
Intel Technology Journal Q1, 1998 
 

Preface 
 
Lin Chao 
Editor 
Intel Technology Journal  
 
This Q1'98 issue of the Intel Technology Journal focuses on Intel's tera-scale supercomputer and research on 
multithreading software libraries for applications.  
 
On June 11, 1997, the Intel supercomputer, containing over 9,200 Pentium® Pro processors, set the world's fastest 
computing record. Using the industry standard Linpack measurement method, the system calculated 1.34 trillion 
operations per second (teraflops) making it faster than a speeding bullet. By the time a bullet travels one foot, the 
computer will have completed 667 million calculations. The supercomputer is used for important scientific simulations 
such as the effect of a kilometer-wide comet striking the Atlantic Ocean. It will also be used to ensure the safety, 
reliability and effectiveness of the U.S. nuclear stockpile through computer simulation instead of nuclear testing.  
 
The contract to build this supercomputer was awarded to Intel under the U.S. government's Accelerated Strategic 
Computing Initiative. It is a joint development of the Department of Energy, Sandia National Labs in New Mexico, 
and Intel. Besides its 9,200 Pentium Pro processors, it has 573 gigabytes of system memory and 2.25 terabytes of disk 
storage. It weighs about 44 tons and has 86 cabinets taking up 1,728 square feet.  
 
The Intel TFLOPS supercomputer itself is the subject of four out of the five papers in this Q1'98 issue. The first paper 
gives an overview that includes a look at system architecture and how 4,536 compute nodes are connected into a single 
massively parallel supercomputer. The second paper looks at how high performance is achieved with coding and 
system parallelism. The third paper describes managing and optimizing large-scale parallelism from the point of view 
of an operating system, and the fourth one looks at the design of the system management environment.  
 
Finally, the fifth paper in this issue describes research in a parallel processing run-time library for applications 
supporting loop-level parallelism, task-level parallelism and nested parallel threads. 
 

Copyright © Intel Corporation 1998. This publication was downloaded from http://www.intel.com/. 
Legal notices at http://www.intel.com/sites/corporate/tradmarx.htm 
 

http://www.intel.com/technology/itj/chao_bio.htm


1

An Overview of the Intel TFLOPS Supercomputer

Timothy G. Mattson, Microcomputer Research Laboratory, Hillsboro, OR, Intel Corp.
Greg Henry, Enterprise Server Group, Beaverton, OR, Intel Corp.

Index words: Supercomputer, MPP, TFLOPS.

Abstract

Computer simulations needed by the U.S. Department of
Energy (DOE) greatly exceed the capacity of the world’s
most powerful supercomputers. To satisfy this need, the
DOE created the Accelerated Strategic Computing
Initiative (ASCI). This program accelerates the
development of new scalable supercomputers and will
lead to a supercomputer early in the next century that can
run at a rate of 100 trillion floating point operations per
second (TFLOPS).

Intel built the first computer in this program, the ASCI
Option Red Supercomputer (also known as the Intel
TFLOPS supercomputer). This system has over 4500
nodes, 594 Gbytes of RAM, and two independent 1 Tbyte
disk systems. Late in the spring of 1997, we set the MP
LINPACK world record of 1.34 TFLOPS.

In this paper, we give an overview of the ASCI Option
Red  Supercomputer. The motivation for building this
supercomputer is presented and the hardware and software
views of the machine are described in detail. We also
briefly discuss what it is like to use the machine.

Introduction
From the beginning of the computer era, scientists and

engineers have posed problems that could not be solved
on routinely available computer systems. These problems
required large amounts of memory and vast numbers of
floating point computations. The special computers built
to solve these large problems were called supercomputers.

Among these problems, certain ones stand out by
virtue of the extraordinary demands they place on a
supercomputer. For example, the best climate modeling
programs solve at each time step models for the ocean, the
atmosphere, and the solar radiation. This leads to
astronomically huge multi-physics simulations that
challenge the most powerful supercomputers in the world.

So what is the most powerful supercomputer in the
world? To answer this question we must first agree on
how to measure a computer's power. One possibility is to

measure a system's peak rate for carrying out floating
point arithmetic. In practice, however, these rates are only
rarely approached. A more realistic approach is to use a
common application to measure computer performance.
Since computational linear algebra is at the heart of many
scientific problems, the de facto standard benchmark has
become the linear algebra benchmark, LINPACK [1,7].

The LINPACK benchmark measures the time it takes
to solve a dense system of linear equations. Originally, the
system size was fixed at 100, and users of the benchmark
had to run a specific code. This form of the benchmark,
however, tested the quality of compilers, not the relative
speeds of computer systems. To make it a better computer
performance metric, the LINPACK benchmark was
extended to systems with 1000 linear equations, and as
long as residual tests were passed, any benchmark
implementation, tuning, or assembly coding was allowed.
This worked quite well until computer performance
increased to a point where even the LINPACK-1000
benchmark took an insignificant amount of time. So, about
15 years ago, the rules for the LINPACK benchmark were
modified so any size linear system could be used. This
resulted in the MP-LINPACK benchmark.

Using the MP-LINPACK benchmark as our metric, we
can revisit our original question: which computer is the
most powerful supercomputer in the world? In Table 1,
we answer this question showing the MP-LINPACK
world record holders in the 1990's.

All the machines in Table 1 are massively parallel
processor (MPP) supercomputers. Furthermore, all the
machines are based on Commercial Commodity Off the
Shelf (CCOTS) microprocessors. Finally, all the machines
achieve their high performance with scalable
interconnection networks that let them use large numbers
of processors.

The current record holder is a supercomputer built by
Intel for the DOE. In December 1996, this machine,
known as the ASCI Option Red Supercomputer, ran the
MP-LINPACK benchmark at a rate of 1.06 trillion
floating point operations per second (TFLOPS). This was
the first time the MP-LINPACK benchmark had ever been



Intel Technology Journal

2

run in excess of 1 TFLOP. In June 1997, when the full
machine was installed, we reran the benchmark and
achieved a rate of 1.34 TFLOPS.

In Table 2, we briefly summarize the machine's key
parameters. The numbers are impressive. It occupies
1,600 sq. ft. of floor-space (not counting supporting
network resources, tertiary storage, and other supporting
hardware). The system’s 9,216 Pentium� Pro processors
with 596 Gbytes of RAM are connected through a 38 x 32
x 2 mesh. The system has a peak computation rate of 1.8
TFLOPS and a cross-section bandwidth (measured across
the two 32 x 38 planes) of over 51 GB/sec.

Getting so much hardware to work together in a single
supercomputer was challenging. Equally challenging was
the problem of developing operating systems that can run
on such a large scalable system. For the ASCI Option Red
Supercomputer, we used different operating systems for
different parts of the machine. The nodes involved with
computation (compute nodes) run an efficient, small
operating system called Cougar. The nodes that support
interactive user services (service nodes) and booting
services (system nodes) run a distributed UNIX operating
system. The two operating systems work together so the

user sees the system as a single integrated supercomputer.
These operating systems and how they support scalable
computation, I/O, and high performance communication
are discussed in another paper in this Q1’98 issue of the
Intel Technology Journal entitled Achieving Large Scale
Parallelism Through Operating System Resource
Management on the Intel TFLOPS Supercomputer [8].

When scaling to so many nodes, even low probability
points of failure can become a major problem. To build a
robust system with so many nodes, the hardware and
software must be explicitly designed for Reliability,
Availability, and Serviceability (RAS).  All major
components are hot-swappable and repairable while the
system remains under power. Hence, if several
applications are running on the system at one time, only
the application using the failed component will shut down.
In many cases, other applications continue to run while the
failed components are replaced. Of the 4,536 compute
nodes and 16 on-line hot spares, for example, all can be
replaced without having to cycle the power of any other
module. Similarly, system operation can continue if any of
the 308 patch service boards (to support RAS
functionality), 640 disks, 1540 power supplies, or 616

Year System Number of
Processors

MP-
LINPACK
GFLOPS

1990 Intel
iPSC®/860 [2]

128 2.6

1991 Intel DELTA
[3]

512 13.9

1992 Thinking
Machines
 CM-5 [4]

1024 59.7

1993 Intel Paragon®
[5]

3744 143

1994 Intel Paragon
[5]

6768 281

1996 Hitachi CP-
PACS [6]

2048 368

1996 Intel ASCI
Option Red

Supercomputer

7264 1060

1997 Intel ASCI
Option Red

Supercomputer

9152 1340

Table 1: MP-LINPACK world records in the 1990's.
This data was taken from the MP-LINPACK
benchmark report [7].

Compute Nodes  4,536
Service Nodes  32
Disk I/O Nodes  32
System Nodes (Boot)  2
Network Nodes (Ethernet, ATM) 10
System Footprint  1,600 Square Feet
Number of Cabinets  85
System RAM 594 Gbytes
Topology  38x32x2
Node to Node bandwidth - Bi-
directional

 800 MB/sec

Bi-directional - Cross section
Bandwidth

 51.6 GB/sec

Total number of Pentium� Pro
Processors

 9,216

Processor to Memory Bandwidth  533 MB/sec
Compute Node Peak Performance  400 MFLOPS
System Peak Performance  1.8 TFLOPS
RAID I/O Bandwidth (per
subsystem)

 1.0 Gbytes/sec

RAID Storage (per subsystem)  1 Tbyte
Table 2: System parameters for the ASCI Option Red
Supercomputers. The units used in this table and
throughout the paper are FLOPS = floating point
operations per second with M, G, and T indicating a count
in the millions, billions or trillions. MB and GB are used
for a decimal million or billion of bytes while Mbyte and
Gbyte represent a number of bytes equal to the power of
two nearest one million (220) or one billion (230)
respectively.



Intel Technology Journal

3

interconnection facility (ICF) back-planes should fail.
Keeping track of the status of such a large scalable

supercomputer and controlling its RAS capabilities is a
difficult job. The system responsible for this job is the
Scalable Platform Services (SPS). The design and
function of SPS are described in another paper in this
issue of the Intel Technology Journal entitled Scalable
Platform Services on the Intel TFLOPS Supercomputer [9].

Finally, a supercomputer is only of value if it delivers
super performance on real applications. Between MP-
LINPACK and production applications running on the
machine, significant results have been produced.  Some of
these results and a detailed discussion of performance
issues related to the system are described in another paper
in this issue of the Intel Technology Journal entitled The
Performance of the Intel TFLOPS Supercomputer [10].

In this paper, we describe the motivation behind this
machine, the system hardware and software, and how  the
system is used by both programmers and the end-users.
The level of detail varies. When a topic is addressed
elsewhere, it is discussed only briefly in this paper. For
example, we say very little about SPS. When a topic is not
discussed elsewhere, we go into great detail. For example,
the node boards in this computer are not discussed
elsewhere so we go into great detail about them. As a
result, the level of detail in this paper is uneven, but, in
our opinion, acceptable given the importance of getting
the full  story about this machine into the literature.

Why Build a TFLOPS Supercomputer?
Even with the benefits of using CCOTS technology

throughout the system, a TFLOPS supercomputer is not
cheap. In this era of tight government funding, it takes a
compelling argument to fund such a machine. The
compelling argument in this case was the maintenance of
the U.S. nuclear stockpile. It is up to the DOE to maintain
this stockpile without nuclear testing; science-based
testing will be used instead.

Science-based testing involves a combination of
laboratory experiments and computer simulations. The
data from experiments plus the results from past nuclear
tests will be fed into massive computer simulations that
will provide the necessary information to maintain a safe
and reliable nuclear stockpile.

DOE scientists have determined that they can only run
these simulations if they have 100 TFLOPS computers.
Given enough time, the computer industry will create 100
TFLOPS supercomputers. The DOE, however, cannot
wait for industry to build these machines; they are needed
early in the next century.

In response to this need, the DOE launched a five year,
900 million dollar program in 1995 to accelerate the
development of extreme scale, massively parallel
supercomputers with the goal of having a 100 TFLOPS
computer early in the next century. This program is called

the Accelerated Strategic Computing Initiative or ASCI
[13]. Scientists from the three major DOE weapons labs:
Sandia National Laboratories (SNL), Los Alamos
National Laboratory (LANL), and Lawrence Livermore
National Laboratory (LLNL) are involved in this program.

The ASCI program will produce a series of machines
leading to the 100 TFLOPS machine. The goal is to take
advantage of the aggressive evolution of CCOTS
technology to build each generation of ASCI
supercomputer for roughly the same cost.

The first phase of the ASCI program has two tracks
corresponding to the two philosophies of how to build
such huge computers: ASCI Red and ASCI Blue. The red
track uses densely packaged, highly integrated systems
similar to the MPP machines Intel has traditionally built
[2,3,5]. The blue track uses clusters of high end, off-the-
shelf systems. By considering the successes and failures
from each track's initial machines, the direction would be
clear for subsequent machines and the path to the 100
TFLOPS goal.

The ASCI red machine was built by Intel and has been
in production use at Sandia National Laboratories in
Albuquerque, New Mexico since late 1996. Contracts
have been awarded for two ASCI blue machines. At Los
Alamos National Laboratory, the so-called ASCI Blue
Mountain [14] machine is being built by Silicon Graphics
Inc. This machine will be based on a future version of the
Origin 2000 computer and should be operational by mid
1999. At Livermore National Laboratory, the ASCI Blue
Pacific [15] machine is being built by IBM. This machine
will be based on the SP* system with a newer
communication switch and a node board with eight
PowerPC microprocessors. This machine will be
operational in late 1998 or early 1999. The ASCI blue
machines will have peak performances in the range of
three TFLOPS.

Before leaving this section, we need to address one
critical requirement for all of the ASCI machines.
According to DOE security regulations, the hard disks
used when carrying out classified computing must be
permanently and physically isolated from the outside
world. In other words, if a disk has ever had classified
data on it, that disk can never be attached to an outside
network. Hence, the ASCI supercomputers must have
disks that can be switched so the machine can be used for
both classified and unclassified computing. Later in this
paper, we will address how the ASCI Option Red
Supercomputer met this requirement.

The ASCI Option Red Supercomputer:
Hardware Overview

The ASCI Option Red Supercomputer is a Massively
Parallel Processor (MPP) with a distributed memory
Multiple-Instruction, Multiple Data (MIMD) architecture.



Intel Technology Journal

4

All aspects of this system are scalable including the
aggregate communication bandwidth, the number of
compute nodes, the amount of main memory, disk storage
capacity, and I/O bandwidth.

In the following sections, we will discuss the major
hardware components used to implement the ASCI Option
Red Supercomputer. We will begin with a quick
introduction to the Intel Pentium Pro processor. We will
follow this with a discussion of the two kinds of node
boards used in the system: Eagle and Kestrel. Finally, we
will talk about the Interconnection Facility (ICF) used to
connect the nodes together and the packaging of all these

parts into a full machine.
Figure 1 is a diagram of the ASCI Option Red

Supercomputer as it sits at SNL in Albuquerque, New
Mexico. The machine is organized into a large pool of

Fig. 1: Schematic diagram of the ASCI Option Red supercomputer as it will be installed at  Sandia Nat.
Laboratories in Albuquerque NM. The cabinets near each end labeled with an X are the disconnect cabinets
used to isolate one end or the other. Each end of the computer has its own I/O subsystem (the group of 5
cabinets at the bottom and the left), and their own SPS station (next to the I/O cabinets). The lines show the
SCSI cables connecting the I/O nodes to the I/O cabinets. The curved line at the top of the page show the
windowed-wall to the room where the machine operators will sit. The black square in the middle of the room
is a support post.



Intel Technology Journal

5

compute nodes in the center, two distinct blocks of nodes
at either end, and two separate one-Tbyte disk systems.
The end-blocks and their disk systems can be isolated
from the rest of the machine by disconnecting the X-mesh
cables in the disconnect cabinets (marked with an X in
Figure 1). This design satisfies DOE security requirements
for a physically isolated classified disk system while
assuring that both disk systems are always available to
users.

Rectangular meshes are needed, hence the number of
cabinets set up for isolation must be the same in each row
on each end. The most likely configuration would put
disconnect cabinets four cabinets over from each end, but
this can be varied to meet customer needs. Depending on
which types of node boards are used in which slots, this
would yield a 400 GFLOPS stand-alone system.

The Pentium Pro Processor
The Intel Pentium Pro processor [11] is used

throughout the ASCI Option Red Supercomputer. The
instruction set for the Pentium Pro processor is basically
the same as the IA-32 instructions used on a Pentium ®
processor. Unlike the Pentium processor, however, the
Pentium Pro processor doesn't directly execute the IA-32
instructions. These complex instructions are broken down

at runtime into simpler instructions called micro-
operations (or uops). The uops execute inside the Pentium
Pro processor with the order of execution dictated by the
availability of data. This lets the CPU continue with
productive work when other uops are waiting for data or
functional units.

The Pentium Pro processor can complete up to three
uops per cycle of which only one can be a floating-point
operation. The floating-point unit requires two cycles per
multiply and one cycle per add. The adds can be
interleaved with the multiplies so the Pentium Pro
processor can have a floating point result ready to retire
every cycle. The processors used in the ASCI Option Red
Supercomputer run at 200 MHz so the peak floating point
rate is 200 MFLOPS.

The Pentium Pro processor has separate on-chip data
and instruction L1 caches (each of which is eight KBytes).
It also has an L2 cache (256 Kbytes) packaged with the
CPU in a single dual-cavity PGA package. All cache lines
are 32 bytes wide.

The Pentium Pro processor bus supports memory and
cache coherency for up to four Pentium Pro processors. In
the ASCI Option Red Supercomputer, however, we used
only two processors per node.

Figure 2: The ASCI Option Red Supercomputer I/O and system Node (Eagle Board). The NIC connects to the
MRC on the backplane through the ICF Link.



Intel Technology Journal

6

The Eagle Board
The node boards used in the I/O and system partitions are
called Eagle boards. Figure 2 shows a block diagram for
an Eagle board. Each node includes two 200 MHz
Pentium  Pro processors. These two processors support
two on-board PCI interfaces that each provide 133
MB/sec I/O bandwidth. One of the two buses can support
two PCI cards through the use of a 2-level riser card.
Thus, a single Eagle board can be configured with up to
three long-form PCI adapter cards. CCOTS PCI adapter
boards can be inserted into these interfaces to provide
Ultra-SCSI, HiPPI, ATM, FDDI, and numerous other
custom and industry-standard I/O capabilities. In addition
to add-in card capabilities, there are base I/O features built
into every board that are accessible through the front
panel. These include RS232, 10 Mbit Ethernet, and
differential FW-SCSI.

Each Eagle board provides ample processing capacity
and throughput to support a wide variety of high-
performance I/O devices. The throughput of each PCI bus
is dictated by the type of interface supported by the PCI
adapter in use, the driver software, and the higher-level
protocols used by the application and the “other end” of
the interface. The data rates associated with common I/O
devices fit well within the throughput supported by the
PCI bus. Ultra-SCSI, for example, provides a hardware
rate of 40 MB/sec. This rate can easily be supported by

CCOTS PCI adapters.
The memory subsystem is implemented using Intel’s

CCOTS Pentium Pro processor support chip-set (82453).
It is structured as four rows of four, independently-
controlled, sequentially-interleaved banks of DRAM to
produce up to 533 MB/sec of data throughput. Each bank
of memory is 72 bits wide, allowing for 64 data bits plus 8
bits ECC, which provides single bit error correction and
multiple bit error detection. The banks are implemented as
two 36-bit SIMMs, so industry standard SIMM modules
can be used to provide 64 Mbytes to one Gbytes of
memory.

The Kestrel Board
Kestrel boards (see Figure 3) are used in the compute

and service partitions. Each Kestrel board holds two
compute nodes. The nodes are connected through their
Network Interface Chip (NIC) with one of the NICs
connecting to a Mesh Router Chip (MRC) on the back-
plane. Each node on the Kestrel board includes its own
boot support (FLASH ROM and simple I/O devices)
through a PCI bridge on its local bus. A connector is
provided to allow testing of each node through this PCI
bridge. The FLASH ROM contains the Node Confidence
Tests, BIOS, plus additional features needed to diagnose
board failures and to load a variety of operating systems.
Local I/O support includes a serial port, called the "Node
Maintenance Port." This port interfaces to the system’s

Figure 3: The ASCI Option Red supercomputer Kestrel Board. This board includes two compute nodes chained

together through their NIC's. One of the NIC's connects to the MRC on the backplane through the ICF Link.



Intel Technology Journal

7

internal Ethernet through the PSB on each card cage.
The memory subsystem on an individual compute

node is implemented using Intel’s CCOTS Pentium Pro
processor support chip-set (82453). It is structured as two
rows of four, independently-controlled, sequentially-
interleaved banks of DRAM to produce up to 533 MB/sec
of data throughput. Each bank of memory is 72 bits wide,
allowing for 64 data bits plus 8 bits ECC, which provides
single bit error correction and multiple bit error detection.
The banks are implemented as two 36-bit SIMMs, so
industry standard SIMM modules may be used. Using
commonly available 4 and 8 MByte SIMMs (based on
1Mx4 DRAM chips) and 16 and 32 MByte SIMMs (based
on 4Mx4 DRAM chips), 32 MB to 256 MB of memory
per node is supported. The system was delivered with 128
Mbytes/node.

Interconnection Facility
The interconnection facility (ICF) is shown in Figure

4. It utilizes a dual plan mesh to provide better aggregate
bandwidth and to support routing around mesh failures. It
uses two custom components: NIC and MRC. The MRC
sits on the system back-plane and routes messages across
the machine. It supports bi-directional bandwidths of up to
800 Mbytes/sec over each of six ports (i.e., two directions
for each X, Y, and Z port). Each port is composed of four
virtual lanes that equally share the total bandwidth. This
means that as many as four message streams can pass
through an MRC on any given port at any given time. This
reduces the impact of communication contention and leads
to a more effective use of total system bandwidth.

The NIC resides on each node and provides an
interface between the node's memory bus and the MRC.
The NIC can be connected to another NIC to support
dense packaging on node boards. For example, on the
Kestrel board, the NIC on one node, the outer node, is
connected to the NIC on the other node, the inner node,
which then connects to the MRC. Contention is minimized
in this configuration since the virtual lane capability used
on the MRCs was included on the NICs.

Putting the Pieces Together
Boards and an ICF are not enough to build a working

supercomputer. In this section we very briefly address
how these components are packaged into a full system.

The boards and ICF components are packaged into
cabinets and organized into a full system. Each cabinet
contains a power supply, four card cages, and a fan unit.
The fan unit sits on top of the basic cabinet making the
full assembly eight feet tall. A card cage holds any
combination of eight Kestrel or Eagle node boards. The
card cage also holds two MRC cards with four MRCs per
card. The pair of MRC cards implements a cube topology
and provides the back and front planes of the split plane
mesh and the connection points for the node boards.

Associated with each card cage is the PSB. The PSB
monitors the system resources within the card cage and
communicates this information back to a system
management console over a separate Ethernet network.
The cabinets are connected in the X direction with cables
between adjacent cabinets. For the Y direction, cables run
from the top of one cabinet, down through the floor, and

Peak
(sustainable) Uni-

Directional
Bandwidth

Node Board

Node Board

Node Board

Node Board

Peak
(sustainable)
Bi-Directional

Bandwidth

Z

Y

X

800 MB/sec
(800)

800 MB/sec
(700)

400 MB/sec
(400)

400 MB/sec
(360)

MRCsA

B

NIC

Figure 4: ASCI Option Red Supercomputer 2 Plane Interconnection Facility (ICF). Bandwidth figures are

given for NIC-MRC and MRC-MRC communication. Bi-directional bandwidths are given on the left side of the
figure whileuni-directional bandwidths are given on the right side. In both cases, sustainable (as opposed to
peak) numbers are given in parentheses.



