
Intel Technology Journal Q2, 1999 
 

Preface 
 
Lin Chao 
Editor 
Intel Technology Journal  
 
This Q2, 1999 issue of the Intel Technology Journal focuses on the Pentium® III processor. In late 1995, two factors 
influenced Intel's processor roadmap. The first one was the emerging importance of 3D capabilities for the volume PC 
market. These 3D capabilities were important for games and workstation software. Floating point computation is the 
heart of 3D geometry capabilities. With the introduction of the Pentium® Pro (P6) architecture, the floating point 
performance was good enough to make 3D really viable for PC's. The second influencing factor was the realization 
that there was an opportunity to strengthen Intel's processor roadmap for the late'98/early'99 timeframe with a P6 
based proliferation. The question was how to do this while at the same time addressing the emerging importance of 3D.  
 
In February 1996, the product definition team at Intel presented Intel's executive staff with a proposal for a single-
instruction-multiple-data (SIMD) floating point model as an extension to IA-32 architecture. In other words, the 
"Katmai" processor, later to be externally named the Pentium III processor, was being proposed. The meeting was 
inconclusive. At that time, the Pentium® processor with MMX instructions had not been introduced and hence was 
unproven in the market. Here the executive staff were being asked essentially to "double down" their bets on MMX 
instructions and then on SIMD floating point extensions. Intel's executive staff gave the product team additional 
questions to answer and two weeks later, still in February 1996, they gave the OK for the "Katmai" processor project. 
During the later definition phase, the technology focus was refined beyond 3D to include other application areas such 
as audio, video, speech recognition and even server application performance. In Febuary 1999, the Pentium III 
processor was introduced.  
 
In this Q2, 1999 issue of the Intel Technology Journal, you will gain important insights into the features and 
capabilities of the Pentium III processor. The first and second papers describe the Streaming SIMD Extensions and the 
microarchitecture implementation challenges. The third paper discusses the processor serial number feature. The 
fourth and fifth papers cover tuning applications for Streaming SIMD Extensions and an optimized 3D architecture 
stack for performance. And, finally, in the fifth paper, programming methods for the Streaming SIMD Extensions are 
described. 
  

Copyright © Intel Corporation 1999. This publication was downloaded from http://www.intel.com/. 
Legal notices at http://www.intel.com/sites/corporate/tradmarx.htm 
 

http://www.intel.com/technology/itj/chao_bio.htm


Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 1

The Internet Streaming SIMD Extensions

Shreekant (Ticky) Thakkar, Microprocessor Products Group, Intel Corp.
 Tom Huff, Microprocessor Products Group, Intel Corp.

ABSTRACT

The paper describes the development and definition of
Intel’s new Internet Streaming SIMD Extensions
introduced on the Pentium III processor.  The
extensions are divided into three categories: SIMD-FP,
New Media, and Streaming Memory instructions.  The
new extensions accelerate the 3D geometry pipeline by
nearly 2x that of the previous-generation processor while
enabling new applications, such as real-time MPEG-2
encode.  The Pentium III processor implementations
achieved the desired goal at a modest 10% increase in
die size.  The definition achieved the short-term goal
while still providing the performance scalability needed
for future implementations.

INTRODUCTION
In late 1995, it was becoming clear that visual computing
would assume an increasingly important role in the
volume PC market segments.  To address this need, Intel
launched an initiative in visual computing aimed at the
1999 volume PC market segments.  This required a
balanced platform for 3D graphics performance in order
to scale from arcade consoles to workstation
applications. Floating-point (FP) computation is the heart
of 3D geometry; thus, speeding up FP computation is
vital to overall 3D performance.

An increase of 1.5 – 2x the native FP performance in IA-
32 processors was required in order to have a visually
perceptible difference in performance.  3D graphics
applications require the same computation to be
performed on 3D data types (vertices), making it
amenable to a Single Instruction Multiple Data (SIMD)
parallel computation model.  This is the most cost-
effective way of accelerating FP performance of 3D
applications in general purpose processors, and it is
similar to the acceleration for the class of integer
applications provided by the Intel® MMX™ technology
extensions [1].  Thus, a  SIMD-FP model was selected for
the IA-32 extension.

The Instruction Set Architecture (ISA) scope expanded
beyond 3D geometry to include feedback on the usage
of the MMX technology from independent software

vendors (ISV), as well as support for 3D software
rendering, video encode and decode, and speech
recognition.  Cacheability instructions were added to
increase concurrency between execution and memory
accesses.  In all, 70 new instructions and a
corresponding new state were added to IA-32
architecture; this is the first new state added since the
Intel® i386  processor added the x87-FP.  This paper
describes the architectural features and instructions
selected as part of the IA-32 definition process.

ARCHITECTURE DEFINITION

2-Wide Versus 4-Wide SIMD-FP
The key component of the new extension was
accelerating single precision floating-point computation,
which involved the choice of either 2-wide or 4-wide 32-
bit floating-point data parallel computations.  This crucial
decision is discussed later in this paper.  This choice
shaped key aspects of the new architecture.

An initial feasibility study of SIMD-FP in IA-32 done by
the development team indicated that a new
microarchitecture could perform 4-wide single precision
floating-point operations per clock period, without
adding significant complexity or cost to die size.  The
basic approach was to double-cycle existing 64-bit
hardware.  The performance benefit of selecting this
format was to deliver a realized 1.5 - 2x (or greater)
speedup for the geometry pipeline, which supports much
greater levels of visual realism.

Another solution for achieving similar gains would be
via a superscalar design, by adding execution units.
Although this approach may be simpler for a
programmer, it incurs a much larger area and timing cost,
by increasing busses, register file ports, execution
hardware, and scheduling complexity.

Implementing a datapath greater than 128 bits was also
not viewed as a reasonable option, again due to
balancing cost against performance benefits.  Busses
and registers were already 80 bits wide due to x87-FP;
128 bits represented only an incremental increase,
whereas 256 bits would have a much larger impact.  As



Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 2

mentioned, 128-bit execution is actually performed in 64-
bit chunks and yet the peak rate of one 128-bit operation
can be sustained if, as commonly occurs, instructions
alternate between different execution units (i.e., add-
multiply-add-multiply).  Implementing a 256-bit wide
SIMD unit would require doubling the width of execution
units in order to still attain peak throughput in the same
manner.  Increasing SIMD-width beyond 128 bits would
also require an increase in memory bandwidth in order to
feed the wider execution units.  There is a cost to this
additional bandwidth, which may not follow  Moore’s
Law progression, required by other application areas.
Also, since the primary focus for the extensions has
been on 3D geometry, greater than 4-wide parallelism
may offer diminishing returns, since triangular strip
lengths in current desktop 3D applications tend to be
fairly small (i.e., on the order of 20 vertices per strip).

Related to this decision were the following two issues:

• state space: overlap or new registers

• Pentium® III processor implementation

State Space
There were two choices: overlap the new state with the
MMX/x87 FP registers or add a new state.  One big
advantage of the first choice is that it would not require
any operating system (OS) changes, just like the
MMXTM technology extension.  However, there were
many disadvantages with this choice.  First, we could
only implement four 4-wide 128-bit registers in the
existing space since we only had eight 80-bit registers, or
we could go to a 2-wide format, thus sacrificing potential
performance gains.  Second, we would be forced to share
the state with MMX registers, which was an issue for the
already register-starved IA-32 architecture.  The
complexity of adding another set of overlapped state was
overwhelming.

Adding a new state had the advantage of reducing
implementation complexity and easing programming
model issues.  SIMD-FP and MMX or x87 instructions
can be used concurrently.  This clearly eased OS Vendor
and ISV concerns.  The disadvantage of the second
approach was that Intel had a dependency of not being
able to use new features without OS support.  However,
Intel worked around this by implementing the new state
store and restore instructions in an earlier
implementation.  Thus by the time the Pentium III
processor was released, the new OS's supported this
new state.

To ensure no unusual corner cases, all of the new state
was separated from the x87-FP state.  Figure 1 shows the
new 128-bit registers.  There is a new control/status

register MXCSR which is used to mask/unmask
numerical exception handling, to set rounding modes, to
set flush-to-zero mode, and to view status flags.

Internet SSE
(Scalar/packed SIMD-SP)

128

XMM0

XMM7

...

80

64

FP0 or MM0

   FP7 or MM7

...

MMX/x87
Registers(64-bit Integer, x87)

data)

Figure 1: The Internet SSE 128-bit registers

There is also a new interrupt vector to handle SIMD-FP
numeric exceptions.

Pentium® III Processor Implementation
The Pentium III processor implements each 4-wide
computational macro-instruction as two 64-bit micro-
instructions.  However, since the processor is a
superscalar implementation (i.e., two execution ports), a
full 4-wide SIMD operation can also be done every clock
cycle (assuming instructions alternate between execution
units).  With this approach, applications can
theoretically achieve a full 4x performance gain; 2x is the
realized gain on real applications in part because of
micro-instruction pressure within the microarchitecture.
A future 128-bit implementation can deliver a higher level
of performance scaling.

Scalar Versus Packed Operations
We considered the inclusion of scalar floating
instructions in the new SIMD-FP mode because
applications often require both scalar and packed
operations.  It is possible to use x87-FP for scalar and the
new registers just for SIMD-FP.  However, this approach
results in a cumbersome programming paradigm, since
x87-FP is a stack register model while the SIMD-FP is a
flat register model.  Passing parameters would either
require more conversion instructions or would be
through memory, as currently implemented.
Additionally, the results generated via x87-FP operations
might differ from SIMD-FP results, due to differences
between how computation is performed in the two
paradigms (32 bit in SIMD-FP versus 80 bit in x87 FP).



Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 3

Scalar implementation on the Pentium III processor was
problematic because of its emulation of 4-wide SIMD-FP.
Using packed instructions for scalar operations would
impact performance since both 64-bit micro-instructions
would still be executed.  Also, it is particularly costly in
terms of execution time for long latency de-pipelined
packed operations, such as divide and square-root.
Lastly, software would need to ensure that no faults
occur in the unused slots.  To address this issue, explicit
scalar instructions were defined, which for the Pentium
III processor execute only a single micro-instruction.
The upper three components of the source register are
passed directly to the destination register when a scalar
operation is done; computation is performed only on the
lower component pair (Figure 4).  Thus, the Pentium III
processor did not have to do any operation on the upper
half of the data type.

While masked (selective) operations on SIMD-FP
registers were another option, we decided against this on
the grounds of design complexity and lack of compelling
application requirements.

Improving Concurrency
High SIMD performance can only be achieved by
balancing memory bandwidth and execution.  Multimedia
workloads such as 3D graphics and video are streaming
applications that have situations where data are largely
read once and then discarded.  The caches local
processors are not large enough to contain the entire
data sets of these applications, which results in the
execution units being stalled while data are fetched from
memory.  The out of order and speculative pipeline
cannot hide the latency of these accesses without
significantly increasing the hardware resources, which
impacts die size and cost.  A good alternative is to let the
programmer overlap execution of one piece of data with
the fetch of the next piece so that the latency of the fetch
is hidden by the execution time.  This works best if the
algorithms have a compute-intensive component, such
as 3D graphics, where scenes have multiple light
sources.  Thus we created cacheability hints that allow a
programmer to prefetch the next data closer to the
processor without touching the architectural state.

For these applications, programmers are the best judges
of which data are going to be streaming and which are
going to be reused.  For example, in 3D graphics, the
programmer wants code and transformation matrices to
remain in the cache while the input display list and the
output command list need to be streamed.  This requires
some primitives that allow a programmer to manage
caching of the data and minimize cache pollution.  Thus,
the prefetching hints were expanded to let the

programmer specify the cache hierarchy level where the
prefetched data are going to be placed.  Complementary
instructions were added to perform non-allocating
(streaming) stores so that needed data in the cache does
not get replaced, and these stores do not generate
unnecessary write-allocation.

The prefetch instructions do not update any
architectural state.  To some degree, the implementation
is specific to each processor.  The programmer may have
to tune his/her application for each implementation to
take full advantage of these instructions.  However, it is
a design goal to ensure that there are no performance
glass jaws between implementations.  These instructions
merely provide a hint to the hardware: they do not
generate exceptions or faults.

Figure 2 illustrates how the various features of the new
extensions work together to improve concurrency and
reduce total execution time.  Prior to Internet Streaming
SIMD Extensions, read miss latency and execution and
subsequent store miss latency comprised total execution
in a serial fashion.  The extensions let read miss latency
overlap execution via the use of prefetching, and they
allowed store miss latency to be reduced and overlap
execution via streaming stores.  Moreover, SIMD-FP
reduces the amount of time spent on execution.

Read Latency Execution Write Latency

Read Latency

Execution

Write Latency

Prior to Internet SSE

With Internet SSE

Prefetch

SIMD-FP

Streaming Stores

Figure 2: Increasing performance via concurrency

Data Alignment
Hardware support to efficiently handle memory accesses
that are not aligned to a 16-byte (128-bit) boundary is
expensive in both area and timing.  Two options were
explored: either detect and fix these cases using a micro-
code assist, or generate a general protection fault.  ISV
feedback was unanimous in their desire to avoid the first
option, which can silently introduce a degradation in
performance that is difficult to track down.  Instead, the
ISVs preferred being alerted to misalignment via an
explicit fault.  As a result, all computation instructions
that use a memory operand must be 16-byte aligned.
Unaligned load and store instructions are also provided
for cases where alignment cannot be guaranteed (i.e.,



Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 4

video).  These instructions are intended to operate as
efficiently or more efficiently than would be the case if
explicit code sequences were used to achieve alignment.

Flush-To-Zero and IEEE Modes
We decided to offer two modes of FP arithmetic: IEEE
compliance for applications that need exact single-
precision computation and a Flush-To-Zero (FTZ) mode
for real-time applications.  Full IEEE support ensures
greater future applicability of the extensions for
applications that require full precision and portability,
while FTZ mode along with fast hardware support for
masked exceptions enables high-performance execution.
FTZ mode returns a zero result in an underflow situation
during computation if the exceptions are masked.  Most
real-time 3D applications would use the FTZ mode since
they are not sensitive to a slight loss in precision,
especially if they can get faster execution by using the
FTZ mode.

INSTRUCTION SET ARCHITECTURE
The Internet SSE supplies a rich set of instructions
(shown in Table 1) that operate on either all, or the least
significant pairs, of packed data operands in parallel.
The packed instructions (with PS suffix) operate on a pair
of operands as shown in Figure 3 while scalar
instructions (with SS suffix) always operate on the least
significant pair of the two operands as shown in Figure
4.

X 1  ( S P ) X2 (SP) X 3  ( S P ) X 4  ( S P )

Y 1  ( S P ) Y2 (SP) Y 3  ( S P ) Y 4  ( S P )

X 1  o p  Y 1  ( S P ) X2 op Y2 (SP) X 3  o p  Y 3  ( S P ) X4 op Y4 (SP)

O PO PO PO P

Src1/Dest

S r c 2

Src1/Dest

Figure 3: Packed operation

Figure 4: Scalar operation

Packed
Single

Scalar
Single

Packed
Integer

Arithmetic ADD, SUB, MUL, DIV, MAX,
MIN, RCP, RSQRT, SQRT

X X

Logical AND, ANDN, OR, XOR X

Comparison CMP, MAX, MIN X X

COMI, UCOMI X

Data
Movement

MOV (load/store aligned), X

MOVUPS
(load/store unaligned),
MOVLPS, MOVLHPS,
MOVHPS, MOVHLPS

(load/store), MOVMSKPS

X

MOVSS (load/store) X

Shuffle SHUFPS, UNPCKHPS,
UNPCKLPS

X

Conversions CVTSS2SI, CVTTSS2SI,
CVTSI2SS

X

CVTPI2PS, CVTPS2PI,
CVTTPS2PI

X

State FXSAVE,
FXRSTOR, STMXCSR,

LDMXCSR

X

MMXTM Tech
Enhancements

PINSRW, PEXTRW,
PMULHU, PSHUFW,

PMOVMSKB, PSAD, PAVG,
PMIN, PMAX

X

Streaming/
Prefetching

MASKMOVQ,
MOVNTQ (aligned store)

X

MOVTPS (aligned store) X

PREFETCH

SFENCE

Table 1: Internet SSE ISA

Basic Building Blocks
These include instructions such as load, store, addition,
multiplication, subtraction, division, and square root as
well as instructions to access the new Control/Status
Register and Save/Restore new state.

Cacheability Hints
As mentioned earlier, achieving high performance for
multimedia applications requires some degree of overlap
between the execution of a block of data and the fetch of
the next block of data.  The PREFETCH instruction was
added to the new extensions to let the programmer
control overlap in the application.  This instruction also
allows control over data placement in the cache
hierarchy and further allows programmers to distinguish
between the locality of temporal (i.e., frequently used)
cached data and non-temporal (i.e., read and used once
before being discarded) data.  There are four possible
prefetches currently defined with room for future
definitions.  Note that these instructions can also be
used for non-SIMD applications.

Streaming store instructions, MOVNTPS (Packed Single
Precision FP) and MOVNTQ (Packed Integer) allow the
programmer to specify a write-combining (WC) memory
type on a per instruction basis.  This is true even for
memory otherwise assigned a writeback (WB) memory
type via the Memory Type Range Register’s (MTRRs) or
Page Attribute Table (PAT).  This allows the user to

X1 (SP) X2 (SP) X3 (SP) X4 (SP)

Y1 (SP) Y2  (SP) Y3 (SP) Y4 (SP)

X1 (SP) X2 (SP) X3 (SP) X4 op Y4 (SP)

OP

Src1/Dest

Src2

Src1/Dest



Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 5

obtain all the benefits of a WC memory type (i.e., write-
combining, write-collapsing, uncacheable, non-write-
allocating) on a per-instruction granularity.

Fencing
In order to allow efficient software-controlled coherency,
a light-weight fence (SFENCE) instruction was also
included in the new extension; this instruction ensures
that all stores that precede the fence are observed on the
front-side bus before any subsequent stores are
completed.  SFENCE is targeted for uses such as writing
commands from the processor to the graphics accelerator
or to ensure observability between a producer and
consumer where communication of data uses stores with
a WC memory-type semantic.

Comparison and Conditional Flow
The basic single precision FP comparison instruction
(CMP) is similar to existing MMX instruction variants
(PCMPEQ, PCMPGT) in that it produces a redundant
mask per float of all 1’s or all 0’s, depending upon the
result of the comparison.  This approach allows the mask
to be used with subsequent logic operations (AND,
ANDN, OR, XOR) in order to perform conditional moves.
Additionally, four mask (most significant of each
component) bits can be moved to an integer register
using the MOVMSKPS/PMOVMSKB instructions.
These instructions simplify data-dependent branching,
such as the clip extent and front/back-face culling checks
in 3D geometry, and they address a common desire
registered by many ISVs.

Another important conditional usage model involves
finding the maximum or minimum between two values
(packed or scalar).  While this can be done as just
described for conditional moves, the MAX/MIN and
PMIN/PMAX instructions perform this function in only
one instruction by directly using the carry-out from the
comparison subtraction to select which source to
forward as a result. Within 3D geometry and
rasterization, color clamping is an example that benefits
from the use of MINPS/PMIN.  Also, a fundamental
component in many speech recognition engines is the
evaluation of a Hidden-Markov Model (HMM); this
function comprises upwards of 80% of execution time.
The PMIN instruction improves this kernel performance
by 33%, giving a 19% application gain.

To provide a complete set of comparisons for CMP, an 8-
bit immediate is used to encode eight basic comparison
predicates, EQ, LT, LE, UNORD, NEQ, NLT, and NLE.
Another four can be obtained by using these predicates
and swapping source operands.  Using an immediate to
encode the predicate greatly reduces the number of

opcodes that are assigned to these comparison
operations.

Data Manipulation
SIMD computation gains are only realized if data can be
efficiently reorganized into an SIMD format.  For
example, 3D geometry transformation with 4-wide SIMD-
FP format can be done per vertex or on four separate
vertex components, where a vertex has four components
(x, y, z, and w).  The method of organizing 3D data
structures on a per vertex basis is called Array-of-
Structures (AOS) since the display list is an array of
individual vertices.  Organizing the display list for an
ideal SIMD format is called Structure-of-Arrays (SOA)
since the structure contains separate x, y, z, and w
arrays.  An AOS approach is less efficient for two
reasons: 1) not all SIMD computation slots may be
utilized (i.e., the w vertex component may not be
needed); 2) horizontal reduction operations (i.e., dot
products such as a * x + b * y + c * z) are typically
needed, which use multiple SIMD slots to generate only
one unique scalar result.  This is exacerbated if other
long-latency operations (i.e., square-root and division)
are used in conjunction with the horizontal reduction.

Often, it may not be possible to statically reorganize data
if for example, in 3D geometry, either a standard API or
the rasterization graphics controller do not directly
support SOA.  In order to efficiently transpose data into
the ideal SOA format or vice versa, the new extension
supports a number of data manipulation instructions,
including the following:

• UNPCKHPS/UNPCKLPS. These interleave floats
from the high/low part of a register or memory
operand, similar to the MMX unpack instructions.

• SHUFPS/PSHUFW. These support swizzling of data
from source operands, including such operations as
broadcast, rotate, swap, and reverse.

• MOVHPS/MOVLPS. When used in conjunction with
SHUFPS, these 64-bit load/store instructions enable
efficient gathering of four individual vertex
components from four non-adjacent AOS data
structures into a single 128-bit register (SOA); these
instructions can be similarly used to de-swizzle SOA
to AOS.

• PINSRW/PEXTRW. These support scatter and
gather operations on words within an MMX register
from memory or the 32-bit integer registers.
Examples include gathering texture components and
supporting SIMD lookup tables.  The PINSRW
instruction also gives a performance gain of 22% for
the Hidden-Markov Model (HMM) based speech



Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 6

recognition kernel and a 13% gain at the application
level.

A number of experiments were run using various 3D
transform/lighting building blocks as well as a more
complete geometry pipeline.  Of the approaches
described for utilizing SIMD computation, the static SOA
case achieves the best performance.  Computing directly
in AOS format achieves only half of the static SOA
throughput for a geometry benchmark that implements a
full lighting case (ambient, diffuse, specular) due to the
reasons listed above.  Dynamic reorganization from AOS
to SOA and vice versa using a combination of
SHUFPS/MOVHPS/MOVLSP instructions incurs a 20%-
25% overhead compared to static SOA, which is a 6%-
10% better performance than is possible with other
methods.  Note this overhead is constant and diminishes
as more SIMD computation is performed (e.g., with
additional lights).  Computing directly in AOS may
appear to provide a simpler programming model since
most APIs handle display lists on a per vertex basis.  In
order to improve performance for the horizontal
operations that can result from computing in an AOS
format, several additional instructions,
MOVLHPS/MOVHLPS, were added to the extensions.
These instructions support emulating a full range of
horizontal operations, including addition, subtraction,
and logic operations.  However, better performance can
generally be achieved by computing in an SOA form, and
the transpose code used with dynamic reorganization
can be effectively hidden behind compiler pragmas or
intrinsics.

