across procedure call boundaries.

The optimizations in the Intel IA-64 compiler can be
grouped into high-level optimizations including memory
optimization, and parallelization and vectorization; scalar
optimizations; and scheduling and code generation,
which together achieve the three optimization goals
mentioned in the introduction.

These high-level optimizations include loop-based and
region-based control and data transformations to i)
improve memory access locality, ii) expose coarse grain
parallelism, iii) vectorize, and iv) expose higher instruction-
level parallelism.  The high-level optimization techniques
are typically applied to program structures at a higher level
of abstraction than those in many other optimizations.
Therefore, the Intel IA-64 compiler elevates the common
intermediate language while applying high-level
optimizations, and it represents loop structures and array
subscripts explicitly.  This facilitates efficient access and
update of program structures.

Some of the high-level optimizations in the Intel IA-64
compiler are linear loop transformations [17, 18], loop
fusion, loop tiling, and loop distribution [16], which can
improve the cache locality of array references.  Loop
unroll and jam [14] and loop unrolling exploit the large
register file to eliminate redundant references to array
elements and to expose more parallelism to the scheduler
and code generator.  Scalar replacement of memory
references [14, 15] is a technique to replace memory
references by compiler-generated temporary scalar
variables, which are eventually mapped to registers.
Finally, the compiler also inserts the appropriate type of
prefetches [7, 19, 20] for data references so as to overlap
the memory access latency with computation.  These
transformations are described in detail in later sections of
this paper.

A primary objective of scalar optimizations is to minimize
the number of computations and the number of references
to memory.  Scalar optimizations achieve this objective by
a natural extension to a well known optimization, called
partial redundancy elimination (PRE) [1,2,11], which
minimizes the number of times an expression is evaluated.
We have extended the PRE of the IA-64 compiler to
eliminate both redundant computations and redundant
loads of the same or known values.  Moreover, the
extended PRE uses control and data speculation to
increase the number of loads that can be eliminated.  The
counterpart of PRE, called partial dead store elimination
(PDSE), is used to remove redundant stores to memory.
PDSE moves stores downward in the program’s flow in
order to expose and eliminate stores that have the same
value.

Scheduling and code generation make effective use of
predication, speculation, and rotating registers by if-
conversion, global code scheduling, software pipelining,
and rotating register allocation.

Optimizations in the IA-64 compiler are supported by
state-of-the-art analysis techniques. Memory
disambiguation determines whether two memory
references potentially access the same memory location.
This information is critical in hiding memory latency,
because knowing that a store does not interfere with a
later load is essential to scheduling memory references
earlier.  We also use data reuse and exact array data
dependence information to guide certain optimizations.

Profiler

C++
Front End

Interprocedural Analysis and
Optimizations

Memory Optimizations,
Parallelization and Vectorization

Global Scalar Optimizations

Predication, Scheduling, Register
Allocation and Code Generation

FORTRAN 90
Front End
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Figure 1: Organization of the Intel IA-64 compiler

PROFILE-GUIDED OPTIMIZATIONS
The compiler may be able to take the fullest advantage of
the IA-64 architecture when accurate information about
the program execution behavior, called profile
information, is available.  Profile information consists of a
frequency for each basic block and a probability for each
branch in the program.

The Intel IA-64 compiler gathers profile information about
the specified program and annotates the intermediate
language for the program with this information.  The
compiler supports two modes for determining profile
information: static and dynamic.  Static profiling, as the
name suggests, is collected by the compiler without any
trial runs of the program.  The compiler uses a collection of
heuristics to estimate the frequencies and probabilities,
based on knowledge of “typical” program characteristics.
Static information is necessarily approximate because it
must be general enough to work with all programs.  The
compiler uses static profiling information whenever the
optimizer is active, unless the developer selects dynamic
profiling.

Instrumented compilation
prof_gen

Instrumented execution

Feedback compilation

instrumented
code

dynamic
information  files

exe + merged dynamic
information  files

Figure 2: Steps in dynamic profile-guided compilation

Dynamic profiling information, or profile feedback, is
gathered in a three-step process as shown in Figure 2.
Instrumented compilation is the first step, where the
application developer compiles all or part of the
application with the prof_gen option, which produces
executable code instrumented to collect profile
information.  The developer then runs the instrumented
code one or more times with “typical” input sets to gather
execution profiles.  Finally, the developer compiles the
application again, this time using the prof_use option,
which combines the gathered profiles and annotates the
internal representation of the program with the observed
frequencies and probabilities.  Many optimizations then
read the information and use it to guide their behavior.
The Intel IA-64 compiler uses profile information to guide
several optimizations:

1. The compiler uses profile information to integrate
procedures that are most frequently executed into
their call sites, thereby providing the benefits of larger
program scope while minimizing code growth.

2. Profile information is also used to guide the layout of
procedures and blocks within procedures to reduce
instruction cache and TLB misses.

3. Finally, the compiler uses profile information to make
the best use of machine instruction width and
speculation features.  By knowing the program’s
execution behavior at scheduling time, the instruction
scheduler is capable of selecting the right candidates
for speculation.

INTERPROCEDURAL ANALYSIS AND
OPTIMIZATION
IA-64’s Explicitly Parallel Instruction Computing (EPIC)
architecture makes it possible to execute a large number of
instructions in a single clock cycle.  Therefore, scheduling
to fill instruction words is of vital importance to the
compiler.  As with other processors, effective use of
instruction caches and branch prediction are also
important.  Traditionally, compilers have operated on one
procedure of the program at a time.  However, such
intraprocedural analysis and optimization is no longer
sufficient to fully exploit IA-64’s architectural features.
The interprocedural optimizer in the Intel IA-64 compiler is
profile-guided and multifile capable, so that it can
efficiently provide analysis and optimization for very large
regions of application code.

The Intel IA-64 compiler provides extensive support for
interprocedural analysis and optimization.  One set of key
features provided by the compiler is for points-to analysis,
mod/ref analysis, side effect propagation, and constant
propagation.  The optimizer and scheduler for the IA-64
compiler may need to move instructions over large regions
in order to fill scheduling slots.  In order to move
operations over large regions, the compiler frequently
requires knowledge of memory references within the
region.  Points-to analysis aids this process by accurately
determining which memory locations may be referenced by
a memory reference.  Figure 3 illustrates this with three
memory references.  If the store to an address in r37 is
known not to store to the same object as the object
pointed to by r33, then the second load may be
eliminated.  Furthermore, because of IA-64’s data
speculation feature, it may be possible to eliminate the
load even if the accesses might infrequently conflict.
Similarly, moving memory references across function calls
requires knowledge of what is modified or referenced by
the function call.  This is provided by mod/ref analysis.
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Analysis and optimization for IA-64 also expose the need
for larger program scope for the IA-64 compared to
traditional optimizers.  To give the optimizer and code
generator larger scope, the interprocedural optimizer
provides several forms of procedure integration: inlining,
cloning, and partial inlining.  Inlining replaces a call site by
the body of the function that would be invoked, and it
provides the fullest opportunity for optimization, albeit
with potentially large increases in code size.  Cloning and
partial inlining are used to specialize functions to
particular call sites, thereby providing many of the
benefits of inlining while not increasing code size
significantly.

ld4     r32=[r33]
…
st4     [r37]=r34
…
ld4      r35=[r33]

Figure 3: An example of a situation requiring point-to
analysis information

The compiler attempts to produce the best performance
without increasing code size, as large code size can cause
poor use of instruction cache and TLBs.  In order to
reduce the impact of code size, while retaining as much
optimization as possible, the compiler uses profile
information and targets procedure integration to only
those sites where it is most effective.  Moreover, profile
guidance with knowledge of the function call graph is
used to lay out functions in an order that minimizes
dynamic code size, which is especially important for TLB
efficiency.

Memory Disambiguation
The effectiveness and legality of many compiler
optimizations rely on the compiler’s ability to accurately
disambiguate memory references.  For example, the
compiler can eliminate a large number of loads and stores
with accurate memory disambiguation.  Accurate
information about memory independence can help exploit
more instruction-level parallelism.  The code scheduler
requires accurate memory disambiguation to aggressively
reorder loads and stores.  The legality and effectiveness of
loop transformations rely on the availability of accurate
and detailed data-dependence information.  The remainder
of this section illustrates the different kinds of analyses
provided in the Intel IA-64 compiler for memory
disambiguation.

The simplest disambiguation cases are direct scalar or
structure references.  Figure 4 shows a pair of direct

structure references.  The compiler may disambiguate
these two memory references either by determining that a
and b are different memory objects or that field1  and field2
are non-overlapping fields.

a.field1 = ..

.. = b.field2

Figure 4:  Disambiguation of direct structure references

Figure 5 shows a pair of indirect references.  In general, in
order to disambiguate this pair of memory references, the
compiler must perform points-to analysis [12], which
determines the set of memory objects that each pointer
could possibly point to.  Because the pointer p or q could
be a global variable or a function parameter, the points-to
analysis performed by the Intel IA-64 compiler is
interprocedural.  In some cases, two indirect references
can be disambiguated based on the pointer types.  For
example, in an ANSI C* conforming program, a pointer to a
float and a pointer to an int cannot point to the same
memory object.

*p = ..

.. = *q

Figure 5:  Disambiguation of indirect references

Various other language rules and simple information are
useful in providing disambiguation information, even
when the more expensive analyses are turned off.  For
example, parameters in programs that conform to the
FORTRAN* standard are independent of each other and
of common block elements.  Therefore, an indirect
reference cannot access the same location as a direct
access to a variable that has not had its address taken.

do i= 0, n
     a(i) = a(i-1) + a(i-2);
enddo

Figure 6:  Disambiguation of array references

Figure 6 shows an example loop with loop-carried array
dependencies.  The value written to a(i) in one iteration is
read as a(i-1) one iteration later, and as a(i-2) two iterations
later.  The Intel IA-64 compiler performs array data-
dependence analysis using a series of dependence tests,
and it determines accurate dependence direction and
distance information.
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Function calls can inhibit optimization.  Figure 7 shows an
example where a function call may inhibit dead store
elimination.  If the function foo() reads *p, then the first
store to *p is not dead.  Interprocedural mod/ref
information [10] is used to determine the set of memory
locations written/read as a result of a function call.

*p = ..

foo();

*p = ..

Figure 7:  Disambiguation of a memory reference and a
function call

MEMORY OPTIMIZATIONS
Processor speed has been increasing much faster than
memory speed over the past several generations of
processor families.  This phenomenon is true for the
IA-64 processor family as well.  Indeed, the speed
differential is expected to be even larger for the IA-64
processors, since IA-64 is a high-performance
architecture.  As a result, the compiler must be very
aggressive in memory optimizations in order to bridge the
gap.  The Intel IA-64 compiler applies loop-based and
region-based control and data transformations in order to
i) improve data access behavior with memory
optimizations, ii) expose coarse grain parallelism, iii)
vectorize, and iv) expose higher instruction-level
parallelism.  In the compiler, we implemented numerous
well known and new transformations, and more
importantly, we combined and tuned these
transformations in special ways so as to exploit the IA-64
features for higher application performance.

In this section, we illustrate a chosen few memory
optimization techniques in the compiler, and we explain
how these transformations help harness the power of the
IA-64 processor implementations for higher application
performance.  Memory optimization techniques in the Intel
IA-64 compiler include, but are not limited to, i) cache
optimizations, ii) elimination of loads and stores, and iii)
data prefetching.  All these transformations are supported
by exact data dependence and temporal and spatial data
reuse analyses algorithms.  The compiler also applies
several other well known optimization techniques such as
secondary induction variable elimination, constant
propagation, copy propagation, and dead code
elimination.

Cache Optimizations
Caches are an important hardware means to bridge the gap
between processor and memory access speeds.  However,
programs, as originally written, may not effectively utilize
available cache.  Hence, we have implemented several loop
transformations to improve the locality of data reference in
applications.  With improved locality of data reference, the
majority of data references will be to higher and faster
levels of memory hierarchy, so that data references incur
much smaller overheads. The linear loop transformations,
loop fusion, loop distribution, and loop block-unroll-
and-jam are some of the transformations implemented in
the compiler.

do i = 1, 1000
  do j = 1, 1000
      c(j) = c(j) + a(i, j)  *  b(j)
  enddo
enddo

do j = 1, 1000
  do i = 1, 1000
      c(j) = c(j) + a(i, j)  *  b(j)
  enddo
enddo

Figure 8: An example of a linear loop transformation

Linear Loop Transformations
Linear loop transformations are compound
transformations representing sequences of loop reversal,
loop  interchange, loop skew, and loop scaling [17,18].
Loop reversal reverses the execution order of loop
iterations, whereas loop interchange interchanges the
order of loop levels in a nested loop.  Loop skew modifies
the shape of the loop iteration space by a compiler-
determined skew factor.  Loop scaling modifies a loop to
have non-unit strides.  As a combined effect, linear loop
transformations can dramatically improve memory access
locality.  They can also improve the effectiveness of other
optimizations, such as scalar replacement, invariant code
motion, and software pipelining.  For example, the loop
interchange in Figure 8 makes references to arrays b and c
both inner loop invariants, besides improving the access
behavior of array a.

Loop Fusion
Loop fusion combines adjacent conforming nested loops
into a single nested loop [16].  Loop fusion is effective in
improving cache performance, since it combines the cache
context of multiple loops into a single new loop. Thus,
data reuse across nested loops is within the same new
nested loop.  It also increases opportunities for reducing
the overhead of array references by replacing them with
references to compiler-generated scalar variables.  Loop
fusion also improves the effectiveness of data prefetching.
Loop fusion in the Intel IA-64 compiler is more aggressive
than that in compilers for IA-32 or RISC processors, for
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example, since loop fusion in the IA-64 takes advantage of
a large number of available registers.  In the loop on the
right-hand side of Figure 9, cache locality is improved
because the accesses to array a are reused within the same
loop.  Further, it enables the compiler to replace references
to arrays a and d with references to compiler-generated
scalar variables.

do i = 1, 1000
    a(i) = x
enddo
do i = 1, 1000
    c(i) = a(i-1) + d(i-1)
    d(i) = c(i)
enddo

do i = 1, 1000
    a(i) = x
    c(i) = a(i-1) + d(i-1)
    d(i) = c(i)
enddo

Figure 9: An example of a loop fusion

Loop Block-Unroll-Jam

Loop unroll and jam unrolls the outer loops and fuses the
unrolled copies together [14].  As a result, several outer
loop iterations are merged into a single iteration in the new
loop nest.  For example, the i loop in the two-dimensional
loop on the left-hand side of Figure 10 is unrolled by a
factor of two.  The two resulting loop nests (one for the
even values of i and one for the odd values of  i) are
jammed together to obtain the loop on the right-hand side
of Figure 10.

do i = 1, 2*n
    do j = 1, 2*n
        b(j, i) = a(j, i-1) + a(j, i) + a(j, i+1)

    enddo
enddo

do i = 1, 2*n, 2
    do j = 1, 2*n
        b(j, i) = a(j, i-1) + a(j, i) + a(j, i+1)
        b(j, i+1) = a(j, i) + a(j, i+1) + a(j, i+2)
    enddo
enddo

Figure 10: An example of a loop unroll and jam

When all loops in a loop nest are blocked, loop blocking
or tiling transforms an n-dimensional loop nest into a 2n-
dimensional loop nest, where the inner n-loops together
scan the iterations in a block or tile of the original iteration
space.  Loop blocking is key to improving the cache
performance of libraries and applications that manipulate
large matrices of data items.

The design of the Intel IA-64 compiler unifies loop
blocking, unroll and jam, and inner loop unrolling.

Traditionally, compilers implement loop blocking, loop
unroll and jam, and (inner) loop unrolling separately.  In
the process, such compilers use more than one cost model
and multiple code-generation mechanisms.  Whereas in
fact, the three transformations are closely related.  Loop
blocking is a unification of strip-mining and interchange
transformations.  Outer loop unrolling and jamming can be
viewed as blocking of the outer loops with block sizes
equal to corresponding unroll factors, followed by
unrolling the local iteration spaces corresponding to a
block or a tile.  Inner loop unrolling is a special case of
blocking, where only the innermost loop is strip-mined and
unrolled.  All of the three transformations focus on
bringing as many  “related” array accesses and associated
computations as possible into inner loops.  In the process
of doing so the outer loop unroll and jam and the inner
loop unroll increase the size of the loop body.

Loop Distribution
The effect of loop distribution on loop structure is the
opposite of loop fusion [16].  Loop distribution splits a
single nested loop into multiple adjacent nested loops that
have a similar loop structure.  The computation and array
accesses in the original loop are distributed across newly
formed nested loops.  Besides enabling other
transformations, loop distribution spreads the potentially
large cache context of the original loop into different new
loops, so that the new loops have manageable cache
contexts and higher cache hit rates.

LOAD AND STORE ELIMINATION
The IA-64 architecture has a much larger register file than
traditional architectures. The IA-64 compiler takes
advantage of this to eliminate loads and stores by
effectively registering the memory references.  In this
section, we describe two optimization techniques that
eliminate loads and stores: scalar replacement and
register blocking.

Scalar Replacement
Scalar replacement [14,15] is a technique to replace
memory references with compiler-generated temporary
scalar variables, which are eventually mapped to registers.
Most back-end optimization techniques map array
references to registers when there is no loop-carried data
dependence.  However, the back-end optimizations do not
have accurate dependence information to replace memory
references with loop-carried dependence by scalar
variables. Scalar replacement, as implemented in the Intel
IA-64 compiler, also replaces loop invariant memory
references with scalar variables defined at the appropriate
levels of loop nesting.
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For an example of scalar replacement of memory
references, consider the loop on the left-hand side of
Figure 11.  In the transformed loop, all the read references
to array a are replaced by compiler-inserted temporary
scalar variables.  In particular, note the replacement of
loop-carried data reuse of a(i-1), which is replaced by a
scalar variable saved from a previous iteration.  In other
words, the technique is capable of scalar replacing for
loop independent as well as for loop-carried (either by an
input or flow dependence) data reuses.

do  i=2,n
    a(i)=a(i-1)* ...
    … =a(i)-a(i-1)
enddo

t1 = a(1)
do i=2,n
    t2  = t1 * …
    a(i) = t2
                 = t2 – t1
     t1 = t2

enddo

Figure 11: An example of a scalar variable replacement

The IA-64 architecture provides rotating registers , which
are rotated one register position each time a special loop
branch instruction is executed.  This hardware feature
enables the compiler to map the compiler-inserted scalars
directly onto the rotating registers.  In particular,
assignment statements of the form t1=t2 in the example
above do not have any computational overhead at all
because the assignment is implicitly affected by the
rotation of registers.

Scalar replacement of memory references uses the
direction vectors and dependence types in the data
dependence graph to determine the memory references
that should be replaced by scalars and to determine how
to perform the book-keeping required for the replacement.
The compiler examines the data dependence graph for
each loop and partitions the memory references based on
whether the corresponding data dependencies are input,
flow, or output dependencies.  Memory references within
each group are sorted by dependence distance and
topological order.  Memory references with loop-
independent and loop-carried flow dependence are
processed first, followed by memory references with loop-
carried output dependence.

Register Blocking
Register blocking turns loop-carried data reuse into loop-
independent data reuse.  Register blocking transforms a
loop into a new loop where the loop body contains
iterations from several adjacent original loop iterations.
Register blocking is similar to loop blocking or tiling, with
relatively smaller tile sizes, followed by an unrolling of the
iterations in the tile.  Register blocking is demonstrated in
the example in Figure 12.  Register blocking takes

advantage of the large register file to map the references to
many of the common array elements in adjacent loop
iterations onto registers.

do j=1,2*m                           do j=1,2*m,2
    do i=1,2*n                                        do i=1,2*n,2
      a(i,j) = a(i-1,j) + a(i-1,j-1)                 a(i,j) = a(i-1,j)+a(i-1,j-1)
   enddo            a(i+1,j) = a(i,j)+a(i,j-1)
   enddo                                a(i,j+1) = a(i-1,j+1)+a(i-1,j)
enddo                                               a(i+1,j+1)= a(i,j+1)+a(i,j)
                                                enddo
                                             enddo

Figure 12: An example of register blocking

The original loop on the left-hand side of this figure has
two distinct array read references in every iteration. The
register blocked loop on the right-hand side of the figure
has only six distinct array read references for every four
iterations in the original loop.  Note that two of the six
references are loop independent reuses.  In the Intel
IA-64 compiler design, register blocking is followed by
scalar replacement of memory references, since register
blocking exposes new opportunities for scalar replacement
of memory references.

DATA PREFETCHING
Data prefetching is an effective technique to hide memory
access latency.  It works by overlapping time to access a
memory location with time to compute as well as time to
access other memory locations [7, 19, 20].  Data
prefetching inserts prefetch instructions for selected data
references at carefully chosen points in the program, so
that referenced data items are moved as close to the
processor as possible before the data items are actually
used.  Note that the data prefetch instructions do not
normally block the instruction stream and do not raise
exceptions.  Prefetching is complementary to techniques
that optimize memory accesses such as loop
transformations, scalar replacement of memory references,
and other locality optimizations.  The data prefetching
algorithm implemented in the Intel IA-64 compiler makes
use of data prefetch instructions and other data
prefetching support features available on the IA-64.

The cost incurred while prefetching data arises from the
added overhead of executing prefetch instructions as well
as instructions that generate the addresses for prefetched
data items.  The prefetch instructions will occupy memory
slots, thereby increasing resource usage.  Compute-
intensive applications normally have sufficient free
memory slots.  However, the benefits from prefetching
have to be weighed against the increase in resource usage
in memory-intensive applications.  One must avoid
prefetching for data already in the cache, because such
prefetches result in an overhead and are of no benefit.
Data prefetches should be issued at the right time: they
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should be sufficiently early so that the prefetched data
item is available in cache before its use; they should be
sufficiently late so that the prefetched data item is not
evicted from the cache before its use.  Prefetch distance
denotes how far ahead a prefetch is issued for an array
reference.  This distance is estimated based on the
memory latency, the resource requirements in the loop,
and data-dependence information.

We implemented a data prefetching technique that utilizes
data-locality analysis to selectively prefetch only those
data references that are likely to suffer cache misses.  For
example, if a data reference within a loop exhibits spatial
locality by accessing locations that fall within the same
cache line, then only the first access to the cache line will
incur a miss.  Thus this reference can be selectively
prefetched under a conditional of the form (i mod L) == 0,
where i is the loop index and L denotes the cache line size.
When multiple references access the same cache line, then
only the leading reference needs to be prefetched.
Similarly, if a data reference exhibits temporal locality,
then only the first access must be prefetched.

do j = 1,n
   do i = 1,m
       a(i,j) = a(i,j) + b(0,i) + b(0,i+1)

enddo
enddo

do j = 1,n
   do i = 1,m
      a(i,j) = a(i,j) + b(0,i) + b(0,i+1)
      if (mod(i,8) == 0)
           call prefetch(a(i+k, j))
      if (j == 1)
           call prefetch(b(0, i+k+1))

enddo
enddo

Figure 13: An example of data prefetching

In the example in Figure 13, the compiler inserts prefetches
for arrays a and b.  The references to array a have spatial
locality, whereas the references to array b have temporal
locality with respect to the j loop iterations.  Note that the
calls to the prefetch intrinsic function finally map to the
prefetch instructions in IA-64. In this example, k is the
prefetch distance computed by the compiler.

The conditional statements used to control the data
prefetching policy can be removed by loop unrolling,
strip-mining, and peeling.  However, this may result in
code expansion, which can cause increased instruction
cache misses.  The predication support in IA-64 provides
an efficient way of adding prefetch instructions.  The
conditionals within the loop are converted to predicates
through if-conversion, thus changing control dependency
into data dependency.  The large number of registers
available in IA-64 enables prefetch addresses to be stored

in registers obviating the need for register spill and fill
within loops.

The IA-64 architecture provides support for memory
access hints that enable the compiler to orchestrate data
movement between memory hierarchies efficiently [7].
Data can be prefetched into different levels of cache
depending on the access patterns.  For example, if a data
reference does not exhibit any kind of reuse, then it can be
prefetched using a special nta hint to reduce cache
pollution.  This kind of architectural support for data
movement enables the compiler to perform better data
reuse analysis across loop bodies so that unnecessary
prefetches are avoided.

PARALLELIZATION AND
VECTORIZATION
Support for OpenMP*, automatic parallelization,
vectorization, and load-pair optimization are all included in
the design of the IA-64 compiler.  The design takes
advantage of native support for parallelism on the IA-64,
which includes semaphore instructions such as exchange,
compare-and-exchange, and fetch-and-add, in addition to
the fused multiply accumulate instruction (fma).  The
support for parallelism on IA-64 also includes SIMD, i.e.,
parallel arithmetic operations on 1, 2, and 4 bytes of data.
In order to exploit the fine grain locality of data access in
applications, IA-64 provides load instructions that
simultaneously load a pair of double floating-point
precision data items.

Parallelization
OpenMP is an industry standard to specify shared
memory parallelism.  It consists of a set of compiler
directives, library routines, and environment variables that
provide a model for parallel programming aimed at
portability across shared memory systems from different
vendors.

An alternative approach to parallelization is to let the
compiler automatically detect parallelism and generate
parallel code.  The Intel IA-64 compiler has accurate data-
dependence information to determine loops that can be
parallelized.

Vectorization
The IA-64 floating-point SIMD operations can further
improve the performance of floating-point applications.
IA-64 provides the capability of doing multiple floating-
point operations at the same time.  The traditional loop
vectorization techniques can be used to exploit this
feature.
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do j = 1, 1000
  y(j) = y(j) + a*x(j)
enddo

do j = 1, 1000, 2
  t1,t2 = ldfpd(x(j),x(j+1))
  t3,t4 = ldfpd(y(j),y(j+1))
  y(j) = t3 + a*t1
  y(j+1) = t4 + a*t2
enddo

Figure 14: An example of the use of load-pairs

Load-Pairs
IA-64 provides high bandwidth instructions that load a
pair of floating-point numbers at a time [7].  Such load-pair
instructions take a single memory issue slot, thus possibly
reducing the initiation interval of the software pipelined
loop.  Data alignment is required to make this work.
Special instructions in IA-64 can be used to avoid
possible code expansion.  For example, the loop in Figure
14 has three memory operations per iteration.  By using
load-pair operations, the number of memory references can
be reduced to two per iteration.

SCALAR OPTIMIZATIONS
A primary objective of scalar optimizations is to minimize
the number of computations and the number of references
to memory.  Partial redundancy elimination (PRE) [1, 2, 11]
is a well known scalar optimization technique that
subsumes global common subexpression elimination (CSE)
and loop invariant code motion.  CSE removes expressions
that are always redundant (redundant on all control flow
paths).  PRE goes beyond CSE by attempting to remove
redundancies that occur only on some control flow paths.
In this paper, we highlight the use of scalar optimizations
to eliminate loads and stores.