Intel Technology Journal

8

into the bottom of the corresponding cabinet in the next
row. This cabling connects the nodes into a 38x32x2
topology.

I/O and network nodes are usually placed near either
end of the full machine. As mentioned earlier, the I/O
nodes are Eagle nodes since they provide more room for
PCI connections. These nodes are connected with
standard SCSI cables to the disk RAIDS in separate
cabinets.

The User's View of the ASCI Option Red
Supercomputer

To the user, the ASCI Option Red Supercomputer has
the look and feel of a UNIX-based supercomputer. When
users log onto the machine, they get a familiar UNIX
prompt. Files are presented to the user and manipulated in
the standard UNIX way. Programs are built with make and
shell scripts provide compiler interfaces that link in the
special compilers and libraries needed to build parallel
programs. It is only when the user submits a parallel job
that the system deviates from a standard workstation
environment�but even this deviation is slight.

To submit a parallel job, the user issues a command
with a typically cryptic UNIX style name ("yod").
Parameters to "yod" control the runtime factors effecting a
computation such as how many and which nodes to use.
Once the job is running, the user can monitor the job with
a command called "showmesh." This command
graphically displays the compute nodes visible to the user
and the jobs running on the machine. In principle, it is not
that different from the familiar "ps" command used to
monitor a job on a UNIX workstation. A standard NQS
environment is available to submit batch jobs.

To a programmer, the machine looks like a typical
MPP supercomputer. The programs running on each node
use standard sequential languages. To move data between
nodes, the programs explicitly call routines from a
message-passing library (MPI or NX in most cases).
When developing software, building programs, or other
interactive operations, the computer will have the look and
feel of a UNIX workstation.

Fortran77, Fortran90, C, and C++ compilers from
Portland Group Incorporated (PGI) are available on the
system. In addition, interactive debuggers and
performance analysis tools that work with and understand
the source code for each of these languages are provided.
For data-parallel programming, the HPF compiler from
PGI is provided.

While message passing (either explicitly or implicitly
through HPF) is used between nodes, shared memory
mechanisms are used to exploit parallelism on a node. The
user has three multiprocessor options. First, the second
processor can be completely ignored. Alternatively, it can

be used as a communication co-processor. Finally, a
simple threads model can be used to utilize both
processors on a single application. The threads model is
accessed through compiler-driven parallelism (using the -
Mconcur switch) or through an explicit dispatch
mechanism referred to as the COP interface.

The COP interface lets a programmer execute a
routine within a thread running on the other processor.
Global variables are visible to both the COP thread and
the parent thread. To use COP, the programmer passes
COP the address of the routine, the address of a structure
holding the routine’s input parameters, and an output
variable to set when the routine is completed. The COP’ed
routine can not make system calls (including calls to the
message-passing library).

The debugger on the ASCI Option Red Supercomputer
is a major re-implementation of the IPD [16] debugger
developed for the Paragon XP/S supercomputer. The
debugger has been designed to scale up to the full size of
the ASCI Option Red Supercomputer. It includes both
graphical and command line interfaces. The debugger’s
command line interface has been designed to mimic the
DBX interface where ever possible.

The performance analysis tools use the counters
included on the Pentium Pro processor and on the NIC.
The counters on the Pentium Pro processor let users track
a range of operations including floating point operation
counts, cache line loads, and data memory references.
Each Pentium Pro processor has two counters so only two
independent events can be counted at one time. The NIC
has ten independent counters.

We anticipate that the applications on this system will
run for many hours or even days. Hence, even a system
mean time between failure in excess of our target (>50
hours) will not be sufficient. Therefore, a check-
point/restart capability will be provided. Automatic check-
pointing is exceedingly difficult to implement on systems
as large as this one. Hence, applications will need to assist
the check-pointing by putting themselves into a clean state
prior to explicitly invoking a check-point. (A clean state is
one where the communication network does not hold any
message-passing state for the application being check-
pointed.) The I/O bandwidth will be sufficient to check-
point the entire system memory in approximately five
minutes.

The ASCI Option Red Supercomputer:
Software

The user view of the ASCI Option Red Supercomputer
is shown in Figure 5. This view is maintained by the
system software which organizes the system into four
logical partitions:

� Service Partition�provides an integrated,
scalable “host” that supports interactive users,



Intel Technology Journal

9

application development, and system
administration. An operator can vary the
number of service nodes at boot time
depending on the demand for interactive
services.

� I/O Partitions��implement scalable file and
network services.

� Compute Partition�contains the nodes
dedicated to running parallel applications.

� System Partition�supports initial system
booting. The boot node has its own
independent RAID and Ethernet connections.
A second Eagle node configured as part of the
I/O partition can be cross-connected with the
boot RAID to provide an on-line spare to the
boot node.

 In normal operation, one of the sets of disconnect cabinets
will cut the system in two. In this case, each side will see
the logical partition model outlined in Figure 5.

 In the following sections, we describe the key features
of the system software on the ASCI Option Red
Supercomputer. We start with the two operating systems
used on the system. We then describe the portals

mechanism used for high performance communication.

 The Operating Systems
 Each partition in the system places different demands

on the operating system. One operating system that met
the needs of all of the partitions could have been
developed. This would guarantee, however, that the
operating system did all jobs adequately but none of them
particularly well. We took a different approach and used
multiple operating systems tuned to the specific needs of
each partition.

 The service, I/O, and system partitions are directly
visible to interactive users. These partitions need a
familiar, UNIX operating system. We used Intel's
distributed version of UNIX (POSIX 1003.1 and XPG3,
AT\&T System V.3 and 4.3 BSD Reno VFS) developed
for the Paragon® XP/S supercomputer. The port of the
Paragon OS to the ASCI Option Red Supercomputer
resulted in an OS we call the TFLOPS OS. The TFLOPS
OS presents a single system image to the user. This means
that users see the system as a single UNIX machine
despite the fact that the operating system is running on a
distributed collection of nodes.

 

 Figure 5: Logical System Block Diagram for the ASCI Option Red Supercomputer. This system uses a split-plane mesh
topology and has 4 partitions: System, Service, I/O and Compute. Two different kinds of node boards are used and
described in the text: the Eagle node and the Kestrel node. The operators console (the SPS station) is connected to an
independent ethernet network that ties together patch support boards on each card cage.



Intel Technology Journal

10

 The compute partition has different needs. Users only
run parallel applications on these nodes, not general
interactive services. Furthermore, these nodes are the most
numerous so the aggregate costs of wasted resources (such
as memory consumed by an OS) grows rapidly. Therefore,
for the compute partition, we wanted an operating system
that was small in size, very fast, and provided just those
features needed for computation.

 On our Paragon XP/S supercomputers, we had great
success with SUNMOS [17] �a light-weight operating
system from Sandia National Laboratories and the
University of New Mexico. For the ASCI Option Red
Supercomputer, we decided to work with their next light
weight OS (Puma [3]). We call our version of Puma,
Cougar.

 Cougar easily meets our criteria for a compute
partition operating system. It is small (less than half a
megabyte), of low complexity, and scalable. Cougar can
be viewed in terms of four entities:

� host Operating System
� quintessential kernel (Q-Kernel)
� process control thread (PCT)
� application
Since it is a minimal operating system, Cougar

depends on a host OS to provide system services and to
support interactive users. For the ASCI Option Red
Supercomputer, the host OS is the TFLOPS OS running in
the service partition. The Q-Kernel is the lowest level
component of Cougar. All access to hardware resources
comes from the Q-Kernel. Above the Q-Kernel sits the
process control thread (PCT). This component runs in
user space and manages processes. At the highest level are
the users’ applications.

Cougar takes a simple view of a user's application. An
application is viewed as a collection of processes grouped
together and identified by a common group identifier.
Within each group, a process is assigned a group rank
which ranges from 0 to (n-1)  where n is the number of
processes. While the PCT supports priority multi-tasking,
it is anticipated that most users will run only one
application process per node.

Memory integrity in Cougar is assured by a hierarchy
of trusts ranging from the Q-Kernel to the PCT to the
application. At each level in the hierarchy, lower levels
are trusted but higher levels are not trusted. Hence, an
application cannot corrupt the PCT or Q-Kernel while a
flawed Q-Kernel can corrupt anything.

The Quintessential Kernel or Q-Kernel
There is one Q-Kernel running on each of the nodes in

the compute partition. It provides access to the physical
resources of a node. For example, only the Q-Kernel can
directly access communication hardware or handle
interrupts. In addition, any low-level functions that need to

be executed in supervisor mode are handled by the Q-
Kernel. This includes memory management, context
switching. and message dispatch or reception.

The Q-Kernel is accessed through a series of system
traps. These are usually invoked by an application or a
PCT, but they can also arise from an exception (e.g., a
floating point exception) or an interrupt (e.g., timer or
communication interrupts).

The Q-Kernel does not set the policy for how a node's
resources will be used. Rather, it performs its low-level
tasks on behalf of the PCT or a user’s application. This
design keeps the Q-Kernel small and easy to maintain.

The Process Control Thread
The Process Control Thread (PCT) sits on top of the

Q-Kernel and manages process creation, process
scheduling, and all other operating system resources.
While part of the operating system, the PCT is a user-level
process meaning that it has read/write access to the user
address space. There will typically be only one PCT per
node.

Most of the time, the PCT is not active. It only
becomes active when the Q-Kernel receives an application
exception (a process blocks itself by a call to the
quit_quantum()  routine) or in response to certain
timer interrupts.

When a PCT becomes active, it first checks to see if
the most recently suspended process has any outstanding
requests for the PCT. Once these requests are resolved, it
handles requests from any other PCTs. Finally, it tries to
execute the highest priority, run-able application.

ASCI Option Red Message Communication
Software: Portals

Low-level communication on the ASCI Option Red
Supercomputer uses Cougar portals [12]. A portal is a
window into a process's address space. Using portals, a
process can write-to or read-from a special address
subspace on another process. This address space is user-
accessible meaning copying between kernel space and
user space is avoided. Since extra copy operations
increase communication latencies, portals support low-
latency communication. In addition to low latencies,
portals provide high-performance asynchronous transfers
with buffering in the application’s data space.

Application programs will have access to portals, but
we expect most applications will use higher level
message-passing libraries. A variety of message-passing
protocols will be available on top of portals. The preferred
library is MPI. This is a full implementation of the MPI
1.1 specification.

To support applications currently running on Paragon
supercomputers, we implemented a subset of the NX
message-passing library on top of portals. Since both MPI



Intel Technology Journal

11

and NX run on top of portals, latency and bandwidth
numbers will be comparable for applications utilizing
either library.

System RAS Capabilities
We have set aggressive reliability targets for this

system. The key target is that a single application will see
a mean time between failure of greater than 50 hours.
Some applications (e.g., CTH [5]) have already exceeded
this target. In the aggregate, however, we expect far more
from our system. Our target is to have the system in
continuous operation for greater than four weeks with no
less than 97% of the system resources being available. In
order to meet these targets, the system includes
sophisticated Reliability, Availability, and Serviceability
(RAS) capabilities. These capabilities will let the system
continue to operate in the face of failures in all major
system components.

Three techniques are used to meet our system RAS
targets. First, the system includes redundant components
so failures can be managed without swapping hardware.
For example, the dual plane ICF uses Z-X-Y-Z  routing
so a bad mesh router chip can be by-passed without
causing system failure. In addition, the system will include
on-line spare compute-nodes that can be mapped into the
system without interruption.

The second RAS technique is to build the system so all
major components are hot-swappable and can be repaired
while the system continues to run. The compute nodes and
the on-line spares, for example, can all be replaced
without having to cycle the power of any other module.
Similarly, system operation can continue if any of the 640
disks, 1540 power supplies, or 616 ICF backplanes should
fail.

Finally, to manage these RAS features and to manage
the configuration of such a large system, an active
Monitoring and Recovery Subsystem (MRS) is included.
At the heart of this system is a PSB�one per 8-board card
cage. The PSB board monitors the boards in its card cage
and updates a central MRS database using a separate RAS
Ethernet network. This database will drive an intelligent
diagnostic system and will help manage the replacement
of system units. The console for the RAS subsystem is the
SPS station. There is one of these connected to the RAS
Ethernet network on each side of the machine (see Figure
1). As mentioned earlier, the SPS system is described in
more detail in another paper in this issue of the Intel
Technology Journal [4].

Conclusion
DOE scientists need computers that can deliver

sustained TFLOPS in order to get their jobs done. To
meet that need, the DOE created the ASCI program, a
program that will produce a series of supercomputers
ranging from 1 TFLOPS in 1996 to up to 100 TFLOPS

early in the next century. The first of these machines is the
ASCI Option Red Supercomputer built by Intel.

The machine is a huge massively parallel
supercomputer containing over 9200 Pentium Pro
processors. It was this supercomputer (actually 3/4 of it)
that first broke the 1 TFLOPS MP-LINPACK barrier
(1.06 TFLOPS on December 7, 1996). Later, after the full
machine was installed at Sandia National Laboratories, we
broke our own record and ran the MP-LINPACK
benchmark at 1.34 TFLOPS.

Supercomputers, however, aren't built to run
benchmarks. A machine is justified by its ability to run
applications that solve key problems. On this front, we
have succeeded as well. As we built the machine, we used
application benchmarks and full application programs to
debug the machine. Hence, within hours of installing the
machine, it was being used for production calculations.
Actually, the first production calculations were carried out
while it was still being built in the factory!

It is customary to close a research paper with a
discussion of future plans.  After we started building this
supercomputer, our focus changed from providing MPP
systems for end-users, to providing components and
expertise to the broader high performance computing
market. We learned a lot from our experiences, and this
knowledge is being applied throughout Intel.  Hence, the
core technologies behind the machine will likely show up
in future products.

Acknowledgments

The Intel ASCI Option Red Supercomputer is a result
of the "blood, sweat and tears" of hundreds of Intel
engineers over the course of a decade. It all started with
Intel Scientific Computers back in the mid 1980's and
ended with the Scalable Systems Division inside Intel's
Enterprise Server Group in the late 1990's. This was our
last MPP machine, and most of the people behind this
computer have already moved on in their careers. We can't
list all of you here so we must settle for a collective thank
you. To these people, we hope you are doing well and that
you take as much pride in this remarkable machine as we
do.

*All other brands and names are the property of their
respective owners.

References
[1] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W.

Stewart, Linpack Users' Guide, SIAM, Philadelphia,
PA, 1979.

[2] E. Barszcz, "One Year with an iPSC/860,"
Proceedings of the COMPCON Spring'91 conference,
p. 213, IEEE Computer Society Press, 1991.



Intel Technology Journal

12

[3] S.L. Lillevik, "The Touchstone 30 Gigaflop DELTA
Prototype," Proceedings of the sixth Distributed
memory Computer Conference, p. 671, IEEE
Computer Society Press, 1991.

[4] P.S. Lomdahl, P. Tamayo, N. Gronbech-Jensen, D. M.
Beazley, "50 Gflops Molecular Dynamics on the
Connection Machine 5", Proceedings of
Supercomputing'93, p. 520, IEEE Computer Society
Press, 1993.

[5] D.R. Mackay, J. Drake, T. Sheehan, B. Shelton,
"Experiences in Programming Grand Challenge
Applications on the Intel MP Paragon
Supercomputer," Proceedings of the Intel
Supercomputer Users Group, 1995. Available on the
web at http://www.cs.sandia.gov/ISUG.

[6] Y. Abei, K. Itakura, I. Boku, H. Nakamura and K.
Nakazawa, "Performance Improvement for Matrix
Calculation on CP-PACS Node Processor," in
Proceedings of the High Performance computing on
the Information Superhighway conference
(HPC_ASIA'97), 1997.

[7] Dongarra, J.J., "Performance of various computers
using standard linear equations software in a Fortran
environment," Computer Science Technical Report
CS-89-85, University of Tennessee, 1989,
http://www.netlib.org/benchmark/performance.ps

[8] S. Garg, R. Godley, R. Griffths, A. Pfiffer, T. Prickett,
D. Robboy, S. Smith, T. M. Stallcup, and S. Zeisset,
"Achieving Large Scale Parallelism Through
Operating System Resource Management on the Intel
TFLOPS Supercomputer,” Intel Technology Journal,
Q1'98 issue, 1998.

[9] R. Larsen and B. Mitchell, "Scalable Platform
Services on the Intel TFLOPS Supercomputer," Intel
Technology Journal, Q1'98 issue, 1998.

[10] G. Henry, B. Cole, P. Fay, T.G. Mattson, "The
Performance of the Intel TFLOPS Supercomputer,"
Intel Technology Journal, Q1'98 issue, 1998.

[11] Pentium Pro Processor technical documents,
http://www.intel.com/design/pro/manuals/.

[12]S.R. Wheat, R. Riesen, A.B. Maccabe, D.W. van
Dresser, and T. M. Stallcup, “Puma: An Operating
System for Massively Parallel Systems,” Proceedings
of the 27’th Hawaii International Conference on
Systems Sciences Vol II, p. 56, 1994.

[13] ASCI overview web site, http://www.sandia.gov/ASCI.

[14] ASCI Blue Mountain web site,
http://www.lanl.gov/projects/asci/bluemtn.

[15] ASCI Blue Pacific web site,
http://www.llnl.gov/asci/platforms/bluepac.

[16] D. Breazeal, K. Callagham, and W.D. Smith, "IPD: A
Debugger for Parallel Heterogeneous systems", in
Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, p. 216, 1991.

[17] B. Traversat, B. Nitzberg and S. Fineberg,
"Experience with SUNMOS on the Paragon XP/S-15,"
in Proceedings of the Intel Supercomputer User's
meeting, San Diego, 1994.

Authors' Biographies
Timothy G. Mattson has a Ph.D. in chemistry (1985, U.C
Santa Cruz) for his research on Quantum Scattering
theory. He has been with Intel since 1993 and is currently
a research scientist in Intel's Parallel Algorithms
Laboratory where he works on technologies to support the
expression of parallel algorithms. Tim's life is centered on
his family, snow skiing, science and anything that has to
do with kayaks.  His e-mail is
timothy_g_mattson@ccm2.hf.intel.com

Greg Henry received his Ph.D. from Cornell University in
Applied Mathematics.  He started working at Intel SSD in
August 1993.  He is now a Computational Scientist for the
ASCI Option Red Supercomputer.   He tuned MP
LINPACK and the BLAS used there-in.  Greg has three
children and a wonderful wife. He plays roller hockey,
soccer, and he enjoys Aikido and writing. His e-mail
address is henry@co.intel.com.



1

The Performance of the Intel TFLOPS Supercomputer

Greg Henry, Enterprise Server Group, Beaverton, OR, Intel Corp.
Pat Fay, Enterprise Server Group, Beaverton, OR, Intel Corp.

Ben Cole, Enterprise Server Group, Beaverton, OR, Intel Corp.
Timothy G. Mattson, Microcomputer Research Laboratory, Hillsboro, OR, Intel Corp.

Index words: Parallel Supercomputer Applications

Abstract

The purpose of building a supercomputer is to provide
superior performance on real applications.  In this paper,
we describe the performance of the Intel TFLOPS
Supercomputer starting at the lowest level with a detailed
investigation of the Pentium® Pro processor and the
supporting memory subsystem. We follow this with a
description of the benchmarks used to track the
performance of the machine over its development life
cycle, which culminated in the first MP LINPACK run to
exceed a rate of one trillion floating point operations per
second (TFLOPS). Our analysis applies not only to the
TFLOPS supercomputer, but also to servers and
workstations based on the Intel 32-bit architecture. We
conclude with a discussion of the machine's performance
on a production application.

Introduction
The Intel TFLOPS Supercomputer, also known as the

ASCI Option Red Supercomputer, at Sandia National
Laboratories in Albuquerque, NM, is the world's fastest
supercomputer. By this we mean that this supercomputer
is theoretically capable of doing more floating point
operations per second on a given application than any
other general purpose supercomputer built to date.  With
over 9200 Intel Pentium Pro processors each of which is
capable of running at 200 million floating point operations
per second (MFLOPS), this supercomputer can
theoretically run at over 1.8 trillion floating point
operations per second (TFLOPS).

An overview of what the supercomputer is and how it
is used, the operating systems and parallel I/O running on
it, and the scalable platform services that support it are the
subjects of other papers in this Q1’98 issue of the Intel
Technology Journal.  This paper looks at  how you
achieve high performance with real applications.  This
improved performance cannot be achieved by adding

more or faster nodes since the hardware is fixed.
Therefore, we look at algorithmic and coding
enhancements to the applications.  Furthermore, we
investigate what kinds of performance can be reasonably
expected, and what can be done to enhance the
performance of given applications.

It can be argued that the first barrier to achieving
performance on an application is parallelizing it.  That is,
the data and/or work must be efficiently distributed
amongst all the processors in order to achieve optimum
performance from the processors working together.  How
easy, hard, or possible this is depends on the application.
It is not our goal here to discuss this difficulty.  As
mentioned in another paper in this issue, there are around
4500 compute nodes in this supercomputer each having
two processors. Let us assume that an application can be
at least distributed among these 4500 nodes. Since the
funding for this supercomputer comes from the DOE�an
organization with vast experience in scalable computing–
assuming that the application is parallelized is not entirely
unreasonable.  And although none of the applications have
ever been run on such a large parallel supercomputer, the
scientists at Sandia National Laboratories have spent
many years achieving parallelism in their data and know
how to take advantage of a scalable supercomputer.

Hence, instead of discussing application
parallelization, we discuss the efforts required to achieve
high performance of existing parallel applications. The
total efficiency of the full system cannot be better than the
efficiency of a single node.  Much of our discussion is
focused on a single node or even a single processor. We
start with a quick introduction to the Pentium Pro
processor followed by our initial performance
explorations on a processor and its supporting memory
subsystem.  We then explore some of the benchmarks
used to track system performance and discuss our historic
MP LINPACK computation.  The paper concludes with a
brief discussion of a specific application called CTH.



Intel Technology Journal Q1’98

2

The Pentium Pro® Processor
The Intel Pentium Pro processor is used on all the

nodes in the Intel ASCI Option Red Supercomputer. A
full description of the processor is beyond the scope of
this paper and is available elsewhere [17]. In this section,
we highlight the key features of the processor and
emphasize issues that are important when analyzing
application performance.

At runtime, an instruction for the Pentium Pro
processor is broken down into simpler instructions called
micro-operations (or uops). Three decode units are
available on the processor to carry out this decomposition.
One unit (unit 0) can decode complex operations while
any of the three units can decode simple operations. The
uops execute inside the Pentium Pro processor with the
order of execution dictated by the availability of data.
This lets the CPU continue with productive work when
other uops are waiting for data or functional units. This
out of order execution is combined with sophisticated
branch prediction and register renaming to provide what
Intel calls, dynamic execution.

The Pentium Pro processor’s core can execute a burst
rate of up to five uops per cycle running on five functional
units:

� Store Data Unit
� Store Address Unit
� Load Address Unit
� Integer ALU
� Floating Point/Integer Unit

 Up to three uops can be retired per cycle of which only
one can be a floating-point operation. The floating-point
unit requires two cycles per multiply and one cycle per
add. The adds can be interleaved with the multiplies so the
Pentium Pro processor can have a result ready to retire
every cycle. Hence, the peak multiply-add rate is 200
MFLOPS at 200 MHz.

 The Pentium Pro processor has separate on-chip data
and instruction L1 caches (each of which is eight KBytes).
It also has an L2 cache (256 KBytes) packaged with the
CPU in a single dual-cavity PGA package. Cache lines are
32 bytes wide. The L1 data cache is dual-ported and non-
blocking, supporting one load and one store per cycle for
peak bandwidth of 3.2 billion bytes per second (GB/sec)
on a 200 MHz CPU. The L2 cache interface runs at the
full CPU clock speed and can transfer 64 bits per cycle
(1.6 GB/sec on a 200 MHz Pentium Pro processor). The
external bus is also 64 bits wide and supports a data
transfer every bus-cycle.

