
Intel Technology Journal Q2, 1998

Preface

Lin Chao
Editor
Intel Technology Journal

This Q2'98 issue of the Intel Technology Journal focuses on failure analysis testing methodologies used at Intel and
software-based research in computer vision, floating-point operations, and H.323 set of standards for multimedia
communications.

Failure analysis is one of the key competencies in Intel and is essential to Intel's steep product ramp and high-volume
manufacturing. The first paper in this issue describes failure analysis techniques used to detect and localize flaws in
the silicon manufacturing process.

Intel actively pursues technologies that expand computing and telecommunication capabilities in PCs. The other
papers in this issue describe new software-based research that contributes to this expansion.

The second paper is on computer vision. Helping computers to "see" is just one aspect of broader research into a
"perceptual interface" for PCs where computers can "speak", "sense" touch, and in the case of this paper, "see." This
paper describes the development of a 4-degree of freedom color object tracker. Included with this paper are three
video clips showing the abilities of the head-tracking software.

Floating-point divide, remainder, and square root are three important operations performed by computers today. The
third paper describes research into software alternatives to the hardware implementation of floating-point operations.
This paper describes some of the general properties of floating-point computations, and proves the IEEE correctness of
iterative algorithms that calculate the square root of a floating-point number.

The fourth and fifth papers describe an important industry standard, H.323, for multimedia communication over
packet-based networks. The fourth paper, co-authored by the Chair of the H.323 Interoperability Group, presents an
overview of the H.323 core components and functionality. IP telephony is an important industry trend, and the role of
H.323 procedures in deploying IP telephony are explained.

The fifth paper presents a characterization of video and audio traffic transported over the Internet by video
conferencing applications following the H.323 standards. This paper looks at the multimedia traffic sources of a H.323
terminal. Issues such as packet format and multiplexing of audio and video frames at the host are studied.

Copyright © Intel Corporation 1998. This publication was downloaded from http://www.intel.com/.
Legal notices at http://www.intel.com/sites/corporate/tradmarx.htm

http://www.intel.com/technology/itj/chao_bio.htm

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 1

An Overview of Advanced Failure Analysis Techniques for
Pentium and Pentium Pro Microprocessors

Yeoh Eng Hong, Intel Penang Microprocessor Failure Analysis Department, Malaysia
Lim Seong Leong, Intel Penang Microprocessor Failure Analysis Department, Malaysia
Wong Yik Choong, Intel Penang Microprocessor Failure Analysis Department, Malaysia
Lock Choon Hou, Intel Penang Microprocessor Failure Analysis Department, Malaysia
Mahmud Adnan, Intel Penang Microprocessor Failure Analysis Department, Malaysia

Index words: failure analysis, DFT, DFFA, e-beam, DPM, RTL

Abstract
Failure analysis (FA) is one of the key competencies in
Intel. It enables very rapid achievement of world class
manufacturing standards, resulting in excellent
microprocessor time-to-market performance. This paper
discusses the evolution of FA techniques from one
generation of microprocessors to another.

According to Moore’s law, transistor count doubles as
transistor dimensions are reduced in half every 18 months,
allowing for more complex microprocessor architecture
designs. For example the Intel486DX™ microprocessor
had 1.2 million transistors while the Pentium®
microprocessor contains 3.1 million transistors. With
rapid technological advances such as more complex
microprocessor architecture, an increasing number of
interconnect layers, and flip-chip packaging technology
for products like the Pentium® and Pentium® II
microprocessors, conventional FA techniques, in use since
the Intel386DX™ processor generation, are no longer
effective. These conventional techniques require in-depth
knowledge of the processor’s architecture, and they
involve exhaustive e-beam probing work, which typically
results in very long FA throughput times. Other traditional
defect localization techniques, such as emission
microscopy from the frontside of the die, are also
becoming less successful due to the increased number of
metal interconnect layers that obscure local circuitry.

This paper provides insight into FA techniques that have
been adopted at Intel. It discusses the evolution of
software fault isolation techniques based on Design For
Testability (DFT) features, and other special FA
techniques. In this paper, we will discuss these techniques
and show how they are effectively used to produce fast FA
support turnaround for both silicon debug and

manufacturing. We will also review their technical merits
and return on investment, as well as the cost of each
technique to Intel. The main focus of this paper is
electrical fault isolation techniques, as opposed to physical
defect localization techniques such as liquid crystal
analysis and emission microscopy.

In the context of this paper, Fault Localization and Fault
Isolation (FI) are synonymous. These are defined as the
task of electrically isolating the location of a defect in
logical space. Another approach, termed Defect
Localization, refers to the task of isolating the location of
a defect in physical space.

Introduction
Failure analysis plays a very important role in the
semiconductor industry in enabling timely product time-
to-market and world-class manufacturing standards
(greater than 95% manufacturing yields, lower than 100
defects per million, or DPM). At Intel, the situation is
even more compelling: quick failure analysis turnaround is
necessary to support Intel’s steep product ramp and high-
volume manufacturing, where annual microprocessor
production volume is in the range of tens of millions of
units.

However, the increasing complexity of microprocessors in
the form of more complex architecture designs, shrinking
transistor feature sizes, and new packaging technologies
have significantly increased the failure analysis challenges
on Intel’s Pentium and Pentium Pro family of
microprocessors. A roadmap recently published by the
Semiconductor Industry Association (SIA) predicts that
by the year 2000, microprocessor transistor counts will
exceed 21 million transistors. The same industry roadmap
also predicts that by that time, microprocessors will utilize

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 2

full flip-chip technology, instead of current wirebond
assembly and packaging technology. Traditional fault
isolation techniques using intensive e-beam probing and
assembly code minimization as well as die frontside defect
localization with liquid crystals or emission microscopy
are no longer sufficient even for today’s complex
microprocessors like the Pentium and Pentium Pro
microprocessors.

Newer FA techniques based on design-for-testability
(DFT) and design-for-failure-analysis (DFFA) features
have proven to be highly successful for the Pentium and
Pentium Pro microprocessors, as evidenced by high
analysis success rates (>90%) and short analysis
throughput time. Without these new FA techniques that
pinpoint the exact failing location, detection of sub-
micron defects such as silicon dislocation, as shown in
Figure 1 below, is very difficult if not impossible.

Figure 1: A TEM micrograph of silicon dislocation

This paper provides insight into the various FA techniques
based on the DFT and DFFA features that have been
successfully developed for the Pentium and Pentium Pro
microprocessors. Two other advanced FA techniques and
tools will also be discussed. These two techniques are the
low-cost personal computer (PC) system-level tester
solution and the processor cartridge-level (SECC) FA
technique.

Failure Analysis Overview
Figure 2 illustrates a typical FA flow used at Intel. The
first step is to verify the failure on a functional tester in the
failure analysis lab to ensure that the failure’s electrical
signature observed on the production tester can be
duplicated on the lab’s functional tester. Fault localization
or defect localization is the next step. Its function is to
narrow down the fault to a small block of circuitry. In this
case, a small block of circuitry could just be a via, a
transistor, a gate, or even a functional unit block (FUB).
Reverse engineering, or physical FA as it is better known,
is the next step. Individual interconnect layers are
selectively removed either mechanically or chemically and
examined for defects. Occasionally, defect
characterization is introduced to gain more insight into the
defect’s behavior over time and under stress. This is
crucial in order to develop the best possible defect screen

to maintain a high quality product. A case is considered
closed when a root cause is determined and corrective
action is put in place. A corrective action could be a minor
change such as the addition of new test screens, or it could
also involve major re-engineering via process and design
fixes.

Failure Verification

Fault Isolation & Defect
Localization

Physical FA/Defect
Characterization

Root Cause Determination

Corrective action

Figure 2: A typical failure analysis flow

From the flow in Figure 2, it is clear that the key to
determining the overall FA success rate actually lies in the
fault localization and defect localization steps. These steps
provide the spatial information on where the defect is, and
they control the rest of the steps.

Fault Localization
As the name implies, fault localization is the technique of
localizing a fault in a failing circuit functionally and
logically. Traditionally, this is a two-step process that
involves coarse-level isolation using assembly code
minimization followed by fine-level isolation using e-
beam probing. With increasing device architecture
complexity, coarse-level isolation using assembly code
minimization becomes very time consuming and
ineffective. Figure 3 below depicts the evolution of the
two-step fault localization flows for different generations
of Intel’s microprocessors.

DFT and DFFA features built into newer microprocessors
to accelerate the silicon debug and production testing
processes can also be employed as coarse-level fault-
localization tools. The use of DFT and DFFA features as
FA tools in conjunction with e-beam probing is proven to
be very successful on the Intel486DX and Pentium
processors where the internal signals of interest are still
accessible for e-beam probing. However, the increasing
number of interconnect layers (Intel’s Pentium® 90/100
MHz processor has four metal layers, and the Pentium® II

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 3

333 MHz processor has five metal layers) and changed
packaging technologies from frontside wirebond
technology to full flip-chip technology makes the e-beam
probing process even more challenging. The use of
Register Transfer Level (RTL) simulation as a fine-level
isolation tool addresses this challenge.

Figure 3: An overview of various fault-isolation
approaches for the Intel386DX™ processor (top left), the
Intel486DX™ and Pentium® processors (top right), and
the Pentium® Pro and Pentium II® processors (bottom)

DFT-Based Fault Isolation Techniques
The following sections elaborate on the new fault
localization techniques adopted from DFT features
currently available on the Pentium and Pentium Pro
microprocessors.

Micropatching
Microcodes are integrated instructions that dictate the
processor’s internal operation. In traditional architecture
design, access to built-in microcodes is restricted.
However, an ability to create new microcodes and control
their flow would be very useful for fault isolation. With
such a tool, the failure analyst would be able to create
customized microcode subroutines and control microcode
flow. This capability is now realized on the Pentium Pro
microprocessor family through the introduction of the
Micropatching DFT feature. This capability has caused
significant breakthroughs in debugging processors with
microcode failures. For example, with micropatching, it is
now possible to systematically perform fault isolation on

failures in the processor’s reset subroutine, which is
implemented in microcode.

The Micropatching DFT feature consists of two key
elements: the microcode patch RAM and several pairs of
Match and Destination registers. The microcode patch
RAM stores externally programmed microcodes. (From
here on, programmed microcodes that reside in the
microcode RAM will be called external microcodes and
built-in microcodes that reside in the microcode ROM will
be called internal microcodes.)

The Match and Destination registers are used for
controlling the microcode flow. Whenever a microcode
address in Microcode Instruction Pointer (UIP) matches
the content of a Match register, the UIP will be reloaded
with a new address from the Destination register.

In order to control the microcode flow, the Match
registers are loaded with the UIP that the user intends to
jump from. Similarly, the Destination register must be set
to the UIP that the user wishes to jump to.

Besides its usefulness in electrical fault isolation, the
Micropatching FA tool can also be used in conjunction
with liquid crystal analysis and emission microscopy.
Without Micropatching, the processor may need to
execute many other instructions in the test pattern
completely unrelated to the failure before reaching the
instruction that causes the failure. By then, the CPU would
have generated a lot of heat and made the liquid crystal
analysis less sensitive to the heat generated by the failing
instruction (i.e., the heat generated by the defective
circuitry). With Micropatching, the UIP for the reset
subroutine can be set in the Match register to point to the
failing UIP, thereby bypassing the reset subroutine
altogether. This minimizes the generation of surrounding
heat that could result in genuine hot spots, caused by the
defect, to be hidden.

Array Dump
Memory arrays are important elements in a processor.
Memory arrays are usually used for storing data, control
signals, processor status, etc. Visibility into these arrays
helps a failure analyst understand the internal operation of
the device thereby speeding up the fault isolation process
and reducing e-beam probing time. It is almost impossible
to analyze a dynamic execution machine such as the
Pentium Pro processor without knowing the contents of
the arrays. With the Array Dump tool, the contents of
many important arrays can be dumped out to produce
snapshots of the arrays at any core clock. In order to save
data analysis time and avoid human error, a post-
processing program was developed to compare the
acquired data with that from RTL simulation. Mismatches
are automatically highlighted.

Coarse-level FI:
assembly code
minimization

Fine-level FI:
e-beam probing

Coarse-level FI:
DFT based fault

localization

Fine-level FI:
e-beam probing

Coarse-level FI:
DFT based fault

localization

Fine Level FI:
RTL simulation

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 4

The Array Dump FA tool is developed by applying two
new DFT features in the Pentium Pro processor family.
The first DFT feature, called Micro Breakpoint, is one of
the built-in debug trigger-response mechanisms that
allows the processor to execute certain tasks in response
to preprogrammed trigger events. An external debug
breakpoint pin is set up to trigger a processor “micro-
breakpoint” event when the pin is asserted. In response to
this trigger event, the processor executes a
preprogrammed debug command called “All Array
Freeze” which is the second key DFT feature that makes
Array Dump possible. The “All Array Freeze” feature
causes all major memory arrays in the device to freeze
their normal execution. The Array Dump feature is
capable of acquiring array data at any core cycle relative
to a processor’s external bus cycle.

Scanout
Accessibility to internal control and datapath signals also
greatly enhances FA capability. Scanout is the FA tool
developed at Intel for monitoring internal control signals.
Scanout has already been successfully and regularly used
in Pentium microprocessor failure analysis. One of the
Pentium processor’s external pins is used to trigger a Test
Access Port (TAP) instruction that causes the data from
selected control and datapath signals to be latched into
Scanout data buffers. The data captured and stored in
these buffers are then shifted out serially through the TAP
controller’s Test Data Output (TDO) pin.

The Scanout FA tool’s implementation on the Pentium Pro
microprocessor is triggered differently from the Pentium
processor’s method. This is necessitated by the
introduction of odd bus-to-core clock ratios. To overcome
this problem, an innovative approach that uses the Micro
Breakpoint DFT feature was developed similar to the one
in the Array Dump tool. This Micro Breakpoint trigger-
response mechanism makes it possible to capture Scanout
data on every core cycle of the processor’s execution.

A total of around 2000 internal nodes are available for
observation. This coverage is much wider than what was
available on the original Pentium processor (about 200
Scanout nodes) and newer versions of the Pentium
processor family (about 400 Scanout nodes). A program
was also written to compare the Scanout data with RTL
simulation to aid in interpreting the data. The tool
automatically highlights Scanout mismatches.

Memory DAT and LYA Mode
Direct Access Test (DAT) is a special test mode that is
specifically intended for manufacturing use. Newer
implementations of the Pentium Pro processors contain
DAT capability to enhance the testability of most of the
major core memory structures. Once DAT mode is

enabled, the processor will behave like a pipelined
SRAM. It accepts DAT commands every bus clock and
returns data for a DAT memory read command to the
external output bus a few clocks later.

Figure 4: Example of a cache raster bitmap display
showing a cache column failure

In DAT mode, the processor only understands DAT
instructions. These instructions incorporate the memory
array’s address information, input data, and array access
commands to specify a particular cache operation. The
information is directly fed to the array under test. This
direct access bypasses the decoding circuitry used in
normal operation. Thus, it reduces the amount of effort
required to determine whether a cache failure is caused by
a problem in the memory array itself or a problem in the
supporting circuitry such as the address decoders.

Because only a subset of the external pins are needed in
DAT mode, it is very easy to develop a small but effective
cache-testing pattern to raster the entire cache line within
one memory array. Also, the entire set of advanced cache-
testing algorithms used in production testing can be easily
written into a small test pattern. If a failure occurs in
production, the rastering program can easily provide the
failing set and the way and bit information in a bitmap
form for failure analysis purposes. Figure 4 above shows
an example of the cache rastering program’s bitmap
display. (In this figure, bits (columns) are arranged
horizontally, and cache lines (rows) are arranged
vertically.)

Column
failure

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 5

However, although DAT mode testing provides the failing
set and way and bit information, it provides little
information about the failure mechanism. In the latest
version of the Pentium Pro processor, a Low Yield
Analysis (LYA) mode was added as an enhancement to
DAT mode for the largest cache structure.

Figure 5: Schematic diagram of a 6-transistor SRAM cell
for LYA mode illustration

When LYA mode is enabled, the bitline (BL) and bitline#
(BL#) signals of a memory cell are connected to external
pins. By having this direct access through the external
pins, DC measurements on the memory cell can be carried
out easily. LYA mode testing produces cell transistor
current readings, as well as cell trip points and other DC
measurements. From these LYA “signatures” acquired
from a failing device, the failure can be quickly
categorized into a few different failure mechanisms, such
as open transistor, missing contact, or shorted transistor.
With this information, the defect location can be more
accurately located, and the physical FA can focus on that
location. This results in shorter analysis throughput time
and improved success rates in handling cache failures.

Figure 5 above shows a 6-transistor memory cell. When
LYA mode is enabled, the BL and BL# signals of this
memory cell are directly accessible from the external pins.
Enabling the word line select (WL) signal activates this
memory cell. In this case, both transistors M1 and M6 are
turned on to allow various DC measurements to be
performed on this memory cell.

PBIST
Programmable Built-In Self-Test (PBIST) is a memory
DFT feature that incorporates all the required test systems
into the chip itself. The test systems implemented on-chip
are as follows:

• algorithmic address generator

• algorithmic data generator

• program storage unit

• loop control mechanisms

PBIST was originally adopted by large memory chips that
have high pin counts and operate at high frequencies,
thereby exceeding the capability of production testers. The
purpose of PBIST is to avoid developing and buying more
sophisticated and very expensive testers.

The interface between PBIST, which is internal to the
processor, and the external tester environment is through
the standard TAP controller pins. Algorithms and controls
are fed into the chip through the TAP controller’s Test
Data Input (TDI) pin. The final result of the PBIST test is
read out through the TDO pin.

PBIST supports the entire algorithmic memory testing
requirements imposed by the production testing
methodology. In order to support all of the required test
algorithms, PBIST must have the capability to store the
required programs locally in the device. It must also be
able to perform different address generation schemes,
different test data pattern generation, looping schemes,
and data comparisons.

The program storage structure is used to store the test
algorithm. The algorithm includes the types of operations
to be performed (e.g., memory read, memory write), the
types of address generation modes, the data to be written
into and read out from the memory array, and the types of
looping schemes.

The address generator is responsible for generating the
memory address where the next data are read from or
written into. Correct address generation is very important
because the physical mapping of the array is always
different from its logical mapping. In order to achieve the
required test coverage, the address generator needs to be
able to generate addresses in different fashions in order to
accommodate different kinds of addressing flows such as
March-C, Galloping patterns, Address Complements, Fast
X, and Fast Y.

The data generator plays a very similar role to the address
generator. In order to get the inverse data for each
physically adjacent cell, data has to be generated based on
the logical-to-physical mapping of the memory array and
the data background that is required, such as
checkerboard, reverse checkerboard, column stripe, row
stripe, and diagonal.

The loop control system is the major sequencing logic in
PBIST that allows testing of the entire memory array
using only a few program steps. Without the looping
control mechanism, test programs of thousands of lines
need to be written in order to test an entire array. With

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 6

PBIST, testing of the large on-chip memory arrays
becomes a lot simpler. Also, PBIST can be used for Test
During Burn-In (TDBI) where the processor is tested in
the burn-in oven. Other cache-testing methods cannot be
used because only the TAP controller pins and a few other
control pins are active in the burn-in environment while
the rest of the pins are tristated.

RTL Simulation For FA
The motivation for doing fault isolation based on RTL
simulation is driven by the need for detailed information
about the internal workings of the processor. This
information is readily available from the RTL model.
Furthermore, as described in the previous sections, the
implementation of more sophisticated DFT and debug
features in the Pentium, Pentium Pro, and Pentium II
generations of microprocessors have helped to promote
this technique by providing better observability of the
internal signals, thus resulting in less dependency on e-
beam probing.

In previous generations of Intel’s microprocessors, RTL
simulation was used in the failure analysis flow primarily
for test pattern generation, test modification, and signal
tracing. But the fault isolation process largely depended
on extensive e-beam waveform probing work to trace the
failure from an architectural starting point, moving
upstream until the signals acquired at the inputs of a logic
block were correct, while the output was faulty.

Because of the lack of observability of the internal nodes,
e-beam probing became the necessary means to gathering
the detailed internal signal information of a
microprocessor. However, relying on e-beam probing
alone has become increasingly difficult or even futile on
current generations of microprocessors as more metal
interconnect layers are used (obscuring most local signals
that run only in Metal1 and Metal2 layers). Additionally,
while products are beginning to move into C4 packaging,
next-generation waveform probers that allow probing of
internal signals through the backside of the die are still not
widely available.

Figure 6: A high-level block diagram of the RTL model
simulation environment

Advances and improvements in today’s RTL simulation
tools used for Intel microprocessors result in a better and
more efficient environment for performing fault isolation
than that of the previous generation of RTL simulation
tools. More sophisticated capabilities and user-friendly
features have been added to the RTL simulation
environment, such as more extensive node coverage; the
capability to use application programming interface (API)
programs; an interactive simulation mode; and reliable
simulation state, save, and restore functions. Employing
other design tools such as schematic viewers, layout
databases, and circuit-level simulation to complement the
RTL simulation analysis further helps in the fault isolation
process. Figure 6 provides an overview of the key
components of the RTL model simulation environment.

The simulation tool’s API enables application programs to
access signal information from the full chip RTL model of
the microprocessor during the model's execution. The
application program runs as a separate process and uses
routines provided in the API library to obtain signal
information from the model. The primary purpose of the
API is to isolate the model from user events, enabling the
designer (as well as failure analyst) to quickly modify
application programs without having to relink the model.
The advantage of such an API is its reusability. It is
platform independent and can run with several models.
For the average user, the API is easier to support than a
user event, and it is simpler to write and debug.

A very useful RTL simulation API is the p6watch tool,
which enables visualization of large amounts of RTL
signal values by displaying them in a human format. For
example, instead of displaying a set of control signals for
a finite state machine (FSM) in binary or hexadecimal
format, the user can use p6watch to convert the signals to
strings that represent the individual states of the FSM.
Another example would be to use p6watch to display the

RTL Simulation

Functional Model:
HDL sources

Stimuli:
ASM code

User Interface:
internal or external

signal controls

Output (Trace file for test pattern or
internal signal tracing during

b)

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 7

field contents of an array in terms of their decoded or
functional meanings.

In this method of performing fault isolation, the failure
location is deduced based on extensive analysis of the full-
chip RTL model. The failure analyst is also required to
have an understanding of the processor’s
microarchitecture to aid in interpreting the HDL
information and the RTL simulation results, and
comparing these data with the behavior observed in the
failing device. This fault isolation method is very similar
to RTL debugging during the design phase.

The RTL simulator provides crucial information on the
expected behavior of the processor. By running the tests
that cause the DUT to fail using the RTL simulator, the
failure analyst can observe the processor’s pipe stages and
see how instructions and data are being transacted and
propagated. It is also useful to run passing tests to
compare the differences in control and data handling.
Among the things to look for at the high level is the flow
of data along the datapath blocks and the control signals
that arbitrate the machine pipeline. The gathered
information will help to determine the logic block that is
most likely to have caused the failure.

When the logic block has been isolated, more detailed
RTL signal analysis is performed within that logic block.
By isolating the failure to a small logic block, the analyst
can generate more exhaustive and more focused tests for
that block of logic. These new focused tests are then run
on the failing device to see how it responds to each test
case. For example, if a failure is isolated to a multi-ported
memory block, then the focused tests are targeted at all of
the available ports to see if there is any specific
dependency of the failure on a particular port. Other test
cases would involve testing the address generation logic.