Conversions
A large number of conversion operations are possible,
including integer to/from FP, scalar and packed, source
and destination of either register or memory, rounding
mode contained implicitly within the instruction, and
integer operand sizes (byte, word, double-word).  A full
set of all permutations is impractical and unnecessary
since not all possible cases are common, and many
others can be emulated by a sequence of instructions.
The factors that motivated the final definition include the
following:

• Basic operations between integer and FP are
required with both SMID-FP and MMXTM

technology for packed data (CVTPI2PS, CVTPS2PI,
CVTTPS2PI) and Scalar-FP and IA-32 Integer for
scalar data (CVTSS2SI, CVTTSS2SI, CVTSI2SS).

• Destination is a register, since, if needed, the result
can be explicitly moved to memory using a store.

• CVTTPS2PI/CVTTSS2SI implicitly encode
truncation rounding to eliminate the common
serialization performance penalty of changing the
control register rounding mode when converting FP
to integer.

• Internet SSEs support only conversions to/from
double-words.  Existing MMX pack and unpack
instructions can be used to efficiently translate from
double-words to/from words and bytes.

Reciprocal and Reciprocal Square Root
A basic building block operation in geometry involves
computing divisions and square roots.  For instance,
transformation often involves dividing each x, y, z
coordinate by the W perspective coordinate.  Similarly,
specular lighting contains a power function, which is
often emulated using an approximation function that
requires a division.  Also, normalization is another
common geometry operation, which requires the
computation of 1/square-root.  In order to optimize these
cases, the new extensions introduce two approximation
instructions: RCP and RSQRT.  These instructions are
implemented via hardware lookup tables and are
inherently less precise (12 bits of mantissa) than the full
IEEE-compliant DIV and SQRT (24 bits of mantissa).
However, these instructions have the advantage of
being much faster than the full precision versions.
When greater precision is needed, the approximation
instructions can be used with a single Newton-Raphson
(N-R) iteration to achieve almost the same precision as
the IEEE instructions (~22 bits of mantissa).  This N-R
iteration for the reciprocal operation involves two
multiplies and a subtraction, so the overall latency and
especially the throughput are lower than the IEEE
instructions.  For a basic geometry pipeline, these
instructions can improve overall performance on the
order of 15%.

Unsigned Multiply, Byte Mask Write
Discussions with the D3D team, among others, identified
the lack of an unsigned MMX multiply operation as the
reason for inefficiency in 3D rasterization performance.
This function inherently works with unsigned pixel data,
and the existing PMULHW instruction operates only on
signed data.  Providing an unsigned PMULHUW
eliminates fix-up overhead required in using the signed
version, creating an application-level performance gain
of 8%-10%.

The byte-masked write instruction, MASKMOVQ, is
aimed at specific rasterization and image processing
applications.  The instruction supports several beneficial
features:



Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 7

• A byte mask, either generated by a PCMPEQ/
PCMPGT instruction or loaded from memory, is used
to selectively write bytes in the other source
operand directly to memory.  This mask is effectively
transferred in a parallel fashion along with the data
throughout the memory subsystem (i.e., write-
combining buffers, bus queue entries, and bus byte
enables).  Alternative implementations with
conditional moves or branches did not deliver as
much of a performance gain because they introduce
significantly more micro-operations into the
execution pipeline as well as possible miss-
predictions for the branch approach.

• Similar to other non-temporal streaming store
cacheability instructions, MASKMOVQ implements
a WC memory semantic, which eliminates
unnecessary read-for-ownership bandwidth and
disturbance of temporal cached data, since the
cache is bypassed altogether.

Packed Average
Motion compensation is a key component of the MPEG-
2 decode pipeline.  It is the process of reconstituting
each frame of the output picture stream by interpolating
between key frames.  This interpolation primarily
consists of averaging operations between pixels from
different macroblocks where a macroblock is a 16x16 pixel
unit.  The MPEG-2 specification requires that the result
of the averaging operation be rounded to the nearest
integer; values precisely at half way should be rounded
away from zero.  This is equivalent to operations with 9-
bit precision.  MMX instructions provide either 8 or 16
bits of accuracy, and it is desirable to use the 8-bit
versions to increase the data parallelism.  The PAVG
instruction facilitates the use of 8-bit instructions by
performing a 9-bit accurate averaging operation.  The
word version PAVGW provides higher accuracy for
applications that accumulate a result using several
computation instructions.

Currently, Motion Compensation of a DVD  player on a
Pentium® II processor-based system (266MHz) is evenly
balanced between memory latency and execution.  The
PAVG instruction enabled a 25% kernel speedup.
Instrumenting the motion compensation code in the
player with the PAVG instruction provided a 4%-6%
speedup at the application level (depending on the video
clip chosen).  The application level gain can increase to
10% for higher resolution HDTV digital television
formats.

Packed Sum of Absolute Differences
Although the video encode pipeline is quite complex and
involves many stages, the bulk of the execution is spent
in the motion-estimation function (40%-70% at present).
This stage compares a sub-block of the current frame
with those in the same neighborhood of the previous
and next frames in order to find the best match.
Consequently, only a vector representing the position of
this match, and the residual difference sub-block, needs
to be included in the compressed output stream as
opposed to the entire original sub-block.

There are two common comparison metrics that are used
in motion-estimation: sum-of-square-differences (SSD)
and sum-of-absolute-differences (SAD).  Both have
benefits and limitations in specific cases, although
overall they are roughly comparable metrics in
determining the quality of a match.

There is a factoring technique that allows SSD to be
implemented using an unsigned multiply-accumulate
(byte to word) operation; however, the accumulation
range requires 24 bits of precision, which does not map
neatly to a general purpose data-type.  Instead, the
PSADBW instruction retains byte-level parallelism of
execution, working on 8 bytes at a time, and the
accumulation does not exceed a 16-bit word.  This single
instruction replaces on the order of seven MMX
instructions in the motion-estimation inner loop, largely
because MMX technology does not support unsigned
byte operations, which need to be emulated by zero
extension to words and the use of word operations.
Consequently, PSADBW has been found to increase
motion-estimation performance by a factor of two.

CONCLUSION
The Internet Streaming SIMD Extensions enable an
exciting new level of visual computing on the volume PC
platform.  The single precision SIMD-FP ISA will deliver
the desired performance goal of 2x an increase in FP
performance with the Pentium® III processor.  This
speedup will significantly improve the image quality for
real-time 3D applications, and the Pentium III processor
systems will enable real-time rendering of complex
worlds.  This instruction set represents a significant step
forward for Intel in improving the performance of
visualization on PC platforms.

The addition of SIMD-integer instructions for video will
enable real-time video encoding in the MPEG-1 format, as
well as the MPEG-2 format, with some trade-offs in visual
quality and compression rates.  The new extensions will
also deliver DVD decode at 30 frames per second within
the Pentium III processor timeframe, with good headroom



Intel Technology Journal Q2, 1999

The Internet Streaming SIMD Extensions 8

for multitasking other processes.  Increasing Pentium III
processor frequency will subsequently enable 1M-pixel
HDTV format decode.  Initially this will require hardware
motion compensation support, but with an incremental
increase in processor frequency, this decode can be
handled entirely in software.  These instructions will also
enable home video editing similar to that currently
available for photographic editing.

A reduction in speech recognition error rates and an
increase in dictionary size can be achieved with the use
of the prefetching options and the new packed integer
instructions.  Concurrency of memory accesses and
execution have also been enhanced across the range of
multimedia applications via the new cacheability
instructions.

The definition team delivered the new ISA in record time,
working diligently to review all the requested
instructions and analyzing the potential improvement in
application performance.  Intense scrutiny was applied to
the definition by the three implementation teams to
justify inclusion of instructions.  A range of constraints
drove the final definition, including performance
benefits, die size, timing impact, and code portability.
The Internet SSE implementation cost in the Pentium III
processor was just around 10% of the die size.  This is
similar to the cost of including MMXTM technology in
the Pentium and Pentium® II processors.

ACKNOWLEDGMENTS
We acknowledge the contribution of the entire definition
team, in particular Srinivas Chennupaty, Patrice Roussel,

Vladimir Pentkovski, and Mohammad Abdallah.  We also
acknowledge the adoption of IA-64 definition and
semantics for a number of instructions to maintain
consistency.  We also acknowledge the guidance of
Glenn Hinton, Bob Colwell, and Fred Pollack during the
definition period.

REFERENCES
[1] Alex Peleg, et al, “MMXTM Technology Extension to

the Intel® Architecture” DTTC Proceedings 1996
(Internal Intel Document).

[2] Millind Mittal, et al, “MMX™ Technology
Architecture Overview,” Intel Technology Journal, Q3,
1997,
http://developer.intel.com/technology/itj/q31997.htm.

AUTHORS’ BIOGRAPHIES
Shreekant (Ticky) Thakkar is a principal processor
architect in the Microprocessor Products Group. He led
the Internet Streaming SIMD Extension development for
the Pentium® III processor.  Prior to that, Shreekant was
responsible for the development of the Pentium® Pro
multi-processor.  His e-mail is ticky.thakkar@intel.com.

Tom Huff is an architect in the Microprocessor Product
Group in Oregon.  He was one of the architects in the
core team that defined the Internet Streaming SIMD
Extensions for the IA-32 architecture.  He is currently
working on multimedia performance analysis for the
Willamette processor project.  He holds M.S. and Ph.D.
degrees in electrical engineering from the University of
Michigan. His email is  tom.huff@intel.com.



Overview of the Pentium III Processor 1

Pentium III Processor Implementation Tradeoffs

Jagannath Keshava and Vladimir Pentkovski: Microprocessor Products Group, Intel Corp.

ABSTRACT
This paper discusses the implementation tradeoffs of the
Pentium III processor.  The Pentium III processor
implements a new extension of the IA-32 instruction set
called the Internet Streaming Single-Instruction, Multiple-
Data (SIMD) Extensions (Internet SSE).  The processor is
based on the Pentium Pro processor microarchitecture.

The initial development goals for the Pentium III processor
were to balance performance, cost, and frequency.
Descriptions of some of the key aspects of the SIMD
Floating Point (FP) architecture and of the  memory
streaming architecture are given.  The utilization and
effectiveness of these architectures in decoupling memory
accesses from computation, in the context of balancing the
3D pipe, are discussed.  Implementation choices  in some
of the key areas are described.  We also give some details
of the implementation of Internet SSE execution units,
including the development of new FP units, and discuss
how we have implemented the 128-bit instructions on the
existing 64-bit datapath.  We then discuss the details of
the memory streaming implementation.

The Pentium III processor is now in production on
frequencies of up to 550 MHz.  The new instructions in the
Internet SSE were added at about a 10% die cost and have
enabled the Pentium III processor to offer a richer, more
compelling visual experience.

INTRODUCTION
The goal of the Internet SSE development was to enable a
better visual experience and to enable new applications
such as real-time video encoding and speech recognition
[7].  The Pentium III processor is the first implementation
of ISSE.  It is based on the P6 microarchitecture, which
allows an efficient implementation in terms of die size and
effort.  The key development goals were the
implementation of the Internet SSE while keeping about a
10% larger die size than the Pentium II processor and
achieving a higher frequency by at least one bin.

Two features of these new applications challenge
designers of computer systems.  First, the algorithms that
the applications are based on are inherently parallel in the

sense that the same sequence of operations can be
applied concurrently to multiple data elements.  The
Internet SSE allows us to express this parallelism explicitly,
but the hardware needs to be able to translate the
parallelism into higher performance.  The P6 superscalar
out-of-order microarchitecture is capable of utilizing
explicit as well as extracted implicit parallelism.  However,
hardware that supports higher computation throughput
improves the performance of these algorithms.  The
development of such hardware and increasing its
utilization were key tasks in the development of the
Pentium III processor.  Second, in order to feed the parallel
computations with data, the system needs to supply high
memory bandwidth and hide memory latency.

The implementation section of this paper contains details
of some of the techniques we used to provide enhanced
throughput of computations and memory while meeting
aggressive die-size and frequency goals.  The primary
purpose of this paper, however, is to describe key
implementation techniques used in the processor and the
rationale for their development.

ARCHITECTURE
The Pentium III processor is the first implementation of
the Internet SSE.  The Internet SSE contains 70 new
instructions and a new architectural state.  It is the second
significant extension of the instruction set since the 80386
and the first to add a new architectural state.  MMX was
the first significant instruction extension, but it did not
add any new architectural state.  The new instructions fall
into different categories:

• SIMD FP instructions that operate on four single
precision numbers

• scalar FP instructions

• cacheability instructions including prefetches into
different levels of the cache hierarchy

• control instructions

• data conversion instructions



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 2

• new media extensions that are instructions such as
the PSAD and the PAVG that accelerate encoding and
decoding respectively

Adding the new state reduced implementation complexity,
eased programming model issues, and allowed SIMD-FP
and MMX technology or X87 instructions to be used
concurrently. It also addressed ISV and OSV requests.  All
of the SSE State was separated from the X87-FP State;
there is a dedicated interrupt vector to handle the numeric
exceptions.  There is also a new control/status register,
MXCSR, which is used to mask/unmask numerical
exception handling, to set rounding mode, to set flush to
zero mode, and to view status flags.  Applications often
require both scalar and packed mode of operations.  To
address this issue, explicit scalar instructions (in the new
SIMD-FP mode) were defined, which for the Pentium III

processor execute only a single micro-instruction.
Support is provided for two modes of FP arithmetic: IEEE
compliant mode for applications that need exact single
precision computation and portability and a Flush-to-Zero
(FTZ) mode for high-performance real-time applications.

(Details of the instruction set are given in other papers in
this issue of the Intel Technology Journal.)

IMPLEMENTATION
In this section we discuss some of the key  features that
we developed to increase FP and memory throughput on
the Pentium III processor.  We then discuss a couple of
techniques we developed to help provide an area-efficient
solution.  Figure 1 shows the block diagram of the P6
pipeline.



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 3

Figure 2 shows the Dispatch/Execute units in the
Pentium II processor.  An overview of the P6
architecture and the microarchitecture is given in [5] and

[6] where you will also find a description of the blocks
shown in Figures 1 and 2.



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 4

RS

Port 0

Port 1

Port 2

Port 3,4

WIRE

FEU
IEU

SIMD 0

JEU

IEU

SIMD 1

AGU

AGU

RS - Reservation Station
EU - Execution Unit
FEU - Floating Point EU
IEU - Integer EU
WIRE - Miscellaneous Functions
SIMD 0/1 - MMX™ EU
JEU - Jump EU
AGU - Address Generation Unit
ROB - ReOrder BufferTo/from

Instruction
Pool (ROB)

Load

Store

Figure 2:  Pentium II Dispatch/Execute units

Implementation of Internet SSE Execution
Units
The Internet SSE was implemented in the following way.
The instruction decoder translates 4-wide (128-bit)
Internet SSE instructions into a pair of 2-wide (64-bit)
internal uops.  The execution of the 2-wide uops is
supported by 2-wide execution units.  Some of the FP
execution units were developed by extending the
functionality of existing P6 FP units.  The 2-wide units
boost the performance to that of twice the Pentium II
processor.  Further, implementing the 128-bit instruction

set on the 64-bit datapath limits the changes to the
decoder and the utilization of existing and new execution
units.  We also implemented a few other features to
improve the utilization of the FP hardware:

1. The adder and multiplier were placed on different
ports.  This allows for simultaneous dispatch of 2-
wide addition and 2-wide multiplication operations.
This boosts the peak performance two more times
when compared to the Pentium II, and hence, it allows
2.2 GFLOP/sec peak at 550 MHz.  The new units
developed on the Pentium III and modified P6 units
are shown in color in Figure 3.



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 5

JEU

IEU

WIRERS

Port 0

Port 1

Port 2

Port 3,4

FEU
IEU

SIMD 0

SIMD 1

AGU

AGU

RS - Reservation Station
EU - Execution Unit
FEU - Floating Point EU
IEU - Integer EU
WIRE - Miscellaneous Functions
SIMD 0/1 - MMX™ EU
Shuffle - ISSE Shuffle Unit
PFADD - ISSE Adder
Recip/Recipsqrt - ISSE Reciprocal
JEU - Jump EU
AGU - Address Generation Unit
ROB - ReOrder Buffer

To/from
Instruction
Pool (ROB)

Load

Store

Shuffle

PFADD

Recip/
Recipsqrt

Figure 3: Pentium III Dispatch/Execute units

All the new units have been added on Port 1.  The
new operations executed on Port 0 have been
accomplished by modifying existing units.  The
multiplier resides on Port 0 and is a modification of the
existing FP multiplier.  The new packed SP
multiplication is performed with a throughput of two
SP numbers each cycle with a latency of four cycles.
(The X87 SP processor, on the other hand, had a
throughput of a single SP number every two cycles
and a latency of five cycles.)  A new packed SP adder
is provided on Port 1.  The adder operates on two SP
numbers with a throughput of one cycle and a latency
of three cycles.  The adder also executes all compare,
subtract, min/max, and convert instructions.
Essentially, we have assigned different units (and
therefore different instructions) to Ports 0 and 1 to
ensure that a full 4-wide peak execution can be
achieved.

2. Hardware support is in place for data reorganization.
Effective SIMD computations require adequate SIMD
organization of data.  For instance, the conventional
representation of 3D data has the format of “(x, y, z,
w)”, where x, y, and z are the three coordinates of a
vertex, and w is the perspective correction factor.  In
some cases, SIMD computations are more effective if
the data are represented as vectors of equivalently
named coordinates “(x1, x2, …), (y1, y2,…), (z1, z2,…),
(w1, w2,…”).  In order to support transformations
between these type of data representations, the
Internet SSE includes the set of data manipulation
instructions.  We considered the effective hardware

support of these instructions to be an important
method to improve the utilization of FP units, since it
allows for less time to be spent in data reorganization.
The new shuffle/logical unit serves this purpose.  It
shares Port 1 and executes the unpack high and
unpack low, move, and logical uops.  The 128-bit
shuffle operation is performed through three uops: (1)
copy temporary, (2) shuffle low, and (3) shuffle high.
The shuffle unit also executes packed integer shuffle,
PINSRW and PEXTRW, through sharing of the FP
shuffle unit.

3. Data is copied faster.  IA-32 instructions overwrite
one of the operands of the instruction.  We knew that
this feature would add more MOVE instructions to the
code.  For instance, consider the following fragment:

Load memory operand A to register XMM0

Multiply XMM0 by memory operand B

The second instruction overwrites the content of the
register XMM0.  Hence, if the subsequent code uses
the same memory operand A, then we need to either
load it again from the memory (thus putting additional
pressure on the load port, which is frequently used in
multimedia algorithms), or we need to copy XMM0 to
another register for later re-use.  In order to facilitate
the latter method, we implemented two move ports in
the Pentium III processor.



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 6

Exceptions Handling
The implementation of a 128-bit processor via two 64-bit
micro-ops raises the possibility of an exception occurring
on either of the two independent micro-ops (uops).  For
instance, if the first uop retires while the second uop
causes an exception, the architecturally visible 128-bit
register is updated only partially, and it would cause an
inconsistency in the architectural state of the machine.
Retirement is the act of committing the results of an
operation to architectural state.  In order to provide
“precise exceptions handling” we implemented the Check
Next Micro-Operation (CNU) mechanism that prevents the
retirement of the first uop if the second one causes an
exception.  The mechanism acts as follows.  The first uop
in a pair of two uops, which need to be treated as an
atomic operation and/or data type, is marked with the CNU
flow marker.  The instruction decoder decodes the CNU
marker and sends the CNU bit to the allocator.  The
allocator informs the ROB to set the CNU bit in the ROB
entry allocated for this uop.  The ROB is the reorder buffer
and stores the micro-ops in the original program order.
The ROB will delay retirement of the first  uop until the
second uop is also guaranteed to retire.  Since this
mechanism throttles the retirement, we implemented the
following optimization.  In the case where all exceptions

are masked, each uop may be retired individually.  Since
multimedia software usually masks the exceptions, for all
practical purposes, there is no loss of computational
throughput.

Moreover, to maintain high computational throughput, we
implemented in hardware the fast processing of masked
exceptions, which happen routinely during execution of
multimedia algorithms, such as overflow, divide by zero,
and flush-to-zero underflow.  These exceptions are
handled by hardware through modifications to the
rounder/writeback multiplexers.

CACHEABILITY IMPLEMENTATION
We now discuss the key changes in the memory
implementation.  These include support for the
cacheability control features introduced by the Internet
SSE instruction set.  Support for byte masked writes,
streaming stores, data prefetching, multiple WC buffers,
and store fencing operations have been incorporated.

These are some of the  aspects of the prefetch
implementation on the Pentium III processor.  Figure 4
shows the compulsory effect of two stalls that happen in
the Pentium II if the load instruction misses the cache.

Memory  Access

Pipel ine Stal l

More  Instruct ions

ll Memory  Access Sta l ls  P ipe l ineMemory Access Sta l ls  P ipe l ine

ll Prefetch DecouplesPrefe tch  Decouples  M e m o r y  A c c e s s M e m o r y  A c c e s s

Memory /Bus  P ipe

Xform /L igh t

Store

S IMD-FP P ipe

Prefetch 
Vert ices

D e c o d e / R e n a m e
/Dispatch

Execute

Retire

M e m o r y  A c c e s s

More Instruct ions

Prefetch  Implementat ion  Enables  Concurrency

Figure 4: Prefetch implementation



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 7

The pipeline stall shown in the “memory access stalls
pipeline” portion of  Figure 4 is caused by the fact that the
load instruction retires much later than the previous
instruction.  The instructions following the load are
executed, but they cannot retire from the machine until the
load returns the data.  This is illustrated in the “memory
access stalls pipeline” portion of the figure: the
instructions subsequent to the memory access execute
and then wait for the memory access to finish executing
before they retire.  Therefore, these instructions
accumulate inside the machine.  Eventually some of the
key resources of the processor, such as the ROB that
registers non-retired instructions, get saturated.  This
immediately stalls the front end of the processor since no
new instructions can get the resources needed for

execution.  In the Pentium III processor, we removed this
bottleneck for the prefetch instruction.  We moved the
retirement of the prefetch instruction much earlier in the
pipe.  This is illustrated in the “prefetch decouples
memory access” portion of Figure 4.  Here we observe that
instructions after the memory access (in this case,
Prefetch) are allowed to retire even though the memory
access itself has not completed its execution.  The
prefetch is implemented such that even in the case of a
cache miss, it retires almost immediately, and no retirement
and resources saturation stalls occur due to memory
access.  As a result, we get much better concurrency of
computations and memory access.  This concept is called
senior load and is shown in Figure 5.