Traditional PRE
An expression at program point p in the program control
flow graph (CFG) is fully redundant if the same expression
is already available.  An expression e is said to be
available at a point p if along every control flow path from
the program entry to p there is an instance of e that is not
subsequently killed by a redefinition of its operands.
Figure 15 shows an example of a fully redundant
expression and its elimination by CSE.  The redundancy is
removed by saving the value of the redundant expression
in a temporary variable and then later reusing that value
instead of reevaluating the expression.

c = a + b d = a + b

e = a + b

t1 = a + b
    c = t1

t1 = a + b
    d = t1

    e = t1

a) b)

Figure 15: (a) expression a + b is fully available, (b)
elimination of common subexpression

An expression e is partially available at a point p if there is
an instance of e along only some of the control flow paths
from the program entry to p.  Figure 16 shows an example
of a partially redundant expression and PRE.  The partial
redundancy is removed by inserting a copy of the
redundant expression on the control flow paths where it is
not available, making it fully redundant.

c = a + b

e = a + b

t1 = a + b
    c = t1

t1 = a + b

    e = t1

a) b)

Figure 16: (a)  expression a + b is partially available (b)
elimination of partial redundancy

PRE can move the loop invariant to outside the loop as
shown in Figure 17.  The expression *q is available on the
loop back-edge, but not on entry to the loop.  After
inserting t2 = *q in the loop preheader, *q is fully
available and can be removed from the loop.

     t 2  =  * q
 a ( i )  =  a ( i )  +  t 2  a ( i )  =  a ( i )  +  t 2

t 2  =  * q

a ) b )

Figure 17:  Example of loop-invariant code motion
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Note, however, that the optimizer must be careful not to
insert a copy of an expression at a point that would cause
the expression to be evaluated when it was not evaluated
in the original source code.  Figure 18 shows such an
example.  The insertion of an expression e at a program
point p is said to be down-safe  if along every control flow
path from p to the program exit there is an instance of e
such that the inserted expression is available at each later
instance.  In Figure 18, the insertion of t1 = *q is not
down-safe.  There are two aspects to down-safety.  The
first is that an unsafe insertion may create an incorrect
program.  For example, in Figure 18, the expression *q is
executed before checking if q is a null pointer.  Second, an
unsafe insertion reduces the number of instructions along
one path at the expense of another path.  In Figure 18, the
redundancy is eliminated for the left-most path, but an
extra instruction, t1 = *q, is executed on the right-most
path.

a) b)

yn

   c = *q (q == Null) ?

e = *q

d = a + b

yn

  t1 = *q
(q == Null) ?

  e = t1

d = a + b

   t1 = *q
   c = t1

Figure 18: (a) expression *q is partially available, (b)
violation of down-safety

Extended PRE for IA-64
The standard PRE algorithm removes all the redundancies
possible with safe insertions.  We have extended PRE to
use control speculation to remove redundancies on one
control flow path, perhaps at the expense of another, less
important control flow path.  In the example in Figure 18,
assume that the left-most control flow path is executed
much more frequently than the right-most path.  If the
redundancy on the left-most path could be removed
without producing an incorrect program, overall
performance would be improved even though an extra
instruction is executed on the right-most path.

a) b)

yn

   c = *q (q == Null) ?

e = *q

d = a + b

yn

   t2 = q
ld t1 = [t2]
   c = t1

  t3 = q
ld.s t1 = [t3]
(q == Null) ?

chk.s t1
  e = t1

d = a + b

recovery
block

Figure 19:  Redundancy elimination using control
speculation

Figure 19 shows how the redundancy in Figure 18 could
be removed using the IA-64 support for control
speculation.  The insertion of *q is done using a
speculative load, and a check instruction is added in place
of the redundant load.  Executing the check is preferable to
executing the redundant load because the check does not
use memory system resources and because the latency of
the load is hidden by executing it earlier.  Also, elimination
of the redundant load may expose further opportunities for
redundancy elimination in the instructions that depend on
the load.

Removal of redundant loads can sometimes be inhibited
by intervening stores.  In Figure 20 (a), the loop-invariant
load *p cannot be removed unless the compiler can prove
that the store *q does not access the same memory
location.  The process of determining whether or not two
memory references access the same location is called
memory disambiguation and was described earlier in this
paper.

If the compiler can determine that there is an unknown, but
small probability that *p and *q access the same memory
location, the loop invariant load and the add that depends
on it can be removed using the IA-64 support for data
speculation as shown in Figure 20 (b).  The insertion of *p
in the preheader is done using an advanced load, and a
check instruction is added in place of the original
redundant load.  If the store *q accesses the same memory
location as the load *p, a branch to a recovery code block
will be taken at the check instruction.  The recovery block
contains code to reload *p and re-execute t4=t2 + t3.  If
the store *q and load *p access different memory
locations, then only the check is executed instead of the
redundant load and add.
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   *q = t1
   t2 = *p
t4 = t2 + t3

 *q = t1
chk.a t2

   t5 = p
ld.a t2 = [t5]
t4 = t2 + t3

a) b)

recovery
block

Figure 20: Removal of loop-invariant load using data
speculation

Partial Dead Store Elimination
In contrast to PRE which removes redundant loads, Partial
Dead Store Elimination (PDSE) removes redundant stores
in the program. Figure 21 shows an example of PDSE.  The
partial redundancy is removed by inserting a copy of the
partially dead store into the control flow paths where it is
not dead, making it fully redundant.

*p = c

*p = c

a)

*p = t1

b )

*p = t1

t1 = c

Figure 21: (a) store *p is partially dead, (b) elimination of
partially dead store

As with PRE, the compiler must be careful when inserting
stores to avoid executing a store when it should not be
executed.  Figure 22 shows an example of an incorrect
insertion of a store.  In Figure 22b, the store
*p = t1 on the right is executed even if the path containing
d=a+b is executed.  In the original program in Figure 22a,
no store to *p is executed when the path containing
d=a+b is executed.

*p = c

*p = c

a)

*p = t1

b)

    *p = t1

t1 = c
d = a + b d = a + b

Figure 22:  Example of incorrect insertion of a store

Figure 23 shows how the redundancy in Figure 22 could
be removed using a predicated store.  In Figure 23b, the
redundancy on the left-most path is removed by inserting
a predicated store.  Instructions are required to set the
predicate p2 to 1 when the store should be executed, and
to 0 when it should not be executed.  In Figure 23b,
suppose that the left-most path is executed much more
frequently than the right-most path.  On the left-most path,
executing p2=1 is preferable to executing the store,
because the p2=1 does not use memory system resources.
In some cases, an appropriate instruction to set p2 may
already exist as a result of the if-conversion or another
optimization, thereby reducing the cost of predicating the
store.

*p = c

*p = c

a)

*p = t1

b)

(p2) *p = t1

t1 = c
p2 = 1

d = a + b
p2 = 0
d = a + b

Figure 23:  Elimination of partially dead store using
predication

THE  SCHEDULER AND CODE
GENERATOR
The scheduler and code generator in the compiler make
effective use of predication, speculation, and rotating
registers by global code scheduling, software pipelining,
and rotating-register allocation.  In this section, we
provide an overview of predication techniques, software-
pipelining, global code scheduling, and register allocation.

Predication
Branches can decrease application performance by
consuming hardware resources at execution time and by
restricting instruction-level parallelism.  Predication is one
of several features IA-64 provides to improve the
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efficiency of branches [7].  Predication is the conditional
execution of an instruction that is based on a qualifying
predicate, where the qualifying predicate is a predicate
register whose value determines whether or not the
instruction must execute normally.  If the predicate is true,
the instruction updates the computation state; otherwise,
it generally behaves like a nop.  The execution of most IA-
64 instructions is gated by a qualifying predicate.  The
values of predicate registers can be set with a variety of
compare and test bit instructions.  Predicated execution
avoids branches, and it simplifies compiler optimizations
by converting a control dependence to a data
dependence.

The Intel IA-64 compiler eliminates branches through
predication and thus improves the quality of the code’s
schedule.  The benefits are particularly pronounced for
branches that are hard to predict.  The compiler uses a
transformation called if-conversion, where conditional
execution is replaced with predicated instructions.  For a
simple example, look at the following code sequence:

if (a <b)
    s = s + a
else
    s = s + b

can be rewritten in IA-64 without branches as

cmp.lt p1, p2 = a,b
(p1) s = s + a
(p2) s = s + b

Since instructions from opposite sides of the conditional
are predicated with complementary predicates, they are
guaranteed not to conflict, and the compiler has more
freedom when scheduling to make the best use of
hardware resources.

Predication enables the compiler to perform upward and
downward code motion with the aim of reducing the
dependence height.  This is possible because predicating
an instruction replaces a control dependence with a data
dependence.  If the data dependence is less constraining
than the control dependence, such a transformation may
improve the instruction schedule.  The compiler also uses
predication to efficiently implement software pipelining
discussed in the next section.

Note that predication may increase the critical path length
because of unbalanced dependence heights or over-usage
of particular resources, such as those associated with
memory operations.  The compiler has to weigh this cost
against the profitability of predication by considering

various factors such as the branch misprediction
probabilities, miss cost, and parallelism.

The IA-64 supports special parallel compare instructions
that allow compound expressions using the relational
operators and and or to be computed in a single cycle.
These instructions can be used to reduce the control path
by reducing the total number of branches.  IA-64 also has
the support of multiway branches, where different
predicates can be used to branch to different targets
within an instruction group.

Software Pipelining
Software pipelining [3,4] in the Intel IA-64 compiler
improves the performance of a loop by overlapping the
execution of several iterations.  This improves the
utilization of available hardware resources by increasing
the instruction-level parallelism.  Figure 24 shows several
overlapped loop iterations.

iter 1

iter 2

iter 3

use r1

def r1

def r1

def r1

use r1

use r1

Stage A

Stage B

Stage C

Figure 24:  Pipelined loop iterations

Analogous to hardware pipelining, each iteration is
divided into stages.  In this example, each iteration is
divided into three stages, and up to three iterations are
executed simultaneously.  The number of cycles between
the start of successive iterations in a software-pipelined
loop is called the Initiation Interval (II), and each stage is
II cycles in length.

Software-pipelined loops have three execution phases: the
prolog phase, in which the software pipeline is filled; the
steady-state kernel phase, in which the pipeline is full; and
the epilog phase, in which the pipeline is drained.  In RISC
architectures, these three execution phases are
implemented using three distinct blocks of code as shown
in Figure 25.

In IA-64, rotating predicates [5, 6, 7] are used to control
the execution of the stages during the prolog and epilog
phases, so that only the kernel loop is required.  This
reduces code size.  During the first iteration of the kernel
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loop, stage A of source iteration 1 is enabled.  During
kernel iteration 2, stage A of source iteration 2 and stage B
of source iteration 1 are enabled, and so on.  During the
epilog phase, the hardware support sequentially disables
stages.

In order to illustrate another advantage of IA-64 support
for software-pipelining, consider register r1 defined early
in each iteration and used late in each iteration, as shown
in Figure 24.  When the iterations overlap, the separate
lifetimes also overlap.  The definitions of r1 from iterations
two and three overwrite the value of r1 that is needed by
the first iteration.  In RISC architectures, the kernel loop
must be unrolled three times so that each of the three
overlapped lifetimes can be assigned to different registers
to avoid clobbering of values [4, 6].  In IA-64, on the other
hand, unrolling of the kernel loop is unnecessary because
rotating registers can be used to perform renaming of the
registers, thus reducing the code size [5, 6, 7].

The Intel IA-64 compiler uses a software pipelining
algorithm called modulo scheduling [8].  In modulo
scheduling, a minimum candidate II is computed prior to
scheduling.  This candidate II is the maximum of the
resource-constrained minimum II and the recurrence-
constrained (dependence cycle constrained) minimum II.

prolog

epilog

kernel
 loop

Figure 25: Execution phases in software-pipelined loops:
IA-64 supports kernel only software-pipelined loops

The Intel compiler pipelines both counted loops and while
loops.  Loops with control flow or with early exits are
transformed, using if-conversion, into single block loops
suitable for pipelining.  Outer loops can also be pipelined,
and several optimizations are done to reduce the
recurrence-constrained II.

Global Code Scheduling
The Intel IA-64 compiler contains both a global code
scheduler (GCS) [9] and a fast local code scheduler.  The
GCS  is the primary scheduler, and it schedules code over
acyclic regions of control flow.  The local code scheduler

rearranges code within a basic block and is run after
register allocation to schedule the spill code.

The GCS allows arbitrary acyclic control flow within the
scheduling scope referred to as a scheduling region.
There is no restriction placed on the number of entries into
or exits from the scheduling region.  The GCS also enables
code scheduling across inner loops by abstracting them
away through nesting.  The GCS employs a new path-
based data dependence representation that combines
control flow and data-dependence information to make
data analysis easy and accurate.

Most scheduling techniques find it difficult to make good
decisions on the generation and scheduling of
compensation code.  This problem is addressed by the
GCS using wavefront scheduling and deferred
compensation.  The GCS schedules along all the paths in a
region simultaneously.  The wavefront is a set of blocks
that represents a strongly independent cut set of the
region.  Instructions are only scheduled into blocks on the
wavefront.  The wavefront can be thought of as the
boundary between scheduled and yet to be scheduled
code in the scheduling region.

Control flow in program code can make the task of code
motion difficult and complicated.  In the GCS, tail
duplication is done at the instruction level and is referred
to as P-ready code motion.  An instruction is duplicated
based on a cost and profitability analysis.

Register Allocation
Register allocation refers to the task of assigning the
available registers to variables such that if two variables
have overlapping live ranges, they are assigned separate
registers.  In doing so, the register allocator attempts to
maximally utilize all the available registers.  The large
number of architectural registers in IA-64 enables multiple
computations to be performed without having to
frequently spill and copy intermediate data to memory.
Register allocation can be formulated as a graph coloring
problem where nodes in the graph represent live ranges of
variables and edges represent a temporal overlap of live
ranges.  Nodes sharing an edge must be assigned different
colors  or registers.

When using predication, it is particularly common for
sequences of instructions to be predicated with
complementary predicates.  In such cases, it is possible to
use the same registers for two separate variables, even
when their live ranges seem to overlap.  This is because
the compiler can figure out that only one of the variables
will be updated depending on the predicate values.  For
example, in the code sequence of Figure 26, the same
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register is allocated for both v1 and v2 since p1 and p2 are
complementary predicates.

(p1) v1 = 10
(p2) v2 = 20 ;;
(p1) st4 [v10]= v1
(p2) v11 = v2 + 1 ;;

----à

 (p1) r32 = 10
(p2) r32 = 20 ;;
(p1) st4 [r33]= r32
(p2) r34 = r32 + 1 ;;

Figure 26: An example of register allocation

CONCLUSION
In this paper, we provided an overview of the Intel IA-64
compiler.  We described the organization of the compiler,
as well as the features and functionality of several
optimization techniques.  The compiler applies region and
loop-level control and data transformations, as well as
global optimizations, to programs.  All the optimization
techniques in the compiler are aware of profile information
and effectively use interprocedural analysis information.
The optimizations effectively target three main goals while
compiling an application: i) to minimize the overhead of
memory accesses, ii) to minimize the overhead of
branches, and iii) to maximize instruction-level parallelism.
We described how the optimization techniques in the Intel
IA-64 compiler take advantage of the IA-64 architectural
features for improved application performance.  We
illustrated the techniques with example codes, and we
highlighted the benefits as a result of specific
optimizations.  The Intel IA-64 compiler incorporates all
the infrastructure and technology necessary to leverage
the IA-64 architecture for improved integer and floating-
point performance.

ACKNOWLEDGMENTS
We thank the members of the IA-64 compiler team for their
contributions to the compiler technology described in this
paper.  We also thank the reviewers for their excellent and
useful suggestions for improvement.

REFERENCES
[1] E. Morel and C. Renvoise, “Global optimization by

suppression of partial redundancies,” Comm. ACM,
22(2), February 1979, pp. 96-103.

[2] F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo, and P. Tu,
“A new algorithm for partial redundancy elimination

based on SSA form,” in  Proceedings of the ACM
SIGPLAN '97 Conference on Programming Language
Design and Implementation, June 1997, pp. 273-286.

[3] B. R. Rau and C. D. Glaeser, “Some Scheduling
Techniques and an Easily Schedulable Horizontal
Architecture for High-Performance Scientific
Computing,” in Proceedings of the 20th Annual
Workshop on Microprogramming and
Microarchitecture, October 1981, pp. 183-198.

[4] M. S. Lam, “Software Pipelining: An Effective
Scheduling Technique for {VLIW} Machines,” in
Proceedings of the ACM SIGPLAN 1988 Conference
on Programming Language Design and
Implementation, June 1988, pp. 318-328.

[5] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, “Overlapped
Loop Support in the Cydra 5,” in Proceedings of the
Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, April 1989, pp. 26-38.

[6] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, “Code
Generation Schema for Modulo-Scheduled Loops,” in
Proceedings of the 25th Annual International
Symposium on Microarchitecture, December 1992, pp.
158-169.

[7] IA-64 Application Developer’s Architecture Guide,
Order Number 245188-001, May 1999.

[8] B. R. Rau, “Iterative Modulo Scheduling: An Algorithm
for Software Pipelining Loops,” in Proceedings of the
27th International Symposium on Microarchitecture,
December 1994, pp. 63-74.

[9] J. Bharadwaj, K.N. Menezes, and C. McKinsey,
“Wavefront Scheduling: Path-Based Data
Representation and Scheduling of Subgraphs,” to
appear in Proceedings of the 32nd Annual
International Symposium on Microarchitecture
(MICRO32), (Haifa, Israel), December 1999.

[10] K. D. Cooper and K. Kennedy, “Interprocedural Side-
Effect Analysis in Linear Time,” in Proceedings of the
ACM SIGPLAN '88 Conference on Programming
Language Design and Implementation, June 1988, pp.
57-66.

[11] J. Knoop, O. Ruthing, and B. Steffen, “Lazy code
motion” in Proceedings of the ACM SIGPLAN '92
Conference on Programming Language Design and
Implementation, pp. 224-234, June 1992.

[12] B. Steensgaard, “Points-to Analysis in Almost Linear
Time” in Proceedings of the Twenty-Third Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 32-41, January 1996.



Intel Technology Journal Q4, 1999

An Overview of the Intel IA-64 Compiler 15

[13] C. Dulong, “The IA-64 Architecture at Work,” IEEE
Computer, July 1998.

[14] S. Carr, “Memory-Hierarchy Management” Ph.D.
Thesis, Rice University, July 1994.

[15] S. Carr and K. Kennedy, “Scalar Replacement in the
Presence of Conditional Control Flow,” Technical
Report CRPC-TR92283, Rice University, November
1992.

[16] S. Muchnik, Advanced Compiler Design
Implementation, Morgan Kaufman, 1997.

[17] M. Wolf and M. Lam, A Loop Transformation Theory
and an Algorithm to Maximize Parallelism, Parallel
Distributed Systems, Volume 2 (4), pp. 452-471,
October, 1991.

[18] W. Li and K. Pingali, “A Singular Loop
Transformation Framework Based on Non-Singular
Matrices ,” International Journal of Parallel
Programming, Volume 22 (2), 1994.

[19] T. Mowry, “Tolerating Latency Through Software-
Controlled Data Prefetching,” Ph.D. Thesis, Stanford
University, March 1994, Technical Report CSL-TR-94-
626.

[20] V. Santhanam, E. Gornish, and W. Hsu, “Data
Prefetching on the HP PA-8000,” in Proceedings of the
24th Annual International Symposium on Computer
Architecture, June 1997, pp. 264-273.

AUTHORS’ BIOGRAPHIES
Carole Dulong has been with Intel for over nine years.
She is the co-manager of the IA-64 compiler group.  Prior
to joining Intel’s Microcomputer Software Laboratory, she
was with the IA-64 architecture group, where she headed
the IA-64 multimedia architecture definition and the IA-64
experimental compiler development.  Her e-mail is
carole.dulong@intel.com.

Rakesh Krishnaiyer received a B.Tech. degree in
computer science and engineering from the Indian
Institute of Technology, Madras in 1993, and an M.S. and
Ph.D. degree from Syracuse University in 1995 and 1998,
respectively.  He currently works on high-level
optimizations for the IA-64 compiler at Intel.  His research
interests include compiler optimizations, high-performance
parallel and distributed computing systems, and computer
architecture.  His e-mail address is
rakesh.krishnaiyer@intel.com.

Dattatraya Kulkarni received his Ph.D. degree in
computer science from the University of Toronto,
Toronto, Canada in 1997.  He has been working on
compiler optimization techniques for uniprocessor and

multiprocessor systems for the past nine years.  He is
currently with the Intel IA-64 compiler team.  His e-mail is
dattatraya.kulkarni@intel.com.

Daniel Lavery received a Ph.D. degree in electrical
engineering from the University of Illinois in 1997.  As a
member of the IMPACT research group under Professor
Wen-mei Hwu, he developed new software pipelining
techniques.  Since joining Intel in 1997, he has worked on
the architecture and compilers for IA-64.  He is currently
an IA-64 compiler developer in Intel's Microcomputer
Software Laboratory.  His e-mail address is
daniel.m.lavery@intel.com.

Wei Li  leads and manages the high-level optimizer group
for IA-64.  He has published many research papers in the
areas of compiler optimizations, parallel and distributed
computing, and scalable data mining.  He served on the
program committees for parallel and distributed computing
conferences.  He received his Ph.D. degree in computer
science from Cornell University, and he was on the faculty
at the University of Rochester before joining Intel.  His e-
mail address is wei.li@intel.com.

John Ng received an M.S. degree in computer science
from Rutgers University in 1975 and a B.Sc. degree in
mathematics from Illinois State University in 1973.  He
joined the Intel IA-64 compiler team three years ago. Prior
to that he was a Senior Programmer at IBM Corporation.
He has been working on compiler optimizations,
vectorization, and parallelization since 1982.  His e-mail is
john.ng@intel.com.

David Sehr received his B.S. degree in physics and
mathematics from Butler University in 1985.  He received
his M.S. and Ph.D. degrees from the University of Illinois
working under the direction of David Padua and Laxmikant
Kale.  His thesis work was in the area of restructuring
compilation of logic languages.  He joined Intel in 1992
and since that time has worked on loop optimizations,
scalar optimizations, and interprocedural and profile-
guided optimizations for IA-32 and IA-64.  He is currently
the group leader for the IA-64 compiler scalar optimizer.
His e-mail address is david.sehr@intel.com.



SoftSDV: A Presilicon Software Development Environment for the IA-64 Architecture 1

SoftSDV: A Presilicon Software Development
Environment for the IA-64 Architecture

Richard Uhlig, Microprocessor Research Labs, Oregon, Intel Corp.
Roman Fishtein, MicroComputer Products Lab, Haifa, Intel Corp.
Oren Gershon, MicroComputer Products Lab, Haifa, Intel Corp.

Israel Hirsh, MicroComputer Products Lab, Haifa, Intel Corp.
Hong Wang, Microprocessor Research Labs, Santa Clara, Intel Corp.

Index words: presilicon software development, dynamic binary translation, dynamic resource analysis,
processor performance simulation, IO-device simulation

Abstract
New instruction-set architectures (ISAs) live or die
depending on how quickly they develop a large software
base.  This paper describes SoftSDV, a presilicon soft-
ware-development environment that has enabled at least
eight commercial operating systems and numerous large
applications to be ported and tuned to IA-64, well in
advance of Itanium™ processor’s first silicon. IA-64
versions of Microsoft Windows ∗ 2000 and Trillian Linux*
that were developed on SoftSDV booted within ten days
of the availability of the Itanium processor.

SoftSDV incorporates several simulation innovations,
including dynamic binary translation for fast IA-64 ISA
emulation, dynamic resource analysis for rapid software
performance tuning, and IO-device proxying to link a
simulation to actual hardware IO devices for operating
system (OS) and device-driver development.  We describe
how SoftSDV integrates these technologies into a
complete system that supports the diverse requirements of
software developers ranging from OS, firmware, and
application vendors to compiler writers.  We detail
SoftSDV’s methods and comment on its speed, accuracy,
and completeness.  We also describe aspects of the
SoftSDV design that enhance its flexibility and maintain-
ability as a large body of software.

                                                                
∗ Other brands and names are the property of their
respective owners.

INTRODUCTION
The traditional approach to fostering software develop-
ment for a new ISA such as IA-64 is to supply
programmers with a hardware platform that implements the
new ISA.  Such a platform is commonly known as a
software-development vehicle (SDV) and suffers from a
key dependency: it cannot be assembled until first silicon
of the processor has been manufactured.  This paper
describes how Intel eliminated this dependency for IA-64
by building an SDV entirely in software through the
simulation of all processor and IO-device resources
present in an actual hardware IA-64 SDV.  This simulation
environment, which we call SoftSDV, has enabled
substantial development of IA-64 software, well in
advance of an Itanium processor’s first silicon.

A principal design goal for SoftSDV is that it support
development all along the software stack, from firmware
and device drivers to operating systems and applications
(see Figure 1).  The performance of each of these layers of
software is dependent upon optimizing compilers, which
themselves must be carefully tuned to IA-64 [1, 2].  Each
of these types of software development has a different set
of requirements with respect to simulation speed, accu-
racy, and completeness.

Application developers, for example, are primarily
interested in simulation speed, whereas optimizing-
compiler writers value accuracy in processor-resource
modeling so that they can evaluate the effectiveness of
their code-generation algorithms.  OS, firmware, and
device-driver developers, on the other hand, require
completeness in the modeling of platform IO devices and
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system-level processor functions (e.g., virtual-memory
management, interrupt processing, etc.).

Not only do requirements vary based on the type of code,
but their relative importance shifts depending on the stage
of software development.  Early efforts to port and debug
code to IA-64 are best aided by very fast ISA emulation,
whereas successive tuning of code for performance
requires ever-increasing levels of simulation accuracy.
Similarly, in the early stages of porting an OS to IA-64, it is
sufficient to model a basic set of boot IO devices.
However, once that OS is up and running, the meaning of
simulation “completeness” expands to include arbitrary
new IO devices as OS developers seek to port as many
device drivers to IA-64 as possible.

Often overlooked, but equally important features of a
simulation infrastructure are its flexibility and maintain-
ability.  SoftSDV has been under development for nearly
as long as IA-64 and has had to track and rapidly adapt to
improvements in the ISA definition; flexibility and
maintainability of the simulation infrastructure were
absolutely essential.  But here too, the requirements
change over time.  Early in the development of a new ISA,
design changes are frequent, and a simulation environ-
ment must adapt quickly.  Later, as the hardware definition
becomes more concrete, flexibility gradually becomes less

important, and it can be traded for increased simulation
speed or accuracy.

These diverse and shifting requirements underscore a
fundamental truth of simulation: a single technique or tool
cannot meet the needs of all possible types of software
development at all times. SoftSDV acknowledges this fact
through an extensible design that accommodates the best
features of multiple innovative simulation technologies in
a single, common infrastructure.  The resulting system
enables IA-64 software developers to select the combina-
tion of simulation speed, accuracy, and completeness that
is most appropriate to their particular needs at a given
time, while at the same time preserving the flexibility and
maintainability of the overall simulation infrastructure.

In the next section, we review related work and then briefly
overview the hardware components typically found in an
IA-64 SDV.  We then present the software architecture of
SoftSDV and describe each of its component processor
modules and IO-device modules in detail.  We conclude
with a discussion of results and a summary of our
experiences and lessons learnt.

Figure 1: The SoftSDV software architecture
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RELATED WORK
A survey of recent simulation research reveals a continu-
ous tension between the conflicting goals of simulation
speed, accuracy, completeness, and flexibility.

A good example of a technique that achieves very high
simulation speeds at the expense of accuracy is dynamic
binary translation.  This method for fast ISA emulation
works by translating instructions from a target ISA into
equivalent sequences of host ISA instructions.  By
caching and reusing the translated code, an emulator can
dramatically reduce the fetch-and-decode overhead of
traditional instruction interpreters. Cmelik and Keppel
describe an early implementation of this method in their
Shade∗ simulator, and they provide an excellent survey of
several related techniques [3].  The Embra simulator has
shown that dynamic binary translation can be extended to
support the simulated execution of a full OS by emulating
privileged instructions, virtual-to-physical address
translation, and exception and interrupt processing [4].