 The Pentium Pro processor bus offers full support for
memory and cache coherency for up to four Pentium Pro
processors (though our compute nodes only have two
processors). It has 36 bits of address and 64 bits of data.
 
 

 Bus efficiency is enhanced through the following features:
� the capability to defer long transactions
� a bus pipeline with a depth of 8
� bus arbitration on a cycle-by-cycle basis

The bus can support up to eight pending transactions
while the Pentium Pro processor and the memory
controller can have up to four pending transactions.
Memory controllers can be paired-up to match the bus’s
support for eight pending transactions.

The bus can sustain data on every clock cycle, so at 66
MHz, the peak data rate is 533 million bytes per second.
Unlike most CCOTS processor buses, which can only
detect data errors by using parity coverage, the Pentium
Pro processor data bus is protected by ECC. Address
signals are protected by parity.

Memory Movement
The first obstacle to fast parallel performance is the

per node performance. Therefore, in this section, we
discuss how fast we were able to run code on just one
node, which has two 200 MHz Pentium Pro processors.
(In many cases, our observations could be extended to the
Intel Pentium� II processors, with appropriate
adjustments made in the core frequency and cache
specifications.)

Scientific applications tend to differ from many
commercial applications in that they often have huge data
sets, and large amounts of floating point operations are
done on these data sets.  How quickly data can be moved
and manipulated is significant.

Let us start with our definition of memory movement.
We use the phrase "memory movement" to refer to the
movement of data into the floating-point stack or into the
L1_data cache.  Frequently, memory movement
discussions are restricted to the movement of data from
main memory.  However, we needed  to focus on the
larger issue of using data, whether it might already be in
cache or not. Therefore, issues such as the instruction
decoding sequence and how it affects the rate that data can
be pulled from the L1_data cache are included in this
discussion of memory movement.  In essence, our focus is
on anything that impacts memory movement.

Studying memory movement leads to an investigation
of the concept of hierarchical memory.  There are a finite
number of resources available in the hierarchy and any
memory reference must eventually traverse the entire
hierarchy.  As an example, if you do a store of a value in a
register to main memory, you need to go to L1 and L2 on
your way to main memory, although the write-back nature
of the caches may prevent this from happening
immediately. The fastest resources (the registers) can
work with the smallest amount of data.  There are levels of
cache to improve data movement efficiency built on top of



Intel Technology Journal Q1’98

3

the registers. The further one goes from the registers, the
longer the wait and the slower the bandwidth for memory
movement, as well as the more data it can hold. The base
of this pyramid is often the main memory, which in our
case is 128 Mbytes (1 Mbyte = 220 bytes), although this
hierarchical scheme can easily be extended to include
multiple nodes, and finally the parallel I/O subsystem.
(As mentioned previously, we choose to focus our
attention in this section on the single node model, which
includes the registers through the main memory
subsystem.)

Despite having 40 internal floating-point registers, the
application program can only address the 8 floating point
register stack. In many cases, this was a significant
bottleneck to overall performance.

The next level of memory hierarchy is the primary on-
chip non-blocking L1_data and instruction cache. For the
Pentium Pro processor, these are 8 Kbytes each and are
two-way set associative, write-back and write-allocate.
Reading data from L1 can be done at 1600 million bytes
per second or 1526 Mbytes/sec, which amounts to one
double per CPU cycle.  Writing data can also be done at
the same speed.  Furthermore, two CPUs can be
simultaneously reading and writing data to/from their
perspective L1 caches. We prefer, however, to simplify
the discussion by temporarily ignoring these issues. More
to the point, we claim it is rare that a scientific application
will have many reads and writes to the L1_data cache
occurring at the same time.

The next level of memory hierarchy is the non-
blocking unified off-die L2 cache.  In our case, the L2
cache holds 256 Kbytes and can theoretically sustain 1600
million bytes per second reading exclusive or writing.  All
cache lines are 32-bytes wide.

A compute node has a memory subsystem with 128
Mbytes. The PCI bus operates at 33 MHz. The memory
bus runs at  66 MHz., is 64 bits wide, and can support a
data transfer every bus cycle.  That is, it can do one 8 byte
(64 bit) transaction every bus clock. This amounts to a
bandwidth of an 8 byte read or write to L2 every 3 cpu
clocks or 1600/3 = 533 million bytes/sec (508
Mbytes/sec.)

The first step in our investigation was to find out how
fast we could do simple floating-point operations from
various levels of memory. First, we looked at how quickly
we could load and pop the data (from various places on
the hierarchy) onto the floating-point stack.  Second, we
looked at how we could use this information to build
simple kernels like element vector multiply ( x(i) =
y(i)*z(i), i= 1,...,n ) or matrix-matrix multiply (for MP
LINPACK).

It is important here to emphasize the specific nature of
our study.  Other research papers and/or projects tend to
look no further than how fast memory can be moved.  But

for us, since our final goal is ultimately floating point
calculations, by necessity our investigation targeted the
floating-point stack.  IA-32 instructions like REP MOVS
(repeat move string long), although interesting for timing
memory movement, are not sufficient to meet our final
goal. Following is a discussion of those results and
observations that bear on the benchmarks and applications
discussed later in this paper.

Overheads Due to the Instruction Decoder
There are three instruction decoders on the Intel

Pentium Pro processor. These decode complicated IA-32
instructions into simple uops. Only the processor uses the
uops: a programmer can not directly code in terms of
uops. Only one of the decoders can decode "complex"
instructions.  The following problems are directly based
on overheads due to the decoder.  While none of these
problems are measurable when moving data from
memory, they can be observed when we know the data lies
in the L1_data cache.

Reading data from the L1_data cache onto the floating
point stack has a theoretical upper bound of one double
per clock or 1600 million bytes a second.  Using integer
touches like “movl 8(%eax), %ebp,” as opposed to
floating point touches like “fldl 8(%eax),” we have come
within a percent of this speed. However, using floating
point loads and pops (we say pops instead of stores
because the typical case is that we have many loads
followed by add-pops or mul-pops and then perhaps only
one store), we observed stalls every time an instruction
passed over a 16-byte instruction boundary.  A random
sampling of floating point showed that floating point
instructions are typically 5-7 bytes in length. This means
that typical compiled floating point codes tend to run at
only 80 percent efficiency out of the L1_data cache,
encountering a stall every fourth instruction.

Our best code, which tried to avoid this problem,
peaked at 1450 Mbytes/sec out of a possible 1526
Mbytes/sec. To achieve this level of performance, we had
to use a potentially unrealistic degree of loop unrolling.
We also had to keep the offsets small so that the
instructions could be decoded in a smaller number of
bytes. (A floating point load off of a location in a register
can be a two-byte instruction if there is no offset, a 3-byte
instruction for offsets up to 128 bytes, and a 6-byte
instruction or more for larger offsets.)  Another way of
viewing this is if you know that you have X data loads
from L1_data, instead of taking minimally X cycles, it is
likely to take 1.25*X cycles.

These observations pointed out a critical performance
issue: codes tend to run faster when the instructions are
simpler.  Complicated instructions can lead to a stall
because only decoder 0 can decode the complicated
instructions.  Things like multiplying an element from



Intel Technology Journal Q1’98

4

memory with an element in floating point stack location 0
can be implemented with a single IA-32 instruction, but
require several different micro-operations to execute.
Codes may often be faster if they are implemented with
simpler instructions.  For our example, one could first do a
load and then in the second instruction do the multiply.

Floating Point Registers and Pipelining
When moving data from L2 or main memory, we often

found that we needed to touch several different cache lines
in order for the pipeline to be deep enough to obtain the
faster bandwidths necessary for scientific calculations.
This was one of the cases where having too few floating
point registers was immediately apparent.  In some cases,
we sped up codes by interleaving integer touches of
cache-lines before we actually did the explicit floating-
point load onto the stack.  This was critical to
performance tunings of matrix multiply for MP
LINPACK, for example.

An important finding was that a single 200 MHz
Pentium Pro processor cannot saturate the memory bus
bandwidth.  That is, out of the 533 million bytes a second
or 508 Mbytes/sec, the fastest bandwidth we achieved was
around 428 Mbytes/sec or 85 percent of the maximum
theoretical bandwidth.  Two 200 MHz CPUs, on the other
hand, achieved 491 Mbytes/sec.  Several tricks were used
to achieve this higher performance.  We needed to
synchronize the CPUs at critical points using a special
utility we created.  We needed both CPUs to saturate the
bus (although higher frequency Pentium II processors are
more likely to saturate their bus).  We also needed to
unroll our floating point calculations sufficiently enough
to ensure that there were always several outstanding
cache-line requests at once, such as touching doubles
X(1), then X(5), then X(9), etc., before attempting to
access X(2).  This enabled the pipeline to remain busy.
Using a second processor to access data from main
memory tended to yield two benefits: not only could we
then issue instructions fast enough to saturate the bus, but
we could also have a second set of eight floating point
stack locations by which we could unroll things. Because
there were two benefits, this enabled some memory-bound
codes to enjoy greater than the 15 percent improvement
possible from just saturating the bus.  In fact, some
memory-bound codes when run on two CPUs actually
achieved around a 30 percent benefit.  (Naturally, cache-
bound codes often achieved a 2x improvement.)

Unfortunately, using two CPUs is sometimes a double-
edged sword: accessing different DRAM pages always
caused an expensive stall.  Although this can and often
does happen with a single CPU, it happens far more
readily with two CPUs.  When using the second processor,
the best method is to access alternate cache lines in the
same DRAM page.  This will allow codes to make
effective use of 16 floating point stack locations instead of

just 8, and will also prevent the thrashing of memory
(page miss penalties) if the different CPUs are working on
entirely different DRAM pages.  Another big benefit of
alternating cache lines is that each processor avoids
having to snoop modified cache lines from the other
processor’s caches.

The difficulty with studying simple kernels is that the
critical cases that actually occur in practice are sometimes
overlooked.  We found our simple examples of moving
data from a single vector in L2 or main memory onto the
floating-point stack to be insufficient.  We therefore
launched a study involving the movement of two vectors
at the same time, which we found to be simple enough to
optimize and realistic enough to capture the major
bottlenecks.

Using our new set of kernels, we made several
interesting observations.  For starters, we found that
accessing data from L2 onto the floating point stack
tended to run at 800 Mbytes/sec in this somewhat more
realistic mode.  We found this a little disappointing since
it represented only just over half the bandwidth
theoretically possible.  We also studied the impact of
touching one vector from main memory and another from
L1.  This has a theoretical bandwidth of 16 /
((8/1526)+(8/508)) = 763 Mbytes/sec; however, it was
often harder to achieve more than 530 Mbytes/sec. This
implied not only that there was no overlap when loading
from the two separate places but that the two loads
interfered with one another.  For touching two vectors
from memory, we found that pre-touching at least one of
them first with integer touches in small enough chunks to
keep the data in L1 allowed performances up to 320
Mbytes/sec out of a possible 508.

We have illustrated how using the registers effectively
can improve performance.  There are several cases where
simply not having enough registers hurts performance.
The application CTH, illustrated in greater depth later in
this paper, is a case where the same code and same data
set tends to produce more loads on IA-32 than other
architectures. Another example is an application called
MPSalsa, which was a Gordon Bell (fastest real
application running on a supercomputer) finalist at IEEE’s
Supercomputing 1997.  At the core kernel, there were a
series of matrix vector products from memory.  Since the
size of the vectors were small (around 24), they should
have been able to fit into floating point registers. Instead,
there was a significant overhead introduced by
interleaving loads from memory with loads from L1 as
described above.



Intel Technology Journal Q1’98

5

Putting It All Together
We concentrated on a single floating point kernel

called element vector multiply (EVM). This kernel sets
X(i) = Y(i)*Z(i) as i goes from one to one million with
double-precision vectors X, Y, and Z.  Since this involves
24 million bytes of data, it is clearly a problem coming
from main memory.  Note that the write-back, write-
allocate nature of L2 suggests that each operation involves
loading X(i), Y(i), and Z(i), and then storing X(i).  This is
4 doubles moved from main memory, which theoretically
could be done in 4*3 CPU cycles, or one flop done every
12 CPU cycles.  On a 200 MHz processor, that would
suggest 16 MFLOPS or so.  However, observed
performance was 4 or 5 MFLOPS.  We then set out to
determine where the loss of performance was going given
what we learned about simple memory movement kernels.

DRAM page misses are just one slowdown. The read
of Y(i) followed by the read of Z(i) causes a page miss
that halves bandwidth. We also have to read X(i) due to
the write-allocate write-back memory mode. This causes
another page fault. In write-back mode, data is only
written back to memory to make room for something else
to be brought into cache. This is eviction: one cannot
control when data will be evicted. There is a penalty for
intermixing reads and writes to memory. Recall that the
200 MHz Pentium Pro processor cannot keep the memory
controller completely busy, thus utilizing 85% of the
memory bandwidth.

We then set out to try to improve the speed.  We
blocked the loop such that we streamed in about 4K of the
vector Y (about half of L1_data). This avoids the page
faults that we get for alternating reads of X, Y, and Z.
Then we loaded the vector Z into the other half of L1
(getting only one page fault for the initial read of Z). We
then performed the multiply X(i)=Y(i)*Z(i) over the
elements loaded into L1. This results in reading X(i) from
memory due to the write-allocate memory model. The
result X(i) is written to cache. We repeated this touching
Y, touching Z, writing X until about half of L2 was filled
with X's modified lines. Now if we were to continue we
would start to evict lines of X as we read in Y and Z. This
would cause page faults and drop performance back down.
Once about half L2 is filled with X, we could do a Cougar
instruction called flush_cache (which does the protected
assembler WBINVD instruction) to write the modified
data in the caches back to memory.

This blocking algorithm looks like:

for(sizeof(X/128K))
{

for(128K of X)
{

touch 4K of Y
touch 4k of Z
calculate 4k of X=Y*Z

}
flush_cache()

}
The touch of Y runs at about 425 million bytes/sec.

The touch of Z runs at about 390 million bytes/sec due to
having to evict the dirty lines of X from L1 to L2.  The
multiply of 4k of X=Y*Z runs at about 200 million
bytes/sec. It was a bit mysterious that this performance
was not higher.  The flush cache runs at 250 million
bytes/sec peak (our own versions of flush cache appeared
to run no faster).

The total throughput is then:
1/(1/425 + 1/390 + 1/200 + 1/250)
= 71.85 Mbytes/sec

written to X. The flops/sec is then 71.85/8 = 8.98
MFLOPS. This is still not close to the 16.6 MFLOPS, but
it is 50% better than the naive loop.

The final set of experiments we made was on write-
combine caching. Write-combined memory avoids reading
the data before you write it. Also, when writing a whole
cache-line, the write is “combined” and sent to the
memory bus as one request.   Note that write-combine
doesn't read/write to the caches; rather, data is transferred
directly to/from memory so cache coherency issues have
to be addressed. Coherency can be handled by flushing
cache at the beginning of the EVM routine and, if
necessary, at the end of it also. We achieved about 16.8
MFLOPS with stride 1 write-combine EVM.

The write-combine memory model appears to be
useful in kernels that involve writing large pieces (greater
than L2 size) of contiguous data to memory.  Using write-
combine on a Pentium Pro processor-based system proved
somewhat challenging; however, it is our untested
understanding that the methodology is much easier on
Pentium II processor-based workstations.  If this is the
case, then a great deal of our efforts can be applied to
Pentium II processor-based platforms, thus enabling many
users around the world to take advantage of our work.

Hardware Counters
When running applications on the Intel ASCI Option

Red Supercomputer, it is often useful to know what
portion of the data is running from what portion of
memory.  On a Windows NT box, a utility like Intel
VTune[5] might  find this information.  However, in our
operating system environment, more closely resembling
UNIX, this was not an option, especially on applications



Intel Technology Journal Q1’98

6

too large to fit on a single workstation.  Therefore, we
accessed the hardware counters directly.  The ones we
found most useful for studying memory movement were
PP_DATA_MEM_REFS (0x43), PP_L2_LINES_IN
(0x24), and PP_DCU_LINES_IN (0x45).  Assuming that
the number of references per element in every cache line
accessed was the same, reads and writes rarely
overlapped, and that the vast majority of data references
were all double precision loads to the floating point stack,
we generated the following observations:

The fraction of data from Memory, FracM, is

REFSMEMDATAPP

REFSMEMDATAPPINLINESLPPMIN
FracM

___

)___,4*__2_(
�

The number of L2 and L1 hits is

PP_DATA_MEM_REFS-PP_L2_LINES_IN*4,

and the number of just L2 hits is
MIN(ABS(PP_DCU_LINES_IN - PP_L2_LINES_IN)*4,
PP_DATA_MEM_REFS )

The fraction of data from L2 is then

)_1___2__(

)0.1(*)_2__(
2

hitsLofNumberhitsLofNumber

FracMhitsLofNumber
FracL

�

�

�

The fraction of data from L1 is then
FracL1 = 1.0 - FracM - FracL2.

While the foregoing assumptions are simple and do

not always apply, they gave us  a useful estimate to work
with.  We could then apply this estimate to our
observations about the overheads incurred when accessing
data from the various levels of memory resulting in overall
performance estimates for an application.  For example,
we discussed earlier that five cycles are typically used to
access four elements from L1, so that the minimum
number of cycles for accessing the data that was in L1
might be 1.25 * FracL1.  Similarly, fudge factors of 1.59
existed for FracL2, and 3.57 (or 3.13 if dual processor)
for FracM.  An example of a situation where we used this
is shown in the discussion on the application CTH.

Performance Tracking
Most of the early applications work on the Intel ASCI

Option Red Supercomputer was designed to validate the
soundness of the system design and its ability to scale to
thousands of nodes. This work was quite successful with
several applications (including some full production
applications)  running on up to 4500 nodes.

While it is important that the ASCI Option Red
Supercomputer functions correctly, it is equally important
that the system delivers the expected performance. To
track system performance, we created a performance
benchmark suite. The goal of this suite was to produce a
handful of numbers to assess system performance. The

System si238 si58 babyflop
Software Release WW34a_1 WW45 1.2 WW39
Date tests were ran  9/17/96 12/31/96 12/4/97
Livermore Loops

AM MFLOPS 33.9 42.6 48.3
GM MFLOPS 29.6 33.9 38.9
HM MFLOPS 24.3 25.9 29.1
Minimum MFLOPS 5.9 5.7 6.0
Maximum MFLOPS  61.4 111.8 118.4
Standard Deviation MFLOPS 16  28.4 29.4

Comtest
Bandwidth - MBytes/sec 272.4 302 302
CSEND Latency -�secs 12 10 9

Stream Test
Copy MBytes/sec  85.9 109.1 114.9
Scale MBytes/sec 107.2 108.6 108.7
Add MBytes/sec 128.7 129 130.0
Triad MBytes/sec 128.5 129.3 129.4

Matrix Multiply
F77, per-node MFLOPS  62.4 54.6 55.3
libkmath, per-node MFLOPS 119.4 111.1 112.3

Table 1: Results from the performance tracking benchmark suite. The tests are not strongly dependent on
the number of nodes. These particular tests used four nodes. None of these tests used the second processor for
computation. The System names refer to internal systems at Intel.



Intel Technology Journal Q1’98

7

performance tracking suite includes the following codes:

Livermore Loops: A measure of the performance of
the Fortran77 compiler with loops typical to
scientific computing. The arithmetic (AM),
geometric (GM), and harmonic means (HM) are
reported as well as the range and standard deviation
in the MFLOPS.

Comtest: Measures the bandwidth, latency, and
standard deviation for a pair-wise, nearest neighbor
ping-pong test.

McCalpin Stream: Measures performance of
memory intensive applications [9]. Specific tests are
vector copy, element-wise scale and add, and the
triad (i.e., a(i)=a(i)+b(i)*c(i)).

Parallel Matrix Multiply: Measures performance of
a parallel matrix multiply. The performance per node
is reported in MFLOPS for a 4-node multiplication
of order 300 matrices.

The performance levels are reported in Table 1 for
several dates spread out over the course of the project.
The numbers have largely stabilized, and significant
additional improvements are not anticipated.  The
Livermore Loop and Stream test numbers are in the same
ballpark as those from other high-end workstations.  The
communication numbers are among the best ever reported
for an MPP system. Finally, the matrix multiplication
numbers provide a measure of compiler performance by
comparing MFLOPS rates for compiled and assembly-
coded multiplications. The compiled code is a factor of
two slower than the assembly code, which is not unusual
compared to Fortran compilers on other high-end
workstations.

These tests provide a good relative measure of the
system performance. They are not very good, however, at
detecting systematic errors in the system’s performance.
To resolve this issue, we needed a benchmark for which
we have an analytic performance target. If we match this
target, then we know our system is performing as it
should.

An application well suited to this type of analysis is
MP Quest [13],  an ab initio quantum chemistry program
developed at the Sandia National Laboratories. In an
earlier study[10], we analyzed the nboxcd() kernel from

MP Quest. This kernel resembles a modified dense matrix
multiply operation. Our analysis showed that this kernel
should run somewhere between 110 MFLOPS to 130
MFLOPS (depending on the state of the L2 cache prior to
the kernel's operation).

We created a stand-alone benchmark program based
on this kernel. Table 2 compares results for these tests
built with the PGI compiler and the Intel C/C++ Compiler
for Win32*systems. Three different releases of the PGI
compilers are included: 9/96 (release 1.1), 12/96 (release
1.2-5), and the 12/97 (release 1.6-3). The Intel C/C++
compiler (9/96 release) is the Pentium Pro processor
reference compiler developed by Intel. These single node
computations were carried out on a 200 MHz -based node.
These tests used two forms for the benchmark: one with
the original code and the other with the loops unrolled.
The expected optimum performance ranges are from 110-
120 MFLOPS.

The Intel C/C++ compiler hits the target performance.
This compiler is highly optimized for the Pentium Pro
processor so its high performance is not surprising. The
PGI compilers are well short of the target performance.
(PGI is still working on the compiler, however, and future
releases will hopefully close the gap.)

MP LINPACK Performance
MP LINPACK is a well known benchmark for high

performance computing. The benchmark measures the
time it takes to solve a real double precision (64 bits)
linear system of equations with a single right-hand side.
On December 4, 1996, we set a new world record for MP
LINPACK by running the benchmark in excess of one
TFLOPS. At that time, the Intel ASCI Option Red
Supercomputer was only 80% complete, but that was
more than enough to break the MP LINPACK TFLOPS
barrier. Actually, the previous record was 368 GFLOPS
so we did not just break the record, we shattered it!

While the rules for the LINPACK benchmark require
use of the standard benchmark code, MP LINPACK lets
you rewrite the program as long as certain ground rules
are followed [6]. Our MP LINPACK code used a two-
dimensional block scattered data decomposition with a
block size 64 [9]. The algorithm is a variant of the right
looking LU factorization with row pivoting and is done in

Code PGI 9/96

(Rel 1.1)

PGI 12/96
(Rel 1.2-5)

PGI 12/97
(Rel 1.6-3)

Intel C/C++ Compiler

Original Kernel 26 56 67 83

Kernel with unrolled loops 30 75 87 120

Table 2: Performance in MFLOPS for the NBOXCD() Kernel from MP Quest.



Intel Technology Journal Q1’98

8

accordance with LAPACK [1]. The parallel
implementation [4,8,15] used a two-dimensional processor
mesh and did a block wrapped mapping of the matrix.
Columns of processors cooperated synchronously to
compute a block of pivots that were then passed
asynchronously across the rows. A look ahead pivot was
used to keep pivoting out of the critical latency path. We
report timings for real floating point operations and not
"macho" FLOPS obtained by using Strassen [14] (or
Winograd [16]) multiplication. The code explicitly
computed all the relevant norms and did several rigorous
residual checks to guarantee accuracy. The matrix
generation was identical to ScaLAPACK version 1.00
Beta, which is a standard MPP package for Linear
Algebra [2].