Moreover, when running a test it is possible to introduce a
“defect” into the model and simulate its effects in terms of
the processor’s response to do a “what-if” type of
analyses.

E-beam-Less Fault Isolation
E-beam-less fault isolation can produce results faster and
reduce analysis by focusing on test data collection, data
analysis, and comparison with simulation results. The cost
of the analysis is reduced by avoiding the e-beam probing
step in the fault isolation process. E-beam probing work
involves many hours of sample preparation time (to
perform depassivation and prepare probe holes using the
FIB) as well as many more hours of waveform acquisition
time. Avoiding the e-beam probing step can save a
significant amount of analysis time. However, in order to
skip e-beam probing work, an alternative method is

required to collect valuable information from the failed
device. This alternative approach is described in the
following paragraphs in this section.

First of all, the failing signature needs to be identified in
order to understand why the unit is failing from the
standpoint of the processor architecture. Then, DFT tools
are used to collect internal node information to further
understand the failure mode. Later, RTL simulation is
performed to verify the hypothesis made based on the
collected data and to identify the failing node. As RTL
simulation is usually good enough to anticipate the
processor’s internal operation and build a hypothesis
about the failure location, probing is not necessary. When
compared to the traditional approach where probing is
needed to confirm the failing node, which takes an
average of 31 days, this e-beam-less approach takes an
average of only 15 days throughput time. This new
approach has been shown to produce a very accurate
estimation of the defect location with greater than 95%
success rate on the Pentium and Pentium Pro
microprocessors. The high success rate can be attributed
to the avoidance of the high-risk steps involved in e-beam
probing, especially during sample preparation. This
method readily and efficiently supports Intel’s virtual
factory concept where fault isolation work is easily shared
among all participating factories. By using the FA tools,
data collection can be done at the site where the failing
device is located. These data are then sent to the site
where the product FI expertise resides for in-depth
analysis. The predicted defect location is then sent back to
the original site for physical FA.

Advanced FI Techniques
The next sections of this paper present the advanced fault
isolation techniques used on the Pentium and Pentium Pro
microprocessor families. Specifically, these techniques
involve the PC FA tool and the SECC FA tool, both of
which were developed to address issues that will be
discussed in the following sections, and to overcome the
challenges and roadblocks described in the introduction.

PC-based FA Tester Platform
With the increasing complexity of Intel’s microprocessor
designs, failure analysis TPT would be longer without the
adoption of DFT and DFFA features in fault isolation
techniques. However, most of the DFT-based fault
isolation tools and techniques have been developed for
use on expensive functional testers. To reduce the
dependency on these expensive lab testers, a new
approach has been developed based on the personal
computer (PC) platform. The key elements of the PC FA
tester platform are shown in Figure 7.

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 8

Figure 7: A simplistic block diagram of the PC-based FA platform configuration

The In-Target Probe (ITP) tool has been widely used for
system-level debug and validation. On this test platform, a
host PC is used to control a target PC where the device
under test (DUT) resides. The host PC is used to control
the DUT and to upload the test program that the DUT will
execute. The ITP is developed around the processor’s
Probe Mode debug feature and is able to access all
programmer-visible and non-visible registers in the DUT.
This gives the ITP the necessary control mechanisms to
halt the DUT, modify its internal state, and resume normal
program execution at any chosen instruction boundary.

In this new approach, the ITP is used as the controller of
the target PC where the failing pattern can be uploaded to
the target PC through the TAP controller interface. The
host-target PC configuration acts like a tester where it
drives the necessary data to the input pins of the
microprocessor. However, the output pins of the
microprocessor are not strobed to compare with expected
data. Rather, the output data is monitored by a hardware
board that sends out a signal when certain conditions are
met. This signal can be used as a trigger signal, such as
the e-beam trigger signal, to enable hooking up the DUT
to the e-beam, although this has only been proven
experimentally.

In order to do e-beam probing, the DUT needs to execute
the test program in a loop. To achieve this, another
hardware board is used to monitor the activities of the
DUT. When a preset condition is met, the hardware board
sends out a signal that is used to reset the DUT. Once
reset, the DUT restarts execution from the normal boot-up
address and reruns the entire test pattern.

FA tools based on the processor’s DFT features have also
been implemented on the PC test platform where the host
PC is used as an interface to the DUT. Commands to
invoke the DFT features are fed into the DUT through the
TAP controller interface on the ITP board. The results of
the test are dumped to the host PC through the same TAP
controller interface.

FA tools that employ the DFT features such as Scanout,
Array Dump, and cache rastering have been developed for
the PC test platform. To use tools such as Scanout and
Array Dump, the DUT is initially halted. The required
register for stopping the DUT from execution is
programmed through the ITP. The trigger condition for
the breakpoint is set, and the desired processor response to
the breakpoint is also programmed. Next, the original
architectural state is restored, and the DUT is allowed to
resume execution from the point where it was halted.
When the preprogrammed breakpoint condition is met, the
DUT will stop, and as a result of the response to the
breakpoint, the data are shifted out through the ITP to the
host PC. These data provide information on the internal
state of the DUT to enable further fault isolation.

To perform cache rastering on the DUT, a data
background for the processor’s internal cache is preset by
writing into each memory location. Examples of the
patterns typically used for cache rastering include
checkerboard and reverse checkerboard patterns. Next, the
data in the memory array are read out and compared with
the data that were originally written. If there is any
discrepancy between the acquired and expected data, the
failing memory cell is identified. The PC is a perfect
platform for data-retention type of memory testing
because all commands and data are shifted serially
through the TAP controller. This method takes longer to

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 9

perform cache rastering as compared to lab functional
testers, but it is cheaper, and it frees up the utilization time
of the lab testers.

By providing capabilities similar to a lab tester such as
providing stimuli to drive the DUT, enabling interface to
the e-beam, and supporting various FA tools, the PC test
platform can be used for functional FA work, a task which
had been performed predominantly by lab testers. The
complete test platform is significantly cheaper and more
compact than the traditional workstation and tester
combination.

A few FA cases have been successfully resolved using this
PC test platform. E-beam waveform of a clock signal has
been acquired indicating the feasibility of using the PC to
replace a tester.

SECC Form-Factor Testing
The concept of processor bus fractions was introduced to
make it possible to increase the processor’s core clock
frequency while at the same time maintaining the external
bus clock frequency at a lower speed. To support this
idea, a frequency multiplier is designed into the processor
to multiply the external bus clock to produce a higher
frequency clock in the processor core. The term “1:2 bus
fraction” refers to a clock configuration in which the
internal processor frequency is twice as fast as the speed
of the external bus. For example, for an external processor
bus clock of 66 MHz, the internal clock frequency is 133
MHz. In this situation, there are two clock domains: one
running at 66 MHz and another running at 133 MHz.
Extra care is required when developing test programs for
products that support bus fractions: input and output data
that cross the clock boundaries must be correctly aligned.
The Pentium processor only has one bus clock domain
and one core clock domain. These two different clock
domains are isolated from each other by the processor’s
input and output buffers. In this case, data alignment is
handled by the processor itself, thus reducing the amount
of complexity associated with aligning the data in the test
pattern.

The Pentium II processor introduces a new bus fraction
concept, which increases the complexity of the test pattern
development and testing. The Pentium II processor
implements two separate sets of bus frequencies: a
frontside and a backside. The frontside bus is connected to
external components such as chipsets and other peripheral
interface devices. Alternatively, the backside bus is a local
bus for the Pentium II processor that is connected only to
the level-2 (L2) memory. These two buses run at different
clock speeds. The backside bus frequency is always equal
to or faster than the frontside bus frequency. Together
with the internal core clock, there are a total of three
different clock domains in this implementation. In this

case, the processor’s bus fraction configuration is
described in terms of all three clock domains relative to
each other. The term “1:4:2 bus fraction” refers to a
processor with a backside bus running 2x faster than the
frontside bus, and a core frequency that is 4x faster than
the frontside bus or 2x faster than the backside bus. The
data alignment between the frontside bus and the core
logic is handled by the frontside input and output buffers.
Meanwhile, the data alignment between the backside bus
and the core logic is handled by the backside input and
output buffers. The user, or the test program developer, is
responsible for managing the data alignment between the
frontside and backside buses.

For a round numbered (or even) bus fraction configuration
between the frontside bus and the backside bus, the data
alignment can be easily handled by the test program. This
is illustrated in Figures 8 and 9 below.

Frontside
data 1

Frontside
data 2

Back
side

Back
side

Back
side

Back
side

Back
side

Back
side

Figure 8: A processor’s frontside and backside data
switching and alignment for a 1:3 (frontside-to-backside)

bus fraction

Frontside

Back
side

Back
side

Back
side

Back
side

Frontside

Back
side

Back
side

Back
side

Back
side

Figure 9: A processor’s frontside and backside data
switching and alignment for a 1:4 (frontside-to-backside)

bus fraction

In the examples shown in both of these figures, frontside
data switches at the same time as backside data. This
boundary can be used as the alignment point for both the
frontside and backside data. However, in a fractional (or
odd) bus fraction configuration, data switching and data
alignment become more complicated. An example of a
fractional frontside-to-backside bus fraction is a 4:7
(frontside to backside) configuration.

In the 4:7 example shown in Figure 10 below, when the
frontside data FD1 switches to FD2, the data are not
aligned with backside data switching. The same situation

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 10

occurs during the transitions from FD2 to FD3 and FD3 to
FD4.

FD
1

FD2
2

FD 3 FD 4

BD
1

BD
2

BD
3

BD
4

BD
5

BD
6

BD
7

Figure 10: The die frontside and backside data switching
and alignment for 4:7 (frontside-to-backside) bus fraction

The functional tester needs to simultaneously drive input
data to the processor and strobe for the output data on
both the frontside and the backside bus. Advanced
production testers are capable of handling these situations
because they offer very flexible timing capabilities where
the rising and failing edges of the data can be placed
anywhere within a tester period. This allows the edge
placement of the first cycle to be different from the edge
placement of the second cycle. Unfortunately, the failure
analysis test platform employed by the FA labs does not
support advanced flexible timing capabilities. Therefore,
functional testing of a Pentium II processor in a lab
environment becomes very difficult.

The fractional bus testing problem is addressed by
mounting the Pentium II processor onto a Single Edge
Contact Cartridge (SECC) card. The backside bus, which
used to be accessible externally, now only communicates
with the on-board L2 cache. Only the frontside bus is
accessible to the external tester through the edge
connector.

In the SECC card form factor testing, the FA tester only
needs to handle the data transactions occurring on the
frontside bus; the backside bus data transactions are
transparent to the test platform. Hence, the complex
frontside:core:backside bus fraction is reduced to a
simple frontside:core bus fraction. This setup enables the
normal FA functional tester to execute test vectors that use
complex bus fractions.

To support SECC testing on a normal FA tester, a pattern
conversion tool is needed to convert a pattern from
component format into SECC format. This includes
extracting the frontside bus data and realigning it into
SECC format. This concept has been proven to be very
successful in analyzing the latest Pentium II
microprocessors.

Future Directions In Failure Analysis
Techniques
The advent of more sophisticated DFT and debug
features, coupled with faster RTL simulators and better
computer-aided fault debugging tools increases the usage
of the fault isolation methods described in this paper. The
trend towards more extensive use of computer based
analysis tools is continuing. With the introduction of new
DFT features which provide high degrees of
controllability in addition to observability in next
generation Intel processors, the concept of performing
computer-aided fault diagnosis at the logic or RTL level is
taken to the next abstraction level of the design, where
fault diagnosis is done at the gate level using intelligent
computer-aided fault diagnostic tools. By having both
observability and controllability of many important
internal signals, the concept of virtual probing will be
realized.

Conclusion
As device complexity and interconnect layers increase,
new fault isolation techniques need to be continuously
developed in order to maintain a high analysis success rate
and short throughput time. As discussed in this paper,
performing FA using traditional methods has been shown
to lower FA success rates. By quickly isolating the defect
location and identifying the failure mechanism that is
causing low manufacturing yields or abnormal failure
rates, problems can be fixed in a short amount of time to
improve manufacturing yields. In addition, the corrective
actions developed as a result of these FA techniques are
documented and proliferated to newer products in the
form of design rules. This will prevent the problems from
recurring, which in turn enables even a steeper volume
ramp. The innovative FA techniques developed for the
Pentium and Pentium Pro processors have been one of the
key elements in the continued exceptional performance of
Intel’s product time-to-market and high-volume
manufacturing.

References
[1] Yeoh Eng Hong, Martin Tay, “The Application of

Novel Failure Analysis Techniques for Advanced
Multi-Layered CMOS Devices,” International Test
Conference, 1997.

[2] Adrian Carbine, Derek Feltham, “Pentium ® Pro
Processor Design for Test and Debug,” International
Test Conference, 1997.

Authors’ Biographies
Yeoh Eng Hong graduated from Monash University in
1992. He joined Intel as a microprocessor failure analysis

Intel Technology Journal Q2 ‘98

An Overview of Advanced Failure Analysis Techniques for Pentium and Pentium Pro
Microprocessors 11

engineer. He is now the microprocessor product FA
manager in Intel Penang. His main technical interests are
developing new FA/FI techniques and studying new
failure mechanisms. His e-mail address is
Yeoh_Eng_Hong@ccm.ipn.intel.com.

Seong Leong, Lim graduated from University Science
Malaysia in 1992. He joined Intel as a microprocessor
failure analysis engineer. He is now leading the Pentium
Pro microprocessor Fault Isolation group in Intel Penang.
His main technical interests are microprocessor
architecture and fault isolation. His e-mail address is
Seong_Leong_Lim@ccm.ipn.intel.com.

Wong Yik Choong graduated from the University of
Malaya in 1994. He joined Intel as a microprocessor
failure analysis engineer. He is now the lead Pentium II
processor FA engineer in the Penang Microprocessor FA
department. His main technical interests are computer
architecture and networking, and software development.
His e-mail address is
Yik_Choong_Wong@ccm.ipn.intel.com

Lock Choon Hou graduated from the University of
Malaya in 1996. He joined Intel as a microprocessor
product failure analysis engineer. His e-mail address is
Choon_Hou_Lock@ccm.sc.intel.com

Mahmud Adnan received a BSEE from Bradley
University, Peoria, Illinois in 1990. He joined Intel
Penang in 1991 as a microprocessor failure analysis
engineer. He is currently working on Merced™
processor’s DFT design validation and Merced debug and
FA tools development. His e-mail address is
Mahmud_Adnan@ccm.sc.intel.com.

Computer Vision Face Tracking For Use in a Perceptual User Interface 1

Computer Vision Face Tracking For Use in a Perceptual User
Interface

Gary R. Bradski, Microcomputer Research Lab, Santa Clara, CA, Intel Corporation

Index words: computer vision, face tracking, mean shift algorithm, perceptual user interface, 3D
graphics interface

Abstract
As a first step towards a perceptual user interface, a
computer vision color tracking algorithm is developed and
applied towards tracking human faces. Computer vision
algorithms that are intended to form part of a perceptual
user interface must be fast and efficient. They must be
able to track in real time yet not absorb a major share of
computational resources: other tasks must be able to run
while the visual interface is being used. The new
algorithm developed here is based on a robust non-
parametric technique for climbing density gradients to
find the mode (peak) of probability distributions called the
mean shift algorithm. In our case, we want to find the
mode of a color distribution within a video scene.
Therefore, the mean shift algorithm is modified to deal
with dynamically changing color probability distributions
derived from video frame sequences. The modified
algorithm is called the Continuously Adaptive Mean Shift
(CAMSHIFT) algorithm. CAMSHIFT’s tracking accuracy
is compared against a Polhemus tracker. Tolerance to
noise, distractors and performance is studied.

CAMSHIFT is then used as a computer interface for
controlling commercial computer games and for exploring
immersive 3D graphic worlds.

Introduction
This paper is part of a program to develop a Perceptual
User Interface for computers. Perceptual interfaces are
ones in which the computer is given the ability to sense
and produce analogs of the human senses, such as
allowing computers to perceive and produce localized
sound and speech, giving computers a sense of touch and
force feedback, and in our case, giving computers an
ability to see. The work described in this paper is part of a
larger effort aimed at giving computers the ability to
segment, track, and understand the pose, gestures, and
emotional expressions of humans and the tools they might
be using in front of a computer or settop box. In this paper
we describe the development of the first core module in

this effort: a 4-degree of freedom color object tracker and
its application to flesh-tone-based face tracking.

Computer vision face tracking is an active and developing
field, yet the face trackers that have been developed are
not sufficient for our needs. Elaborate methods such as
tracking contours with snakes [[10][12][13]], using
Eigenspace matching techniques [14], maintaining large
sets of statistical hypotheses [15], or convolving images
with feature detectors [16] are far too computationally
expensive. We want a tracker that will track a given face
in the presence of noise, other faces, and hand
movements. Moreover, it must run fast and efficiently so
that objects may be tracked in real time (30 frames per
second) while consuming as few system resources as
possible. In other words, this tracker should be able to
serve as part of a user interface that is in turn part of the
computational tasks that a computer might routinely be
expected to carry out. This tracker also needs to run on
inexpensive consumer cameras and not require calibrated
lenses.

In order, therefore, to find a fast, simple algorithm for
basic tracking, we have focused on color-based tracking
[[7][8][9][10][11]], yet even these simpler algorithms are
too computationally complex (and therefore slower at any
given CPU speed) due to their use of color correlation,
blob and region growing, Kalman filter smoothing and
prediction, and contour considerations. The complexity of
the these algorithms derives from their attempts to deal
with irregular object motion due to perspective (near
objects to the camera seem to move faster than distal
objects); image noise; distractors, such as other faces in
the scene; facial occlusion by hands or other objects; and
lighting variations. We want a fast, computationally
efficient algorithm that handles these problems in the
course of its operation, i.e., an algorithm that mitigates the
above problems “for free.”

To develop such an algorithm, we drew on ideas from
robust statistics and probability distributions. Robust
statistics are those that tend to ignore outliers in the data
(points far away from the region of interest). Thus, robust

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 2

algorithms help compensate for noise and distractors in
the vision data. We therefore chose to use a robust non-
parametric technique for climbing density gradients to
find the mode of probability distributions called the mean
shift algorithm [2]. (The mean shift algorithm was never
intended to be used as a tracking algorithm, but it is quite
effective in this role.)

The mean shift algorithm operates on probability
distributions. To track colored objects in video frame
sequences, the color image data has to be represented as a
probability distribution [1]; we use color histograms to
accomplish this. Color distributions derived from video
image sequences change over time, so the mean shift
algorithm has to be modified to adapt dynamically to the
probability distribution it is tracking. The new algorithm
that meets all these requirements is called CAMSHIFT.

For face tracking, CAMSHIFT tracks the X, Y, and Area
of the flesh color probability distribution representing a
face. Area is proportional to Z, the distance from the
camera. Head roll is also tracked as a further degree of
freedom. We then use the X, Y, Z, and Roll derived from
CAMSHIFT face tracking as a perceptual user interface
for controlling commercial computer games and for
exploring 3D graphic virtual worlds.

Choose initial
search window

size and location
HSV Image

Set calculation
region at search
window center
but larger in
size than the
search window

Color histogram look-
up in calculation

region

Color probability
distribution

Find center of mass
within the search

window

Center search window
at the center of mass
and find area under it

ConvergedYES NOReport X,
Y, Z, and

Roll

Use (X,Y) to set
search window
center, 2*area1/2

to set size.

Figure 1: Block diagram of color object tracking

Figure 1 summarizes the algorithm described below. For
each video frame, the raw image is converted to a color
probability distribution image via a color histogram model
of the color being tracked (flesh for face tracking). The
center and size of the color object are found via the
CAMSHIFT algorithm operating on the color probability
image (the gray box is the mean shift algorithm). The
current size and location of the tracked object are reported
and used to set the size and location of the search window
in the next video image. The process is then repeated for
continuous tracking.

Video Demonstrations
The following three videos demonstrate CAMSHIFT in
action.

1. FaceTrack_Fast.avi

2. FaceTrack_Distractors.avi

3. FaceTrack_HandOcclusion.avi

The first video shows CAMSHIFT tracking rapid face
movements. The second video shows CAMSHIFT
tracking a face with other faces moving in the scene. The
third video shows CAMSHIFT tracking a face through
hand occlusions. These videos are available from this
paper on the Web in the Intel Technology Journal Q2’98
under the site http://developer.intel.com/technology/itj.

Color Probability Distributions
In order to use CAMSHIFT to track colored objects in a
video scene, a probability distribution image of the
desired color (flesh color in the case of face tracking) in
the video scene must be created. In order to do this, we
first create a model of the desired hue using a color
histogram. We use the Hue Saturation Value (HSV) color
system [5][6] that corresponds to projecting standard Red,
Green, Blue (RGB) color space along its principle
diagonal from white to black (see arrow in Figure 2). This
results in the hexcone in Figure 3. Descending the V axis
in Figure 3 gives us smaller hexcones corresponding to
smaller (darker) RGB subcubes in Figure 2.

HSV space separates out hue (color) from saturation (how
concentrated the color is) and from brightness. We create
our color models by taking 1D histograms from the H
(hue) channel in HSV space.

For face tracking via a flesh color model, flesh areas from
the user are sampled by prompting users to center their
face in an onscreen box, or by using motion cues to find
flesh areas from which to sample colors. The hues derived
from flesh pixels in the image are sampled from the H
channel and binned into an 1D histogram. When sampling
is complete, the histogram is saved for future use. More
robust histograms may be made by sampling flesh hues

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 3

from multiple people. Even simple flesh histograms tend
to work well with a wide variety of people without having
to be updated. A common misconception is that different
color models are needed for different races of people, for
example, for blacks and whites. This is not true. Except
for albinos, humans are all the same color (hue). Dark-
skinned people simply have greater flesh color saturation
than light-skinned people, and this is separated out in the
HSV color system and ignored in our flesh-tracking color
model.

During operation, the stored flesh color histogram is used
as a model, or lookup table, to convert incoming video
pixels to a corresponding probability of flesh image as can
be seen in the right-hand image of Figure 6. This is done
for each video frame. Using this method, probabilities
range in discrete steps from zero (probability 0.0) to the
maximum probability pixel value (probability 1.0). For 8-
bit hues, this range is between 0 and 255. We then track
using CAMSHIFT on this probability of flesh image.

When using real cameras with discrete pixel values, a
problem can occur when using HSV space as can be seen
in Figure 3. When brightness is low (V near 0), saturation
is also low (S near 0). Hue then becomes quite noisy,
since in such a small hexcone, the small number of
discrete hue pixels cannot adequately represent slight
changes in RGB. This then leads to wild swings in hue
values. To overcome this problem, we simply ignore hue
pixels that have very low corresponding brightness values.
This means that for very dim scenes, the camera must
auto-adjust or be adjusted for more brightness or else it
simply cannot track. With sunlight, bright white colors can
take on a flesh hue so we also use an upper threshold to
ignore flesh hue pixels with corresponding high
brightness. At very low saturation, hue is not defined so
we also ignore hue pixels that have very low
corresponding saturation (see Implementation Details
section below).