Fast ISA emulators such as Shade and Embra are unable
to predict processor performance at a detailed clock-cycle
level.  When simulation accuracy and flexibility are of
primary importance, a better approach is often that of a
simulation tool set, such as SimpleScalar, which enables
rapid construction and detailed simulation of a range of
complex microarchitectures [5].  SimpleScalar has indeed
exhibited a high degree of flexibility as evidenced by its
extensive use in the research community for a variety of
microarchitecture studies.  But this flexibility and accuracy
comes at a cost: detailed SimpleScalar simulations can be
more than 1,000 times slower than native hardware,
whereas fast ISA emulators like Shade and Embra exhibit
slowdowns ranging from 10 to 40, depending on the type
of workload that they simulate.  These numbers illustrate
the compromises that simulators must make between
speed, accuracy and flexibility, with Shade and Embra
representing one end of the spectrum and SimpleScalar
situated near the other end.

Many other intermediate points along the speed-accuracy-
flexibility spectrum are possible.  FastCache, for example,
extends dynamic binary translation techniques to simulate
the performance of simple data-cache structures with
slowdowns in the range of 2-7, but it is limited with respect
to other forms of microarchitecture simulation [6].  At the
expense of some flexibility, FastSim uses memoization
(result caching) to model a full out-of-order processor
microarchitecture with slowdowns ranging from 190 to 360,
a speedup of roughly 8-15 relative to comparable SimpleS-
                                                                
∗ Other brands and names are the property of their
respective owners.

calar simulations [7].  Another way to trade speed for
accuracy is sampling: running only certain portions of a
target workload through a detailed performance simulator.
If the samples are chosen carefully and are of sufficient
length, they can predict the performance of the entire
workload with far less simulation time, but at the expense
of some increased error [8].

SimOS [9] and SimICS∗ [10] are both good examples of
simulation systems that have attained a high level of
completeness.  Both extend their simulations beyond the
processor to include IO-device models, and they are able
to support the simulated execution of complete operating
systems as a result.

SoftSDV uses many techniques similar to those described
above.  However, because of the unique capabilities of IA-
64 and the diversity of software development that
SoftSDV must support, we found we had to reexamine
many of the techniques in a new context.  To explain some
of the issues, we briefly overview the components in a
typical IA-64 SDV in the next section.

COMPONENTS OF AN IA-64 SDV
At the core of an actual hardware IA-64 SDV platform is
one or more Itanium processors that implement the IA-64
ISA.  For the purposes of this paper, the most relevant
aspects of IA-64 are the following:1

• Memory Management: An IA-64 processor translates
64-bit virtual memory accesses through split instruc-
tion and data TLBs, which are refilled by software
miss handlers with a hardware assist.  The TLB en-
forces page-level read, write, and execute permissions
for up to four privilege levels.

• Predication: Most IA-64 instructions can be executed
conditionally, depending on the value of an optional
predicate register associated with the instruction.

• Data Speculation: IA-64 supports an advanced-load
operation, which enables a compiler to move loads
ahead of other memory operations even when the
compiler is unable to disambiguate neighboring mem-
ory references.  The address from an advanced load is
inserted into an Advanced Load Address Table
(ALAT), which must be checked for data dependen-
cies on subsequent memory operations.  A load-
check operation examines the ALAT and invokes fix-
up code whenever necessary.

                                                                
1 More details regarding IA-64 are available from the Intel
Developer’s Web Site [2].
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• Control Speculation: An IA-64 compiler can move
loads before branches that guard their execution.  If a
speculative load causes an exception, the exception is
deferred, and a Not-a-Thing (NaT) bit associated with
the destination register is set instead.  NaT bits are
propagated as a side effect of any uses of the specu-
lative load value, and they are checked after the
controlling branch finally executes.

• Large Register Set: IA-64 includes 128 general
registers and 128 floating-point registers, along with
numerous other special-purpose registers. IA-64 reg-
isters assist loop-pipelining scheduling through their
support of rotating registers.

Predication, speculation, and abundant registers are all
part of a key principle behind the design of IA-64: to
enable a compiler to explicitly expose instruction-level
parallelism (ILP) to the hardware microarchitecture
[1, 2].  By helping to relieve the hardware of finding ILP,
IA-64 makes possible higher-frequency processor
implementations.  The compiler expresses instruction
parallelism to the hardware by collecting instructions into
instruction groups, which are independent instructions
that can be executed at the same time.  As we will see, the
above IA-64 features create new challenges and opportu-
nities for processor-simulation techniques.

In addition to an Itanium processor, an IA-64 SDV
typically contains a chipset (e.g., 460GX), with support for
PCI and USB IO-device busses, and a basic collection of
IO devices suitable for running an operating system.  This
includes an IO streamlined APIC interrupt controller and
an assortment of keyboard, mouse, storage, network, and
graphics devices.  Since a hardware SDV typically
contains a number of expansion PCI slots, and a USB host
controller, the range of devices it supports is limited only
by the availability of devices designed to these bus
standards.  Our goal with SoftSDV was to provide the
same level of IO-device support.

SOFTWARE ARCHITECTURE
The software architecture of SoftSDV is based on a
simulation kernel that is extended through the addition of
modules (see Figure 1 and Table 1).  A SoftSDV module
either models a hardware platform component (such as a
processor or IO device), or it implements a simulation
service (such as a trace-analysis tool).  We call these two
types of modules component modules and service
modules, respectively.

SoftSDV modules share data and communicate with one
another through a set of abstractions provided by the
kernel: spaces, events, data items and time.

• SoftSDV spaces are used to model how platform
components communicate through physical-address
space, IO-port space, PCI-configuration space, and
other linearly addressable entities such as disk images
and graphics framebuffers.  Modules can create
spaces and then register access-handler functions
with the kernel for a certain address region in a space.
When another module reads or writes an address in
that range, the SoftSDV kernel routes the access to
the registered handler.  SoftSDV spaces enable an IO-
device module, for example, to specify how its control
registers behave by mapping them to specific ad-
dresses in IO-port space.

• SoftSDV events enable a module to request notifica-
tion of some occurrence inside another module.
Events can be used to model IO-device interrupts, or
to collect event traces, such as a sequence of OS con-
text switches, which might be analyzed by a trace-
processing module.

• SoftSDV data items provide a mechanism for modules
to name and share their state with other modules.
Named data items enable a processor module, for ex-
ample, to make its simulated register values available
to a debugging tool.  Some data items are managed by
the SoftSDV kernel itself and they are sometimes used
to specify configuration data that modules can query

Module Characteristics Typical Usage

Fast ISA Emulator Highest speed, no cycle-accurate perf.
data

Rapid IA-64 app. and OS development

Resource Analyzer Medium speed/accuracy, limited flexibility Large application, OS and compiler tuning

Processor
Modules

Microarch Simulator Highest accuracy and flexibility Advanced compiler and microarch co-design

Basic  IO Devices Provide platform-modeling completeness Early OS porting with standard boot devicesIO-device
Modules

IO-Proxy Module Links to arbitrary PCI and USB devices Advanced device-driver development

Table 1: Standard SoftSDV component modules
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to determine how they should function during a
simulation.

• SoftSDV time  enables modules to synchronize their
interactions to a common clock and to schedule the
execution of future events.  A disk-controller model,
for example, can register a callback function with the
kernel to be called after some pre-computed delay that
represents the time for a simulated seek latency.

SoftSDV has a standard set of tracing and debugging
modules that are built upon the abstractions above.
SoftSDV events enable the construction of tracing
modules that specify, by event name, items to be traced.
Traceable events include instructions, addresses, IO-
device accesses, OS events, etc.  SoftSDV traces are
suitable for trace-driven cache and processor performance
simulators, and they can also provide input to the Vtune
performance analyzer [11].  The SoftSDV debugger uses
SoftSDV events and data items for setting instruction and
data breakpoints, reading memory values, examining
register values for a specific simulated processor, etc.

SoftSDV also includes a standard set of component
modules, including three IA-64 processor models, each
offering different levels of simulation speed, accuracy, and
flexibility.  For completeness in platform modeling,
SoftSDV also includes an assortment of IO-device models
and a special IO-proxying module that links the simulation
to actual PCI and USB devices installed in the simulation
host machine.  Table 1 summarizes these standard
component modules and serves as an outline for the
remainder of this paper, in which we detail the techniques
used by each of these modules.

FAST IA-64 EMULATION
SoftSDV’s fastest processor module is an emulator that
implements the full IA-64 instruction set, including all
privileged operations, address translation, and interrupt-
handling functions required to support operating systems.
The principal goal of the emulator is speed; it is unable to
report cycle-accurate performance figures.

SoftSDV’s emulator uses dynamic binary translation to
convert IA-64 instructions into sequences of host (IA-32)
instructions called capsules, which consist of a prolog
and a body (see Figure 2).  The capsule body emulates the
IA-64 instruction in terms of IA-32 instructions executed
on the host machine.  In the example shown in Figure 2, a
64-bit Add instruction is emulated by a sequence of IA-32
instructions that loads the required source registers from a
simulated IA-64 register file (held in host memory),
performs the simulated operation (a 64-bit Add using the
32-bit Add operations of IA-32), and then stores the result
back to the simulated register file.

The capsule prolog serves two purposes.  First, it
implements behavior that is common to all IA-64 instruc-
tions, such as predication and control speculation.  A
portion of the prolog code checks each instruction’s
qualifying predicate, and it jumps over the capsule to the
next instruction if the predicate is false.  Similarly, another
portion of the prolog examines the NaT bits of all source
operands, and it propagates any set values to destination
registers, or it generates a fault as dictated by the
semantics of the instruction.  A second use for the prolog
is to implement a variety of simulation services, such as
execution tracing, instruction counting, and execution
breakpoints, which we discuss later.

The emulator translates instructions only as needed in
units of basic blocks, which it caches in a translation
database.  Since capsules require on average 25 IA-32
instructions for each IA-64 instruction that they emulate, a
large simulated workload can quickly consume host
memory, causing the host OS to begin paging to disk.  The
emulator limits the maximum size of its translation cache to
prevent host-OS paging, choosing instead to retranslate
IA-64 instructions, a far faster operation.

SoftSDV capsules eliminate the need for a full fetch-
decode-execute loop. Instruction emulation begins with an
indirect branch that goes directly to a capsule corre-
sponding to the current simulated instruction pointer (IP).
Since capsules are linked directly from one to another,
execution proceeds from capsule to capsule until an
untranslated instruction is encountered, and control

Translation
Process

Original IA-64 Code

mov eax , r2.low   ; load r2
mov ebx , r2.high
mov ecx , r3.low   ; load r3
mov edx , r3.high
add ecx, eax       ; 64-bit add
adc edx, ebx
mov r1.low, ecx    ; store r1
mov r1.high, edx

Capsule Body (for Add)

if (!p6) jmp over capsule

if (ica==0) jmp to ica_event

decrement ica counter

r1.NaT = r2.NaT | r3.NaT

Capsule Prolog (generic)

.....

if (ica==0) jmp to ica_event

decrement ica counter

Capsule Prolog (generic)

(p6)  ADD r1 = r2, r3

         SUB r13 = r17, r6

        LD1 r2 = [r12] ;;

        BR LOOP

...

...

12
Timer

ICA Event-Delay List

7
Keyboard

Equivalent IA-32 Code

Sub Capsule Body

Load Capsule Body

Add Capsule Body

Branch Capsule Body

Capsule Prolog

Capsule Prolog

Capsule Prolog

Capsule Prolog

Figure 2: Binary translation
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transfers back to the translator.

SoftSDV executes nearly all IA-64 instructions as cap-
sules, but certain complex instructions are emulated with
calls to C* functions.  Throughout the development of
SoftSDV, we considered moving to capsule-based
implementations for various complex operations, but we
frequently found that the resultant reduction in flexibility
and maintainability of the emulator did not justify the
optimization.  We also considered more aggressive
intercapsule optimizations, such as those used by Shade∗
and Embra (e.g., avoiding loads/stores to the simulated
registers in host memory when neighboring instructions
use the same register).  Unfortunately, with the very large
IA-64 register set, and the limited number of IA-32 host
registers, we found such optimizations ineffective.
Intercapsule optimizations suffer the further side effect of
limiting the granularity at which debug breakpoints can
conveniently be set.

Address Translation
SoftSDV models simulated physical memory by allocating
pages of host virtual memory to hold the contents of
simulated data.  For any simulated memory reference, the
emulator must first translate a simulated virtual address to
a simulated physical address (V2P), and then further
translate this physical address to its allocated host
address (P2H).  The composition of these two translation

functions provides a full translation from virtual to host
memory (V2H = P2H(V2P(Virtual))).

The emulator uses a data structure called a V2H cache to
accelerate address translation (see Figure 3).  When an IA-
64 load/store operation or branch/call instruction refer-
ences a virtual address, the emulator first searches a V2H
cache using highly efficient assembly code called from the
capsule.  In the common case, the translation is found, and
the memory reference is quickly satisfied.  In the case of a
V2H miss, a full translation sequence (V2P and P2H) is
activated by simulating an access to the TLB and an OS-
managed page-table structure.  If the translation succeeds,
the V2H table is updated, and execution returns to the
capsule.  If the search fails to find a valid translation, then
a simulated page fault or protection violation has oc-
curred, and SoftSDV raises an exception for the simulated
OS to handle.

The emulator implements V2H tables as variable-sized
caches of valid address mappings.  This is in contrast to
Embra’s MMU relocation array, which is a fixed-size 4-
MB table that maps every possible page in a 32-bit virtual
address space [4].  While the Embra approach guarantees
a 100% hit rate for any valid mapping, we found this
approach unusable for modeling a 64-bit virtual address
space.  Since V2H refills are a principal source of slow-
downs, the emulator uses a number of optimization
techniques to accelerate refills, and it supports configur-
able V2H table sizes to tune hit rates to the requirements
of a given workload.

Page Protection
The emulator implements page protections by building a
V2H cache for each type of memory access: V2H-read,
V2H-write, and V2H-execute.  A read-only page, for
example, present in the V2H-read cache does not contain
an entry in the V2H-write cache.  By dividing the V2H
caches in this way, the emulator avoids performing
protection checks explicitly in each capsule; it merely
generates code to access the V2H cache appropriate to the
desired operation (e.g., load, store, branch), and a V2H
miss enforces the protection.  The emulator builds a set of
read-write-execute V2H caches for each privilege level (i.e.,
12 V2H caches in all) and simply switches between them
when privilege levels change.  The use of multiple V2H
caches is a memory-speed tradeoff.  At the expense of
extra memory devoted to the V2H caches, the emulator
simplifies the protection-checking code in each capsule,
thus accelerating overall instruction-emulation times.

Speculative Data Accesses
Data speculation with advanced loads requires special
treatment by the emulator.  The capsule for an advanced
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load includes code that inserts the load address into a
simulated ALAT.  The capsules for any subsequent store
instructions include highly optimized code (11 host
instructions) that searches the ALAT for an address
match.  Any entries with matching addresses are removed
from the ALAT so that a subsequent load-check operation
will invoke the appropriate fix-up code.

Instruction Fetching
Rather than point directly to translated code capsules,
V2H-execute entries reference a page of pointers to code
capsules.  This level of indirection solves two problems.
First, since the emulator lazily translates instructions a
basic block at a time, many portions of a code page may be
untranslated; these cases are handled by pointing to a do-
translate function, rather than a capsule entry point.
Second, since capsules are of varying size, their entry
points are not simple to calculate given only a virtual
address for an instruction; the pointers-to-capsules page
greatly simplifies simulation of branch instructions and
arbitrary jumps to code, such as from a debugger.

The emulator avoids V2H-execute lookups by directly
chaining a branch-instruction capsule to its target-
instruction capsule, provided they reside on the same
page.  For cross-page branches, the chain passes through
the V2H-execute cache to ensure that the code page is
accessible.

The emulator supports self-modifying code by preventing
a page from residing in both the V2H-write and V2H-
execute caches at the same time.  Any attempt to write to a
code page causes a V2H-write miss, which causes the
page to be removed from the V2H-execute cache.  Any
subsequent attempt to execute instructions from the page
causes a V2H-execute miss, which results in a lazy
retranslation of the modified code page.

Interrupt Processing
The emulator can potentially run for long periods of time
without ever leaving its capsules.  This presents a problem
because other SoftSDV modules (such as simulated IO
devices) might need to interrupt processor execution.  The
emulator provides a solution to this through a mechanism
called an instruction-count action (ICA).  ICA is based on
a sorted list of event-delay pairs that define a set of
callback functions to be executed after some number of
instructions have executed.  The delay of the event at the
head of the ICA list is decremented in the prolog of each
capsule (see Figure 2). When the delay reaches 0, the
event is triggered by calling its associated callback
function. After completion of the callback function, the
event-delay pair is deleted from the ICA list.

The ICA mechanism is integrated with the SoftSDV time
abstraction, providing a coarse-grained notion of time
based on number of instructions executed.  It is also ideal
for implementing certain IA-64 debugging facilities, such
as single-step instruction execution, which would
otherwise require retranslation of instruction capsules.

Multiprocessor Simulation
The emulator can simulate a platform with up to 32
processors in a symmetric shared-memory configuration.
Only one processor is simulated at a time, with switches
between simulated processors scheduled in a simple
round-robin order with a configurable time slice.  All
processors share memory, translations, and all simulated
platform devices. Capsules indirectly access simulated
processor state and processor-specific emulator state
(e.g., V2H caches, ICA lists, etc.) through a pointer, which
enables rapid switching between simulated processors via
a simple pointer change.

DYNAMIC RESOURCE ANALYSIS
The emulator described in the previous section is ideal for
rapid porting of operating systems and applications to IA-
64.  Once the porting is complete, a software developer
may be interested in tuning code for performance, which
requires trading some simulation speed for increased
accuracy.  SoftSDV’s second processor module offers just
this: it aims to achieve a level of performance-prediction
accuracy that is within 10% of a detailed Itanium microar-
chitecture simulator (which we describe in the next
section), while retaining the highest possible simulation
speed.

SoftSDV applies three principles to achieve this goal.
First, it tightly integrates performance analysis with its fast
IA-64 emulator, enabling it to overcome the bottlenecks of
traditional trace-driven performance simulation.  Second, it
assumes an in-order processor pipeline and selectively
models only those processor resources that have the
greatest effect on overall performance (e.g., first-level
caches, branch prediction, functional units, etc.).  Third, it
caches the results of its resource analysis to speed future
performance simulation.  We call this collection of
methods dynamic resource analysis, and we refer to this
SoftSDV module as the resource analyzer.

Processor and Memory Resources
Processor performance analysis ultimately boils down to
accounting for the resource requirements of executing
code.  Take, for example, the code shown in Figure 4,
which shows a subtract and a load in one instruction
group and an add and a branch in a second instruction
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group (the notation “;;” separates instruction groups).
The load operation:

LD1 r2 = [r12] ;;

requires the resources of a source-address register (r12), a
destination register (r2), and a data-cache line and read
port.  Similarly, the add instruction:

(p6) ADD r1 = r2, r3

requires the resources of an ALU functional unit, a
predicate register (p6), two source registers (r2 and r3),
and a destination register (r5).

A processor examines instruction groups to find collec-
tions of instructions (called an issue group) that can be
dispatched in parallel subject to the resource constraints
of its execution pipeline.  When all the required resources
of all instructions in an issue group are available, the
instructions can execute immediately; otherwise, they stall.
In the example in Figure 4, the load feeds the add through
register r2.  If the load stalls because of a data cache miss,
then the add will stall as well because it requires the r2
resource.  The resource analyzer identifies such resource
dependencies by dividing its operation between two
phases, each of which is tightly integrated with the IA-64
emulator. A static resource-analysis phase is invoked by
the emulator’s translator, and a dynamic-analysis phase is
invoked by translated code capsules.

Static Resource Analysis
Like the IA-64 emulator, the resource analyzer examines
code lazily, as it is first encountered.  Whenever the IA-64
emulator completes translation of a new basic block of
code, it calls the resource analyzer, which examines the
basic block to find issue groups and then statically
determines the microarchitectural resources required by
each issue group.  The analyzer caches this resource list
to avoid the cost of repeating the analysis each time the
issue group executes (see Figure 4).  The resource list
includes both sources, which are required for the issue
group to execute, and destinations, which are resources
that will be available after the issue group executes.

Dynamic Analysis Phase
The dynamic phase of the analyzer is invoked by emulator
capsules after execution of each basic block.  The analyzer
examines instruction resource requirements by modeling a
simplified Itanium microarchitecture consisting of a front
end, a back end, and caches.

The analyzer’s back end keeps track of the availability of
core pipeline resources (e.g., register files, functional
units, etc.) that could stall the execution of an issue group.
Each resource that is required for the execution of the
current issue group is checked for its availability in the
current cycle. If it is not available, then the issue group
stalls execution, and the cycle counter is advanced to the
time when all required resources will be available and the
issue group can enter the execution stage.  Next, the
resource state is updated to reflect the results of the
current issue group. For each destination of the instruc-
tions in the issue group (excluding loads), the clock cycle
in which these resources will be available for use by
subsequent instructions is calculated by adding each
instruction’s latency to the cycle in which the issue group
was dispatched.

The analyzer’s front end models branch prediction and
instruction-fetching mechanisms in accordance with the
Itanium microarchitecture.  Since all instructions traverse
the front end several cycles before they reach the back
end, the resource analyzer maintains two separate cycle
counts, one for the back-end execution (as described
previously) and one for the front end.  The two cycle
counters are synchronized through a model of a decou-
pling buffer, which specifies the cycle in which an issue
group can be dispatched. If the issue group is not ready,
the decoupling buffer stalls the back end.  Conversely, if
the decoupling buffer is full, it causes front-end stalls.

The analyzer models instruction and data caches to
account for performance lost due to cache misses.  These
cache models are referenced by both the front end (for
instruction fetches) and the back end (for data references).

    SUB                r17, r6, ALU                         r13
    LD1                 r12, Memory Unit                 r2

    ADD                p6, r2, r3, ALU                     r1
    BR                   Branch Unit                         IP

Translation
Process

Original IA-64 Code Equivalent IA-32 Code

Sub Capsule Body

Load Capsule Body

Add Capsule Body

Branch Capsule Body

Capsu le  Pro log

Capsu le  Pro log

Capsu le  Pro log

Capsu le  Pro log

Call Analyzer()

Static
Resource
Analysis

Resource List
Issue Groups Sources Destinations

#1
#2

Dynamic analyzer
called during code execution.

(p6)  ADD r1 = r2, r3

         SUB r13 = r17,  r6

        L D 1  r 2  =  [ r 1 2 ]  ; ;

        B R  L O O P

...

...

Figure 4: Resource analysis for two issue groups
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The IA-64 emulator maintains its own copy of the first-
level data cache and achieves speed through integration
with its V2H translation tables in an approach similar to
that of Lebeck’s FastCache [6].  This copy contains a
subset of the data-cache lines simulated by the resource
analyzer. When the emulator detects a hit, it continues
execution without calling the analyzer. In the rare case
when the emulator suspects a cache miss, it calls the
analyzer for verification. When a miss occurs in the
analyzer cache, the analyzer updates its own cache
contents and informs the emulator about the cache line it
replaced.

The end results of the analysis described above are a set
of performance metrics (e.g., branch-prediction accuracy,
cache misses, stall cycles, etc.), which are mapped onto
SoftSDV data items so that they can be read by a perform-
ance visualization tool, such as the Vtune performance
analyzer.

DETAILED PROCESSOR
MICROARCHITECTURE SIMULATION
The dynamic resource analyzer described previously is
ideal for rapid tuning of compilers, operating systems, and
large applications, where approximate performance of a
fixed microarchitecture is acceptable.  For other applica-
tions, such as compiler tuning for a new microarchitecture
under development, a further shift along the speed-
accuracy-flexibility spectrum is needed.  To deal with such
situations, SoftSDV works together with a simulation
toolset for exploration of IA-64 microarchitectural designs.
SoftSDV’s third processor module, a detailed model of the
Itanium microarchitecture, is written using this toolset, as
are other future IA-64 microarchitectures currently under
development by Intel.

IA-64 Microarchitecture Simulation Toolset
The toolset consists of two main components: an event-
driven simulation engine, and a set of facilities for
functional evaluation of IA-64 instruction semantics.

The event-driven simulation engine provides a flexible set
of primitives for modeling microarchitectural resources,
arbitration, and accounting of processor cycles. A
processor pipeline is modeled as a set of communicating
finite state machines through which tokens representing
instructions or data are evaluated on a cycle-by-cycle
basis. Whenever a token cannot acquire a certain resource
(e.g., a latch or port), a stall condition is encountered and
its cycle penalty is accounted for. The total execution time
of a workload is derived from the accumulation of cycles
spent by all tokens that traverse the pipeline.

The functional evaluation of IA-64 instruction semantics
is provided by a set of four interfaces called by different
stages of the event-driven microarchitecture model:

• Fetch  provides a decoded instruction, given an IP.

• Execute computes the results of an instruction in the
context of some microarchitectural state.

• Retire commits the microarchitectural state to the
permanent architectural state.

• Rewind rolls back the unretired microarchitectural
state to previously defined values.

By dividing the interfaces in this way, a processor model
is able to express complex microarchitectural interactions
involving speculative instruction execution.

Speed-Accuracy Modes and Sampling
Like the resource analyzer, the Itanium microarchitecture
model is tightly integrated with the IA-64 emulator
through an interface that enables the sharing of the
architectural state (memory and processor registers).  This
interface makes it possible to dynamically change
simulation speed and accuracy as a workload runs.  It is
possible, for example, to rapidly advance through the
simulated boot of an OS with the fast IA-64 emulator.
Then, prior to the execution of some workload of interest,
the state of the processor’s caches is initialized using
memory traces produced by the emulator.  When detailed
simulation is desired, the microarchitectural simulator
reads the current machine state from the emulator, and
begins its simulation.  After running in detailed mode for
some time, execution can return to the fast mode to
advance deeper into a workload’s execution.

SoftSDV supports both uniform sampling at some regular,
predefined period, and event-based sampling.  For event-
based sampling, special markers are compiled around
regions of interest in a workload.  SoftSDV dynamically
recognizes such markers as a workload executes, and
generates corresponding SoftSDV events, which are
monitored by the processor modules to determine when
they should switch between speed-accuracy modes.

IO-DEVICE MODULES
SoftSDV provides a standard collection of IO-device
models suitable for supporting the simulated execution of
a complete IA-64 operating system, including its basic
device drivers.  These include selected 460GX chipset and
boardset functions (such as interrupt controllers, periodic
timers, serial port, mouse, keyboard, etc.) as well as models
for assorted storage and graphics controllers (such as
IDE/ATA, ATAPI CD-ROM, VGA, etc.).
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A SoftSDV device model typically consists of two halves:
a front half that implements the device interface as
expected by a simulated device driver, and a back half that
simulates the device function.  The implementation of
many device models is a straightforward conversion
between device commands and host-OS services.  Models
for the keyboard and mouse, for example, field host-OS
window events (keypress up/down, pointer movement,
etc.) and convert them into equivalent device events (a
keyboard interrupt and scancode).  Similarly, the serial-
port model connects to the actual serial port of the host
machine through host-OS calls, and it ferries data back
and forth between the simulated and actual serial ports.

IO-Device Services
Since many devices offer a similar function (e.g., storage),
but with differing interfaces (e.g., IDE/ATA, ATAPI,
SCSI), we identified points in common among device
models and structured them as reusable IO-device
services, encapsulated in their own SoftSDV modules.  A
disk-image service, for example, provides functionality
useful for any storage model. It holds the contents of a
simulated disk in a file or a raw disk partition in the host
machine, and has the ability to log all changes to the
simulated disk’s contents.  An off-line utility can then
either commit or discard those changes at the end of a
simulation.  The disk-image service maps itself onto a
SoftSDV space, where its functionality can be accessed by
any disk-interface model.