The benchmark results are maintained in the
LINPACK Performance Report: "Performance of Various
Computers Using Standard Linear Equations Software" by
Dr. Jack Dongarra at the University of Tennessee [6]. He
has accepted our TFLOPS entry into his 12/16/96 report,
which is available on the web [6], e-mail, and ftp.  RMAX
was 1.068 TFLOP, NMAX or N was 215000, and N1/2
was 53400.  N1/2 is the minimum problem size (to the
nearest 100) such that half the RMAX performance was
achieved.  That is, over half a TFLOP was achieved on
this machine using a problem size of 53400.  The RMAX
was found on 12/4/96, and N1/2 was found on 12/6/96.
The number of floating point operations done is roughly
(2N^3)/3 for a problem of size N.

The MP LINPACK 1.3 TFLOPS run (on 6/9/97) was
run on 9152 Pentium Pro (TM) 200 MHz processors.
RMAX was 1.338 TFLOPS.  NMAX or N was 235000.
N1/2 was 63000.  Both runs used MPI.

The code for the 1.06 TFLOPS MP LINPACK record
was derived from programs used to set earlier MP
LINPACK records on Intel’s Paragon supercomputers.
The initial implementation was based on work by Robert
van de Geijn [15]. The Delta code was modified to run on
the Intel MP Paragon and it used hand-tuned Intel i860
processor assembly code kernels.   For the TFLOPS
benchmark, these kernels were written in x86 assembly
code. For a detailed description of the techniques and
algorithms used in this code, see the paper by Bolen et. al.
[4]. Our past work with MP LINPACK has shown that for
very large problems, at least 93% of the runtime is
consumed by the BLAS-3 matrix multiplication code,
DGEMM (which computes C=C-A*B). The dual
processor code for large DGEMM problems ran at 345
MFLOPS.

Increasing Parallel Efficiency
We employ many techniques to increase parallel

efficiency once a code has already been initially scaled.
For  MP LINPACK, we used the lookahead pivot
technique described above.  We also used a common

optimization technique based on the observation that
memory-to-memory copies tend to run at very slow speeds
like 80 Mbytes/sec (see our previous results on element
vector multiply) but the communication bandwidth of the
machine is closer to 400 Mbytes/sec.  This means that if
an incoming message needs to be copied from an
operating system into a user buffer, this takes more time
than sending the message.  When one posts a message
ahead of time, and sends a “handshake” to tell a node it is
ready to receive the message (a delicate process since we
don’t wish to introduce bottlenecks), the communication
overheads go down, which enables a code to scale to more
nodes.  Sometimes it is even faster for a node to send a
message to itself, than to call memcpy().

In some cases, we have to reduce I/O to assist in
scalability.  This is beyond the scope of this paper.

Matrix-Matrix Multiplication
The matrix-matrix multiplication behind MP

LINPACK is an upper product update of the form C = C -
A*B where C is large with usually slightly more rows than
columns, and the number of columns of A (and rows of B)
is typically small (in our case 64).  Disregarding notations
contained elsewhere, suppose C is MxN, A is MxK, and B
is KxN, where M>=N>>K.

DGEMM has 2*M*N*K flops and at least 2*M*N +
M*K + K*N memory references.  If K is sufficiently
large, cache re-use will be higher, and the loading and
storing of C will be amortized.  We typically block A into
chunks that fit into L1, and B into chunks that fit into L2,
and then complete the relevant portion of C before
proceeding to the next chunk of A or B.  Because L1_data
is 8 Kbytes and 2-way set associative, we have found that
it is unwise to use more than 4K of data for A in any one
given time.  For K=64, solving for 8 rows of C by copying
8 rows of A into a scratch space and doing the multiply is
ideal for several reasons[8].  First, this means that 8*64*8
= 4096 bytes of A will hopefully remain L1_data cache
resident.  Since there is no convenient instruction for
accessing across a row, and we would prefer to avoid
continually updating the integer registers, copying A into
a contiguous space helps side-step this problem because
we can change the storage format of A.  A DGEMM
implementation on top of this is also beneficial because
the issue of A or A transpose (another DGEMM option)
becomes irrelevant since we always assume a copy of
A[7].  Furthermore, we would prefer to process a number
of rows that are a multiple of the cache line size to avoid
additional cache movements when the initial arrays are
aligned on cache-line boundaries.

An outer-level blocking outside the row blocking is
done on the columns of B and C so that B always remains
in L2.  For unfavorable leading dimensions of B, another
copy can be done on B.  However, this can be avoided



Intel Technology Journal Q1’98

9

within the context of a careful MP LINPACK
implementation.

Due to a limitation of the number of floating point
registers, the actual inner DGEMM  kernel can only
access a column of B or C at a time. Furthermore, even
though it may be working on eight rows of C, it can only
do so with four rows at a time (a cache line size).  Each
row can be thought of as an independent dot product,
requiring a floating point stack location. Accesses to A are
repeated each time a multiply is necessary, but fortunately
we block A to be L1_data resident.  Accesses to B,
however, can be amortized over the four different dot
products.  Furthermore, to reduce the overhead of latency
to L2, we typically keep two B's around, which in effect
pre-touches the next B needed several cycles before it is
first used.  This effectively uses seven of the eight
available floating point stack locations (four for the four
dot products eventually going into C, two for B, and one
for A loads). The whole length of all four dot products are
unrolled to minimize overheads.

An unexpected benefit (about a five percent
improvement) was observed by including the "fxch"
floating point exchange instruction in selected points
within our assembly DGEMM.   Ironically, the fxch
instructions were inserted in locations that did not impact
the final result.  That is, just before adding stack location
0 to 1, we would occasionally exchange stack location 0
and 1 first, thus adding stack location 1 to 0.
Commutativity ensures these are the same, but apparently
internal registers allocated to the tasks by the micro-
operations treated the two situations somewhat differently.
At one point we believed that the unnecessary fxchs were
throttling the rate of the retiring instructions, bringing
them in sync with the decoding instructions.  But we also
found that the spurious fxchs were only beneficial when
data was running from cache.  Around memory
movements, taking some of the fxchs out again improved
performance further. (This makes sense since something is
more likely to occur around the large latency of a memory
touch.) Although the fxch is supposed to be a "free"
instruction, it takes up space in the reservation pool which
has a limited capacity of 40 micro-operations. Exceeding
this capacity leads to a stall.

We also used integer touches to pre-fetch C before it
was needed. In effect, we would touch a cache line of C,
do the 4 dot products, and then load C in to add it to the
results.

Finally, when things were optimized on one processor,
we split the matrix multiply up on two CPUs to maximize
single node performance. Recall that a certain number of
columns were blocked off of B and C to keep a strip of B
in L2.  The resulting matrix multiply was further stripped
into groups of rows such that the relevant portion of A
would remain inside the L1_data cache.  We simply had
one CPU take the odd group of rows and the other take

the even so that both CPUs would be working on distinct,
but close, portions of memory.  Since B is not written to,
having both CPUs share chunks of B in their respective
L2 cache is not a problem.

Pieces of the DGEMM created for MP LINPACK
were ported into the Intel Math Kernel Library currently
available for Windows NT [5,7].

Other BLAS
MP LINPACK also relies partially on a matrix

triangular solve with many right-hand sides.  The upper
triangular matrix is small (64x64), but the right-hand sides
are large.  We found that assembly tuning pieces of the
upper triangular solve, interleaved with calls to DGEMM,
yielded very high performances. The right-hand sides
were split between the processors.

We are currently involved in providing UNIX-gnu-
based optimized BLAS (and FFTs) for the Intel ASCI
Option Red Supercomputer.  But we also have efforts
underway to provide extended precision math kernels.
IA-32 naturally does work in 80-bit arithmetic.  If we
make an effort to directly support computation done in
this framework (special IA-32 instructions exist for
loading and storing 80-bit quantities to get around the 64-
bit conversions), then some iterative codes might run
faster.  It is unlikely that the MFLOP rate will go up since
doing 80-bit memory transactions is slower than their 64-
bit counterparts (bus widths are usually 64-bits). However,
the increased accuracy could enable less work to be done
to ensure a final acceptance criterion, which would mean
getting the answer faster.  We are also looking into
software-extended formats such as 160-bit arithmetic for
this machine.

An Application Example
CTH is an Eulerian-Lagrangian code used at Sandia

National Laboratories for shock physics studies.  It
contains approximately 440K  lines of Fortran code,
spread among ~1600 files.  A parallel version of this code
was developed for the Intel Paragon supercomputer at
Sandia prior to the installation of the ASCI Option Red
Supercomputer.  Studies of this code showed that it scales
nearly linearly with the number of computational nodes
employed, suggesting that this code is appropriately
balanced from the “massively parallel point of view.”
This code is in continuous use on the Intel ASCI Option
Red Supercomputer and has been run for extended periods
(~150 hours) on a sizable number of nodes (2048), as well
as having had a few limited runs on 4500 nodes, using
over 100 Mbytes of the 128 Mbytes available per node.
(It should be noted that the limiting factor on the duration
of the full-machine runs was the machine schedule, rather
than any hardware or software problems.)  This is clearly
a real application that can take advantage of the full
system, and one where getting the optimal performance



Intel Technology Journal Q1’98

10

has a real payoff.  For example, a ten percent
improvement would cut a 150 hour run down to 135
hours, shaving off over half a day, which is useful since
management is often waiting on the answers and the
queues for future runs are usually full.

Initial discussions with the CTH group revealed that
the serial version of CTH, which runs on a wide variety of
platforms, does not have well-defined kernels that could
be tuned to provide significant speedup to the full code.
Nevertheless, we examined a few of the most significant
routines in order to spot repeated patterns that might be
improved wholesale.  The 3D EFP problem was chosen as
a representative data-set for work on the CTH code.
Profiling indicated that one of the most significant
routines was ELSG, which is around 3700 lines of code.
Using the ideas presented earlier in this paper, we
investigated the performance of this routine.

We used the performance counters to gain an
understanding of the memory characteristics of this code.
This showed that the program's performance was bounded
by the costs of memory movement, a surprising result
given that the data appeared to be in the caches. More
specifically, we found that the fraction of data from L1
was .85, the fraction from L2 was .12, and the fraction
from memory was .03.  Given the number of floating point
operations based on the PP_FLOPS counter, this implied
the maximum achievable performance for the particular
data set was 27 MFLOPS.  The actual performance was
around 17 MFLOPS. Additional losses were due to branch
misprediction, speculative execution, floating point
dependencies, and other trouble spots.

We then took the major routine and created two
instances of it, one for each CPU.  Each CPU then did half
the work with appropriate synchronizations being added to
ensure correctness.  The modified code ran slightly slower
than the original code.  Normalizing the original code's
time to 1.0, the modified code ran at 1.13.  The dual
processor code ran at 0.61. Perfect speed-up was not
possible because not every computation could be
parallelized.

There were several other significant observations.  We
tried to avoid latency stalls associated with computing
logical values by precomputing them, combining them, or
removing them when possible.  We used reciprocals when
appropriate in order to minimize divides.  We interlaced
independent calculations to avoid floating point
calculation stalls.  We used the monitors to see where the
data movement was going, and ended up achieving about
60-70 percent of the peak observable based on the
memory movement.

One of the important functions of a supercomputer is
the ability to run extremely large problems on an
extremely large number of nodes reliably.  CTH is an
example of an application that has done just that.  It has

not only run on the full machine, but it has done so for a
large number of uninterrupted hours.

Conclusions
The Intel ASCI Option Red Supercomputer is in

routine production use. The machine is successfully
addressing the problems that motivated the DOE to
purchase it. One feature of the machine that we haven't
talked about is its ability to rapidly switch between
classified and unclassified operating modes [12]. While
this isn't a performance issue, it does make the machine
more broadly usable and therefore impacts the application
programmer directly.

Performance on such a complex machine means many
things.  It means understanding single node performance,
and knowing where the memory bottlenecks lie.  In this
paper, we have briefly discussed some of our more
important findings in that area. It means understanding
where the cycles are going for applications like CTH
using tools  such as the hardware counters.  It means
taking the care to do specialized tunings like
asynchronous message passing and lookahead pivots to
make codes like MP LINPACK parallelize well across a
large number of nodes. It means experimenting with
techniques like write combine memory to see when this is
most beneficial.  It means creating a performance suite to
ensure that the compiler and the operating system are
always running at optimal speeds.

Our performance and optimization studies are an
ongoing effort. In this paper we have highlighted some of
the major efforts and discoveries.  Our final goal is to
obtain correct codes running as fast as possible. We have
demonstrated high theoretical peaks for important
benchmarks like MP LINPACK.  Application codes have
been running on the machine for over a year now, even
though we completed this supercomputer in June 1996.

Acknowledgements
Many people have worked on the MP LINPACK

benchmark over the years. In addition to Greg Henry's
work on the program, valuable contributions were made
by Robert van de Geijn (University of Texas in Austin),
Bob Norin (Intel Corp.) Brent Leback (Axian Corp.),
Stuart Hawkinson (Axian Corp.), and Satya Gupta (Intel
Corp.).

References
[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J.,

Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorenson, D.,
LAPACK Users' Guide, SIAM Publications,
Philadelphia, PA, 1992.

[2] Blackford, S., Choi, J., Cleary, A., D’Azevedo, E.,
Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S.,



Intel Technology Journal Q1’98

11

Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C., ScaLAPACK Users’ Guide, 1997,
SIAM Publications, Philadelphia, PA 19104-2688,
ISBN 0-89871-397-8.

[3] “Computers�Design Issues and Performance."
Technical Paper in Supercomputing 1996, Proceedings
of Supercomputing '96, Pittsburgh, Pennsylvania,
http://www.supercomp.org/sc96/proceedings.

[4] Jerry Bolen, Arlin Davis, Bill Dazey, Satya Gupta,
Greg Henry, David Robboy, Guy Schiffler, David
Scott, Mack Stallcup, Amir Taraghi, Stephen Wheat,
LeeAnn Fisk, Gabi Istrail, Chu Jong, Rolf Riesen,
Lance Shuler,  "Massively Parallel Distributed
Computing: World's First 281 Gigaflop
Supercomputer," Proceedings of the Intel
Supercomputer Users Group 1995,
http://www.cs.utk.edu/~ghenry/isug.ps.

[5] The Intel Performance Library suite,
http://developer.intel.com/design/perftool/perflibst/

[6] Dongarra, J.J., "Performance of various computers
using standard linear equations software in a Fortran
environment," Computer Science Technical Report
CS-89-85, University of Tennessee, 1989,
http://www.netlib.org/benchmark/performance.ps

[7] Greer, B., Henry, G.,"High Performance Software on
Intel Pentium Pro Processors or  Micro-ops to
TeraFlops," Proceedings for Supercomputing 1997,
San Jose, CA.

[8] Gupta, S., Hawkinson, S., Henry, G., "Performance Of
Matrix Matrix Multiply (DGEMM) For MP-
LINPACK On Pentium Pro Processors," An Intel
Internal Whitepaper, January 1996.

[9] Hendrickson, B.A., Womble, D.E., "The torus-wrap
mapping for dense matrix calculations on massively
parallel computers," SIAM J. Sci. Stat. Comput.,
1994, http://www.cs.sandia.gov/~bahendr/torus.ps.Z

 [10] S. Gupta and T.G. Mattson, “Optimization of MP
QUEST for the ASCI Option Red System,” Intel
TFLOPS Project Research Report, 1996.

[11] Intel optimization manuals,
http://developer.intel.com/design/pro/manuals/242816.htm
and 242690.htm

[12] Mattson, T.G., and Henry, G, "The ASCI Option Red
Supercomputer," Proceedings for ISUG 1997,
Albuquerque, NM.

[13] Sears, M., MP Quest User Guide, Documentation
distributed with the MP Quest program.

[14] Strassen, V., "Gaussian Elimination is not Optimal,"
Numer. Math. Vol. 13, 1969, pp. 354—356.

[15] van de Geijn, R.A., "Massively Parallel LINPACK
Benchmark on the Intel  Touchstone DELTA and
iPSC(R)/860 Systems," 1991 Annual Users'
Conference Proceedings. Intel Supercomputer Users'
Group, Dallas, TX, 10/91.

[16] Winograd, S., "A new algorithm for inner product,"
IEEE Trans. Comp., Vol. C-37, 1968, pp. 693—694.

[17] Pentium Pro Processor technical documents,
http://www.intel.com/design/pro/manuals/.

Authors’ Biographies
Greg Henry received his Ph.D. from Cornell University
in Applied Mathematics.  He started working at Intel SSD
in August 1993.  He is now a Computational Scientist for
the ASCI Option Red Supercomputer.   He tuned MP
LINPACK and the BLAS used there-in.  Greg has three
children and a wonderful wife. He plays roller hockey,
soccer, and he enjoys Aikido and writing.  His e-mail is
henry@co.intel.com

Pat Fay is presently an Intel computational scientist. He is
responsible for assisting the Los Alamos National
Laboratory scientists in using the Intel ASCI Option Red
Supercomputer.  He received his Ph.D. in Physics from
Clemson University in 1993 and a Masters of
International Business from the University of South
Carolina in 1987.  His e-mail is pfay@co.intel.com

Ben Cole is the Intel computational scientist on-site at
Sandia National Laboratories.  For his Ph.D. thesis, he
studied transport processes in particle accelerators,
comparing experimental results to a numerical model
implemented on a parallel architecture.  He has a second
career as a father to an energetic three-year-old.  His
e-mail is cole@co.intel.com

Timothy G. Mattson has a Ph.D. in chemistry (1985,
U.C Santa Cruz) for his research on Quantum Scattering
theory. He has been with Intel since 1993 and is currently
a research scientist in Intel's Parallel Algorithms
Laboratory where he works on technologies to support the
expression of parallel algorithms . Tim's life is centered on
his family, snow skiing, science and anything that has to
do with kayaks. His e-mail is
timothy_g_mattson@ccm2.hf.intel.com.



Intel Technology Journal Q1’98

1

Achieving Large Scale Parallelism
Through Operating System Resource Management

on the Intel TFLOPS Supercomputer

Sharad Garg, Server Architecture Lab, Beaverton, OR, Intel Corp.
Robert Godley, Intel Supercomputers, Beaverton, OR, Intel Corp.

Richard Griffiths, Intel Supercomputers, Beaverton, OR, Intel Corp.
Andrew Pfiffer, Microprocessor Products Group, Beaverton, OR, Intel Corp.

Terry Prickett, Intel Supercomputers, Beaverton, OR, Intel Corp.
David Robboy, Enterprise Server Group, Beaverton, OR, Intel Corp.

Stan Smith, Microprocessor Group, Beaverton, OR, Intel Corp.
T.  Mack Stallcup, Intel Supercomputers, Beaverton, OR, Intel Corp.
Stephan Zeisset, Microprocessor Group, Beaverton, OR, Intel Corp.

Index words: operating system, TFLOPS, scalable, parallel, GB/sec, TB.

Abstract

From the point of view of an operating system, a computer
is managed and optimized in terms of the application
programming model and the management of system
resources.  For the TFLOPS system, the problem is to
manage and optimize large scale parallelism.

This paper looks at the management in terms of three key
topics:  memory management, communication, and
input/output.  For memory management, we discuss some
of the design decisions made including the appropriate use
of  demand paged virtual memory in the system.  For
communication, we describe the software protocols and
interactions that permit a system of 4500 nodes to
approach the maximum hardware performance. For I/O,
we look at the problem of funneling data from many
computation nodes to a small number of external devices.

Introduction

Providing high performance computing is the overriding
goal of the Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI) program.  Some of the
performance requirements of the system Intel built for the
DOE are as follows:

� a minimum one TeraFLOPS  (TFLOPS) sustained

floating point performance on MPLINPACK (a
parallel benchmark)

� a minimum one Gigabyte (GB)  per second of
sustained disk I/O to a one Terabyte (TB) file
system for a given application

� a reliable file system that can tolerate the failure of
one disk without any loss of data

 This paper looks at the design tradeoffs and decisions
regarding the operating system that were made in order to
meet the above requirements. We examine the
interrelationships between three components of the
operating system:

� memory management

� communication between nodes

� access to the file system

 One component we discuss is the Parallel File System
(PFS) that makes a sustained throughput of one GB/sec
possible. There are performance problems inherent in a
file system that is not local to the compute nodes.  There
also are scalability issues involved with I/O on a system
containing 4500 compute nodes with only 18 nodes
providing file I/O.  We will show the motivation for the
system architecture that gives rise to such issues in the
first place and discuss the solutions.  Inter-node



Intel Technology Journal Q1’98

2

communication is critical to I/O performance in a system
where remote nodes handle I/O requests.  The memory
management design, in turn, is critical to communication
performance. Design decisions in all of these areas were
closely interrelated and we will discuss these also.

 Each node in the TFLOPS system can be thought of as an
enhanced, dual-processor PC with additional
communications capability.  A node has two 200MHz
Pentium� Pro microprocessors and 128MB of memory.
It has the capability for symmetric multi-processing
between the two processors.  On the I/O nodes, a 32-bit
PCI bus is added as well as an additional 128MB of
memory.  This allows off-the-shelf PCI cards to be used
for I/O.  The nodes are connected via an 800MB/sec bi-
directional communications network.

 The programming model for this system views an
application as a set of cooperating, autonomous processes.
Many applications run on all the compute nodes for tens
or even hundreds of hours at a time.  Each process in the
application is independent. If a process exits, all other
processes in the application can continue to run.  Explicit
message passing is used to exchange information between
the processes in an application. The UNIX* programming
environment is provided for applications. However,
providing this environment does not require UNIX to
actually run on a compute node.  It just requires that
UNIX library calls be supported by the OS on the
compute nodes. Almost all of the standard UNIX chapter
two and three library calls are available to the
programmer. Additional entry points have been added for
message passing and asynchronous I/O operations.

 The architecture of the system is Multiple Instruction
Multiple Data (MIMD) with distributed memory.  The
machine runs two separate operating systems, each
specialized for the tasks performed by the two sections of
the machine (see Figure 1).  One section of the machine
contains the service and I/O partitions and runs the
TFLOPS Operating System (TOS) [1].  The other section
of the machine contains the compute partition that runs the
Cougar Operating System [2]. Parallel applications run
only under Cougar in the compute partition. The
distinction between the two sections of the system is only
in the software.  The nodes and communications network
in both sections are identical. Each section of the machine
is scalable.  A scalable operating system means the
number of nodes in the machine can be increased without
modifications to the OS.  When nodes are added, the
performance of a scalable system increases approximately
in proportion to the number of additional nodes. This
capability is extremely important to achieving the required
performance in this system and will be discussed in the
memory management section of this paper.

 

Compute
nodes

Cougar

Service
nodes

I/O
nodes

TOS

RAIDs

Workstations

 Figure 1: Overview of the TFLOPS system
architecture

 The two operating systems must communicate in order for
applications to run.  (In this paper, references to
applications always mean parallel applications running on
the compute nodes unless TOS processes are explicitly
mentioned.)  All communications between TOS and
Cougar are done exclusively via message passing.  While
TOS has several communications’ protocols,  a single
protocol is used for communications between TOS and
Cougar.

 One important interaction between the two operating
systems occurs when an application is invoked.  All
applications are invoked on the service partition, but run
on the compute nodes.  A  TOS process is started by the
user and it causes the application to be loaded on the
desired compute nodes.  This loader process sends
messages to one compute node that fans out the messages
to the other compute nodes.  Once the application is
loaded on all the compute nodes, the application is then
started by the loader process.