RS

ROB

MOB

DCU

BUS

Pref WB Valid

Port 2 RS dispatch

Mem. Load and
FB Request

Bus request

L2

Mem

Data return

Data not sent to Reg.

Data Request

Data Request

Load WB  Valid

Figure 5: Senior load implementation

Figure 5 shows the differences in how readiness for
retirement is signaled in load instructions and prefetch
instructions.  In the case of a load, the instruction is
dispatched into the memory pipe after dispatch from the
RS.  If it misses the DCU, it is dispatched by the BUS unit.
After the data returns from the L2 or the bus, the load is
signaled as complete (Load WB valid), and the load and
subsequent completed instructions are eligible to retire.  In

the case of the Prefetch, completion is signaled (by the
Pref WB Valid) almost immediately after allocation into the
MOB.  The completion is not delayed until the data is
actually fetched from the memory subsystem.  The
signaling of early completion permits the retirement of the
load, and subsequent instructions occur earlier than in the
case of the load, thus removing the resource stalls
associated with memory access latency.  The prefetch



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 8

instructions can fetch data into different levels of the
cache hierarchy.  Also, streaming store instructions are
supported.  In many instances, applications stream data
from memory and use them once without modifications.
Using regular cache models will result in eviction of useful
data from the cache.  In the Discussion section of this
paper, you will find details on cache management to
increase performance.

We now discuss writes.  The main issue with writes is that
many applications such as video and 3D have a large
working set.  This working set doesn’t fit into the cache.
In such a situation, additional performance may actually
be gained if the application bypasses the cache.  In other
words, the application should keep data in the memory.
Hence it should write directly to the memory.  This is what
streaming stores are for.

The implementation of high write throughput is as
important as high bandwidth memory reads.  What we
have done in the Pentium III processor is mainly two
things: we have improved the write bandwidth and the
write combining allocation and eviction.  The bus write
bandwidth was improved by 20%.  The Pentium III
processor now can saturate a 100 MHz bus with 800 MBs
of writes.  This was done by removing the dead cycle
between back to back write combining writes.

We also improved the write buffers allocation mechanism
in order to support this large write bandwidth.  Since we
re-use Pentium II fill buffers to do this, some further
clarifications on the difference in buffers in the Pentium III
and the Pentium II processors are in order.  The
differences are based on the very nature of SSE.  Before
the Pentium III processor, the architecture was mainly
oriented to scalar applications.  The purpose of fill buffers
was to provide high instantaneous throughput caused by
bursts of misses in scalar applications.  The average
bandwidth requirements were comparatively small, about
100 MB per second, but instantaneous requirements were
high.  SSE applications are streaming applications such as
vector algorithms.  Hence, the purpose of SSE buffers is to
sustain high average throughput.  In terms of overall
(read+write) throughput requirements, the capacity of the
Pentium II processor’s fill buffers is enough for the
Pentium III processor timeframe.  But the allocation policy
had to be improved in order to increase the efficiency with
which this capacity is used.  We therefore allowed a few
write buffers at a time, and we provided fast draining of
the buffers to reduce the occupancy time.  The faster
draining of the buffers and the efficient utilization
techniques for multiple buffers are described below.

The Pentium III processor’s write combining has been
implemented in such a way that its memory cluster allows
all four fill buffers to be utilized as write-combining fill

buffers at the same time, as opposed to the Pentium II
processor which allows just one.  To support this
enhancement, the following WC eviction conditions, as
well as all Pentium™ Pro WC eviction policies, are
implemented in the Pentium III processor:

• A buffer is evicted when all bytes are written (all
dirty) to the fill buffer.  Previously the buffer eviction
policy was “resource Demand” drivem, i.e. a buffer
gets evicted when DCU requests the allocation of
new buffer.

• When all fill buffers are busy a DCU fill buffer
allocation request, such as regular loads, stores, or
prefetches requiring a fill buffer can evict a WC buffer
even if it is not full yet.

Die-Frequency Efficient Implementation
In the Pentium III processor, a number of tradeoffs were
made to remain within tight die-size constraints and to
reach the frequency goals.  Two of these tradeoffs are
mentioned below:

• We merged the x87 multiplier with the packed FP
multiplier.  This helped significantly with die size and
kept the loading on the ports down.  Loading on the
writeback busses was an important factor for us.  The
writeback busses have been significant speed paths
in past implementations, and the addition of new units
and logic for implementation of the Internet SSE
would have made the situation worse.  This was an
area of focus from the very inception of the project.
We also considered merging the x87 adder with the
packed FP adder, but we did not follow through with
this because of schedule tradeoffs.

• We reused the multiplier’s Wallace tree to do the
PSAD.  The PSAD, computing the absolute difference
of packed MMX values, was implemented with three
uops: computation of the difference, computation of
the absolute value, and the sum of the absolutes.  The
sum of the absolutes was computed in the multiplier’s
Wallace tree.  The bytes that needed to be added
were fed into the tree that normally sums the
multiplication partial products.  The reuse of this logic
enabled us to implement the instruction with a very
small die and frequency impact.  Alternatives to
execute the instruction with reasonable performance
were significantly more expensive.

RESULTS
We would like to outline two main results: the method of
implementation of 4-wide ISA via concurrent dispatch of
two 2-wide streams of computations, and decoupled
execution of the streams of computations and memory.



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 9

Implementation of a 4-wide ISA based on a 2-wide data
path provides a good tradeoff between die size and
performance.  From the performance standpoint, this
approach may raise the question of how is 2-wide
implementation of a 4-wide ISA different from a 2-wide
implementation of a 2-wide ISA  The difference comes
from the fact that 4-wide ISA has twice as many registers.
Consider a  loop of instructions  that  uses eight registers.
The loop coded in 4-wide ISA can be viewed as the loop
coded in 2-wide ISA, which is then twice unrolled and
software-pipelined.  In general, the explicit loop unrolling
improves performance.  In particular, it delivers additional
improvement even in the out-of-order architecture, since it
exposes more parallelism to the machine.  The same loop in
a 2-wide ISA cannot be unrolled since the loop uses all the
available registers.  Hence, in the case of a 4-wide ISA, the
performance benefits come from two sources: internal out-
of-order scheduling plus the explicit loop unrolling.  In the
case of 2-wide ISA, the benefits come from the internal
out-of-order execution only.

The main reason behind the streaming architecture is to
meet the requirements of multimedia performance by
providing concurrent processing of data streams.  From
the implementation standpoint, it means that the processor
should provide concurrent execution of the computational
stream and stream of memory accesses.

The P6 microarchitecture extracts concurrency of memory
accesses and computations.  However, the explicit
prefetch instructions allowed us to completely decouple
the data fetch and retirement of subsequent instructions.
Hence, the throughput of each of these streams can reach
almost the theoretical maximum possible for the given task.
As a result, the maximum throughput that can be reached
with the Pentium III processor for the given tasks is equal
to the lowest of maximum memory throughput and
maximum computational throughput of this task.

Since we increased the effective memory throughput, we
had to balance the throughput of the processor buffering
subsystem and bus throughput.  We did not implement
new buffers but rather we implemented a few methods to
improve the utilization of the existing buffers and improve
the write throughput of the external bus.  This allowed us
to pay a negligible die-size price for performance balancing
the memory datapath.

DISCUSSION
In parallel with the development of the Pentium III
processor, we developed programming models that allow
us to utilize the potential gain of this implementation in
real-world applications.  In order to outline the details of
these models, we discuss three types of multimedia
applications:

1. Compute bound applications such as AC3 Audio.
These applications exhibit fairly small memory
bandwidth requirements, but need large
computational throughput.  In the Pentium III
processor these applications are supported by high
throughput FP units.  In order to utilize the
computational power of these units, programmers are
supposed to use SSE optimization tools described in
[2 ].

2. Memory bound applications such as 3D imaging.
The distinct feature of these applications is a fairly
large working set.  Because of this, the data of these
applications usually are in the memory, and the cache
doesn’t work as well as it does for compute-bound
applications.  Moreover, in some cases, it is even
better to bypass the cache.  In these cases, the
software can keep data in the memory and utilize the
high memory throughput and concurrency described
above.  In order to utilize these features, it is
recommended that a software developer identify
incoming and outgoing streams, program these
streams using prefetch and streaming store
instructions in order to ensure that these streams are
fetched/stored directly from/to memory without
excessive internal caching.  The paper in [3] describes
the details of some of these techniques by describing
an on-line driver approach for 3D geometry.

Additional techniques for prefetching include
optimizing the length of the data streams to reduce
the degree of memory access de-pipelining.  This may
happen in the beginning of a data stream due to
unutilized prefetches. Reference [3] describes a
DrawMultiPrimitive technique that demonstrates the
details of this programming model.

The details of these methods are described in [3].  3D
processing is an example.  Software implementation of
this model allowed us to achieve twice the speedup at
the application level.

3. Mixed class such as video encoding.  These
applications usually have few working sets; some of
them fit into cache, some of them do not.  The
strategy of implementation support and programming
model for these applications is based on the
combination of the above methods.  For these types
of applications, it is important to separate frequently
reused working sets from ones that are used less
frequently, and to build a caching strategy based on
the frequency of reuse.

For instance, the MPEG2 Encoder [4] processes the
data shown in Figure.6: color and brightness data of
Intrinsics frames (I-frame), color and brightness data



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 10

of Bi-directional frames (B-frames), and downsampled
data.

Figure 6: Data reuse in MPEG-2 encoder

According to the encoding algorithm, the I-frame
brightness data and downsampled data are processed
a few times more frequently than I-frame color data
and B-frame data.  Hence, the caching strategy for
this application is to keep the former data in the
cache, and the latter in memory.  Figure. 7 shows the
difference between two methods of data placement in
the cache/memory hierarchy: non-controlled caching
in the case of regular IA-32 caching, and software
controlled caching that can be achieved in the
Pentium III using Internet SSE streaming store and
prefetch instructions.  Though the I-frame color data
and B-frame data are in the memory, the high
throughput memory prefetch/store instructions allow
us to hide the latency of the data fetch.

Software Controlled caching

Cache trashing

Non-controlled caching 

Prefetch

Streamin
g Store

Memory

L2 Cache

Captured
Saved-IB

Saved-I

Saved-B

L2 Cache

L1 cache

Memory

L1 cache

Saved-IB

Saved-IB

Captured
Saved-IB
Saved-IB

Captured
Saved-IB
Saved-B

Figure 7: Software controlled caching vs. non-
controlled caching in the MPEG-2 encoder

The combination of this model with the application of the
PSAD instruction (in the motion estimation algorithm)
allowed us to reach MPEG2 real-time software encoding in
the Pentium III processor.

CONCLUSION
The Pentium III processor is now in production on
frequencies of up to 550 MHz.  The 70 new instructions
that were added were done at a cost of an additional ~10%
in die size.  The features that we have described have
enabled the Pentium III processor to achieve superior
multimedia performance.  One more important feature is
that our fairly straightforward implementation of the 4-
wide Internet SSE and concurrency of the computational
and memory streams allows for further performance
scalability of SSE applications moving toward higher
frequencies.

ACKNOWLEDGMENTS
The development of the Pentium III processor is the result
of work done by a number of people in MPG-FM
architecture, design, and validation.  A lot of the work
described in this paper was done by the MPG-FM
architecture group.  We acknowledge the guidance of
Srinivas Raman during the definition and execution of the
product.  We also thank Dave Papworth, Glenn Hinton,
Pete Mcwilliams, Bob Colwell, Ticky Thakkar, and Tom
Huff for their input during the process.

REFERENCES
[1] Narayanan Iyer, Mohammad Abdallah, S.Maiyuran,

Vivek Garg, S.Spangler, “Katmai Features POR,” Intel
internal document.

[2] Joe Wolf, “Programming Methods for the Pentium III
Processor’s Streaming SIMD Extensions Using the
VtuneTM Performance Enhancement Environment,”
Intel Technology Journal, Q2, 1999.

[3] Paul Zagacki, Deep Buch, Emile Hsieh, Hsien-Hsin Lee,
Daniel Melaku, Vladimir Pentkovski, “Architecture of a
3D Software Stack for Peak Pentium® III Processor
Performance,” Intel Technology Journal, Q2, 1999.

[4] James Abel et al, “Applications Tuning for Streaming
SIMD Extensions,” Intel Technology Journal, Q2,
1999.

[5] David B. Papworth, “Tuning the Pentium Pro
Microarchitecture,” IEEE Micro 1996.

[6] Intel, Pentium Pro Family Developer’s Manual, Intel
literature.

[7] Ticky Thakkar et al, “The Internet Streaming SIMD
Extensions,” Intel Technology Journal, Q2, 1999.

AUTHORS’ BIOGRAPHIES
Jagannath Keshava has been with Intel since 1990.  He is
currently working in the MPG-Folsom Architecture Group

Color Data
Brightness Data

Down-sampled Brightness Data

Frequently  re-used data

B-frameB-frameI-frame I-frame



Intel Technology Journal Q2, 1999

Overview of the Pentium III Processor 11

on the definition of integrated microprocessors for the
Value PC segment.  He led the Pentium III processor
definition and microarchitecture validation teams.  In the
past, he has held lead positions in design,
microarchitecture, and validation on the Pentium II and
i960 microprocessor groups.  Jagannath has an M.S.
degree in computer engineering from the University of
Texas, Austin.

His e-mail is  jagannath.keshava@intel.com

Vladimir Pentkovski is a Principal Engineer in the
Microprocessor Product Group in Folsom.  He was one of
the architects in the core team, which defined the Internet
Streaming SIMD Extensions of IA-32 architecture.
Vladimir led the development of Pentium III processor
architecture and performance analysis.  Previously he led
the development of compilers and software and hardware
support for programming languages for Elbrus multi-
processor computers in Russia.  Vladimir holds a Doctor of
Science degree and Ph.D. degree in computer science and
engineering from Russia.  His e-mail is
vladimir.m.pentkovski@intel.com.



Pentium® III Processor Serial Number Feature and Applications 1

Pentium® III Processor Serial Number Feature and
Applications

Stephen Fischer, BMD-FM Design, Intel Corp.
James Mi and Albert Teng, Content Group, Intel Corp.

Index words: Pentium® III, Internet, Java*,  asset management, information management

ABSTRACT

With the ever-growing importance of the Internet in the
everyday life of an individual or a business user of a
personal computer, the ability to have some form of
unique identifier for that computer has become
increasingly important.  Applications ranging from
system management for reducing Total Cost of
Ownership (TCO) and electronic commerce to
information management can expect to benefit from such
a capability.

In response to this need, the Pentium® III processor has
incorporated a serial number capability into the existing
instruction set.  The serial number feature makes use of
information programmed onto the die during
manufacturing, designed to create a unique  number that
is readable by external software .

Intel concerns about user privacy led to the
incorporation of a user hardware disable feature for the
processor serial number.

INTRODUCTION
The Intel® processor serial number (which for brevity
will be referred to as ps#) refers to a new feature
introduced with the Pentium® III processor, namely a
unique numeric identifier.  This serial number can be read
by external software.

With the availability of a processor-based serial number,
new classes of software applications are more easily
enabled.  Moreover, electronic transactions via the
Internet can be more easily enabled by using the ps# as
an added level of support for authentication.
Corporations can make use of the ps# to facilitate system
configuration and tracking, thereby improving
manageability.  Sensitive data can be closely controlled
by binding the ps# information to the accessibility of the
data.

This paper defines the processor serial number feature
and explains how it is implemented on the Pentium III
processor.  We also describe some of the applications
that are enabled with this capability, and give an
overview of an application framework that provides CPU
identification, based on the ps# in an open network
environment, and limits cross-correlation of information
across Web sites.

ARCHITECTURE AND
IMPLEMENTATION
The ps# capability introduced in the Pentium® III
processor is communicated through an extension of the
existing CPUID instruction [1].  The CPUID instruction is
responsible for returning specific parameters of the
processor to external software.  The type of parameters
include items such as the product family, model, and
stepping, as well as feature-specific attribute information
such as a feature flags field for indicating what functions
are available for this processor.  Including the processor
serial number information in the list of possible
parameters that can be returned was therefore a natural
extension of the CPUID instruction.  Since this
instruction can be executed at all privilege levels (PL0 –
PL3), it is available for execution at the application level
as well as the OS level, an important distinction that
enables a much wider range of uses of the ps# feature.

Parameter information such as the stepping number or
feature flag bits are returned in the general purpose
registers EAX, EBX, ECX, and EDX when the CPUID
instruction is executed with a specified input index value
held in EAX.



Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 2

Figure 1: CPUID instruction definition

The ps# information is returned by the addition of a new
index (EAX=3).  The presence of the ps# feature is also
indicated by the setting of a new feature flag, bit 18.
This allows external software to determine if the ps#
feature is supported and enabled in the processor.
Figure 1 summarizes the definition of the CPUID
instruction supported by the Pentium III processor.

To address potential concerns about compromising user
privacy through the visibility of the processor serial
number, a capability is incorporated that allows a user to
choose whether to enable or disable this feature.  This
capability is intended  to be under the user or system
manager’s control.  This is implemented through the
addition of a new read/write control register disable bit
with a “sticky” property.  During execution of the CPUID
instruction, the internal microcode of the processor polls
this bit to determine if ps# information should be
reflected back to the CPUID instruction-level
functionality.  Once the bit is set to a ‘1’ (ps# disable), it
cannot be cleared back to a ‘0’ through software means;
only a hardware reset of the processor can clear the
disable bit, thus preventing subsequent software from
overriding the user preference setting after a potential
software disable action has been performed.  It should
also be noted that the ps# disable bit is accessible only
at the highest privilege level (PL0).  This level of
accessibility keeps the user or system manager
preference setting decision with supervisory or
initialization software such as the system BIOS.

The ps# information returned by the Pentium III
processor is derived from on-die polysilicon fuse bits

programmed at wafer sort.  The underlying microcode
supporting the CPUID instructions reads the logical
programmed values of these internal fuse bits and
concatenates them to form a 64-bit value returned in the
general purpose registers EDX and ECX.

The underlying fuse technology is based on a novel
silicon approach that uses a Ti-silicide layer on top of a
polysilicon line [2].  Programming occurs by a current
stress that is high enough to cause agglomeration of the
Ti-silicide.  A current mirror sensing circuit is used to
measure the programmed fuse resistance relative to an
unprogrammed reference fuse and return a logical value.
The technology has yielded near 100% programming
success and maintains this reliability under thermo-
mechanical and bias-temperature stress conditions.
Redundant fuse elements for each logical fuse bit are
incorporated to further increase the reliability for a
successful programmed value, yielding a robust process
for deriving and programming the serialized value for the
ps#, in manufacturing of the Pentium III processor.

APPLICATION USAGE MODELS

Example 1: Improving Manageability,
Reducing TCO
In large enterprise environments, IT managers face daily
challenges to ensure a well-managed and smoothly
running computing infrastructure.  The Intel® Pentium®
III processor and its ps# give IT departments a new tool
to improve manageability and lower the total cost of
ownership of PCs.

Case EAX=0;
{

EAX = maximum index supported
EBX:EDX:ECX = “GenuineIntel”

}
Case EAX=1;
{

EAX = Family:Model:Stepping
EBX:ECX = reserved
EDX = feature flags (New ps# feature flag bit 18)

}
Case EAX=2;
{

EAX:EBX:ECX:EDX  = cache and TLB parameters
}
Case EAX=3;
{

EAX:EBX = reserved
ECX:EDX = processor serial number  data

}



Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 3

In the past, IT departments utilized a variety of methods,
including user name, MAC address, IP address, and
GUID to identify hardware.  However, none of these
methods are as consistent and reliable as the ps#, which
cannot be erased or changed.  With a ps#, it is easy to
identify a specific PC, even if the system changes users,
network cards are swapped out, or the system software
and BIOS are reloaded.  The ps# also makes it possible
to report more reliably on software asset management: IT
managers can know with a higher level of certainty which
software is running on each system and who the users of
the software program are.  It can also assist Help Desk
personnel in troubleshooting problems even when a
PC’s hard disk has crashed.

For system configuration and software updates,
companies can use the ps# as a way of reliably
identifying PCs pre-boot and post installation remotely.
If support technicians know the processor serial number
ahead of time, they can enter the number in the database
and pre-program the software to be delivered when the
PC is placed on the network.  This reduces on-site
engineering visits and automates the configuration
process, saving time and reducing support expenses.

When a processor fails in a multiprocessor or clustering
environment, it is difficult to determine which specific
processor failed.  With the Windows NT* operating
system, the logical processor can be identified but not
mapped to the physical processor.  The ps#, however,
allows IT staff to determine the exact point of failure,
thereby enabling them to route work around the problem
processor.  This can significantly improve load balancing
and fault tolerance, and it can increase the system’s
availability to the user.

Example 2: Enhancing Management for    E-
Business
Internet-based Electronic-Business (E-Business) gives
companies new freedom to push and pull information to
and from one another, but also increases the need to
ensure that the information reaches only its intended
recipients.  The ps# can be invaluable in this regard.

Using present technology, individuals and businesses
can authenticate who is accessing the information on
their personal computers and their company network by
combining any two or three variables: the traditional
something you know mechanisms such as login names
and passwords; something you have items such as
hardware keys (dongles) and smartcards, and something
you are aspects such as biometric measures.

With the launch of the Intel Pentium III processor and its
ps# technology, the PC now has another something you

have item.  It is an access token that can be used in
conjunction with passwords to help ensure that only the
intended platform receives sensitive corporate
information. For example, an Internet-based travel
agency network can validate a system’s processor serial
number to make sure that sensitive pricing information is
pushed only to authorized travel agents’ machines.  The
increased identification offered by the ps# also helps
corporate intranets extend information to employee
desktops, offering employees greater real-time access to
their 401(k) plans, payroll, and other personal data once
their ps# is validated.  The ps# also allows businesses to
broadcast sensitive video with synchronized
presentations by adding another layer of authentication
prior to pushing the presentation out to the user.

In business-to-business transactions, corporations can
bind the ps# to their digital certificates and internal or
external certificate authorities.  Business partners can
then gain access to private information only if they have
their corporate certificate and are accessing the data from
a validated platform.  (For more information on how to
validate system identity, see the section entitled “System
Verification Based on Processor Serial Number” in this
paper.)

Example 3: Information Management
As the flood of information rises and the PC becomes the
primary vehicle for processing, storing, and accessing
information, the management of information poses a
greater challenge.  The ps# provides a non-intrusive
identifier that enables information service providers to
customize the data and services that are delivered to the
end user.  The ps# also provides a better way to track
and protect important or sensitive information, and it can
improve applications such as data backup and restore
protection, removable storage data protection, managed
access to files, and confirmation of document exchange
between appropriate users.