Similarly, a display service maps a generic flat framebuffer
surface onto a SoftSDV space, and it reflects accesses to
this surface in a host-OS window, or directly to a second
dedicated display attached to the simulation host machine.
This structuring relieves graphics-adapter models from the
details of how a framebuffer is displayed so that they can
focus instead on simulated processing of graphics
commands.  It also enhances SoftSDV maintainability,
since it decouples graphics models from the host-OS
windowing system; when porting to a new host OS, only
the display service and not each graphics model must be
rewritten.

Pseudo Devices
Some SoftSDV modules model a fictitious device, or only
some aspect of an actual device.  We have, for example,
built a pseudo-device module that maps the resource
requirements of multiple devices into PCI configuration
space.  Although not backed by actual PCI-device models,
these headers present to a simulated OS the illusion of a
platform with multiple PCI devices, and thus enable rapid
testing of the OS’s device configuration and plug-and-
play algorithms.  Such a test environment is, in fact, far
more convenient than an actual hardware platform since

there is no need to physically populate actual PCI slots
with various devices to create different test cases.  We
have experimented with other types of pseudo devices,
such as an IO-monitoring service, which would enable the
replaying of keyboard and mouse input to a graphical
windowing system in a reproducible and OS-independent
manner.

IO-PROXY MODULE
Due to the broad diversity and sheer number of IO devices
in existence, we realized early in the development of
SoftSDV that it would be impossible to write software
models of all IO devices of interest.  Indeed, some IO
devices are so complex that modeling them in software
would be considerably more work than the ultimate goal of
porting their device drivers to IA-64.

An alternative solution is to link existing hardware devices
directly to SoftSDV so that they can be accessed and
programmed by simulated IA-64 device drivers under
development.  SoftSDV accomplishes this through a
combination of hardware and software components,
shown in Figure 5.  The hardware components consist of
an arbitrary target PCI device plugged into a custom-
designed riser board that performs memory and interrupt-
remapping functions.  The software components include a
SoftSDV module and a host OS device driver, which
function as proxies for interactions between the actual
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hardware PCI device and the simulated device driver. The
proxy components support three forms of interaction
between the target device and the simulated device driver
running on SoftSDV:

• commands issued from the driver to the device via IO-
port and memory-mapped IO accesses

• physical-memory accesses by the device

• interrupts from the device to the simulated driver

To support the largest possible set of devices, SoftSDV
enables each of these types of interactions without
requiring any specific knowledge of the target PCI device.
The following sections detail how each of the three forms
of interaction are supported.

Command Proxying
The key difficulty in proxying commands from the
simulated device driver is determining the location of the
control registers for arbitrary target devices.  Fortunately,
standard PCI configuration mechanisms provide a means
for accomplishing this.

All PCI devices support a configuration header visible to
software through well established locations in IO-port
space.  The PCI configuration header includes a set of
Base Address Registers (BARs), which the host proxy
device driver reads to determine the size and location of
the device’s control registers in IO-port space or physical-
address space.  The proxy driver passes this information
up to the proxy SoftSDV module, which registers access
handlers for those regions of address space with the
SoftSDV kernel.  The registered handler ensures that the
proxy module is called whenever the simulated device
driver sends commands to the device.  The proxy module
blindly passes such commands down to the proxy driver,
which in turn issues them to the actual hardware device.

The actual solution is somewhat more complex because by
the time the SoftSDV simulation starts running, the host
OS will have already configured the target device’s BARs
to avoid conflicts with other host IO devices.2  The
problem is that SoftSDV models an entirely different
(simulated) view of the platform, so the simulated OS may
attempt to configure the target device’s control registers
to a different set of locations that might conflict with other
host IO devices.  The proxy code solves this problem by
presenting a set of virtual BAR values to the simulated

                                                                
2 BAR registers are programmable to enable plug-and-play
software to assign conflict-free locations for device
control registers.

OS, and it remaps these values to the actual BAR values
used by the target device.

Remapping Physical Memory Accesses
After the simulated driver sends the device commands, the
target device will typically try to access physical memory
to retrieve or deposit data associated with the command.
This is a problem because the device is directed to perform
the operations in simulated physical memory, but the
device will operate on actual host memory belonging to
the host OS, causing it to crash.

The solution is to partition the host physical memory
between the host OS and the simulated OS.  During boot,
the host OS is configured not to use a certain amount of
host physical memory (in the example in Figure 5, the
reserved region is 64MB, starting at 192MB in host
memory).  The reserved region is then mapped to the
simulated memory in the SoftSDV user process.

This alone is not sufficient to solve the problem since the
device will still be programmed to use physical memory in
the range of 0-64MB when it should instead be accessing
memory in the range of 192-256MB.  The proxy code
could, in principle, interpret and modify the commands it
intercepts from the simulated driver and remap addresses
as appropriate before passing the commands to the actual
device.  Unfortunately, such a solution requires specific
knowledge of the device and its commands.  SoftSDV
instead  uses a small amount of hardware remapping logic
located on the riser board between the target device and
its host PCI slot.  The remapping logic relocates all
memory accesses made by the target device to the upper
partition of memory, based on flexible configuration
settings that specify the size of memory and the location
of the partition.

Interrupt Proxying
When the target device generates an interrupt, it is fielded
by the proxy code and sent to the simulated device driver.
Two problems make it difficult to perform these steps in a
device-independent manner. First, since interrupt lines are
commonly shared between PCI devices, the proxy code
must determine whether the interrupt is coming from the
target device or from some other host device.  Second, the
interrupt line must be temporarily deactivated; otherwise,
SoftSDV (which runs as an ordinary user-level process of
the host OS) will be continually interrupted, and the
simulated device driver will never have a chance to run.

Both of these operations are performed with the help of
some additional logic on the riser board that enables the
host proxy driver to sense and mask the interrupt from the
device, before it is driven onto the shared PCI interrupt
line.  When an interrupt occurs, the proxy driver uses this
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logic to determine if the interrupt is in fact originating from
the target device.  If so, it temporarily masks the interrupt
and passes control to the simulated device driver running
in SoftSDV.  The simulated driver, which understands the
specifics of the device, then properly dismisses the
interrupt at its source in the target device.

RESULTS AND EXPERIENCES
Table 2 summarizes the speed of SoftSDV’s three proces-
sor modules when running selected SPEC95 benchmarks
and when booting Microsoft 64-bit Windows∗ 2000.  It
also reports accuracy of the performance analyzer relative
to the microarchitecture simulator.3  All experiments were
performed on a 500-MHz Intel Pentium III processor-
based system with 512 MB of memory.

The emulator offers simulation speeds ranging from 10 to
25 million instructions per second (MIPS) for the SPEC
benchmarks, and about 3 MIPS for the simulated Win-
dows∗ boot.  The lower execution rate for the OS boot is
due to frequent address-space generation and process
switching, which increases V2H translation overheads.
Even so, at an average rate of 3 MIPS, SoftSDV is able to
perform a simulated Windows boot in less than seven
minutes, and is able to boot most other IA-64 operating
systems in under ten minutes.  The performance accuracy
of the emulator, however, is limited to reporting the total
number of instructions executed by a workload.

With error rates ranging from about 1% to 7% and
averaging 3%, the dynamic resource analyzer exceeded
our goal of predicting cycle-level processor performance
to within 10% of the detailed Itanium microarchitecture
simulator, and it does so at simulation rates ranging from
about 160 to 250 thousand instructions per second (KIPS).
These speeds are sufficient for tuning compilers and large
applications, which often require millions if not billions of
instructions to be executed.  These results suggest that by
explicitly exposing ILP, IA-64 compilers not only enable
simpler, higher-frequency processor implementations, but
they also make possible very fast processor performance
analysis.  The methods used by the analyzer do, however,
have their limitations.  The analyzer depends on the
existence of a reference microarchitectural simulator
against which it can be calibrated.  Also, its flexibility is
                                                                
∗ Other brands and names are the property of their
respective owners.
3 Table 2 does not report the accuracy of the other two
processor modules because the emulator does not provide
performance results and because we use the microarchi-
tecture simulator as the baseline for performance (i.e., for
the purposes of this paper, we consider its error to be 0%).

somewhat limited, since it assumes an in-order microarchi-
tecture and is unable to model hardware-controlled
speculative execution.

When flexibility and highest accuracy are required, there is
no substitute for detailed microarchitecture simulation.
The IA-64 microarchitecture toolset has proven itself
flexible enough to rapidly explore design options, both for
Itanium processors and for future IA-64 microarchitectures
currently under development at Intel.  The tradeoff for this
flexibility and accuracy is a much lower speed of simula-
tion, in the range of 1 to 2 KIPS.

We found building state-sharing mechanisms between the
three processor models to be a very powerful capability.
Had each processor simulator only been able to work
independently, methods such as sampling performance
over extended regions of large workloads would never
have been possible.  With sampling, we are able to freely
select the level of speed and accuracy required for a given
simulation.  For the SPEC benchmarks, our experience has
been that uniform sampling ratios of between 15:1 and 80:1
yield simulation results that are statistically very close to
full simulation.  Table 2 reports effective KIPS rates for
detailed microarchitecture simulation when a sampling
ratio of 40:1 is used.  The speedups relative to full
simulation are not a full factor of 40 because simulation
speeds are somewhat lower during the beginning of each
detailed sample, and because the simulation still includes
the overhead of running the emulator/analyzer during fast
mode.  Nevertheless, sampling effectively increases the
speed of simulation by more than an order of magnitude.

Our original plans were to develop software models for all
important IO devices, but we quickly realized that this
approach was intractable, which led us to develop the IO-
proxy module.  The IO-proxying approach became

AnalyzerWorkload Emulator
Speed
(MIPS) Speed

(KIPS)
Accu-
racy

(% error)

Microarch
Simulator
 Speed
(KIPS)

go 15.4 237 1.18% 15.0

m88ksim 14.8 252 1.04% 34.8

gcc 10.5 224 4.96% 17.2

compress 25.3 180 7.19% 18.4

li 13.5 227 4.06% 27.2

ijpeg 28.3 162 1.97% 27.8

perl 10.5 212 1.21% 18.6

vortex 11.8 158 2.79% 22.7

NT boot 3.00 211  
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particularly important for more complex device types, such
as SCSI controllers, ethernet interfaces, graphics adapters,
and USB host controllers, all of which successfully work
with the technique.  Not only did this approach save effort
in writing IO-device models in software, but it also better
supported a broad range of OS’s. Had we selected
particular SCSI or ethernet controllers to model, we would
be limited to supporting OS’s that had drivers for those
particular devices.  With the IO-proxy module, OS
developers can select virtually any PCI or USB device for
which their OS has a corresponding driver.

We achieved our goals of supporting IA-64 software
development all along the software stack.  SoftSDV
successfully runs:

• several commercial operating systems, including
Microsoft 64-bit Windows∗ 2000, Trillian Linux∗, IBM
Monterey-64∗, Sun Solaris ∗, Compaq Tru64∗, Novell
Modesto∗, and HP-UX∗.

• device drivers for at least a dozen complex PCI
devices ranging from graphics and ethernet adapters,
to SCSI and USB host controllers.

• numerous large applications

• three well-tuned IA-64 optimizing compilers

These layers of code were all working together, all
exercised before silicon, and all ready for bring-up.

The real test for SoftSDV came after the availability of
actual hardware SDVs. IA-64 versions of Windows 2000
and Trillian Linux* that were developed on SoftSDV
booted within ten days of the availability of Itanium
processor’s first silicon.  Drivers for complex devices,
such as SCSI disks, ethernet adapters, and graphics
controllers, quickly followed over the next week, and the
first MP operating systems were running a week after that.
Many of the problems encountered were due to setup and
configuration issues with the hardware SDV platform.
Once resolved, other operating systems have been
brought up even more quickly. IBM Monterey-64, for
example, was up and running in under three hours on a
qualified Itanium processor SDV.

For further discussion of the issues involved in porting
operating systems to IA-64, please see “Porting Operating
System Kernels to the IA-64 Architecture for Presilicon
Validation Purposes” [12], which appears in this same
issue of the Intel Technology Journal.

                                                                
∗ Other brands and names are the property of their
respective owners.

CONCLUSION
Central to the design of SoftSDV is extensibility.  By
building a core simulation kernel with a general set of
abstractions, we were able to unify several different
simulation technologies, each with their own unique
capabilities with respect to speed, accuracy, complete-
ness, and flexibility.

SoftSDV has proven that substantial amounts of complex
software can be developed, presilicon, even for an entirely
new ISA such as IA-64.  As a general, extensible simula-
tion infrastructure, SoftSDV is now being used in several
other efforts throughout the company, including IA-32
presilicon software development, performance simulation
of future IA-based microarchitectures, and processor
design validation.
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Abstract
The IA-64 architecture, an implementation of Explicitly
Parallel Instruction Computing (EPIC), enables the
compiler to exercise an unprecedented level of control
over the processor.  IA-64 architecture features maximize
code parallelism, enhance control over microarchitecture,
permit large and unique register sets, and more.  Explicit
control over parallelism adds a new challenge to assembly
writing, since the rules that determine valid instruction
combinations are far from trivial, introducing new
concepts such as bundling and instruction groups.

This paper describes Intel’s IA-64 Assembler and IA-64
assembly assistant tools, which can simplify IA-64
assembly language programming.  The descriptions  of the
tools are accompanied by examples that use advanced IA-
64 features.

INTRODUCTION
The IA-64 architecture overcomes the performance
limitations of traditional architectures and provides
maximum headroom for future development.  Intel’s
innovative 64-bit architecture allows greater instruction-
level parallelism through speculation, predication, large
register files, a register stack, advanced branch
architecture, and more.  64-bit memory addressability
meets the increasingly large memory footprint
requirements of data warehousing, e-Business, and other
high-performance server and workstation applications.
Significant effort in the architectural definition maximizes
IA-64 scalability, performance, and architectural longevity.

In the 64-bit architecture, the processor relies on the
programmers or the compiler to set parallelism boundaries.
Programmers can decide which instructions are executed
in each cycle, taking data dependencies and availability of
microarchitecture resources into account.  Assembly can
be the preferred programming language under the

following situations: when learning new computer
architectures in depth; when programming at a low level,
such as that required for BIOS, operating systems, and
device drivers; and when writing performance-sensitive
critical code sections that power math libraries, multimedia
kernels, and database engines.

Intel developed the Assembler and the Assembly
Assistant in order to aid assembly programmers in rapidly
writing efficient IA-64 assembly code, using the assembly
language syntax jointly defined by Intel and Hewlett-
Packard*.

The Intel® IA-64 Assembler is more than an assembly
source code-to-binary translator.  It can take care of many
assembly language details such as templates and
bundling; it can also determine parallelism boundaries or
check for those given by assembly programmers.  The
assembler can also allocate virtual registers and so enable
assembly programmers to write code with symbolic names,
which are replaced automatically with physical registers.

The Assembly Assistant is an integrated development
tool.  It provides a visual guide to some IA-64 architecture
features permitting assembly programmers to comprehend
the workings of the processor.  The Assembly Assistant
has three main goals: to introduce the architecture to new
assembly programmers; to make it easier to write assembly
code and use the Assembler; and to help assembly
programmers get maximum performance from their code.
This last task is achieved through static analysis, a drag-
and-drop interface for manual optimization, and through
automatic optimization of code segments.

IA-64 ARCHITECTURE FEATURES FOR
ASSEMBLY PROGRAMMING
The IA-64 architecture incorporates many features that
enable assembly programmers to optimize their code for
efficient, high-sustained performance. To allow greater
instruction-level parallelism, the architecture is based on
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principles such as explicit parallelism, with many execution
units, and large sets of general and floating-point
registers.  Predicate registers control instruction execution,
and enable a reduction in the number of branches.  Data
and control speculation can be used to hide memory
latency.  Rotating registers allow low-overhead software
pipelining, and branch prediction reduces the cost of
branches.

The compiler takes advantage of these features to gain a
significant performance speedup.  Branch hints and cache
hints enable compilers to communicate compile-time
information to the processor.  New compiler techniques
are developed to use these features, and IA-64 compilers
will continue gaining speedups utilizing these features in
innovative ways.

This abundance of architecture features and resources
makes assembly writing a challenging task for assembly
programmers.

The IA-64 architecture requires that the instructions are
packed in valid bundles.  Bundles are constructs that hold
instructions.  Bundles come in several templates,
restricting the valid combinations of instructions and
defining the placement of boundaries (stops) for maximum
parallelism.  Each instruction can be placed into a specific
slot in a bundle, according to the template and the
instruction type.  For example, the instruction alloc
r34=ar.pfs,2,1,0,0  appearing in the example below, can
only be placed in an M slot of a bundle.  The template
defined in the examp le below for the first bundle is .mii
meaning that the first slot can only be taken by an
instruction that is valid for an M slot, and the following
instructions must be valid for I slots.  When no useful
instruction can be placed in the bundle due to template
restrictions, a special nop instruction, valid for the slot,
must be used to fill the bundle (as observed in the case of
the second slot in the second bundle; a nop.i was placed
in an I slot).    

max:
{ .mii

  alloc r34=ar.pfs,2,1,0,0
  cmp.lt p5,p6=r32,r33 ;;
  (p6) add r8=r32,r0

} { .mib
  (p5) add r8=r33,r0
  nop.i 0
  br.ret.sptk b0 ;;

}

Example 1: Code reflecting language syntax

Assembly programmers are expected to define groups of
instructions that can execute simultaneously by inserting
stops.  If a stop is missing, then there is a chance that not

all the instructions were meant to be executed in the same
cycle.  Such an instruction group may contain a
dependent pair of instructions.  For example, it may
contain two instructions that write to the same register or
a register write followed by a read of the same register.

The result of parallel execution of dependent instructions,
even though not necessarily adjacent, is unpredictable
and may vary in different IA-64 processor models.  This
situation is called a dependency violation.  To avoid it,
assembly programmers have to place the two instructions
in different groups by inserting a stop.

In Example 1 we can see a stop after the cmp instruction.
This stop will ensure that the cmp will not be executed in
parallel with the following add, and it enables the add to
use the predicate p6 written by the cmp instruction
without producing a dependency violation.

THE IA-64 ASSEMBLER
The IA-64 Assembler enables many capabilities beyond
traditional assemblers.  In addition to assembling, it
implements full support of all architecture and assembly
language features: bundles, templates, instruction groups,
directives, symbols’ aliases, and debug and unwind
information.

Writing assembly code with bundles and templates is not
trivial.  Assembly programmers must know the type of
execution unit for each instruction, be it memory, integer,
branch, or floating-point.  Another important element of
the assembly language is the stop that separates the
instruction stream into groups.

The IA-64 assembly language provides assembly writers
with maximum control through the use of two modes for
writing assembly code: explicit and automatic.

When writing in explicit mode, assembly programmers
define bundle boundaries, specify the template for each
bundle, and insert stops between instructions where
necessary.  The Assembler only checks that the assembly
code is valid and has the right parallelism defined.  This
mode is recommended for expert assembly programmers or
for writing performance-critical code.

The automatic mode significantly simplifies the task of
assembly writing while placing the responsibility for
bundling the code correctly on the Assembler.  The
Assembler analyzes the instruction sequence, builds
bundles, and adds stops.

template

predicate

stop

}
bundle
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ld4 r4 = [r33]
add r8 = 5, r8
mov r2 = r56
add r32 = 5, r4
mov r3 = r33

Example 2: Original user code

{ .mii
ld4 r4 = [r33]
add r8 = 5, r8
mov   r2 = r56 ;;

}
{ .mmi

nop.m 0
add r32 = 5, r4
mov r3 = r33 ;;

}

Example 3: Code created after assembly with automatic
mode

In the example above we can see how the user can write
simple code, which the Assembler will then fit into
bundles.  The Assembler also adds nop instructions for
valid template combinations and stops as needed to avoid
any possibility of dependency violations.  (A stop bit was
added at the end of the first bundle to avoid a dependency
violation between the first instruction and the next to last
instruction on r4.)

Parallelism
One of the tasks of the Assembler is to help assembly
programmers define the right parallelism boundaries.  The
Assembler analyzes the instruction stream, taking into
consideration the architectural impact of each instruction
and any implicit or explicit operands involved in the
execution.  However, it is hard to do the complete program
analysis  needed in order to detect all these conditions,
statically.  Consider a common case in IA-64 architecture
where two instructions writing to the same register may be
predicated by mutually exclusive predicates, as shown in
the Example 4.

cmp.ne p2,p3 = r5,r0 ;;
…

(p2) add r6 = 8, r5
(p3) add r6 = 12, r5

Example 4: Predicate relation

The Assembler can identify this case and ignore the
apparent dependency violation between the two add
instructions on R6. In this case, the compare instruction,
which defines the pair of predicates, precedes their usage.
However, more complicated cases may exist.  For example,
consider a case in which there is a function call between

predicates set and usage.  In this case, assembly
programmers may know that the called function doesn’t
alter the predicates’ values, but there is no way for the
assembler to deduce this information, if the function is in a
different file.

Another type of information known only at run-time is the
program flow at conditional branches.  The processor
automatically begins a new instruction group when the
branch is taken, and a dependency violation may occur
only on the fall-through execution path.

When writing in explicit mode, assembly programmers are
responsible for stops.  The Assembler simply checks the
code and reports errors, even when it finds only potential
dependency violations.  In this mode, to avoid false
messages, assembly programmers can add annotations
describing predicate relations at that point of the
procedure.

.pred.rel “imply“, p1, p2
(p1) mov r5 = r23
(p2) br.cond.dptk Label1
add r5 = 8, r15

Example 5: User annotation

The relation “p1 implies p2”, in Example 5 means that if p1
is true then p2 is also true.  Adding such a clue to the
assembly code prevents a false dependency violation
report between the second and fourth lines.

Automatic mode simplifies the programming tasks while
delegating the responsibility for valid instruction grouping
to the Assembler.  In automatic mode, the source code
contains no bundle boundaries.  The Assembler ignores
stops written by the assembly programmer; it builds
bundles and adds stops according to the results of static
analysis of instructions and program flow.  In this mode,
the code is guaranteed not to contain dependency
violations.

The example below contains a dependency violation
which is not immediately apparent.  The first instruction
writes to CFM, while the second instruction reads from
CFM, resulting in a dependency violation.  Using
automatic mode, the dependency violation is automatically
resolved.

br.ctop.dptk.many   l8
fpmin   f33=f1,f2

Example 6: Code containing dependency violation
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{ .mib
nop.m 0
nop.i 0
br.ctop.dptk.many   l8 ;;

}
{ .mfi

nop.m 0
    fpmin   f33=f1,f2

nop.i 0
}

Example 7: Code after automatic mode assembly

In the example above, observe how the Assembler detects
a dependency violation on CFM between the instructions,
and how it inserts a stop between them.

Virtual Register Allocation
Large register sets in the IA-64 architecture complement
the unique parallelism features.  Maintaining assembly
code becomes harder when there is a need to track the
assignment of many variables to registers.  Modifying a
procedure code might lead to variable reallocation.

The virtual register allocation (VRAL) feature solves these
problems.  VRAL allows assembly programmers to use
symbolic names instead of registers, and it performs the
task of register allocation in procedures.

To employ VRAL, assembly programmers must use a set
of VRAL directives in order to communicate some register-
related information to the Assembler.  Assembly
programmers assign groups of physical registers for
virtual allocation, and they define the usage policy; i.e.,
whether they should be scratch registers or registers that
are preserved across calls.  The Assembler assigns some
default families that many assembly programmers are likely
to use, including integer, floating point, branch, and
predicate.  Assembly programmers can also isolate
registers of the same type in subfamilies.  For example, a
user-defined family may include all local registers of a
procedure.

Each symbolic name used in a procedure, called a virtual
register, belongs to one of the register families.  The
assembly language allows redefinition of virtual registers’
names, which is convenient when used in preprocessor
macros.

VRAL analyzes the control flow graph of the procedure,
and it calculates the registers’ live ranges.  An accurate
control flow graph is very significant for this analysis.
The Assembler provides appropriate directives to specify
the targets of indirect branches and additional entry
points.  In order to find a replacement for each symbolic
name, VRAL applies standard graph-coloring techniques.

The heuristic function used for allocation priorities
considers both the results of the preceding analysis and
the architecture constraints of registers’ usage.  Several
physical registers may replace one symbolic name, and
one physical register may be reallocated and utilized for
several different symbolic names.

.proc foo
foo::
    alloc loc0=ar.pfs,2,8,0,0
.vreg.safe_across_calls r15-r21
.vreg.safe_across_calls loc3-@lastloc
.vreg.allocatable p6-p9
.vreg.family LocalRegs,loc3-@lastloc
.vreg.var LocalRegs,X,Y,Diff

mov loc1=b0
add X=in0,r0
add Y=in1,r0 ;;

.vreg.var @pred,GT,LE
cmp.gt GT,LE=X,Y ;;
(GT) sub Diff=X,Y
(LE) sub Diff=Y,X ;;

.vreg.redef GT,LE
mov r8=Diff
mov ar.pfs=loc0
mov b0=loc1
br.ret.dptk b0

.endp foo

Example 8: Code with virtual register

Consider the code in the Example 8 above.  Starting with
.vreg.safe_across_calls and .vreg.allocatable directives,
we define the registers that are available for allocation.
We then use the .vreg.family directive to define a family
of virtual registers that will only be allocated from the local
registers.  We then define the virtual registers themselves
and declare them to be part of the local registers’ family
defined earlier using the .vreg.var directive.  The code
itself then uses virtual registers X and Y instead of directly
naming physical registers.  The example also illustrates
that virtual registers can be defined in the middle of the
code, and then undefined with the .vreg.redef directive to
allow reuse of symbolic names (used most frequently in
macros).

All symbolic names defined with the directive .vreg.var are
replaced with physical registers assigned for allocation by
the directives .vreg.allocatable and
.vreg.safe_across_calls.  For this simple example, in the
current version of the Assembler, the registers chosen
were X=R37, Y=R38, GT=P6, and LE=P7.

In order to effectively use VRAL, we plan to emit the
allocation information to allow debugging using symbolic
names. This enables the debugger to show the value of
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the symbolic name, even if the value is represented by
different registers in different parts of the code.  Also, by
emitting the allocation information, code optimizations
without the allocation constraints will be enabled.

THE IA-64 ASSEMBLY ASSISTANT
In order to further assist IA-64 assembly developers, we
designed and implemented a unique development
environment to have the following:

1. a tool to reduce the steep learning curve for IA-64
assembly programming and to introduce IA-64
architecture using assembly programming

2. a user friendly environment for IA-64 assembly
development

3. an environment for analyzing and improving the
performance of assembly-code fragments

The Assembly Assistant delivers a comprehensive
solution for assembly code developers, assembly
language-directed editing, tools that aid the creation of
new code, error reporting, static performance analysis, and
manual and automatic optimizations.

Other needs such as debugging or run-time performance
analysis will be addressed when the Assembly Assistant
is integrated with other tools that supply these features.

The next sections describe the Assembly Assistant’s
editing, assembling, and analysis capabilities in detail and
examine the unique features that the Assembly Assistant
provides to IA-64 assembly programmers.

Editing and Assembling
The Assembly Assistant provides syntax-sensitive
coloring that includes all components of assembly code:
directives, instructions, comments, templates, and
bundling.  Every valid instruction format (including
completers) is colored to mark it visually as a valid
instruction.