 TOS is derived from the Paragon Operating System.  It
provides UNIX services to the users.  All user interaction
occurs within the TOS section of the machine.  TOS is
scalable, yet provides  the users with a “single system
image.” For example, if there are 30 people on the
machine, each person may be running processes on any
one of the 17 TOS nodes in the service partition.
However, to each user it will look like one large
computer. This allows access to all components of the
system, such as disks and networks, no matter which node
in the machine a user is logged into.

 The scalability of the TOS section allows a number of
UNIX processes to run concurrently, increasing job



Intel Technology Journal Q1’98

3

throughput and system response for users.  A multi-node
service partition also increases the aggregate
communications bandwidth between the TOS processes
that control the applications and the applications running
on the compute nodes.

 Cougar is derived from the Puma technology developed
by Sandia National Laboratories and the University of
New Mexico. It is a small OS (<1MB) designed to
manage node resources and processes, provide protection,
and facilitate message passing.  One of the design goals
for Cougar was to be small and deterministic.
(Deterministic means the system will produce consistent
execution time for applications from run to run.)
Programmers want a deterministic system in order to
accurately predict the performance of their applications.
This is particularly important for TFLOPS applications
where the binaries can be 6-8MB in size, or even larger,
and run for hundreds of hours. Cougar must also be
scalable, as the final machine requires over 4500 compute
nodes to achieve the desired computational requirements.

 All I/O requests on the compute nodes are handled by the
TOS section of the machine.  Each request causes a
message to be sent to the appropriate TOS process which
then sends a reply, if one is required.  This mechanism is
used for both standard I/O (standard in/out/error) and file
I/O.

 This separation of computation and I/O had a profound
effect on the design of the system.  The remainder of this
paper will discuss some of the problems that were caused
by this separation. As the solutions to these problems
involve both memory management and communications,
we first discuss computational aspects of the system,
concentrating on memory management.  Then we discuss
communications’ problems and solutions, followed by a
detailed discussion of I/O in the TFLOPS system,
including a description of PFS.

 Memory Management on the Compute Nodes

 This section discusses how performance requirements
motivated certain design decisions in compute node
memory management. It shows how the memory
management design is tied to message passing and I/O
performance.

 The compute nodes run the Cougar operating system,
which is optimized for scientific applications with some
specialized requirements.  In general these applications
require the following:

� intensive computation

� massive amounts of data in memory

� fast communication between nodes

� a high performance file system

 A key requirement that influences design decisions is that
application performance must scale in proportion to the
number of nodes.  If the program is too slow or requires
more memory, the user can run it on more nodes.  In
principle, it is possible to add more nodes to the system
itself to increase its performance.  Adding  nodes can
improve the performance in the following ways:

� More processors are available for higher overall
computation speed.

� More memory is available to the application.

� There is higher aggregate memory bandwidth across
all the nodes.

 Of course, adding nodes does not in itself guarantee better
application performance.  The application design must
also be scalable to take advantage of the additional nodes.

 Operating System Design Requirements

 An operating system allocates and controls system
resources for applications.  The compute nodes of the
TFLOPS system do not have I/O devices, so the primary
resources that must be controlled are memory, processor
cycles, and the communications network. The operating
system should not get in the way of the paramount goals
of application performance and scalability.  This dictates
several requirements of the system.

 Although the Cougar operating system is capable of multi-
tasking, we have optimized it for a single process per
node.  Our model in general is space sharing rather than
time sharing.  In other words, multiple users can allocate
disjoint subsets of the 4500 nodes on the system, and run
applications on them concurrently, with a set of nodes
dedicated to each application. This frees us from having
multiple users on any one node and permits some design
decisions that will be explained below.

 With only one process per node, each process has access
to almost all of the physical memory on the node. If users
need more memory, they can get it by allocating more
nodes.

 Design Decisions

 A key requirement of the system is message passing
performance, which is covered in another section of this
paper, but this requirement influences memory
management. The Cougar operating system uses the
hardware memory protection mechanism of the processor
to protect the operating system from users and to protect
user processes from each other.  Cougar gives each
process access to a virtual memory space, which is a set of
addresses that the process can use.  The virtual memory



Intel Technology Journal Q1’98

4

space is mapped by the processor to the underlying
physical memory of the computer. By virtual memory, we
do not mean demand paged virtual memory; rather, we
mean a mapping of virtual addresses to physical memory.
The memory for a user process is divided into several
regions, which are contiguous expanses of virtual
memory. Typical regions for a process are its code, data,
heap, and stack.

 The IA-32 architecture provides options for three memory
page sizes: 4KB, 2MB, and 4MB. Cougar uses the 2MB
page size, which permits better message performance than
4KB pages. When moving a large message into or out of
memory, the message can be moved in large blocks
without breaking it up into packets the size of a 4KB
memory page.  That improves the message bandwidth.
For large messages,  the bandwidth is almost asymptotic
to the hardware bandwidth, and thus Cougar attains
approximately twice the bandwidth of TOS (see the next
section on Communication for the numbers).  Using large
pages also slightly improves the computation
performance, as it increases the number of Translation
Lookaside Buffer (TLB) hits.

 Another optimization for message passing is to keep the
user’s regions of memory physically contiguous.
Although separate regions may be far apart in the virtual
memory space, each region is a contiguous expanse of
virtual memory. However, at the hardware level, these
regions consist of pages of memory that are mapped to
individual pages of physical memory. The pages of
physical memory could be scattered. In our
implementation, each contiguous region of virtual memory
is mapped to an underlying contiguous region of physical
memory.

 Although physically contiguous memory regions are less
important to performance than using the large page size,
they still benefit performance.  When the operating system
kernel is going to use a buffer in user space to send or
receive a message, the kernel must validate the memory;
that is, it must make sure the entire buffer is within
memory the user has permission to use. If user memory is
physically contiguous, then the entire buffer can be
validated at once rather than validating each individual
page of the buffer.

 In a multi-tasking system, physically contiguous regions
can cause fragmentation of physical memory.  However,
since we are optimizing for a single process per node,
fragmentation is not a problem. Also, if we needed
demand-paged virtual memory, then we could not use
contiguous physical regions.

 Demand Paging vis-a-vis Message Passing and
I/O Performance

 Since the applications on this system need a massive
amount of memory, the question is often asked as to why
demand paging isn’t used?  This subsection addresses that
question, because the discussion illuminates some issues
that tie in to message passing performance and I/O
performance.

 For massively parallel scientific applications, we
discovered that  demand paging causes several
performance problems. The foremost problem is that
demand paging is too slow because the backing store is
not local to the nodes.  The data must be passed as
messages to a file server on another node. Furthermore,
there are many compute nodes and few file servers (the
so-called many-to-one problem). Under conditions of
heavy paging, the file servers can become backlogged
with requests, and the compute nodes experience long
latencies waiting for a page.

 Depending on your point of view, we have either
described a disadvantage of demand paging or a
shortcoming of the system architecture. Why is the
backing store not local in the first place? We want to
emphasize that there are good reasons for this architecture
and they include

� the need for reliable, redundant I/O devices,

� security of classified data, and

� the cost, heat, and space that would be consumed by
disks on 4500 individual nodes.

 These issues are further discussed in other sections of this
paper.

 Demand paging was originally devised in order to
optimize the throughput on large time-sharing systems.
When a process has a page fault on that type of system,
other processes can be scheduled to keep the processor
busy.  This results in the greatest possible parallelism
between I/O and CPU cycles. On our system, with only
one process per node, typically nothing can happen while
a process waits for a page, so the latency to handle a page
fault is dead time.

 Another  problem is that non-present pages add latency to
message passing.  On a demand-paged system, before
receiving a message, the operating system must make sure
the memory for the message is physically present.  If a
page is not present, an operating system can allocate a
page and map it in.  This requires some processing time
with a small increase in latency. If no free page is
available, then a page must be flushed to the backing store
to make memory available, which increases the latency. If



Intel Technology Journal Q1’98

5

an incoming  message does not completely fill a page,
then the page must be fetched from the backing store
before it can be written. This also adds latency. Using
large pages increases the probability that a message will
not completely fill a page.  Cougar assumes that all pages
are always present, so it only has to validate the memory
addresses before receiving a message.

 A more subtle problem is the propagation of latency to
other nodes.  For example, suppose node A is doing
computation, but is stalled waiting for a not-present page
to arrive.  Then suppose Node B needs data in a message
from node A before it can proceed.  The paging latency on
node A propagates to node B.  With a large number of
nodes, this can have a crippling effect on the system.

 Another motivation for using demand paging is that most
applications have a relatively small working set.
Intuitively speaking, this assumes over a short period of
time, most programs use only a small amount of the
memory available to them.  Over a longer period of time
they re-use the same memory. This limits the amount of
demand paging required. Scientific applications do not
conform to this assumption.  Typically, these applications
fill all available memory with large arrays of data  such as
floating point numbers, and they traverse the arrays. This
can result in a large working set.

 Finally, programmers want deterministic performance;
that is, the same behavior from one run to another, so that
they can predict the performance of their programs. This
is best achieved with resident physical memory.

 Communication

 In the TFLOPS system, the two operating systems have
specific requirements for message passing. The main
design goal for Cougar is to provide high performance
message passing while perturbing the running application
as little as possible.  With respect to message passing,
high performance means high bandwidth and low latency.
For TOS, these characteristics  are also desirable, but
there are additional constraints.

 The TFLOPS network connects the individual nodes of
the system. Several features of the network increase the
efficiency of message passing; namely:

� restricted access network (unauthorized agents do not
have access)

� reliable network (messages are always received unless
there are hardware failures)

� two Pentium Pro microprocessors per node

 In most networks, authentication is an important part of
sending and receiving messages. On the TFLOPS

network, security checks are still necessary.  However, the
checks are not as complicated as those required on a
unrestricted network, such as an Ethernet.  This reduces
the amount of work required to send a message, thereby
increasing the efficiency of message passing.  Because the
network is reliable, the operating systems can assume
messages are not lost.  This also decreases the  amount of
work required to send a message, increasing the speed of
message passing.

 The second processor can be used in several different
ways according to application requirements. For example,
if an application is message-passing bound, this processor
can be used as a message-passing engine to reduce the
latency of sending messages.  This quite often improves
application performance. (Other uses of the second
processor are beyond the scope of this paper.)

 The network hardware is also designed to provide very
high performance.  The specifications for the network
include a bi-directional bandwidth of 800MB/sec and  a
latency of 2.5�sec.  The remainder of this section will
discuss some of the specific methods used in the operating
systems that  take advantage of these characteristics and
provide high bandwidth and low latency message passing.
We will also highlight differences between the two
operating systems.

 Maximum Bandwidth

 There are two main factors that influence the bandwidth a
communication protocol can achieve. One is the number
of times data is copied when a message is sent.  The other
is the overhead associated with breaking the data up into
packets.  If a message is greater than a given size, the
network hardware requires the message to be sent as
separate packets.

 Cougar eliminates the need for copying data by leaving
the management of communication buffers up to the user.
On the sender side, the application passes a pointer to the
message to the communications library and guarantees
that it will not modify the message until the message has
been transmitted. This allows the operating system to
directly transfer the message from the application’s
address space to the network.



Intel Technology Journal Q1’98

6

 

Network

Application Application

Operating
System

Node 1 Node 2

Operating
System

Operating
System

Data Flow
Control Flow

 Figure 2:   Transfer of an application message between
compute nodes

 On the receiving side, if the operating system has a pointer
to the user’s buffer before the message arrives, then the
message is said to be pre-posted. Pre-posting a message
allows the operating system to directly transfer a message
from the network to the application’s address space (see
Figure 2). If a message is not pre-posted, the operating
system must deposit the incoming message into a system
buffer when it arrives from the network.  Then, when the
application requests the message, the message must be
copied from this system buffer into the application’s
address space.  The Pentium Pro chip set can copy data
from memory to memory at a rate of about 80MB/sec.
This is an upper bound on message bandwidth if messages
are not pre-posted. However, using pre-posted messages,
Cougar can attain a bandwidth of 380MB/sec.,  almost a
factor of 5 times faster than if the data is copied.

 In contrast, under TOS, a more complex message passing
protocol is supported. With this protocol, a message
buffer may be modified after it has been passed to the
library.   Also, the receiver of a message does not pre-post
receive buffers. In order to avoid making copies of
communication data, we have made extensive use of
memory management facilities. On the sender side,
transmitted data is marked as copy-on-write in user
address space.  Transmission of the data is delayed until
the corresponding receive operation is posted on the
receiver side. As long as the data is not modified by the
sender, it is not copied into a separate send buffer.  If the
sending process never writes to this memory, then the data
is transmitted without making any copies. This protocol

provides an excellent means of flow control in many-to-
one communication scenarios, as almost no memory is
needed on the receiver side until the message is actually
consumed.

 It is important to note that while the use of memory
management facilities in TOS allows data transmission
with zero copies, it places a fixed cost on each page of
data transmitted.  This cost is associated with the
protection of the data on the sender side and re-mapping
of it on the receiver side. Cougar does not have this
overhead. The use of physically contiguous, virtual
address space in Cougar also allows the use of large
packet sizes, up to the hardware limit of 1 MB. This
lowers communications overhead because most messages
can be sent in one packet. Even for large messages, the
total number of  packets is kept to a minimum.  In
contrast, TOS is limited to a packet size smaller or equal
to the virtual page size of 8KB. (TOS uses an 8KB virtual
page size instead of the 2MB pages that Cougar uses.)
This restriction on packet size is imposed because TOS
can not guarantee two virtual pages are physically
adjacent to each other.

 The bandwidth achieved with the TOS message passing
protocol is about 190MB/sec for message sizes of 256KB
and larger.  For Cougar, the bandwidth for the same size
message is 380MB/sec.

 Minimum Latency

 The latency a communication protocol can  achieve for
small messages is determined by the amount of code
executed when a message is sent between two nodes. This
means lightweight protocols ensure the best use of a very
low latency network.

 Cougar uses a lightweight protocol for message passing. It
allows a process on one node to open up a portion of its
address space to a process on another node. The operating
system on the sending and receiving nodes can then
transfer data directly from user address space on the
sending node, via the network, to the desired memory
location on the receiving node. Once this opening into the
user’s address space is established, many separate
messages can be sent without any further overhead.

 In contrast, the message passing protocol on the TOS side
supports very rich semantics, with type conversions for
every element of a message. This severely limits the
minimum latency that can be achieved.  The protocols to
provide this capability are much more complicated than
those used in Cougar, requiring more code to be executed.

 Another factor that can increase message latency is the
flow control mechanism used to guarantee the delivery of
messages. Cougar has no flow control at the OS level.
Instead, it is left up to the application to make sure



Intel Technology Journal Q1’98

7

adequate buffers are available for message reception. The
responsibility for flow control can be left to the
application because the protocol is designed to run on a
reliable network. The application only has to deal with
buffer management, not the unexpected loss of messages.

 On the TOS side,  the OS provides flow control which
guarantees that no data will be lost regardless of the
amount and timing of messages. When a message is sent
between TOS nodes, initially, only a small informational
message is sent to the receiver. The receiver is thus
notified a message is available.  The data can then be
requested from the sender when the receiver is ready for
the message. This is known as a pull model of flow
control. To reduce the overhead for very small messages
(up to about 120 bytes), the message data can be sent
along with the notification message. This data is then
buffered on the receiver side as long as buffer space is
available. If no space is available, a more complex model
is used.

 The latency of the TOS message passing protocol is about
90�sec for small messages and about 130�sec for larger
messages where the pull model of flow control is used.
For Cougar the latency for the minimum size message is
16�sec.

 The tradeoff  here is that programs running on Cougar can
achieve latency improvements over TOS by a factor of 5
to 8.  However, the programmer must analyze the
message-passing patterns of the application and provide
flow control at the application level and also provide
sufficient buffer space to handle all incoming messages
that are not pre-posted. The programmers writing the
ASCI codes are willing  to pay this price for performance.

 Scalable I/O for Thousands of Nodes

 The TFLOPS system is required to sustain a transfer rate
of one GB/sec between a set of compute nodes and the file
system.  This challenge involved solving problems in
several interrelated areas. The TFLOPS hardware has a set
of devices and I/O buses that is capable of both
transferring data at an aggregate rate of one GB/sec and
meeting the reliability and security requirements of the
system. In order to meet the performance requirement, the
file system software must be able to exploit the full
bandwidth of the hardware.  This is done by TFLOPS
Parallel File System (PFS) and the I/O service processes.

 PFS stripes user data files across the TFLOPS disk
devices, which allows the transfer of data between the
compute nodes and the I/O nodes to occur in parallel.  For
a large enough I/O request, each I/O node can sustain the
maximum possible bandwidth of its storage device.

 To handle the I/O requests from many compute nodes in
parallel and balance the load, a set of I/O service
processes is required.  However, to minimize copying, the
user data moves directly between user space on the
compute nodes and the operating system space on the I/O
nodes, bypassing the I/O service process. A flow control
mechanism is required to fan the communication in from
many compute nodes to a few I/O nodes without loss of
data or loss of performance. The following section
describes the architecture of the I/O subsystem.

 I/O Architecture

 There were two main approaches considered for providing
I/O services to the many compute nodes in the TFLOPS
system. One was to attach a disk to each compute node.
The other was to concentrate the file system on a small set
of specialized nodes that process I/O requests.  For a
number of reasons we chose the latter option, using
Redundant Array of Independent Disks (RAIDs) for
secondary storage.  The more important reasons for our
decision were as follows:

� Reliability

 The system must survive any single disk drive failure. A
design with a disk per node would add complexity to
both the system hardware and software. A RAID is
designed to handle the failure of a single disk drive.
A RAID stores parity information that allows it to
reconstruct user data in the event of a single drive
failure.  (This operation is described in Appendix A:
Single Drive Failure Recovery.)

� Security

 The customer decided to configure the TFLOPS system
into three sections:  a classified section, containing
compute, service, and I/O nodes; a non-classified
section that also contains compute, service, and I/O
nodes; and a “floating” compute section that contains
only compute nodes.  The floating compute section is
attached to either the classified section or to the non-
classified section.

 For security reasons, once a disk drive is connected to the
classified section, it must be “scrubbed” in a precisely
defined manner before it can be removed from the
classified system.  By physically decoupling disk
hardware from the compute nodes, reconfiguring the
system is greatly simplified.  Disks do not move
between the classified and the non-classified sections.

� Hardware design issues

 A disk per node would increase the per-node power
requirements, complicating the system’s design and
cooling requirements.



Intel Technology Journal Q1’98

8

� Leveraging  existing hardware

 The TFLOPS communications network is designed to
move data at 800MB/sec.  This transfer rate is much
higher than the I/O rate to a single disk or RAID
device.  Utilizing this high speed network hardware
simplified the design of the I/O system.

 The RAID hardware is described in Appendix B: RAID
Subsystem.

 TFLOPS File system

 The TFLOPS File System is composed of two parts: the
UNIX File System (UFS) and the Parallel File System
(PFS). PFS is built on one or more UNIX file systems. A
PFS file is striped over multiple UFS files in a round-
robin fashion. Each of these files is referred to as a stripe
file (see Figure 3).

 

 0
 4
 8
12
16
� 
� 
� 

 1
 5
 9
13
17
� 
� 
� 

 2
 6
10
14
18
� 
� 
� 

 3
 7
11
15
19
� 
� 
� 

   RAID 1
LUN0   LUN1

PFS block numbers
(four way striping)

/pfs/foo

/home/stripe0

/home/stripe1

/home/stripe2

/home/stripe3

   RAID 2
 LUN0   LUN1

PFS

UFS

 Figure 3:   PFS stripe file mapping

 The PFS component of the TFLOPS File System provides
application programs with the following critical
functionality:

� High speed transfer rate

 There is no such thing as a disk device capable of
transferring data at 1 GB/sec.  PFS issues I/O
operations to each UFS stripe file in parallel. This
allows the aggregate PFS transfer rate to equal the
sum of the I/O bandwidths to the individual UFS
stripe files.

� Large File Size

A PFS file may span all available space in each of the
stripe file systems.  It is therefore possible for a single
PFS file to be over a terabyte in size.

 The TFLOPS system is comprised of over 4500 compute
nodes that have no physical connection to an I/O device
other than the high speed communications network. All

application I/O is performed via Remote Procedure Calls
(RPC)  from the compute node to a small number of
service nodes. The inherent many-to-one communication
problems are handled by I/O service processes coupled
with inter-node flow control mechanisms.

 The notion of specialized nodes for specific functions
permeates the TFLOPS design. Applications run solely in
the compute node partition. Standard UNIX programs and
the application loader process all execute in the service
node partition under the control of TOS. The RAIDs in
the system are attached to the I/O nodes. All CPU cycles
on the I/O nodes are dedicated to I/O; no other processes
run there.

 An application is presented a UNIX I/O programming
interface through a set of runtime libraries. This interface
was enhanced with asynchronous (i.e., non-blocking) read
and write operations. The ability to overlap computation
and I/O can dramatically improve the per node
computational performance.

 When an application starts, each compute node is assigned
to an I/O service process. Each I/O service process
provides service to potentially many compute nodes�by
default 256 compute nodes per I/O service process. All
communications between an application process and the
I/O service process are conducted via  RPC’s over the
high-speed communications network. The I/O service
process translates the RPC into a TOS file system request
(see Figure 4).

 

Compute
Node Service

Node

Compute
Node

I/O
Node

Control
Flow

TOS

I/O
Node

Cougar

 Figure 4:   I/O service process control flow

 PFS Write/Read Operations

 When an application process writes a block of data to a
PFS file, an RPC containing the address of the buffer and
the length of the data is sent its I/O service process.  The
data itself is not sent with the RPC, only the control



Intel Technology Journal Q1’98

9

information is sent.  The I/O service process determines
which I/O nodes contain the portion of the file being
written and sends RPCs to each of those nodes.  These I/O
nodes transfer the data directly from compute node
memory to the stripe files. Data from the application
buffer fans out across all affected I/O nodes in parallel
thus achieving a high aggregate data transfer rate (see
Figure 5).

 

Compute
Node Service

Node

Compute
Node

I/O
Node

Control Flow

Data Flow

TOS

I/O
Node

Cougar

 Figure 5:  I/O service process control and data flow

 When an application process reads a block of data from a
PFS file, the processing and parallelism are similar to a
write operation. I/O nodes fan in the file data directly from
the stripe files to the application buffer.

I/O Flow Control

 The I/O service processes receive I/O operation requests
from the set of compute nodes mapped to them. TFLOPS
file system requests are generated on behalf of the
requesting compute nodes.  To achieve maximum parallel
performance, asynchronous read and write file system
operations were implemented. These operations allow the
application and the I/O service process to issue an I/O
request and then continue processing. An I/O service
process I/O request may affect multiple I/O nodes
depending on the stripe factor of the PFS file.

 Each I/O node receives and processes PFS stripe file
requests from an I/O service process. The stripe file
requests contain only control information. The actual
application data transfers directly from the application
buffer to RAID device buffers at the I/O node, thus
eliminating expensive data copies.

 A single I/O node supports concurrent data transfers to
multiple compute nodes while disallowing concurrent
transfers to the same compute node. However, different

I/O nodes are capable of concurrently transferring data
from the same compute node.

 When an I/O node transfers application data from a
compute node, TOS is responsible for the flow control.
The ability of the I/O service process to issue
asynchronous read and write requests necessitated the
addition of flow control code which limits the number of
asynchronous I/O requests issued. Without flow control,
I/O node bandwidth and stability degrade due to memory
starvation caused by the buffering of I/O requests. Given
the small number of I/O nodes and inter-node transfer
policies, the I/O node flow control issues reduce to a set
of manageable problems that do not stand in the way of
achieving maximum I/O bandwidth.