Originally, we used a 2D color histogram built from
normalized red green (r,g) space (r = R/(R+G+B), g =
G/(R+G+B)). However, we found that such color models
are much more sensitive to lighting changes since
saturation (which is influenced by lighting) is not
separated out of that model.

YellowGreen

Red

MagentaBlue

Cyan
White

Figure 2: RGB color cube

Green,
1200

Red,
00

Blue,
2400

Yellow

Magenta

Cyan 1.0
White

0.0
Black

H S

V

Figure 3: HSV color system

CAMSHIFT Derivation
The closest existing algorithm to CAMSHIFT is known as
the mean shift algorithm [2][18]. The mean shift algorithm
is a non-parametric technique that climbs the gradient of a
probability distribution to find the nearest dominant mode
(peak).

How to Calculate the Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location in the search window.
4. Center the search window at the mean location

computed in Step 3.
5. Repeat Steps 3 and 4 until convergence (or until the

mean location moves less than a preset threshold).

Proof of Convergence [18]
Assuming a Euclidean distribution space containing
distribution f, the proof is as follows reflecting the steps
above:
1. A window W is chosen at size s.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 4

2. The initial search window is centered at data point pk

3. Compute the mean position within the search window

∑
∈

=
Wj jp

W
Wkp .

1
)(ˆ

The mean shift climbs the gradient of f(p)

.
)(

)(
)(ˆ

kpf

kpf

kpWkp
′

≈−

4. Center the window at point

).(ˆ Wpk

5. Repeat Steps 3 and 4 until convergence.
Near the mode ,0)(≅′ pf so the mean shift algorithm

converges there.

For discrete 2D image probability distributions, the mean
location (the centroid) within the search window (Steps 3
and 4 above) is found as follows:

Find the zeroth moment

∑∑=
x y

yxIM).,(00

Find the first moment for x and y

∑∑∑∑ ==
x yx y

yxyIMyxxIM).,(.);,(0110

Then the mean search window location (the centroid) is

; ;
00

01

00

10

M

M
y

M

M
x cc ==

where I(x,y) is the pixel (probability) value at position
(x,y) in the image, and x and y range over the search
window.

Unlike the Mean Shift algorithm, which is designed for
static distributions, CAMSHIFT is designed for
dynamically changing distributions. These occur when
objects in video sequences are being tracked and the
object moves so that the size and location of the
probability distribution changes in time. The CAMSHIFT
algorithm adjusts the search window size in the course of
its operation. Initial window size can be set at any
reasonable value. For discrete distributions (digital data),
the minimum window size is three as explained in the
Implementation Details section. Instead of a set or
externally adapted window size, CAMSHIFT relies on the
zeroth moment information, extracted as part of the
internal workings of the algorithm, to continuously adapt
its window size within or over each video frame. One can
think of the zeroth moment as the distribution “area”

found under the search window. Thus, window radius, or
height and width, is set to a function of the the zeroth
moment found during search. The CAMSHIFT algorithm
is then calculated using any initial non-zero window size
(greater or equal to three if the distribution is discrete).

How to Calculate the Continuously Adaptive Mean
Shift Algorithm

1. Choose the initial location of the search window.
2. Mean Shift as above (one or many iterations); store

the zeroth moment.
3. Set the search window size equal to a function of the

zeroth moment found in Step 2.
4. Repeat Steps 2 and 3 until convergence (mean

location moves less than a preset threshold).

In Figure 4 below, CAMSHIFT is shown beginning the
search process at the top left step by step down the left
then right columns until convergence at bottom right. In
this figure, the red graph is a 1D cross-section of an actual
sub-sampled flesh color probability distribution of an
image of a face and a nearby hand. In this figure, yellow is
the CAMSHIFT search window, and purple is the mean
shift point. The ordinate is the distribution value, and the
abscissa is the horizontal spatial position within the
original image. The window is initialized at size three and
converges to cover the tracked face but not the hand in six
iterations. In this sub-sampled image, the maximum
distribution pixel value is 206 so we set the width of the
search window to be 2*M0/206 (see discussion of window
size in the Implementation Details section below). In this
process, CAMSHIFT exhibits typical behavior: it finds the
center of the nearest connected distribution region (the
face), but ignores nearby distractors (the hand).

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 1

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 2

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 3

1 3 5 7 9

11 13 15 17 19 21 23
0

50

100

150

200

250

Step 4

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 5

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 6

Figure 4: CAMSHIFT in operation down the left then
right columns

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 5

Figure 4 shows CAMSHIFT at startup. Figure 5 below
shows frame to frame tracking. In this figure, the red color
probability distribution has shifted left and changed form.
At the left in Figure 5, the search window starts at its
previous location from the bottom right in Figure 4. In one
iteration it converges to the new face center.

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 1

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 2

Figure 5: Example of CAMSHIFT tracking starting from
the converged search location in Figure 4 bottom right

Mean Shift Alone Does Not Work
The mean shift algorithm alone would fail as a tracker. A
window size that works at one distribution scale is not
suitable for another scale as the color object moves
towards and away from the camera. Small fixed-sized
windows may get lost entirely for large object translation
in the scene. Large fixed-sized windows may include
distractors (other people or hands) and too much noise.

CAMSHIFT for Video Sequences
When tracking a colored object, CAMSHIFT operates on
a color probability distribution image derived from color
histograms. CAMSHIFT calculates the centroid of the 2D
color probability distribution within its 2D window of
calculation, re-centers the window, then calculates the
area for the next window size. Thus, we needn’t calculate
the color probability distribution over the whole image,
but can instead restrict the calculation of the distribution
to a smaller image region surrounding the current
CAMSHIFT window. This tends to result in large
computational savings when flesh color does not dominate
the image. We refer to this feedback of calculation region
size as the Coupled CAMSHIFT algorithm.

How to Calculate the Coupled CAMSHIFT Algorithm

1. First, set the calculation region of the probability
distribution to the whole image.

2. Choose the initial location of the 2D mean shift
search window.

3. Calculate the color probability distribution in the 2D
region centered at the search window location in an
area slightly larger than the mean shift window size.

4. Mean shift to convergence or for a set number of
iterations. Store the zeroth moment (area or size) and
mean location.

5. For the next video frame, center the search window at
the mean location stored in Step 4 and set the window

size to a function of the zeroth moment found there.
Go to Step 3.

For each frame, the mean shift algorithm will tend to
converge to the mode of the distribution. Therefore,
CAMSHIFT for video will tend to track the center (mode)
of color objects moving in a video scene. Figure 6 shows
CAMSHIFT locked onto the mode of a flesh color
probability distribution (mode center and area are marked
on the original video image). In this figure, CAMSHIFT
marks the face centroid with a cross and displays its
search window with a box.

Figure 6: A video image and its flesh probability image

Calculation of Head Roll
The 2D orientation of the probability distribution is also
easy to obtain by using the second moments during the
course of CAMSHIFT’s operation where (x,y) range over
the search window, and I(x,y) is the pixel (probability)
value at (x,y):

Second moments are

).,();,(2
20

2
20 yxIxMyxIxM

x yx y
∑∑∑∑ ==

Then the object orientation (major axis) is

2

2

arctan
2

00

022

00

20

00

11

−−

−

−

=
cc

cc

y
M

M
x

M

M

yx
M

M

θ

The first two Eigenvalues (major length and width) of the
probability distribution “blob” found by CAMSHIFT may
be calculated in closed form as follows [4]. Let

,2

00

20
cx

M

M
a −=

,2
00

11

−= cc yx

M

M
b

and

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 6

,2

00

02
cy

M

M
c −=

Then length l and width w from the distribution centroid
are

,
2

)()(22 cabca
l

−+++
=

.
2

)()(22 cabca
w

−+−+
=

When used in face tracking, the above equations give us
head roll, length, and width as marked in Figure 7.

Figure 7: Orientation of the flesh probability distribution
marked on the source video image

CAMSHIFT thus gives us a computationally efficient,
simple to implement algorithm that tracks four degrees of
freedom (see Figure 8).

Video Camera

x

y

z

First 4 tracked degrees of freedom: Head
 movement

Roll

Figure 8: First four head tracked degrees of freedom: X,
Y, Z location, and head roll

How CAMSHIFT Deals with Image Problems
When tracking color objects, CAMSHIFT deals with the
image problems mentioned previously of irregular object
motion due to perspective, image noise, distractors, and
facial occlusion as described below.

CAMSHIFT continuously re-scales itself in a way that
naturally fits the structure of the data. A colored object’s
potential velocity and acceleration scale with its distance
to the camera, which in turn, scales the size of its color
distribution in the image plane. Thus, when objects are
close, they can move rapidly in the image plane, but their
probability distribution also occupies a large area. In this
situation, CAMSHIFT’s window size is also large and so

can catch large movements. When objects are distant, the
color distribution is small so CAMSHIFT’s window size
is small, but distal objects are slower to traverse the video
scene. This natural adaptation to distribution scale and
translation allows us to do without predictive filters or
variables–a further computational saving–and serves as an
in-built antidote to the problem of erratic object motion.

CAMSHIFT’s windowed distribution gradient climbing
causes it to ignore distribution outliers. Therefore,
CAMSHIFT produces very little jitter in noise and, as a
result, tracking variables do not have to be smoothed or
filtered. This gives us robust noise tolerance.

CAMSHIFT’s robust ability to ignore outliers also allows
it to be robust against distractors. Once CAMSHIFT is
locked onto the mode of a color distribution, it will tend to
ignore other nearby but non-connected color distributions.
Thus, when CAMSHIFT is tracking a face, the presence
of other faces or hand movements in the scene will not
cause CAMSHIFT to loose the original face unless the
other faces or hand movements substantially occlude the
original face.

CAMSHIFT’s provable convergence to the mode of
probability distributions helps it ignore partial occlusions
of the colored object. CAMSHIFT will tend to stick to the
mode of the color distribution that remains.

Moreover, when CAMSHIFT’s window size is set
somewhat greater than the root of the distribution area
under its window, CAMSHIFT tends to grow to
encompass the connected area of the distribution that is
being tracked (see Figure 4). This is just what is desired
for tracking whole objects such as faces, hands, and
colored tools. This property enables CAMSHIFT to not
get stuck tracking, for example, the nose of a face, but
instead to track the whole face.

Implementation Details

Initial Window Size and Placement
In practice, we work with digital video images so our
distributions are discrete. Since CAMSHIFT is an
algorithm that climbs the gradient of a distribution, the
minimum search window size must be greater than one in
order to detect a gradient. Also, in order to center the
window, it should be of odd size. Thus for discrete
distributions, the minimum window size is set at three. For
this reason too, as CAMSHIFT adapts its search window
size, the size of the search window is rounded up to the
current or next greatest odd number. In practice, at start
up, we calculate the color probability of the whole scene
and use the zeroth moment to set the window size (see
subsection below) and the centroid to set the window
center.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 7

Setting Adaptive Window Size Function

Deciding what function of the zeroth moment to set the
search window size to in Step 3 of the CAMSHIFT
algorithm depends on an understanding of the distribution
that one wants to track and the goal that one wants to
achieve. The first consideration is to translate the zeroth
moment information into units that make sense for setting
window size. Thus, in Figure 4, the maximum distribution
value per discrete cell is 206, so we divide the zeroth
moment by 206 to convert the calculated area under the
search window to units of number of cells. Our goal is
then to track the whole color object so we need an
expansive window. Thus, we further multiply the result by
two so that the window grows to encompass the connected
distribution area. We then round to the next greatest odd
search window size so that the window has a center.

For 2D color probability distributions where the maximum
pixel value is 255, we set window size s to

.
256

*2 00M
s =

We divide by 256 for the same reason stated above, but to
convert the resulting 2D region to a 1D length, we need to
take the square root. In practice, for tracking faces, we set
window width to s and window length to 1.2s since faces
are somewhat elliptical.

Comments on Software Calibration

Much of CAMSHIFT’s robustness to noise, transient
occlusions, and distractors depends on the search window
matching the size of the object being tracked—it is better
to err on the side of the search window being a little too
small. The search window size depends on the function of
the zeroth moment M00 chosen above. To indirectly
control the search window size, we adjust the color
histogram up or down by a constant, truncating at zero or
saturating at the maximum pixel value. This adjustment
affects the pixel values in the color probability distribution
image which affects M00 and hence window size. For 8-bit
hue, we adjust the histogram down by 20 to 80 (out of a
maximum of 255), which tends to shrink the CAMSHIFT
window to just within the object being tracked and also
reduces image noise.

HSV brightness and saturation thresholds are employed
since hue is not well defined for very low or high
brightness or low saturation. Low and high thresholds are
set off 10% of the maximum pixel value.

Comments on Hardware Calibration

To use CAMSHIFT as a video color object tracker, the
camera’s field of view (zoom) must be set so that it covers
the space that one intends to track in. Turn off automatic

white balance if possible to avoid sudden color shifts. Try
to set (or auto-adjust) AGC, shutter speed, iris or CCD
integration time so that image brightness is neither too
dim nor saturating. The camera need not be in focus to
track colors. CAMSHIFT will work well with cheap
cameras and does not need calibrated lenses.

CAMSHIFT’S Use as a Perceptual Interface

Treatment of CAMSHIFT Tracking Variables
for Use in a Perceptual User Interface
Figure 8 above shows the variables X, Y, Z, and Roll
returned by the CAMSHIFT face tracker. For game and
graphics control, X, Y, Z, and Roll often require a
“neutral” position; that is, a position relative to which
further face movement is measured. For example, if the
captured video image has dimensions (Y, X) of 120x160,
a typical neutral position might be Y=60, X=80. Then if X
< 80, the user has moved 80-X left; if X > 80, the user has
moved X-80 right and so on for each variable.

Piecewise Linear Transformation of Control Variables

To obtain differential control at various positions
including a jitter-damping neutral movement region, each
variable’s relative movement (above or below the neutral
position) is scaled in “N” different ranges.

In the X variable example above, if X is in range #1, X
would be scaled by “X scale 1”; if X is in range #2, X
would be scaled by “X scale 2” and so on.

The formula for mapping captured video head position P
to a screen movement factor F is

F = min(b1,P)s1 + [min(b2-b1, P-b1)]
+s2 + … + [min(b(i+1)-

bi, P-bi)]
+s(i+1)+ … + [P-b(N-1)]

+sN, (control equation 1)

where [#]+ equals “#” if # > 0, and zero otherwise; min(A,
B) returns the minimum of A or B; b1-bN represents the
bounds of the ranges, s1-sN are the corresponding scale
factors for each range, and P is the absolute value of the
difference of the variable’s location from neutral.

This allows for stability close to the neutral position, with
growing acceleration of movement as the distance away
from neutral increases, in a piecewise linear manner as
shown in Figure 9.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 8

3D
 C

on
tr

ol
, F

Visually tracked position, P

Figure 9: Piecewise linear transformation of CAMSHIFT
position P interface control variable F

Frame Rate Adjustment

If the graphic’s rendering rate R can be determined, the
final screen movement S is

S = F/R (control equation 2)

Computer graphics and game movement commands S can
be issued on each rendered graphic’s frame. Thus, it is
best for the movement amount S to be sensitive to frame
rate. In computer-rendered graphic or game scenes, simple
views (for example, looking up at blue sky) are rendered
much faster than complex views (for example, texture
mapped city skylines). The final rate of movement should
not depend on the complexity of the 3D view if one wants
to achieve satisfying motion when immersed in a 3D
scene.

Y Variable Special Case for Seated User

If a user sits facing the camera (neutral X,Y) and then
leans left or right (X movement) by pivoting on his/her
chair, Y will decrease as shown in Figure 10 below.

Y

X

13.75

x

A

b

c

Figure 10: Lean changes Y and head roll

In order to overcome this, we use an empirical observation
that the 2nd Eigenvalue (face half width) of the local face
flesh color distribution length is proportional to face size
(see Figure 7), which is, on average, often proportional to
body size. Empirically, the ratio of the 2nd Eigenvector to
torso length from face centroid is

1 to 13.75 (2 inches to 27.5 inches).(control equation 3)

Given lean distance x (in 2nd Eigenvector units), and
seated size of 13.75, as in Figure 10 so that sin(A) =
x/13.75. Then,

A = sin-1(x/13.75), (control equation 4)

so c = 13.75cos(A), and

b = 13.75(1 - cos(A)) (control equation 5)

in units of 2nd Eigenvectors. This is the Y distance to
correct for (add back) when leaning.

Roll Considerations

As can be seen from Figure 10, for seated users lean also
induces a change in head roll by the angle A. Thus, for
control that relies on head roll, this lean-induced roll
should be corrected for. Correction can be accomplished
in two ways:

• Make the first range boundary b1 in control equation
1 large enough to contain the changes in face
orientation that result from leaning. Then use a scale
value s1 = 0 so that leaning causes no roll.

• Subtract the measured roll from the lean-induced roll,
A, calculated in control Equation 4 above.

Another possible problem can result when the user looks
down too much as shown in Figure 11. In this case, the
user is looking down at the keyboard. Looking down too
much causes the forehead to dominate the view which in
turn causes the face flesh color “blob” to look like it is
oriented horizontally.

Figure 11: Extreme down head pitch causes a corrupted
head roll value

To correct for such problems, we define a new variable, Q
called “Roll Quality.” Q is the ratio of the first two
Eigenvalues, length l and width w, of the distribution
color “blob” in the CAMSHIFT search window:

Q = l/w. (control equation 6)

For problem views of the face such as in Figure 11, we
observe that Roll Quality is nearly 1.0. So, for face

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 9

tracking, roll should be ignored (treated as vertical) for
quality measures less than 1.25. Roll should also be
ignored for very high quality scores greater than 2.0 since
such distributions are un-facelike and likely to have
resulted from noise or occlusions.

CAMSHIFT’s Actual Use as an Interface
CAMSHIFT is being used as a face tracker to control
games and 3D graphics. By inserting face control
variables into the mouse queue, we can control
unmodified commercial games such as Quake 2 shown in
Figure 12. We used left and right head movements to slide
a user left and right in the game, back and forth head
movements to move the user backwards and forwards, up
or down movements to let the user shoot (as if ducking or
getting jolted by the gun), and roll left or right to turn the
user left or right in the game. This methodology has been
used extensively in a series of demos with over 30
different users.

Head tracking via CAMSHIFT has also been used to
experiment with immersive 3D graphics control in which
natural head movements are translated to moving the
corresponding 3D graphics camera viewpoint. This has
been extensively tested using a 3D graphics model of the
Forbidden City in China as well as in exploring a 3D
graphics model of the big island of Hawaii as shown in
Figure 13. Most users find it an enjoyable experience in
which they naturally pick up how to control the graphics
viewpoint movement.

Figure 12: CAMSHIFT-based face tracker used to play
Quake 2 hands free by inserting control variables into the

mouse queue

Figure 13: CAMSHIFT-based face tracker used to “fly”
over a 3D graphic’s model of Hawaii

CAMSHIFT Analysis

Comparison to Polhemus
In order to assess the tracking accuracy of CAMSHIFT,
we compared its accuracy against a Polhemus tracker.
Polhemus is a magnetic sensor connected to a system that
measures six degrees of spatial freedom and thus can be
used for object tracking when tethered to an object. The
observed accuracy of Polhemus is +/- 1.5cm in spatial
location and about 2.5o in orientation within 30 inches of
the Polhemus antenna. We compared Polhemus tracking
to CAMSHIFT color object tracking using a 320x240
image size (see Figure 14a-d). The coordinate systems of
Polhemus and the camera were carefully aligned prior to
testing. The object tracked was pulled on a cart in a set
trajectory away from the Polhemus origin. The
comparison between CAMSHIFT and Polhemus in each
of X, Y, Z, and Roll yielded the results shown Table 1.

Tracking
Variable

X Y Z Roll

Standard
Deviation
of
Difference

0.27cm 0.58cm 3.4cm 2.4o

Table 1: Standard deviation of Polhemus vs. CAMSHIFT
tracking differences

Z exhibited the worst difference because CAMSHIFT
determines Z by measuring color area, which is inherently
noisy. X, Y, and Roll are well within Polhemus’s observed
tracking error and therefore indistinguishable. Z is about
2cm off. Except for Z, these results are as good or better
than much more elaborate vision tracking systems [17],
although CAMSHIFT does not yet track pitch and yaw.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 10

��������������
��������������

��������������
��������������

�������������
�������������

��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������
��������������

��������������
��������������

��������������
��������������

X - axis translation
Standard Deviation: 0.27

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45

Actual Distance (cm)

M
ea

su
re

d
D

is
ta

nc
e

(c
m

)

Figure 14a: Comparision of X tracking accuracy

������������
������������

�������������
�������������

��������������
��������������
��������������

��������������
��������������
��������������

�����������
�����������

�����������
�����������

�����������
�����������

������������
������������

������������
������������

Y - axis translation
Standard Deviation: 0.58

0

5

10

15

20

25

0 5 10 15 20

Actual Distance (cm)

M
ea

su
re

d
D

is
ta

nc
e

(c
m

)

Figure 14b: Comparision of Y tracking accuracy

Z - axis translation
Standard Deviation: 3.44

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90

Actual Distance (cm)

M
ea

su
re

d
D

is
ta

nc
e

(c
m

)

Figure 14c: Comparision of Z tracking accuracy

�����������
�����������

��������
��������

����������
����������

�����������
�����������

��������
��������

����������
����������

��������
���������
���������

�����������
�����������

��������
��������

����������
����������

�������
�������

���������
���������
���������

T - axis rotation
Standard Deviation: 2.46

0

20

40

60

80

100

120

140

160

Actual Distance (deg)

M
ea

su
re

d
D

is
ta

nc
e

(d
eg

)

Figure 14d: Accuracy comparison of Polhemus and
CAMSHIFT tracking for roll.

Tracking in Noise
CAMSHIFT’s robust ability to find and track the mode of
a dynamically changing probability distribution also gives
it good tracking behavior in noise. We videotaped a head
movement sequence and then played it back adding 0, 10,
30, and 50% uniform noise. Figure 15 shows 50% noise
added to the raw image on the left, and the resulting color
probability distribution on the right. Note that the use of a
color model greatly cuts down the random noise since
color noise has a low probability of being flesh color.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 11

Nevertheless, the flesh color model is highly degraded and
there are many spurious flesh pixels in the color
probability distribution image. But CAMSHIFT is still
able to track X, Y, and Roll quite well in up to 30% white
noise as shown in Figure 16a-d. Z is more of a problem
because CAMSHIFT measures Z by tracking distribution
area under its search window, and one can see in Figure
15 that area is highly effected by noise. Y shows an
upward shift simply because the narrower chin region
exhibits more degradation in noise than the wider
forehead. Roll tracks well until noise is such that the
length and width of the face color distribution are
obscured. Thus, CAMSHIFT handles noise well without
the need for extra filtering or adaptive smoothing.