SYSTEM VERIFICATION
It is a challenging task to design a software system that
can reliably identify a system in an open network
environment, based solely on the serial number of a
processor.  Because the client system could be a hostile
system controlled by a potential hacker, it is difficult for
the server to determine whether the returned ps#
information from the client system is valid or spurious.
The Processor Serial Number Verification Reference
Implementation (RI) offers a basis to solve this problem.
The RI was a joint effort by Intel and Independent
Software Vendors (ISV) to provide a way to extract the
ps# from a client system in an open network environment



Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 4

and limit cross-correlation of information across Web
sites.

Tamper Resistance
The RI’s software agents are downloaded over an open
network and are therefore exposed to attacks by hackers.
To protect against these attacks, the software agents are
designed using special tamper resistant techniques,
appropriately called Tamper Resistant Software (TRS)
agents.  The TRS agents automatically detect and
protect against potential hacker attacks.  Typically non-
processor-based hardware authentication solutions
imply the use of privileged instructions; it is not
available at the application level directly.  The additional
software layers such as device drivers are exposed to
more hacker attacks.  Processor serial number instruction
can be executed at the application level directly and does
not require special drivers.  It makes the tamper resistant
protection stronger.  These TRS agents are available
from different ISVs.  A common set of API functions has
been defined and made available to these vendors so
that developers can easily use agents from a number of
vendors interchangeably.

To provide safety against impostors, the framework
adopts a protocol whereby the authentication or
verification of the client happens on the server.  Agents
are used once for a short time and then are discarded,
thus enhancing protection.

Privacy Protection
Authentication mechanisms play an important role in
Web-based applications.  However, some users or
businesses may not honor a consumer’s right to privacy,
and they gather personal information about the
consumer without the consumer’s consent.  Intel has
taken several measures to address consumers’ privacy
concerns not only in the design of the processor serial
number feature, but also in providing certain utility tools.
Several RI features work to further enhance the
protection of a user’s data:

• Software agents that gather the ps# are packaged in
a digital container (a cabinet file for Internet
Explorer∗, and a Jar file for Netscape Navigator*)
that is then digitally signed by the Web service
provider and delivered to the client system.  When
the Web browser sees the container, it prompts the
user to grant access rights to the software, ensuring

                                                                
∗Other brands and names are the property of their
respective owners.

that the ps# cannot be collected without the user’s
consent.

• The ps#, once read, is transformed into another
unique identifier by hashing it with a service ID.
The hashed value is then sent by the client agent to
the server to be stored in the user database.

• The service ID is unique to each service provider.
This precludes different Web sites from correlating
user profiles due to the non-communicative
characteristic of the hashing algorithm.

The hashing algorithm is designed to be a one-way,
collision-free algorithm, which means one cannot infer
the processor serial number given the hashed value and
the service ID.  Intel also recommends that Web service
providers make their privacy policies available to the
consumer.

Performance Considerations
Another important attribute of the RI design is the short
download time for the agents.  If the size of the software
agents is large, the user might have to wait for a long
time before getting access.  To reduce download times,
agents used in the RI are limited to about 35 Kbytes.
However, the quality of protection is proportional to the
size of agents: the larger the size, the better the
protection provided.  A balance was reached with a small
agent that can protect against attacks for a sufficient
time.  Protection is augmented by dynamically renewing
the agents and by using a time-out mechanism on the
server.

REFERENCE IMPLEMENTATION
ARCHITECTURE
The RI framework consists of a client module, a server
module, and a protocol for communication between the
client and the server.

The client module consists of two types of client agents:
a registration agent, which is a non-armored module for
client registration; and a verification agent, which is a
TRS armored module for client verification.  Each agent
consists of a Java* applet and native code DLL that are
packaged together in digitally signed containers.

The server module manages client sessions and
authenticates the client system in addition to providing
access to the Web site.  The Web server also stores the
registration code with the user name and password in a
backend database.



Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 5

Client

Internet

JavA* Applet or
Cl ient Application

User
Database

TRS Agent
Pool

Agent DLL

Web Server Script
Program (IIS/ASP etc)

Server Veri fication
Program

Server

 Figure 2: Reference implementation architecture

System Verification Flow
When a user first logs on to the Web server, the server
asks for a user ID and password and then downloads a
registration agent to the client system.  The registration
agent computes a registration code that is a hash of the
ps# and service ID, and then returns it back to the server
to be stored in the user database with the user’s name
and password.  The server then sends a randomly
selected verification agent from a pool of agents.  Each
agent is tamper resistant and embeds a unique secret
value.  It is only used once during a pre-defined time
duration (usually about ten minutes).  The agent is
designed to sustain an attack by a very experienced
hacker during that time period.  Once the verification
agent is downloaded to the client system, it calculates
the verification code and sends the verification code to
the server.  As a measure of extra protection, the server
times out during these sessions if it does not receive a
valid verification code from the client within a pre-
determined time.

The verification code is computed by first hashing the
ps# and service ID (the same as the one used for
registration).  The resulting registration code is again

hashed with additional unique secret values embedded
within the verification agent.  This results in a
verification code, which is sent back to the Web server
for verification.

After the server receives a valid verification code from
the client, it first stores the returned value temporarily.
Then the server calculates an authentication code by
hashing the previously stored registration code with the
unique secret value embedded in the particular
verification agent sent to the client.  The server then
compares the authentication code with the verification
code.  If the two values match, the client system is
authenticated, and the user can access content or obtain
the requested service.

Supported Environment
Client agents support Microsoft ∗ Windows* platforms
(Windows NT*, Windows* 98 and Windows 95*).  The
RI supports Microsoft Internet Explorer* 4.0, Netscape
Navigator* 4.x, and AOL* browsers.  Both uniprocessor
and multiprocessor client systems are supported.  For
multiprocessor systems, the ps# is gathered consistently
from the same processor selected from the set of
available processors.  Similar software can be developed
to support other client operating systems, such as
Linux.*  For server environments, the Reference
Implementation supports both Windows NT and Unix.*

CONCLUSION
The serial number feature of the Pentium® III processor
is designed to provide a unique identifier for each
processor shipped by Intel with this feature to be visibly
retrieved using application software.  The CPUID
instruction enables a natural method for providing this
information with minimal impact to the processor design
or to future implementations.

As mentioned in this paper, several different categories
of applications can greatly benefit from a processor-
based serial number capability.  The most obvious areas
are enterprise asset management, information
management, and management for E-Business.

Unlike other means of deriving unique identifiers, the
ps# feature implementation of the Pentium III processor
is not impacted by a change of system hardware or
software configuration (i.e., network card, IP address,
etc.).  Embedding this feature in the processor provides
multiple benefits:

                                                                
∗Other brands and names are the property of their
respective owners.



Intel Technology Journal Q2, 1999

Pentium® III Processor Serial Number Feature and Applications 6

• Consumers and service/content providers have
greater confidence in this feature due to the
increased tamper resistance of the unique identifier.

• Visibility of the ps# to application-level software.
Typical non-processor based solutions imply the
use of privileged instructions (PL0) not available to
application-level code or common across platforms.

As a result, we expect the ps# feature of the Pentium III
processor to be of particular value to groups such as
information providers and IT managers, and also to
consumers as new applications take advantage of this
feature.

ACKNOWLEDGMENTS
We thank those who helped to initiate, define, and refine
the processor serial number feature and application
program.  Among the most active were Rob Sullivan,
Ticky Thakkar, Natasha Oza, Vishesh Parikh, Jim
Kolotorous, Susan Wojcicki, and Peter Ruscito.

REFERENCES
[1] Pentium® Pro Family Developer’s Manual, Volume

2: Programmers Reference Manual, Order Number
000900-001, Intel Literature Sales, Mt. Prospect, IL,
1996, pp. 11-73 to 11-79.

[2] Mohsen Alavi, Mark Bohr, Jeff Hicks, Martin
Denham, Allen Cassens, Dave Douglas, Min-Chun
Tsai, “A PROM Element Based on Salicide
Agglomeration of Poly Fuses in a CMOS Logic
Process,” 1997 IEEE International Electron Devices
Tech Digest, December 1997, pp. 855-858.

AUTHORS’ BIOGRAPHIES
Stephen Fischer is a staff design engineer with Intel
Corporation’s Folsom Design Center, which is
responsible for the microcode and microarchitecture
related design of the Pentium® III processor.  Prior to
that, Stephen was involved in various programs
including EISA chipset definition, PCI bus and chipset
definition, and the Intel MMX™ technology definition.
He received a B.S. degree in computer engineering from
CSU-Sacramento in 1985 and currently holds six U.S.
patents.  His e-mail is sfischer@pcocd2.intel.com.

James Mi  is manager of Enabling Technology with
Intel’s Content Group, which is responsible for
application architecture and development.  Prior to that,
he worked in marketing, software and hardware
development at Intel’s Content Group, TCAD, and Flash
TD.  James received a B.S. degree in physics from Fudan
University, China, in 1989 and an M.S. degree in EE from

Princeton University in 1991.  He joined Intel in 1992.  He
holds seven U.S. patents.  His e-mail is
james.mi@intel.com.

Albert Teng is director of New Technologies with a
focus on client/server applications for enterprise/e-
commerce solutions, security, and knowledge
management.  Previously he was the general manager of
Intel China and held an engineering management
position in the Microcomputer Labs.  Before joining Intel
in 1985,  Albert worked at AT&T Bell Labs and at the
Illinois Institute of Technology.  He received his Ph.D.
from Ohio State University in 1979.  His e-mail is
albert.y.teng@intel.com.



Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 1

Architecture of a 3D Software Stack for Peak Pentium® III
Processor Performance

Paul M. Zagacki, Deep Buch,
Emile Hsieh, Daniel Melaku, Vladimir Pentkovski, Microprocessor Products Group, Intel Corp.

Hsien-Hsin Lee, EECS-ACAL, University of Michigan, Ann Arbor

Index words: 3D, Graphics, Performance, Pentium® III, Driver

ABSTRACT
In this paper, we analyze the benefits of key architectural
modifications to a conventional 3D graphics software
stack (application, library, and graphics driver).  We do
not propose a new 3D pipeline architecture; rather, we
focus on improving the efficiency with which it is
practically implemented.  It is certainly possible to target
specific layers of a 3D software stack for optimization and
to realize significant performance gains with the Pentium®
III processor and Internet Streaming SIMD Extensions.
However, we will show that optimizing the kernel layers of
the 3D software stack enables the user to take maximum
advantage of the latent capabilities of the Pentium III
processor.  We use, as a case study, a geometry pipeline
implementation, the Architecture Geometry Engine,
developed by the Pentium III Architecture team (referred
to as ArchGE) and a 3D scene manager.  In this paper, we
present performance data, based on our measurements, to
demonstrate the benefit of the architectural enhancements.

INTRODUCTION
The prohibitive cost of applying the algorithms necessary
to compute geometry and lighting in a conventional 3D
pipeline has long kept 3D in the realm of high-end
workstations.  Figure 1 illustrates the classic 3D pipeline
structure, which consists of several key components.
First, the geometry and lighting calculations are performed
on the system’s host processor.1  The application’s 3D
models are transformed into their virtual worlds, and
lighting information is generated.  These calculations are
done in either a popular 3D library (OpenGL* or
                                                                
1This paper assumes a basic understanding of 3D
graphics.  For an in-depth review of this material refer to
[1].

Microsoft’s Direct3D* for example) or by the application.
The generated information is then handed to another
component, a 3D graphics controller, for rasterization
(conversion into a 2D pixel representation of the image) on
the computer screen.  Keeping these two components in
balance is one of the fundamental challenges that high-
performance 3D engine development must address.

 Figure 1: Typical 3D pipeline structure and its
associated application-level components

An increase in graphics’ controller performance means the
3D libraries built to deliver the geometry information to the
cards must also increase in performance to keep the
division of work in balance.  The Internet Streaming SIMD
Extensions were developed, in part, to increase the
efficiency and throughput of the geometry and lighting
calculations thus realizing higher system performance.
However, to achieve peak 3D performance with the
Pentium® III processor, components beyond the kernel
level should also be optimized.

App. Level
Components:

3D Object  Data

Geometry
Xform

Lighting

Rasterization

3D Application

3D Library

Graphics Card

API

Pipeline
Structure:



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 2

In order to demonstrate the peak 3D performance and
usage models for the Pentium III processor, we developed
the Architecture Geometry Engine (ArchGE) to fit into the
3D library layer (Figure 1).  ArchGE incorporates the
Internet Streaming SIMD Extensions to boost the
geometry and lighting performance, but also adds two new
architectural extensions to a general purpose 3D library:

1. MultiPrimitive API extension

2. “Online” driver model

The exact kernel-level speedup achieved with Internet
Streaming SIMD Extensions over x87 code varies
depending on the type and number of lights (infinite, local,
specular, etc.), amount of clipping, primitive type, and
other content variables.2  When used in typical
transformation and lighting kernels, we expect to see 1.4-
2.0x the kernel-level performance over optimized x87
floating-point code for single light workloads.  Workloads
with multiple lights and larger primitive sizes are expected
to see in excess of 2.0x the performance over optimized x87
implementations.  Additionally, we have measured highly
tuned, custom engines that see 2.5x–2.75x kernel-level
performance.  However, only a percentage of this kernel-
level performance translates into application-level
performance, the important measure for the consumer.
The application performance increase is governed by
Amdahl’s Law and is typically less at the application level
than at the kernel level unless additional optimizations to
the software stack are made [2].

The MultiPrimitive API extension allows an application to
gather all the primitives (e.g., strips, fans, vertex buffers)
that share identical render state information and submit
them in a single API call to the library.  The MultiPrimitive
optimization has been shown to provide 17%-40% of
additional performance over conventional (single primitive
per call) methods for drawing primitives.  The additional
performance is a result of the amortization of call overhead
and vertex prefetch costs over a greater number of vertices
being processed.  The reduction of time spent in “startup”
cost translates to more time spent in useful geometry and
lighting computations that are accelerated by Streaming
SIMD Extensions.

The second key extension introduced in ArchGE is an
“online” driver (OLD).  The OLD mechanism allows the
graphics controller’s driver to present the final destination

                                                                
2Kernel-level performance for our study is defined as
including transformation, culling, specular lighting,
transposition into graphics controller vertex order from a
SIMD format, and storing the processed vertices to AGP
memory.

buffer for the transformed and lit vertices directly to the
geometry pipeline.  Typically, in a general purpose API, all
the vertices are transformed and lit, then placed in a buffer
controlled by the library.  The library signals the graphics
controller when it is safe to take the buffer and render the
information.  When the buffer is ready, the device driver
must copy the data from the library’s buffer into the
controller’s memory (typically allocated in AGP memory).
There are three issues with this methodology.  First,
moving large batches of transformed and lit vertices
between library and graphics memory exercises the
processor bus but not its computational throughput, thus
leading to inefficient use of available resources.  Second,
this process typically generates excessive cache write-
back activity (moving modified lines from a smaller, faster
cache level to a larger and slower cache level or memory).
This tends to aggravate the loading of the processor
buses, reduce the efficiency of the cache hierarchy and
prefetch instructions, and reduce the throughput of
geometry computations.  Third, the additional copy and
formatting of the data by a typical device driver can
increase driver execution times by up to 10x that of an
OLD approach.  This time spent in additional data
movement is not time spent doing meaningful
computations.  OLD solves each of these issues by
allowing the graphics pipeline to deposit transformed and
lit vertices into the graphics controller’s local memory, as
they are calculated.  The “direct deposit” of vertex
information increases the concurrency between the
geometry and lighting computations (computation
intensive) with the storage of the results (bus intensive).
This increased concurrency has been demonstrated to
provide an additional application-level performance
speedup of 30%-80% relative to a typical offline driver
implementation.

The remainder of this paper discusses the following
methods of 3D software stack optimizations (see Figure 1)
and how these optimizations affect application-level
performance:

• 3D Library/API Layer: batch multiple primitives per
drawing command, single pass vs. multiple pass
geometry pipeline

• Device Driver/Graphics Controller Layer: online
driver delivery of processed vertices

• 3D Application Layer: object-level clipping and
render state sorting

With all of these optimizations in place, ArchGE is able to
display nearly 2x the peak application-level speedups of
optimized x87 floating-point pipelines on similarly
configured machines running identical workloads.  While
existing 3D libraries and device drivers are able to perform



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 3

the computations necessary for real-time 3D graphics, the
techniques described in this paper add significantly to the
overall performance for such implementations.

AMDAHL’S LAW
Amdahl’s Law governs how much kernel-level speedup
translates into application-level performance.  Simply
stated (using a 3D pipeline as an example), Amdahl’s Law
states that the amount of application-level speedup that
optimizing transformation and lighting produces is limited
to the percentage of time the software spends in this
optimized code.

The example in Figure 2 shows an application of Amdahl’s
Law to 3D.  Here we apply the Pentium® III Internet
Streaming SIMD Extension instructions to transformation
and lighting within a 3D application stack.  We show a 2x
kernel-level speedup and spend 50% of our time in these
3D geometry routines.

Speedup33.1

0.2
5.)5.1(

1

)1(

1

x

Speedup
Fraction

Fraction

imeExecutionT
imeExecutionT

Speedup

enhanced

enhanced
enhanced

new

old
overall

=
+−

=

+−
=

=

Figure 2: Amdahl’s Law for predicting application-level
performance applied to sample Xform and lighting

optimizations

Based on Figure 2, if the performance of transform and
lighting (3D library layer in Figure 1) increases 2x, yet only
50% of the total time is spent in this code, this translates
to an overall application speedup of 1.33x.  While a 1.33x
performance increase is impressive, it is not quite the 2x
we saw at the kernel level.  It is clear, that in addition to
porting transform and lighting routines to Internet
Streaming SIMD Extensions, it may also pay off
significantly to optimize other portions of the application
stack to achieve peak Pentium III processor performance.

Many of the optimization techniques described in the
following sections of this paper are designed to help
defeat the performance-limiting affects of Amdahl’s Law
by increasing the time spent in the “enhanced” code
segments.

3D LIBRARY AND API OPTIMIZATIONS
There are several popular 3D libraries and countless
custom engines available to handle most of the details
behind manipulating objects in three dimensions and
displaying them on a 2D monitor.  Existing 3D libraries
typically have architectures that may potentially limit the
performance an application can realize on a processor like
the Pentium® III processor.

Multi-Pass Vertex Processing
Current 3D libraries normally have a multiple-pass
structure for operating on input vertex information.  In a
multi-pass geometry pipeline, the vertices are processed
through several individual loops.  Each loop processes all
the vertices submitted to the pipeline through
transformation, backfaced culling (removal of non-forward
facing triangles) and then lighting (MP half of Figure 3).
There are two issues with this approach:

1. Complicated cache management code

2. Small basic code block sizes with which to interleave
memory and computation instructions

Multi-pass processing is heavily dependent on cache
management and potentially breaking vertex blocks,
submitted for transformation and lighting, into cache sized
increments.  After absorbing all of the cache misses
incurred during the transformation phase, the pipeline
should not also have to service misses during the culling
and lighting portions (even if the data stays in the L2
cache, there is still a small penalty to access it).

In addition to the extra programming efforts to directly
manage cache usage for a multi-pass implementation, a
small basic code block size makes it difficult to effectively
interleave memory accesses and computation.  Ideally, the
memory leadoff/latency times for a loop should be
balanced by the computation time within that loop.  In a
multi-pass pipe there is rarely enough computation per
loop iteration to balance the load/store requirements.  This
makes our critical code sections memory bound and not
very scalable as processor core frequency increases.
(System memory performance historically lags behind
processor performance.)



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 4

Figure 3:  Multi-pass (MP) vs. single-pass (SP) geometry
pipe (T = transform, C = backface cull,

L = light, n= number of iterations,
N = number of vertices)

Single-Pass Vertex Processing
In order to address the issues of a multi-pass pipeline
structure, ArchGE implements the single-pass (SP)
methodology shown in Figure 3.  The key difference in
this approach is that a few vertices are processed through
transform, culling, lighting, and writing to the graphics
controller’s memory in a single loop.3  This eliminates the
need to add code to carefully manage cache utilization and
also increases the basic block size significantly.  The
Internet Streaming SIMD Extension PREFETCH
instruction is used to hide memory latency behind the
computation performed in the pipe.  Data, which will be
transformed (x, y, z coordinate information) during the next
iteration of the loop, is brought into the cache while
transforming the current vertex.  The same methodology
applies to normals and texture coordinate(s) values during
lighting computation.

By using PREFETCH instructions and implementing a
large basic block, ArchGE is able to significantly increase
the concurrency between the memory and computation.
Our studies have shown that, as a result of this increase in
coherency, a single-pass pipeline is 20%-30% faster then
an optimized multi-pass pipeline.  Since the ArchGE pipe
tends to be more compute bound than its multi-pass
                                                                
3In the case of ArchGE a few vertices is actually four,
which nicely correlates to the Pentium® III processor’s
internet S.S.E. register width.

counterpart, it should also scale more effectively with
processor frequency.

MultiPrimitive API Extension
How vertices are submitted to a geometry pipe is almost as
important as how they are processed.  Most 3D libraries
support many different ways to pass the application vertex
information through the application programmer interface
(API4).  Vertices are grouped together into primitives
(typically triangle-based) by the application and then
passed to the library for transformation, lighting, and then
rasterization by the graphics controller.  OpenGL*, for
instance, supports ten types of these primitives ranging in
complexity from individual points to quadrilateral strips
[4].  Since most graphics controllers accept information in
triangle-based format, these are currently the most popular
primitive types.  Figure 4 demonstrates three such
primitives.

Figure 4:  Different triangle primitive types and the
vertices necessary to draw them

Most existing graphics libraries allow an application to
submit only one primitive at a time for processing.  This
means that an application can only process one triangle
strip, one triangle fan, or one indexed list of vertices per
function call (or whatever primitives are supported by the
library).  Since most primitives are comprised of relatively
few vertices, the overhead involved in just making the
function call to process each individual primitive becomes
significant.5

                                                                
4 The API is the set of function calls a program can make
to interact with a library.
5 This observation is based on a study of several current
games and benchmarks.  A similar observation was made

T

L

C

T

C

SPMP

L

n = N n = 1

n = N

n = N

1

3

2

1

5

4

3

2

5

4

3

2

1

3

2

1

3

2

1

5

4

1

3

2

Discrete Triangles:  3 Tris = 9 Verts

Triangle Strip:  3 Tris = 5 Verts Triangle Fan:  3 Tris = 5 Verts



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 5

The overhead for processing a single primitive can be
broken into two parts:  additional instructions outside of
geometry computations and memory de-pipelining.  The
obvious source of additional work is the added
instructions and cycles necessary to push and pop
parameters, set up transform matrices and lighting
information, validate parameters, etc.  This was measured
to be on the order of a thousand cycles per call in some
popular libraries.  This is a very significant amount of time
if the application is submitting a small number of vertices
per call.