 I/O Results

 The TFLOPS system was shipped with 18 RAID units on
the classified section and 18 RAID units on the non-
classified section.  Each RAID can store approximately 64
GB of file system data, hence the total storage capacity of
the TFLOPS system is approximately 2.25 TB, or about
1.125 TB per section.

 There are a number of factors that affect the aggregate I/O
transfer rate.  Some of the more important factors are as
follows:

� the number of compute nodes executing the user’s
application

� do all compute nodes access the same file, or does
each compute node access a different file

� the number of I/O service nodes

� the size of the I/O request

� the PFS stripe unit size

� the PFS stripe factor

 The requirement of sustaining an I/O bandwidth of one
GB/sec, for both read and write operations, was
demonstrated at the factory after most of the compute
node hardware was already installed at Sandia.  The test
system was configured with 18 RAIDs, 12 I/O service
processes, and 432 compute nodes. The TFLOPS file
system was configured as 18 separate PFS file systems,
with each PFS striped across a RAID’s two logical disk
devices.  All the compute nodes were simultaneously
performing asynchronous I/O to their own file using a
request size of 8 MB.

 After all of the TFLOPS hardware was installed at the
customer site, the I/O performance tests were replicated
using the same hardware configuration describe above.
Soon after this demonstration, the customer decided to
change the configuration of the system so only nine



Intel Technology Journal Q1’98

10

RAIDs were used for PFS. Consequently, in the following
discussion of I/O performance we do not have data for
using all 18 RAIDs for PFS.

 Figure 6 shows the read and write performance when nine
RAIDs were configured into one PFS file system, with the
PFS stripe factor varying between 2 and 18.  In this test:

� The number of compute nodes was set to 16 times the
stripe factor (i.e., the ratio between the number of
compute nodes and the PFS stripe factor was fixed at
16:1).

� The number of I/O service processes was fixed at 8.

� The request size was fixed at 2 MB.

� The PFS stripe factor and stripe unit size were both
fixed at 1 MB.

� The process on each compute node accessed its own
file.

 The figure shows that adding additional RAIDs to PFS
results in near linear increase in read and write bandwidth.

 

MB/sec

100

200

300

400

500

600

700

1 2 3 4 9

Number of RAIDs

2048 KB reads
2048 KB writes

Figure 6:  PFS throughput scalability

 Figure 7 shows the read and write performance from 3584
compute nodes as a function of the I/O request size.  The
TFLOPS file system is configured as nine PFS file
systems, each striped two ways across a single RAID.  In
this test:

� The RAIDs were configured as nine separate PFS file
systems.

� The number of I/O service processes was set to 32.

� The PFS stripe factor and stripe unit size were set to
1 MB.

� Each compute node process was accessing its own
file.

 The figure shows that an application running on a large
number of compute nodes can achieve an I/O transfer rate
of 0.5 GB/sec on nine RAIDs.

 

MB/sec

100

200

300

400

500

600

700

512 1024 2048 4096

Request Size (KB)

Reads, 3584 nodes, 9 RAIDs
Writes, 3584 nodes, 9 RAIDs

 Figure 7:  PFS read and write bandwidth

 The TFLOPS file system has met both of its primary
requirements: it provides storage space for at least one TB
and it can sustain an aggregate transfer rate of one
GB/sec.  The file system also scales with the number of
RAIDs attached to the system.

 Conclusion

 The Intel TFLOPS Supercomputer has accomplished its
performance requirements of one TFLOPS sustained
floating point performance and one GB/sec sustained I/O
to the file system.  It also met the system reliability and
security requirements. This paper discussed some of the
design tradeoffs in terms of memory management,
communication, and file I/O. The decisions are inter-
related.

 This computer is running today at Sandia National
Laboratories and doing production work on ASCI
applications. No one in the world has yet matched the
performance of one TFLOPS, nor of one GB/sec of
sustained I/O.  A few months after system delivery,
scientists at Sandia commented that the system had
already done more work than their previous system had
done in the last three years. They have run physics
simulations with larger problem sizes and finer resolutions
than have ever been run before.  In the development of the
TFLOPS system, we have demonstrated Intel architecture
processors are capable of spanning the range from
desktops to teraflops.



Intel Technology Journal Q1’98

11

 Appendix A: Single Drive Failure Recovery

 With  a potential TB of data at stake, a single drive failure
could be catastrophic.  The Symbios RM20 RAID
subsystem’s design gracefully handles single drive failure.
When a drive fails, the RM20 controller detects it and
takes the following steps:

� It marks the drive as failed and sets both audio and
visual alarms.

� It activates one of the Global Hot Spares and begins
reconstructing the data of the failed drive from the
parity data stripped across the remaining data drives.
(Note that reconstructing is time-sliced with normal
disk requests so the RAID remains in service. The
time-slice algorithm is a dynamically tunable
parameter.)

� When an operator replaces the failed drive, the RM20
detects the replacement, reconstructs the new drive,
and returns the Hot Spare to availability.

A software daemon running on TOS polls the RM20s
periodically reporting any failures to both the console and
system logs.

Appendix B: RAID Subsystem

The Symbios RM20 has two bays of ten drives each and
two controllers.  The controllers can be set active/active
(each controller controlling one group of drives) or
active/passive (one controller controlling all drives and
the other controller configured as a spare).  The disk
drives are Seagate 4GB Barracudas with a 3.5” form-
factor. All the drives share a common internal SCSI bus
regardless of  their LUN assignment to allow for global
hot sparing.

We configured the RM20 with dual active controllers, two
LUNs of 9 drives each (the equivalent of eight for data
and one for parity) and two global hot spare drives.  The
RAID controllers present each LUN as a single, logical
disk device to the host. The RM20’s two controllers are
each connected to a Symbios 875 PCI SCSI host adapter.

On the host side, there are two PCI buses on an I/O node,
each bus supporting a single 875 adapter card. A node
configured for I/O has one RM20 attached, representing
two logical disk devices.

I/O Node

 PCI-875

 PCI-875

Symbios RM20 RAID

Differential SCSI

Figure 8:  Symbois RAID connection to TFLOPS
system

The obvious configuration of each rank of drives assigned
to one LUN did not yield the performance we required to
reach a gigabyte a second. We worked closely with
Symbios for several months to tune and optimize the
RM20 to obtain the maximum, raw bandwidth. The final
configuration has drives from both ranks assigned to each
LUN�something of a sawtooth pattern. This helped
balance the contention for the internal bus shared between
the two LUNs. The RM20 also has dozens of inter-related
tunable parameters that by trial and error we were able to
fine tune to reach our performance goals.

Acknowledgment

We would like to acknowledge the entire team that
designed and built the Intel TFLOPS Supercomputer.

References

[1] Zajcew, R., Roy, P., Black, D., et.al., “An OSF/1
UNIX for Massively Parallel Multicomputers.”
Proceedings of the USENIX conference, January 1993.

[2] Wheat, S., Riesen, R., Maccabe, A., van Dresser, D.
and Stallcup, T., “Puma: An Operating System for
Massively Parallel Systems.” Proceedings of the 27th

Hawaii International Conference on Systems Sciences,
Vol II, 1994, p.56.

Authors’ Biographies

Sharad Garg received a B.Sc. in computer Science from
the University of Allahabad in 1982, an M.Sc in Computer
Science from the University of Connecticut, USA in 1988,
and a Ph.D in Computer Science from the University of
Connecticut, USA in 1992. He taught as an Assistant
Professor in the Computer Science Department at the
University of Delaware from 1992-94. He is currently
working as a Server I/O Architect in Server Architecture
Lab in ESG. Technical interests include broad category of
parallel processing, especially in parallel I/O performance.
His e-mail address is sharad@co.intel.com.

Robert Godley graduated with an MA in mathematics
from San Diego State University in 1974.  He joined Intel
in 1988 and has worked for Intel Supercomputer, ESG,



Intel Technology Journal Q1’98

12

since 1992.  He has supported file system code on both
the Paragon and TFLOPS operating systems. His e-mail
address is rlg@co.intel.com.

Richard Griffiths  is a Senior Software Engineer with
Intel Supercomputers, Enterprise Servers Group. He is a
member of a small team of engineers sustaining the
TFLOPS software. Richard is a self-taught engineer with
no formal degrees.  He is a part-time jazz musician and
artist with an interest in MIDI and real audio. Richard’s
e-mail address is  richardg@co.intel.com.

Andrew Pfiffer  received a B.Sc in computer science from
SUNY Oswego in Oswego, NY in 1985.  He first worked
with supercomputing at the NSF Cornell Theory Center,
and later worked for Topologix, Inc. and Cogent
Research.  Andrew joined Intel in 1991 to work on the
Intel Paragon and is currently working on Merced™
validation for SPD in Santa Clara.  His e-mail address is
andyp@co.intel.com.

Terry Prickett  received a B.Sc. in Computer Science
from Oregon State University, Corvallis, Oregon in 1975.
After spending 17 year in the supercomputer business, he
joined Intel's Supercomputer Systems Division in 1992
and is currently at Intel Supercomputer, ESG. His e-mail
address is terry@co.intel.com.

David Robboy has been a software engineer at Intel for
over 14 years, working on various flavors of the UNIX
operating system.  He is now sustaining the TFLOPS
operating system.  He has a B.A. in mathematics from
Reed College.  His e-mail address is
robboy@co.intel.com.

Stan C. Smith works on Merced architecture validation
in the Microprocessor Products Group. He received a
BSCS from the University of Oregon in 1976. His
technical interests include distributed operating systems,
multicomputers, high-speed communications networks,
and robotics.  His e-mail address is stans@co.intel.com.

T. Mack Stallcup has worked at Intel for seven years. He
worked in Factory Automation at Fab 7 and as an on-site
Parallel Systems Engineer at Sandia National
Laboratories. He has been a Senior Software Engineer for
Intel Supercomputer, ESG since 1995.  He received a
B.Sc. in Chemistry from the New Mexico Institute of
Mining and Technology and an M.Sc. in Computer
Science from the University of New Mexico. His e-mail
address is tmstall@co.intel.com.

Stephan Zeisset received a Master's degree in Computer
Science from the Munich University of Technology in
1994. Since then he has been working on the operating
system of the TFLOPS system and its predecessors, with a
specialization on distributed memory management.
Stephan currently works for MPG, porting the Mach

kernel to Merced for validation purposes. His e-mail
address is: sz@co.intel.com.



1

Scalable Platform Services on the Intel TFLOPS
Supercomputer

Bradley Mitchell, Server Software Technology, Beaverton, OR, Intel Corporation

Index words: DMI, management, scalability

Abstract
This paper describes Scalable Platform Services (SPS)—a
collection of software providing the manageability
solution for Intel’s latest parallel processing
supercomputer.

Compared to previous generations of supercomputer
management environments, such as that of the Intel
Paragon Supercomputer, the SPS makes significant
strides in feature offerings and overall usability.  The SPS
consists of distributed, low-level hardware monitoring,
and control functions networked to a centralized
management station which are in turn exported to
administrators through command-line and graphic user
interfaces.  This software system demonstrates successful
application of off-the-shelf standard components, chiefly
the Desktop Management Interface (DMI) supported by
Intel and the Desktop Management Task Force.

Together with specialized management hardware, the
SPS offers a platform management architecture designed
for scalability, availability, usability, and high
performance.

Introduction
Supercomputers installed at customer sites require good
manageability characteristics.  In general, high demand
exists for machine cycles, and frequent system downtime
proves very costly.  For the Intel TFLOPS supercomputer
in particular, the sheer quantity of densely packaged
hardware makes the task of identifying and repairing
failed components difficult.  (For an overview of the Intel
TFLOPS supercomputer, please refer to the paper entitled
An Overview of the Intel TFLOPS Supercomputer also in
this Q1’98 issue of the Intel Technology Journal.)

The manufacturing and system integration of
supercomputers also demands fairly comprehensive
management support.  Assembling the Intel TFLOPS
supercomputer involved rigorous hardware configuration

and testing activities that could not be completed on
schedule without sufficient automation.  Facilities for
hardware resource sharing became crucial.  Even boot
and shutdown procedures for the TFLOPS operating
systems needed abstraction.

SPS, a distributed software system, addresses both
manufacturing and field requirements as outlined above.
The SPS architecture focuses on the unique
characteristics of the TFLOPS platform yet succeeds in
leveraging off-the-shelf software products to meet its
delivery time constraints and quality objectives.

One can compare managing the Intel TFLOPS
supercomputer with the task of managing a collection of
several thousand distributed PC desktops.  (This analogy
will be revisited later in the paper.)  Although both
environments contain roughly the same number of
“nodes,” the Intel TFLOPS supercomputer poses a
number of additional challenges from a manageability
perspective.  These arise from the machine’s scale, use of
custom hardware components, usage model, and so on.

A significant goal for management environments
according to Intel’s Wired for Management (WfM)
initiative is to reduce the administration cost associated
with an installed hardware base.  In the PC desktop
realm, reducing this cost involves a combination of
hardware support, software support, and standards
efforts.  Although WfM does not address the
supercomputer realm explicitly, the principles of WfM
remain applicable.  By utilizing built-in hardware
support, leveraging industry standards such as the
Desktop Management Interface, and by providing new
examples of management software components, the SPS
for TFLOPS serves as a fine example of WfM principles
in action.

TFLOPS Platform Management
The SPS focuses on aspects of system management that
relate closely to the unique hardware architecture of the



Intel Technology Journal

2

Intel TFLOPS supercomputer.  In particular, the
TFLOPS machine includes a Monitoring and Recovery
Subsystem consisting of hundreds of boards dedicated to
hardware instrumentation and low-level control
functions.  Private Ethernet, as well as a mesh of serial
line connections, network these boards together.  A
considerable fraction of the SPS software exists to
provide communication and co-ordination services for
utilizing this “platform within the platform.”

Scalable Platform Services
The SPS provides the following features to a TFLOPS
supercomputer system administrator:

Scripted booting/shutdown. Individually-executing
scripts co-ordinate the booting or shutdown of the two
distinct operating systems available on the machine.

Fault management. A software agent detects hardware
faults as they occur, isolating affected components from
the running system when possible, reporting fault
information, and initiating automatic recovery operations

in some scenarios.  This same agent receives notifications
of software faults from the running operating systems and
takes appropriate corrective actions.

Configuration management. A software agent maintains
up-to-date hardware inventory data, supplying this data
to clients on demand.  This same agent accepts client
requests to partition the available hardware resources into
independent sub-machines.

Repair services. Individually-executing scripts support
board repair, power control, firmware upgrade, and
hardware reset operations.

Field diagnostics. Scripts encapsulate diagnostic test
scenarios covering many platform hardware components.

Operating system console access. A gateway service
provides access to operating system node consoles from
remote clients.

Architecture
Based on a centralized Desktop Management Interface

Operator or 
Service person

. . .

. . .

. . .

Patch
Support
Board
(PSB)

NodeB
ackplane

Node

Node

Node

Node

Node

Node

Node

inte
rcon

nect

JT
A

G
/C

o
ntrol

P
riv

at
e 

E
th

er
ne

t

Management Station
(Windows/NT Server 3.51)

Management Console
(GUI and command-line)

DMI 1.X Service Layer

Component Instrumentation Proxies
(CIPs)

CabinetCabinetCabinet

SPS Transport Services

Cardcage

Console 
(remote GUI)

SPS Management Applications

. . .

B
ackplane

Figure 1:  SPS Architecture



Intel Technology Journal

3

(DMI) database, the SPS includes a co-operative set of
local management applications (MAs) as well as remote
component instrumentation.  Five MAs exist
corresponding at a high level to the management features
supported:  Booting, Configuration, Diagnostics, Fault,
and Repair.  Unlike many DMI MAs that have a
dedicated  human interface, the SPS GUI integrates all
five MAs into a single coherent presentation.  The DMI
database and MAs install onto the dedicated
“management station” that serves as a central point of
administration for the platform

The platform hardware includes Patch Support Boards
(PSBs) that oversee each group of eight computational
nodes in much the same way the Intel Server Monitor
Module oversees a single server system.  A fully-
populated TFLOPS machine includes roughly 300 PSBs.
Each PSB includes an i386 processor and runs the
Wind River Systems VxWorks* real-time operating
system.  Software agents implemented above the OS,
coupled with hardware instrumentation capability built
into each PSB, provide a full range of monitoring and
control functions for the nodes, backplanes, and other
platform components.

Via a transport layer on each end, DMI component
instrumentation proxies on the management station
communicate with PSB agents to collect instrumentation
data for and deliver management requests from a central
location.  On the station, five such proxies exist broadly
corresponding to the types of hardware present in the
machine:  Node, Backplane, PSB, Clock, and Cabinet.

An administrator interacts with the SPS through a
graphic user interface (GUI) and related command-line
interfaces.  The GUI implements direct manipulation
interfaces for specifying hardware components,
individually or in groups, as the target of management
operations.  It launches management scripts that
encapsulate specific booting, diagnostic, or repair
operations.  Its network map includes an event-driven
interface that color-codes individual hardware
components based on their real-time state.  Finally, it
displays in real-time the OS event log entries made by the
management applications.

Figure 1 illustrates the SPS software architecture in
relation to the hardware platform.  Subsequent sections
describe the software layers in more detail.

Patch Support Board Software
The PSB software consists of the VxWorks kernel and a
set of runtime-loaded SPS modules.

The base VxWorks distribution from Wind River
required several source extensions and modifications for

operation on a PSB.  For example, the SPS team re-wrote
its network initialization module—delaying the network
initialization process within the OS until platform
configuration discovery within SPS modules completes.
Additionally, the team added support for reading the on-
board EEPROM needed to access, among other things,
the PSBs MAC address.

Each SPS object module implements an agent or,
alternatively, a library of services shared among agents.
Each agent provides management services either for one
type of Field Replaceable Unit (FRU)1 or for one type of
communication interface (serial or packet).  Libraries
implemented include a JTAG2 scan library providing a
standards-based interface to instrumented hardware
devices.

In general, the PSB agents support both monitoring and
control functions.  They receive hardware interrupts and
collect instrumentation data on behalf of the management
station.  As needed, the agents transmit information to
the station over the private Ethernet network.  The agents
also accept requests such as those for power or reset
control from the management station and execute the
required processing and notification procedures.

Finally, this software implements a communication and
keep-alive scheme among the PSBs, taking advantage of
the serial line network fabric connecting all PSBs.  The
management hardware for the Intel TFLOPS
supercomputer thus includes two management networks:
a secondary network assists in managing the hardware
critical to the machine’s computational mission, and a
tertiary network assists in managing the management
hardware itself.  Both of these networks exist “out-of-
band” from the machine’s primary node interconnect.

Node Maintenance Port
One of the two standard serial ports (COM2) on the node
board serves a special function as the Node Maintenance
Port (NMP).  This port connects to the PSB and is used
in two ways:  the message mode  supports reliable
datagrams, and the raw mode  supports an unstructured,
not necessarily reliable, character stream.

The PSB supports multiplexing of data in the two modes
and also works as a gateway for the NMP communication

                                                       
1 SPS supports the following FRU types:  node boards,
backplanes, clock boards, power supplies, blower units,
and the PSB itself.
2 JTAG refers to the Joint Test Action Group and IEEE
Standard 1149.1 for implementing boundary-scan
functionality in hardware devices.



Intel Technology Journal

4

between its eight nodes and the management station.
The SPS management applications use the NMP message
mode to communicate reliably with the extended node
BIOS and with downloaded, off-line node diagnostics.
The NMP raw mode supports an administration and
debug console to the operating system on the nodes.  On
the management station, NMP libraries communicate in
message or raw mode transparently to any node in the
system by hiding the communication to the gateway
service on the  appropriate PSB.

Management Station Software
All software components resident on the management
station operate in a 32-bit Windows NT* environment.
Figure 2 illustrates these components, and they are
discussed in the following sections.

PSB Transport Service
The PSB Transport runs as a Windows NT* service on
the management station.  It provides transport services
for sending and receiving reliable datagrams between the
station and one or more PSBs, multicast group definition,
PSB enumeration, and notification when PSBs enter or

drop off the network.  The inter-process communications
mechanism between the transport and its users
incorporates local RPC.  PSB Transport interface
libraries hide the RPC initialization and tear-down
details.

Component Instrumentation Proxies
The SPS utilizes DMI as the primary management
interface.  This choice allows the TFLOPS system to use
standards-based management and helps facilitate a single
operational view through a single management interface.

The DMI standard defines a Component Instrumentation
interface that performs the required low-level
management operations.  However, the actual low-level
operation takes place on the PSB.  To bridge this gap
Component Instrumentation Proxies or CIPs were
implemented.

As mentioned earlier, the five proxies provided are Node,
Backplane, PSB, Clock, and Cabinet.  Each CIP runs as
a Windows NT* service that communicates with a
corresponding agent on the PSB to collect
instrumentation data and to deliver management

Console UIConsole UI

OLE InterfacesOLE Interfaces

PSB TransportPSB Transport

NMP
Message

Mode

NMP
Message

Mode

NMP
Raw
Mode

NMP
Raw
ModeBackplane

CI Proxy

Backplane
CI Proxy

Node
CI Proxy

Node
CI Proxy

ICF Clock
CI Proxy

ICF Clock
CI Proxy

PSB
CI Proxy

PSB
CI Proxy

Cabinet
CI Proxy

Cabinet
CI Proxy

DMI 1.X Service LayerDMI 1.X Service Layer

Configuration
Manager

Configuration
Manager

Fault
Manager

Fault
Manager

BasicScript

Scripts

BasicScript

Scripts

BasicScript

Scripts

PSBnet

Node and Debug AccessNode and Debug Access

Fault
Policy

Fault
Policy

Boot 
Manager

Diagnostics
Manager

Repair
Manager

SPS Message SystemSPS Message System

Figure 2: Management Station Software Components



Intel Technology Journal

5

requests.  The two primary interfaces for a CIP are with
the PSB Transport and the DMI Service Layer.

DMI Service Layer
The SPS utilizes version 1.X of the Desktop Management
Interface (DMI).  DMI includes a specification written
and maintained by the Desktop Management Task Force
(DMTF), an industry consortium chartered with the
development, support, and maintenance of management
standards for PC systems and products.  As part of this
specification, the DMI service layer provides a standards-
based interface  between the SPS management agents and
component instrumentation responsible for low-level
management tasks.  It is this interface boundary that SPS
takes advantage of to provide the illusion of a single
unified system through a single DMI database.

A DMI database generated for the Intel TFLOPS
supercomputer contains more than 3,600 component
entries.  This results in more than 21,500 individual DMI
groups and more than 99,000 DMI attributes.  Prior to
the SPS project, Intel’s existing DMI service layer
implementation could scale to only 254 component
entries.  However, Intel made the necessary
enhancements to accommodate this SPS scaling
requirement.

In addition to scaling the number of components
supported, Intel’s DMI implementation required an
enormous reduction in the time required to generate a
large component database.  The Intel team reduced this
time from two calendar days initially to less than fifteen
minutes.

Management Applications
The five SPS management applications are Boot,
Configuration, Diagnostic, Fault and Repair.  Each MA
runs as a Windows NT* service on the management
station.

The Boot, Diagnostic, and Repair Managers advertise a
list of available control operations.  Each entry in this list
corresponds to an executable script.  The team
implemented these scripts with the BasicScript*
environment from Summit* Software, so chosen because
the LANDesk* Server Manager product also uses it.

When invoked, each script executes in a separate thread
on the management station under control of the
BasicScript run-time environment.  Multiple scripts may
execute concurrently.  To allow scripts to access the DMI
service layer, the SPS team developed a simple OLE3

                                                       
3 OLE refers to Microsoft’s Object Linking and
Embedding technology.

interface library to DMI.  (The team prepared a similar
OLE library for interface to the NMP.)  Most scripts
interact with an operator as described in the next section.