Figure 15: Tracking in 50% uniform noise

X Noise

-60

-50

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80

Time

D
is

ta
nc

e
fr

om
 S

ta
rt

 P
os

iti
on

 0% |Avg Dif|

10% 2.9

30% 1.2

50% 7.6

Figure 16a: X accuracy in 0-50% uniform noise

Y Noise

-30

-20

-10

0

10

20

30

40

0 20 40 60 80

Time

D
is

ta
nc

e
fr

om
 S

ta
rt

 P
os

iti
on

 0% |Avg Dif|

10% 1.9

30% 1.5

50% 7.6

Figure 16b: Y accuracy in 0-50% uniform noise

Z Noise

0

10

20

30

40

50

60

70

80

0 20 40 60 80

Time

D
is

ta
nc

e
F

ro
m

 S
ta

rt
 P

os
iti

on

 0% |Avg Dif|

10% 2.7

30% 10.6

50% 21.5

Figure 16c: Z accuracy in 0-50% uniform noise

T Noise

0

20

40

60

80

100

120

140

160

0 20 40 60 80

Time

F
ac

e
O

rie
nt

at
io

n
(d

eg
)

 0% |Avg Dif|

10% 2.6deg

30% 4.1deg

50% 8.3deg

Figure 16d: Roll accuracy in 0-50% uniform noise

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 12

Tracking in the Presence of Distractions
CAMSHIFT’s search window converges to span the
nearest dominant connected probability distribution. If we
adjust the nature of the probability distribution by
properly setting the HSV brightness and saturation
threshold (see Implementation Details section above), the
search window will tend to stay just within the object
being tracked as shown in the marked image at top left in
Figure 17. In such cases, CAMSHIFT is robust against
distracting (nearby) distributions and transient occlusions.
This robustness occurs for distractors because the search
window rarely contains the distractor as shown
sequentially down the left, then right, columns of Figure
17.

Figure 17: Tracking a face with background distractor
faces (sequence: down left then right columns)

Table 2 shows the results collected from 44 sample point
on five tracking runs with active background face
distraction such as that shown in Figure 17. Since the
distracting face rarely intersects much of CAMSHIFT’s
search window, the X, Y, and Z tracking variables are
perturbed very little. Roll is more strongly affected since
even a small intersection of a distractor in CAMSHIFT’s
search window can change the effective orientation of the
flesh pixels as measured by CAMSHIFT.

Tracked
Variable

Average Std.
Deviation

Maximum Std.
Deviation

X (pixels) 0.42 2.00

Y(pixels) 0.53 1.79

Z(pixels) 0.54 1.50

Roll (degrees) 5.18 46.80

Table 2: Perturbation of CAMSHIFT tracking variables
by face distractors

CAMSHIFT tends to be robust against transient occlusion
because the search window will tend to first absorb the
occlusion and then stick with the dominant distribution
mode when the occlusion passes. Figure 18 demonstrates
robustness to hand occlusion in sequential steps down the
left, then right columns.

Figure 18: Tracking a face in the presence of passing
hand occlusions (sequence: down left then right columns)

Table 3 shows the results collected from 43 sample points
on five tracking runs with active transient hand occlusion
of the face. Average perturbation is less than three pixels
for X, Y, and Z. Roll is more strongly effected due to the
arbitrary orientation of the hand as it passes through the
search window.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 13

Tracked
Variable

Average Std.
Deviation

Maximum Std.
Deviation

X (pixels) 2.35 7.17

Y(pixels) 2.81 6.29

Z(pixels) 2.10 4.65

Roll (degrees) 14.64 34.40

Table 3: Perturbation of CAMSHIFT tracking variables
by passing hand occlusion

We see from the above table that CAMSHIFT gives us
wide tolerance for distraction and occlusion “for free” due
to the statistically robust workings of the algorithm.

Performance
The order of complexity of CAMSHIFT is Ο(αN2) where
α is some constant, and the image is taken to be NxN. α is
most influenced by the moment calculations and the
average number of mean shift iterations until convergence.
The biggest computational savings come through scaling
the region of calculation to an area around the search
window size as previously discussed.

CAMSHIFT was run on a 300 MHz Pentium® II
processor, using an image size of 160x120 at 30 frames
per second (see Figure 19). CAMSHIFT’s performance
scales with tracked object size. Figure 19 shows the CPU
load from the entire computer vision thread including
image acquisition, conversion to color probability
distribution, and CAMSHIFT tracking. In Figure 19 when
the tracked face is far from the camera, the CAMSHIFT
thread consumes only 10% of the CPU cycles. When the
face fills the frame, CAMSHIFT consumes 55% of the
CPU.

Figure 19: Performance scales inversely with tracked
object size (ordinate is percent of CPU used)

Figure 20 traces computer vision thread’s performance in
an actual control task of “flying” over a 3D model of
Hawaii using head movements. In this case, the average
CPU usage was 29%. VTUNETM analysis showed that the
actual CAMSHIFT operation (excluding image capture,
color conversion or image copying) consumed under 12%
of the CPU. CAMSHIFT relies on Intel’s MMX™
technology optimized Image Processing Library available
on the Web [3] to do RGB-to-HSV image conversion and
image allocation. MMX technology optimized image
moments calculation has recently been added to the Image
Processing Library, but not in time for publication. The
use of such optimized moment calculations will boost
performance noticeably since this forms part of the inner
mean shift calculation loop. Even without this
improvement, CAMSHIFT’s current average actual use
efficiency of 29% allows it to be used as a visual user
interface.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 14

Figure 20: In actual use, CAMSHIFT consumed an
average of 29% of one 300 MHz Pentium® II CPU when

used to control a 3D graphic’s Hawaii fly through

Discussion
This paper discussed a core tracking module that is part of
a larger effort to allow computers to track and understand
human motion, pose, and tool use. As such, the module
was designed to be simple and computationally efficient.
Yet, this core module must still handle the basic
computer-vision problems outlined in this paper. We’ve
seen that CAMSHIFT handles these problems as follows:
• Irregular object motion : CAMSHIFT scales its

search window to object size thus naturally handling
perspective-induced motion irregularities.

• Image noise: The color model eliminates much of the
noise, and CAMSHIFT tends to ignore the remaining
outliers.

• Distractors: CAMSHIFT ignores objects outside its
search window so objects such as nearby faces and
hands do not affect CAMSHIFT’s tracking.

• Occlusion: As long as occlusion isn’t 100%,
CAMSHIFT will still tend to follow what is left of the
objects’ probability distribution.

• Lighting variation: Using only hue from the HSV
color space and ignoring pixels with high or low
brightness gives CAMSHIFT wide lighting tolerance.

CAMSHIFT’s simplicity does cause limitations however.
Since CAMSHIFT derives Z from object area estimates, Z
is subject to noise and spurious values. The effects of
noise are evident in Figure 16c. That CAMSHIFT can get
spurious area values is evident in Figure 11.

Since CAMSHIFT relies on color distributions alone,
errors in color (colored lighting, dim illumination, too
much illumination) will cause errors in tracking. More
sophisticated trackers use multiple modes such as feature
tracking and motion analysis to compensate for this, but

more complexity would undermine the original design
criterion for CAMSHIFT.

CAMSHIFT also only detects four (X, Y, Z, and Roll) of
the six modes of freedom (above plus pitch and yaw).
Unfortunately, of the six degrees of head movement
possible, Roll is the least useful control variable since it is
the least “natural” head movement and is therefore
fatiguing for the user to use constantly.

Conclusion
CAMSHIFT is a simple, computationally efficient face
and colored object tracker. While acknowledging the
limitation imposed by its simplicity, we can still see that
CAMSHIFT tracks virtually as well as more expensive
tethered trackers (Polhemus) or much more sophisticated,
computationally expensive vision systems [17], and it
tracks well in noisy environments. Thus, as we have
shown, even though CAMSHIFT was conceived as a
simple part of a larger tracking system, it has many uses
right now in game and 3D graphics’ control.

Adding perceptual interfaces can make computers more
natural to use, more fun for games and graphics, and a
better medium of communication. These new features
consume more MIPs and so will take advantage of more
MIPs available with future Intel® CPUs.

In this project, we designed a highly efficient face tracking
algorithm rather than a more complex, higher MIPs usage
algorithm. This was done because we want to be able to
demonstrate compelling applications and interfaces on
today’s systems in order to prepare the way for the future
use of computer vision on PCs. CAMSHIFT is usable as a
visual interface now, yet designed to be part of a more
robust, larger tracking system in the future. CAMSHIFT
will be incorporated into larger, more complex, higher
MIPs-demanding modules that provide more robust
tracking, posture understanding, gesture and face
recognition, and object understanding. In this way, the
functionality of the computer vision interface will increase
with increasing Intel CPU speeds. A user will thus be able
to upgrade their computer vision interface by upgrading to
higher speed Intel CPUs in the future.

Acknowledgments
Many thanks to Mark Holler for countless discussions and
feedback leading to the development of this work. Special
thanks to Ryan Boller for rapid implementation of the
CAMSHIFT game control demo and for major help in
implementing the testing routines for CAMSHIFT.

Intel Technology Journal Q2 ‘98

Computer Vision Face Tracking For Use in a Perceptual User Interface 15

References
[1] D. Comaniciu and P. Meer, “Robust Analysis of

Feature Spaces: Color Image Segmentation,”
CVPR’97, pp. 750-755.

[2] K. Fukunaga, “Introduction to Statistical Pattern
Recognition,” Academic Press, Boston, 1990.

[3] MMX TM technology optimized libraries in image,
signal processing, pattern recognition and matrix
math can be downloaded from
http://developer.intel.com/design/perftool/perflibst/index.ht
m)

[4] W.T. Freeman, K. Tanaka, J.Ohta, and K. Kyuma,
“Computer Vision for Computer Games,” Int. Conf.
On Automatic Face and Gesture Recognition, pp.
100-105, 1996.

[5] A.R. Smith, “Color Gamut Transform Pairs,”
SIGGRAPH 78, pp. 12-19, 1978.

[6] J.D. Foley, A. van Dam, S. K. Feiner and J.F.
Hughes, “Computer graphics principles and practice,”
Addison-Wesley, pp. 590-591.

[7] P. Fieguth and D. Terzopoulos, “Color-based tracking
of heads and other mobile objects at video frame
rates,” In Proc. Of IEEE CVPR, pp. 21-27, 1997.

[8] C. Wren, A. Azarbayejani, T. Darrell, A.Pentland,
“Pfinder: Real-Time Tracking of the Human Body,”
SPIE Vol. 2615, 1995.

[9] M. Hunke and A. Waibel, “Face locating and tracking
for human-computer interaction,” Proc. Of the 28th

Asilomar Conf. On Signals, Sys. and Comp., pp.
1277-1281, 1994.

[10] K. Sobottka and I. Pitas, “Segmentation and tracking
of faces in color images,” Proc. Of the Second Intl.
Conf. On Auto. Face and Gesture Recognition, pp.
236-241, 1996.

[11] M. Swain and D. Ballard, “Color indexing,” Intl. J. of
Computer Vision, 7(1) pp. 11-32, 1991.

[12] M. Kass, A. Witkin D.Terzopoulos, “Snakes: Active
contour Models,” Int. J. o f Computer Vision (1) #4,
pp. 321-331, 1988.

[13] C. Vieren, F. Cabestaing, J. Postaire, “Catching
moving objects with snakes for motion tracking,”
Pattern Recognition Letters (16) #7, pp. 679-685,
1995.

[14] A. Pentland, B. Moghaddam, T. Starner, “View-based
and Modular Eigenspaces for face recognition,”
CVPR’94, pp. 84-91, 1994.

[15] M. Isard, A. Blake, “Contour tracking by stochastic
propagation of conditional density,” Proc. 4th

European Conf. On Computer Vision, Cambridge,
UK, April 1996.

[16] T. Maurer, and C. von der Malsburg, “Tracking and
learning graphs and pose on image sequence of

faces,” Proc. Of the Second Intl. Conf. On Auto. Face
and Gesture Recognition, pp. 176-181, 1996.

[17] A. Azabayejani, T. Starner, B. Horowitz, and A.
Pentland, “Visually Controlled Graphics,” IEEE
Tran. Pat. Anal. and Mach. Intel. pp. 602-605, Vol.
15, No. 6, June 1993.

[18] Y. Cheng, “Mean shift, mode seeking, and
clustering,” IEEE Trans. Pattern Anal. Machine
Intell., 17:790-799, 1995.

Author’s Biography
Dr. Gary R. Bradski received a Ph.D. in pattern
recognition and computer vision from Boston University.
He works in computer vision research in the
Microcomputer Research Labs at Intel’s Mission College
campus. His interests include segmenting and tracking
people in visual scenes; perceptual computer interfaces;
applying visual 3D structure to 3D graphics; pattern
recognition; biological perception and self-organization.
His e-mail is gary.bradski@intel.com.

1

Proving the IEEE Correctness of Iterative
Floating-Point Square Root, Divide, and Remainder

Algorithms

 Marius Cornea-Hasegan, Microprocessor Products Group, Hillsboro, OR, Intel Corp.

Index words: floating-point, IEEE correctness, divide, square root, remainder

Abstract

The work presented in this paper was initiated as part of a
study on software alternatives to the hardware
implementations of floating-point operations such as
divide and square root. The results of the study proved the
viability of software implementations, and showed that
certain proposed algorithms are comparable in
performance to current hardware implementations. This
paper discusses two components of that study:

(1) A methodology for proving the IEEE correctness of
the result of iterative algorithms that implement the
floating-point square root, divide, or remainder
operation.

(2) Identification of operands for the floating-point
divide and square root operations that lead to results
representing difficult cases for IEEE rounding.

Some general properties of floating-point computations
are presented first. The IEEE correctness of the floating-
point square root operation is discussed next. We show
how operands for the floating-point square root that lead
to difficult cases for rounding can be generated, and how
to use this knowledge in proving the IEEE correctness of
the result of iterative algorithms that calculate the square
root of a floating-point number. Similar aspects are
analyzed for the floating-point divide operation, and we
present a method for generating difficult cases for
rounding. In the case of the floating-point divide
operation, however, it is more difficult to use this
information in proving the IEEE correctness of the result
of an iterative algorithm than it is for the floating-point
square root operation. We examine the restrictions on the
method used for square root. Finally, we present possible
limitations due to the finite exponent range.

Introduction
Floating-point divide, remainder, and square root are three
important operations performed by computing systems
today. The IEEE-754 Standard for Binary Floating-Point
Arithmetic [1] requires that the result of a divide or square
root operation be calculated as if in infinite precision, and
then rounded to one of the two nearest floating-point
numbers of the specified precision that surround the
infinitely precise result (the remainder will always be
exact).

Most processor implementations to date have used
hardware-based implementations for divide, remainder,
and square root. Recent research has led to software-based
iterative algorithms for these operations that are expected
to always generate the IEEE-correct result. Several
advantages can be envisioned. Firstly, software-based
algorithms lead to a possibly higher throughput than
before because they are capable of being pipelined;
secondly, they are easier to modify; and finally, they
reduce the actual chip size because they do not have to be
implemented in hardware.

Different algorithms are used depending on the target
precision of the result, or on the particular architecture of
the processor. In either case, performance and IEEE
correctness have to be ensured. The expected levels of
performance are possible due to improvements in the
floating-point architecture of most modern processors.
Proving the IEEE correctness of the results generated by
the divide, remainder, and square root operations, which is
of utmost importance for modern processors, is the object
of this paper. A new methodology for achieving this goal
is presented. Operands that lead to "difficult" cases for
rounding are also identified, allowing better testing of the
implementations for these operations. The method
presented was verified through a mix of mathematical
proofs, sustained by Mathematica [2], C language, and
assembly language programs.

Intel Technology Journal Q2’98

2

Correctness proofs following methods similar to those
presented in this paper, in conjunction with careful and
thorough verification and testing of the actual
implementation, should ensure flawless floating-point
divide, remainder, and square root operations on modern
processors that adopt iterative, software-based algorithms.

Some of the mathematical notations used in the following
sections are explained at the end of this paper.

General Properties of Floating-Point
Computations and IEEE Correctness

Floating-point numbers are represented as a concatenation
of a sign bit, an M-bit exponent field, and an N-bit
significand field. Mathematically

f = σ⋅s⋅2e

where σ =±1, s∈[1,2), e∈[emin, emax] ∩ Z, s = 1+k /2N-1,
k∈{0,1,2,…,2N-1-1}, emin = -2M-1+2, and emax = 2M-1–1. Let
FN be the set of floating-point numbers with N-bit
significands and unlimited exponent range, and let FM,N be
the set of floating-point numbers with M-bit exponents
and N-bit significands (no special values included). Note
that FM,N ⊂ FN ⊂ Q*.

The IEEE-754 Standard for Binary Floating-Point
Arithmetic allows several formats, but the most common
are single precision (M=8, N=24), double precision
(M=11, N=53), and double-extended precision (M=15,
N=64). Even though there is only a finite number of real
values that can be represented as floating-point numbers
(which constitute a finite subset of the rational numbers),
the total of 2⋅2M⋅2N floating-point numbers or special
values for a given precision can be huge. Verifying
correctness of a binary floating-point operation for
double-extended precision by exhaustive testing on a
state-of-the-art workstation could easily take 250 years.
The only operation that lends itself to such testing, from
among those considered herein, is the single precision
square root.

The variable density of the floating-point numbers on the
real axis implies that it would be difficult to have a
requirement regarding the absolute error when
approximating real values by floating-point numbers.
Instead, most iterative algorithms are analyzed by trying
to limit the relative error of the result being generated.

The IEEE-754 standard requires that the result of a divide
or square root operation be calculated as if in infinite
precision, and then rounded to one of the two nearest

floating-point numbers of the specified precision that
surround the infinitely precise result. Special cases occur
when this is outside the supported range. The IEEE
standard specifies four rounding modes: to nearest (rn), to
negative infinity (rm), to positive infinity (rp), and toward
zero (rz).

In order to determine whether an iterative algorithm for an
IEEE operation yields the correctly rounded result (in any
rounding mode), we have to evaluate the error that occurs
due to rounding in each computational step. Two
measures are commonly used for this purpose. The first is
the error of an approximation with respect to the exact
result, expressed in fractions of an ulp, or unit in the last
place. For the floating-point number f = σ⋅s⋅2e∈FN given
above, one ulp has the magnitude

1 ulp = 2e-N+1

An alternative is to use the relative error. If the real
number [is approximated by the floating-point number D,
then the relative error ε is determined by

a = x⋅(1+ε)

The non-linear relationship between ulps and the
corresponding relative error is illustrated in Figure 1
(where the outer envelopes mark the minimum and
maximum values of the relative error), by Theorem 1, and
also by Corollaries 1a and 1b of this theorem. For
example, if [> 1.000 in Figure 4, but [is much closer to
1.000 than to 1.001, then if we approximate [by D=1.001,
the relative error is close to the largest possible (when
staying within 1 ulp of the approximation), i.e., close to ε
= 1/8 (1/8 = 2-N+1 for N = 4).

Figure 1: Relative error when approximating within
1 ulp, positive real numbers by floating-point numbers

in F4

Theorem 1 (ulp-s versus relative error) Let x∈R* be a
real number, and a∈FN, a = σ⋅s⋅2e, |σ| = 1, s = 1+k/2N-1,
k∈Z,0 ≤ k ≤ 2N-1-1, e∈Z and m∈R, 0 < m ≤ 1. Then

Intel Technology Journal Q2’98

3

(a) For k≠0: a = σ⋅(1+k/2N-1)⋅2e ≅ x within m ulp of x ⇔
a = x⋅(1+ε), ε ∈ (-m /(2N-1+k+m), m/(2N-1+k–m))

(b) For k=0: a = σ⋅2e ≅ x within m ulp of x ⇔
a = x⋅(1+ε), ε∈(-m/(2N-1+m), m/(2N–m))

(For the sake of brevity, no proofs are included in this
paper.)

Several corollaries can be derived from this property, but
the following two are often useful.

Corollary 1a. Let x∈R*, and a∈FN*. If a ≅ x, within
1 ulp of x, then a = x⋅(1+ε), with |ε| < 1/2N-1 .

Corollary 1b. Let x∈R*, and a∈FN*. If a = x⋅(1+ε), with
|ε| < 1/2N , then a ≅ x, within 1 ulp of x.

Some properties used in IEEE correctness proofs are
formulated in terms of errors expressed in ulp-s. However,
it is easier to evaluate the errors introduced by each
computational step in an iterative algorithm as relative
errors. The two properties above, together with other
similar ones, are used in going back and forth from one
form to the other, as needed.

In order to show that the final result generated by a
floating-point algorithm represents the correctly rounded
value of the infinitely precise result [, one has to show
that the exact result and the final result of the algorithm
before rounding, \, lie within such an interval that,
through rounding, they end up at the same floating-point
number. Figure 2 illustrates these intervals over a binade
(an interval delimited by consecutive integer powers of the
base 2) when (a) only rounding to nearest, and (b) any
IEEE rounding mode is acceptable. In this figure, the
floating-point numbers are marked on the bottom real
axis.

First we will discuss the square root, and then we will
examine the divide and remainder operations.

Figure 2: Intervals that condition (a) xrn = yrn, and
(b) xrnd = yrnd

IEEE Correctness Proofs for Iterative Floating-
Point Square Root Algorithms

We will first present the means to determine difficult
cases for rounding in floating-point square root
operations, and then we will show how to use this
knowledge in proving the IEEE correctness of the result of
iterative algorithms implementing the floating-point
square root operation.

Iterative Algorithms for Floating-Point Square Root

Among the most common iterative algorithms for
calculating the value of the square root of a floating-point
number are those based on the Newton-Raphson method.
Such algorithms are suggested in [3]. Starting with an
initial guess of 1/√D, a very good approximation of 1/√D is
derived first in a number of iterations. From this, the value
of √D can be calculated. For example, an algorithm that
starts by determining the value of the root of
f ([) = 1/[2 - D , could have the following iteration:

ei = (1/2 – 1/2⋅a⋅yi
2)rn

yi+1 = (yi + ei⋅yi)rn

where ei is the error term, yi+1 is the next better
approximation, and the subscript rn denotes the IEEE
rounding to nearest mode.

No matter what iterative algorithm is being used, one can
easily evaluate the relative errors introduced in each
computational step. We will show that if the relative error
that we can derive is small enough, then the IEEE
correctness of the generated result is proven. In practice
though, the relative error of the final result is more often
than not larger than required. We can compensate for the
difference between what we can determine in terms of
relative error and what is needed, by knowing the values
of input arguments that lead to the most difficult cases for
rounding. The following subsections will show how to
achieve this.

Difficult Cases for Rounding

The lemma shown below allows difficult cases for
rounding to be determined. For rounding to nearest, these
are represented by values of the argument D of the square
root function such that √D is different from, but very close
to, a midpoint between two consecutive floating-point
numbers. For rounding toward negative infinity, positive
infinity, or zero, √D has to be different from, but very

2 2 2

2
p+1

2
p

p-N p-N+1 p-N+2

(b)

(a)

Intel Technology Journal Q2’98

4

close to, a floating-point number. We will show next how
to determine the most difficult cases in each category.

Lemma 1. (a) Let a∈FN, a > 0, a = σ⋅s⋅2e. Then its value
can be written as

 a = A ⋅ 2e-2N+2 for e = 2⋅u, u∈Z, or
a = A ⋅ 2e-2N+1 for e = 2⋅u+1, u∈Z

where A∈[22N-2, 22N-1), A ≡ 0 (mod 2N-1) for e=2⋅u, u∈Z,
and A∈[22N-1, 22N), A ≡ 0 (mod 2N) for e=2⋅u+1, u∈Z.

(b) √a∈FN if and only if √A∈[2N-1, 2N-1/2)∩Z for e=2⋅u,
u∈Z, and √a∈FN if and only if √A∈[2N–1/2, 2N)∩Z for
e=2⋅u+1, u∈Z (note that √A has to be an integer in both
cases).