In the ideal case, the Pentium III processor with Internet
Streaming SIMD Extensions allows for almost complete
overlap of memory accesses and computation.  This is
achieved by fully pipelining memory accesses using the
PREFETCH instruction (lower portion of Figure 5).

Figure  5:  Ideal picture of increased memory and
computational concurrency within a 3D pipeline

Each box in Figure 5 represents a block of processing time
in a simplified 3D pipeline.  The top portion of the figure is
a conventional pipe, with serial memory and computation
(a simplification since even older processor families allow
for a small amount of concurrency between memory and
computation).  The bottom portion of Figure 5 shows what
can be achieved by utilizing the PREFETCH and streaming
store features of the     Pentium III processor.  Practically,
however, an effect we refer to as "memory de-pipelining"
occurs at primitive boundaries causing the total time in our
ideal case to stretch somewhat [8].  For example, there can
be "startup costs" associated with prefetching the first
several vertices of a primitive during which computation is
effectively stalled waiting for the data.  For nested loops,
memory de-pipelining can occur during the interval
between the last iteration of an inner loop and the next
iteration of its associated outer loop.

                                                                                                        

by [11] regarding some of the ViewPerf benchmark
datasets.

Figure 6:  Memory de-pipelining between two short
primitives

Figure 6 shows a graphical example of the effects of
memory de-pipelining.  In the figure, the large boxes
represent the amount of time to do normal computation
plus the time spent waiting for initial PREFETCH
instructions to return data to the cache (which delays
completion for several of the initial iterations of geometry
processing).  The smaller boxes represent the amount of
time necessary to complete computation in the steady-
state.

The recommended technique to alleviate the performance
issue of memory de-pipelining is "prefetch
concatenation."  Concatenation can bridge the execution
pipeline bubbles between the boundary of an inner loop
and its associated outer loop by using the PREFETCH
instruction to “look ahead” to the next outer loop iteration.
In the example outlined in Figure 6, the geometry pipeline
“looks ahead” across primitive boundaries.  It is clear that
if an API only allows an application to submit a single
primitive per call, this technique cannot be used at
primitive boundaries to amortize the memory start-up costs
for each primitive submitted for processing.  This is
especially important when dealing with primitives
containing relatively few vertices (less then 100).

In order to reduce both the impact of an application calling
through the API layer for every primitive and the memory
de-pipelining effects, ArchGE implements a MultiPrimitive
method for passing primitives to the geometry engine.
This allows an application to pass a list of primitives and a
corresponding list of primitive lengths to ArchGE with one
call.  MultiPrimitive generates a 40% increase in
application-level performance for the ArchGE/Scene
Manager software stack.  Figure 7 shows details of the
sensitivity of MultiPrimitive to primitive size and the
number of primitives in a batch.  In the best case of small
primitives with many primitives in each call, MultiPrimitive
achieves over 400% the performance of a single primitive
API.  At the low end of the spectrum, very large primitives
(65 – 120 vertices per primitive) with only two per call,
MultiPrimitive is still able to achieve a 20% increase in
application-level performance.  Based on studies of
existing games and benchmarks, we anticipate that this
feature could potentially generate a 30%-40% application-
level speedup for typical workloads.

Xform Lighting

Fetch vertices Xform Lighting Driver Loop

Write cmdsPrefetch vertexes

Tread Txform

Tlit

Twrite

Tread

Tlit

Twrite

Memory pipe

Txform

SIMD-FP pipe

= Startup Cost + Computation Cost

= Computation Cost
}

Memory de-pipelining
affect after second

iteration

Without PREFETCH Concatenation

With PREFETCH Concatenation



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 6

The results in Figure 7 were generated by varying two
variables:  the maximum vertices per primitive and the
number of primitives per batch.  As we increase the
maximum number of vertices allowed per primitive, the
average number of vertices per primitive does not
necessarily increase in a linear fashion (along the x-axis).
The scene used for the experiment documented by Figure
7 had an original structure of 66 vertices per primitive on
average.  As we get closer to the original maximum
average primitive size, moving right along the x-axis in
Figure 7, a compression in the x-axis result occurs because
additional vertices on a per-primitive basis do not affect
the end average to any great extent.

DEVICE DRIVER OPTIMIZATION
Some conventional 3D libraries implement an offline driver
model.  Vertices are transformed, lit, and then stored in a
temporary location within cacheable memory.  The
geometry engine then signals the graphics controller’s
driver that the buffer is ready, and the device driver begins
to move the information from the temporary, cacheable
memory to local memory controller memory (typically in a
write-combinable and uncacheable memory range6).
Looking back at the top portion of Figure 5, we can easily
see that this will hurt the concurrency we are trying to
                                                                
6 See [9] for more information on Pentium® III processor
memory type definitions.

build between memory access and computations.  The
conventional driver portion of the time is indicated by the
“Driver Loop” time bar.

In addition to reduced concurrency within a typical
geometry pipeline, offline driver models also have a
tendency to upset the utilization of the external bus (the
bus between any CPU core and memory).  Many cache
lines are modified in the process of storing all of the
command and vertex information for a primitive (post
transform and lighting information).  This can easily
evaporate all the careful cache utilization work done in the
application and the transform and lighting routines by
writing unanticipated data to the caches.  Quickly, the
application finds itself faced with modified cache lines that
need eviction prior to pulling fresh cache lines that
contain the current data necessary for computation.  The
modified line evictions cause an unnecessary load on
internal and external busses and can significantly hurt
algorithm performance.

ArchGE solved both the problem of decreased
concurrency between memory and computation and the
issue of inefficient cache management by implementing a
different driver model.  OLD differs from a conventional
driver model in one simple area: a large temporary buffer
for transformed and lit vertex information is not required.
With OLD, vertices are transformed and lit (four at a time
in our single pass implementation) and then stored
immediately to memory presented by the graphics

MultiPrimitive Application Speedup vs. Primitive Length

1.000

2.000

3.000

4.000

4

11
.20

17
.80

23
.81

31
.17

39
.06

53
.17

53
.17

56
.94

56
.94

56
.94

59
.11

60
.28

60
.28

60
.28

60
.28

60
.28

65
.46

Average Verts/Primitive

S
pe

ed
up

No MultiPrimitive
2 Prims/MultiPrimitive
3 Prims/MultiPrimitive
4 Prims/MultiPrimitive
5 Prims/MultiPrimitive
6 Prims/MultiPrimitive
7 Prims/MultiPrimitive
8 Prims/MultiPrimitive
9 Prims/MultiPrimitive
10 Prims/MultiPrimitive
Default Prims/MultiPrimitive

Best Case Speedup with high number
of small primitives per MP Call

Typical Speedup in range of 1.20x -
1.40x

Figure 7:  MultiPrimitive speedup sensitivity to primitive size and the number of primitives batched with each call (x-axis is non-
linear)



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 7

controller.  ArchGE implemented an OLD mechanism for a
commercially available high-performance graphics
controller.  In the ArchGE geometry pipeline, four vertices
are transformed, lit (if visible), and deposited directly in
the graphics controller’s memory.  Since only small blocks
of vertex and command information are stored directly to
memory, we have increased the concurrency between the
computation in transform and lighting and have also
decreased the effects of excessive cacheable writes.

Figure 8:  Application-level performance achievable with
online vs. conventional driver models

Two very significant results were achieved with the
implementation of an OLD in ArchGE.  The first was the
level of application speedup shown by this device driver
model.  Figure 8 demonstrates some of the possibilities of
the online driver methodology.  We measured three
different scenes of varying complexity.  The first scene in
the chart, Scene 1, generates a 1.8x speedup over the same
scene run with an offline driver in ArchGE.  The high level
of performance increase is attributable to the fact that the
scene is very geometry intensive (approximately 82,000
vertices submitted per frame for processing) and is not
bound by graphics controller fill rates (mostly small
triangles).  Thus, Scene 1 is more sensitive to processor
capabilities and available bus bandwidth.  With no
external limitations on the performance of this workload,
OLD is able to show close to peak performance.

The second scene in the chart, labeled Scene 2, is a close-
up view of the first one and is much more sensitive to
graphics controller fill rates.  The somewhat lower
speedup, 1.30x over a conventional driver model (vs. 1.8x
for Scene 1) reflects the scene’s sensitivity to fill rate.
Finally, the third scene measured, Scene 3, shows a 1.17x
performance delta over an offline driver.  The third scene
represents what we feel to be the worst-case content for
ArchGE, since the geometric complexity of the content is

relatively low, and the fill rate requirements are quite high,
which make the graphics controller the performance
bottleneck.

Figure 8 shows the large range of performance that is
possible by implementing an online driver model.  Our
studies on the content of current games and benchmarks
have indicated that results achievable fall between the
peak of 1.8x and 1.3x.  Tuning of the content for the third
scene should yield results that fall into this range.

Increasing the amount of time spent transforming and
lighting vertices is an additional effect of an online driver.
With all of the additional time spent in code optimized with
the Pentium® III processor’s Internet Streaming SIMD
Extension instructions, we are able to get much closer to
the theoretical speedup generated by kernel-level
optimizations of transformation and lighting (according to
Amdahl’s Law described previously).  Figure 9 clearly
displays the additional amount of time spent in meaningful
computation in the case of the online driver.  The pie-chart
on the left of Figure 9 shows that 90% of our time is spent
in the ArchGE library transforming and lighting vertices.
In contrast, the pie-chart on the right of Figure 9 shows
only 50% of our time in transformation and lighting, while
we spend 46% of our time in device driver code (copying
vertices to the graphics controller’s local memory).  Both
of the profiles shown were generated using ArchGE on a
very complex scene, which is not limited by graphics card
fill rates.

The online driver feature translates into more time spent
transforming and lighting vertices and less time moving
data in and out of the cache hierarchy.  The increase in
focus on transformation and lighting (coupled with the
optimizations possible with the Pentium III processor)
allows an application to increase the level of content and
generate a more realistic user experience.  Our
measurements have shown realistic speedups in the range
of 1.8x to 1.3x with an online driver.

3D APPLICATION LAYER
OPTIMIZATIONS
Optimizing a 3D application stack starts at the very top,
with the application code and the content itself.  The
structure of the content (type of primitive, number of
vertices per scene, amount of textures, etc.) has a huge
impact on the performance of an application.  The manner
with which this content is presented to the 3D library layer
is also very important.  The scene manager used in our
study implements a few key optimizations that generate
significant benefits.

Application Level Speedup w/Online Driver

1.85

1.30

1.17
1.0
1.1

1.2
1.3
1.4

1.5
1.6
1.7

1.8
1.9

Scene 1 Scene 2 Scene 3

Scene

S
p

ee
d

u
p



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 8

Render State Sorting
In order to convert the scene manager’s 3D models into
pictures on the screen, they must maintain a render state.
The render state is a collection of information that tells the
geometry engine and the graphics controller how to
process incoming information (and display it on the
screen).  A render state contains information ranging from
various transform matrix values to texture map addresses,
which should be selected by the graphics card for
rasterization.7  Switching any portion of the render state,
within a standard 3D library, is very expensive for the
application.

The first cost associated with render state changes is in
the 3D library itself.  For the most part, a call into the 3D
library to alter the current state involves a large number of
processor cycles.  Some of this time is spent in the library
routine validating the new state and manipulating state
variables.  Another chunk of time goes to the device
driver, where it typically goes through its own process of
validation and setup.

The second cost of frequent render state changes is
exhibited by the 3D graphics card.  As graphics card
frequencies and performance increase, so do the depths of
their rasterization pipelines.  It is typically necessary to
flush the raster pipe of existing primitives and only restart
after this has completed.  This flushing leads to excessive
bubbles in the rasterization pipeline and a less than
effective utilization of precious pixel fill and triangle setup
rate bandwidth.

                                                                
7Rasterization is the process by which a graphics
controller converts geometry information into pixel
position and color information on a computer monitor.

By identifying the types of render states utilized and
grouping primitives by distinct state setting at the time of
the creation of the model/scene graph, our application was
able to eliminate much of this overhead.

Object-Level Clipping
There are various ways a 3D application can avoid
processing non-visible geometry.  Our application uses
bounding boxes around portions of the scene being
processed to trivially accept or reject the primitives for
further processing.  The scene manager compares the
points, which define the corners of the bounding box, with
the dimensions of the viewport.  There are three possible
results of this comparison:

1. Completely outside of the viewing frustum; reject
from further processing

2. Completely inside of the viewing frustum; submit for
processing and indicate that no clipping is necessary

3. Points on the bounding box straddle the viewing
frustum; submit for processing and indicate that
clipping may be necessary8

                                                                
8 For more information regarding clipping primitives,
please see [5] and [6].

CPU Time - Online Driver Model

ArchGE
90%

Application
3%

API Layer
3%

Driver
4%

CPU Time - Conventional Driver Model

ArchGE
50%

Driver
46%

API Layer
2%

Application
2%

Figure 9: Effects of an online driver model to time spent in computation vs. data formating and movement



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 9

Figure 10: Application-level performance difference with
bounding boxes turned on

Using a bounding box with eight corner points for this
comparison can save much processing time.  The
comparison involves transforming all the vertices for the
primitive from their own object space into world or screen
space.  With a bounding box, only the eight corner points
need to be checked.  To check an individual point against
an arbitrary bounding plane requires a minimum of four
multiplication and three addition operations.  These
operations need to happen for the top, bottom, right, left,
front, and back planes on the viewing frustum (a total of
six planes).  This becomes a total of 24 multiplication and
18 addition operations per point to account for each plane
[3].

Implementing bounding boxes around 3D models
minimizes the amount of computation necessary to trivially
accept or reject vertices for further processing.  Examples
of the application-level performance impact of this
optimization can be seen in Figure 10.  This chart
demonstrates a significant, application-level performance
impact with bounding boxes enabled for object-level
clipping.  This effect was measured by turning the feature
on or off within the application on three different scenes
of varying geometric complexity. (Scene 1 contains the
greatest number of vertices and Scene 3 the least.)

During our study on bounding box usage, we discovered
that you can actually use too many bounding boxes
around elements of a scene.  The minimum number of
vertices to include in a bounding box depends on many
different factors and should be experimented with to

determine what will work most effectively in any particular
3D software stack.

Implementing render state sorting and object-level
clipping in our application layer has the potential to
significantly boost the performance of the optimized
ArchGE engine.  The object-level clipping shows a 16%-
35% application-level performance increase, and it brings
ArchGE closer to peak Pentium® III processor
performance by at least that much.

CONCLUSION
Software applications are exploiting more 3D graphics than
ever before.  The Pentium® III processor, with its Internet
Streaming SIMD Extension instructions, can boost
performance on 3D transformation and lighting over 2x
that of optimized floating-point instructions.  However, as
shown in this paper, all of this kernel-level performance
does not translate directly into application-level
performance.

What we have outlined in this paper is a series of
architectural optimizations for various levels of the 3D
application software stack.  Such optimizations can bring
applications closer to realizing peak Pentium III
performance for typical 3D graphics workloads.  Utilizing a
tuned scene manager and our ArchGE geometry engine,
we are able to demonstrate close to 2x the application-level
speedup of the Pentium® II processor at the same
frequency on the Pentium III processor on a general
purpose 3D software stack.

ACKNOWLEDGMENTS
All of the work and results outlined in this paper could not
have been achieved without the significant help of the
following people and organizations:

• BMD Architecture: We acknowledge Ken Castro for
keeping our development and measurement process
smooth with outstanding lab support.

• MAP-PBA: We acknowledge Shervin Kheradpir and
Jeff Ma for developing the scene management
software to support ArchGE and various experiments.

• PMD Architecture: We acknowledge Tom Huff for
participating in discussions on ArchGE features, code
reviews, and recommended improvements.

• GCD: We acknowledge Peter Doyle for his work on
the definition of the i740™ definition of the online
driver.

• PDD: We acknowledge Gerry Blank and Brandon
Fliflet for prototyping and implementing the i740™
version of the online driver.

Scene Name Perf. Diff. FPS w/BBoxes FPS wout/BBoxes
Scene 1 1.35 43.6 32.19
Scene 2 1.30 47.6 36.71
Scene 3 1.16 38 32.86

1.35

1.30

1.16

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Scene 1 Scene 2 Scene 3

Scene Name

A
p

p
. L

ev
el

 D
if

fe
re

n
ce



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 10

• 3dfx Interactive, Inc.: We acknowledge Colyn Case
and Andrew Hanson for helping to define and
develop a Voodoo2TM* version of the online driver for
ArchGE that was used to generate much of the
experimental data in this paper.

REFERENCES
[1] James D Foley, Andries van Dam, Steven K. Feiner,

and John F. Hughes, Computer Graphics: Principles
and Practice, Morgan Kaufmann, San Francisco, CA,
pp. 29-31.

[2] David A. Patterson and John L. Hennessy, Computer
Architecture: A Quantitative Approach, Addison-
Wesley, Menlo Park, CA, pp. 201-283.

[3] David A. Patterson and John L. Hennessy, Computer
Architecture: A Quantitative Approach, Addison-
Wesley, Menlo Park, CA, pp. 868.

[4] Mason Woo, Jackie Neider, and Tom Davis, OpenGL®
Programming Guide: Second Edition,  Addison-
Wesley, Menlo Park, CA, pp. 42-45.

[5] Jim F. Blinn. and Martin E. Newell, “Clipping Using
Homogeneous Coordinates,” SigGraph 1978
Proceedings, pp. 245-251.

[6] Jim F. Blinn, Jim Blinn’s Corner: A Trip Down the
Graphics Pipeline, Morgan Kaufmann, San Francisco,
CA, pp. 122-134.

[7] Intel® Architecture Optimization Reference Manual,
available at
http://developer.intel.com/design/PentiumIII/manuals/

[8] Intel® Architecture Optimization Reference Manual,
pp. 6-13 – 6-15.

[9] Intel® Architecture Software Developer’s Manual,
Volume 3: System Programming Guide,  pp. 9-4 – 9-13.
Available at
http://developer.intel.com/design/PentiumIII/manuals/

[10] Intel® Architecture Optimization Reference Manual,
pp. 6-6 – 6-9.

[11] Chia-Lin Yang, Barton Sano, and Alvin R. Lebeck,
“Exploiting Instruction Level Parallelism in Geometry
Processing for Three Dimensional Graphics
Applications,”  Technical Report CS-1998-14,
Computer Science Department, Duke University,
September 1998.

AUTHORS’ BIOGRAPHIES
Paul Zagacki is a senior processor architect for the
Microprocessor Products Group in Folsom, CA.  He holds
a B.S. degree in computer science from the University of
Michigan, Ann Arbor.  He has worked for Intel since 1994
in the areas of high-level performance modeling for
microprocessor architectures, Pentium® III processor
software and benchmark analysis and optimization, and 3D
graphics implementation, performance analysis, and
tuning.  His professional interests include computer
architecture/microarchitecture, 3D graphics, compiler
performance, and software/hardware performance
analysis.  His e-mail is paul.zagacki@intel.com.

Deep Buch is a staff processor architect in the
Microprocessor Products Group in Folsom, CA.  He
received an M.Tech degree in electrical engineering from
the Indian Institute of Technology, Bombay, in 1989.  He
has been working for Intel since 1993 in the areas of
processor architecture, platform technologies, and 3D
graphics.  Prior to joining Intel, Deep was a hardware
specialist at Wipro Infotech R&D in Bangalore, India,
working on ASIC and system level design.  His interests
are computer architecture, multimedia and
communications.  His e-mail is deep.k.buch@intel.com.

Emile Hsieh is a senior processor architect in the
Microprocessor Product Group in Folsom, CA.  He holds a
B.S. degree from the National Taiwan University, Taipei,
Taiwan, and a M.S. degree from Purdue University, West
Lafayettte, IN, all in electrical engineering.  His research
interests include computer architecture, performance
modeling and analysis, compilers, graphics, signal
processing, and communications.  His e-mail is
emile.hsieh@intel.com.

Hsien-Hsin Lee is presently a Ph.D. candidate in computer
science and engineering at the University of Michigan.
From 1995 to 1998, Hsien-Hsin was a senior processor
architect for the Microprocessor Products Group in
Folsom, CA.  While there he worked on design and
performance modeling for the Pentium® Pro, Pentium® II
and Pentium III processors.  He holds a B.S.E.E. degree
from the National Tsinghua University, Taiwan and an
M.S.E. degree from the University of Michigan.  His
research interests include microarchitecture, memory
system design, ILP optimization, and graphics
architectures.  His e-mail is linear@eecs.umich.edu.

Daniel Melaku is a processor architect for the
Microprocessor Products Group in Folsom, CA.  He holds
a B.S. degree in computer engineering from California State
University, Sacramento.  Daniel has been with Intel since
1997, and has worked in the areas of performance
projection, validation, and tool development.  His interests



Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 11

include digital signal processing, computer animation,
voice and image recognition, and artificial intelligence.  His
e-mail is daniel.melaku@intel.com.

Vladimir Pentkovski is a Principal Engineer in the
Microprocessor Product Group in Folsom.  He was one of
the architects in the core team that defined the Internet
Streaming SIMD Extensions for the IA-32 architecture.
Vladimir led the development of the Pentium III processor
architecture and performance analysis.  Previously he led
the development of compilers and software and hardware
support for programming languages for Elbrus multi-
processor computers in Russia.  Vladimir holds a Doctor of
Science degree and a Ph.D. in computer science and
engineering from Russia.  His e-mail is
vladimir.m.pentkovski@intel.com.



Applications Tuning for Streaming SIMD Extensions 1

Applications Tuning for Streaming SIMD Extensions

James Abel, Kumar Balasubramanian,
Mike Bargeron,  Tom Craver, Mike Phlipot, Microprocessor Products Group, Intel Corp.

Index words: SIMD, streaming, MMX™ instructions, 3D, video, imaging

ABSTRACT
In early 1997, Intel formed an engineering lab whose
charter was to apply a new set of instructions to the
optimization of software applications.  This lab worked
with commercial software companies to increase the
performance of their applications by using these new
instructions.  Two years later, this new instruction set has
been made public as a principal new feature of the
Pentium® III processor, the Streaming SIMD Extensions.
Many of the commercial software companies’ applications
on which the lab consulted have been brought to market,
demonstrating significant performance improvements by
using the Streaming SIMD Extensions.  This paper
describes many of the principles and concepts developed
as a result of that activity.

The Streaming SIMD Extensions expand the Single
Instruction/Multiple Data (SIMD) capabilities of the
Intel® Architecture.  Previously, Intel® MMX™
instructions allowed SIMD integer operations.  These new
instructions implement floating-point operations on a set
of eight new SIMD registers.  Additionally, the Streaming
SIMD Extensions provide new integer instructions
operating on the MMX registers as well as cache control
instructions to optimize memory access.  Applications
using 3D graphics, digital imaging, and motion video are
generally well suited for optimization with these new
instructions.