Figure 1: Source code window

The IA-64 instruction set is very rich, and the same
mnemonic may be used in a variety of instructions when

combined with different types of operands.  The
Assembly Assistant provides an Instruction Wizard  to
help assembly programmers select the appropriate
instruction with the right set of completers and operands.
It allows assembly programmers to choose between
instructions in different variations, and it provides a
template to select the operands and activate on-line help
about the instruction.  The example in Figure 2 illustrates
how the instruction wizard allows you to choose a specific
ld4 form (step 1) and then easily apply the correct
completers (step 2).  The Help includes some information
from ref [1], ref [5], and the IA-64 Assembly Language
Reference Guide.
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Figure 2: Instruction Wizard

Many assembly programmers need an easy way to
interface assembly with other high-level languages such
as C* and C++*.  Procedures written in assembly must
adhere to the IA-64 Software Conventions in order to
execute correctly.  The Assembly Assistant will generate
the procedure linkage code given a high-level language-
like function prototype.  The Procedure Wizard  generates
a procedure template with information that assembly
programmers can use to access input parameters and
results (see Figure 3).

Figure 3: Procedure Wizard

The goal of the Auto Code Wizard  is to provide an option
to retain, customize, and reuse favorite code templates.
An example of such a template is the code for integer
multiplication.  (It is provided as an example in the tool.)
The IA-64 architecture does not have a multiplication
instruction for general registers so the instruction for
floating-point registers must be used.  Assembly
programmers could write an Auto Code template that
moves values from general to floating-point registers,
multiplies them, and moves the result back to a general
register.

In general, using the source code editor together with
wizards and the context-sensitive help provides a rich set
of customizable tools to help both beginners and
experienced IA-64 assembly programmers.

While browsing errors after compilation is a common task
in all development environments, the Assembler identifies
a special set of errors called dependency violations (see
above).  These errors can produce treacherous results,

and special care is required while treating them.  The
difficulty is that these errors involve two instructions that
may be distant from one another. When the error in the
error view at the bottom of the screen is highlighted, it
displays connected pointers pointing to the offending pair
of instructions in the source code window (see Figure 1).

ANALYSIS WINDOW
The Assembly Assistant provides a static analysis as a
guide to help assembly programmers improve
performance.  In this section, we discuss the analysis
window.  This window helps assembly programmers
understand, browse, analyze, and optimize their assembly
code.

The Assembly Assistant uses static performance analysis
on a function-by-function basis, without any dynamic
information on the program behavior (such as register
values and memory access addresses).  Fast performance
simulation of instruction sequences is used in order to
obtain the performance information.

The main performance information displayed in the
analysis view is cycle count and conflicts.  The cycle
count is the estimated relative cycle number in which the
instruction enters the execution pipe in the performance
simulation.  This number is relative to the beginning of the
function or selected block. Usually the execution path
doesn’t utilize the full capacity made possible by the IA-64
architecture.  Conflict indicators in the stall columns show
the reasons for extra cycles in the execution path and
processor stalls.

Assembly programmers analyze the conflicts and modify
their code accordingly by manually moving an instruction
earlier or later in the code sequence, selecting a different
instruction sequence, etc. Automatic optimization
attempts to find the best instruction scheduling.
Optimizations are discussed in a later section.

As shown in Figure 4, the assembly source is presented
along with line numbers, cycle counts, and conflicts, as
discussed earlier.  Conflicts are highlighted with different
colors for each conflict, so assembly programmers can
easily identify which instructions are involved in each
conflict.  In Figure 4, the cycle counts are based on a
hypothetical machine model.

Another type of information is division of the instruction
stream into several types of groups.  The most interesting
are bundles that are fetched together from memory and
instruction groups, which assembly programmers define
as candidates for parallel execution.  Two additional
groups for more advanced assembly programmers are
issue groups (instructions that execute simultaneously)
and basic blocks (for control flow analysis).
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Figure 4:  Analysis  window

Run-time information is not available during static
analysis.  The Assembly Assistant provides information
about execution flow and predicate values.  These values
control the simulated execution path and may activate or
deactivate instructions.  As illustsrated in Figure 4, each
predicated instruction is preceded by a checkbox. Marking
the checkbox signifies that the qualifying predicate is true,
and the instruction executes. This interface eases analysis
and optimization of predicated blocks.  The Assembly
Assistant provides the means to control predicate values.
In the future, the Assembly Assistant might also calculate
predicate relations for use in the static analysis , and
marking a single predicate as true or false will
automatically determine the values for all of the predicates
that are related to it .

The Assembly Assistant gives assembly programmers
more extensive control.  Assembly programmers can
specify whether or not the branch is taken, and they can
set the probability of taking the branch in the simulation.
The Assembly Assistant uses this probability when
simulating loops: it provides assembly programmers with
the approximate time of loop execution together with
a-priori knowledge of possible execution paths.

The analysis window provides more than just loop
visualization.  Assembly programmers may select the
number of iterations to simulate.  Selecting a single

iteration provides performance information and shows any
conflicts between the main body of the loop and the
prologue code.  Selecting two iterations also displays
conflicts between the head and tail of the loop code
section.  Selecting more than two iterations provides the
approximate execution time of the loop calculated by
branch probabilities, as described above.

The assembly module may contain more than one
function.  To help assembly programmers navigate in the
analysis window, the window is split into two panes, just
like the Microsoft Explorer∗ window.  The left tree pane
contains a list of all the functions in the module, while the
right pane displays one function’s analyzed code.
Clicking on a function name or icon in the tree pane
displays the analysis of the selected function.  Assembly
programmers work with one function at a time, viewing in
the tree pane the list of labels in the active function.  This
allows easy navigation inside the function.

We have described above how assembly programmers can
analyze assembly code.  But analysis is useless if
assembly programmers cannot apply their insights to

                                                                
∗ Other brands and names are the property of their
respective owners.
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improve the code.  The Assembly Assistant allows them
to do this.

Assembly programmers may want to move stalling
instructions and solve conflicts.  The Assembly Assistant
provides a simple drag-and-drop interface so that
instructions can be moved manually. It displays the
instruction’s move boundaries as defined by data
dependencies.  Assembly programmers can drop the
instructions into their new position.  Assembly
programmers can also apply automatic optimizations that
reschedule the instruction stream to improve performance.

After completing code optimization in the analysis
window, the Assembly Assistant generates new,
improved code in a new source window.

OPTIMIZATION AIDES IN THE IA-64
ASSEMBLY ASSISTANT
When optimizing assembly code, a tool such as the
Assembly Assistant can generally use conventional
compiler techniques.  However, a key challenge to
optimization is code analysis , since some of the
information visible to the compiler does not exist or is hard
to infer from such low-level representations. Examples
include branch targets for indirect branches, calling
conventions, memory disambiguation, and aliasing.

This information is critical for code speedup and
maintenance of correct code.  An assembly optimizer also
has no choice but to deal with every feature of the
architecture, whereas a compiler might choose not to use
certain features or instructions; for example, system
instructions.

The first and simplest solution is to leave optimizations to
the assembly programmers but still help them with
available analysis data and IA-64 processor-specific
information.  An advanced and friendly user interface
enables assembly programmers to easily perform the
optimizations.

The next level of automation requires assembly
programmers to provide missing information.  A user-
friendly interface allows assembly programmers to interact
with the optimizer to define branch targets and more.
Using this information, a control flow graph is created and
analyzed.  Assembly programmers can also provide
program behavior information such as branch
probabilities, which direct the optimizer to bias its
optimizations accordingly.

Automatic optimization is also used, but as mentioned
earlier, it is somewhat limited due to the conservative
approach to assembly-level optimizations.

Manual Optimization
Analysis provides many hints for manual optimization.
The analysis of register live ranges helps assembly
programmers better use the registers.  The analysis of data
flow provides the assembly programmers with suspected
dead code, and it detects the use of registers that were not
initialized in the analyzed code.  Data flow analysis is also
helpful when trying to attain optimal scheduling.  Height
reduction (the process of reducing the control
dependence, for example as in ref. [4]) and strength
reduction (ref. [3] p.435) are easier for assembly
programmers to handle when all the dependency chain is
analyzed automatically.

For software pipelined loops, automatic tracking of the
rotating registers used in the loop helps assembly
programmers to write modulo-scheduled loops.  This can
also greatly simplify modification of the code.

It is difficult to keep track of other machine resources
(such as control registers, functional units, and more). The
Assembly Assistant can automatically keep track of
machine resources, and it can warn assembly programmers
when machine resources are insufficient for the code.  The
Assembly Assistant shows an assembly programmer the
penalty incurred by the code, and it suggests methods to
overcome the limitations inherent in the microarchitecture.

To aid in speculation, when moving a load beyond
ambiguous memory references or control dependencies,
the Assembly Assistant shows assembly programmers the
probable costs and benefits of the speculation.  Load
instructions that inhibit scheduling can also be identified
and they can be suggested to assembly programmers as
likely candidates for speculation.

Automatic Optimization
While assembly programmers are certainly capable of
performing most optimizations that can be done
automatically, other optimizations are difficult.  This is due
either to complexity or tedium.  For example, scheduling
the instructions for optimal performance is mostly a
problem of brute force.  Experienced assembly
programmers who are also familiar with all the
microarchitecture details can tweak the scheduling to get
the best performance, but sometimes the only way to get
the best scheduling is to simply try out all of the
combinations.  The testing would have to be repeated
after every source code change.  This is clearly a mission
for an automated tool.

In automatic optimization mode, the Assembly Assistant
schedules the instruction stream in a top-to-bottom issue-
group-scheduling approach.  Instructions are scheduled
according to internal heuristics, taking into account critical
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path, code size, instruction priorities, utilization of machine
resources, and more.  Many possible templates are
checked against the heuristics, and the best one is chosen
for the issue group.  The code in the example below will
execute significantly slower than the same code after
automatic optimization (~25%). Analyzing the example, we
can observe that the instructions at lines 8 and 9 of the
original code were moved up, and instructions on lines 3,
4, and 7 were moved down.  This schedule was chosen
considering the latencies of various functional units and
in order to prevent unnecessary stalls .

Original code:

1 { .mii
2    ld4 r4 = [r33]
3    add r8 = 5, r8
4    mov   r2 = r56 ;;
5 }
6 { .mii
7    add r32 = 5, r4
8    mov r3 = r33 ;;
9    add r33 = 4, r3 ;;
10 }
11 { .mib
12    cmp4.ltp6,p7=r2,r33
13    nop.i 999
14    (p7) br.cond.dpnt START
15 }

Code after automatic optimization:
1 { .mii
2    ld4 r4 = [r33]
3    mov r3 = r33 ;;
4    add r33 = 4, r3
5 }
6 { .mii
7    mov   r2 = r56
8    add r8 = 5, r8 ;;
9    add r32 = 5, r4
10 }
11 { .mib
12    cmp4.ltp6,p7=r2,r33
13    nop.i 999
14    (p7) br.cond.dpnt START
15 }

Example 9: A small code sample before and after
automatic optimization

Optimal utilization of machine resources for parallel
execution is very important, and actual results show that
even code written by experienced assembly programmers
can gain a speed-up of 6 – 8% from the Assembly
Assistant’s automatic scheduling.  In the case of code
written by inexperienced assembly programmers, the gain
is likely to be much higher.

Assembly programmers can choose from various
optimization schemes, actually changing the heuristics
used.  For example, scheduling for the smallest code size
might incur significant penalties due to overloading of
machine resources.  By default, automatic optimization
tries to address the issues most challenging to a human
assembly programmer.  It optimizes for better utilization of
machine resources rather than concern itself with code
size.  However, this might result in inflated code and affect
the instruction cache.  Enabling various optimization
schemes offers assembly programmers greater control
over the automatic optimizations, and it allows expert
assembly programmers to take advantage of automatic
modes without losing flexibility.

Even for code that is not performance-critical, but still has
to be written in assembly, automatic optimization can be
valuable.  It can be used either to speed up performance or
to pack the code more tightly.

FUTURE ENHANCEMENTS FOR THE
ASSEMBLY ASSISTANT
The Assembly Assistant is currently used by many IA-64
assembly programmers both beginners and experts to tune
their code.  We received many requests for more features
and enhancements.  The requests include a library of
optimized special-purpose code (for example, integer
divide and floating-point square root), more manual and
automatic optimizations, visualization of registers’ live
ranges, etc.  We are also looking into integrating the
Assembly Assistant with other programming
environments such as Microsoft Visual Studio∗ and the
Intel® VTune performance analyzer.

CONCLUSION
It is strongly recommended that compilers be used in order
to generate highly optimized code for the IA-64
architecture.  The use of compilers also guarantees
scalability and portability for future IA-64
implementations.  However, we recognize the need of
some developers to continue to use assembly code in their
applications.  We attempted to outline the difficulties
faced by assembly programmers when writing for the IA-
64 architecture, and we presented tools to alleviate or
overcome these difficulties.  The tools presented
contribute to the following goals:

• Quickly familiarize assembly programmers with the
new IA-64 architecture.
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• Program in IA-64 assembly with relative ease.

• Provide a comprehensive development environment
for assembly programming.

• Analyze and optimize assembly programs  to utilize
IA-64 unique features for optimal performance.
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ABSTRACT
To provide additional vehicles for presilicon validation
and postsilicon debug of the Intel Itanium™  processor,
we ported two operating system kernels to the IA-64
architecture.  The Mach3* microkernel was ported first,
followed by the Linux∗ 2.2.0 kernel, and these have
helped track the overall health of the Itanium™
processor’s RTL model for the last two years.  These
operating system (OS) kernels also helped presilicon
performance analysis and compiler-generated code
analysis.

The Mach3 kernel (the IA-64 port was called Munster
internally) was ported because it contained features
similar to Microsoft Windows NT∗, such as tasks,
threads, interprocess communication (IPC), and
symmetric multiprocessing (SMP).  Mach3 allowed us to
exercise parts of the Itanium processor’s model in a
similar way to Windows NT, but at a reduced scale and
without device support.

Linux (the IA-64 port was called IPD-Linux) was ported
because its source is readily available and 64-bit clean, it
is highly configurable, and it would exercise the model in
a different way than  Mach3.  We started with a released
2.2.0 version of the source and ported the kernel using a
non-GNU C Compiler (GCC).  The difficulty of porting
the Linux kernel without GCC made the task more
challenging.

Besides porting the architecture-specific portions of the
kernels, modifications were necessary to both kernels to
remove certain dependencies on external devices and
                                                       
∗ Other brands and names are the property of their
respective owners.

BIOS initialization.  Also, the OS initialization paths
executed prior to user-level programs had to be shortened
to accommodate the simulation speed of the RTL
environment. The kernels had to be extremely
configurable in order to run in diverse simulation
environments.

Both kernels were tested from processor reset to user-
mode code execution to validate the significant parts of
the RTL that an operating system would exercise during
the boot process.  Kernel initialization, virtual memory
management, context switching, trap handling, system
call interfaces, and user-mode context paths were all
exercised on the actual RTL model.  This effort
uncovered several errata in the RTL model and in the IA-
64 tools (such as the compiler and linker).  It also
provided us a model regression sanity check for each new
RTL release.  We believe this presilicon effort was
instrumental in allowing Windows NT to boot just days
after first silicon.  In this paper, we discuss the porting of
kernels to the IA-64 architecture for presilicon operating
system validation.

INTRODUCTION
One of the major goals for early silicon is to boot a
commercial operating system (OS) shortly after the
arrival of first silicon.  In order to increase the probability
of success we decided to use an operating system kernel
to validate the processor in addition to using
conventional presilicon testing methods.  Traditional
microprocessor validation includes feature validation,
unit testing, and random instruction testing.  The
potential shortfall of these methods is that they often
don’t exercise the processor in the same environment in
which it is later expected to run.  In other words, an
operating system programmer often thinks of a different,
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but legal way, of exercising processor functionality that
might not be covered by conventional methods of
validation.  Therefore, running an operating system
kernel to exercise key OS-related features presilicon
turned out to be a worthwhile effort.  The following
sections detail the issues we had to resolve during this
effort.

RUNNING AN OPERATING SYSTEM IN
THE PRESILICON ENVIRONMENT
The two main constraints the presilicon environment
imposes on an operating system are as follows:

1. The simulation speed of the RTL simulator
effectively restricts test runs to a few million cycles
of the simulated processor clock, and it causes
turnaround times in the order of multiple days.

2. The simulated environment lacks devices.

The constraint in simulation speed had two major
consequences for porting.  First we had to reduce the
number of instructions executed by the kernel during its
initialization sequence.  Second, we had to test the kernel
thoroughly on functional simulators before committing it
to a run on the RTL model.

To cope with the slow simulation speed, we wrote a tool
that allowed us to run our kernel up to an arbitrary point
in the functional simulator and then to continue
simulation on the RTL model from that point on.  To
accomplish this, our tool read the saved architectural
state from the functional simulator and used it to
generate a sequence of IA-64 instructions that restored
the architecture to this state.  Then it read the memory
image saved from the functional simulator and used it to
generate a new binary, with the state restoration sequence
placed at the processor reset vector.  When we ran this
new binary on the RTL model, the processor went
through the state restoration sequence and then continued
at the point where the state was saved on the functional
simulator.  Our two primary uses of this tool were (1) to
skip the kernel initialization sequence and have the RTL
simulation start directly with the execution of user-mode
programs, and (2) to improve the latency for running the
kernel initialization sequence on the RTL model by
subdividing it into multiple parts and running the parts
in parallel.  To minimize the danger of processor errata
being obscured by cold caches, we allowed for heavy
overlap between the parts.

Reducing the Instruction Count
Our initial profiles of the kernel startup sequence for both
Munster and IPD-Linux∗ showed that a large portion of
time was spent in the routines for zeroing and copying
memory, and in the initialization of a few key data
structures, the most prominent being the structures used
for virtual memory management.  Our solution, therefore,
included the following:

• Optimize the routines for zeroing and copying
memory (bzero/memset, bcopy/memcopy).

• Reduce the amount of physical memory presented to
the kernel.  This reduced the time spent initializing
page management information.

• Add delayed initialization for some kernel data
structures.

These changes, however, did not reduce the functionality
of the kernels.

One example of how we modified the Mach kernel to
reduce the instruction count during kernel initialization
was through changes to the zone allocation code.  Most
memory allocation for kernel data structures is done
through zones, which act as buckets for fixed-size blocks
of memory (zone entries) whose typical size ranges from
a few bytes to a few hundred bytes.  When an entry was
allocated from a zone that had no entries in its free list,
the free list was replenished by allocating one page of
memory and splitting it up into zone entries, all linked
together in a free list.  The number of instructions
required for doing this initialization for dozens of zones
was quite high when keeping the speed of RTL
simulation in mind.  Therefore we changed the
mechanism for replenishing a zone.  Instead of
immediately entering a whole page into the free list, a
“free space” pointer was kept.  The pointer was initially
set to the newly allocated page, and it was used to carve
out new zone entries one by one at the time they were
actually needed.

Testing in Different Environments
Figure 1 shows our available simulation environments.
Except for device support, matching environments were
available on the functional and the RTL simulator.  Even
though no device support was available on RTL, we still
needed to test our kernels with devices on the functional
level to prepare for postsilicon.
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Our kernels had to run in several different simulation
environments.  We ported the kernels so they could be
configured with or without devices and run with or
without external interrupts, etc.  Our kernels were
flexible enough to run in simulation environments that
ranged from just one processor with memory to a full
simulation of a multiprocessor platform with devices.

1 Processor

Memory

n Processors

Memory

Chipset

n Processors

Memory

Chipset

Devices

Functional

& RTL

Functional

& RTL

Functional
only

Figure 1: Available simulation environments

We used two functional simulators, Giza and SoftSDV
[8], to test and debug the presilicon operating system
kernels before running in RTL.  Both simulators were
utilized in our development process in order to debug
code quickly.  Giza was also designed to be used as a
checker against the RTL model, so we always ran our
code through it before running in RTL.  Since the
SoftSDV simulator is already described in “SoftSDV: A
Presilicon Software Development Environment for the
IA-64 Architecture” in this issue of the Intel Technology
Journal, we only describe the Giza simulator.

Giza is built around an instruction accurate software
simulator for Itanium processor’s ISA (Sphinx).  It
supports critical implementation specific registers,
SAPIC, a non-blocking memory hierarchy (TLB+caches)
that handles both synchronous and asynchronous traffic
between the CPU and the external sub-system, and
multiple CPU instances (multiprocessor).
Implementation-specific registers are modeled to support
firmware execution.  SAPIC, non-blocking memory
hierarchy, and multiprocessor (MP) are modeled to
support characteristic subsystem traffic for typical IA-64
platforms.  A functional accurate software model that
mimics the Itanium processor’s front-side-bus (FSB) is
designed to schedule CPU events and dispatch the
resulting transactions to and from memory and I/O
subsystems.  Software models for the Itanium processor’s
chipset and Itanium processor’s standard devices
represent the latter.

By using functional simulators, we avoided wasting
precious RTL cycles that could be used by conventional
tests.  We began with uniprocessor (UP) versions of the
functional simulators and OS kernels.  Once we passed

the UP functional simulator test, the code would run on
the RTL.  These jobs often took over a million cycles to
complete so the ramifications of simple code mistakes
were great and had to be eliminated before being run on
the RTL models.  Once the kernels passed a UP
functional and RTL simulator run, they were moved onto
the multiprocessor path.  Each  symmetric
multiprocessing (SMP) version of the kernel was
debugged via a functional simulator.  The MP RTL
environment, known as COSIM, allowed modeling of
multiple IA-64 RTL processor models, chipset models,
PCI busses, and external interrupt controllers.  This
environment allowed us to exercise SMP kernels on
many of the platform components before silicon was
available, which taught us valuable lessons and
uncovered errata that were not uncovered during
conventional methods of testing.

Since operating system code is not “self checking,” the
Munster and IPD Linux kernels were run in RTL with an
RTL checker running at the same time.  The RTL
checker is a functional simulator that runs in conjunction
with the RTL simulation and compares the architectural
state after the retirement of each bundle.  If a state
mismatch occurs, then an error condition is flagged, and
further analysis can be done to isolate the root of the
problem.

Porting Challenges
There were many challenges in porting the kernels to run
presilicon in RTL.  We encountered a number of tool
problems since we were on the leading edge as far as
running code with the actual RTL model is concerned.
The early tool sets often worked for running code in the
functional simulator, but had problems with generating
correct code for running in the RTL simulator.  We had
to write a utility called the AfterBurner to post-process
compiler-generated assembly code and to fix problems
that were preventing the code from running in RTL.

During the project, the compiler-generated code quality
(correctness and performance) improved, as did the
modeling of the architecture by the functional simulators.
However, for some sequences of legal C code, the
compiler produced semantically incorrect as well as
architecturally incorrect code.  In certain cases, due to the
sequential nature of the functional simulator,
architecturally incorrect code would appear to function
correctly.  In other cases, architecturally incorrect hand-
written code would appear to execute correctly within the
functional simulator (e.g., missing serialization
instructions required by the architecture went
undetected).
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Benefits of Using Two Different Kernels
The benefit of porting multiple kernels to The Itanium
processor was the ability to share some of the low-level
start-up, trap handling (TLB faults, etc.), bcopy, port IO
usage, and other code between the two kernels.  It took us
roughly two weeks to obtain a linkable Linux IA-64
kernel, and much of that time was spent on
accommodating a non-GNU [11] C compiler.  Much of
the low-level code was already done from the Mach* port
and just had to be merged into the Linux source tree.
Another benefit of a second port was that it allowed us to
redesign some of the code to make it cleaner and more
efficient.

Porting two kernels allowed us to test some of the IA-64
Instruction Set Architecture in a slightly different way.
We achieved a broader validation of some features such
as Instruction Level Parallelism (ILP), speculation,
predication, use of the large register files, the Register
Stack Engine (RSE), and advanced branch architecture.
Our “common trap handler,” the common path for saving
and restoring state when entering/exiting the kernel, for
the IPD Linux was very different from the Mach* version
in both the design of the operating system and in the area
of performance.  As a result, the processor was exercised
in an alternate way.

Both kernels supported Seamless mode, which is the
ability to run IA-32 binaries on top of an IA-64 operating
system kernel.  We ran IA-32 user-mode programs on the
kernels in presilicon RTL as another validation test.

ISSUES SPECIFIC TO PORTING
MUNSTER
Mach3 [6] was the first kernel to be ported so the
architecture-dependent code had to be written from
scratch.  We received some example code from other
Intel groups, but some of it didn’t fit very well into the
Mach3 architecture.  One of the biggest issues that we
encountered was Mach3’s ability to come into kernel
mode on one stack and leave on another [15].  This
added complexity to the trap handler due to the fact that
all of the required IA-64 state had to be saved on to the
Process Control Block (PCB) and restored into the new
stack state.  In Mach*, instead of a static assignment
between threads and kernel stacks, the assignment is
dynamic, and a thread that blocks in kernel context while
waiting for some event can hand off its stack to the
thread that is next in line.  This is beneficial in terms of
cache locality, but it complicates handling of the register
stack engine because the kernel backing store is part of
the kernel stack.  As such, it does not persist between the
time a thread enters the kernel and the time it returns.
When entering the kernel from user mode, we first had to

flush the dirty RSE registers into a dedicated area in the
process control block before switching to the kernel
backing store.  Then, when we returned to user mode, we
had to load the flushed RSE registers from the process
control block into the physical register file before
switching to the user backing store.

There were also LP-64 issues in the Mach3 source code
where assumptions were made that ints, longs, and
pointers were all the same size.  This caused pointers to
be truncated in some cases.

The Munster kernel port involved IA-64 start-up code,
fault handling, TLB handling, context switching, system
calls, interrupt handling, interprocess communication,
LP 64-bit clean efforts, and user-mode libraries.  We also
had to port the Mach* build tools to UnixWare∗ before
the Mach3 kernel could be built.

ISSUES SPECIFIC TO PORTING
IPD-LINUX
Linux∗ was ported as another presilicon operating system
validation kernel.  (The source for the Trillian∗ kernel,
which was demonstrated during the 1999 Intel
Developer’s Forum was not available when this port
began.)  The main issue with porting Linux to IA-64
presilicon was the lack of a complete IA-64 GNU C
compiler [13] at the time we began the port.  We used the
Intel Electron C compiler to compile the kernel.  This
required us to conditionally compile around the heavy
usage of GNU C extensions [12] within the Linux kernel.
Extensions such as inline C and inline assembly
functions are not supported by the Electron compiler so
this made the port more difficult than if we had a GNU C
compiler available.   The majority of our work in this
port was in the two architecture-dependent directories
that we added (include/asm-ia64 and arch/ia64).  We also
added an inline directory under arch/ia64 as a substitute
for those routines that are normally inlined by the GNU
C compiler.  Since we didn’t have access to a GNU C
compiler early in our development cycle, a basic user-
mode shell, Josh, was written and used to launch Linux
tests for validation purposes.  Without a full GNU C
compiler it proved very difficult to port the GNU C
Library (GLIB C), which forms the basis for the full set
of user-level shells and commands.  Attempts were made
to port GLIBC without the GNU C compiler, but they
were unsuccessful in presilicon.
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ISSUES SPECIFIC TO SUPPORTING
PRESILICON PERFORMANCE
ANALYSIS
The Linux port was also chosen as a vehicle to facilitate
architectural performance research.  The study of
performance phenomena related to the microarchitecture,
architecture, operating system, software, and tools
required an open source workload.  Besides offering a
complete source, Linux offers SMP support, 64-bit clean
code, runtime C library, and a kernel designed to work
with multiple architectures.  All of these features were
integral to quickly satisfy the group’s goals.

To automate data collection and analysis, the Linux
kernel was augmented with many hooks to communicate
with the simulation infrastructure.  The hooks reported
information about the internal state of the kernel, which
were recorded within an event trace.  The simulator and
post processing tools correlate the information with
architecture events, debug information, and compiler
annotations.  The kernel was also instrumented to
support efficient branch and data trace collection when
run on silicon.