(c) √a is a midpoint between two consecutive floating-
point numbers in FN if and only if √A is an integer + 1/2,
√A∈[2N-1, 2N).

(d) Let a∈FN. If √a∉FN, then √a∉FN+1 (this is to say that
√a cannot be a midpoint between two consecutive
floating-point numbers in FN; the observation is necessary,
as FN ⊂ FN+1).

The properties above will help us determine the difficult
cases for rounding. Consider first the cases of rounding
toward negative infinity, positive infinity, or zero. If
√D∉FN (it is not representable as a floating-point number
with N bits in the significand), then how close can it be to
a floating-point number I∈FN? Because the values of √$
fall in [2N-1, 2N), where floating-point numbers with N-bit
significands are integers and 1 ulp = 1, this can be re-
formulated as “how close can √$ be to an N-bit integer
number)?” The answer is given in Figure 3.

Figure 3: The distance G of $ to the square of an
integer)∈[2N-1, 2N)

This figure shows that our question is directly related to
“how close can A be to the square of an N-bit number in
[2N-1, 2N)?” To find out, we have to solve the equation

(2N-1 + k)2 = A + δ

for increasing values of δ∈Z*, and for 0 ≤ k ≤ 2N-1–1,
k∈Z. This leads to two cases, depending on whether the
exponent H of D is even or odd.

If H is even, according to Lemma 1, the equation above
becomes

(2N-1 + k)2 = 22N-2 + m ⋅ 2N-1 + δ

for 0 ≤ m ≤ 2N-1–1, m∈Z.

If H is odd, according also to Lemma 1, the equation
becomes

(2N-1 + k)2 = 22N-1 + m ⋅ 2N + δ

for 0 ≤ m ≤ 2N-1–1, m∈Z.

Solving the diophantine equations above (equations in
integer numbers) for δ = 1,-1,2,-2,3,-3,… we find at most
two acceptable solutions for each value of δ. For example,
for H even and δ = 1, the only solution is
A = 22N-2+2⋅2N-1, which is at a distance
 d = δ = 1 of (2N-1+1)2, the square of F = 2N-1+1. The
value of D�that corresponds to this $ (D�obtained as shown
in Lemma 1), has a significand of 1.00…010B, and it
constitutes a difficult case for rounding toward negative
infinity, positive infinity, or zero, as √D is different from,
but very close to, a floating-point number in FN (it is in
fact the “most difficult” such case). For example, for N =
24 and H = 0

 √1.00000000000000000000010B =
1.00000000000000000000000111111…B

is very close to, but less than,

1.00000000000000000000001B.

Consider next the case of rounding to nearest. If √D∉FN

(it is not representable as a floating-point number with N
bits in the significand), then how close can it be to a
midpoint between two consecutive floating-point numbers
in FN? This can be re-formulated as “how close can √$ be
to an N-bit integer number plus 1/2?” The answer is given
in Figure 4. This figure shows that our question is directly
related to “how close can $ be to the square of a midpoint
between two consecutive N-bit integer numbers in
FN∩[2N-1, 2N)?” To find out, we have to solve the
equation

(2N-1 + k + 1/2)2 = A + 1/4 + δ

F
2

A 2
2N2N-2

2

2
2N-1

A

Af(A) =

d

2N

F
N-1/22

A

2 N-1

Intel Technology Journal Q2’98

5

Figure 4: The distance d’ of A to the square of M,
M = integer +1/2∈[2N-1, 2N)

for increasing values (in absolute value) of δ∈Z, and for
0 ≤ k ≤ 2N-1–1, k∈Z. This leads again to two cases,
depending on whether the exponent H of D is even or odd.

If H is even, according to Lemma 1, the equation above
becomes

(2N-1 + k + 1/2)2 = 22N-2 + m ⋅ 2N-1 + 1/4 + δ

for 0 ≤ m ≤ 2N-1–1, m∈Z.

If H is odd, according also to Lemma 1, the equation
becomes

(2N-1 + k + 1/2)2 = 22N-1 + m ⋅ 2N + 1/4 + δ

for 0 ≤ m ≤ 2N-1–1, m∈Z.

Solving the diophantine equations above for δ = 0,1,-1,2,
-2,3,-3, … we find again at most two acceptable solutions
for each value of δ. For example, for H even and δ = 0, the
only solution is A = 22N-2+2N-1, which is at a distance
d = δ+1/4 = 1/4 of (2N-1+1/2)2, the square of
M = 2N-1+1/2. The value of D that corresponds to this $ (D
obtained as shown in Lemma 1), has a significand of
1.00…001B, and it constitutes a difficult case for rounding
to nearest, as √D is different from, but very close to, a
midpoint between two consecutive floating-point numbers
in FN (it is in fact the “most difficult” such case). For
example, for N = 24 and H = 0

√1.00000000000000000000001B =
1.000000000000000000000000111111… B

is very close to, but less than,

1.00000000000000000000000B + 1/2 ulp.

Not all solutions to the equations above can be
represented by simple formulas. For example, for H even
and δ = -2, we obtain

 A = 7e08a5000000H and a = 1.f82294H⋅2 e if N = 24
(√a very close to 1.673f4aH⋅2e/2+1/2 ulp)

 A = 1d407bb3641da50000000000000H and
a = 1. d407bb3641da5H⋅2 e if N = 53 (√a very
close to 1.5a24e31b39fa5H⋅2e/2+1/2 ulp)

 A = 4d7f90be2ec18ed98000000000000000H and
a = 1.35fe42f8bb063b66H⋅2e if N = 64 (√a very
close to 1.19b4bb639c98c0b4H ⋅ 2 e/2 + 1/2 ulp)

This method of determining values of the argument D that
lead to values of √D that are difficult to round is also
useful in generating good quality test vectors for any
implementation of the floating-point square root
operation, not just for iterative algorithms (these values
can be added to others chosen by different criteria). In
addition, this method can help in proving the IEEE
correctness of the result of iterative algorithms that
calculate the square root of a floating-point number, as
shown below.

General Properties

Two main properties, Theorems 2 and 3, are used in the
proposed method of proving the IEEE correctness of the
result of iterative floating-point square root algorithms.

Theorem 2. Let a∈FN, a>0, a = σ⋅s⋅2e. If √a∉FN, and A
is determined by scaling a as specified in Lemma 1, then
for any integer F∈[2N-1, 2N), and for any f∈FN

(a) The distance w√A between √A and F satisfies
w√A = | √A – F | > 1/2N+1

(b) The distance w√a between √a and f satisfies
w√a = | √a - f | > 2e/2-2N , if e = 2⋅u, and
w√a = | √a - f | > 2e/2-2N-1/2, if e = 2⋅u+1, u ∈ Z

This theorem states that if √D is not representable as a
floating-point number with an N-bit significand, then there
are exclusion zones of known minimal width around any
floating-point number, within which √D cannot exist. The
minimum distance between √D and I, or equivalently,
between √$ and), was determined by examining instead
the distance between $ and)2, as shown in Figure 3. The
minimal width of the exclusion zones can be extended by
gradually eliminating the difficult cases for rounding
toward negative infinity, positive infinity, or zero (starting
with the most difficult cases). For example, if we solve the
diophantine equations that determine these cases (as

2
A 2

2N2N-2
2

2
2N-1

A

Af(A) =

2 N

N-1/22

A

2 N-1

M

M

d’

Intel Technology Journal Q2’98

6

shown above) just for δ = 1,-1,2,-2,3, and -3, two
solutions are found for any N, and statements (a) and (b)
in Theorem 2 are modified to reflect exclusion zones that
are four times wider (in (b), the two inequalities were
replaced by the more restrictive one)

 (a) The distance w√A between √A and F satisfies
w√A = | √A - F | > 1/2N-1, except for
A1 = 22N-2 + 2⋅2N–1 if e = 2⋅u, u∈ Z, and
A2 = 22N - 2⋅2N if e = 2⋅u+1, u∈Z

 (b) The distance w√a between √a and f satisfies
w√a = | √a - f | > 2e/2-2N+3/2, except for
a1 = (1+2–N+2) ⋅ 2e if e = 2⋅u, u∈Z, and
a2 = (2–2–N+2) ⋅ 2e if e = 2⋅u+1, u∈Z

This property is used in conjunction with the one from
Theorem 3.

Theorem 3. Let a∈FN, a > 0, a = σ⋅s⋅2e. If √a∉FN, and A
is determined by scaling a as specified in Lemma 1, then
for any midpoint m between two consecutive numbers in
FN, and for any midpoint M between two consecutive
integers in [2N-1, 2N), M = k+1/2∈[2N-1, 2N), k∈Z

(a) The distance w√A’ between √A and M satisfies
w√A’ = | √A - M | > 1/2N+3

(b) The distance w√a’ between √a and m satisfies
w√a’ = | √a - m | > 2e/2-2N-2, if e = 2⋅u, and
w√a’ = | √a - m | > 2e/2-2⋅N-5/2, if e = 2⋅u+1, u∈Z

This theorem states that if √D is not representable as a
floating-point number with an N-bit significand, then there
are exclusion zones of known minimal width around any
midpoint between two consecutive floating-point
numbers, within which √D cannot exist. The minimum
distance between √D and P, or equivalently, between √$
and 0, could be determined by examining instead the
distance between $ and 02, as shown in Figure 4. Just as
in the case of Theorem 2, the minimal width of the
exclusion zones can be extended by gradually eliminating
the difficult cases for rounding toward nearest (starting
with the most difficult cases). For example, if we solve the
diophantine equations that determine these cases (as
shown above) just for δ = 0,1,-1,2,-2,3,-3, and –4, seven
solutions are found for N=24, N=53, and N=64 (but not
always from the same equation for all the three values of
N), and statements (a) and (b) in Theorem 3 are modified
to reflect exclusion zones that are 17 times wider (in (b),
the two inequalities were replaced by the more restrictive
one):

(a) The distance w√A' between √A and M satisfies
w√A' = | √A - M | > 17/2N+3

 except for a set of known values A1' through A7'.

(b) The distance w√a' between √a and m satisfies
w√a' = | √a - m | > 17⋅2e/2-2N-5/2

 except for a set of known values a1' through a7'.

Some of the actual values of ai' and of the corresponding
Ai' (not shown here) were determined directly from
mathematical expressions, but others were determined by
C programs, using recursion. Note that it is not necessary
to have the same number of solutions for different values
of N.

This property is used, as explained below, in conjunction
with that in the preceding Theorem 2.

IEEE Correctness of Iterative Floating-Point Square
Root Algorithms

In order to prove that an iterative algorithm for calculating
the square root of a floating-point number D generates a
result that is IEEE correct, we have to show that the result
R* before rounding and the exact value of √D lead,
through rounding, to the same floating-point number. If
the result R* before rounding and the exact √D are closer
to each other than half of the minimum width of any
exclusion zone determined as shown in Theorems 2 and 3,
then (R*)rnd = (√a)rnd for any IEEE rounding mode rnd.
This is illustrated in Figure 2 (b) above and in Figure 5.

Figure 5: Exclusion zones around floating-point
numbers I and around midpoints P between

consecutive floating-point numbers

As in Theorem 2 (a), 1/2N+1 = 1/2N+1 ulp in FN = 1 ulp in
F2N + 1, and in Theorem 3 (a), 1/2N+3 = 1/2N+3 ulp in FN =
1 ulp in F2N+3, the above can be expressed in the following
corollaries of these two theorems:

Corollary 2. If a∈FN, a > 0, R*∈R and |R* - √a| ≤ 1 ulp
in F2N+1, then (R*)rnd = (√a)rnd for any rounding mode
rnd∈{ rm, rp, rz}

Corollary 3. If a∈FN, a > 0, R*∈R and |R* - √a| ≤ 1 ulp
in F2N+3, then (R*)rn = (√a)rn

In practice, the inequalities to be verified are

m f m f m f m

R*
a

a

δ

a
2 w2 w’

Intel Technology Journal Q2’98

7

|R* - √a| ≤ (w√a)min

|R* - √a| ≤ (w√a’)min

The method of proving the IEEE correctness of the result
of an iterative algorithm that calculates the square root of
a floating-point number can then be summarized as a
sequence of steps:

Step 1. Evaluate the relative error ε of the final result
before rounding

R* = √a⋅(1+ε)

where an upper bound for |ε| is known as |ε| ≤ 2-p, for
some given p∈R, p > 0.

Step 2. Evaluate |R* - √a| = |√a⋅ε| ≤ √a⋅2-p and determine
the minimum widths (w√a)min and (w√a’)min for which the
following hold

|R* - √a| ≤ (w√a)min

|R* - √a| ≤ (w√a’)min

Step 3. For Theorems 2 and 3, determine a sufficient
number of difficult cases for rounding, to allow
augmenting the widths of the exclusion zones to the values
determined in Step 2 (the smaller this new minimum
width, the fewer the points we have to determine). Except
possibly for these values, the iterative algorithm for
calculating √D generates a result that is IEEE correct.
Alternatively, instead of steps 1, 2, 3 above, we could use
Theorem 1 to verify that the conditions in Corollaries 2
and 3 are satisfied.

Step 4. Verify directly that the algorithm generates IEEE
correct results for the special points determined in Step 3.
Once this is done, the algorithm is proven to generate
IEEE correct results for all the possible input values of the
argument.

The method presented above was applied to several
software-based iterative algorithms for calculating the
square root of a floating-point number. It proved to be of
good practical value, as the number of special points to be
verified directly was never larger than 20. It therefore
represents a viable option for verifying correctness of this
class of algorithms.

IEEE Correctness Proofs for Iterative
Floating-Point Divide and Remainder
Algorithms

As we did for square root, we will first present a method
for determining difficult cases for rounding in floating-

point divide operations. We will show, however, that a
perfect parallel with the square root is not possible.

The IEEE correctness of the floating-point remainder
operation (which is always exact, and therefore not
affected by the rounding mode) is a direct consequence of
the IEEE correctness of the result of the floating-point
divide operation, as

rem(a,b) = a – b⋅near(a/b)

where near([) is the nearest integer to the real number [.
Two problems arise. First, we must verify that near(a/b)
fits in an integer ([4] explains this). Second, we must
counter the possibility of a double rounding error because
what we calculate is actually

rem(a,b) = a – b⋅near ((a/b)rn)

To do this, we just need to compare (a/b)rn and (a/b)rz, and
apply a correction if needed. Note that this might occur
only in the tie cases for the rounding to nearest performed
in near((a/b)rn).

It is thus straightforward to prove the IEEE correctness of
the floating-point remainder operation, once we have
proved it for the floating-point divide. Therefore, from
this point on, we will focus on the floating-point divide
operation.

Iterative Algorithms for Floating-Point Divide

Just as for square root, among the most common iterative
algorithms for calculating the value of the quotient of two
floating-point numbers, D�E, are those based on the
Newton-Raphson method. Such algorithms are suggested
also in [3]. Starting with an initial guess of 1/E, a very
good approximation of 1/E is derived first in a number of
iterations. From this, the value of D�E can be calculated.
For example, an algorithm that starts by determining the
value of the root of f ([) = E - 1/[, could have the
following iteration:

ei = (1 – b ⋅ yi)rn

yi+1 = (yi + ei ⋅ yi)rn

where ei is the error term, and yi+1 is the next better
approximation.

Regardless of the particular iterative algorithm being used,
one can evaluate the relative errors introduced in each
computational step. We will show that if the relative error
that we can derive is small enough, then the IEEE
correctness of the generated result is easily proven. In
practice though, the relative error of the final result is

Intel Technology Journal Q2’98

8

larger than desired. In the case of the divide (unlike for the
square root), we cannot easily compensate for the
difference between what we can determine in terms of
relative error and what is needed. In such cases,
alternative methods have to be used, such as those
presented in [3].

Difficult Cases for Rounding

For rounding to nearest, the difficult cases are represented
by values of the arguments D and E of the divide operation
such that D�E is different from, but very close to, a
midpoint between two consecutive floating-point
numbers. For rounding toward negative infinity, positive
infinity, or zero, D�E has to be different from, but very
close to, a floating-point number. We will show next how
to determine the most difficult cases in each category.

The following lemma shows how to scale D and E to $
and % respectively in order to make reasoning easier (D
and E are assumed to be positive here).

Lemma 2. Let N∈Z, N ≥ 3, a,b∈FN*, and rnd any IEEE
rounding mode. Then

(a) a/b can be expressed as a/b = A/B⋅2E, where A∈Z∩FN,
A ≡ 0 (mod 2N-1) , B∈[2N–1,2N)∩Z and (A/B)rnd∈[2N-1,2N)
∩Z. Let A = 2k⋅A1, such that
A1∈[2N–1, 2N)∩Z. If A1<B then k = N, and if A1>B,
then k = N–1.

(b) a/b∈FN if and only if A/B∈[2N-1,2N)∩Z.

(c) a/b is a midpoint between two consecutive floating-
point numbers in FN if and only if A/B is an
integer + 1/2 in [2N-1,2N).

(d) If a/b∉FN, then a/b∉FN+1 (this is to say that a/b cannot
be a midpoint between two consecutive floating-point
numbers in FN; the observation is necessary, as FN⊂FN+1).

Note that above, A1/B = sa/sb (ratio of the significands).

We can now determine the most difficult cases for
rounding.

Consider first the cases of rounding toward negative
infinity, positive infinity, or zero. If D�E∉FN (it is not
representable as a floating-point number with N bits in the
significand), then how close can D�E be to a floating-
point number f∈FN? Because the values of A/B fall in [2N-

1,2N), where floating-point numbers with N-bit
significands are integers, and 1 ulp = 1, this can be re-
formulated as “how close can $�% be to an N-bit integer
number)?” To answer this, we have to solve the equation

A/B = q + δ/B

for increasing values of δ∈Z*, and for q∈[2N–1,2N)∩Z.
This leads to two cases, depending on whether A1<B, or
A1>B (see Lemma 2 (a) above).

If A1<B, according to Lemma 2, the equation above
becomes

2N⋅A1 = B⋅q + δ

If A1>B, according also to Lemma 2, the equation
becomes

2N-1⋅A1 = B⋅q + δ

In both cases, q∈[2N–1, 2N)∩Z.

We can solve the diophantine equations above for
δ = 1, -1,2,-2,3,-3, … and B fixed. The method we
applied was to use Euclid’s algorithm to determine the
greatest common divisor of 2k and B, gcd (2k, B) (where
k=N or k=N-1), and to express it as a linear combination
of B and 2k. This yields a base solution, from which all the
admissible solutions can be derived (see [5] for using
Euclid’s algorithm to determine above solutions). The
most difficult cases are obtained for δ=1 and δ=-1. The
number of solutions is very large (unlike for the square
root), which makes it impractical to verify them all for a
given divide algorithm. For example, for N=24, A1<B,
and δ=1, the number of solutions is 1289234. One
example is

 0.a49d25H / 0.ff7e75H = .a49e2300000100018b…H

which is very close to, but greater than, .a49e23H.

Consider next the case of rounding to nearest. If a/b ∉ FN

(it is not representable as a floating-point number with N
bits in the significand), then how close can it be to a
midpoint between two consecutive floating-point numbers
in FN? This can be re-formulated as “how close can A/B
be to an N-bit integer number plus 1/2?” To find out, we
have to solve the equation

A/B = q + 1/2 + δ/B

for increasing values (in absolute value) of δ, 2⋅δ∈Z*, and
for q∈[2N–1,2N)∩Z. We can solve the diophantine
equations above for δ = 1/2,-1/2,1,-1,3/2,-3/2, … and B
fixed. The method applied was similar to that described
for the other three rounding modes. The most difficult
cases for rounding are obtained for δ = 1/2 and δ = -1/2,
when B is odd. The number of solutions is again very
large. For example, for N = 24, A1<B, and δ = -1/2, the
number of solutions is 1285649. One example is

 0.c8227b H / 0.e73317H = .dd9a537fffff 724506a…H

which is very close to, but less than, .dd9a53H + 1/2 ulp.

Intel Technology Journal Q2’98

9

For N=24, A1 < B, and δ=1/2, the number of solutions is
1287219. An example is

 0.ac1228 H / 0.b461d1H = .f43467800000b5a8…H

which is very close to, but greater than, .f43467H+1/2 ulp.

The method of determining values of the arguments D and
E that generate values of D�E that are difficult to round is
also useful in generating good quality test vectors for any
implementation of the floating-point divide operation (not
just for iterative algorithms), that can be added to others
chosen by different criteria. In addition, this method can
help in proving IEEE correctness of certain iterative
algorithms for calculating the result of the floating-point
divide operation, as shown below.

General Properties

Two main properties, Theorems 4 and 5, are used in the
proposed method of proving the IEEE correctness of the
result generated by iterative floating-point divide
algorithms. They are expressed in terms of the scaled
values $ and % of the arguments D and E, as explained by
Lemma 2 above.

Theorem 4. Let a,b∈FN, a=σa⋅sa⋅2e_a , b=σb⋅sb⋅2e_b. If
a/b∉FN, and A and B are determined by scaling a and b
respectively as specified in Lemma 2, then for any f∈FN,
and for any integer F∈[2N-1,2 N)

(a) The distance wA/B between A/B and F satisfies
wA/B = | A/B - F | > 1/2N

(b) The distance wa/b between a/b and f satisfies
wa/b = | a/b - f | > 2e_a–e_b–2N, if sa < sb, and

 wa/b = | a/b - f | > 2e_a–e_b–2N+1, if sa > sb

This theorem states that if D�E is not representable as a
floating-point number with an N-bit significand, then there
are exclusion zones of known minimal width around any
floating-point number, within which D�E cannot exist.
The minimal width of the exclusion zones cannot be easily
extended in this case. If we try to gradually eliminate the
difficult cases for rounding toward negative infinity,
positive infinity, or zero (starting with the most difficult
cases), we find too many cases to make it practical to
verify directly.

Theorem 5. Let a,b∈FN, a=σa⋅sa⋅2e_a , b=σb⋅sb⋅2e_b. If
a/b∉FN, and A and B are determined by scaling a and b
respectively as specified in Lemma 2, then for any
m∈FN+1-FN (midpoint between two consecutive floating-
point numbers in FN), and for any M, integer+1/2∈
[2N-1,2N)

(a) The distance wA/B’ between A/B and M satisfies
wA/B’ = | A/B - M | > 1/2N+1

(b) The distance wa/b’ between a/b and m satisfies
wa/b’ = | a/b - m | > 2e_a–e_b–2N-1 , if sa < sb, and

 wa/b’ = | a/b - m | > 2e_a – e_b–2 N , if sa > sb

This theorem states that if D�E is not representable as a
floating-point number with an N-bit significand, then there
are exclusion zones of known minimal width around any
midpoint between two consecutive floating-point
numbers, within which D�E cannot exist. Just as in the
case of Theorem 4, the minimal width of the exclusion
zones cannot be easily extended.

This property is used, as explained below, in conjunction
with that in the preceding Theorem 4.

IEEE Correctness of Iterative Floating-Point
Divide Algorithms

In order to prove that the result of an iterative algorithm
for calculating the quotient D�E is IEEE correct, we have
to show that the result R* before rounding and the exact
value of D�E lead, through rounding, to the same floating-
point number. If the result R* before rounding and the
exact D�E are closer to each other than half of the
minimum width of any exclusion zone determined as
shown in Theorems 4 and 5, then (R*)rnd = (a/b)rnd for
any IEEE rounding mode rnd. Figure 5 above, which
illustrates this idea for the square root, is applicable in this
case too.