Data organization plays a pivotal role in the performance
of applications in the above areas.  This paper explores
three data organizations (Array of Structure, Structure of
Array, and Hybrid data orders) and their impact on SIMD
processing performance.  The impact of cache control
instructions, such as the prefetch instructions, is also
examined.

Examples of applying the Streaming SIMD Extensions to
3D transform and lighting, bilinear interpolation, video
block matching, and motion compensation are considered.

The principles applied in these examples can be extended
to many other algorithms and applications.

INTRODUCTION
It is desirable to have many products available at the initial
launch of a processor to help establish consumer interest.
The development of these products begins with
understanding the full potential of the new processor.
This process requires optimizing select algorithms to
achieve maximum performance.  For the Pentium® III
processor, that activity started in 1997 with a focus on the
Streaming SIMD Extensions.

Although applicable to a wide variety of programs, the
extended instruction set is designed to be especially
effective in applications involving 3D graphics, digital
imaging, and digital motion video.  The purpose of this
paper is to describe how those particular applications are
best optimized with the new SIMD instructions.

Rather than optimize an entire application, specific
algorithms or components were selected that would offer
the best speedup.  Analysis tools such as the VTune™
Performance Enhancement Environment [1] identified the
most processor-intensive components of an application.
The identified components were further examined for
algorithms that execute similar operations on large data
sets with a minimal amount of branching.

Data flow in and out of the processor is an important
element in optimization so various data organization
strategies were tested, including the impact of prefetch.

All algorithms were coded with and without the Streaming
SIMD Extensions.  The two versions of the algorithms
were run on the same Pentium III processor platform to
determine the relative performance difference.



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 2

DATA AND THE STREAMING SIMD
EXTENSIONS
This section examines issues that must be taken into
account to achieve the best possible performance with the
Streaming SIMD Extensions. The order of data in memory
and the methods by which such data are moved to and
from the processor can have a significant impact.

SIMD and Memory Interactions
The floating-point instructions in Streaming SIMD
Extensions generally operate “vertically”; that is, they
operate between corresponding positions of the SIMD
registers, or the equivalent positions of data being loaded
directly from memory.  Since the same operation must be
done to all four floating-point values in a register, typically
the best approach is to use each of the four positions of
an SIMD register to store the same variable of an
algorithm, but from different iterations.  For example, if the
algorithm is A[j] = B[j] + C[j], one would want to put four
B’s in one register, four C’s in another register, and use a
single SIMD add operation to create four resulting A’s.

Each SIMD register can be thought of as a small array of
data.  A set of these registers can be thought of as a
structure of arrays (SoA for short):

struct { float A[4], B[4], C[4]; } SoA;

This SoA approach is not always applicable.  In the
equation  B[j] = B[j-1] + C[j], the dependency between
iterations would require a different approach.

The Pentium® III processor typically loads data from
memory 32 bytes at a time, from 32-byte aligned addresses.
Each 32 bytes is stored to one “cache line” of the L1
and/or L2 caches.  Frequent use of instructions that load
or store data that is split over two cache lines will cause a
significant performance penalty.

Most of the Streaming SIMD Extensions floating-point
instructions that access memory require a 16-byte aligned
address, thus avoiding the penalty.  The movups,
movlps, and movhps instructions were included to
support unaligned accesses , at the risk of incurring the
penalty.    The movlps and movhps instructions can
access 8-byte aligned addresses without penalty, since
they move only 8 bytes at a time (compared to movups
which move 16 bytes).

Using the Prefetch Instructions
Prefetch instructions can be useful for algorithms limited
by CPU processing speed, ensuring that data is  always
ready as soon as they can be used.  The prefetch
instructions load data ahead of use, thereby hiding load
latency so that the CPU can take full advantage of memory

bandwidth.  The Pentium III processor loads data to cache
when a cache line is written to, so prefetches can also
reduce latency for storing data.

Prefetch instructions can be useful for memory bandwidth-
limited algorithms  as well.  For example, the
prefetchnta instruction fetches data only to the L1
cache, avoiding some overhead incurred when data is  also
loaded to the L2 cache (as occurs with normal load and
store).

Loading data only to the L1 cache, if it is not going to be
needed again soon, also avoids unnecessarily evicting
data from the L2 cache.  When data is unnecessarily
evicted, it can impose a double penalty.  Modified cache
lines that are evicted must be written back to memory and
reloaded later when they are again needed.

The prefetcht2 instruction might be used to load the
L2 cache with a data set larger than can fit in the L1 cache.
Meanwhile a CPU speed-limited algorithm could be
executing and randomly accessing data.  As it proceeds, it
would find more and more of its data in the L2 cache.

To get the most efficient use of prefetch, loops should be
unrolled (i.e., multiple passes of the algorithm should be in
each loop iteration) so that each iteration prefetches and
uses one cache line worth of each variable of the
algorithm.

Data Order and SIMD Algorithm Performance
The SoA order is the most natural order for SIMD
operations, so it would seem equally natural to use it as an
order for data in memory:

struct
{

float A[1000], B[1000], C[1000];

} SoA_data;

In some cases, this approach can work fine.  But for a
larger number of structure members, SoA can have
memory access performance penalties.  PC memory
systems can only keep a limited number of pages
(typically 4KB blocks) of memory “open” for fast access.
If the number of members exceeds that number, so that
each set of four values used in a SIMD computation must
come from a different area of memory, the memory
subsystem may spend inordinate amounts of time “re-
opening” pages.

An Array of Structures (AoS) data order is more
conventional in non-SIMD programming:

struct
{

float A, B, C;



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 3

} AoS_data[1000];

Sequential processing through an AoS data set will find
needed data close together in memory, thus avoiding the
“open pages” limitation of SoA.  However, the data are
clearly not well ordered for SIMD computations.

The solution to this is generally to load the AoS data into
SIMD registers and convert them to the SoA format via
data reordering (“shuffling”) instructions.  This process
can be thought of as “transposing” the data order.  See
Figure 1.

Figure 1: Transposing from AoS to SoA

While there is some performance cost due to this
transposition, this approach generally works reasonably
well, and may be the only viable solution if other factors
mandate an AoS data order in memory.  Existing data may
be in AoS format; existing programs may have interface
specifications that require AoS data; or data may be
randomly accessed rather than sequentially accessed.

The Pentium III processor loads 32 bytes at a time from
memory to cache.  If there are members in an AoS
structure that are not needed in the current computation,
they will nonetheless be pulled across the memory bus,
incurring unnecessary bus overhead, and limiting
performance.

Data caching can sometimes offset this overhead by
keeping data in cache until they are needed in a
subsequent processing step.  But for large data sets, the
cache may not be large enough, and data may be evicted
before they can be used.  In general, it is a good idea to
limit AoS structures to just members that will often be
used at the same time.  (This applies to non-SIMD code as
well.)

It would be preferable, when AoS is not forced on us by
external factors, to find a data order that preserves the
AoS data adjacency, while supporting the SoA load order.
An example of this “hybrid” data order is

struct
{

float A[8], B[8], C[8];

} Hybrid_data[125];

As with SoA, this order allows the processor to load four
values at a time (e.g., with movaps) from any member
array.  While structure members with the same index are
not immediately adjacent, they are still close enough that
they will usually be in the same memory page.

If a hybrid structure starts 32-byte aligned, the data will
remain 32-byte aligned (since there are eight entries in
each of the 4-byte float sub-arrays).  This is convenient
for Streaming SIMD Extensions instructions that require
16-byte alignment, as well as for prefetching a full cache
line that contains just one particular member.  For
sequential processing of large data sets, it reliably
provides good results.

Figure 2 illustrates the impact of SIMD and data order on
the performance of  a dot product algorithm.

Hybrid SoA - SIMD

SoA - SIMD

AoS Transposed - SIMD

AoS - SIMD

AoS - C code

450MHz Pentium® III Processor Clocks
with a 100MHz Frontside Memory Bus

xyz xyzabc

Figure 2: Data order and performance

A dot product was done between vectors of two large sets
of 3-component (xyz) vectors.  All were coded in C: The
Streaming SIMD Extensions versions were implemented
using “intrinsic functions” built into and optimized by an
Intel® compiler.  All use prefetch instructions to optimize
the use of memory bandwidth.  The “xyz” bars represent
tests with data structures having only three members in
the data structure, while the “xyzabc” bars represent tests
where three extra structure members, not involved in the
dot product, were included in the data set.

The Hybrid SoA approach gave the best overall
performance.  AoS algorithms did poorly (and became
memory bound) when extra members were included in the
same structure.  The SoA and Hybrid SoA algorithms were
nearly immune to extra structure members.  The Streaming
SIMD Extensions provided some small benefit to the AoS
‘xyz’ algorithm if the dot products were done one at a time
(AoS – SIMD), and somewhat more if the data were



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 4

transposed to SoA form before processing.  The SoA
algorithm was fully memory limited; it was unable to
approach the best performance despite the natural SIMD
ordering of data.

Optimizing Memory Use for Block Processing
Block processing algorithms typically read sequentially
through a large array of data, modify the data, and write
out to another large array.  For example, converting an
image from RGB format to YUV format entails sequentially
reading the RGB components, computing the equivalent
YUV components, and writing the latter out to a new array.
An even simpler example is a block copy.

Many such algorithms will be memory bound, so anything
that optimizes the flow of data is highly desirable.  One
attribute of such algorithms is that typically they process
data once, and need not touch them again.  In such a case,
there is little point in saving results in cache, where they
might displace other useful data.

The streaming store instructions (movntps, movntq)
can be used to write results to the destination memory
buffer without going through the caches.  However, these
instructions work best if they can take full advantage of
write combining.  Any access to memory or the L2 cache
can cause premature flushing of the write-combining
buffers, resulting in inefficient use of the memory bus.
While writing out results with the streaming store
instructions, data should only be read from the L1 cache,
to avoid this performance penalty.

To ensure this  is the case for a block-processing
algorithm, a loop can be added that uses  prefetchnta
to read a sub-block of data (typically about 4KB) into the
L1 cache.  A normal processing loop would follow this ,
reading the L1 cached sub-block of data and writing
results out with streaming store instructions.  An outer
loop, around both of the sub-block loops, would go
through all the sub-blocks that make up the data set.  One
key issue arises when using this approach.  The prefetch
instructions only work when the virtual memory page
addressed by the prefetch is mapped to a physical memory
page by the Translation Lookaside Buffer (TLB) in the
Pentium III processor.  Typically the TLB is updated for a
page the first time that page is accessed.  Since the TLB
has a finite number of entries (e.g., 64), page mappings
that have not been used recently may no longer be cached
in the TLB, which means the prefetch will not work.

To make sure the prefetches work, one merely needs to do
one read from each 4KB memory page of the source data,
shortly before starting the prefetch loop.  Since initializing
the TLB will take a while, if the read is done right before
the prefetch loop, many of the prefetches might be quickly

executed with no effect.  This can be adjusted for in a
variety of ways.  For example, one can read once from an
address 4KB ahead of the address where the prefetch loop
begins, making sure not to read past the end of valid data.

The approach of breaking data into cache-fitting sub-
blocks can also be useful if one wishes to do multiple
passes over data that cannot all fit into cache.  For
example, one might wish to do a sequence of processing
steps, each taking the previous step’s output as its input.

If one were to do each processing pass separately,
intermediate results would have to be written out to
memory and later reloaded from memory for the next step.
Instead, one can often do all passes over each of many
smaller, cache-fitting blocks, thereby minimizing memory
data bus traffic.

TUNING 3D APPLICATIONS
In a typical 3D geometry engine, one would expect to find
various functional components such as transformation,
lighting and shading, clipping, culling, and perspective
correction modules [2].  Deciding which component
should be optimized can be difficult.  Using the criteria
discussed in the introduction, the transform and lighting
functions were determined to be good candidates for
optimization using the Streaming SIMD Extensions.

Transform and lighting functions are compute-intensive,
SIMD-friendly inner loops that perform the same operation
on large amounts of contiguous data.  Use of the prefetch
instruction allows data in either loop to begin loading
several iterations prior to their use.  The new
approximation instructions are beneficial in eliminating
long-latency square-root and division operations in the
lighting loop, or in the transform loop when perspective
correction is performed.  Finally, clamping to a range of
values within the lighting loop can be replaced by the new
packed min/max instructions, eliminating two
unpredictable branches per iteration.

The details of each optimization method are discussed
below.  In each case, data order and alignment are as
discussed in the previous section.

3D Transform
The 3D transform is performed by multiplying a 4x4
transformation matrix by a 4-element vector.  The vector is
comprised of vertex elements X, Y, Z, and the constant 1,
while the transformation matrix itself is calculated
individually for each object in the scene.  This operation
produces intermediate values X', Y', Z', and W'.  In some
cases, the W' value is immediately used to normalize the
intermediate vector (perspective divide), generating final
values X", Y", and Z".  Since the final result of the fourth



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 5

element is always 1.0, the division of W' by itself can be
ignored.

3D Transform Optimizations
Because the same transformation matrix applies to all
vertices of a given mesh, and since there is a large amount
of data to be processed, the transform was found to be a
good candidate for SIMD programming.  To experience the
largest benefit from the Streaming SIMD Extensions, the
full capacity of the SIMD registers was exploited.  One
register was loaded with four X values, X0, X1, X2, and X3,
another with four Y values, and yet another with four Z
values.

The first set of matrix elements was then loaded into a
fourth register.  To do this, two methods were possible.
Each matrix element could either be (1) stored as a single
floating-point value  in memory, read into the lowest
position of the 4-wide register using movss, then
replicated four times using the shufps instuction; or (2)
the element could be stored as an array of four identical
floating-point values, aligned on a 32-byte boundary and
read in four at a time using the movaps instruction.  The
latter proved to be optimal.  Storing the entire matrix in this
manner did increase the immediate size of the structure
from 64 bytes to 256 bytes, but this was a small price to
pay for the performance gained.

Matrix elements m01, m02, and m03 were loaded from memory
in a similar fashion.  With all of the data in registers in true
SIMD format, the transform became a simple series of
three multiply instructions followed by three addition
intructions for each set of results (see Figure 3).  Knowing
that the same vertex data used to calculate the X' results
would be needed to compute the Y' results, instructions
were used in such a way as to overwrite the registers
containing matrix data.  Once this set of computations was
completed, intermediate values X0', X1', X2', and X3' were
written to a 32-byte aligned output buffer.

Figure 3: The SIMD transform produces four results
while the conventional transform produces only one

The process was repeated for the first four Y values, this
time loading matrix elements m10, m11, m12, m13, and again
for Z' and W', with each of their respective matrix elements.
The final result of the first transform iteration was 16
intermediate values.  If at this point of the pipeline, a
perspective divide is done, the rcpps instruction is of
tremendous benefit.  (See the section entitled 3D Lighting
Optimizations for more details.) Figure 4 compares the
results of the Pentium III processor-specific code with the
optimizations discussed above and a standard ‘C’
implementation of the same algorithm.

100 200 300 400 500

vertex count

SoA 'C' Code

Streaming
SIMD
Extensions
'ASM'

Figure 4: Transform cycle time for optimized Pentium®
III processor  assembly versus conventional 'C' code

3D Lighting
The point light is probably the most widely used light
source in 3D graphics applications.  To apply a point light
to a given vertex, the vector from the vertex to the light
source is first calculated.  The length of this vector is
computed and used to normalize the vertex-to-light vector.
From the normalized light vector, the diffuse component of
the current vertex is computed.  Finally, the overall vertex
color is calculated and checked to ensure that it falls
within the range of [0.0, 1.0].  Values exceeding the range



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 6

in either direction must be “clamped” to either the upper or
lower bound.  Once vertex color values are computed and
clamped, they are stored to memory for use at render time.

3D Lighting Optimizations
The lighting distance calculation involves a standard
square-root of a sum-of-squares.  Again the full capacity
of SIMD registers was used by loading four vertex values
into each register and calculating the distance of four
vertices from the same light source simultaneously.  The
normalization of the light vector was then performed by
dividing the vector itself by the previously calculated
distance.  Though seemingly simple, these steps require
two long-latency floating-point operations, the square-
root and the divide, each of which requires about 36 clock
cycles to complete.  Beyond that, they are “unpipelined”
instructions, meaning that no other instruction may be
submitted to the execution port on which they are
executing until the given instruction retires.

To overcome this, the Streaming SIMD Extensions include
rsqrtps and rcpps, reciprocal approximation
instructions that allow developers to accomplish the same
workload as the long-latency instructions in a shorter time.
By performing hardware table look-ups, these instructions
have a reduced latency of two clock cycles and are fully
pipelined, so that other operations may be issued during
their execution.  As a tradeoff, the instructions guarantee
at least 11 bits of mantissa precision, as opposed to the
full 23 bits offered by true single-precision instructions.
Though 11 bits is typically enough for most 3D
applications, some applications may require (or prefer)
more.

The Newton-Raphson method is a mathematical algorithm
designed to regain precision lost by this type of
approximation.  A single-pass Newton-Raphson iteration
doubles the resultant accuracy to 22 bits; the 23rd bit can
be recuperated after a second pass.  An approximation
followed by a single iteration is notably faster than its
long-latency equivalent and can be determined by

rcp'(a) = 2*rcp(a) – a*rcp(a)2

rsqt'(a) = (0.5)*rsqt(a)*(3-a*rsqt(a)2)

Four normalized direction vectors were generated by
multiplying the reciprocal square root of each distance
squared by the previously calculated light vector.  These
values were then used to calculate the diffuse component
of the vertex color.

The diffuse calculation involves a dot product of two
vectors and could potentially produce a negative result.
Graphics applications typically overcome this by
performing a less-than-zero check and setting the value to
zero if ‘true.’  This type of unpredictable, conditional

branch performed once per iteration can be a performance
bottleneck.  To eliminate the branch, a maxps instruction
was performed on the register of four diffuse results and a
4-wide register of 0.0 values.  The max instruction zeroes
out the negative values, while permitting non-negatives to
pass through unchanged.

A similar optimization can be performed when calculating
the final vertex color.  This time, the tendency is for the
value to exceed 1.0.  The minps instruction clamps
values, above the threshold, to 1.0 without the use of
conditional branching.  Large advantages of lighting
optimizations versus a standard ‘C’ language lighting
function are shown in Figure 5.

100 200 300 400 500

vertex count

SoA 'C' Code

Streaming
SIMD
Extensions
'ASM'

Figure 5: Lighting cycle time for optimized Pentium® III
processor assembly versus conventional 'C' code

DIGITAL IMAGING
Digital imaging applications are typically comprised of
algorithms wherein a small set of mathematical operations
needs to be performed on large volumes of pixel data.
Furthermore, each pixel consists of four components: Red,
Green, Blue, and Alpha values.  Hence, MMXTM

technology significantly enhanced the performance of
digital imaging applications. As most state-of-the-art
imaging applications continue to embed richer video and
graphics capabilities, the applications continue to demand
much higher performance.  The Pentium® III processor,
with its associated Streaming SIMD Extensions, helps
meet these new performance goals.  The remainder of this
section discusses how some of these new features help
digital imaging algorithms enhance performance beyond
those already achieved through MMX technology.

INTEGER SIMD EXTENSIONS
When implementing an SIMD imaging algorithm, one
often encounters the need to rearrange data within an
MMXTM register.  The integer SIMD extensions include a
shuffle instruction (pshufw) to enhance the performance
of such frequently used operations.  For example, an



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 7

efficient SIMD implementation of alpha saturation would
compare all of the R, G, and B components with the
corresponding alpha value in parallel.  To be able to do so,
the alpha value itself needs to be replicated in a different
MMX register as shown in Figure 6.

G RA B

A AA A

PSHUFW  MM0, MM0, 0xFF

MM0

MM0

Figure 6: Broadcast alpha value

While this requires three instructions in MMX
technology, the new instruction set would need just one.

Quite often, data-dependent branching has been an
impediment in the process of mapping certain imaging
algorithms to SIMD.  For example, after computing an
intermediate set of RGBA values, another set of
computations might need to be executed if any of the R, G,
B, and A values were below a certain threshold value.  In a
typical MMX implementation, the result of the condition
check would be multiple mask patterns within an MMX
register.  However, extracting the required bits from these
mask patterns into a register that can be used for
addressing is usually very cumbersome.  In certain cases,
this might even negate the performance gains from an
SIMD implementation of the algorithm.  The new
instruction pmovmskb addresses precisely this need.  It
extracts the required bits from the mask patterns in the
MMX register and places them in a register that can be
used for addressing.

Table look-up operations, such as the ones found in
histogram-related algorithms, have always been critical to
the performance of digital imaging.  In such cases, each of
the computed R, G, and B values is used as an index into
its respective color look-up table.  Such operations have
been difficult to implement in MMX technology due to the
fact that the computed RGBA values would be residing in
an MMX register, which could not be used directly for
addressing.  Extracting each of them into the appropriate
registers for addressing, fetching the contents from the
table, and inserting them back into MMX registers was
cumbersome and detrimental to performance.  The integer
SIMD extensions include a pair of instructions
(pinsrw/pextrw) that helps enhance the performance
of such algorithms.

In addition to the instructions mentioned above, the new
integer SIMD extensions include several others that help

enhance the performance of frequently used imaging
algorithms.  For example, the SIMD unsigned multiply
instruction helps in the implementation of certain filter
operations that were cumbersome using MMX
technology.  Likewise, the minimum/maximum instructions
are useful during alpha saturation for bound checks, and
the complete set of comparison operators facilitate all
condition checking.

SIMD FLOATING-POINT
Current imaging implementations primarily involve fixed-
point integer arithmetic.  However, most state-of-the-art
imaging applications are increasingly richer in their
graphics capabilities and in their image quality.  The
algorithms therein should benefit significantly from the
SIMD floating-point capability of the Streaming SIMD
Extensions.  Even if the underlying algorithms are
implemented in floating-point, the enhanced floating-point
performance helps yield near real-time response to typical
user requests.  Also, for intermediate results, the extra bits
of available precision in a floating-point representation
(relative to 16-bit fixed point) helps yield superior image
quality.  Moreover, implementing the algorithms in
floating-point form reduces the need to deal with fixed-
point arithmetic.  This greatly boosts productivity by
easing the task of code development, debugging, and
maintenance.  In imaging algorithms, the fundamental data
object (RGBA pixel value) is of type integer.  However, for
the above-mentioned reasons, such as the need for extra
precision and programming ease, several data
transformations are implemented in floating-point.  SIMD
floating-point capability significantly enhances the
performance of these implementations.  The following
bilinear interpolation example helps illustrate the usage of
some of these SIMD floating-point instructions and also
highlights some of the performance tradeoffs involved.

Bilinear Interpolation Example
The RGBA value of each pixel in the display image is
calculated by a bilinear interpolation using RGBA values
of four neighboring pixels in the source image (see Figure
7).