To integrate the Linux kernel with the trace environment,
and to support the silicon trace collection, a common
feature set was added to the kernel.  The kernel additions
collect information about context switches, process
creation and termination, and modifications to the
address space (such as through mmap() or munmap()).
This type of data collection has proven useful for other
domains such as checkpoint/restore (the EPCKPT
project), and kernel profiling (Intel Vtune  performance
analyzer [14]).

PRESILICON RESULTS
By running the operating systems presilicon, we found
several unique RTL errata that would have affected
commercial operating systems postsilicon.  Errata were
found in operating system-specific code, compiler-
generated code sequences, speculative execution,
platform interrupt paths, and tools.  Other testing
methods did not find these errata.  Therefore, since this
was a new architecture, it was worthwhile to incorporate
an operating system kernel test presilicon to rule out
major issues and to provide an indicator of the overall
RTL model health.

Operating System-Specific Errata
The first errata we uncovered was related to the return
from interrupt (rfi) instruction that is used by operating
systems to return from an interruption/fault.  The error
occurred when the operating system start-up code used

this instruction in the process of switching from physical
mode to virtual mode, and the new instruction address
was only valid in the new addressing mode.  In checking
the validity of the target address of the rfi instruction, the
processor was using the previous (physical) addressing
mode instead of the new (virtual) one, generating an
exception.  This prevented our kernels from booting and
could have affected other operating system kernels like
Trillian Linux and Windows NT∗.

Errata Uncovered by Compiler-Generated Code
Sequences
Presilicon OS runs uncovered an error in the Itanium
processor’s RTL where certain combinations of floating-
point instructions produced an incorrect result because
sequences of multiply-accumulate instructions with
register dependencies were not properly stalled.  The
significance of this error is that this exact instruction
sequence is used by the C compiler to implement the
integer modulo operation.  Since C is the primary
language for software development, this error would have
been encountered by most applications running on the
processor.

Code Example:

int i, x, y ;

i=x%y ;

where the generated code would contain a sequence like
the following (note the pseudo registers for the example):

fma fz=fa,fb,fc
;;
fma fw=fz,fk,fj

The result of the first fma is not available for several
cycles, so the second fma instruction should have been
stalled until fz was available.

Speculative Execution Errata
The Itanium processor does extensive branch prediction
and speculatively executes instructions at the predicted
branch target long before it is known if the branch will be
taken.  We found a problem with a conditional call to a
subroutine, where the subroutine was short enough to
execute a return instruction before it was known if the
conditional call should have been executed.  This caused
the processor to permanently commit some of the state
changes caused by the return instruction, even if the
conditional call was incorrectly predicted and was not
supposed to be executed.

                                                       
∗ Other brands and names are the property of their
respective owners.
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Example:

// where p3 is false

(p3) br.call b0 = foo

foo:

alloc …

mov …  ;;

br.ret b0

In this pseudo code example the predicate p3 was false,
but the code at foo was speculatively executed, and its
results were erroneously committed.

Platform Interrupt Errata
Several interrupt-related errata were uncovered by
writing small tests that exercised the interrupt paths
utilized by an operating system on a typical Itanium
platform.  This testing was accomplished in a simulation
environment (COSIM) that combined multiple Itanium
processor models, the chipset model, and platform
component models such as the external interrupt
controller model.  This allowed exercising the path from
a simulated device to the processor.

Unique errata were uncovered by generating interrupts in
the modeled environment, causing the execution of
specific interrupt flow paths.  One of the interrupt errors
was uncovered by redirecting interrupts to a particular
processor based upon the priority of the processor in a
multiprocessor simulation.

Tools Errata
During the development and testing of Munster and IPD
Linux, many bugs were found in software development
tools such as compilers and linkers, and also in various
simulators used to run the kernels.  Munster and IPD
Linux were run in every simulator that was available to
us and were crucial in detecting multiprocessor
functional simulator errors.

POST-SILICON RESULTS
The great advantage of using a kernel for postsilicon
debug that has been validated in the presilicon
environment is that it removes potential software bugs
from the list of unknowns during initial bring-up.

The extensive presilicon testing allowed the bring-up
team to concentrate on mechanical, electrical, and silicon
issues and provided them with a metric for assessing
bring-up progress.

First Itanium processor’s  silicon was very healthy, so our
kernels were able to run without modification as soon as
initial platform issues were resolved and a stable
operating range for the processor was found.

CONCLUSION
Testing an RTL model using an operating system kernel
consumes many RTL cycles.  The tests typically run for
over one million cycles and take up cycles that could be
used by shorter focus tests.  This is the reason that our
code was debugged on a functional simulator before
launching the tests on the RTL model.  We expected the
kernels to boot if the model was healthy and if there were
no infrastructure problems with the testing environment.
The advantages of using an operating system far
outweigh the disadvantages.  We were able to find errata
presilicon that normally would not have been detected
until hardware was available.  At that point, the problems
can be difficult to isolate and expensive to fix.  The
kernels were also valuable during the first few days of
Itanium processor’s  postsilicon bring-up.  Our kernels
were able to run without modification as soon as the
silicon and platform hardware were stable.  This allowed
us to use our kernels as an indicator of hardware health
during the first few days.
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ABSTRACT
The fast and accurate evaluation of transcendental
functions (e.g. exp, log, sin, and atan) is vitally important
in many fields of scientific computing.  Intel provides a
software library of these functions that can be called from
both the C∗  and FORTRAN* programming languages.  By
exploiting some of the key features of the IA-64 floating-
point architecture, we have been able to provide double-
precision transcendental functions that are highly accurate
yet can typically be evaluated in between 50 and 70 clock
cycles.  In this paper, we discuss some of the design
principles and implementation details of these functions.

INTRODUCTION
Transcendental functions can be computed in software by
a variety of algorithms.  The algorithms that are most
suitable for implementation on modern computer
architectures usually comprise three steps: reduction,
approximation, and reconstruction.

These steps are best illustrated by an example.  Consider
the calculation of the exponential function exp(x).  One
may first attempt an evaluation using the familiar
Maclaurin series expansion:

exp(x) = 1 + x + x2/2! + x3/3! + … + xk/k! + …  .

When x is small, computing a few terms of this series
gives a reasonably good approximation to exp(x) up to,
for example, IEEE double precision (which is
approximately 17 significant decimal digits).  However,
when x is large, many more terms of the series are needed
to satisfy the same accuracy requirement.  Increasing the
number of terms not only lengthens the calculation, but it
also introduces more accumulated rounding errors that
may degrade the accuracy of the answer.
                                                                
∗All other brands and names are the property of their
respective owners.

To solve this problem, we express x as

x = N ln(2) / 2K  +  r

for some integer K chosen beforehand (more about how to
choose  later).  If N ln(2)/2K is made as close to x as
possible, then |r| never exceeds ln(2)/2K+1.  The
mathematical identity

exp(x) = exp( N ln(2) / 2K  +  r ) =  2N/2K 
exp(r)

shows that the problem is transformed to that of
calculating the exp function at an argument whose
magnitude is confined.  The transformation to r from x is
called the reduction step; the calculation of exp(r), usually
performed by computing an approximating polynomial, is
called the approximation step; and the composition of the
final result based on exp(r) and the constant related to N
and K is called the reconstruction step.

In a more traditional approach [1], K is chosen to be 1 and
thus the approximation step requires a polynomial with
accuracy good to IEEE double precision for the range of
|r | ≤ ln(2)/2.  This choice of K  leads to reconstruction via
multiplication of exp(r) by 2N, which is easily
implementable, for example, by scaling the exponent field
of a floating-point number.  One drawback of this
approach is that when |r | is near ln(2)/2, a large number of
terms of the Maclaurin series expansion is still needed.

More recently, a framework known as table-driven
algorithms [8] suggested the use of K > 1.  When for
example K=5, the argument r after the reduction step
would satisfy |r| ≤ log(2)/64.  As a result, a much shorter
polynomial can satisfy the same accuracy requirement.
The tradeoff is a more complex reconstruction step,
requiring the multiplication with a constant of the form

2N/32 = 2M 2d/32, d = 0, 1, …, 31,
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where N = 32M + d .  This constant can be obtained rather
easily, provided all the 32 possible values of the second
factor are computed beforehand and stored in a table
(hence the name table-driven).  This framework works
well for modern machines not only because tables (even
large ones) can be accommodated, but also because
parallelism, such as the presence of pipelined arithmetic
units, allow most of the extra work in the reconstruction
step to be carried out while the approximating polynomial
is being evaluated.  This extra work includes, for
example, the calculation of d, the indexing into and the
fetching from the table of constants, and the
multiplication to form 2N/32. Consequently, the
performance gain due to a shorter polynomial is fully
realized.

In practice, however, we do not use the Maclaurin series.
Rather, we use the lowest-degree polynomial p(r)  whose
worst deviation |p(r) − exp(r)| within the reduced range in
question is minimized and stays below an acceptable
threshold.  This polynomial is called the minimax
polynomial.  Its coefficients can be determined
numerically, most commonly by the Remez algorithm [5].

Another fine point is that we may also want to retain some
convenient properties of the Maclaurin series, such as the
leading coefficient being exactly 1.  It is possible to find
minimax polynomials even subject to such constraints;
some examples using the commercial computer algebra
system Maple are given in reference [3].

DESIGN PRINCIPLES ON THE IA-64
ARCHITECTURE
There are tradeoffs to designing an algorithm following
the table-driven approach:

• Different argument reduction methods lead to
tradeoffs between the complexity of the reduction
and the reconstruction computation.

• Different table sizes lead to tradeoffs between
memory requirements (size and latency
characteristics) and the complexity of polynomial
computation.

Several key architectural features of IA-64 have a bearing
on which choices are made:

• Short floating-point latency: On IA-64, the generic
floating-point operation is a “fused multiply add” that
calculates A×B + C per instruction.  Not only is the
latency of this floating-point operation much shorter
than memory references, but this floating-point
operation consists of two basic arithmetic operations.

• Extended precision: Because our target is IEEE
double-precision with 53 significant bits, the native

64-bit precision on IA-64 delivers 11 extra bits of
accuracy on basic arithmetic operations.

• Parallelism: Each operation is fully pipelined, and
multiple floating-point units are present.

As stated, these architectural features affect our choices of
design tradeoffs.  We enumerate several key points:

• Argument reduction usually involves a number of
serial computation steps that cannot take advantage
of parallelism.  In contrast, the approximation and
reconstruction steps can naturally exploit parallelism.
Consequently, the reduction step is often a
bottleneck.  We should, therefore, favor a simple
reduction method even at the price of a more
complex reconstruction step.

• Argument reduction usually requires the use of some
constants.  The short floating-point latency can make
the memory latency incurred in loading such
constants a significant portion of the total latency.
Consequently, any novel reduction techniques that do
away with memory latency are welcome.

• Long memory latency has two implications for table
size.  First, large tables that exceed even the lowest-
level cache size should be avoided.  Second, even if a
table fits in cache, it still takes a number of repeated
calls to a transcendental function at different
arguments to bring the whole table into cache.  Thus,
small tables are favored.

• Extended precision and parallelism together have an
important implication for the approximation step.
Traditionally, the polynomial terms used in core
approximations are evaluated in some well specified
order so as to minimize the undesirable effect of
rounding error accumulation.  The availability of
extended precision implies that the order of
evaluation of a polynomial becomes unimportant.
When a polynomial can be evaluated in an arbitrary
order, parallelism can be fully utilized.  The
consequence is that even long polynomials can be
evaluated in short latency.

Roughly speaking, latency grows logarithmically in the
degree of polynomials.  The permissive environment that
allows for functions that return accurate 53-bit results
should be contrasted with that which is required for
functions that return accurate 64-bit results.  Some
functions returning accurate 64-bit results are provided in
a special double-extended libm as well as in IA-32
compatibility operations [6].  In both, considerable effort
was taken to minimize rounding error.  Often,
computations were carefully choreographed into a
dominant part that was calculated exactly and a smaller
part that was subject to rounding error.  We frequently
stored precomputed values in two pieces to maintain
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intermediate accuracy beyond the underlying precision of
64 bits.  All these costly implementation techniques are
unnecessary in our present double-precision context.

We summarize the above as four simple principles:

1. Use a simple reduction scheme, even if such a
scheme only works for a subset of the argument
domain, provided this subset represents the most
common situations.

2. Consider novel reduction methods that avoid memory
latency.

3. Use tables of moderate size.

4. Do not fear long polynomials.  Instead, work hard at
using parallelism to minimize latency.

In the next sections, we show these four principles in
action on Merced, the first implementation of the IA-64
architecture.

SIMPLE AND FAST RANGE REDUCTION
A common reduction step involves the calculation of the
form

r = x − N ρ.

This includes the forward trigonometric functions sin, cos,
tan, and the exponential function exp, where ρ  is of the
form π/2K  for the trigonometric functions and of the form
ln(2)/2K for the exponential function.  We exploit the fact
that the overwhelming majority of arguments will be in a
limited range.  For example, the evaluation of
trigonometric functions like sin for very large arguments
is known to be costly.  This is because to perform a range
reduction accurately by subtracting a multiple of π/2K, we
need to implicitly have a huge number of bits of
π available.  But for inputs of less than 210 in magnitude,
the reduction can be performed accurately and efficiently.
The overwhelming majority of cases will fall within this
limited range.  Other more time-consuming procedures
are well known and are required when arguments exceed
210 in magnitude (see [3] and [6]).

The general difficulty of range reduction implementation
is that ρ  is not a machine number.  If we compute:

r = x − N P

where the machine number P  approximates π/2K, then if x
is close to a root of the specific trigonometric function,
the small error, ε = |P – π/2K|, scaled up by N, constitutes
a large relative error in the final result.  However, by
using number-theoretic arguments, one can see that when
reduction is really required for double-precision numbers
in the specified range, the result of any of the
trigonometric functions, sin, cos, and tan, cannot be
smaller in magnitude than about 2−60 (see [7]).

The worst relative error (which occurs when the result of
the trigonometric function is its smallest, 2-60, and N is
close to 210+K) is about 270+K ε.  If we store P as two
double-extended precision numbers, P_1 + P_2, then we
can make ε < 2-130-K sufficient to make the relative error in
the final result negligible.

One technique to provide an accurate reduced argument
on IA-64 is to apply two successive fma operations

r0 = x − N P_1; r= r0 − N P_2.

The first operation introduces no rounding error because
of the well known phenomenon of cancellation.

For sin and cos, we pick K to be 4, so the reconstruction
has the form

sin(x)= sin(Nπ/16) cos(r) + cos(Nπ/16)sin(r)

and

cos(x)= cos(Nπ/16) cos(r) − sin(Nπ/16)sin(r).

Periodicity implies that we need only tabulate sin(Nπ/16)
and cos(Nπ/16) for N = 0, 1, …, 31.

The case for the exponential function is similar.  Here
ln(2)/2K (K is chosen to be 7 in this case) is approximated
by two machine numbers P_1 + P_2, and the argument is
reduced in a similar fashion.

NOVEL REDUCTION
Some mathematical functions f have the property that

f(u v) = g(f(u),f(v))

where g is a simple function such as the sum or product
operator.  For example, for the logarithm, we have (for
positive u and v)

ln(u  v) = ln(u) + ln(v)    (g is the sum operator)

while for the cube root, we have

 (u v)1/3 = u1/3  v1/3   (g is the product operator).

In such situations, we can perform an argument reduction
very quickly using IA-64's basic floating-point reciprocal
approximation (frcpa) instruction, which is primarily
intended to support floating-point division.  According to
its definition, frcpa(a) is a floating-point with 11
significant bits that approximates 1/a using a lookup on
the top 8 bits of the (normalized) input number a.  This
11-bit floating-point number approximates 1/a to about 8
significant bits of accuracy.  The exact values returned are
specified in the IA-64 architecture definition.  By
enumeration of the approximate reciprocal values, one
can show that for all input values a,

frcpa(a) = (1/a) (1 − β), |β| ≤ 2−8.86.

We can write f(x) as
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f(x)  =    f(x frcpa (x) / frcpa (x))

       =    g(   f(x frcpa (x)),  f(1/frcpa (x))  ).

The f(1/frcpa (x)) terms  can be stored in precomputed
tables, and they can be obtained by an index based on the
top 8 bits of x (which uniquely identifies the
corresponding frcpa (x)).

Because the f’s we are considering here have a natural
expansion around 1,

 f(x frcpa (x))

is most naturally approximated by a polynomial evaluated
at the argument r = x  frcpa(x) − 1.  Hence, a single fma
constitutes our argument reduction computation, and the
value frcpa(x) is obtained without any memory latency.

We apply this strategy to f(x) = ln(x).

ln(x) = ln(1/frcpa (x)) + ln(frcpa (x) x)

= ln(1/frcpa (x)) + ln(1 + r)

The first value on the right-hand side is obtained from a
table, and the second value is computed by a minimax
polynomial approximating ln(1+r) on  |r| ≤ 2-8.8.  The
quantity 2−8.8  is characteristic of the accuracy of the IA-64
frcpa instruction.

The case for the cube root function cbrt is similar.

(x)1/3  = (1/frcpa (x))1/3 (frcpa (x) x)1/3

          = (1/frcpa (x))1/3 (1 + r)1/3.

The first value on the right-hand side is obtained from a
table, and the second value is computed by a minimax
polynomial approximating (1+r)1/3 on |r| ≤ 2-8.8.

MODERATE TABLE SIZES
We tabulate here the number of double-extended table
entries used in each function.  The trigonometric functions
sin and cos share the same table, and the functions tan and
atan do not use a table at all.

Function Number of Double-Extended Entries

cbrt 256       (3072 bytes)

exp 24         (288   bytes)

Ln 256       (3072 bytes)

sin, cos 64         (768   bytes)

tan None

atan None

Table 1: Table sizes used in the algorithms

Table 1 does not include the number of constants for
argument reduction nor does it include the number of
coefficients needed for evaluating the polynomial.

OPTIMAL EVALUATION OF
POLYNOMIALS
The traditional Horner's rule of evaluation of a
polynomial is efficient on serial machines.  Nevertheless,
a general degree-n polynomial requires a latency of n
fma’s.  When more parallelism is available, it is possible
to be more efficient by splitting the polynomial into parts,
evaluating the parts in parallel, and then combining them.
We employ this technique to the polynomial
approximation steps for all the functions.  The enhanced
performance is crucial to the cases of tan and atan where
the polynomials involved are of degrees 15 and 22.  Even
for the other functions where the polynomials are varying
in degree from 4 to 8, our technique also contributes to a
noticeable gain over the straightforward Horner’s method.
We now describe this technique in more detail.

Merced has two floating-point execution units, so there is
certainly some parallelism to be exploited.  Even more
important, both floating-point units are fully pipelined in
five stages.  Thus, two new operations can be issued every
cycle, even though the results are then not available for a
further five cycles.  This gives much of the same benefit
as more parallel execution units.  Therefore, as noted by
the author in reference [3], one can use more sophisticated
techniques for polynomial evaluation intended for highly
parallel machines.  For example, Estrin's method [2]
breaks the evaluation down into a balanced binary tree.

We can easily place a lower bound on the latency with
which a polynomial can be computed: if we start with x
and the coefficients ci, then by induction, in n serial fma
operations, we cannot create a polynomial that is a degree
higher than 2n, and we can only equal 2n if the term of the
highest degree is simply x2n

 with unity as its coefficient.
For example, in one operation we can reach c0 + c1 x or
x + x2 but not x + c0x2.  Our goal is to find an actual
scheduling that comes as close as possible to this lower
bound.

Simple heuristics based on binary chopping normally give
a good evaluation strategy, but it is not always easy to
visualize all the possibilities.  When the polynomial can
be split asymmetrically, or where certain coefficients are
special, such as 1 or 0, there are often ways of doing
slightly better than one might expect in overall latency or
at least in the number of instructions required to attain
that latency (and hence in throughput).  Besides, doing the
scheduling by hand is tedious.  We search automatically
for the best scheduling using a program that exhaustively
examines all essentially different scheduling.  One simply
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enters a polynomial, and the program returns the best
latency and throughput attainable, and it lists the main
ways of scheduling the operations to attain this.

Even with various intelligent pruning approaches and
heuristics, the search space is large.  We restrict it
somewhat by considering only fma combinations of the
form p1(x) + xkp2(x).  That is, we do not consider
multiplying two polynomials with nontrivial coefficients.
Effectively, we allow only solutions that work for
arbitrary coefficients, without considering special
factorization properties.  However, for polynomials where
all the coefficients are 1, these results may not be optimal
because of the availability of nontrivial factorizations that
we have ruled out.  For example, we can calculate:

1 + x + x2 + x3 + x4 + x5 + x6

as

1 + (1 + (x + x2)) (x + (x2) (x2))

which can be scheduled in 15 cycles.  However, if the
restriction on fma operations is observed, then 16 cycles
is the best attainable.

The optimization program works in two stages.  First, all
possible evaluation orders using these restricted fma
operations are computed.  These evaluation orders ignore
scheduling, being just “abstract syntax” tree structures
indicating the dependencies of subexpressions, with
interior nodes representing fma operations of the form
p1(x) + xk p2(x):

        c 0  + c 1x + c 2x
2
 + c 3x

3

  c0  + c 1x                   x
2
                     c 2 + c 3x

        c 0    x    c1          0     x     x                 c 2   x    c 3

Figure 1: A dependency tree

However, because of the enormous explosion in
possibilities, we limit the search to the smallest possible
tree depth.  This tree depth corresponds to the minimum
number of serial operations than can possibly be used to
evaluate the expression using the order denoted by that
particular tree.  Consequently, if the tree depth is d then
we cannot possibly do better than 5d cycles for that
particular tree.  Now, assuming that we can in fact do at
least as well as 5d + 4, we are justified in ignoring trees of
a depth greater than or equal to d + 1, which could not
possibly be scheduled in as few cycles.  This turns out to
be the case for all our examples.

The next stage is to take each tree (in some of the
examples below there are as many as 10000 of them) and
calculate the optimal scheduling.  The optimal scheduling
is computed backwards by a fairly naive greedy
algorithm, but with a few simple refinements based on
stratifying the nodes from the top as well as from the
bottom.

The following table gives the evaluation strategy found by
the program for the polynomial:

x + c2x2 + c3x3 + … + c9x9

Table 2 shows that it can be scheduled in 20 cycles, and
we have attained the lower bound.  However, if the first
term were c1x we would need 21.

Cycle FMA Unit 1 FMA Unit 2

0 v1 = c2 + x c3 v2 = x x

3 v3 = c6 + x c7 v4 = c8 + x c9

4 v5 = c4 + x c5

5 v6 = x + v2 v1 v7 = v2 v2

9 v8 = v3 + v2 v4

10 v9 = v6 + v7 v5 v10 = v2 v7

15 v11 = v9 + v10 v8

Table 2: An optimal scheduling

OUTLINE OF ALGORITHMS
We outline each of the seven algorithms discussed here.
We concentrate only on the numeric cases and ignore
situations such as when the input is out of the range of the
functions’ domains or non-numeric (NaN for example).

Cbrt

1. Reduction: Given x, compute r = x frcpa(x) − 1.

2. Approximation: Compute a polynomial p(r) of the
form  p(r)=p1r + p2r2 + … + p6r6 that approximates
(1+r)1/3−1.

3. Reconstruction: Compute the result T + Tp(r) where
the T is (1/frcpa(x))1/3.  This value T is obtained via
a tabulation of  (1/frcpa(y))1/3, where y=1+k/256, k
ranges from 0 to 255 and a tabulation of 2−j/3,  and j
ranges from 0 to 2.

Exp

1. Reduction: Given x, compute N, the closest integer to
the value x (128/ ln(2)).  Then compute r = (x−N
P1)−N P2.  Here P1+P2 approximates ln(2)/128 (see
previous discussions).
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2. Approximation: Compute a polynomial  p(r) of the
form p(r) = r + p1 r

2 + … + p4 r5 that approximates
exp(r) − 1.

3. Reconstruction: Compute the result T + Tp(r)  where
T is 2N/128 .  This value T is obtained as follows.  First,
N is expressed as N = 128 M + 16 K + J, where I1
ranges from 0 to 15, and I2 ranges from 0 to 7.
Clearly 2N/128  = 2M  2K/8 2J/128.  The first of the three
factors can be obtained by scaling the exponent; the
remaining two factors are fetched from tables with 8
entries and 16 entries, respectively.

Ln

1. Reduction: Given x, compute r = x frcpa(x) − 1.

2. Approximation: Compute a polynomial p(r) of the
form  p(r)= p1 r2 + … + p5 r6 that approximates
ln(1+r) − r.

3. Reconstruction: Compute the result T + r + p(r)
where the T is ln(1/frcpa(x)).  This value T is
obtained via a tabulation of ln(1/frcpa(y)), where
y=1+k/256, k  ranges from 0 to 255, and a calculation
of the form N  ln(2).

Sin and Cos

We first consider the case of sin(x).

1. Reduction: Given x, compute N, the closest integer to
the value x (16/π).  Then compute r = (x−N P1)−N P2.
Here P1+P2 approximates π/16 (see previous
discussions).

2. Approximation: Compute two polynomials: p(r) of
the form  r + p1 r

3 + … + p4 r9 that approximates
sin(r) and q(r) of the form q1 r

2 + q2 r4 + … + q4 r8

that approximates cos(r) − 1.

3. Reconstruction: Return the result as Cp(r)+(S+Sq(r))
where C is cos(N π/16) and S is  sin(N π/16) obtained
from a table.

The case of cos(x) is almost identical.  Add 8 to N  just
after it is first obtained.  This works because of the
identity cos(x) = sin(x+π/2).

Tan

1. Reduction: Given x, compute N, the closest integer to
the value x (2/π).  Then compute r = (x−N P1)−N P2.
Here P1+P2 approximates π/2 (see previous
discussions).

2. Approximation: When N is even, compute a
polynomial p(r)  = r + r t (p0 + p1 t + … + p15 t

15) that
approximates tan(r).  When N is odd, compute a
polynomial q(r) = (−r)-1+ r(q0 + q1 t + … + q10 t10)

that approximates −cot(r).  The term t is r2.  We
emphasize the fact that parallelism is fully utilized.

3. Reconstruction: If N is even, return p.  If N is odd,
return q.

Atan

1. Reduction: No reduction is needed.

2. Approximation: If |x| is less than 1, compute a
polynomial p(x) = x + x3(p0 + p1 y + … + p22 y22) that
approximates atan(x), y is x2.  I f  |x| > 1, compute
several quantities, fully utilizing parallelism.  First,
compute q(x) =  q0 + q1 y + … + q22  y

22, y=x2,  that
approximates x45 atan(1/x).  Second, compute c45

where c = frcpa(x).  Third, compute another
polynomial r(β) = 1+r1 β + … + r10 β10, where β is the
quantity x frcpa(x) − 1 and r(β) approximates the
value (1−β)−45.

3. Reconstruction: If |x | is less than 1, return p(x).
Otherwise, return sign(x)π/2 − c45r(β)q(x).  This is
due to the identity atan(x) = sign(x)π/2 − atan(1/x).

SPEED AND ACCURACY
These new double-precision elementary functions are
designed to be both fast and accurate.  We present the
speed of the functions in terms of latency for arguments
that fall through the implementation in a path that is
deemed most likely.  As far as accuracy is concerned, we
report the largest observed error after extensive testing in
terms of units of last place (ulps).  This error measure is
standard in this field.  Let f be the mathematical function
to be implemented and F be the actual implementation in
double precision.  When 2L <  |f(x)| ≤ 2L+1, the error in ulps
is defined as |f(x) − F(x)| / (2L−52).  Note that the smallest
worst-case error that one can possibly attain is 0.5 ulps.
Table 3 tabulates the latency and maximum error
observed.