As in Theorem 4 (a), 1/2N = 1/2N ulp in FN = 1 ulp in F2N,
and in Theorem 5 (a), 1/2N+1 = 1/2N+1 ulp in FN = 1 ulp in
F2N+1, the above can be expressed in the following
corollaries of these two theorems:

Corollary 4. If a,b∈FN, R*∈R and |R*-a/b| ≤ 1 ulp in F2N,
then (R*)rnd = (a/b)rnd for any rounding mode rnd ∈ {rm,
rp, rz}

Corollary 5. If a,b∈FN, R*∈R and |R*-a/b| ≤ 1 ulp in
F2N+1, then (R*)rn = (a/b)rn

In practice, the inequalities to be verified are

|R* - a/b| ≤ (wa/b)min

|R* - a/b| ≤ (wa/b’)min

The method of proving the IEEE correctness of the result
of an iterative algorithm that calculates the quotient of two
floating-point numbers can then be summarized as a
sequence of steps:

Intel Technology Journal Q2’98

10

Step 1. Evaluate the relative error ε of the final result
before rounding:

R* = a/b⋅(1+ε)

where an upper bound for |ε| is known as |ε| ≤ 2-p, for some
given p∈R, p > 0.

Step 2. Evaluate |R* - a/b| = |(a/b)⋅ε| ≤ |a/b|⋅2-p. If the
following hold

|a/b| ⋅ 2-p ≤ (wa/b)min

|a/b| ⋅ 2-p ≤ (wa/b’)min

then the algorithm generates IEEE-correct results for any
input values D and E.

The method presented above was applied to software-
based iterative algorithms for calculating the quotient of
two floating-point numbers, when sufficient extra
precision existed for the intermediate computational steps
to allow the conditions above to be satisfied. Whenever
this is not possible, alternative methods, such as the one
presented in [3], have to be used.

It is worth mentioning that Corollaries 4 and 5 above were
also obtained independently, starting from the following
Lemma:

Lemma 3. Let a,b∈FN, b≠0. Then

(a) Either a/b∈FN (the exact a/b is representable with N
bits in the significand), or a/b is periodic.

(b) If a/b∉FN (it is periodic), then its infinite
representation in binary cannot contain more than N-1
consecutive zeroes past the first binary one, and it cannot
contain more than N-1 consecutive ones.

The Effect of the Limited Exponent Range

A note should be made here regarding the effect of the
limited exponent range in iterative algorithms. If we
analyze the algorithm by assuming valid inputs in a given
floating-point format, and a certain precision (significand
size) is ensured for all the computational steps, we may
draw the conclusion (possibly using methods such as those
presented above) that the final result is IEEE correct. It is
possible though for an intermediate computational step to
overflow, underflow (due to the limited exponent range),
or to lose precision (due to the limited exponent range and
to the limited significand size). Such cases have to be
identified by carefully examining every computation step
and, if they exist, the input operands that can lead to them
have to be singled out. For such operands, alternate
software algorithms are expected to be used in order to
generate the IEEE-correct results, most likely by

appropriate scaling of the input values and corresponding
scaling back of the results.

Results
There are two main results of the work described in this
paper.

First, a new method of proving IEEE correctness of the
result of iterative algorithms that calculate the square root
of a floating-point number was devised. This included
establishing theoretical properties that also allowed
determination of difficult cases for any of the four IEEE
rounding modes, and for any desired precision. The
method proposed for proving the IEEE correctness was
successfully used for several algorithms that calculate the
square root of single precision, double precision, and
double-extended precision floating-point numbers.

Second, a parallel was drawn for iterative algorithms that
calculate the quotient of two floating-point numbers.
Again, the theoretical study allowed determination of
difficult cases for rounding for any precision (single,
double, or double-extended). The method proposed for
proving the IEEE correctness of the result was
successfully used this time only for algorithms that
calculate the quotient of two single precision floating-
point numbers. The reason for this limitation was clearly
identified.

Overall, the study helped to demonstrate that efficient,
IEEE-correct, software-based algorithms can compete
with hardware-based implementations for floating-point
square root and divide.

Discussion
The methods proposed are general and can be applied to
any iterative algorithm that implements the floating-point
square root or divide operation. Their usefulness was
verified for software-based algorithms.

The method proposed for proving the IEEE correctness of
the result for the floating-point square root operation
should work for any iterative algorithm. Based on this
method, it is possible to completely automate the
verification process, and to build an IEEE correctness
checker that would take as input the algorithm to be
verified, together with the precision and rounding mode
for every step. The method proposed for proving the IEEE
correctness of the result for the floating-point divide
operation will only work if there is sufficient extra
precision in the intermediate calculations with respect to
the precision of the final result. This will hold mostly for
single-precision computations, but might also be true for
higher precisions, depending on the particular
implementation.

Intel Technology Journal Q2’98

11

Methods to generate cases of difficult operands for
rounding were also described, which are independent of
any particular algorithm. They can be used to generate test
vectors for any desired precision.

Conclusion
The two goals stated in the beginning of this paper were
reached: a methodology for proving the IEEE correctness
of the results for iterative algorithms that implement the
square root, divide, and remainder operations was
established, and operands that lead to results that
constitute difficult cases for rounding were identified.
This work is important to Intel Corporation because it
proves the existence and viability of alternatives to the
hardware implementations of these operations.

Notation

Some of the mathematical notations used in this paper are
given here for reference:

N the set of natural numbers

Z the set of integer numbers

Q the set of rational numbers

R the set of real numbers

FN the set of floating-point numbers with N-bit
significands and unlimited exponent range

FM,N the set of floating-point numbers with M-bit
exponents and N-bit significands

D∈S D is a member of the set S

S∩T the intersection of sets S and T

S∪T the union of sets S and T

S⊂T the set S is a subset of set T

S−T the difference of sets S and T

[O�K] the set of real values [, O ≤ [≤ K

(O�K) the set of real values [��O�< [�<�K

[≅ \ the real number [is approximately
equal to the real number \

S ⇔ T statement S is equivalent to statement T

m ≡ n (mod p) integers m and n yield the same
remainder when divided by the positive
integer p

In all the cases of sets, an asterisk (*) indicates the
absence of the value 0, e.g., R* = R \ {0}.

Acknowledgments
The author thanks Roger Golliver from Intel Corporation,
Peter Markstein from Hewlett-Packard Company, and
Marius Dadarlat from Purdue University for their support,
ideas, and/or feedback regarding parts of the work
presented in this paper.

References
[1] ANSI/IEEE Std 754-1985, IEEE Standard for Binary

Floating-Point Arithmetic, IEEE, New York, 1985.

[2] Wolfram, S., Mathematica – A System for Doing
Mathematics by Computer, Adison-Wesley Publishing
Company, 1993.

[3] Markstein, P., Computation of Elementary Functions
on the IBM RISC System/6000 Processor, IBM
Journal, 1990.

[4] Pentium® Pro Family Developer’s Manual, Intel
Corporation, 1996, pp. 11-152 to 11-154.

[5] Stark, H. M., An Introduction to Number Theory, The
MIT Press, Cambridge MA, 1995, pp. 16-50.

Author’s Biography
Marius Cornea-Hasegan is a staff software engineer with
Microcomputer Software Labs at Intel Corporation in
Hillsboro, OR. He holds an M.Sc. in Electrical
Engineering from the Polytechnic Institute of Cluj,
Romania, and a Ph.D. in Computer Sciences from Purdue
University, in West Lafayette, IN. His interests include
mainly floating-point architecture and algorithms,
individually or as parts of a computing system, and formal
verification. His e-mail address is
marius.cornea@intel.com.

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 1

Demystifying Multimedia Conferencing Over the Internet
Using the H.323 Set of Standards

James Toga, Emerging Products Division, Intel Architecture Labs, Intel Corporation
Hani ElGebaly, Emerging Products Division, Intel Architecture Labs, Intel Corporation

Index words: H.323, conferencing, Internet, multimedia, gatekeeper

Abstract
The Telecommunication Sector of the International
Telecommunication Union (ITU-T) has developed a set of
standards for multimedia conferencing over packet-based
networks. These standards are aggregated under a
standard umbrella termed Recommendation H.323.
Recommendation H.323 describes terminals, equipment,
and services for multimedia communication over networks
such as the Internet.

H.323 terminals and equipment carry real-time voice,
video, and data, in any combination thereof. Terminals
signal calls using Q.931-derived procedures defined in
Recommendation H.225.0. After the call signaling phase,
terminals proceed to the call control phase where they
exchange capabilities and logical channel information
using the H.245 protocol defined in Recommendation
H.245. Once the call has been established, audio and
video (if supported) are initiated. Both media types use
the Real Time Protocol (RTP) defined by the Internet
Engineering Task Force (IETF) as their Transport
Protocol. Procedures for audio and video packet format
and transport are described in Recommendation H.225.0.
Recommendation H.323 allows for the use of a variety of
video codecs (e.g., H.261, H.263, H.263+) and audio
codecs (e.g., G.711, G.723.1). Data collaboration is also
allowed using Protocol T.120. We provide an overview of
these protocols and explain the H.323 call scenario.

Other entities such as gatekeepers, Multipoint Control
Units (MCUs), and gateways are also addressed in
Recommendation H.323. These entities allow network
management, centralized multipoint, and interoperability
with other conferencing standards. We explain each of
these entities briefly and provide some scenarios of their
interaction with the H.323 terminals.

IP telephony has become an important driver for packet-
based communications. We address the role of H.323
procedures in deploying IP telephony, and describe how

new H.323 features such as supplementary services and
security facilitate this purpose.

Introduction
Recommendation H.323 [8] describes the procedures for
point-to-point and multipoint audio and video
conferencing over packet-switched networks. In addition
to video conferencing terminals, Specification H.323
describes other H.323 entities including gateways,
gatekeepers, and MCUs. Gateways allow interoperation of
H.323 systems with other audio/video conferencing
systems on integrated services digital networks (ISDN),
plain old telephone systems (POTS), asynchronous
transfer mode (ATM), and other transports. Gatekeepers
provide admission control and address translation to
H.323 endpoints. MCUs can engage more than two H.323
endpoints in a centralized multipoint conference.

Recommendation H.323 comprises a number of related
documents that describe terminals, equipment, services,
and interactions. Examples of other core standards that are
referred to in Recommendation H.323 are H.225.0 [5]
(procedures for call signaling, media packet format, and
synchronization); H.245 [7] (procedures for capability
exchange, channel negotiation, and flow control); H.450.x
[11] (procedures for supplementary services); H.246 [8]
(procedures for terminals’ interoperability through
gateways); and H.235 (security and encryption
procedures). Other referenced standards include media
codecs for audio (such as, G.711, G.723.1, G.729, and
G.722) and video (such as, H.261 and H.263).

The purpose of this paper is to present an overview of the
H.323 core components and functionality and the current
industry trends with respect to H.323, such as IP
telephony and corporate conferencing. Towards this goal,
we briefly describe the H.323 architecture, the
responsibilities of H.323 entities, and basic call scenarios.
The main obstacles to the adoption and deployment of the
H.323 standard in industry are also explained. Finally,

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 2

H.323 zone management, multipoint operation, telephony
services features, and security are highlighted.

H.323 Architecture

Video I/O

Audio I/O

Delay

User App

 Video

Network

Interface

Pkt H.225

T.120, etc.

H.245

Scope of Recommendation H.323

Recv
Path

G.711

 G.729
G.723.1

Layer

Control

User

Interface

System

H.261

H.263

Q.931

RAS

Audio

G.722

G.728

Figure 1: H.323 architecture

The architecture of an H.323 terminal is shown in Figure
1. The scope of Recommendation H.323 is limited to the
definition of the media compression standard, packet
format, signaling, and flow control. Media capturing such
as video capturing schemes, audio recording, or user data
applications are outside the scope of Recommendation
H.323. Initial H.323 implementations targeted IP
networks; however, Recommendation H.323 supports
alternative transports such as IPX. The Transport layer
carries control and media packets over the network; there
are no specific requirements for the underlying transport
except for support for reliable and unreliable packet
modes. An example of a well-known transport is User
Datagram Protocol (UDP) over Internet Protocol (IP).

The video codec (e.g., H.261, etc.) encodes the video
from the video source (i.e., camera) for transmission and
decodes the received video code that is output to a video
display. The mandatory video codec for an H.323 terminal
is H.261 [3] with quarter common intermediate format
(QCIF) resolution. (QCIF is a video picture size.) Other
codecs such as H.263 may be supported. H.263 [4] has
better picture quality and more options. A terminal can
also support other picture sizes such as CIF and SQCIF.
During the terminal capability exchange phase, the video

codecs, resolution, bitrate, and algorithm options are
exchanged between terminals, using the H.245 protocol.
Terminals can open channels only with parameters and
options chosen from the intersection of the capability sets.
In general, the receiver always specifies what the
transmitter may send.

The audio codec (G.711, etc.) encodes the audio signal
from the microphone for transmission and decodes the
received audio code that is output to the loudspeaker.
G.711 0 is the mandatory codec for an H.323 terminal. A
terminal may be capable of optionally encoding and
decoding speech using Recommendations G.722, G.728,
G.729, MPEG1 audio, and G.723.1. Since G.711 is a
high-bitrate codec (64Kb/s or 56Kb/s), it cannot be
carried over low-bitrate (< 56 kbps) links. G.723.1 [2] is
the preferred codec in this situation because of its
reasonably low rate (5.3Kb/s and 6.4 Kb/s). H.323
terminals open logical channels using a common
capability that is supported by all entities and exchanged
during the H.245 capability exchange phase.

The Data Channel supports telematic applications such as
electronic whiteboards, still image transfer, file exchange,
database access, audiographics conferencing, etc. The
standardized data application for real-time audiographics
conferencing is T.120. Other applications and protocols
may also be used via H.245 negotiation such as chatting
and fax.

The System Control Unit (H.245, H.225.0) provides
signaling and flow control for proper operation of the
H.323 terminal. H.245 [7] is the media control protocol
that allows capability exchange, channel negotiation,
switching of media modes, and other miscellaneous
commands and indications. The H.225 standard describes
the Call-Signaling Protocol used for admission control
and for establishing connection between two or more
terminals. The Connection Establishment Protocol is
derived from the Q.931 specification [12]. The H.225.0
[5] Layer also formats the transmitted video, audio, data,
and control streams into messages for output to the
network interface, and it retrieves the received video,
audio, data, and control streams from messages that have
been input from the network interface, using the Real
Time Transport Protocol (RTP) and its companion, the
Real Time Control Protocol (RTCP). The RTP performs
logical framing, sequence numbering, timestamping,
payload distinction, source identification, and
occasionally, error detection and correction as appropriate
to each media type. The RTCP provides reporting and
status that may be used by both senders and receivers to
correlate performance on the media streams.

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 3

H.323 Entities and Responsibilities

Terminal 1 Terminal 2

Terminal 3
MCU

Gatekeeper

Gateway

Packet Switched Network

MC MP

Figure 2: H.323 entities

Figure 2 shows the different entities that can be involved
in an H.323 conference. A gatekeeper is an optional
element in an H.323 conference that provides call control
services to the H.323 endpoints such as address
translation, admission control, bandwidth control, and
zone management. The gatekeeper may also provide other
optional functions such as call authorization and call
accounting information. A gatekeeper cannot be specified
as a destination in a call. Address translation is the method
by which an alias address (e.g., e-mail address) is
translated to a transport address. Admission control is a
way of limiting H.323 access to a network, or to a
particular conference using Request, Admission, and
Status (RAS) messages defined in Recommendation
H.225.0. A gatekeeper also manages bandwidth allocation
to H.323 endpoints using RAS messages. Zone
management defines the scope of entities over which a
gatekeeper has control. These include endpoints,
gateways, and MCUs. In addition, a gatekeeper can allow
secure access to the conference using various
authentication mechanisms. Q.931 and H.245 messages
can be routed through the gatekeeper, and statistical
information about the calls in progress can be collected.
Gatekeepers may also perform telephony service
operations such as call forwarding and call transfer.

H.323 endpoints can interact with each other directly in a
point-to-point or multipoint conference if no gatekeeper is
present. When a gatekeeper is present, all endpoints have
to register with it.

A gateway operates as an endpoint on the network that
provides real-time, two-way communication between
H.323 terminals on the packet-based network and other
ITU terminals on a switched-circuit network, or to another
H.323 gateway. Other ITU terminals include those
complying with Recommendations H.310 (B-ISDN),
H.320 (ISDN), H.321 (ATM), H.322 (GQoS-LAN),
H.324 (GSTN), H.324M (Mobile), and POTS. The
gateway provides the appropriate translation between
transmission formats (for example, H.225.0 of an H.323
endpoint to/from H.221 of an H.320 endpoint) and
between communication procedures (for example, H.245

of an H.323 endpoint to/from H.242 of an H.320
endpoint). This translation is specified in
Recommendation H.246. The gateway also performs call
setup and clearing on both the network side and the
Switched-Circuit Network (SCN) side. Translation
between video, audio, and data formats may also be
performed in the gateway. In general, the purpose of the
gateway is to complete the call in both directions between
the network endpoint and the SCN endpoint in a
transparent fashion.

The MCU is an endpoint on the network, which provides
the capability for three or more terminals or gateways to
participate in a multipoint conference. It may also connect
two terminals in a point-to-point conference, which may
later develop into a multipoint conference. The MCU
consists of two parts: a mandatory Multipoint Controller
(MC) and optional Multipoint Processors (MP). The MC
provides the capability for call control to negotiate with
all terminals to achieve common levels of communication.
It is this element that is required for all multipoint
conferences. The MP allows mixing, switching, or other
processing of media streams under the control of the MC.
The MP may process a single media stream or multiple
media streams depending on the type of conference
supported. In the simplest case, an MCU may consist only
of an MC with no MPs.

The following section provides an overview of the basic
operation of an H.323 endpoint in a point-to-point
conference without a gatekeeper and then with a
gatekeeper.

H.323 General Operation
Figure 3 shows call establishment and tear down steps
between two H.323 endpoints without a gatekeeper. All of
the mandatory Q.931 and H.245 messages exchanged are
listed. Note that some of these messages may be
overlapped for increased performance. Each message has
an assigned sequence number at the originating endpoint.
Endpoint A starts by sending a Setup message (1) to
endpoint B containing the destination address. Endpoint B
responds by sending a Q.931 Alerting message (2)
followed by a Connect message (3) if the call is accepted.
At this point, the call establishment signaling is complete,
and the H.245 negotiation phase is initiated. Both
terminals will send their terminal capabilities (4) in the
terminalCapabilitySet message. The terminal capabilities
include media types, codec choices, and multiplex
information. Each terminal will respond with a
terminalCapabilitySetAck (5) message. The terminals’
capabilities may be resent at any time during the call. The
Master/Slave determination procedure (6-8) is then
started. The H.245 Master/Slave determination procedure
is used to resolve conflicts between two endpoints that can

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 4

both be the MC for a conference, or between two
endpoints that are attempting to open bi-directional
channels at the same time. In this procedure, two
endpoints exchange random numbers in the H.245
masterSlaveDetermination message to determine the
master and slave endpoints. H.323 endpoints are capable
of operating in both master and slave modes. Following
master/slave determination procedures, both terminals
proceed to open logical channels (9-10). Both video and
audio channels are unidirectional while data is bi-
directional. Terminals may open as many channels as they
want. Only one logical channel is shown in Figure 3, yet
the same procedure applies if more channels are opened.

1
2
3

4

5

11

1. Setup
2. Alerting

3. Connect

4. termCapSet

5. termCapAck

6. mSDet

7. mSDetAck

9. openReq

10. openAck

11. endSession

12. ReleaseComplet

Q.931 messages
H.245 messages

A B4
5
6

8.mSDetConfirm

11

10

7
8
9

9
10

12

Figure 3: Q.931 and H.245 messages exchanged between
two H.323 endpoints

Other H.245 control messages may be exchanged between
the endpoints to change media format, request video key
frames, change the bitrate, etc.

Termination of a call is initiated by one endpoint sending
an endSession message (11). Endpoint B, on receiving the
endSession command, will respond with another
endSession message (11) to Endpoint A. Endpoint A will
finally send a Q.931 ReleaseComplete message (12), and
the call is terminated.

Endpoint 1 Endpoint 2

Gatekeeper Cloud

1
2
3

8
4

5 6 7

9
10

11 12

1
2

3 4

9 10

1112

13
14

13 14

1. GRQ

2. GCF\GRJ

3. RRQ

4. RCF\RRJ

5. ARQ

6. ACF\ARJ

7. ARQ

8. ACF\ARJ

9. BRQ

10. BCF\BRJ

11. DRQ
12. DCF\DRJ

13. URQ

14. UCF\DRJ

Q.931

H.245

Figure 4: Gatekeeper interaction in an H.323 call

Figure 4 shows messages exchanged between a gatekeeper
and an H.323 endpoint. Before the conference starts, both
endpoints look for a gatekeeper by multicasting a
GatekeeperDiscovery (GRQ). Request. The gatekeeper
will reply either with a GatekeeperConfirm (GCF)
message or with a GatekeeperReject (GRJ) message. Both
endpoints will then register their alias names with the
gatekeeper using the RegistrationRequest (RRQ) message.
The gatekeeper will acknowledge by sending a
RegistrationConfirm (RCF) message or will deny it using
a RegistrationReject (RRJ) message. Registering alias
names with the Gatekeeper allows endpoints to call each
other using user-friendly addresses such as e-mail, etc.,
rather than the transport address. The discovery and
registration procedure is valid until the gatekeeper
indicates otherwise.

An endpoint or gatekeeper can request the location of
another endpoint using its alias name by using a
LocationRequest (LRQ) message, and the gatekeeper
replies with a LocationConfirm (LCF) message containing
the resolved address for the alias name.

When a user places a call from an endpoint, the endpoint
starts by requesting admission from the gatekeeper using
an AdmissionRequest (ARQ) message. The gatekeeper can
accept (ACF) or deny the request (ARJ). If the call is
accepted, the endpoint sends a Q.931 Setup message to
the remote destination. The recipient of the Setup message
in turn requests admission from its gatekeeper by sending
an ARQ. When the call is accepted, the Q.931 call
signaling sequence is completed followed by the H.245
message negotiation. The AdmissionRequest (ARQ)
message carries the initial bandwidth the endpoint requires
for the duration of the conference. If during H.245 logical
channel negotiation, an endpoint requires more

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 5

bandwidth, it issues a BandwidthRequest (BRQ) message
to the gatekeeper. If the request is accepted, the
gatekeeper replies with a BandwidthConfirm (BCF)
message; otherwise, it replies with a BandwidthReject
(BRJ) message.

When the call is terminated, both endpoints send a
DisengageRequest (DRQ) message to inform the
gatekeeper that a call is being terminated. The gatekeeper
replies with a confirm (DCF) or reject (DRJ) message.
Alternatively, endpoints may unregister from the
gatekeeper by sending an UnregisterRequest (URQ)
message. The gatekeeper replies with an
UnregisterConfirm (UCF) message or an
UnregisterReject (URJ) message.