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 8

P0 P1

P

s

t

s1 = 1.0 - s

t1 = 1.0 - t

P3 P2

P01

P23

Figure 7: Bilinear interpolation

The R component of pixel P is calculated as follows:
R01  =   t1 * R0    +  t  * R1

R23  =   t  * R2   +  t1 * R3

R     =  s1 * R01  +   s  * R23   

From the above equations, it is evident that the bilinear
interpolation steps involve a series of three linear
interpolations.  Each linear interpolation itself involves
two multiplications and one addition for each value of R,
G, B and A.  Of course, when implemented in SIMD, all the
four RGBA components can be computed in parallel.
Initially, let us assume that we would like to perform these
computations in floating-point since the SIMD floating-
point capability might help us meet our performance goal.
If so, as a first step, we will need to convert the RGBA
pixel values from their typical byte representation to their
float format.  The steps involved in this are given in Figure
8.  This conversion needs to be done for each of the four
pixels in the source image.  Note that both MMXTM

technology and SIMD floating-point instructions are used
in these steps, as are the MMX registers and the new
Pentium® III processor registers. Overlapping the
conversion steps for the four pixels better exploits
available hardware as both the floating-point SIMD and
the integer SIMD units will be operating in parallel.

MM0 XX XX XX XX A0 B0 G0 R0

MM0 G0 R0A0 B0

PUNPCKLBW

A0 B0MM1
G0 R0MM0

PUNPCKLWDPUNPCKHWD

A0 B0XX XX

XMM0 G0 R0XX XX

XMM0 G0 R0A0 B0

CVTPI2PS

MOVLHPS

Figure 8: Packed byte to float conversion

Subsequent to this type conversion, the actual multiply-
add step for each linear interpolation becomes relatively
trivial (see Figure 9).  Now, since the RGBA value of the
result pixel is in float format, it needs to be converted back
to integer type.  The steps involved here are similar to
those shown in Figure 8.

G0 R0A0 B0

t1 t1t1 t1

G0 * t1 R0 * t1A0 * t1 B0 * t1

G 1 R1A1 B1

t tt t

MULPS* * * * * * * *

G1 * t R1 * tA1 * t B1 * t

G01 R01A01 B01

ADDPS

Figure 9: Linear interpolation

Analyzing the implementation indicates that the algorithm
inherently required about nine basic instructions: two
MULS and one ADD for each of the three linear
interpolations.  The decision to implement it using SIMD
floating-point added about 29 additional instructions (six
for each of the four source pixels from byte->float and five
for the result display pixel from
 float->byte).  However, the application would often
perform several other floating-point operations such as
lighting or other effects on the bilinearly interpolated pixel.
In such cases, the byte<->float conversion time overhead
can be amortized across all these additional floating-point
operations.  This helps yield enhanced performance using
SIMD floating-point.

CACHE CONTROL INSTRUCTIONS
Given the typically large data sets in imaging, efficient
cache utilization has a significant impact on performance.
The Streaming SIMD Extensions have a few cache control
instructions that help better utilize available hardware
resources and minimize cache pollution.  The different
prefetch instructions help fetch data from memory to the



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 9

different relevant levels in cache sufficiently in advance of
their actual usage.  For example, in a tile-based imaging
architecture, while the execution units of the processor
could be busy processing a certain tile’s data, the memory
subsystem could be busy prefetching the next  tile’s data.
Likewise, when the final display pixel values have been
computed, the streaming store instructions could be used
to store them directly in memory without first fetching
them into cache.  This also helps minimize the potential for
valuable data already in cache and needed for other
computations from being evicted out of the cache.

To maximize the benefits from these cache control
instructions, careful attention should be paid to issues
such as identifying the data sets worth prefetching, the
cache levels to prefetch to, and when to issue the
prefetch.

VIDEO CODECS
Video codecs, such as MPEG and Digital Video (DV)
codes, can obtain a performance increase by using
streaming SIMD extensions.  Table 1 gives examples of
these increases.

PSADBW PAVG Prefetch,
Streaming
Stores

Encode Motion
Estimation

Motion
Estimation,
Motion
Compensation

Color
Conversion,
Motion
Compensation

Decode Motion
Compensation

Color
Conversion,
Motion
Compensation

Table 1: Uses of Streaming SIMD Extensions for video
codecs

MOTION ESTIMATION
Block matching is essential in motion estimation. Equation
1 is used to calculate the Sum of Absolute Differences
(also referred to as the Sum of Absolute Distortions),
which is the output of the block-matching function.

∑
=

∑
=

−=
15

0

15

0
]][[]][[

i j
jipredBlockjirefBlockSAD

Figure 10 illustrates how motion estimation is
accomplished.

Current Frame Reference Frame

              15  15

SAD = ∑ ∑ |Vn(x+i,y+j)-Vm(x+dx+i,y+dy+j)|
        i=0 j=0

Vn Vm

Motion
Vector
dx,dy

Figure 10: Block matching

dx and dy are candidate motion vectors.  Motion
estimation is accomplished by performing multiple block
matching operations, each with a different dx,dy.  The
motion vector with the minimum SAD value is the best
motion vector.

Streaming SIMD Extensions provide a new instruction,
psadbw, that speeds up block matching.  The operation
of this instruction is given in Figure 11.Absolute Differences

    A7             A6         A5         A4       A3        A2        A1        A0

    B7         B6         B5         B4       B3        B2         B1        B0

     -           -             -           -          -           -           -           -

|A7-B7|  |A6-B6|  |A5-B5| |A4-B4| |A3-B3| |A2-B2| |A1-B1| |A0-B0|

+

         0          0           0          0          0          0              SAD

Figure 11: PSADBW

Block matching is implemented by using the PSAD
instruction as illustrated in Figure 12.  The code to perform
this operation is given in Table 2.  This code has been
observed to provide a performance increase of up to twice
that obtained when using MMXTM technology.

Note that the nature of memory access of block matching
will cause data cache line splits when the loads straddle
32-byte boundaries.  This is due to the dx, dy changes of 1
(i.e., address variances are one byte at a time).  The data
loads are eight bytes at a time.



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 10

Reference FrameCurrent Frame

PSADBW PSADBW

+

SAD

Figure 12: Block matching with PSADBW

psad_top:            // 16 x 16 block
matching
     // Do PSAD for a row, accumulate
results
    movq mm1, [esi] 
    movq mm2, [esi+8]
    psadbw mm1, [edi]
    psadbw mm2, [edi+8]

    // Increment pointers to next row
    add esi, eax
    add edi, eax

    // Accumulate diff in 2 accumulators
    paddw mm0, mm1 
    paddw mm7, mm2

    dec ecx     // Do all 16 rows of
macroblock
    jg psad_top

    // Add partial results for final SAD
value
    paddw mm0, mm7

Table 2: Block matching

Hierarchical  motion estimation is a popular technique
used to reduce computational complexity and to provide
potentially better motion vectors.  Subsampling is
illustrated in Figure 13.

. . . .

. A B .

. C D .

. . . .

. . .

. Y .

. . .

W

H H/2

W/2

Original
Subsampled

Figure 13: Subsampling for hierarchical motion
estimation

Subsampling the original picture is sped up using the
pavg instruction.  Figure 14 shows the operation of pavgb.

    A7             A6          A5        A4       A3        A2        A1        A0

    B7         B6          B5        B4       B3        B2         B1        B0

     +          +            +          +         +          +          +           +

    1           1            1           1         1          1           1           1

     +          +            +          +         +          +          +           +

   >> 1    >> 1      >> 1     >> 1     >> 1    >> 1     >> 1     >> 1 

(A7+B7+1)/2       (A6+B6+1)/2    (A5+B5+1)/2     (A4+B4+1)/2   (A3+B3+1)/2   (A2+B2+1)/2     (A1+B1+1)/2   (A0+B0+1)/2

Figure 14: PAVGB

The pavgw instruction is also provided in streaming
SIMD extensions.  It works like the pavgb instruction, but
performs the averaging on four 16-bit values.

It is important to note that the additions are performed
with an additional bit for accuracy (9 bits for pavgb, and
17 bits for pavgw).  This avoids overflow errors.  Once
the average is performed (after the divide-by-2), the width
of the result is the same as the input (8 or 16 bits).

While the pavg instructions operate on two values at a
time, it is possible to use three pavg instructions to
approximate 4-value averaging.  The line below illustrates
this in pseudo-code:

Y = pavg(pavg(A,B),pavg(C,D)-1)

This value is close to (A + B + C + D + 2)/4 which is the
typical calculation used to perform subsampling.
However, for the approximation, 87.5% of values match
exactly, and 12.5% of the values are off by one least
significant bit (LSbit).  The maximum error is one LSbit.
This error is often acceptable for performing motion
estimation.



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 11

MOTION COMPENSATION
Motion compensation (MC) is used in both video
decoders and encoders.  Decoders perform inverse motion
compensation (iMC), and encoders perform both MC and
iMC.  The accuracy of these calculations is important,
especially for encoders, since their local decoder should
track the operation of a high-quality decoder.  In MC, bi-
directional B-frames can require interpolation of two
values.  The MPEG standard specifies this as

Y = (A + B + 1)/2

The pavg instructions provide exactly this calculation.

Streaming SIMD extensions also provide prefetch and
streaming store instructions.  Since MC is often memory
bound, prefetch operations can speed up MC.
prefetchnta and prefetcht0 have both been
observed to provide a speedup.  Which one offers the
best improvement is  dependent on how the decoder is
implemented.  For decoders that are writing the decoded
picture to a graphics card memory, movntq (move non-
temporal quad-word) can offer a benefit by not polluting
the caches with data that will never again be needed by
the decoder.

DISCRETE COSINE TRANSFORM
The Discrete Cosine Transform (DCT) and inverse
Discrete Cosine Transform (iDCT) are used in video
codecs.  Decoders use the iDCT, and encoders use the
DCT and usually the iDCT (if they have a local decoder).
It is possible to gain a speedup from streaming SIMD
extensions; however, the speedup is application-
dependent.  The SIMD floating-point instructions can be
used to calculate a very accurate DCT/iDCT.  However, it
is possible to be IEEE 1180-1990 [3] compliant using SIMD
integer instructions, such as those found in MMXTM

technology.  In general, for consumer electronics versions,
SIMD integer implementations are sufficiently accurate
and are the fastest.  For professional or reference codecs,
SIMD floating-point may be the preferred choice.  To ease
the burden on codec developers, both of these
implementations are available in Intel’s Image Processing
Library.

VARIABLE LENGTH ENCODE
Encoders must create a bit stream based on the values
after the Discrete Cosine Transform and quantization.
This is called the Variable Length Encode (VLE).  Often,
especially in the case of B-frames, there are many zero
values that must be detected and “skipped over.”  To aid
in the processing of these values, the pmovmskb

instruction can be used to evaluate eight values.  Table 3
illustrates how pmovmskb can be used for this.

pxor      mm7,mm7 // zero mm7
movq      mm0,[esi] // get eight Q values
pcmpeqb   mm0,mm7 // find zeros
pmovmskb  eax,mm0 // 8 flags into eax

Table 3: Variable length encode

If eax holds 0xff, then all eight values are zero.

COLOR CONVERSION
Color conversion is used by both encoders and decoders.
Often encoders receive data in a format other than what
they can directly encode (wrong chromenance space,
interleaved vs. planar data, etc.).  Decoders sometimes
have to write the decoded picture to a graphics card’s
memory in a color space other than the color space that
naturally is produced from the decode; this also requires a
color conversion.

For encoders, color conversion is typically a memory-
bound operation.  It loads picture data from main memory
(i.e., DMA’ed in from a video capture card), performs some
(typically simple) calculation, and writes the data back out
to memory.  prefetchnta can speed up color
conversion by bypassing the L2 cache on the load.  The
non-temporal prefetch is often the best prefetch for color
conversion since the input will not be needed again by the
codec.  The store can then be performed using a normal
store (e.g., movq) so the picture resides in L2 cache after
the color conversion.

CONCLUSION
The order in which data is stored in memory, and how it is
moved to and from the processor and its caches, can have
a significant impact on the performance of an application.
While the hybrid data order is technically the best overall
match for SIMD, if an application must use the
conventional array of structures order, it is generally best
to transpose the data into the structure of arrays order in
the SIMD registers for processing.  The prefetch
instructions can often reduce memory latency or optimize
memory bandwidth.  When processing large blocks of
data, splitting the data into subsets that fit the Pentium®
III processor caches can avoid unnecessary memory
overhead.

Managed use of memory and the 4-wide SIMD registers
provide big benefits in the 3D transform.  The results of
the transform code tested showed an improvement of 3.0x
to 3.7x for Pentium III processor-optimized assembly code
over standard  ‘C’ code.  3D Lighting also showed



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 12

significant gains (~4x) through the use of  approximation
and branch-elimination instructions.

The integer extensions ease implementation of typical
imaging algorithms in SIMD while also extending their
performance beyond those achieved through MMXTM

technology.  Likewise, the floating point SIMD, when
used appropriately, enhances the accuracy and
performance of algorithms with floating-point
implementations.  Moreover, it eases code development
and validation by reducing the need to deal with fixed
point arithmetic.  Several of these techniques have been
successfully applied in the high-performance Image
Processing Library which is part of  the Intel®
Performance Library Suite [4].

Streaming SIMD Extensions can be used to greatly speed
up functions commonly found in video codecs.  These
functions include motion estimation, motion
compensation, variable length encode, and color
conversion.  The new psadbw, pavgb, and pavgw
instructions, as well as prefetch and streaming stores, are
paticularly useful for video codecs.  Speedups of 2x have
been observed for motion estimation, and speedups of
1.3x have been observed for entire encoder applications.

ACKNOWLEDGMENTS
The tuning concepts contained in this paper include
refinements based on the optimization work of Intel
engineers and organizations from groups such as the
Microprocessor Labs, the Folsom Design Center, and
Developer Relations and Engineering.

REFERENCES
[1] J. Wolf “Programming Methods for the Pentium® III
Processor’s Streaming SIMD Extensions using the
VTune™ Performance Enhancement Environment,” Intel
Technology Journal, Q2, 1999.

[2] A. Watt, 3D Computer Graphics 2nd Edition, Addison-
Wesley Publishers Ltd., Essex, England.

[3] IEEE Circuits and Systems Society, IEEE Standard
Specifications for the Implementations of  8x8 Inverse
Discrete Cosine Transform, IEEE Std. 1180-1990.

[4] http://developer.intel.com/vtune/

AUTHORS’ BIOGRAPHIES
James Abel focuses on software applications for future
Intel® processors.  In his ten years at Intel, he has held
several software and hardware positions, including the

development of Intel's software Dolby∗ Digital decoder,
embedded microcontroller design, and Design
Automation.  James obtained a B.S. degree in engineering
from Bradley University in Peoria, Illinois , in 1983 and an
M.S. degree in computer science from Arizona State
University in 1991.  His e-mail is  james.c.abel@intel.com. .

Kumar Balasubramanian works with software developers
to help their applications take advantage of Intel's new
processor capabilities.  He managed the integration of the
Streaming SIMD Extensions into several business
applications.  Kumar has been with Intel for seven years
and has held leadership roles in Intel's CAD engineering
organization and with Intel Architecture Labs to develop
some of the first applications using MMXTM technology.
He has an M.S. degree in computer engineering from
Dartmouth College. His e-mail is
kumar.balasubramanian@intel.com.

Mike Bargeron obtained a B.S. degree in electrical
engineering from Brigham Young University.  He started
with Intel's Software Performance Lab in 1997.  Since
coming to Intel, Mike has been involved in performance
tuning 2D and 3D graphics applications for the PC.
Specifically, he has worked with MPEG motion video as
well as several 3D game titles. His e-mail is
michael.l.bargeron@intel.com.

Tom Craver works with 3D graphics IHVs to help them
optimize their driver software on Intel's latest processors.
Previously he developed and validated driver and user
interface software for cable modems and for Intel's DVI
multimedia technology.  Prior to joining Intel, Tom was a
member of the technical staff at the David Sarnoff
Research Center in Princeton, NJ, and before that, he was
with AT&T's Bell Laboratories.  Tom holds B.S. degrees in
physics and computer science from the University of
Illinois.  He also has a M.S. degree from Purdue
University.  His e-mail is  tom.r.craver@intel.com.

Mike Phlipot works with desktop software developers to
integrate Intel's newest processor capabilities into their
applications.  Most recently he has been helping 3D game
developers take advantage of the Streaming SIMD
Extensions.  In his ten years with Intel, he has held various
engineering and management positions in technologies
that include digital video compression and cable modems.
Mike has a B.S. degree in mechanical engineering from
General Motors Institute and a M.S. degree in computer
engineering from the University of Michigan.  His e-mail is
mike.p.phlipot@intel.com.

                                                                
∗All other brand names are the property of their respective
owners.



Intel Technology Journal Q2, 1999

Applications Tuning for Streaming SIMD Extensions 13



Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

1

Programming Methods for the Pentium® III Processor’s
Streaming SIMD Extensions Using the VTune™

Performance Enhancement Environment

Joe H. Wolf III, Microprocessor Products Group, Intel Corporation

Index words: VTuneTM, Intel® C/C++ Compiler, intrinsics, vector class library, vectorization, event-
based sampling, Intel® Performance Library Suite.

ABSTRACT
This paper describes the programming methods available
to software developers wishing to utilize the performance
capabilities of the Streaming SIMD Extensions of the
Pentium III processor.  The tools in the VTune™
Performance Enhancement Environment, Version 4.0,
have unique capabilities that help software developers
understand the Streaming SIMD Extensions, develop
applications for them, and performance tune those
applications.

The tools are the Intel® C/C++ Compiler, the VTune
Performance Analyzer, the Intel® Architecture
Performance Training Center, the Intel® Performance
Library Suite, and the Register Viewing Tool.  The
programming methods offered by these tools are as
follows:

(1) Intrinsics. These are function-like calls the user
inserts in an application for which the Intel C/C++
compiler generates inlined code.

(2) Vector Class Library. This is a C++ abstraction of the
intrinsics.

(3) Vectorization. This is a special case of compiler
optimization that finds loops operating upon arrays of
char, short, int, or float, and creates a more efficient
loop using the SIMD instructions.

(4) The Intel Performance Library Suite. These libraries
have highly tuned routines to take advantage of the
Streaming SIMD Extensions for a number of
commonly used algorithms.  The libraries include the
Intel® Signal Processing Library, the Intel® Image
Processing Library, the Intel® Recognition

Primitives Library, the Math Kernel Library, and the
Intel® JPEG Library.

In addition, the VTune Performance Analyzer offers a
number of ways of looking at the performance of an
application, and gives feedback on ways to tune for the
Pentium III processor.  Examples of several of these
features are given.

INTRODUCTION
Intel® MMX™ technology was introduced into the
Intel® Architecture in 1996.  It provided, and still
provides, unique performance opportunities through a
Single-Instruction, Multiple-Data (SIMD) instruction set
architecture (ISA) for integer-based code.  However,
when it was introduced, and for almost two years
afterwards, the only way for developers to access and
utilize the SIMD technology was through assembly, either
assembly files or inlined assembly in C or C++ code.
While assembly programming arguably may offer the best
performance compared to compiled high-level languages,
it is difficult and inefficient to write, performance tune,
maintain, and port to new ISA’s.  Clearly, developers
wanted then, and demand now, high-level language
support for the SIMD ISA’s like that of MMX technology
and the Streaming SIMD Extensions of the Pentium III
processor.

This demand for high-level language support was the
motivation behind developing the VTuneTM Performance
Enhancement Environment, Version 4.0.  Its unique
development methods allow programmers to obtain all of
the performance available in the SIMD ISA through high-
level language support in the Intel® C/C++ Compiler,
VTune Analyzer, and Performance Library Suite.



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

2

An example of a simple loop is given in the first section
of this paper on the Intel C/C++ Compiler.  This example
is expanded by showing different methods of support for
the Streaming SIMD Extensions, as well as by giving
guidelines for optimal use of the methods.  The same
example is also used in the VTune Analyzer section to
illustrate how to find performance-critical sections of an
application suitable for recoding using the Streaming
SIMD Extensions.  Also shown are methods of using the
VTune Analyzer to obtain advice for recoding or tuning
the application, and methods of getting information on
cache utilization vital to analysis for insertion of prefetch
or streaming stores.

There is little or no performance difference between the
methods, but each offers significant performance
improvements over the scalar floating-point
implementation.  This performance improvement comes
at a fraction of the development costs associated with
writing assembly code.  The conclusion is that the user
has several different programming options using the
SIMD ISA, the only differences being coding style and
efficiency of implementation.

THE INTEL® C/C++ COMPILER
The Intel® C/C++ Compiler is a highly-optimizing
compiler that plugs into the Microsoft∗ Developer’s
Studio environment.  It is a C++ standard conforming
compiler that is also language, debug, and object format
compatible with Microsoft’s Visual C++, Versions 4.2
and higher.

The compiler offers several options for programmers to
utilize the Streaming SIMD Extensions: inlined assembly,
intrinsics, vector class libraries, and vectorization.  Since
the Streaming SIMD Extensions require 16-byte
alignment of data for maximal performance, the compiler
offers several different methods to ensure that data are
properly aligned.  All of these methods are discussed in
detail in this section.

Data and Stack Alignment
Data must be 16-byte aligned to obtain the best
performance with the Streaming SIMD Extensions of the
Pentium® III processor.  In addition, exceptions can occur
if the aligned data movement instructions are used, but
data are not properly aligned.  To eliminate these
problems, the compiler provides the following
mechanisms:

                                                                
∗All other brand names are the property of their respective
owners.

• A new data type, __m128, that can be thought of as a
struct of four single-precision floats or an XMM
register.  Data that are declared with this type are
automatically aligned to a 16-byte boundary, whether
they be global or local data.

• Another new data object for use in C++ code is the
F32vec4 class.  This is a class object whose data
member is a __m128 data item.  The compiler treats
these objects similarly to the __m128 type.

• __declspec(align(16)) is a new specifier for data
declarations that tells the compiler to align the given
data items.  This is particularly useful for global data
items that may be passed into routines where the
Streaming SIMD Extensions are used.  For example:

__declspec(align(16)) float buffer[400];

The variable, buffer, could then be used as if it
contained 100 objects of type __m128  or F32vec4.  In
the following example, the construction of the
F32vec4 object, x, will then occur with aligned data.
Without the __declspec(align(16)) , however, a fault
may occur.  An example of such usage is

void foo() {

F32vec4 x = *(__m128 *) buffer;

...

}

• In some cases, for better performance, the compiler
will align routines with __m64 (the MMX™
technology, or integer SIMD data type) or double
data to 16-bytes by default.  The compiler also has a
command-line switch, -Qsfalign16, which can be
used to limit the compiler to only do the alignment in
routines that contain Streaming SIMD Extensions’
data.  The default behavior is to use -Qsfalign8,
which says to align routines with 8- or 16-byte data
types to 16-bytes.