The Configuration Manager exists primarily as a server-
side agent to the client user interfaces.  It uses the SPS
message system to converse with instances of the SPS
GUI and command-line utilities.  It initializes the PSB
private network.

The Fault Manager monitors events reported by the PSBs
and processes all fault events.  It includes a custom
inference engine that synthesizes and correlates fault
indications from across the platform and initiates
automatic corrective action where possible.  The Fault
Manager includes a lex /yacc  fault grammar.

SPS Message System
The SPS team implemented a simple network transport
supporting reliable datagram communications between
SPS Managers and (potentially) remote clients.  Its main
purpose is to support the SPS GUI running on a machine
other than the management station.

The Message System uses secure RPC interfaces to
support authentication.  Additionally, a built-in
authorization scheme restricts operator access to
management functions according to their membership in
Windows NT* security groups.

The Message System provides an API matching that of
the Intel LANDesk* Server Manager Message System
(server-side) and the Network Transport Server (client-
side).  Because SPS originally used the LDSM transport,
matching the LDSM API allowed the SPS team to
replace those components in isolation.

Graphic User Interface and Scripting
Environment
Figure 3 illustrates the SPS graphic user interface. This
interface runs either on the management station or on a
remote Windows NT* console.  The GUI utilizes the SPS
message system to interface to the SPS managers.   The
GUI implementation relies heavily on the Microsoft
Foundation Class (MFC) library for Win32.

The SPS GUI employs a network map metaphor.  The
topmost portion of the main window contains a
thumbnail sketch representing all cabinets in the
machine, rendered in rows and columns just as the actual
hardware is installed on the floor.  Beneath this sketch,
the middle portion of the main window displays a zoom-
able view of one or more cabinets within the machine.

As shown in Figure 3, objects on the screen include color
codes to match the current state of the corresponding



Intel Technology Journal

6

piece of hardware.  The color red corresponds to a faulted
FRU, green to a healthy FRU, and so on.

An operator launches SPS scripts from the tree included
in a dock-able window at the bottom of the GUI main
window.  The GUI also presents a list of existing
partitions in this window.  To create partitions, the
operator rubber-bands selected cabinets.  Likewise, the
rubber-banding mechanism allows an operator to zoom
the main view in or out.

Figure 3 illustrates a typical configuration for the
TFLOPS machine.  While the full system includes four
rows of 19 cabinets each, operators typically de-couple
the rightmost 4x4 cabinets for customer site security
purposes.  When de-coupled, the SPS GUI will not render
these cabinets, although it will account for them in its
numbering scheme.  When the system transitions to a
non-secure operating mode, operators typically re-cable

the rightmost 4x4 block and correspondingly de-couple
the leftmost 4x4.  SPS allows the operators to construct
hardware/software “partitions” of the hardware for this
and other reasons such as unobtrusive diagnostic testing
or hardware resource sharing.

Challenges
The most pervasive challenge faced by the SPS team lies
in integrating the diverse collection of off-the-shelf
software components.

Another significant challenge, one faced in many high-
end platform software development projects, is a lack of
available target hardware.  The partitioning feature in the
SPS mitigated this problem to some degree in the
development labs.  Yet, the limitation applies particularly
now in the sustaining phase of the project when nearly all
existing hardware has been shipped to the customer.



Intel Technology Journal

7

A variety of scaling challenges was also encountered.
Utilization of the PSB network required careful planning
to avoid performance bottlenecks.  The DMI
implementations required modification to support the
large number of installed components.  And the design of
the SPS GUI required particular emphasis on ease of
navigation and clear display of fault notifications.

Another serious development challenge grew out of the
need for SPS to support manufacturing test needs.
Lacking any other tool support, the manufacturing team
required access to incomplete versions of SPS for
booting, diagnostic, power control, and other base
features.  Combined with each of the other challenges

mentioned above, this forced the development team to
regularly make trade-offs between feature availability,
stability, and progress toward the final product.  Nor did
the feature set in the field always match exactly the
functionality needed internally.  In this environment of
rapid change, it proved very difficult to re-train users of
the SPS as features were enhanced over time and the
need for special “work-around” procedures was removed.

In a system as large as the Intel TFLOPS supercomputer,
the secondary management problem–managing the
support hardware and software–can become as difficult as
some people’s primary management problem.  SPS
attempted to deal with both problems.  However, details

Figure 3:  SPS Graphic User Interface



Intel Technology Journal

8

such as software/firmware installation and upgrade of
PSBs, or static IP address assignment for the PSB
network, proved non-trivial to debug and overcome in
practice.

Finally, the SPS overcame a few cultural barriers to
acceptance.  Traditional supercomputer management
environments consist of UNIX* workstations exclusively,
and for SPS to be appealing to certain classes of users,
UNIX-like command interfaces to particular SPS features
were required.  By using the TelnetD telnet(1)  server
for Windows NT* from Pragma Systems, Inc., and by
tasking Pragma to tailor the product for better
interoperability with the TFLOPS OS debugger, these
concerns were largely ameliorated.

Results
The SPS played an important role in enabling Intel to
win the one teraflop performance race, to meet its
contractual commitments, and to raise the bar for
supercomputer management software.

In general, the team’s experiences in integrating off-the-
shelf software components were positive and met or
exceeded expectations.  In particular, DMI performed
nicely and proved to be the single biggest “win” for the
project.  In most cases, including the DMI
implementation, the VxWorks kernel, BasicScript, and
the RATP specification, enhancements were required or
software defects were encountered that required source
modifications.  Yet, in every case, these alterations did
not derail the project, in part because the changes were
small and in part because they were anticipated as part of
the development effort.

In only one case, that of the LANDesk Server Manager,
did the team replace components of the product in mid-
stream.  This was due not to any particular technical
shortcoming of LDSM, but rather to the fact that the
feature offset between it and SPS was too great.
Specifically, where LDSM targets heterogeneous
workgroups that include servers, SPS targets one instance
of one unique type of Intel-architecture based server.

As in many software development projects, the team
found room for improvement.  In general, more tool
support could have been provided for managing SPS
itself, including installation, upgrade, and fault recovery
features.  Features may have been phased into the product
in an order better suited to the manufacturing bring-up
effort.  The customer environment, and the in-house
manufacturing environment for that matter, was not so
well understood by the SPS development team, causing a
few client features to be implemented that proved
unnecessary in practice.  Finally, the SPS architecture

could not accommodate management of the TFLOPS I/O
subsystem nor could it completely account for
management of the hardware cabling.

Discussion
While there are similarities between managing the
TFLOPS system and managing a network of distributed
PC desktops, they are certainly not the same.  One aspect
of the TFLOPS supercomputer that simplifies the
management task comparatively is its fixed size and
network topology.

Another simplifying factor is its homogeneity: most
nodes share identical hardware, firmware, and system
software.  Unlike distributed PCs, these nodes do not
have individual owners who may install arbitrary
software packages or otherwise customize the local
environment.  Only one or a few different parallel
applications run across all the machine’s nodes at a given
time.

Whereas PC network administrators may come from a
wide variety of backgrounds and receive varying levels of
training, TFLOPS administrators are literally hand-
picked and acquire an in-depth knowledge of the
machine.  This even further simplifies the management
burden.

On the other hand, some aspects of system administration
become more difficult in the TFLOPS domain.  The
tightly-integrated, custom hardware design of the Intel
TFLOPS supercomputer naturally tends toward more
frequent system outages.  The system software deployed
is not so mainstream as that typically used on large-scale
PC networks, leading to even less system stability.
TFLOPS nodes lack their own monitors, keyboards, or
mice, limiting visibility into the machine’s operation.
Furthermore, self-administering the management
hardware and management software required effort on a
scale not typically found in commercial networks.

Nonetheless, many aspects of administration remain
clearly similar in both domains.  Hardware faults must be
detected and reported to any remote location the
administrator requires.  Firmware upgrade, emergency
power-down, and remote reset capabilities are likewise
required.  The ability to trouble-shoot any single node is
extremely useful, and the ability to isolate a node from
the overall network is also valuable.  Many of the features
exported by the SPS live in this “common ground”
between supercomputer and PC-based server
management.



Intel Technology Journal

9

Conclusion
Compared to previous-generation management
environments for Intel supercomputers, such as those for
the Intel Paragon Supercomputer, SPS makes
significant strides in feature offerings and overall
usability.

The SPS usage model, based on an intimate knowledge of
the server platform’s internal hardware constructing and
networking topology, has appeal in the scientific
supercomputer market where the user base tends toward
an “expert” knowledge of underlying implementation
details of the system.  More mainstream management
products, typically built for heterogeneous, distributed
commercial environments, often cannot know these
details or choose to hide them from the users.
Applications such as LANDesk Server Manager employ
browsing metaphors in cases where the SPS environment
requires more direct interfaces.

In most cases, leveraging vendor products such as the
DMI Service Layer afforded clear gains for the project
schedule, stability, and/or available features However,
some off-the-shelf technologies proved a less-than-ideal
fit for the SPS.  The process of identifying potential
sources of leverage and making build-or-buy decisions
can have significant downstream effects on the project
schedule and product quality.

It is reasonable to expect that some of the lessons learned
from implementing management support for an ultra
high-end platform can have cross-over benefits to the
more mainstream Intel server product offerings.  On one
level, the SPS product should prove interesting to those
developing DMI-based management software products.
On another level, the SPS experience could prove useful
to those interested in software systems that leverage off-
the-shelf third-party components.  The code base of SPS,
being too closely tied to the Intel TFLOPS
supercomputer’s unique hardware characteristics, likely
has little direct application in more mainstream
environments.  However, perhaps some of the SPS design
principles, such as scalable communication, user
interaction, and configuration management services, can
be successfully applied.

Acknowledgments
The author thanks the following members of the
development team for their support throughout the
project: Ray Anderson, Johannes Bauer, Roy Larsen,
Mouli Narayanan, Don Neuhengen, and Rajesh
Sankaran.

A special mention goes to Linda Ernst who formulated
the original SPS concept and succeeded in convincing
people of its feasibility.

*All trademarks are the property of their respective
owners.

References
[1] DMI Specification., http://www.dmtf.org.

[2] VxWorks and Wind River Product Information,
http://www.wrs.com/html/vxwks52.html.
http://www.wrs.com/html/productindex.html.

[3] Joint Test Action Group IEEE 1149.1 Standard,
http://ada.computer.org/tab/tttc/standard/s1149-
1/home.html.

[4] Reliable Asynchronous Transfer Protocol RFC 916,
http://globecom.net//ietf/rfc/rfc916.shtml.

[5] BasicScript and Summit Software Product
Information,
http://www.summsoft.com/html/products.htm.

[6] LANDesk Server Manager Product Information,
http://www.intel.com/network/server/index.htm.

[7] Pragma Systems and TelnetD Product Information,
http://www.pragmasys.com/TelnetD/

Author’s Biography
Bradley Mitchell received an S.B. in Mathematics with
Computer Science from M.I.T. and an M.C.S. in
Computer Science from the University of Illinois,
Urbana-Champaign.  Before joining Intel in 1993, he was
employed by General Dynamics Corporation.  Bradley
currently works in Oregon as a Senior Software Engineer
in Server Software Technology. His e-mail address is
bradley_mitchell@ccm.co.intel.com.



1

Illinois-Intel Multithreading Library:
Multithreading Support for Intel Architecture Based

Multiprocessor Systems

Milind Girkar, Microcomputer Research Labs, Santa Clara, Intel Corporation
Mohammad R. Haghighat, Microcomputer Research Labs, Santa Clara, Intel Corporation

Paul Grey, Microcomputer Research Labs, Santa Clara, Intel Corporation
Hideki Saito, CSRD, University of Illinois

Nicholas J. Stavrakos, CSRD, University of Illinois
Constantine D. Polychronopoulos, CSRD, University of Illinois

Index words: parallelism, Windows NT*, fibers, compilers, multithreading.

Abstract
Powerful desktop multiprocessor systems based on the
Intel Architecture (iA) offer a formidable alternative to
traditional scientific/engineering workstations for
commercial application developers at an attractive cost-
performance ratio. However, the lack of adequate
compiler and runtime library support for multithreading
and parallel processing on Windows NT* makes it
difficult or impossible to fully exploit the performance
advantage of these multiprocessor systems.  In this paper
we describe the design, development, and initial
performance results of the Illinois-Intel Multithreading
Library (IML), which aims at providing an efficient and
powerful (in terms of types of parallelism it supports) API
for multithreaded application developers. IML implements
a parallel execution environment, which creates,
enqueues, dequeues, binds, and schedules user-level
threads on Windows NT* threads and fibers. One of the
unique and novel features of IML is its support for both
loop-level (data) parallelism and task-level (functional)
parallelism, as well as nested parallel threads.  Although
loop-level parallelism is most useful in scientific and
engineering applications, functional parallelism is often
the norm in multimedia, Internet, and Java* applications.
IML upgrades the multithreading support available on the
iA-based Windows NT* platforms to levels comparable or
superior to those found on high-end parallel systems and
supercomputers. Multithreading a number of diverse
benchmarks (ranging from POV-Ray to SPECfp95 and the
BLAS routines) using IML resulted in significant
speedups on a 4-way SMP Pentium® Pro processor based
system.

Future releases of IML will support several loop
scheduling schemes as well as controlled thread migration
for the purpose of dynamic load balancing. The
programmer or the compiler would thus be able to
customize scheduling on a per loop basis taking into
consideration performance-sensitive characteristics such
as branches inside loops and data locality.  The Intel
C/C++ and FORTRAN compilers and the Parafrase-2
experimental parallelizing compiler are being enhanced in
order to automatically generate the IML API, thereby
facilitating the development of multithreaded application
codes that fully exploit the performance potential of iA-
based multiprocessor servers and desktops.

Introduction
Parallel processing is rapidly becoming mainstream
technology influencing architecture and software design
from the home PC market (in the form of instruction-level
parallelism (ILP), Intel MMX� technology, and multiple
processors on PC boards) to the business field where
Symmetric Multi-Processing (SMP) servers have become
increasingly popular. While Intel compilers provide
intrinsics to generate Intel MMX  instructions so that
independent software vendors (ISVs) can easily
incorporate this technology into their products, there has
been little support for programmers to make use of iA-
based SMP systems for parallel processing. In fact,
multiprocessing may be the most significant enabling
factor for moving large-scale engineering and business
applications to iA-platforms for the first time, thereby
opening new opportunities in the discriminating high-end
market.



Intel Technology Journal Q1’98

2

The Illinois-Intel Multithreading Library (IML) upgrades
the multiprocessing support on iA-based Windows NT* to
levels comparable to or higher than the multiprocessing
libraries provided for high-end multiprocessor servers and
scalable parallel processor systems.

IML, unlike other previous or current runtime systems,
supports functional parallelism [2][3][4] where task
execution conditions are expressed by a directed acyclic
graph (DAG), in addition to the more conventional loop
parallelism and the single-level cobegin/coend functional
parallelism. IML is also capable of exploiting arbitrarily
nested parallelism, which has not been available in any of
the commercial multiprocessing libraries, including high-
end multiprocessors from Sun Microsystems and SGI, as
well as supercomputer systems from Cray, Fujitsu, NEC,
and IBM. SPMD-style nested parallelism is an optional
feature of the OpenMP standard [6].

IML has been used at the Center for Supercomputing
Research and Development (CSRD) and Intel for in-house
software development. Application programs written in
FORTRAN, C, and C++ for numerical computing,
database, and 3D graphics have been successfully ported
to the IML library.  The Parafrase-2 automatic
parallelizing compiler [7] developed at the University of
Illinois has been modified in order to generate calls to
IML automatically, thus exploiting loop and functional
parallelism exposed by the compiler. The IML binaries
and the documentation are now available to the public
through  the IML home page on the web [5]. The Intel
compilers are being modified to automatically parallelize
programs and generate calls to the IML library.

The rest of the paper describes the design and the
implementation of IML and the results from our initial
performance study. Our measurements indicate that the
performance of IML matches or exceeds highly-tuned
commercial libraries for existing multiprocessors for many
common single-level DOALL loops while adding support
for more general parallelism.  Conventional libraries
provide multithreading support for simple, singly-nested
parallel loops, which allows these libraries to be simpler
in design and to incur lower overhead costs. IML
implements a queue-based multithreading environment,
which supports general loop and functional parallelism
and allows arbitrary nesting of parallel loops and
unstructured parallel constructs such as nested
cobegin/coend.

Design

Basic Design Alternatives: Single Parallel-Task
Descriptor vs. Pool of Parallel Tasks
Existing commercial and experimental multiprocessing
libraries allow only one parallel loop to be executed at a

time. If a second parallel loop is encountered during the
execution of a parallel loop (as is the case with nested
parallel loops), the second loop is treated as sequential.
The same can be said for nested cobegin/coend constructs,
also referred to as functional parallelism. Such an
execution environment can be supported by a single task
descriptor specifying the loop body and the number of
iterations. However, supporting the execution of multiple
parallel loops (which may be nested or disjointed in
arbitrary control flow patterns) or functional parallelism
(where precedence requirements are specified by a DAG)
necessitates a pool of ready parallel tasks from which
assignments to user threads are made (Figure 1). In IML, a
collection of task queues1 is used to implement such a
pool of parallel tasks. User-level threads such as one or
more iterations of a parallel loop or a function call are
then bound to ready-to-execute tasks and are scheduled
for execution. In Figure 1, threads execute the task
scheduling loop fetch-execute-enqueue until the program
terminates.

Ready Tasks
forever{

fetch
execute
enqueue

}

CPU0 CPU1 CPU2 CPU3

Thread0 Thread1 Thread2 Thread3

Figure 1: Pool of parallel tasks

Queue-Based System Design Alternatives:
Centralized Queue, Distributed Queue, or
Global-Local Queue
A pool of parallel tasks can be implemented by a single
shared queue. Two major drawbacks of this approach are
contention and locality. In order to exploit maximum
parallelism, thread parallelism should be exploited at the
finest possible granularity that amortizes the overhead of
task management and scheduling. However, small task
sizes lead to more scheduling events, consequently
increasing the contention on a shared queue. Moreover, in
cache-coherent systems, this is likely to lead to poor cache
hit rates as a result of multiple processors updating a
single queue structure. Alternatively, multiple queues can

                                                          
1 Throughout the paper, the term queue is used in a broad sense, a
list that is subject to insertions and deletions.



Intel Technology Journal Q1’98

3

be distributed among threads, for example, one queue for
each thread. In this configuration, if a thread cannot find
more work on its local queue, it can access remote queues,
which facilitates load balancing. When workload is well
distributed among tasks, contention is minimized which,
in turn, promotes cache locality of the task queues. An
extreme drawback to this approach can arise when an idle
thread accesses a large number of  remote queues before
finding a task to execute2. The shortcoming of the two
approaches discussed above can be eliminated by
introducing a global queue, in addition to local queues.
IML employs a distributed queue configuration because
the primary target architecture consists of a small number
of processors. Future releases may provide generalized
support for large-scale parallel or distributed computing
systems.

Implementation Basic API Functions
Application programmers can write parallel programs with
the following functions. Support for the OpenMP standard
[6] is currently being implemented.

� iml_DOALL()  enqueues a parallel loop task. This
function returns when the loop task is completed. The
parameters of this function specify the pointer to the
function representing the loop body, the number of
iterations, the policy for loop scheduling,3 the
minimum chunk size, the number of parameters to the
loop body, and the actual parameters to the loop
body.

� iml_COBEGIN()  enqueues a set of functionally
parallel tasks. This function returns when all the tasks
are completed. The parameters of this function
specify the number of tasks, the pointers to the
functions representing the tasks, the number of
parameters to the tasks, and the actual parameters to
the tasks.

� iml_EnQ()  enqueues a task that is not a parallel
loop. This function returns immediately after
enqueueing the task, and thus does not wait for the
completion of the task. The parameters of this
function specify the pointer to the function
representing a task, the number of parameters to the
task, and the actual parameters to the task.  This
interface allows programmers to implement arbitrary
functional parallelism.

� iml_DecAndFetch()  performs user-level
synchronization. This function atomically decrements

                                                          
2 Effective scheduling algorithms and thread migration schemes
minimize the occurrence of such extremes.
3 IML implements various scheduling algorithms from which the
programmer can select on a loop-by-loop basis.

the counter and returns the value after the decrement.
Combined with iml_DOALL() , this can be used to
implement a DOACROSS (partially parallel) loop.
Combined with iml_EnQ() , this can be used during
the scheduling of DAG-parallel tasks. This function
takes the pointer to a counter as its argument.

 Extended API Functions
 Extended API functions are provided for experienced
application programmers. The extended API can also be
used by a compiler for automatic generation of calls to
IML (such is the case with Parafrase-2 and Intel
parallelizing compilers). Simple examples of the basic and
the extended API functions are given in the Appendix.

� iml_ReInitMultiThread() changes the num-
ber of active threads used by IML.

� iml_GetThreadID()  returns the thread ID of the
current thread.

 The full performance potential of the above API can only
be exploited with appropriate support from the OS kernel.
In particular, an application can add/release threads as it
goes through different phases of its execution in a way
that accurately reflects the parallelism in the underlying
computation. This results in better utilization of
processors and memory and translates not only to lower
execution times, but also to improved average workload
turnaround time in a multi-user environment. OS support
at the level of allocating and reclaiming resources from
user processes would be necessary in order to exploit this
capability of IML.4 However, this is not the case with
Windows NT* at present.

 Windows NT*: Threads and Fibers
 A thread is a unit of computation scheduled by the
operating system to run on a processor. A fiber is a unit of
computation that runs on a thread and is scheduled by a
user[10].  Some of the important characteristics of fibers
are as follows:

� Fiber switching is measured to take 50-60 cycles on a
200 MHz Intel Pentium� Pro processor. On the other
hand, the cost of suspending a thread is orders of
magnitude greater.

� There is an order of magnitude difference in the cost
of creation and deletion between fibers and threads.

� Similar to threads, fibers provide a user-level context
that includes a program counter, registers, and a
stack.

                                                          

 4 Hybrid  implementations are possible but cumbersome and may
conflict with software compatibility.



Intel Technology Journal Q1’98

4

� Scheduling of fibers is controlled by the user, while
scheduling of threads is controlled by the operating
system.

� The relationship of fibers to threads is analogous to
that of threads to processors.  An active fiber is bound
to a thread, just as an active thread is bound to a
processor.  A thread can have at most one active
fiber; similarly, a processor can have only one active
thread.  Inactive (or unbound) threads and fibers do
not receive any computational resources.

 Figure 2 illustrates the relationship between threads and
fibers. Without fibers, a context switch, even within a
process, is performed by the operating system. In Figure
2(a), bold lines represent the bindings between threads

and processors. A context switch corresponds to a
reconnection of a bold line from one thread to another
thread. This operation has two drawbacks. It is expensive
and not controllable by the user. These drawbacks can be
overcome with the introduction of fibers. Fibers detach
execution contexts from threads, allowing their scheduling
to be explicitly controlled by the user. Multiple threads
are still needed to maintain multiple active fibers. In
Figure 2(b), regular lines represent the bindings between
fibers and threads. A user-level context switch
corresponds to a reconnection of a regular line from one
fiber to another fiber, while a kernel-level context switch
is still represented by a reconnection of a bold line. Since
fibers are lightweight, easy to manage, and can be
explicitly scheduled by the user, they are used in the

 

 

CPU0

Thread3
Kernel-Level

State
&

User-Level
Context

CPU1 CPU2 CPU3

Thread4
Kernel-Level

State
&

User-Level
Context

Thread5
Kernel-Level

State
&

User-Level
Context

Thread2
Kernel-Level

State
&

User-Level
Context

Thread1
Kernel-Level

State
&

User-Level
Context

Thread0
Kernel-Level

State
&

User-Level
Context

activeinactive,
suspended

inactive,
idle

(a) Threads

CPU0

Fiber3
User-Level

Context

CPU1 CPU2 CPU3

Fiber4
User-Level

Context

Fiber5
User-Level

Context

Fiber2
User-Level

Context

Fiber1
User-Level

Context

Fiber0
User-Level

Context

activeinactive,
suspended

inactive,
idle

Thread3
Kernel-Level

State

Thread2
Kernel-Level

State

Thread1
Kernel-Level

State

Thread0
Kernel-Level

State

(b) Threads and Fibers

 Figure 2: Relationship between threads and fibers



Intel Technology Journal Q1’98

5

implementation of IML.