H.323 Deployment Obstacles
In order to achieve H.323 deployment in real networks,
limitations at both the network level and the client
platform level must be resolved at the H.323 client. The
client should scale performance based on the available
bandwidth. Given the inconsistencies of networks with
best effort traffic, (i.e., no guaranteed Quality of Sevice
(QoS), the Internet), it is extremely important to provide
mechanisms for fault tolerance and error resiliency at the
client platform, if it is to be used on an unmanaged
network such as the Internet. At the network level, broad
connectivity, policy management, and security are
considered the major issues in the deployment of a new
technology such as H.323. Switched Circuit Network
connectivity is achieved in the H.323 context by using
gateways for H.320, H.324, H.323, POTS, and other
endpoints on other networks. Policy management is
achieved using gatekeepers to provide call admission,
authentication, and zone management. Deployment of
QoS protocols such as RSVP can also help with policy
management. The security of media streams is another
important factor in the success of H.323 deployment,
especially in unsecured environments such as the Internet.

The platform consists of two main components: the
operating system and the CPU. Many media compression
algorithms are currently limited by the machine speed.
(We expect this issue to improve as more powerful
processors hit the market.) Moreover, popular desktop
operating systems do not supply consistent real-time
services. Multitasking can adversely affect the quality of
audio and video in an H.323 conference.

H.323 Applications
A number of applications can take advantage of H.323
technology both in the corporate environment and in the
home-user environment. One obvious application is video

conferencing between two or more users on the network.
In this application, the user is expecting the same services
as those provided by a telephone. The quality of service
should be equal to or better than POTS. The Internet does
not appear to be readily addressing these issues; however,
there is work in progress at the corporate Intranet level to
improve the quality of multimedia communication.

Multimedia call centers are another application for H.323.
An H.323 call center provides a well-integrated
environment for Web access and other data/voice business
situations. The call centers are used by banks for customer
service, shops for extra retail outlets, etc. The call center
can just be an H.323 terminal or an MCU, or it can be a
full featured endpoint with a gatekeeper, a gateway, and
MCU capability. The front end of the legacy call center
may be a gateway, which allows installed systems to
operate with minimal disruption.

Another compelling application for H.323 is
telecommuting. Telecommuters can attend meetings at
their companies, check their mail, or talk with someone at
the company while on the road or at home.

Finally, IP telephony is another area in which H.323 has
found a significant role; this will be covered in a later
section.

H.323 Zone Management
Gatekeepers fulfill a required set of operational
responsibilities and may offer a number of optional
functions to entities within their zone. Before we describe
how zones are managed, we will review some of these
responsibilities and functions.

A gatekeeper acts as a monitor of all H.323 calls within its
zone on the network. It has two main responsibilities: call
approval and address resolution. An H.323 client that
wants to place a call can do so with the assistance of the
gatekeeper. The gatekeeper provides the address
resolution to the destination client. (This division of work
is due to alias name registration procedures.) During this
address resolution phase, the gatekeeper may also make
permissioning decisions based upon available bandwidth.
The gatekeeper can act as an administrative point on the
network for IT/IS managers to control H.323 traffic on
and off the network.

Strictly speaking, a gatekeeper zone is defined by what it
contains: it is defined by all of the endpoints, gateways,
and MC(U)s that are or will be registered with a
gatekeeper. Another way to describe a gatekeeper zone is
to call it an “administrative domain,” although the formal
ITU-T recommendation text uses zone. An example of
gatekeeper zones is given in Figure 5.

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 6

Some important aspects of zone coverage are summarized
as follows:

• Zones are defined by all H.323 devices registered to a
single gatekeeper.

• Zone design may be independent of physical
topology.

• Each zone has only one gatekeeper.

• Zone definition is implementation-specific.

• Gatekeeper zones are logical in nature.

• Network topology and administrative scope are both
factors in zone design.

• Resources such as gateways and proxies may affect
the partitioning of zones.

Figure 5: Gatekeeper zones

Multipoint Conferences: Centralized Versus
Decentralized
Multipoint conferences are defined as calls between three
or more parties. During these conferences, call control and
media operations can become considerably more complex
than during a simple point-to-point conference. The
coordination and notification of participants entering and
leaving a conference along with the marshalling of the
media streams require the presence of at least a Multipoint

Control (MC). In other situations, an MCU is required; we
will explain why in the next section.

The two broad models of multipoint, centralized and
decentralized, differ in their handling of real-time media
streams (audio and video). The centralized model operates
in the same fashion as other circuit-based conferencing
(e.g., H.320 or telephony “bridges”). In this model, all of
the audio and video is transmitted to a central MCU that
mixes the multiple audio streams, selects the
corresponding video stream, and re-transmits the result to
all of the participants. Figure 6 illustrates this procedure.

A

B

C

D

E

F

Centralized Multi point

MCU

Audio

Video

Figure 6: Centralized model

Note that the MCU is only ‘logically’ at the center of the
conference configuration; the physical topology may be
very different. The operational model of the conference is
such that each endpoint is exchanging media control
signaling (H.245), audio, and video directly with the
MCU. In order to prevent echo, the MCU must provide
the current speaker with a custom audio mix that does not
contain the speaker’s own audio. The remaining
participants may all receive the same audio and video
media. In some implementations, the MCU may actually
decode the video streams and combine them in a mixing
operation to provide continuous presence of all
participants on the endpoint displays. The amount of
processor speed required for this operation increases
significantly.

The decentralized model shares common control
characteristics with the centralized model, but the media
streams are handled differently. One of the participating
entities must be an MC, but it will typically be co-located
with one of the endpoints. All of the H.245 connections
will have one end terminating at the MC just as with the

H.323

H.323

Zone A

Zone B

Gatekeeper

Gatekeeper

H.323

H.323 H.323

H.323

H.323

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 7

MCU in the centralized model. Whereas the MCU does
the media processing in the centralized model, the media
streams are sent and received by all participating entities
on a peer-to-peer basis in the decentralized model. As
Figure 7 demonstrates, the logical configuration for this is
a bus. There is no MCU to process the multiple streams;
each entity is responsible for its own audio mixing and
video selection. The media may be sent between all
entities utilizing either multicast, or a multiple uni-cast if
the underlying network does not support multicast.

A B C D E F

Decentralized Multipoint

MC

Audio

Video

Figure 7: Decentralized model

There are a number of advantages and disadvantages to
both the centralized and the decentralized models. In the
centralized model, the endpoints that participate in this
type of conference are not required to be as powerful as in
the decentralized model. Each endpoint has only to
encode its locally produced media streams and decode the
set sent by the MCU. The MCU may provide specialized,
or higher performance conferencing. The MCU’s ability
to provide custom-mixed media streams can allow
otherwise constrained endpoints to participate in
conferences. For example, if an endpoint is connected to
the conference by a low-bitrate connection, it may only
have the capacity to transmit and receive one media
stream. If this same endpoint were connected to a
decentralized conference, it would have no ability to
detect which speaker was the focus when the focus
changed. In most situations, the MCU will choose the
largest common set of attributes within which to operate
the conference. This may lead to a conference that is
operated in a least common denominator mode, such as
QCIF, rather than CIF or lower video resolution.

By definition, the decentralized multipoint model does not
require the presence of an MCU, a potentially expensive
and limited resource. It allows for disproportionate
processing at the endpoints with each running at its own

level. The decentralized multipoint model does require
that one of the participating entities contain an MC. If the
endpoint that has the MC leaves the conference, the MC
must stay active or the conference is terminated. In order
for this model to be bandwidth efficient, the underlying
network should support multicast. If it doesn’t, each
endpoint can send multiple uni-cast streams to all others,
but this becomes increasingly inefficient with more than
four entities participating in a conference.

H.323 Features for IP Telephony
The initial environment envisioned for H.323 was the
corporate network environment, primarily local area
networks. Wide Area Network (WAN) access was to be
gained by using gateways to H.320/ISDN. During the
implementation of Revision 1 of H.323, it became clear
that IP telephony was gaining popularity and relevance as
various infrastructure elements were improved upon. A
number of proprietary IP-based telephones were creating
many small islands that could not communicate with one
another. Recommendation H.323 provided a good basis
for establishing a universal IP voice and multimedia
communication in larger, connected networks. With
Revision 2 of the Recommendation, new additions and
further extensions were added specifically to make it more
suitable for IP telephony. These changes will be described
in a later section.

By using Q.931 as its basis for establishing a connection,
H.323 allows for relatively easy bridging to the public
switched telephone networks (PSTN) and circuit-based
phones. The required voice codec of G.711 also allows for
easy connections to the legacy networks of telephones.
The uncompressed 64kb/sec stream can easily be
translated between digital and analog media. One of the
addressing formats provided in Recommendation H.323 is
the E.164 address. This is another ITU Recommendation
that specifies standard telephone numbers (e.g., the digits
0-9, * and #). These addresses, which ultimately map onto
the IP addresses for the H.323 endpoints, allow regular
telephones to ‘dial’ them. Gatekeepers provide the final
important element for IP telephony. Gatekeepers supply
the ability to have integrated directory and routing
functions within the course of the call setup. These
operations are important for real-time voice or video when
resources must be balanced, and points of connectivity are
highly dynamic. The gatekeeper functions, which provide
call permissioning and bandwidth control, enable load
monitoring, provisioning, and ultimately, commercial-
grade IP telephony service.

Interoperability
Recommendation H.323 comprises a number of
interrelated documents and sub-recommendations.

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 8

Therefore, customers are faced with a number of options,
which they may or may not implement. These design
choices, in conjunction with differing interpretations of
the required elements, can lead to implementations that
cannot interoperate. Stated more simply, compliance with
the recommendations does not always imply
interoperability. The complexity and flexibility of H.323
essentially requires that implementations be tested
together to ensure interoperability.

To this end, the International Multimedia Technical
Consortium (IMTC) has focussed largely on this area of
interoperability. The testing events sponsored by this
consortium have provided a venue for more than thirty
companies to participate in “bake-offs” to test the
interoperability of their product. The methodology that is
followed provides for a gradual testing of component
protocol stacks that then leads to higher level end-end
scenario testing. Figure 8 illustrates the grouping of the
components. Each horizontal level provides increasing
H.323 functionality, and each vertical group indicates a
specific stack function that is required.

Much of the mass interoperability testing has occurred in
face-to-face events. In theory, the H.323 protocol should
allow for testing from remote sites across the Internet; in
practice, however, remote testing has not turned out to be
useful. The lack of a controlled environment makes
distinguishing interoperability issues from simple network
problems extremely difficult.

Examples for initial interoperability problems encountered
during some of the testing events include misaligned bit
field and byte-ordering issues. These problems are
common in the early development stage of protocols. For
example, there are a number of adaptations that are
specified in the Q.931 protocol used by H.323, which
make the Protocol Data Units (PDUs) slightly different
from the protocol messages used in the circuit world (such
as ISDN).

Porting of the existing Q.931 code to the packet
environment provided mis-matches. During the initial
course of development, there were a small number of
defects in the Recommendation that were discovered by
the implementers. These defects were recorded in a
document called the Implementer’s Guide and eventually
corrected in the revision of the base Recommendation. In
addition to the low-level control protocol interoperability,
the media stream is another potentially problematic area.
Recommendation H.245 allows the receiver to specify the
maximum bitrate that may be sent, but currently there is
no way in which to specify the maximum Real Time
Protocol (RTP) packet size. This can lead to
interoperability problems if a receiver implementation
makes assumptions about the buffering required and then
cannot decode the packet. Although H.323 specifies
G.711 and H.261 as its baseline codecs (audio and video
respectively), a large number of initial H.323
implementations were targeted for low-bitrate connectivity
where these codecs could not operate. The result of this
was that the audio codec, G.723.1, was chosen due to its
low (5.3-6.4kb/s) data rate. This low bitrate allowed
H.263 video to operate in an acceptable fashion across a
33.6kb connection.

Implementation choices that are made as a result of
operating environments elevate the interoperability issues
to the next level. At an operational level, endpoint
implementations may select to support an asymmetrical
media model for optimal performance; other
implementations may not. The ability to enter extended
information at the user interface may determine whether
an endpoint can operate with certain gateways or H.323
proxies. Gatekeepers may or may not provide intelligent
zone control, which allows them to operate in a network
connected to other activated gatekeepers. With the
addition of a range of security options to H.323, strict
policy constraints may prevent H.323 entities from
interoperating while still complying with all the
recommendations.

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 9

Video
Codec

Layer 0

Layer 1

Layer 2

Video
Codec TPKT

RTP/
RTCP

H.245
Control

TPKT

Q.931

RAS
Audio
Codec

RTP/
RTCP

T120

Group
A

Group
B Group

C

Audio
Codec
RTP/
RTCP

Group
D

Group
E

Group
F

Group
G

Group
H

Group
I

Layer 3

Video
Codec

Audio
Codec

RTP/RTCP

H.245
Control

TPKT

Q.931

Group N

T120
Video
Codec

Audio
Codec

RTP/RTCP

H.245
Control

TPKT

Q.931

Group M

RASLayer 4

M C

TPKT

Video
Codec

Audio
Codec

RTP/RTCP

H.245
Control

TPKT

Q.931

Group L

H.245
Control

Q.931

TPKT

Group J

H.245
Control

Q.931

TPKT

Group K

RAS

Figure 8: Testing matrix1

1 In this figure TPKT refers to the layer that segments a TCP stream into separate message ‘packets’ to be delivered to the
H.323 application.

New Features
Revision 2 (1998) of Recommendation H.323 contains a
number of improvements for IP Telephony, among other
areas. A new Recommendation (H.235) was developed to
provide a full security framework for H.323 and other
multimedia systems. It may provide the services of
Authentication (which can be used for authorization),
Privacy, and Integrity. The system can utilize underlying
security protocols such as Internet Protocol Security
(IPSEC) or Transport Layer Security (TLS) as established
in the IETF. A number of new features and options were
introduced regarding interactions with gatekeepers.
During the process of discovering gatekeepers, endpoints
may actually receive a number of gatekeeper addresses to
utilize. This redundancy in the protocol will eliminate the
single point of failure if a gatekeeper becomes
inoperative. When endpoints register their current address
with a gatekeeper, they may specify multiple addresses;

this allows a ‘line hunting’ mode of operation. Keep alive
types of messages called Request In Progress (RIP) can
stop premature retries on lengthy operations.

The call setup has a new method called FastStart that
establishes bi-directional media in one round trip time of
messages (discounting the establishment of the actual TCP
connection). Figure 9 shows FastStart messages
exchanged. The OpenLogicalChannels messages that
occur after H.245 is established in the regular case are
piggy-backed on the Setup-Connect exchange. This
facility allows instant audio connection that resembles the
regular phone call model as opposed to the standard
lengthy H.323 startup procedures.

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 10

TCP connection

SETUP

CONNECT (H245 Address)

TCP
connection

H.245
Messages

ReleaseComplete

(RTCP & RTP addresses)

Callee
“B”

Caller
“A”

RTP stream
RTP stream
RTCP stream

(RTCP & RTP addresses)
(H245 Address)

Figure 9: FastStart

Many new explicit address types have been added.
including RFC822 (e-mail) formatted names and URLs,
which network-based users find more familiar and easier
to remember. Each endpoint may register under a number
of these aliases. New unique call identifiers were added to
better track calls as they traverse multiple network nodes
and topologies. A number of new features were added to
H.245 also, which allow for a much richer set of media
possibilities. In addition to layered codecs, which divide
up the video stream into additive layers of detail, Quality
of Service parameters (e.g., RSVP) may now be signaled
when opening up media streams. Finally, the ability to
pass the media on other transports such as ATM (while
keeping the rest of call and media control on IP) have
been added.

In addition, a new family of recommendations has been
developed to set up a framework for supplementary
services. The H.450.1, H.450.2, and H.450.3 are loosely
based on the Q-signals (QSIG) protocol, which is used by
PBX and switch vendors. The initial services that have
been defined are call transfer and call forward. Both of
these features are a peer-peer option requiring no specific
help from a centralized network entity (such as the PBX in
the circuit world). A number of standardized
supplementary services are expected to be developed in
the future.

Along with the new features, the latest development of
H.323 also includes an expanded topology model in the
H.332 document. Recommendation H.332 allows an
H.323 conference model to expand to literally thousands
of participants. The tightly controlled H.323 ‘panel’ is
surrounded by a very large number of ‘listeners.’

Members may participate in the conference by joining the
panel. They may also leave as they wish. This H.323 panel
is analogous to a panel on a stage in a large auditorium.
Occasionally participants might get up from the audience
and join the panel and others might leave the panel and
join the audience. This movement of participants occurs
using the standard Q.931 Invite and Join signaling as
described in the H.225.0 document.

Conclusion
The H.323 system and its associated recommendations
provide a useful and flexible system for multimedia
communication. The factors that allow the protocols to
easily bridge data and voice networks also make H.323
scalable. The ability of most, if not all of the system, to
operate on a general-use platform such as a personal
computer allows the H.323 system to scale with
underlying processing power. As the processor’s speed
budget increases, the H.323 system can provide a better
end-user experience. The dynamic exchange of
capabilities allows the communications to change if
needed during a call and adapt to any environmental or
endpoint constraints.

Recommendation H.323 has become the single standards-
based solution for a complete array of communication
systems from simple point-to-point telephony to a rich
multimedia conference with data sharing. Through
continued effort by the ITU-T study group,
Recommendation H.323 continues to evolve and adapt to
new situations. Many of the real world difficulties in
utilizing H.323 come about from infrastructure issues or
other problems that are being resolved. Globally
coordinated addressing and consistent QoS are two areas
where we expect to see great improvements in the future.
Some of these improvements will be facilitated by
expected higher level communications between
gatekeepers and gateways as their interaction is
standardized.

References

[1] ITU-T Recommendation G.711 (1988)“ Pulse Code
Modulation (PCM) of Voice Frequencies.”

[2] ITU-T Recommendation G.723.1 (1996) “Dual Rate
Speech Coders for Multimedia Communication
Transmitting at 5.3 & 6.3 kb/s.”

[3] ITU-T Recommendation H.261 (1993) “Video Codec
for Audiovisual Services at p X 64 kb/s.”

Intel Technology Journal Q2’98

Demystifying Multimedia Conferencing Over the Internet using the H.323. Set of Standards 11

[4] ITU-T Recommendation H.263 (1996) “Video
Coding for Low Bit-rate Communication.”

[5] ITU-T Recommendation H.323 (1998) “Packet Based
Multimedia Communications Systems.”

[6] ITU-T Recommendation H.225.0 (1998) "Call
Signaling Protocols and Media Stream Packetization
for Packet Based Multimedia Communications
Systems."

[7] ITU-T Recommendation H.245 (1998) "Control
Protocol for Multimedia Communication."

[8] ITU-T Recommendation H.246 (1998) “Interworking
of H-Series Multimedia Terminals.”

[9] ITU-T Recommendation H.235 (1998) “Security and
Encryption of H series (H.323 and other H.245 based)
Multimedia Terminals.”

[10] ITU-T Recommendation H.332 (1998) “Loosely
Coupled H.323 Conferencing.”

[11] ITU-T Recommendation H.450.1 (1998) “Generic
Functional Protocol.”

[12] ITU-T Recommendation Q.931 (1993) “Digital
Subscriber Signaling System No. 1 (DSS 1)-ISDN
User-Network Interface Layer 3 Specification for
Basic Call Control.”

Authors’ Biographies
Jim Toga holds a B.Sc in Chemistry from Tufts University
and a M.Sc in Computer Science from Northeastern
University. Before joining Intel, he was the principal
engineer on StreetTalk∗ Directory with Banyan Systems
where he designed and developed the Yellow Pages
service. Presently, he is a senior staff software architect
for the Standards and Architecture Group in the Intel
Architecture Labs. He coordinates product groups giving
guidance on architecture and standards. His primary tasks
are H.323/Internet Telephony, Directory, and real-time
security issues.

∗ All other trademarks are the property of their respective
owners.

Outside of Intel, Mr. Toga develops standards and
standards-based products within ITU-T, IETF, and IMTC.
He is also involved in the following related activities:

Editor of ITU-T H.323 Implementors Guide
H.235 Security Standard

Chair of IMTC “Packet Networking Activity Group”
Chair of H.323 Interoperability Group
He has also written numerous articles for trade magazines.
His e-mail is jim.toga@intel.com.

Hani ElGebaly is the project technical lead for the
H.323/H.324 protocols development team within the
Conferencing Products Division of Intel Architecture
Labs. He received an M.Sc. in Computer Science from the
University of Saskatchewan, Canada, and a B.Sc. in
Electrical Engineering from Cairo University, Egypt. Mr.
ElGebaly is currently pursuing a Ph.D. with the University
of Victoria, Canada. His primary areas of interest include
multimedia conferencing protocols, embedded
programming, fault tolerant systems, and computer
architecture. His e-mail is hani.el-gebaly@intel.com.

Characterization of Multimedia Streams of an H.323 Terminal 1

Characterization of Multimedia Streams of an H.323
Terminal

Hani ElGebaly, Emerging Products Development, Intel Architecture Labs, Intel Corporation

Index words: H.323, Conferencing, Internet, G.723.1, H.263

Abstract
A study of multimedia performance over the Internet
requires accurate representation of the workload model.
Measurements of multimedia conferencing applications
provide a snapshot of real workloads. This paper presents
a characterization for video and audio traffic transported
over the Internet by multimedia conferencing applications
following the H.323 set of standards defined by the
International Telecommunication Union (ITU-T).

Our goal is to investigate multimedia traffic multiplexing
issues at the host. We are not concerned with the Internet
infrastructure or the store and forward technology
deployed. The traces collected in this study are done at the
multimedia source host. They provide information about
packet length, inter-arrival time, jitter, overhead, and
burstiness.

These traces help in understanding local-induced effects
on the multimedia traffic mix. Many of these effects are
primarily due to limitations of operating systems,
bandwidth sharing, or the choice of traffic parameters.
These local effects contribute significantly to traffic delay
or the abuse of network bandwidth and congestion.

A few tradeoffs are involved in the choice of multimedia
traffic parameters. For example, a tradeoff exists between
the network protocol overhead and the local latency of
multimedia packets. Another tradeoff exists between the
video packet size and the burstiness of the video packets.
In this paper, the various tradeoffs involved in generating
audio and video packets are discussed. We focus on the
audio and video codecs defined in Recommendations
G.723.1 and H.263 of the ITU, respectively. Both codecs
are extensively utilized by H.323 developers because of
their efficiency, popularity, and suitability for
transmission over low bandwidth pipes. We derive an
optimal operating point for both audio and video traffic
for better bandwidth efficiency and acceptable latency.

We also discuss the interaction of conferencing media
components as they are multiplexed on the host to be

transmitted to a peer terminal. Lack of appropriate
multiplexing algorithms can lead to one or more media
components oversubscribing to the shared bandwidth and
penalizing other participants. A new performance qualifier
is introduced in this paper. This qualifier is the number of
interleaved video bytes scheduled for transmission
between audio packets. This number turned out to be a
good local indicator for audio jitter and latency.

Introduction
Advances in computer technology, such as faster
processors, faster modems, Intel MMX™ technology, and
better data compression schemes have made it possible to
integrate audio and video data into the computing
environment. A new type of video conferencing is now
possible: desktop video conferencing. Desktop video
conferencing applications include telecommuting,
corporate meetings to cut travel costs, family gatherings,
Call Centers, etc. Banks, shopping centers, retail centers,
and so on can be more efficient and cut a lot of overhead
by providing video-conferencing customer service centers
for customers to dial into.