Function Latency (cycles) Max. Error (ulps)

cbrt 60 0.51

exp 60 0.51

ln 52 0.53

sin 70 0.51

cos 70 0.51

tan 72 0.51

atan 66 0.51

Table 3: Speed and accuracy of functions
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CONCLUSIONS
We have shown how certain key features of the IA-64
architecture can be exploited to design transcendental
functions featuring an excellent combination of speed and
accuracy.  All of these functions performed over twice as
fast as the ones based on the simple conversion of a
library tailored for double-extended precision.  In one
instance, the ln function described here contributed to a
two point increment of SpecFp benchmark run under
simulation.

The features of the IA-64 architecture that are exploited
include parallelism and the fused multiply add as well as less  
obvious features such as the reciprocal approximation
instruction.  When abundant resources for parallelism are
available, it is not always easy to visualize how to take
full advantage of them.  We have searched for optimal
instruction schedules.  Although our search method is
sufficient to handle the situations we have faced so far,
more sophisticated techniques are needed to handle more
complex situations.  First, polynomials of a higher degree
may be needed in more advanced algorithms.  Second,
more general expressions that can be considered as
multivariate polynomials are also anticipated.  Finally, our
current method does not handle the full generality of
microarchitectural constraints, which also vary in future
implementations on the IA-64 roadmap.  We believe this
optimal scheduling problem to be important not only
because it yields high-performance implementation, but
also because it may offer a quantitative analysis on the
balance of microarchitectural parameters.  Currently we
are considering an integer programming framework to
tackle this problem.  We welcome other suggestions as
well.
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ABSTRACT
This paper examines the implementation of floating-point
operations in the IA-64 architecture from the perspective
of the IEEE Standard for Binary Floating-Point Arithmetic
[1].  The floating-point data formats, operations, and
special values are compared with the mandatory or
recommended ones from the IEEE Standard, showing the
potential gains in performance that result from specific
choices.

Two subsections are dedicated to the floating-point
divide, remainder, and square root operations, which are
implemented in software.  It is shown how IEEE
compliance was achieved using new IA-64 features such
as fused multiply-add operations, predication, and
multiple status fields for IEEE status flags.  Derived
integer operations (the integer divide and remainder) are
also illustrated.

IA-64 floating-point exceptions and traps are described,
including the Software Assistance faults and traps that
can lead to further IEEE-defined exceptions.  The
software extensions to the hardware needed to comply
with the IEEE Standard’s recommendations in handling
floating-point exceptions are specified.  The special case
of the Single Instruction Multiple Data (SIMD)
instructions is described.  Finally, a subsection is
dedicated to speculation, a new feature in IA processors.

INTRODUCTION
The IA-64 floating-point architecture was designed with
three objectives in mind.  First, it was meant to allow
high-performance computations.  This was achieved
through a number of architectural features.  Pipelined
floating-point units allow several operations to take
place in parallel.  Special instructions were added, such
as fused floating-point multiply-add, or SIMD
instructions, which allow the processing of two subsets

of floating-point operands in parallel.  Predication allows
skipping operations without taking a branch.
Speculation allows speculative execution chains whose
results are committed only if needed.  In addition, a large
floating-point register file (including a rotating subset)
reduces the number of save/restore operations involving
memory.  The rotating subset of the floating-point
register file enables software pipelining of loops, leading
to significant gains in performance.

Second, the architecture aims to provide high floating-
point accuracy.  For this, several floating-point data
types were provided, and instructions new to the Intel
architecture, such as the fused floating-point multiply-
add, were introduced.

Third, compliance with the IEEE Standard for Binary
Floating-Point Arithmetic was sought.  The environment
that a numeric software programmer sees complies with
the IEEE Standard and most of its recommendations as a
combination of hardware and software, as explained
further in this paper.

Floating-Point Numbers
Floating-point numbers are represented as a
concatenation of a sign bit, an M-bit exponent field, and
an N-bit significand field.  In some floating-point formats,
the most significant bit (integer bit) of the significand is
not represented.  Its assumed value is 1, except for
denormal numbers, whose most significant bit of the
significand is 0.  Mathematically

f  = σ ⋅ s ⋅ 2e

where σ = ±1, s ∈ [1,2), s = 1 + k / 2N-1 ,  k ∈ {0, 1, 2,…, 2N-

1-1}, e ∈ [emin, emax] ∩ Z (Z is the set of integers),  emin  = -
2M-1 + 2, and emax = 2M-1 – 1.

The IA-64 architecture provides 128 82-bit floating-point
registers that can hold floating-point values in various
formats, and which can be addressed in any order.
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Floating-point numbers can also be stored into or loaded
from memory.

IA-64 FORMATS, CONTROL, AND
STATUS

Formats
Three floating-point formats described in the IEEE
Standard are implemented as required: single precision
(M=8, N=24), double precision (M=11, N=53), and
double-extended precision (M=15, N=64).  These are the
formats usually accessible to a high-level language
numeric programmer.  The architecture provides for
several more formats, listed in Table 1, that can be used
by compilers or assembly code writers, some of which
employ the 17-bit exponent range and 64-bit significands
allowed by the floating-point register format.

Format Format
Parameters

Single precision M=8, N=24

Double precision M=11, N=53

Double-extended precision M=15, N=64

Pair of single precision floating-point
numbers

M=8, N=24

IA-32 register stack single precision M=15, N=24

IA-32 register stack double precision M=15, N=53

IA-32 double-extended precision M=15, N=64

Full register file single precision M=17, N=24

Full register file double precision M=17, N=53

Full register file double-extended
precision

M=17, N=64

Table 1: IA-64 floating-point formats

The floating-point format used in a given computation is
determined by the floating-point instruction (some
instructions have a precision control completer pc
specifying a static precision) or by the precision control
field (pc), and by the widest-range exponent (wre) bit in
the Floating-Point Status Register (FPSR).  In memory,
floating-point numbers can only be stored in single
precision, double precision, double-extended precision,
and register file format (‘spilled’ as a 128-bit entity,
containing the value of the floating-point register in the
lower 82 bits).

Rounding
The four IEEE rounding modes are supported: rounding
to nearest, rounding to negative infinity, rounding to
positive infinity, and rounding to zero.  Some
instructions have the option of using a static rounding
mode.  For example, fcvt.fx.trunc performs conversion of
a floating-point number to integer using rounding to
zero.

Some of the basic operations specified by the IEEE
Standard (divide, remainder, and square root) as well as
other derived operations are implemented using
sequences of add, subtract, multiply, or fused multiply-
add and multiply-subtract operations.

In order to determine whether a given computation yields
the correctly rounded result in any rounding mode, as
specified by the standard, the error that occurs due to
rounding has to be evaluated.  Two measures are
commonly used for this purpose.  The first is the error of
an approximation with respect to the exact result,
expressed in fractions of an ulp, or unit in the last place.
Let FN  be the set of floating-point numbers with N-bit
significands and unlimited exponent range.  For the
floating-point number f = σ ⋅ s ⋅ 2e ∈ FN, one ulp has the
magnitude

1 ulp = 2e-N+1.

An alternative is to use the relative error.  If the real
number x is approximated by the floating-point number a,
then the relative error ε  is determined by

a  = x ⋅ (1 + ε)

The Floating-Point Status Register
Several characteristics of the floating-point
computations are determined by the contents of the 64-
bit FPSR.

A set of six trap mask bits (bits 0 through 5) control
enabling or disabling the five IEEE traps (invalid
operation, divide-by-zero, overflow, underflow, and
inexact result) and the IA-defined denormal trap [2].  In
addition, four 13-bit subsets of control and status bits
are provided: status fields sf0, sf1, sf2, and sf3.  Multiple
status fields allow different computations to be
performed simultaneously with different precisions
and/or rounding modes.  Status field 0 is the user status
field, specifying rounding-to-nearest and 64-bit precision
by default.  Status field 1 is reserved by software
conventions for special operations, such as divide and
square root.  It uses rounding-to-nearest, the 64-bit
precision, and the widest-range exponent (17 bits).
Status fields 2 and 3 can be used in speculative
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operations, or for implementing special numeric
algorithms, e.g., the transcendental functions.

Each status field contains a 2-bit rounding mode control
field (00 for rounding to nearest, 01 to negative infinity,
10 to positive infinity, and 11 toward zero), a 2-bit
precision control field (00 for 24 bits, 10 for 53 bits, and
11 for 64 bits), a widest-range exponent bit (use the 17-bit
exponent if wre = 1), a flush-to-zero bit (causes flushing
to zero of tiny results if ftz = 1), and a traps disabled bit
(overrides the individual trap masks and disables all
traps if td = 1, except for status field 0, where this bit is
reserved).  Each status field also contains status flags for
the five IEEE exceptions and for the denormal exception.

The register file floating-point format uses a 17-bit
exponent range, which has two more bits than the
double-extended precision format, for at least three
reasons.  The first is related to the implementation in
software of the divide and square root operations in the
IA-64 architecture.  Short sequences of assembly
language instructions carry out these computations
iteratively.  If the exponent range of the intermediate
computation steps is equal to that of the final result, then
some of the intermediate steps might overflow,
underflow, or lose precision, preventing the final result
from being IEEE correct.  Software Assistance (SWA)
will be necessary in these cases to generate the correct
results, as explained in [4].  The two (or more) extra bits
in the exponent range (17 versus 15 or less) prevent the
SWA requests from occurring.  The second reason for
having a 17-bit exponent range is that it allows the
common computation of x2 + y2 to be performed without
overflow or underflow, even for the largest or smallest
double-extended precision numbers.  Third, the 17-bit
exponent range is necessary in order to be able to
represent the product of all double-extended denormal
numbers.

Special Values
The various floating-point formats support the IEEE
mandated representations for denormals, zero, infinities,
quiet NaNs (QNaNs), and signaling NaNs (SNaNs). In
addition, the formats that have an explicit integer bit in
the significand can also hold other types of values.
These formats are double-extended, with 15-bit
exponents biased by 16383 (0x3fff), and all the register
file formats, with 17-bit exponents biased by 65535
(0xffff).  The exponents of these additional types of
values are specified below for the register file format:

unnormalized numbers: non-zero significand
beginning with 0 and exponent from 0 to 0x1fffe,
or pseudo-zeroes with a significand of 0, and
exponent from 0x1 to 0x1fffe

pseudo-NaNs: non-zero significand and
exponent of 0x1ffff (unsupported by the
architecture); the pseudo-QNaNs have the
second most significant bit of the significand
equal to 1; this bit is 0 for pseudo-SNaNs

pseudo-infinities: significand of zero and
exponent of 0x1ffff (unsupported by the
architecture)

Note that one of the pseudo-zero values, encoded on 82
bits as 0x1fffe0000000000000000, is denoted as NaTVal
(‘not a value’) and is generated by unsuccessful
speculative load from memory operations (e.g. a
speculative load, in the presence of a deferred floating-
point exception).  It is then propagated through the
speculative chain to indicate in the end that no useful
result is available.

Two special categories that overload other floating-point
numbers in register file format are the SIMD floating-
point pairs, and the canonical non-zero integers.  Both
have an exponent of 0x1003e (unbiased 63).  The value of
the canonical non-zero integers is equal to that of the
unnormal or normal floating-point numbers that they
overlap with. The exponent of 63 moves the binary point
beyond the least significant bit, the resulting value being
the integer stored in the significand.  The SIMD floating-
point numbers consist of two single-precision floating-
point values encoded in the two halves of the 64-bit
significand of a floating-point register, with the biased
exponent set to 0x1003e. For example, the 82-bit value of
0x1003e 3f800000 3f800000 represents the pair (+1.0,
+1.0).  Note that all the arithmetic scalar floating-point
instructions have SIMD counterparts that operate on
two single-precision floating-point values in parallel.

IA-64 FLOATING-POINT OPERATIONS
All the floating-point operations mandated or
recommended by the IEEE Standard are or can be
implemented in IA-64 [2].  Note that most IA-64
instructions [2] are predicated by a 1-bit predicate (qp)
from the 64-bit predicate register (predicate p0 is fixed,
containing always the logical value 1).  For example, the
fused multiply-add operation is

(qp) fma.pc.sf f1 = f3, f4, f2

The fma instruction is executed if qp = 1; otherwise, it is
skipped.  Two instruction completers select the precision
control (pc) and the status field (sf) to be used.  When
the qualifying predicate is not represented, it is either not
necessary, or it is assumed to be p0.  When qp = 1, fma
calculates f3 ⋅ f4 + f2, where ‘pc’ can be ‘s’, ‘d’, or none.
If the instruction completer ‘pc’ is ‘s’, fma.s.sf generates
a result with a 24-bit significand. Similarly, fma.d.sf
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generates a result with a 53-bit significand.  The
exponent in the two cases is in the 8-bit or 11-bit range
respectively if sf.wre = 0, and in the 17-bit range if sf.wre
= 1.  If ‘pc’ is none, the precision of the computation
fma.sf f1 = f3, f4, f2 is specified by the pc field of the
status field being used, sf.pc.  The exponent size is 15
bits if sf.wre = 0, and 17 bits if sf.wre = 1.

Addition and multiplication are implemented as pseudo-
ops of the floating-point multiply-add operation.  The
pseudo-op for addition is fadd.pc.sf  f1 = f3, f2 obtained
by replacing  f4 with register f1 that contains +1.0.  The
pseudo-op for multiplication is fmpy.pc.sf f1 = f3, f4,
obtained by replacing  f2 with f0 that contains +0.0.

The reason for having a fused multiply-add operation is
that it allows computation of a ⋅ b + c with only one
rounding error.  Assuming rounding to nearest, fma
computes

(a ⋅ b + c) rn = (a ⋅ b + c) ⋅ (1 + ε)

where |ε| < 2-N, and N is the number of bits in the
significand.  The relative error above (ε) is smaller in
general than that obtained with pure add and multiply
operations:

((a ⋅ b) rn + c) rn = (a ⋅ b (1 + ε1) + c) ⋅ (1 + ε2)

where |ε1| < 2–N and |ε2| < 2–N.

The benefit that arises from this property is that it
enables the implementation of a whole new category of
numerical algorithms, relying on the possibility of
performing this combined operation with only one
rounding error (see the subsections on divide and
square root below).

Subtraction (fsub.pc.sf f1 = f3, f2) is implemented as a
pseudo-op of the floating-point multiply-subtract,
fms.pc.sf f1 = f3, f4, f2 (which calculates f3 ⋅ f4 - f2) where
f4 is replaced by f1.  In addition to fma and fms, a similar
operation is available for the floating-point negative
multiply-add operation, fnma.pc.sf f1 = f3, f4, f2, which
calculates -f3 ⋅ f4 + f2.

A deviation from one of the IEEE Standard’s
recommendations is to allow higher precision operands
to lead to lower precision results.  However, this is a
useful feature when implementing the divide, remainder,
and square root operations in software.

For parallel computations, counterparts of fma, fms, and
fnma are provided.  For example, fpma.pc.sf f1 = f3, f4, f2
calculates f3 ⋅ f4 + f2.  A pair of ones (1.0, 1.0) has to be
loaded explicitly in a floating-point register to emulate
the SIMD floating-point add.

Divide, square root, and remainder operations are not
available directly in hardware.  Instead, they have to be
implemented in software as sequences of instructions
corresponding to iterative algorithms (described below).

Rounding of a floating-point number to a 64-bit signed
integer in floating-point format is achieved by the
fcvt.fx.sf f1 = f2 instruction followed by fcvt.xf f2 = f1. For
64-bit unsigned integers, the similar instructions are
fcvt.fxu.sf f1 = f2 and fcvt.xuf.pc.sf f2 = f1.  Two
variations of the instructions that convert floating-point
numbers to integer use the rounding-to-zero mode
regardless of the rounding control bits used in the FPSR
status field (fcvt.fx.trunc.sf f1 = f2 and fcvt.fxu.trunc.sf f1
= f2). They are useful in implementing integer divide and
remainder operations using floating-point instructions.
For example, the following instructions convert a single
precision floating-point number from memory (whose
address is in the general register r30) to a 64-bit signed
integer in r8:

    ldfs f6=[r30];; // load single precision fp number

    fcvt.fx.trunc.s0 f7=f6;; // convert to integer

    getf.sig r8=f7;;

(Note that stop bits (;;) delimit the instruction groups.)
The biased exponent of the value in f7 is set by
fcvt.fx.trunc.s0 to 0x1003e (unbiased 63) and the
significand to the signed integer that is the result of the
conversion. (If the conversion is invalid, the significand
is set to the value of Integer Indefinite, which is –263.)
Since rounding to zero is used by fcvt.fx.trunc,
specifying the status field only tells which status flags to
set if an invalid operation, denormal, or inexact result
exception occurs (Exceptions and Traps are covered later
in the paper.)  For the conversion from a floating-point
number to a 64-bit unsigned integer, fcvt.fx.trunc above
has to be replaced by fcvt.fxu.trunc.

The opposite conversion, from a 64-bit signed integer in
r32 to a register-file format floating-point number in f7, is
performed by

    setf.sig f6 = r32;; //sign=0 exp=0x1003e signif.=r32

    fcvt.xf f7 = f6;; // sign=sign(r32); no fp exceptions

where the result is an integer-valued normal floating-
point number.  To convert further, for example to a single
precision floating-point number, one more instruction is
needed

    fma.s.s0 f8=f7,f1,f0;;

where the single precision format is specified statically,
and status field s0 is assumed to have wre = 0.

For 64-bit unsigned integers, the similar conversion is



Intel Technology Journal Q4, 1999

IA-64 Floating-Point Operations and the IEEE Standard for Binary Floating-Point Arithmetic 5

    setf.sig f6 = r32;; // sign=0 exp=0x1003e signif.=r32

    fcvt.xuf.s0 f7 = f6

where fcvt.xuf.pc.sf f7 = f6 is actually a pseudo-op for
fma.pc.sf f7 = f6, f1, f0, and a synonym of fnorm.pc.sf f7 =
f6 (it is assumed that status field s0 has pc = 0x3).  The
result is thus a normalized integer-valued floating-point
number.  This is important to know, since floating-point
operations on unnormalized numbers lead to Software
Assistance faults (as explained further in the paper),
thereby slowing down performance unnecessarily.

Conversions between the different floating-point formats
are achieved using floating-point load, store, or other
operations.  For example, the following sequence
converts a single precision value from memory to double
precision format, also in memory (r29 contains the
address of the single precision source, and r30 that of
the double precision destination):

    ldfs f6 = [r29];;

    fma.d.s0 f7=f6,f1,f0;;

    stfd [r30] = f7

This conversion could trigger the invalid exception (for a
signaling NaN operand) or the denormal operand
exception.  These can happen on the fma instruction, but
the conversion will be correct numerically even without
this instruction, as all the single precision values can be
represented in the double precision format.

The opposite conversion is shown below (it is assumed
that status field s0 has wre = 0):

    ldfd f6=[r29];;

    fma.s.s0 f7=f6,f1,f0;;

    stfs [r30]=f7;;

The role of the fma.s.s0 is to trigger possible invalid,
denormal, underflow, overflow, or inexact exceptions on
this conversion.

Other conversions between floating-point and integer
formats can be achieved with short sequences of
instructions.  For example, the following sequence
converts a single precision floating-point value in
memory to a 32-bit signed integer (correct only if the
result fits on 32 bits):

    ldfs f6 = [r30];; // load f6 with fp value from memory

    fcvt.fx.trunc.s0 f7=f6;; // convert to signed integer

    getf.sig r29 = f7;; // move the 64-bit integer to r29

    st4 [r28] = r29;; // store as 32-bit integer in memory

The opposite conversion, from a 32-bit integer in memory
to a single precision floating-point number in memory, is
performed by

    ld4 r29 = [r30];; // load r29 with 32-bit int from mem

    sxt4 r28=r29;; // sign-extend

    setf.sig f6 = r28;; // 32-bit integer in f6; exp=0x1003e

    fcvt.xf f7=f6;; // convert to normal floating-point

    fma.s.s0 f8 = f7,f1,f0;; // trigger I exceptions if any

    stfs [r27] = f8;; // store single prec. value in memory.

Floating-point compare operations can be performed
directly between numbers in floating-point register file
format, using the fcmp instruction.  For other memory
formats, a conversion to register format is required prior
to applying the floating-point compare instruction.  From
the 26 functionally distinct relations specified by the
IEEE Standard, only the six mandatory ones are
implemented (four directly, and two as pseudo-ops):

fcmp.eq.sf p1, p2 = f2, f3 (test for ‘=’)

fcmp.lt.sf p1, p2 = f2, f3 (test for ‘<’)

fcmp.le.sf p1, p2 = f2, f3 (test for ‘<=’)

fcmp.gt.sf p1, p2 = f2, f3 (test for ‘>’)

fcmp.ge.sf p1, p2 = f2, f3 (test for ‘>=’)

fcmp.unord.sf p1, p2 = f2, f3 (test for ‘?’)

The result of a compare operation is written to two 1-bit
predicates in the 64-bit predicate register.  Predicate p1
shows the result of the comparison, while p2 is its
opposite.  An exception is the case when at least one
input value is NaTVal, when p1 = p2 = 0.  A variant of
the fcmp instruction is called ‘unconditional’ (with
respect to the qualifying predicate).  The difference is
that if qp = 0, the unconditional compare

(qp) fcmp.eq.unc.sf p1, p2 = f2, f3

clears both output predicates, while

(qp) fcmp.eq.sf p1, p2 = f2, f3

leaves them unchanged.

Six more compare relations are implemented, as pseudo-
ops of the above, to test for the opposite situations (neq,
nlt, nle, ngt, nge, and ord).  The remaining 14 comparison
relations specified by the IEEE Standard can be
performed based on the above.

A special type of compare instruction is
fclass.fcrel.fctype p1,p2=f2,fclass9, that allows
classification of the contents of f2 according to the class
specifier fclass9 .  The fcrel instruction completer can be
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‘m’ (if f2 has to agree with the pattern specified by
fclass9), or ‘nm’ (f2 has to disagree).  The fctype
completer can be none or ‘unc’ (as for fcmp).  fclass9  can
specify one of {NaTVal, QNaN, SNaN} OR none, one or
both of {positive, negative} AND none, one or several
of {zero, unnormal, normal, infinity} (nine bits
correspond to the nine classes that can be selected, with
the restrictions specified on the possible combinations).

IA-64 FLOATING-POINT OPERATIONS
DEFERRED TO SOFTWARE
A number of floating-point operations defined by the
IEEE Standard are deferred to software by the IA-64
architecture in all its implementations:

• floating-point divide (integer divide, which is based
on the floating-point divide operation, is also
deferred to software)

• floating-point square root

• floating-point remainder (integer remainder, based
on the floating-point divide operation, is also
deferred to software)

• binary to decimal and decimal to binary conversions

• floating-point to integer-valued floating-point
conversion

• correct wrapping of the exponent for single, double,
and double-extended precision results of floating-
point operations that overflow or underflow, as
described by the IEEE Standard

In addition, the IA-64 architecture allows virtually any
floating-point operation to be deferred to software
through the mechanism of Software Assistance (SWA)
requests, which are treated as floating-point exceptions.
Software Assistance is discussed in detail in the
sections describing the divide operation, the square root
operation, and the exceptions and traps.

IA-64 FLOATING-POINT DIVIDE AND
REMAINDER
The floating-point divide algorithms for the IA-64
architecture are based on the Newton-Raphson iterative
method and on polynomial evaluation.  If a/b needs to be
computed and the Newton-Raphson method is used, a
number of iterations first calculate an approximation of
1/b, using the function

f(y) = b – 1/y

The iteration step is

en = (1  - b ⋅ yn)rn  ≈ 0

yn+1 = (yn + en ⋅ yn )rn  ≈ 1/b

where the subscript rn denotes the IEEE rounding to the
nearest mode.

Once a sufficiently good approximation y of 1/b is
determined, q = a ⋅ y approximates a/b.  In some cases,
this might need further refinement, which requires only a
few more computational steps.

In order to show that the final result generated by the
floating-point divide algorithm represents the correctly
rounded value of the infinitely precise result a/b in any
rounding mode, it was proved (by methods described in
[3] and [4]) that the exact value of a/b and the final result
q* of the algorithm before rounding belong to the same
interval of width 1/2 ulp, adjacent to a floating-point
number. Then

(a/b)rnd  =  (q*)rnd

where rnd is any IEEE rounding mode.

The algorithms proposed for floating-point divide (as
well as for square root) are designed, as seen from the
Newton-Raphson iteration step shown above, based on
the availability of the floating-point multiply-add
operation, fma, that performs both the multiply and add
operations with only one rounding error.

Two variants of floating-point divide algorithms are
provided for single precision, double precision, double-
extended and full register file format precision, and SIMD
single precision.  One achieves minimum latency, and
one maximizes throughput.

The minimum latency variant minimizes the execution
time to complete one operation.  The maximum
throughput variant performs the operation using a
minimum number of floating-point instructions.  This
variant allows the best utilization of the parallel
resources of the IA-64, yielding the minimum time per
operation when performing the operation on multiple
sets of operands.

Double Precision Floating-Point Divide
Algorithm
The double precision floating-point divide algorithm that
minimizes latency was chosen to illustrate the
implementation of the mathematical algorithm in IA-64
assembly language.  The input values are the double
precision operands a and b, and the output is a/b.

All the computational steps are performed in full register
file double-extended precision, except for steps (11) and
(12), which are performed in full register file double
precision, and step (13), performed in double-precision.
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The approximate values are shown on the right-hand
side.

(1) y0 = 1/b ⋅ (1 + ε 0),   |ε 0| ≤ 2 -m ,   m=8.886

(2) q0 = (a ⋅ y 0)rn  = a/b ⋅ (1 + ε 0)

(3) e0 = (1 - b ⋅ y 0)rn  ≈  - ε0

(4) y1 = (y0 + e0 ⋅ y 0)rn  ≈ 1/b ⋅ (1 - ε0
2)

(5) q1 = (q0 + e0 ⋅ q0)rn  ≈ a/b ⋅ (1 - ε0
2)

(6) e1 = (e0
2)rn  ≈ ε0

2

(7) y2 = (y1 + e1 ⋅ y 1)rn  ≈ 1/b ⋅ (1 - ε0
4)

(8) q2 = (q1 + e1 ⋅ q1)rn  ≈ a/b ⋅ (1 - ε0
4)

(9) e2 = (e1
2)rn  ≈ ε0

4

(10) y3 = (y2 + e2 ⋅ y 2)rn  ≈ 1/b ⋅ (1 - ε0
8)

(11) q3 = (q2 + e2 ⋅ q2)rn  ≈ a/b ⋅ (1 - ε0
8)

(12) r0 = (a - b ⋅ q 3)rn  ≈ a ⋅ ε0
8

(13) q4 = (q3 + r0 ⋅ y3)rnd  ≈ a/b ⋅ (1 - ε0
16)

The first step is a table lookup performed by frcpa, which
gives an initial approximation y0 of 1/b, with known
relative error determined by m = 8.886.  Steps (3) and (4),
(6) and (7), and (9) and (10) represent three iterations that
generate increasingly better approximations of 1/b in y1 ,
y2 , and y3.  Note that step (2) above is exact: y0 has 11
bits (read from a table), and a has 53 bits in the
significand, and thus the result of the multiplication has
at most 64 bits that fit in the significand.  Steps (5), (8),
and (11) calculate three increasingly better
approximations q1, q2 and q3 of a/b. Evaluating their
relative errors and applying other theoretical properties
[4], it was shown that q4 = (a/b)rnd in any IEEE rounding
mode rnd, and that the status flag settings and exception
behavior are IEEE compliant.  Assuming that the latency
of all floating-point operations is the same, the algorithm
takes seven fma latencies: steps (2) and (3) can be
executed in parallel, as can steps (4), (5), (6); then (7), (8),
(9) and also (10) and (11).