The compiler automatically aligns the stack frame for
both debug and non-debug code for functions in which
these extensions are used.  The actual layout of the stack
frames are shown in detail in [1].  References [2] and [5]
give more details and examples of how to efficiently use
these extensions.

INTRINSICS
Intrinsics are C-like function calls for which the compiler
generates optimal inlined code.  Each intrinsic maps to a
specific Streaming SIMD Extensions instruction, or an
MMX™ technology instruction.  Most take __m128 or
__m64 (integer) data types as their arguments.  Even
though there is a one-to-one mapping between an intrinsic



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

3

and its corresponding assembly instruction, the intrinsics
are much more efficient to write than assembly code
because the compiler takes care of register allocation and
instruction scheduling for the programmer.  There are also
a number of data initialization intrinsics to easily allow
the loading of a __m128 data type (or an XMM register).

The example shown in Figure 1 shows a simple loop
written in C++.  This loop is used as an example
throughout this article.

float xa[ARRAY_SIZE], xb[ARRAY_SIZE],

xc[ARRAY_SIZE];

float q;

void do_c_triad() {

for ( int j = 0; j < ARRAY_SIZE; j++) {
xa[j] = xb[j] + q * xc[j];

 }
}

Figure 1: Original C++ triad loop

This figure shows a single-precision floating-point triad
operation.  It performs a scaling of a vector (q *xc[j]),
adding it to another vector, and storing the result.  Note
that there is no re-use of the data in the loop.

Figure 2 gives some examples of the syntax of some
intrinsics that may be used for coding the example in
Figure 1.

__m128 _mm_set_ps1(float f)

 

__m128 _mm_load_ps(float *mem)

__m128 _mm_mul_ps(__m128 x, __m128 y) 

__m128 _mm_add_ps (__m128 x, __m128 y)

void _mm_store_ps(float *mem, __m128 x)

Figure 2: Intrinsic syntax

_mm_set_ps1() is used to replicate or broadcast a scalar
float variable or constant across a __m128  variable.

_mm_load_ps() is used to load a __m128 variable from a
memory location, such as a float array.

_mm_mul_ps() and _mm_add_ps()  each take two __m128
operands and perform a multiply or addition, respectively,
returning the result in a __m128 data type.

_mm_store_ps() takes a __m128 variable and stores it to
the given memory location.

A complete listing of the intrinsics can be found in
references [2] and [6] along with a complete listing of the
Pentium® III processor instructions.

#define VECTOR_SIZE 4

__declspec(align(16)) float xa[ARRAY_SIZE],

xb[ARRAY_SIZE], xc[ARRAY_SIZE];

float q;

void do_intrin_triad() {
  __ m128 tmp0, tmp1;

tmp1 = _mm_set_ps1(q);
for ( int j = 0; j < ARRAY_SIZE; j+=VECTOR_SIZE){

tmp0 = _ mm_mul_ps(*((__m128 *) & xc[j]), tmp1);
    *(__ m128 *) & xa[j] =

_mm_add_ps(tmp0, *((__m128 *) & xb[j]));
  }
}

Figure 3: Intrinsics encoding of the triad loop

Recoding the example in Figure 1 using the intrinsics
entails several considerations:

1. Since the example loop is operating on global data,
be sure the data is 16-byte aligned.  This requires the
use of __declspec(align(16))  for the float array
declaration in the global program scope.

2. In any SIMD encoding of a loop, strip-mining or
adjusting the loop iteration count by the vector size
(the number of elements able to be operated upon per
SIMD operation) is necessary.  Therefore, the
iteration count in this example is reduced by four, the
size of a Streaming SIMD Extension’s XMM register
or data type.  This is done via the j+=VECTOR_SIZE
loop index variable increment.

3. We used the _mm_set_ps1() intrinsic to broadcast the
scalar q across the tmp1 _mm128 variable.  Also note
that this is used outside of the loop since it is
invariant to the loop.

4. Rather than explicitly loading from the arrays xb and
xc into __m128 types using the _mm_load_ps()
intrinsics, we coerced them into  __m128 types for
use as operands to the _mm_mul_ps()  and



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

4

_mm_add_ps()  intrinsics.  This gives the compiler
complete control over the register allocation, and it
allows it to determine when it is really necessary to
do the loads.  Similarly, the result of the add intrinsic
was cast directly to the result array, xa, rather than
using the _mm_store_ps() intrinsic.  The compiler
generates the appropriate store instruction for the
programmer.

One can see that the compiler does a lot of the work for
the programmer when the intrinsics are used, enabling the
programmer to be much more efficient at encoding an
SIMD algorithm.

SIMD INTRINSICS USAGE GUIDELINES
The following are guidelines for getting optimal
performance from the intrinsics.  All of these are
excerpted from the Intel® C/C++ Compiler, Version 4.0,
release notes.

1. Do not use static or extern variables when a local
variable could be used.  Static and extern variables
are not usually kept in registers.  In addition, C
language alias rules usually cause assignments
through pointers to alias static and extern variables,
thus restricting instruction scheduling.

Not So Good:

void foo (m128 *dst,m128 *src, m128 junk) {
  static m128 t;
  int i;

  for (i = 0; i < 1000; i++, dst++, src++)

  {
    t = _mm_mul_ps(*src, junk);
    *dst = _mm_add_ps(*dst, t);
  }
}

Better:

void foo (__m128 *dst, __m128 *src, m128
junk) {
  m128 t;
  int i;

  for (i = 0; i < 1000; i++, dst++, src++)

  {
     t = _mm_mul_ps(*src, junk);
     *dst = _mm_add_ps(*dst, t);
  }

}

2. Do not reference the address of variables or
parameters.  Using the address of a variable or
parameter, via the address operator, &, makes the
variable no longer a candidate for being kept in a

register.  It therefore must be kept in memory,
possibly causing poor performance.  Also, like static
and extern variables, any assignments through
pointers will now alias the variable, constraining
instruction scheduling.  This is particularly bad for
parameters, because referencing the address of any
parameter aliases all other parameters in the Intel
C/C++ Compiler, Version 4.0, implementation.

Not so good:

void f(float *dst, float dscale, int n) {
  m128 t1; int i;
  t1 = _mm_load_ps1(&dscale);

  for (i = 0; i < n; i++) {
    *(__m128 *)dst = 

_mm_mul_ps(*(__m128 *)dst, t1);
    dst += 4;
  }
}

Better:

void f(float *dst, float dscale, int n) {
  m128 t1; int i;
  t1 = _mm_set_ps1(dscale);

  for (i = 0; i < n; i++) {
    *(__m128 *)dst = 

_mm_mul_ps(*(__m128 *)dst, t1);
    dst += 4;
  }
}
 

3. Where possible, make loop bounds compile-time
constants.  When this is not possible, make the
expressions for the loop bounds refer only to local
variables whose addresses are never taken.  This
helps ensure that the loop termination condition
doesn't cause unnecessary work inside the loop.

Not So Good:

 int i, n;
 get_bounds(&n);
 /* In this example, we'll have to reload n

    and do the divide every loop iteration,

    causing poor performance. */
  for (i = 0; i < n / 4; i++) { ... }

Better:



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

5

 int i,n, l_end;
 get_bounds(&n);
 l_end = n / 4;
 for (i = 0; i < l_end; i++) { ... }

4. Code the loops using intrinsics so the last thing the
loop does is write values back into memory.  Use
local variables for intermediate calculations.  This
allows the scheduler maximum freedom to rearrange
the code, and it keeps the number of memory
references to a minimum.  It is a general problem in
the C/C++ language that references through pointers
alias other references through pointers.

Not so good:

  m128 *dst, *src, c; int i, n;
  for (i = 0; i < n; i += 2) {
     dst[i]   = _mm_add_ps(src[i], c);
     dst[i+1] = _mm_add_ps(src[i+1], c);
  }

Better:

  m128 *dst, *src, c, t1, t2; int i, n;
  for (i = 0; i < n; i+= 2) {
     t1 = _mm_add_ps(src[i], c);
     t2 = _mm_add_ps(src[i+1], c);
     dst[i] = t1;
     dst[i+1] = t2;
  }

5. Do not use the following intrinsics in loops:

  _mm_set_ps()
  _mm_setr_ps()
  _mm_set_ps1()
  _mm_set_ss()

These intrinsics are used for data initialization of
__m128 data types and do not correspond directly to
machine instructions.  There are typically several
machine instructions needed to implement each of
these and therefore they may have a high run-time
cost.  The best way to use these intrinsics is to set a
local __m128 variable to be the result produced by
the intrinsic prior to entering a loop, and then use the
local variable within the loop.  The example in Figure
3 illustrates this.

6. For short loops, where loop unrolling is desired for
improved performance, unroll the loop in the source
code.  Loop unrolling is a technique for replicating
the operations in a loop and reducing the number of
iterations correspondingly.  For further information
and examples on loop unrolling, refer to reference
[8].

Not So Good:

  m128 *a, *b, *c; int i;
  for (i=0; i < 16; i++) {
      a[i] = _mm_add_ps(b[i], c[i]);
  }

Better:

  m128 *a, *b, *c, t1, t2; int i;
  for (i=0; i < 16; i+=2) {
  /* This loop has been unrolled twice */
     t1 = _mm_add_ps(b[i], c[i]);
     t2 = _mm_add_ps(b[i+1], c[i+1]);
     a[i] = t1;
     a[i+1] = t2;
  }

Vector Classes
The vector classes provide an easy, efficient way of using
the intrinsics in C++ code.  The class, F32vec4, is defined
for the floating-point Streaming SIMD Extensions.  The
I32vec2, I16vec4 and I8vec8 classes are defined for the
three different types of data used in MMXTM technology
(char, short, and int).  Each of these are abstractions of
the __m64  and __m128  data types and the intrinsics
supported for them.  The implementation for these classes
is provided with the Intel C/C++ Compiler in the ivec.h
(integer SIMD) and fvec.h (float SIMD) header files.  The
member functions are overloads of the basic operators,
like *, +, -, /, square root, and comparisons.  Users may
redefine and extend the classes to their own liking.

The example in Figure 4 shows the encoding of the triad
function using the F32vec4 class.

#define VECTOR_SIZE 4

__declspec(align(16)) float xa[ARRAY_SIZE],

xb[ARRAY_SIZE], xc[ARRAY_SIZE];

float q;

void do_fvec_triad() {

  F32vec4 q_xmm = (q, q, q, q);

  F32vec4 * xa_xmm = (F32vec4 *) & xa;

  F32vec4 * xb_xmm = (F32vec4 *) & xb;
  F32vec4 * xc_xmm = (F32vec4 *) & xc;

for (int j = 0;

j < (ARRAY_SIZE/VECTOR_SIZE); j++) {
xa_xmm[j] = xb_xmm[j] +

q_xmm * xc_xmm[j];

  }

}

Figure 4: Vector class encoding of the triad loop



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

6

Note the following when using the vector classes:

1. There are several constructors defined to allow
constants, variables, or pointered data (for example,
arrays) to be converted to an SIMD class object.  In
the example in this figure, we used the broadcast or
replication constructor to load the scalar q_xmm .  To
keep constructor usage and memory references to a
minimum, we coerced the input global arrays to
pointers to F32vec4 objects for use in the loop.

2. Since we cast the arrays of floats to be pointers to
F32vec4 objects (xa_xmm, xb_xmm, xc_xmm), the
memory references in the loop are to arrays of
F32vec4 objects, where each object is a __m128 type.
Therefore, we iterate over individual F32vec4 objects
so we have to keep the loop index increment set to 1.
We then changed the loop exit condition to be the
original array size divided by the vector size to reflect
the compressed operations.

The vector classes provide a very clean implementation of
the SIMD code.  Since the classes contain overloaded
operators for the most common operations, a programmer
can redefine float data types to be the F32vec4 classes and
get the benefit of the Streaming SIMD Extensions
everywhere the class is used, with minimal program
changes.

Vectorization
The final method of support for SIMD coding in the Intel
C/C++ Compiler is through vectorization.  This is where
the compiler attempts to generate the appropriate SIMD
code for a given array operation within a loop with some
hints from the programmer.  The hints are in the form of
#pragma’s in C or C++, and/or command-line switches
that guide the compiler.  There are a number of each, so
the reader is advised to consult the Intel C/C++ Compiler
User’s Guide, [2], for more details.  The most commonly
used hints are given in Figures 5, 6, and 7.

#define VECTOR_SIZE 4

__declspec(align(16)) floatxa[ARRAY_SIZE],

xb[ARRAY_SIZE], xc[ARRAY_SIZE];

float q;

void do_vector_triad() {

#pragma vector aligned
for (int j = 0; j < ARRAY_SIZE; j++) {

xa[j] = xb[j] + q *xc[j];

  }

}

Figure 5: Compiler vectorization of the triad loop

The example in  Figure 5 is easily vectorized by the
compiler.  The only hint needed is the #pragma vector
aligned.  This tells the compiler that the data are properly
aligned so that the aligned data move instructions can be
used.  Without this, or its corresponding command-line
option, the compiler would have to generate the unaligned
move instructions, causing a significant loss of
performance compared to the aligned instructions.

In Figure 6, we show an example of a slightly different
version of the triad loop where the data are passed into the
routine as parameters.

#define
VECTOR_SIZE 4__declspec(align(16))
float

xa[ARRAY_SIZE
],xb[ARRAY_SIZE]

,
xc[ARRAY_SIZE
];float

q;
void do_vector_triad(float

*a, float
*b, float *c)

{#pragma vector
alignedfor (int j = 0; j < ARRAY_SIZE;

j++) {a[j] = b[j] + q *
c[j];  }

}

Figure 6:  Pointer version of the triad loop

Passing the arrays into the loop as shown in Figure 6
greatly impacts the vectorizability of the routine.  This is
because the compiler is now looking at pointered data
instead of simple array references.  As a result, the
compiler must now assume that there are conflicts in the
memory references in the loop where data written on one
iteration may be used on the next, preventing a
straightforward SIMD encoding of the loop.  This is due
to pointer aliasing.  For example, to ensure program
correctness, the compiler may assume that xa may be
pointing to xb[1], causing the value stored into xa[j]  on
every iteration to be reused as xb[j]  on each subsequent
iteration.

In order for the compiler to not have to make such
assumptions, a new keyword, restrict, has been
implemented.  It tells the compiler that the data to which a
pointer points is only accessible via that pointer variable
in the current scope.  Figure 7 shows its use.



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

7

#define VECTOR_SIZE 4

__declspec(align(16)) floatxa[ARRAY_SIZE],

xb[ARRAY_SIZE],xc[ARRAY_SIZE];

float q;

void do_vector_triad(float *restrict a,

float *restrict b,

float *restrict c) {

#pragma vector aligned

for (int j = 0; j < ARRAY_SIZE; j++) {

a[j] = b[j] + q * c[j];

  }

}

Figure 7: restrict keyword usage

Now the compiler is allowed to assume that each pointer
reference is to different arrays or memory locations.

Vectorization Restrictions
The following are restrictions on the use of vectorization:

1. Loops must be countable; in other words, the
iteration count must not change within the loop:

Good:  for (i=0; i<N; i++) …

 while (i<100) { … i = i + 2; … }

Bad:    while (p) { … p=p->next …}

2. The body of a loop must consist of a single basic-
block.  In other words, there can be no if-statements
and no internal branching.  The loop must also have a
single entry and exit.

3. The supported datatypes are float, char, short, and
int.  Do not mix these data types within the loop.

4. Alignment for Streaming SIMD Extensions data is up
to the user.  Use the #pragma vector aligned  on  a
loop-by-loop basis, or the –Qvec_alignment2
command-line option to state that all vectorizable
data are properly aligned.  If vectorized data are not
aligned (and cannot be aligned), the compiler will use
movups, the unaligned memory reference instruction.

5. The data accesses in the loop must be single-unit
strides, or accessed contiguously in increments of
one.

6. Assignments to scalar data are not allowed.  The
scalar memory references must be on the right-hand
side of the equal sign.

7. There can be no function calls in the loop.  This
includes the intrinsic/transcendental calls like sqrt()
or cos().

The compiler generates messages stating if a loop was
vectorized and gives a reason if it was not.  This is done
through the –Qvec_verbose{0,1,2,3} compiler switch,
where the number indicates the level of detail in the
messages.  Although the restrictions above limit the types
of loops that may be vectorized, a user can use the
vectorization messages to coerce the compiler into
vectorizing a loop.  It may take a few iterations of
compile, look at the messages, restructure the loop, add
pragmas, and re-compile.  However, this can be
significantly less time consuming than recoding the loop
in intrinsics.

Performance Considerations
The difference in performance between the methods is
negligible.  The vector class implementation can
sometimes be slightly degraded compared to the intrinsics
because of C++ overhead.  However, this should be rare.
The performance of each these methods is typically
within 10%-15% of the performance of optimized hand-
coded assembly.  This difference, however, is more than
offset by the ease of coding, maintainability, and
portability using C or C++.

VTUNE™  PERFORMANCE ANALYZER
The VTune™ Performance Analyzer (or VTune
Analyzer) is a tool that gives a user a graphical view of
the performance of an application via a number of
different methods, and it gives feedback on tuning the
applications.  The following is a brief description of each
of these methods.

Event-Based Sampling
Event-based sampling is the most commonly used method
for analyzing application performance with the VTune
Analyzer.  It allows the user to select any of a number of
different events implemented in the processor.  These
events allow the user to hone in on specific aspects of an
application’s use of the processor from clocktick events or
time, to specific types of operations that retired, to
penalties that occur.

The processor is sampled after a specified number of the
chosen events have occurred and the program counter
address is noted.  The analyzer then reports where in the
user’s program, or any other program running on the
system, the events occurred.

The analyzer displays this information in a Modules
report.  This is a bar graph showing the occurrences of the
events for all applications and modules making use of the



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

8

processor, and in which events were collected.  The
Hotspots report is similar; it shows the same information
for a single module.

For Streaming SIMD Extensions performance tuning, use
event-based sampling with the Clockticks and Floating-
point operations retired  events and the event ratios, an
indication of where the most time is spent performing
floating-point operations is given.  In this way likely

candidates for Streaming SIMD Extensions coding can be
found.

Double-clicking on a hotspot bar takes one to the source
code corresponding to the occurrence of the events in the
graph.  Figure 8 shows the Modules and Hotspots report
for a simple application using the clockticks event.
Figure 9 shows the source code view for an application
that shows both the Clockticks and Floating-point
operations retired event occurrences.

Figure 8:  Modules and Hotspots report



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

9

Figure 9:  Source code view

Code Coach
The Analyzer’s Code Coach analyzes the source code
using some information from the compiler and offers
advice on ways to tune the application.  The advice ranges
from tips on restructuring search algorithms, to
unnecessary casts or conversions of data types, to advice

on using the intrinsics or Performance Library Suite to
take advantage of the Streaming SIMD Extensions or
MMXTM technology.

The advice is obtained by double-clicking on a statement
in a source code view.  Figure 10 shows the Coach advice
for the do_c_triad() function used in Figure 1.

Figure 10: Streaming SIMD Extensions Code Coach advice



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

10

Dynamic Analysis
Dynamic analysis uses the same software simulator the
Pentium® II and Pentium® III processor architects used in
designing the processors.  It is useful for honing in on
specific micro-architectural information for hotspots
identified by event-based sampling such as penalties and

retirement time.  It is especially useful for analyzing
branch mispredictions and cache utilization.  The basic
method of using dynamic analysis is to select a region of
code to be simulated.  Figure 11 shows the dynamic
analysis results for the do_intrin_triad() function in
Figure 3.

Figure 11: Dynamic analysis results

The dynamic analysis results shown in Figure 11 indicates
that there are a lot of cache misses potentially impacting
performance.  This suggests the loop is a candidate for
using the prefetching or streaming store instructions of the
Streaming SIMD Extensions.

CONCLUSION
We have shown several unique methods of taking
advantage of the performance capabilities of the
Streaming SIMD Extensions of the Pentium® III
processor.  The performance of each method is very close
to that of optimized hand-coded assembly, but the
development costs associated with these methods are
significantly lower than those of assembly programming.
There are several other tools provided with the VTuneTM

Performance Enhancement Environment that are not
described in this article.  These are the Intel®
Performance Library Suite, the Intel® Architecture
Performance Training Center (please see reference [7]),
and the Register Viewing Tool.  Each of these tools

provides further performance improvement capabilities
and invaluable information on the use of the Streaming
SIMD Extensions.  Combined, these tools make the
VTune Performance Enhancement Environment, Version
4.0, the definitive toolkit for Streaming SIMD Extensions
programming.

REFERENCES
The following documents are referenced in this paper, and
they provide background or supporting information for
understanding the topics presented.

1. "AP-589:  Software Conventions for the Streaming
SIMD Extensions" at
http://developer.intel.com/vtune/cbts/strmsimd/589do
wn.htm. Order No. 243873-001, Intel Corporation,
1998.

2. Intel® C/C++ Compiler User's Guide, Order No.
664711-007, Intel Corporation, 1998.



Intel Technology Journal Q2, 1999

Using the VTuneTM Performance Enhancement Environment
for the Pentium® III Processor’s Streaming SIMD Extensions

11

3. C++ Class Libraries for SIMD Operations, Order
No. 693500-002, Intel Corporation, 1998.

4. "AP-814: Software Development Strategies for the
Streaming SIMD Extensions" at
http://developer.intel.com/vtune/cbts/strmsimd/814do
wn.htm. Order No. 243648-001, Intel Corporation,
1998.

5. “AP-833:  Data Alignment and Programming Issues
for the Streaming SIMD Extensions with the Intel®
C/C++ Compiler” at
http://developer.intel.com/vtune/cbts/strmsimd/833do
wn.htm. Order No. 243872-001, Intel Corporation,
1998.

6. “Intel® Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference” at
http://developer.intel.com/design/pentiumii/manuals/
243191.htm.  Order No. 243191, Intel Corporation,
1999.

7. Intel Architecture Training Center at
http://developer.intel.com/vtune/cbts/contents.htm,
Intel Corporation, 1999.

8. Intel Architecture Optimization Reference Manual,
Order No. 730795-001, Intel Corporation, 1999.

AUTHOR’S BIOGRAPHY
Joe Wolf is a staff software engineer with the Platform
Tools Operation in the Microprocessor Products Group.
He has been with Intel since 1996 and has worked in
compiler development, technical marketing, and customer
support.  Before joining Intel, he was a compiler
developer for nine years working in the supercomputing
industry, focusing on vector and multi-processing and
code generation.  He received an M.S. degree in computer
science from California Polytechnic State University, San
Luis Obispo in 1987, and a B.S. degree in Management
Information Systems from the University of Arizona in
1984.  His e-mail is joe.wolf@intel.com.


	preface
	simd_ext
	impliment
	serial_number
	3d_stack
	apps_simd
	vtune