One of the most prominent enabling technologies for
desktop video conferencing is the H.323 standard
developed by the ITU-T. Recommendation H.323.[6]
describes terminals, equipment, and services for
multimedia communication over networks such as the
Internet.

This paper addresses issues of the multimedia traffic
sources of an H.323 terminal. Issues such as packet format
and multiplexing of audio and video frames at the host are
studied. The traces collected in this study were done at the
network edge. These traces provide information about the
packet length, inter-arrival time, jitter, protocol overhead,
and burstiness. Local-induced effects on the conferencing
traffic can occur due to limitations of the operating
system, bandwidth sharing, and lack of an accurate
performance qualifier for choice of traffic parameters. The

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 2

collected traces help to understand these effects and
eliminate them.

Measurement Methodology
This paper studies the packet format parameters and
multiplexing issues of audio and video traffic at the
transport layer before reaching the network. Traffic
measurements capture packet overhead imposed by the
Transport, Network, and Datalink layers’ protocols. It also
provides information on the local inter-arrival time,
latency, and jitter.

We focused our study on audio and video codecs defined
in the G.723.1 specification [3] and the H.263
specification [5], respectively. Although the mandatory
codecs for the H.323 standard are G.711 [2] and H.261
[4], most of the H.323 terminals that connect to the
Internet via modems through Internet service providers
use G.723.1 and H.263 codecs as their preferred
conferencing codecs. G.723.1 has lower bit rate (5.3/6.4
kb/s) than G.711 (64 kb/s). Hence, it is more suitable for
transmission over low bandwidth links (e.g., 28.8 kb/s and
33.6 kb/s modems). However, for video conferencing,
H.263 has better quality than H.261.

It is important to capture the worst-case behavior of the
network such that the solutions proposed can have wide
applicability. It is also important to observe the most
congested time of the day over the Internet. We used a
variety of comparable Internet service providers for
establishing conferencing sessions.

Media Trace Format

Audio Format
G.723.1 [3] is a dual-rate speech-coding standard, which
operates in low bit rate while maintaining high perceptual
quality. It is recommended as the preferred speech codec
for the ITU H.323 [6] conferencing standard over the
Internet when the access link to the Internet has limited
bandwidth (e.g., an ISP connection using a modem). The
G.723.1 codec has two bit rates associated with it. These
rates are 5.3 and 6.4 kb/s, the latter being of better quality.
Both rates are a mandatory part of the encoder and
decoder.

The collected measurements are applied to a traffic
scheduler. The scheduler accepts audio and video packets
and schedules them for transmission using the scheduling
algorithm of interest. During the simulation run,
measurements of packet sizes, inter-arrival time, latency,
and jitter are computed. The scheduler is depicted in
Figure 1.

The scheduler is a multithreaded application. Each traffic
source has its own thread. The scheduler also has its own

separate thread. Additional traffic sources such as T.120
data or other video or audio codecs can be easily hooked
to the scheduler.

Audio
source

Video
source

Scheduler
algorithm

Queue

Measurement
statistics report

MUX

Figure 1: Architecture of the traffic scheduler

The G.723.1 encoder provides one frame of audio every
30 milliseconds. The audio frame size is 20 bytes of
pulse-coded modulation (PCM) samples for the low rate
(5.3 kb/s) and 24 bytes for the high rate (6.4 kb/s). Each
application is set for a particular number of frames per
audio packet before the conference starts. These values
are negotiated when the call is established, and the least
number prevails. Both applications are forced to use this
number as the maximum number of frames incorporated in
an audio packet.

Increasing the number of frames per audio packet
improves the bandwidth utilization and decreases network
packet overhead. However, it also introduces additional
delay to the audio playback since a packet has to wait for
all the audio frames to be accumulated before sending it
across. This host-induced delay can be even more harmful
especially with the timeliness requirement of real-time
audio telephony.

Each audio packet has a Real-time Protocol (RTP) [7]
header (12 bytes) that carries time-stamps, sequence
numbers, a payload type, and a synchronization source
identifier. In addition, a User Datagram Protocol (UDP)
header is needed to carry UDP information about the
packet (8 bytes). Then an Internet Protocol (IP) header of
20 bytes is also needed to carry routing information.
Finally, since we are strictly constrained in bandwidth as
we are expected to connect to the Internet via Internet
service providers, an additional 5 bytes of point-to-point
protocol (PPP) header is also required.

Video Format
The H.263 codec [5] is designed for a wide range of bit
rates (10kb/s - 2 Mb/s). The codec supports five different
resolutions. In addition to Common Intermediate Format

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 3

(CIF) and Quarter Common Intermediate Format (QCIF)
that were supported by H.261, there is sub QCIF (SQCIF),
four times CIF (4CIF), and sixteen times CIF (16CIF).
SQCIF is approximately half the resolution of QCIF. 4CIF
and 16CIF are four and sixteen times the resolution of
CIF, respectively. Support for 4CIF and 16CIF allows the
H.263 codec to compete with other higher bit-rate video
coding standards such as the MPEG standards. H.263 is a
hierarchical codec, i.e., some performance and error
recovery options can be sacrificed for lower bit rate.

It is important to understand how the video source
generates video data in order to analyze video-generated
traffic. Video pictures are fragmented into multiple video
fragments. Each fragment forms a video packet. Each
packet is sent across the network after RTP, UDP, IP, and
PPP headers have been added. Video is different from
audio in the sense that the generated bit rate can be
variable while the audio bit rate is usually constant. The
ITU-T standard left this issue up to the application as to
whether to use a fixed or variable bit rate for video [6].
Another important difference between video and audio
media types is fragmentation. Video can be fragmented
because a video-generated frame can be quite large; audio
is not fragmented. Fragmentation means a video frame is
divided into multiple fragments. Each fragment forms a
video packet that is sent across the network. There is an
upper limit on the maximum fragment size used by the
fragmentation process.

A third major difference between audio and video is the
burstiness of the video source due to fragmentation, which
causes multiple fragments to cluster in a small interval of
time. This burst of packets can lead to packet loss,
latency, or at least some amount of unfavorable jitter.

In this section, we focus on the characterization of
generated video traffic after fragmentation and the implied
tradeoffs when enforcing different maximum fragment
sizes for video packets.

Smaller fragment size results in shorter inter-arrival time
yet bandwidth efficiency decreases because of larger
packet overhead. However, larger fragment size results in
longer inter-arrival time yet maintains good utilization of
bandwidth. As the maximum fragment size limit increases,
larger video packets will occur more often. These packets
will require more time to be transmitted and hence the
video latency increases.

An experiment was conducted to study the video packet
sizes (number of bytes per packet) for different maximum
fragment limits as generated by our video source. We set
the maximum fragment size to four different values (128,
256, 512, and 750 bytes). We ran four experiments, each
with a different maximum fragment limit and collected the

corresponding video packet sizes generated after the
fragmentation module.

Figure 2 shows how video packet sizes are distributed for
different maximum fragment sizes. The figure shows that
by using a maximum fragment size of 750 bytes, 70% of
the video packets had a size in the range of 50-250 bytes.
Less than 10% of the total generated video packets were
more than 512 bytes. For a fragment size of 512 bytes,
75% of the packets had sizes between 50-250 bytes. By
decreasing the fragment size further to 256 bytes, more
that 60% of the packets were in the range of 150-250
bytes. For a 128 maximum fragment size, the video packet
sizes were equally distributed in the range of 50-100
bytes, and 100-150 bytes. Generally, the majority of the
packets for all maximum fragment sizes were less than
256 bytes. This can mean that the maximum fragment size
choice should be in the range of 256-512 bytes.

0
5

10
15
20
25
30
35
40
45
50

0-
50

10
0-

15
0

20
0-

25
0

>
51

2

128 byte
fragment %

256 byte
fragment %

512 byte
fragment %

750 byte
fragment %

Figure 2: Byte distribution for video fragment sizes

Determining Traffic Parameters

Audio Traffic
It has been demonstrated that the choice of the number of
frames per packet affects both local latency and protocol
overhead (i.e., bandwidth utilization). We are primarily
concerned with the latency induced by the audio packet
preparation manager that buffers the captured audio
frames and synthesizes them into audio packets. This
latency is computed before the packet is actually sent on
the network, and it only accounts for local capture and
packet preparation delay. The choice of the number of
frames per audio packet should minimize both local
latency and packet overhead.

Results for Uncompressed Audio Packet Header

Figure 3 shows the percentage packet overhead for both
the high and low bit rate G.723.1 audio codec. The packet

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 4

overhead decreases as the number of frames per packet
increases. Intuitively, high bit-rate audio has slightly less
overhead when compared to low bit-rate packets.

Figure 3: Packet overhead for low and high G.723.1
audio

In Figure 4, the number of audio frames per packet is
plotted for both rates against normalized packet overhead
and latency. The latency is normalized against the
maximum latency value exhibited by the largest audio
packet (24 audio frames per packet) used in our
experiment. The packet overhead is normalized against
the maximum overhead exhibited by an audio packet. An
audio packet with only one audio frame has the maximum
packet overhead as given in Figure 3. As the number of
audio frames per packet increases, the packet overhead
decreases. The overhead decrease is explained by more
information bytes (audio frames) being included in a
packet with a fixed header (RTP+UDP+PPP+IP).

The latency increases as the number of frames per packet
increases. This is expected since more audio frames
require more time to be captured and buffered. Hence, a
tradeoff exists between packet overhead and local latency
for audio packet transfer. The intersection of the latency
and the overhead curves provides the choice of the
number of frames that has the minimum latency and least
overhead.

Figure 4: Packet overhead versus latency

The optimal point for the number of frames based on this
plot is between seven and eight for both G.723.1 audio bit
rates. This value should be used by terminals that target
packet efficiency as well as low latency for audio packets.

Sometimes, the audio local latency is reduced at the
expense of packet overhead, in order to achieve latencies
acceptable to users. In fact, a few applications are willing
to sacrifice some protocol overhead for achieving better
audio latency. Some H.323 terminals use a value of 3 or 4
for the number of frames per audio packet in order to
reduce this latency.

Results for Compressed Audio Packet Header

Protocol header compression has been an active research
area for the past couple of years especially after the
maturity of the protocols and standards that drive audio
and video streaming over the Internet. Besides IP and
UDP, researchers have also investigated RTP header
compression. Jacobson and Casner [1] proposed an
approach for compressing RTP, UDP, and IP headers to
be used over low-speed serial connections to the Internet.
Examples of these links include low speed (e.g., 28.8
kb/s) modem connections to the Internet through Internet
service providers.

This approach seems ideally suited to better bandwidth
utilization of the media streams since the protocol
overhead is significantly reduced. A few companies are
currently working on the deployment of this approach
inside the network interface infrastructure in order to
improve multimedia conferencing over the Internet for
terminals connected via low speed links.

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 5

Figure 5: Packet overhead versus latency with
compressed IP/UDP

Figure 5 shows a plot of the packet overhead versus
latency after applying IP/UDP header compression. The
curve suggests that the optimal number of audio frames is
almost five for low bit-rate audio and six for high bit-rate
audio.

Video Traffic
Another major decision in video source parameters is the
choice of an appropriate maximum fragment size. The
maximum fragment size contributes to the latency,
network overhead, and the amount of generated traffic. As
the size increases, larger video packets are generated.
Large packets lead to increased latency and less protocol
overhead. Reducing the maximum fragment size will lead
directly to more packets being generated for the same
number of video frames.

Video Packet Length Effect

Histograms of the video traffic are shown in figures 6-8.
The choice of a maximum fragment size should capture
most of the data clustering and at the same time should not
penalize audio packets by generating large video packets
that induce huge delays.

We chose 10 kb/s for the video bit rate, which is suitable
for ISP-based Internet video conferencing terminals. We
used the Quarter Common Intermediate Format (QCIF)
for video streaming. Each trace lasted 15 minutes. The
trace shows the video fragments generated from the H.263
codec after the RTP header is added. Measurements are
taken before the addition of any UDP or IP packet header.

Figure 6: Video histogram for a maximum fragment size
of 128 bytes

Figure 6 shows a plot of the video packet sizes against
time with the maximum fragment size set to 128 bytes.
The packets varied in size from as small as 25 bytes to the
maximum value allowed, which is 128 bytes. The plot
seemed too crowded as more packets are generated to
make up for the small value of the maximum fragment
size.

Figure 7: Video histogram for a maximum fragment size
of 256 bytes

Figure 7 shows a plot of the video packet size against time
where the maximum fragment size is set to 256 bytes.
Packets varied in size from as high as 256 bytes to as low
as 50 bytes. Figure 7 appears to be less crowded than
Figure 6.

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 6

Figure 8: Video histogram for a maximum fragment size
of 512 bytes

Figure 8 shows a plot of the video packet size against time
with the maximum fragment size set to 512 bytes. The
packet sizes ranged from 75 bytes to 512 bytes. The larger
swing in the packet size range allowed for a less dense
histogram compared to those in Figure 6 and Figure 7.

Table 1 shows the maximum fragment size and the
corresponding mean, standard deviation, and number of
generated fragments of the video traffic source.

Max
Frag

Mean
size

Standard
Dev

Mean arrival Frag
no.

500 191.64 127.2 275.027 3680

256 169.38 51.358 224.40 4464

128 94.581 21.46 132.568 6382

Table 1: Mean and standard deviation for different
fragment sizes

In Table 1, the smaller the maximum fragment size, the
smaller the mean size of generated fragments and
consequently the smaller the delay (smaller inter-arrival
time). However, by examining the number of fragments
generated for each maximum fragment size in Table 1, we
note that as the maximum fragment size decreases, the
number of generated fragments increases. This is
expected, however, since the number of video frames to
be fragmented and formed into packets is almost fixed for
all maximum fragment sizes with which we experimented.
In addition, as the maximum fragment size decreases, the
packet overhead increases, and the bandwidth utilization
decreases. Normally, it doesn’t take any longer to send
and receive fewer but larger video packets than it does to

send and receive more but smaller video packets, if the
same amount of video data is played. In fact, the extra
packet handling overhead may cause the reverse.
However, larger video packets can cause audio latency as
the bandwidth is shared, and this is the major concern.

Video Packet Inter-Arrival Time and Jitter Effect

Another important measure we can deduce from the data
provided by these graphs is the mean inter-arrival time.
This measure provides an estimate for video packet
latency induced locally at the host. We compute the rate of
change of the inter-arrival time, which is a measure of
video packet jitter. As the maximum fragment size
decreases, it is expected that the number of packets
generated within the same interval of time will increase.
The measurements for inter-arrival time and inter-arrival
jitter for maximum fragment sizes of 128, 256, and 512
are shown in figures 9-11.

Figure 9 shows a plot of the inter-arrival time and jitter of
video packets against time where the maximum fragment
size is set to 128 bytes. Note that many packets are
generated with variant inter-arrival time and hence the
jitter between packets is significant. As the maximum
fragment size is increased to 256 bytes (as in Figure 10),
the jitter is less significant as a smaller number of packets
with less delay variations is generated. Increasing the
maximum fragment size further to 512 bytes decreases the
jitter significantly as shown in Figure 11.

Figure 9: Inter-arrival time and jitter for video maximum
fragment size of 128 bytes

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 7

Figure 10: Inter-arrival time and jitter for video
maximum fragment size of 256 bytes

In general, local jitter increases as the maximum fragment
size decreases. This phenomenon is explained by the fact
that more packets are generated for the smaller maximum
fragment size during the same time interval. More packets
with a variety of inter-arrival times result in a greater
likelihood of inter-arrival time variation and hence, jitter.

Theoretically, as the maximum fragment size decreases,
the sizes of the packets are normalized and jitter should be
reduced. However, the increase in jitter in this case is also
due to packet handling overhead in the transport stack
from the increased number of packets.

Figure 11: Inter-arrival time and jitter for video
maximum fragment size of 500 bytes

Multiplexing Video and Audio Packets
Audio and video packets are generated by their respective
sources and then funneled through a shared
communication medium. Each media component should
subscribe to a sufficient amount of bandwidth to meet
quality standards. Lack of appropriate multiplexing
algorithms can lead to one or more media components
oversubscribing to the shared bandwidth and penalizing
other participants.

A typical example of this multiplexing problem is when
the scheduler dispatches all media types through a First
Come First Served (FCFS) queue. All packets are serviced
in the order they arrive without any attention being paid to
their priority or timeliness. In this example, if the video
data is bursty and a train of video packets is generated
during an audio silent (inter-arrival) period, audio packets
will be blocked for the duration of the video packet train.
This duration may be sufficiently long to disturb the
continuity of the audio speech and make it
incomprehensible. To illustrate this example, we fed audio
and video traffic to the scheduler shown in Figure 1. We
chose a worst- case audio source that continuously
generates audio packets of four frames each every 120
milliseconds. Video is of variable bit rate with maximum
fragment size set to 256 and 512, respectively. We are
interested in the number of video bytes that reside
between audio packets during periodic silence intervals. If
too many video bytes accumulate between two
consecutive audio packets, severe delay (and jitter) may
be experienced for the blocked audio packet.

We computed the mean number of video bytes
interleaving audio packets from the plot. We depicted the
host’s extra inter-arrival time penalty to audio packets as
time incurred by interleaving video bytes. Further, by
knowing the maximum number of video interleaved bytes,
we can show the maximum penalty incurred on the inter-
arrival time of audio packets that will show at the receiver
side due to the local multiplexing effect. We can also
deduce the mean local audio jitter by computing the rate
of change of the interlaced video packets over the
experiment interval.

Figure 12 plots the number of video bytes residing
between consecutive audio packets against time using an
H.263 video source of maximum fragment size 256.
Although it is commonly believed that using a smaller
maximum video fragment size will lead to better audio
performance, our experience proved otherwise. It is
observed that the mean interleaved video bytes between
audio packets for a video maximum fragment size of 256
is larger than the mean of the corresponding trace for a
maximum fragment size of 512 as shown in Figure 13.
Hence, reducing the video fragment size alone will not
help the audio performance. On the contrary, it may lead

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 8

to irregular spacing in time between audio packets, which
renders audio playback unintelligible.

Figure 12: Interleaved video bytes between audio packets
(maximum video fragment size 256)

Figure 13: Interleaved video bytes between audio packets
(maximum video fragment size 500)

The Problem with Media Multiplexing on the
Host
Multiplexing audio and video packets over a shared
bandwidth on the local host has its drawbacks. One major
drawback we observed was where video oversubscribes its
bandwidth. This leads to significant variable gaps between
audio packets that causes audio inter-arrival delay and
jitter.

There are two reasons for this problem. The first reason is
directly related to the variable size of the video packet or

fragment. This can be controlled by fixing the size of the
video packets, which can be inefficient. The second
reason for the problem is related to the burstiness of the
video source. Burstiness can be caused by the encoder,
the packet fragmenter, or both. The remedy for the
burstiness problem is a traffic regulator that controls the
flow of video packets and maintains quality of service for
all media types on the network. Other solutions include a
recovery mechanism at the remote end for audio jitter
effects, careful traffic monitoring and remote control of
the violating traffic source, and use of priority schemes for
audio at the network level and below. These solutions are
beyond the scope of this paper.

Conclusion
Real video traffic workload is collected and analyzed in
this paper. Worst-case G.723.1 audio traffic is used as the
audio source input. The measurements collected during
traffic analysis are packet length, inter-arrival time, jitter,
and packet overhead.

Analysis of audio traffic revealed a tradeoff between the
audio latency and the network bandwidth utilization.
Increasing the number of frames decreases the packet
overhead and increases the network utilization. However,
increasing the number of frames per packet also increases
audio local-induced latency by the time taken to buffer the
frames before assembling them into packets. The optimal
number of frames for minimum latency and minimum
overhead is approximately seven per packet for an
uncompressed header. This number will add latency
overhead to the audio packet of 210 ms. Analysis of audio
packets with compressed UDP and IP headers revealed
the optimal number of frames to be five and six for low
and high bit-rate audio, respectively. These numbers
induce a local delay on the audio packet of 150 ms for low
and 180 ms for high bit rates.

Analysis of the video traffic revealed that the mean packet
size is less than 250 bytes for all fragment size limits. The
standard deviation of packet size for all fragment sizes of
choice is less than 180 bytes. The majority of the video
packet sizes lay in the range of 50-250 bytes. This
information suggests that a maximum fragment size of
between 256 and 512 bytes is an appropriate choice.

It was also shown that as the maximum fragment size
increases, the mean inter-arrival time between video
packets increases, the number of generated fragments
decreases, and the inter-arrival jitter decreases. In theory
jitter should be reduced as the fragment size decreases.
However, the increase in jitter in this case is also due to
the packet-handling overhead (from the increased number
of packets) in the transport stack by the packet assembler.

Intel Technology Journal Q2 ‘98

Characterization of Multimedia Streams of an H.323 Terminal 9

The local audio latency and jitter experienced by the
audio-video scheduler are due to variations in video
fragment size and burstiness of the video source. A new
performance measurement was introduced. This
measurement is the number of interleaved video bytes
scheduled between audio packets. This number is a good
indicator for audio latency and jitter at the host.

These results help assess H.323 terminal traffic locally at
the host during a video conference. They provide useful
information for tuning media traffic parameters. The
results also provide a better understanding of the
audio/video multiplexing problem over a shared
bandwidth medium, and they enable the development of
effective solutions.

Acknowledgments
The author would like to thank all his colleagues at Intel
Architecture Labs. Special thanks and acknowledgment
are extended to Steve Ing and Jose Puthenkulam of IAL
for productive discussions during the various stages of this
work.

References
[1] Casner S., Jacobson V., “Compressing IP/UDP/RTP

Headers for Low-Speed Serial Links.” Internet Draft,
draft-ietf-avt-crtp-03.txt, July 1997.

[2] ITU-T, Recommendation G.711 (1988)–Pulse Code
Modulation (PCM) of Voice Frequencies.

[3] ITU-T Recommendation G.723.1 (1996)–Dual Rate
Speech Coders for Multimedia Communication
Transmitting at 5.3 & 6.3 kb/s.

[4] ITU-T, Recommendation H.261 (1993)–Video Codec
for Audiovisual Services at p X 64 kb/s.

[5] ITU-T, Recommendation H.263 (1996 –Video
Coding for Low Bit-rate Communication.

[6] ITU-T Recommendation H.323 (1996 –Terminal for
Low Bit-rate Multimedia Communication over Non-
Guaranteed Bandwidth Networks.

[7] Schulzrinne H., Casner S., “RTP: A Transport
Protocol for Real-Time Applications,” draft-ietf-avt-
rtp-04.txt, October 1993.

Author’s Biography
Hani ElGebaly is the project technical lead for the H.32x
protocols development within the conferencing products
division at Intel Architecture Labs. He received an M.Sc.
in Computer Science from the University of
Saskatchewan, Canada, and a B.Sc. in Electrical
Engineering from Cairo University, Egypt. Mr. ElGebaly
is currently pursuing a Ph.D degree with the University of

Victoria, Canada. His primary areas of interest include
multimedia conferencing protocols, embedded
programming, fault tolerant systems, and computer
architecture. His e-mail address is hani.el-
gebaly@intel.com

	preface
	fa
	camshift
	ieee
	h323
	streams