The implementation of this algorithm in assembly
language is shown next.

(1) frcpa.s0 f8,p6=f6,f7;;  // y0=1/b in f8

(2) (p6) fma.s1 f9=f6,f8,f0  // q0=a*y0 in f9

(3) (p6) fnma.s1 f10=f7,f8,f1;;  // e0=1-b*y0 in f10

(4) (p6) fma.s1 f8=f10,f8,f8  // y1=y0+e0*y0 in f8

(5) (p6) fma.s1 f9=f10,f9,f9  // q1=q0+e0*q0 in f9

(6) (p6) fma.s1 f11=f10,f10,f0;; // e1=e0*e0 in f11

(7) (p6) fma.s1 f8=f11,f8,f8  // y2=y1+e1*y1 in f8

(8) (p6) fma.s1 f9=f11,f9,f9  // q2=q1+e1*q1 in f9

(9) (p6) fma.s1 f10=f11,f11,f0;; // e2=e1*e1 in f10

(10)  (p6) fma.s1 f8=f10,f8,f8  // y3=y2+e2*y2 in f8

(11) (p6) fma.d.s1 f9=f10,f9,f9;;//q3=q2+e2*q2in f9

(12) (p6) fnma.d.s1 f6=f7,f9,f6;;  // r0=a-b*q3 in f6

(13) (p6) fma.d.s0 f8=f6,f8,f9;;// q4=q3+r0*y3 in f8

Note that the output predicate p6 of instruction (1)
(frcpa) predicates all the subsequent instructions.  Also,
the output register of frcpa (f8) is the same as the output
register of the last operation (in step (13)).  If the frcpa
instruction encounters an exceptional situation such as
unmasked division by 0, and an exception handler
provides the result of the divide, p6 is cleared and no
other instruction from the sequence is executed.  The
result is still provided where it is expected.  Another
observation is that the first and last instructions in the
sequence use the user status field (sf0), which will reflect
exceptions that might occur, while the intermediate
computations use status field 1 (sf1, with wre = 1). This
implementation behaves like an atomic double precision
divide, as prescribed by the IEEE Standard.  It sets
correctly all the IEEE status flags (plus the denormal
status flag), and it signals correctly all the possible
floating-point exceptions if unmasked (invalid operation,
denormal operand, divide by zero, overflow, underflow,
or inexact result).

Floating-Point Remainder
The floating-point divide algorithms are the basis for the
implementation of floating-point remainder operations.
Their correctness is a direct consequence of the
correctness of the floating-point divide algorithms. The
remainder is calculated as r = a – n ⋅ b, where n is the
integer closest to the infinitely precise a/b.  The problem
is that n might require more bits to represent than
available in the significand for the format of a and b.  The
solution is to implement an iterative algorithm, as
explained in [5] for FPREM1 (all iterations but the last are
called ‘incomplete’).  The implementation (not shown
here) is quite straightforward.  The rounding to zero
mode for divide can be set in status field sf2 (otherwise
identical to the user status field sf0).  Status field sf0 will
only be used by the first frcpa (which may signal the
invalid, divide by zero, or denormal exceptions) and by
the last fnma (computing the remainder).  The last fnma
may also signal the underflow exception.
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Software Assistance Conditions for Scalar
Floating-Point Divide
The main issue identified in the process of proving the
IEEE correctness of the divide algorithms [4] is that there
are cases of input operands for a/b that can cause
overflow, underflow, or loss of precision of an
intermediate result.  Such operands might prevent the
sequence from generating correct results, and they
require alternate algorithms implemented in software in
order to avoid this.  These special situations are
identified by the following conditions that define the
necessity for IA-64 Architecturally Mandated Software
Assistance for the scalar floating-point divide
operations:

    (a)  e b ≤ e min – 2  (y i  might become huge)

    (b)  e b ≥ e max – 2  (y i  might become tiny)

    (c)  e a – e b ≥ e max  (qi  might become huge)

    (d)  e a – e b ≤ e min + 1 (qi  might become tiny)

    (e)  e a ≤ e min + N – 1 (ri might lose precision)

where ea is the (unbiased) exponent of a; eb is the
exponent of b; emin is the minimum value of the exponent
in the given format; emax is its maximum possible value;
and N is the number of bits in the significand.  When any
of these conditions is met, frcpa issues a Software
Assistance (SWA) request in the form of a floating-point
exception instead of providing a reciprocal approximation
for 1/b, and clears its output predicate.  An SWA
handler provides the result of the floating-point divide,
and the rest of the iterative sequence for calculating a/b
is predicated off.  The five conditions above can be
represented to show how the two-dimensional space
containing pairs (ea, eb) is partitioned into regions (Figure
4 of [4]).  Alternate software algorithms had to be
devised to compute the IEEE correct quotients for pairs
of numbers whose exponents fall in regions satisfying
any of the five conditions above.  Note though that due
to the extended internal exponent range (17 bits), the
single precision, double precision, and double-extended
precision calculations will never require architecturally
mandated software assistance.  This type of software
assistance might be required only for floating-point
register file format computations with floating-point
numbers having 17-bit exponents.

When an architecturally mandated software assistance
request occurs for the divide operation, the result is
provided by the IA-64 Floating-Point Emulation Library,
which has the role of an SWA handler, as described
further.

The parallel reciprocal approximation instruction, fprcpa,
does not signal any SWA requests. When any of the
five conditions shown above is met, fprcpa merely clears
its output predicate, in which case the result of the
parallel divide operation has to be computed by alternate
algorithms (typically by unpacking the parallel operands,
performing two single precision divide operations, and
packing the results into a SIMD result).

IA-64 FLOATING-POINT SQUARE ROOT
The IA-64 floating-point square root algorithms are also
based on Newton-Raphson or similar iterative
computations.  If √a needs to be computed and the
Newton-Raphson method is used, a number of Newton-
Raphson iterations first calculate an approximation of
1/√a, using the function

f(y) = 1/y2 - a

The general iteration step is

en = (1/2 – 1/2 ⋅ a ⋅ yn
2)rn

yn+1 = (yn + en ⋅ yn )rn

where the subscript rn denotes the IEEE rounding to the
nearest mode.  The first computation above is rearranged
in the real algorithm in order to take advantage of the fma
instruction capability.

Once a sufficiently good approximation y of 1/√a is
determined, S = a ⋅ y approximates √a.  In certain cases,
this too might need further refinement.

In order to show that the final result generated by a
floating-point square root algorithm represents the
correctly rounded value of the infinitely precise result √a
in any rounding mode, it was proved (by methods
described in [3] and [4]), that the exact value of √a and
the final result R* of the algorithm before rounding
belong to the same interval of width 1/2 ulp, adjacent to a
floating-point number.  Then, just as for the divide
operation

(√a)rnd  =  (R*)rnd

where rnd is any IEEE rounding mode.

Floating-point square root algorithms are provided for
single precision, double precision, double-extended and
full register file format precision, and for SIMD single
precision, in two variants. One achieves minimum
latency, and one maximizes throughput.

SIMD Floating-Point Square Root Algorithm
We next present as an example the algorithm that allows
computing the SIMD single precision square root, and
which is optimized for throughput, having a minimum
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number of floating-point instructions.  The input
operand is a pair of single precision numbers (a1, a2). The
output is the pair (√a1, √a2).  All the computational steps
are performed in single precision.  The algorithm is
shown below as a scalar computation.  The approximate
values shown on the right-hand side are computed
assuming no rounding errors occur, and they neglect
some high order terms that are very small.

(1)  y0  = 1/√a ⋅ (1 + ε 0),   |ε 0| ≤ 2 -m ,  m=8.831

(2)  h = (1/2 ⋅ y0)rn  ≈ (1 / (2⋅√a)) ⋅ (1 + ε 0)

(3)  t1 = (a ⋅ y0)rn  ≈ √a ⋅ (1 + ε 0)

(4)  t2 = (1/2 - t1 ⋅ h)rn  ≈ -ε 0  – 1/2 ⋅ ε 0
2

(5)  y1 = (y0 +  t2 ⋅ y0)rn  ≈ 1/√a ⋅ (1 – 3/2⋅ε 0
2)

(6)  S = (a ⋅ y1)rn  ≈ √a ⋅ (1 – 3/2 ⋅ ε 0
2)

(7)  H = (1/2 ⋅ y1)rn  ≈ (1 / (2⋅√a)) ⋅ (1 – 3/2⋅ε 0
2)

(8)  d = (a - S ⋅ S)rn  ≈ a ⋅ (3⋅ε 0
2 – 9/4⋅ε 0

4)

(9)  t4 = (1/2 - S ⋅ H)rn  ≈ 3/2 ⋅ ε 0
2 – 9/8⋅ε 0

4

(10)  S1 = (S +  d  ⋅ H)rn  ≈  √a ⋅ (1 – 27/8⋅ε 0
4)

(11)  H1 = (H +  t4 ⋅ H)rn  ≈ (1 / (2⋅√a))⋅(1 – 27/8⋅ε0
4)

(12)  d1 = (a -  S1 ⋅ S1)rn  ≈ a ⋅ (27/4⋅ε 0
4 – 729/64⋅ε0

8)

(13)  R = (S1 +  d1 ⋅ H1)rnd  ≈  √a ⋅ (1 – 2187/128⋅ε 0
8)

The first step is a table lookup performed by fprsqrta,
which gives an initial approximation of (1/√a1,1/√a2) with
known relative error determined by m = 8.831. The
following steps implement a Newton-Raphson iterative
algorithm.  Specifically, step (5) improves on the
approximation of (1/√a1,1/√a2).  Steps (3), (6), (10) and
(13) calculate increasingly better approximations of
(√a1,√a2).  The algorithm was proved correct as outlined
in [3] and [4].  The final result (R1,R2) equals
((√a1)rnd,(√a2)rnd) for any IEEE rounding mode rnd, and the
status flag settings and exception behavior are IEEE
compliant.

The assembly language implementation is as follows
(only the floating-point operations are numbered):

               movl r3 = 0x3f0000003f000000;; // +1/2,+1/2

setf.sig f7=r3 // +1/2,+1/2 in f7

(1) fprsqrta.s0 f8,p6=f6;;          // y0=1/sqrt(a) in f8

(2) (p6) fpma.s1 f9=f7,f8,f0       // h=1/2*y0 in f9

(3) (p6) fpma.s1 f10=f6,f8,f0;; // t1=a*y0 in f10

(4) (p6) fpnma.s1 f9=f10,f9,f7;;// t2=1/2-t1*h in f9

(5) (p6) fpma.s1 f8=f9,f8,f8;;  // y1=y0+t2*y0 in f8

(6) (p6) fpma.s1 f9=f6,f8,f0     // S=a*y1 in f9

(7) (p6) fpma.s1 f8=f7,f8,f0;;   // H =1/2*y1 in f8

(8) (p6) fpnma.s1 f10=f9,f9,f6 // d=a-S*S in f10

(9) (p6) fpnma.s1 f7=f9,f8,f7;; // t4=1/2-S*H in f7

(10)  (p6) fpma.s1 f10=f10,f8,f9// S1=S+d*H in f10

(11) (p6) fpma.s1 f7=f7,f8,f8;;   // H1=H+t4*H in f7

(12) (p6) fpnma.s1 f9=f10,f10,f6;;// d1=a-S1^2 in f9

(13) (p6) fpma.s0 f8=f9,f7,f10;;//R=S1+d1*H1 in f8

Software Assistance Conditions for Scalar
Floating-Point Square Root
Just as for divide, cases of special input operands were
identified in the process of proving the IEEE correctness
of the square root algorithms [4].  The difference with
respect to divide is that only loss of precision of an
intermediate result can occur in an iterative algorithm
calculating the floating-point square root.  Such
operands might prevent the sequence from generating
correct results, and they require alternate algorithms
implemented in software in order to avoid this.  These
special situations are identified by the following
condition that defines the necessity for IA-64
Architecturally Mandated Software Assistance for the
scalar floating-point square root operation:

    e a  ≤  e min  +  N – 1  (d i might lose precision)

where ea is the (unbiased) exponent of a, emin is the
minimum value of the exponent in the given format, and
N is the number of bits in the significand.  When this
condition is met, frsqrta issues a Software Assistance
request in the form of a floating-point exception, instead
of providing a reciprocal approximation for 1/√a, and it
clears its output predicate.  The result of the floating-
point square root operation is provided by an SWA
handler, and the rest of the iterative sequence for
calculating √a is predicated off.  Due to the extended
internal exponent range (17 bits), the single precision,
double precision, and double-extended precision
calculations will never require architecturally mandated
software assistance.  This type of software assistance
might be required only for floating-point register file
format computations with floating-point numbers having
17-bit exponents.

When an architecturally mandated software assistance
request occurs for the square root operation, the result is
provided by the IA-64 Floating-Point Emulation Library.

Just as for the parallel divide, the parallel reciprocal
square root approximation instruction, fprsqrta, does not
signal any SWA requests. When the condition shown
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above is met, fprsqrta merely clears its output predicate,
in which case the result of the parallel square root
operation has to be computed by alternate algorithms
(typically by unpacking the parallel operands, performing
two single precision square root operations, and packing
the results into a SIMD result).

DERIVED OPERATIONS: INTEGER
DIVIDE AND REMAINDER
The integer divide and remainder operations are based
on floating-point operations.  They are not specified in
the IEEE Standard [1], but their implementation is so
close to that of the floating-point operations mandated
by the standard, that it is worthwhile mentioning them
here.

A 64-bit integer divide algorithm can be implemented
based on the double-extended precision floating-point
divide.  A 32-bit integer divide algorithm can use the
double precision divide.  The 16-bit and 8-bit integer
divide can use the single precision divide.  But the
desired computation can be performed in each case by
shorter instruction sequences.  For example, 24 bits of
precision are not needed to implement the 16-bit integer
divide.

As examples, the signed and then unsigned 16-bit
integer divide algorithms are presented.  They are both
based on the same core (all four steps below are
performed in full register file double-extended precision):

(1) y0 = 1/b ⋅ (1 + ε 0),   |ε 0| ≤ 2 -m ,   m=8.886

(2) q0 = (a ⋅ y 0)rn  = a/b ⋅ (1 + ε 0)

(3) e0 = (1 + 2-17 - b ⋅ y0)rn  ≈  - ε0      (adding 2-17

ensures correctness of the final result)

(4) q1 = (q0 + e0 ⋅ q 0)rn  ≈ a/b ⋅ (1 - ε0
2)

The assembly language implementation of the 16-bit
signed integer divide algorithm follows.  It is assumed
that the 16-bit operands are received in r32 and r33, and
the result is returned in r8.

sxt2 r2=r32    // sign-extend dividend

sxt2 r3=r33;;  // sign-extend divisor

setf.sig f8=r2  // integer dividend in f8

setf.sig f9=r3  // integer divisor in f9

movl r9=0x8000400000000000;;// 1 + 2-17 in r9

setf.sig f10=r9  // (1 + 2-17) ⋅ 263  in f10

fcvt.xf f6=f8   // normal fp dividend in f6

fcvt.xf f7=f9;; // normal fp divisor in f7

fmerge.se f10=f1,f10 // 1 + 2-17 in f10

 (1)  frcpa.s1 f8,p6=f6, f7;; // y0 in f8

 (2)  (p6) fma.s1 f9=f6, f8, f0 // q0 = a * y0 in f9

 (3)  (p6) fnma.s1 f10=f8,f7,f10;; //e0=(1+2-17)-b*y0

 (4)  (p6)  fma.s1 f8=f9,f10,f9;;// q1=q0+e0*q0 in f8

        fcvt.fx.trunc.s1 f8=f8;; // integer quotient in f8

        getf.sig r8=f8;;  // integer quotient in r8

The 16-bit unsigned integer divide is similar, but uses the
zero-extend instead of the sign-extend instruction from 2
bytes to 8 bytes (zxt2 instead of sxt2), conversion from
unsigned integer to floating-point for the operands
(fcvt.xuf instead of fcvt.xf), and conversion from floating-
point to unsigned integer for the result (fcvt.fxu.trunc
instead of fcvt.fx.trunc).

The integer remainder algorithms are implemented as
extensions of the corresponding integer divide
algorithms.  The 16-bit signed integer remainder
algorithm is almost identical to the 16-bit signed integer
divide, with the last instruction replaced by the following
sequence that is needed to calculate r = a - (a/b) ⋅ b:

       fcvt.xf f8=f8;; // convert to fp and normalize

       fnma.s1 f8=f8, f7, f6;; // r = a - (a/b) ⋅ b in f8

       fcvt.fx.trunc.s1 f8=f8;;// integer remainder in f8

             getf.sig r8=f8;;  // integer remainder in r8

EXCEPTIONS AND TRAPS
IA-64 arithmetic floating-point instructions [2] may
signal all of the five IEEE-specified exceptions and also
the Intel Architecture defined exception for denormal
operands.  Invalid operation, denormal operand, and
divide-by-zero are pre-computation exceptions (floating-
point faults). Overflow, underflow, and inexact result are
post-computation exceptions (floating-point traps).

In addition to these user visible exceptions, Software
Assistance (SWA) faults and traps can be signaled.
They do not surface to the user level, and cannot be
disabled (masked).  The SWA requests are handled by a
system SWA handler, the IA-64 Floating-Point
Emulation Library.

The status flags in a given status field can be cleared
using the fclrf.sf instruction.  Control bits may be set
using the fsetc.sf amask7, omask7 instruction, which
initializes the seven control bits of the specified status
field to the value obtained by logically AND-ing the
sf0.controls (seven bits) and amask7, and logically OR-
ing with omask7.  Alternatively, a 64-bit unsigned
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integer value can be moved to or from the FPSR
(application register 40): mov ar40 = r1, or
mov r1 = ar40.

Exception handlers can be registered, disabled, saved, or
restored with software support (from the operating
system and/or compiler) as specified by the IEEE
Standard.

IA-64 Software Assistance Faults and Traps
The IA-64 architecture allows virtually any floating-point
operation to be deferred to software through the
mechanism of Software Assistance requests, which are
treated as floating-point exceptions, always unmasked,
and resolved without reaching a user handler.  On
Itanium™, the first implementation of the IA-64
architecture, SWA requests may be signaled in three
forms:

• IA-64 architecturally mandated SWA faults. These
occur for certain combinations of operands of the
floating-point divide and square root operations,
and only for frcpa and frsqrta (scalar reciprocal
approximation instructions).

• Itanium-specific SWA faults.  They occur whenever
a floating-point instruction has a denormal input. All
the arithmetic floating-point instructions on Itanium
signal this exception, except for fma.pc.sf f1 = f2, f1,
f0 (fnorm.pc.sf f1=f2), fms.pc.sf f1 = f2, f1, f0, and
fnma.pc.sf f1 = f2, f1, f0. They signal Itanium-specific
SWA faults only when the input is a canonical
double-extended denormal value (i.e., when the
input has a biased exponent of 0x00000 and a most
significant bit of the non-zero significand equal to
0).

• Itanium-specific SWA traps.  They occur whenever
a floating-point instruction has a tiny result (smaller
in magnitude than the smallest normal floating-point
number that can be represented in the destination
format).  These exceptions only occur for fma, fms,
fnma, fpma, fpms, and fpnma.

The IA-64 Floating-Point Emulation Library
When an unmasked floating-point exception occurs, the
hardware causes a branch to the interruption vector

(Floating-Point Fault or Trap Vector) and then to a low-
level OS handler.  From here, handling of the floating-
point exception is propagated higher in the operating
system, and an exception handler is invoked that decides
whether to provide a result for the excepting instruction
and allow execution of the application to continue.

SWA requests are treated like regular floating-point
exceptions, but they are always ‘unmasked’ and handled
by an SWA handler represented by the IA-64 Floating-
Point Emulation Library.  The library is able to calculate
the result for any IA-64 arithmetic floating-point
instruction.  When an SWA fault or trap occurs, it is
processed and the result is provided to the operating
system kernel.  The execution continues in a transparent
manner for the user.  In addition to satisfying the SWA
requests, the SWA handler filters all other unmasked
floating-point exceptions that occur, passing them to the
operating system kernel that will continue to search for
an appropriate user-provided exception handler.

Figure 1 depicts the control flow that occurs when an
application running on an IA-64 processor signals an
unmasked floating-point exception.  The IA-64 Floating-
Point Emulation Library is shown as part of the operating
system kernel, but this is implementation dependent.  If
an unmasked floating-point exception other than an
SWA fault or trap occurs, a user handler must have
already been registered in order to resolve it.  The user
handler can be called directly by the operating system,
receiving ‘raw’ information about the exception, or
through an optional IEEE filter (as shown in Figure 1)
that processes the information about the exception,
thereby allowing a less complex handler to resolve the
situation.

An example of an SWA trap is illustrated in Figure 2. The
computation generates a result that is tiny and inexact
(sufficient to trigger an underflow or an inexact trap if
any was unmasked).  As traps are masked, an Itanium™-
specific SWA trap occurs, propagated from the
application code to the floating-point emulation library
via the OS kernel trap handler in steps 1 and 2. The result
generated by the emulation library is then passed back in
steps 3 and 4.
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Figure 1: Flow of control for IA-64 floating-point exceptions

Figure 2: Flow of control for handling an SWA trap
signaled by an IA-64 floating-point instruction
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FLOATING-POINT EXCEPTION
HANDLING
The floating-point exception priority is documented in
[2], but for a given implementation of the architecture
(Itanium™ in this case), a distinction can be made
regarding the source of an exception.  This can be
signaled by the hardware, or from software, by the IA-64
Floating-Point Emulation Library.

For example, on Itanium, denormal faults are signaled by
software (the IA-64 Floating-Point Emulation Library)
after they are reported initially by the hardware as
Itanium-specific SWA faults.  SWA faults that are not
converted to denormal faults (because denormal faults
are masked) cause the result to be calculated by
software.  Whether the result of a floating-point
instruction is calculated in hardware or in software, it can
further signal other floating-point exceptions (traps).

For example, architecturally mandated SWA faults might
lead to overflow, underflow, or inexact exceptions
signaled from the IA-64 Floating-Point Emulation Library.

Another example is that of the SWA traps, that are
always raised from hardware.  They have to be resolved
in software, but this computation might further lead to
inexact exceptions signaled from the IA-64 Floating-Point
Emulation Library.

The information that is relevant to a floating-point user
exception handler is passed to it through a register file
save area, the excepting instruction pointer and opcode,
the Floating-Point Status Register, and a set of
specialized registers.

The IA-64 IEEE Floating-Point Filter
The floating-point exception handling mechanism of an
operating system raises portability issues, as exception
handling is almost always implemented using proprietary
data structures and procedures.  A solution that can be
adopted is to implement an IEEE Floating-Point Filter that
preprocesses the exception information provided by the

operating system kernel before passing it on to the user
handler (see Figure 1).  The filter, which can be viewed as
part of the user handler, helps in the processing of all the
IEEE floating-point exceptions (invalid operation, divide-
by-zero, overflow, underflow, and inexact result) and also
in the processing of the denormal exceptions that are IA
specific.  The interface between the operating system
and the IEEE filter should be almost identical to that of
the IA-64 Floating-Point Emulation Library, as they both
process exception information.  The IEEE filter also
accomplishes the correct wrapping of the exponents
when overflow or underflow traps are taken, as required
by the IEEE Standard [1] (operation deferred to software
by the IA-64 architecture).

An important advantage is that the IEEE Floating-Point
Filter simplifies greatly the task of the user handler.  All
the complexities of reading operating system-specific
information, decoding operation codes, and reading and
writing floating-point or predicate registers are
abstracted away by the filter.  Also, exceptions
generated by parallel (SIMD) instructions will appear to
the user handler as originating in scalar instructions. The
following two examples illustrate some of these benefits.

The example in Figure 3 illustrates the case of a scalar
divide operation that signals an SWA fault, and then an
underflow trap (underflow traps are assumed to be
unmasked).  The SWA fault is signaled by an frcpa
instruction that jumpstarts the iterative computation
calculating the quotient.  The sequence of steps
performed in handling the exception is numbered from 1
to 10 in the figure.  As the result is provided by the user
exception handler for underflow exceptions, the output
predicate of frpca has to be clear when execution of the
application program containing it is resumed (clearing
the output predicate is the task of the user handler or of
the IEEE Floating-Point Exception Filter if present).  The
clear output predicate disables the iterative computation
following frcpa, as the result is already in the correct
floating-point register (the iterative computation is
assumed to be automatically inlined by the compiler).
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   Figure 3: Flow of control for handling an SWA fault
signaled by a divide operation, followed by an underflow
trap

The example in Figure 4 illustrates the case of a parallel
instruction that signals an invalid fault in the high half,
and an underflow trap in the low half, with no SWA
requests involved.  Both invalid and underflow
exceptions are assumed to be unmasked (enabled).  As
only the fault is detected first, the IEEE filter tries to re-
execute the low half of the instruction, generating a new
exception (underflow trap).  The sequence of steps
executed while handling these exceptions is numbered
from 1 to 12 in the figure.
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Figure 4: Flow of control for handling an invalid fault in
the high half (V high) and an underflow trap in the low

half (U low) of a parallel IA-64 instruction

SPECULATION FOR FLOATING-POINT
COMPUTATIONS
Control speculation refers to a performance optimization
technique where a sequence of instructions is executed
before it is known that the dynamic control flow of the
program will actually reach the point in the program
where the sequence of instructions is needed. Control
speculation in floating-point computations on IA-64
processors is possible, as loads to general or floating-
point registers have both non-speculative (e.g., ldf, ldfp),
and speculative (e.g., ldf.s, ldfp.s) variants. All
instructions that write their results to general or floating-
point registers are speculative.

A speculative floating-point computation uses status
fields sf2 or sf3.  The computation is considered to have
failed if it signals a floating-point exception that is
unmasked in the user status field sf0, or if it sets a status
flag that is clear in sf0.  This is checked for with the
floating-point check flags instruction, fchkf.sf target25:
the status flags in sf are compared with the status flags in
sf0.  If any flags in sf are set and the corresponding traps
are enabled, or if any flags are set in sf that are not set in
sf0, then a branch is taken to target25, which should be
the address of the recovery code for the failed

speculative floating-point computation.  The compliance
with the IEEE Standard is thus preserved even for
speculative chains of computation.

The following example shows original code without
control speculation. It is assumed that the contents of f9
are not used at the destination of the branch.

(p6) br.cond some_label ;;

fma.s0 f9=f8,f7,f6  // Do f9=f8*f7+f6

continue_label:

This code sequence can be rewritten using control
speculation with sf2 to move the fma ahead of the branch
as follows:

fma.s2 f9=f8,f7,f6  // Speculative f9=f8*f7+f6

// other instructions

(p6) br.cond some_label ;;

fchkf.s2 recovery_label   // Check speculation

continue_label:

If sf0 and sf2 do not agree, then the recovery code must
be executed to cause the actual exception with sf0.

recovery_label:

fma.s0 f9=f8,f7,f6  // Do real f9=f8*f7+f6

br continue_label
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CONCLUSION
Compliance with the IEEE Standard for Binary Floating-
Point Arithmetic [1] is important for any modern
processor.  In this paper, we have shown how various
facets of the standard are implemented or reflected in the
IA-64 architecture, which is fully compliant with the IEEE
Standard.  In addition, we have highlighted features of
the floating-point architecture that allow high-accuracy
and high-performance computations, while abiding by
the IEEE Standard.
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