 Threads or Tasks
 In IML, tasks are represented by task descriptor blocks
(TDB).  A TDB contains a function pointer, a list of
arguments to that function, and for parallel loops, a
starting index, a dispatch counter, a minimum chunk size,
a loop scheduling policy, and a pointer to a loop
descriptor block (LDB).  A LDB contains a completion
counter and a pointer to the parent context of the loop.
Each task is represented by a single TDB except for a
parallel loop, which can be divided into one or more
TDBs that share a single LDB.

 Figure 3(a) is an example of a parallel loop, whose body is
represented by the function add_vectors_body ().
Figure 3(b) illustrates the relationships between the TDBs
and the LDB for this parallel loop. The number of
iterations n is assumed to have the value 1000. In this
example, the parallel loop is divided into four TDBs of
250 iterations each (the initial value of the dispatch
counter).  The completion counter in the LDB is
initialized to 1000, the number of iterations in the parallel
loop. The parent context in the LDB is set to the address
of the fiber executing the function call iml_DOALL() .
The TDBs are enqueued into the task queues, where they
wait to be scheduled for execution. Finally, the fiber
executing iml_DOALL()  yields to another fiber to
participate in task execution.

 

 Distributed Shared Queue (DSQ) and Load
Balancing
 In order to avoid contention on a centralized queue, IML

uses multiple task queues distributed across multiple
threads. Each thread owns a (local) queue, and can also
access (remote) queues owned by other threads in order to
achieve balanced load distribution. For systems with many
processors, a hierarchical DSQ implementation may be
preferable to a flat implementation. However, since the
current target of IML is a four-way SMP  Pentium Pro
processor based system, IML employs a flat DSQ
implementation. The current scheduler accesses remote
queues in a round-robin fashion after the local queue
becomes empty. This scheduling policy enhances cache
locality of local queue accesses when threads continue to
schedule tasks from their local queues.

 Dynamic load balancing is achieved when threads with
empty local queues acquire tasks from remote queues. If a
remote task is a non-loop task, the thread dequeues the
task and executes it. If the task is a parallel loop, the
thread splits the task in half [8], places one of the tasks in
its local queue, and begins executing it. (This policy is
chosen to maintain locality while reducing the cost of load
balancing. User-specified minimum chunk size is honored
in any loop-scheduling events.) Figure 4 illustrates the
configuration of the DSQ. Threads and their local queues
are connected by the bold lines. The regular lines
represent the connections between threads and remote
queues. IML allows users and external libraries to create
multiple threads, and for each of these threads (multiple
instances of Thread 0 in IML) to take advantage of IML.
This enables rapid porting of existing threaded
applications to IML.

 Each task queue in IML is implemented as a stack to
facilitate support for nested parallelism. When a thread
encounters the first (outermost) level of parallelism, the
newly created tasks are pushed onto the appropriate

 

 

void add_vectors(double *a, double *b, int n){
  int chunk = 16;
  int params = 2;
  iml_DOALL(&add_vectors_body, &n,
            &static_schedule, &chunk,
            &params, a, b);
  return;
}

void add_vectors_body(int *start, int *iters,
                      double *a, double *b) {
  int i;
  for(i = *start; i < (*start + *iters); i++){
    a[i] = a[i] + b[i];
  }
}

(a) A Parallel Loop

&add_vectors_body
750
250
16
2
a
b

1000     � completion counter
&parent_context

&add_vectors_body
500
250
16
2
a
b

&add_vectors_body
250
250
16
2
a
b

&add_vectors_body
0         � start index
250      � dispatch counter
16        � chunk size
2          � #params
a
b

(b) TDB and LDB for (a)

 Figure 3: A parallel loop, task descriptor blocks, and a loop descriptor block



Intel Technology Journal Q1’98

6

stacks. Inner parallel tasks are pushed onto the local
queue, hence increasing locality of task queue operations,
as well as locality between inner parallel tasks.

 

 

T0 T1 T2 T3

Q0 Q1 Q2 Q3

Q0-Q3: Task Queues
T0-T3 : Threads

 Figure 4: DSQ and threads

 

 For example, in the case of doubly-nested parallel loops,
the outer loop is distributed across multiple threads, while
each inner loop is enqueued to the local task queue. Each
thread continues executing iterations of the inner and
outer loops from its local queue, until all the tasks in the
local queue are completed. At this point, threads acquire
tasks from remote queues making it possible for them to
participate in the execution of inner parallel loops from

other threads. By enqueueing all the inner loop iterations
to the local queue, locality among these iterations is
exploited.

 Lock-Free Stack
 The task queue stack is implemented without software
locks [9] by using the iA instruction lock CMPXCHG8B,
which performs an atomic compare and exchange
operation. Figure 5(a) and (b) illustrate enqueue and
dequeue operations of the pointer P2, respectively. In the
enqueue operation (Figure 5(a)), the lock CMPXCHG8B
instruction compares the pair “Empty-Top” (brown)
against the stack top (green), and if the comparison
succeeds, the stack top is replaced by the pair “Top-P2”
(blue). When the comparison fails, the operation must be
repeated with the new stack top. In the dequeue operation
(Figure 5(b)), the top of the stack, which is the value to be
dequeued, is used to construct the pair “Top-P2.” The
lock CMPXCHG8B instruction compares the pair “Top-
P2” and the stack top, and replaces the stack top with
“Empty-Top” if the comparison succeeds.

 Unfortunately, the lock-free implementation allows only
one access point to a task queue. Therefore, a thread
obtains a remote task from the top of a remote task queue,
even though outermost parallel tasks are found at the
bottom of the task queue.

 Process Stack Management
 Exploitation of parallelism requires multiple execution
contexts to be active simultaneously.  In IML, each of

 

 

E E T P1

E

P0

T T P2

P2

push

compare exchange

stack prior to push

P2E T P1 P0E

stack after the push

E: Empty
T: Top

E

(a) Lock-Free Push

E E T

E

P1 P0E

TT P2

P2

pop

compare exchange

stack prior to pop

P2E T

P1 P0E

stack after the pop

E: Empty
T: Top

(b) Lock-Free Pop

 Figure 5: Lock-free push/pop operations



Intel Technology Journal Q1’98

7

these contexts corresponds to an active Windows NT*
fiber.  The collection of stacks from active and suspended
fibers resembles a cactus stack. Figure 6 illustrates the
structure of the execution contexts for a parallel loop
nested inside a COBEGIN section.  The difference
between this structure and a true cactus stack is that all the
variables in parent contexts that are needed by child
contexts are passed via parameters, instead of being
accessed by a static linkage pointer.

 In IML, when a new level of parallelism is invoked, the
parent context is immediately suspended, and child
contexts are initiated from a pre-allocated and recycled
fiber pool.  Upon completion of the parallel section, one
of the active children contexts resumes the parent context
[1].

 Compiler-Generated Parallel Code
 Parallel programming, compared to sequential

programming, is a difficult and error prone process.
Methods to automate or semi-automate this process are of
great value to programmers. Automatic tools, such as
automatic parallelizing compilers, are the ultimate tools
that programmers can use to parallelize programs. Ideally,
these compilers relieve the programmer of all the concerns
of parallelization. However, two decades of research in
parallel optimization has shown that optimal
parallelization is often not achieved solely through
automatic methods. In fact, semi-automatic parallelization
techniques allow the user to guide the pre-processor or
compiler in parallelizing the code. Fully and semi-
automatic parallelizing methods are discussed in the
following paragraphs.

 Before discussing the two methods of parallelizing code,
however, we first need to discuss how to transform code
in order to interface with the IML. The transformation for
parallel loops is described here, but a similar

 

 

arg1

body

arg0

arg1

arg2

arg0

arg1

arg2

arg0

arg1

arg2

arg0

arg1

arg0
array A

var u

var v

var x

var w

COBEGIN(func1, func2, x, A)

DOALL(body, u, A, v)

bodybody

func1
func2

Fiber0

Fiber1 Fiber2

Fiber3 Fiber4 Fiber5

suspended

active
var yvar yvar y

 Figure 6: Stack configuration for a DOALL loop nested in a COBEGIN section



Intel Technology Journal Q1’98

8

transformation is needed for parallel tasks. For each
parallel loop, a new function is created that contains the
loop body and the necessary support code. The shared and
private variables of the loop are determined.  Private
variables (i.e., those with no cross-iteration dependencies)
are redefined as local variables in the new function.  The
loop iteration variable is also declared as a local variable.
All other variables are classified as shared and are
declared as formal parameters of the new function. At the
original site of the parallel loop, the body of the loop is
replaced by a call to the IML entry point, iml_DOALL .
All the information needed to execute the loop in parallel
is passed to this entry point. This consists of the number
of iterations, a pointer to the newly created function, the
list of shared variables, the loop scheduling type, and the
minimum chunk size. Some needed support code is also
inserted around the call site.

 Fully Automatic Parallelization
 As mentioned above, the most convenient, but not
necessarily the optimum, way to construct parallel
programs is to utilize fully automatic tools such as
parallelizing pre-processors or compilers that handle both
the discovery of parallelism and the translation of parallel
constructs. Two compilation systems, based on IML, were
developed to facilitate fully automatic parallelism.

 The Parafrase-2 parallelizing compiler, developed at the
University of Illinois, was enhanced to output a
transformed source code file with calls to the IML. The
solid line path in the left side of Figure 7 shows this
completely automatic path, which relinquishes the
programmer from any parallelization effort. Parafrase-2
inserts all the necessary source code to manage the
detected parallelism.

 At Intel Microcomputer Research Labs (MRL), a parallel
optimization module was added to the Intel compilers.
This module accepts as input a standard intermediate
representation of the source code produced by the front
ends. Control and data flow analysis is performed on the
intermediate form, and data dependence analysis is done
on its loop constructs to discover loops with no loop
carried dependencies (i.e., DOALL loops). These loops
are then marked for a translator to convert them to the
form required by the IML interface. This path is shown in
solid lines in the right side of Figure 7.

 

 

Parafrase-2

Source C ode

Source C ode
+

A ssertion
File

M odified
Intel C om piler

Para llel  Executab le

Illino is-In tel
M u ltith readed

L ibrary
IM L

Source C ode +
O penM P directives

(subset)

Para llel
O ptim izer

Source C ode
+

IM L  C alls

In tel
C om p iler

A ssertion
File

D irective
Preprocessor

 Figure 7: Parallel code generation

 Semi-Automatic Parallelization
 As stated earlier, fully automatic parallelization has  its
limitations. Fortunately, these limitations can be overcome
by providing supplemental information about the program
to the compiler or pre-processor, including information
that cannot be determined at compile time. This
information, which can be represented in many forms,
such as directives, external assertion files, or interactive
questioning by the compiler during compilation, is critical
in the generation of efficient code.

 Two semi-automatic methods have been implemented,
corresponding to the diagonal path and the rightmost path
(dashed lines) of Figure 7.  Both methods encode parallel
information in an assertion file, which the Intel C/C++ and
FORTRAN compilers have been extended to access.

 To automate the assertion file generation process,
Parafrase-2 has been extended to generate an assertion file
(along with a source code file). This process is fully
automatic when Parafrase-2 generates efficient parallel
code. However, when the code generated by Parafrase-2
does not perform adequately, the information in the
assertion file can be augmented by the programmer to
increase the performance of the parallel executable.

 Another method is to encode parallelism in the source
code via OpenMP directives explicitly. The augmented
source code is then passed through a directive
preprocessor, which generates an assertion file from the
directives.  The assertion file and the source code are then
given to the modified Intel compilers to generate the
parallel executable.



Intel Technology Journal Q1’98

9

 These semi-automatic methods detach the identification
and the exploitation of parallelism. Parafrase-2 or the
programmer identifies the parallelism in the program,
while the modified Intel compilers transform the program
to exploit this parallelism. Compared to the scheme where
IML calls are inserted by Parafrase-2,  the configurations
using the assertion file increase the accuracy of the
analysis performed by the modified Intel compilers.

 Performance
 Several experiments were performed to measure and
evaluate the benefits of IML.  These experiments were
performed on a system with the following configuration:

� Intel System: Four 200MHz Pentium Pro  processors,
each with 256KB L2 cache; 4 way interleaved
memory 512MB (60ns Fast Page Mode), Matrox
MGA Millenium graphics card with 4MB VRAM

� Microsoft Windows NT* Server version 4.0

� Intel C/C++/FORTRAN Compiler version 2.4 (for
compilation of IML and application programs)

� Microsoft Macro Assembler version 6.11d (for
compilation of IML)

� Illinois-Intel Multithreading Library version 1.1

Intel System Memory Subsystem Performance
Before proceeding with the experiments that present the
results with IML, a simple experiment was conducted to
determine the impact of the memory subsystem
performance on the results.

The effect of main memory bandwidth was evaluated
using the code segment in Figure 8. When the array
block  fits into the L2 cache, almost perfect cache
locality is achieved, resulting in very few main memory

accesses.  On the other hand, a large number of cache
misses on the L2 cache were observed for larger sizes of
the array block .

Figure 9(a) illustrates the performance degradation of this
code when multiple copies of this program are executed
simultaneously. By running multiple independent
processes of the same program, the experiment creates
increased requirements on the bandwidth to main memory.
For small sizes of array block , four copies of the
program are executed without any performance
degradation.  When the size of array block  is larger than
the L2 cache (and thus each process now initiates more
main memory accesses than the case of small array sizes),
a performance degradation of approximately 220% is
observed for four copies. This behavior is not limited to
the test case.  For example, three SPECfp95 benchmarks,
MGRID, SWIM, and TOMCATV show 22%, 97%, and
174% slowdown, respectively, when four copies are
concurrently executed (Figure 9(b)). The performance
degradation observed in Figure 9 is attributable to the
bandwidth between secondary cache and main memory.
Therefore, it can be improved by performing cache
locality optimizations.  In the following experiments, no
manual cache locality optimizations were performed.

 

 

double a=0, block[N];
for(j=0;j<M;j++){
  for(i=0;i<N;i++){
    a += block[i];
  }
}

 Figure 8: Code segment for memory subsystem test

Effect of Simultaneous Execution (Fig. 8)

0

50

100

150

200

1 2 3 4

#copies

(s
ec

) N=128000, M=10000

N=16000, M=200000

(a) Execution Time of Test Code in Fig. 8

Effect of Simultaneous Execution (SPEC95)

0

200

400

600

800

1000

1200

1 2 3 4

#copies

(s
ec

) TOMCATV

SWIM

MGRID

(b) Execution Time of SPECfp95 Codes

Figure 9: Effect of simultaneous execution



Intel Technology Journal Q1’98

10

BLAS3
BLAS3 is a library package for matrix-vector operations.
Several complex BLAS3 library functions from a
preliminary version of the Intel Math Kernel Library
(MKL) were ported to IML.  MKL uses a conventional
multiprocessing library, which exploits only a single level
of parallelism.  The computational kernels of these
functions are written in FORTRAN and iA assembly with
cache locality optimizations.

The speedup curve of one of these library functions,
CGEMM, is presented in Figure 10 and can be seen to
scale linearly.  As the problem size increases, a moderate
increase in the speedup is observed.  The figure also
illustrates that there is no significant difference in
performance between IML and MKL.  Unlike MKL which
is a non-queue-based, singly nested, loop-only library and
hence highly tuned, IML is a queue-based, runtime system
that supports any mix of arbitrarily nested loop and
functional threads, and hence is better suited for a larger
class of application codes.  Thus, one would expect that
the additional functionality and general-purpose nature of
IML would increase the overhead cost. Due to efficient
implementation, this is not the case as is clear from Figure
10, and IML incurs thread management overhead
comparable to fine-tuned libraries that support single loop
only parallelism.

CGEMM Speedup

0

1

2

3

4

1 Thread 2 Threads 3 Threads 4 Threads

#Threads

S
pe

ed
up

100x100 MKL

100x100 IML

200x200 MKL

200x200 IML

400x400 MKL

400x400 IML

Figure 10: CGEMM speedup

SPECfp95
Three of the SPEC95 floating-point benchmarks, MGRID,
SWIM, and TOMCATV were parallelized by the
Parafrase-2 compiler. The benchmarks are numeric
intensive and highly parallel.  The solid lines of Figure 11
show the speedup curves for these benchmarks as
measured on the actual system. Automatic parallelization
with the Intel compiler produced similar results. As
expected, the poor scaling is the result of the limited
memory bandwidth. Extrapolating from these benchmark
results and the performance of the memory subsystem for
each benchmark from Figure 9(b), projected speedups,
shown as the dotted lines in Figure 11, are obtained.
These speedup curves correspond to a hypothetical system
with sufficient main memory bandwidth.

SPEC95 Speedup (actual & projected)

0

1

2

3

4

1 Thread 2 Threads 3 Threads 4 Threads

#Threads

S
pe

ed
up

TOMCATV

SWIM

MGRID

TOMCATV (projected)

SWIM (projected)

MGRID (projected)

Figure 11: SPEC95 Speedup (actual & projected)

POV-Ray for Windows*
POV-Ray is a ray-tracing software package available to
the public. This application is highly parallel since every
pixel can be processed independently. In this experiment,
however, only the parallelism between horizontal scan
lines was exploited. The performance of the initial port is
shown in Figure 12(a).



Intel Technology Journal Q1’98

11

POV-Ray Performance (improved )

0

50

100

150

200

1 2 3 4

#Threads

(s
ec

)

0

1

2

3

4

S
pe

ed
up User

Speedup

(b) Improved Performance(a) Initial Performance

POV-Ray Performance (initial )

0

50

100

150

200

1 2 3 4

#Threads

(s
ec

)

0

1

2

3

4

S
pe

ed
up

Idle

System

User

Speedup

Ex. Speedup

Figure 12: POV-Ray for Windows* performance

Execution times are represented by the bar graph. The
colors blue, red, and white correspond to user, system, and
idle time of the parallelized POV-Ray, respectively. The
solid line represents the speedup over the original source
distribution. The system and idle times, depicted in the bar
graph, are due to the mutual exclusion inside malloc
() . The dashed line represents the projected speedup,
computed only from the user time.

To eliminate this system level overhead, a second port
enclosed the malloc ()  function calls with user-level
mutual exclusions, resulting in the performance shown in
Figure 12(b). The system level overhead was eliminated,
and linear speedup was obtained. Although the second
port performs better than the initial port, it still suffers
from serialization in the malloc()  routine. A truly
parallel implementation of malloc()  would allow for
even greater performance gains.

Conclusions
In this paper we have described IML, the Illinois-Intel
Multithreading Library designed to support various types
of parallelism efficiently.  IML extends substantially the
degree of available support for multithreading (found in
other experimental or commercial systems) by providing
the capability to express nested loop and cobegin/coend
parallelism. Users can benefit from IML in terms of a
reduction in development time by expressing parallelism
in the IML API. To further assist the application
developer, the Parafrase-2 compiler at the University of
Illinois and the Intel FORTRAN Compiler have been
modified to analyze programs to detect parallelism
(automatically and with directives) and to generate calls to
IML.  Performance of automatically generated parallel
code for SPECfp95 applications with IML is the same as
hand-coded parallel programs.

*All trademarks are the property of their respective
owners.

Acknowledgments
This work was supported in part by a grant from Intel
Corporation, in part by DARPA under grant MDA 904-
96-C-1472, and in part by ONR under grant N00014-94-
1-0234.

References
[1] Chow, J-H. and Harrison, L., Microtasking Recursive,

Parallel Programs, In Proc. of Int’l Conf. on Parallel
Processing Vol. 2: Software,  1990

[2] Girkar, M. Functional Parallelism: Theoretical
Foundations and Implementation, Ph.D. Thesis,
University of Illinois, 1992.

[3] Girkar, M. and Polychronopoulos C., Automatic
Extraction of Functional Parallelism from Ordinary
Programs, IEEE Trans. on Parallel and Distributed
Systems Vol. 3, No. 2, 1992.

[4] Girkar, M. and Polychronopoulos, C. Extraction of
Task-Level Parallelism, ACM Trans. on Programming
Languages and Systems Vol. 17, No. 4, 1995.

[5] IML Home Page. http://www.csrd.uiuc.edu/IML.

[6] OpenMP Home Page. http://www.openmp.org.

[7] Polychronopoulos, C. et.al., PARAFRASE-2: An
Environment for Parallelizing, Partitioning,
Synchronizing, and Scheduling Programs on
Multiprocessors, Int’l J. of High Speed Computing
Vol. 1, No. 1, pp. 45-72.

[8] E. D. Polychronopoulos, "Scheduling Heuristics for
Multiprocessors,”  PhD Thesis in progress, Laboratory
for High-Performance Computing, University of
Patras, 1997.



Intel Technology Journal Q1’98

12

[9]Valois, J. Implementing Lock-Free Queues, Proc. of
Int’l Conf. on Parallel and Distributed Computing
Systems, 1994, pp. 64-69.

[10] Win32 Fiber APIs. Microsoft Corporation.

Authors’ Biographies
Milind Girkar received a B.Tech. from the Indian
Institute of Technology, Mumbai, an M.Sc. from
Vanderbilt University and a Ph.D. from the University of
Illinois at Urbana-Champaign, all in computer science.
Currently, he is a software engineer in Intel's
Microcomputer Research Labs where he works on
parallelizing compilers and Java Just-In-Time compilers.
Before joining Intel, he worked on a compiler for the
UltraSPARC platform at Sun Microsystems. His e-mail
address is mgirkar@gomez.sc.intel.com.

Mohammad R. Haghighat is a software engineer at
Intel's Microcomputer Research Labs where he works on
parallelizing compilers and Java Just-In-Time compilers.
He holds a B.Sc. in Computer Science and Engineering
from Shiraz University, and an M.Sc. and a Ph.D. in
Computer Science from the University of Illinois at
Urbana-Champaign. He is the author of a book on
symbolic analysis for parallelizing compilers. His e-mail
address is mhaghigh@gomez.sc.intel.com.

Paul Grey did his B.Sc. in Applied Physics at the
University of the West Indies and his M.Sc. in Computer
Engineering at the University of Southern California.

Currently he is a staff software engineer at Intel's
Microcomputer Research Labs, researching compiler
optimizations for parallel computing. Before joining Intel,
he worked on parallel compilers, parallel programming
tools, and graphics system software at Kuck and
Associates, Inc., Sun Microsystems, and Silicon Graphics.
His research interests include optimizing compilers,
parallel computer architectures and 3D computer graphics.
His e-mail address is pgrey@gomez.sc.intel.com

Hideki Saito received his B.E. degree in information
science from Kyoto University in 1993. Currently, he is a
Ph.D. candidate in the Department of Computer Science,
and a research assistant in the Center for Supercomputing
Research and Development at the University of Illinois at
Urbana-Champaign. At CSRD, he participates in the
PROMIS parallelizing compiler project. His research
interests include computer architectures and program
optimizations for parallel processing. His e-mail address is
saito@csrd.uiuc.edu.

Nicholas Stavrakos received his B.Sc. degree in
computer engineering from the University of Illinois at
Urbana-Champaign in 1994.

Currently, he is a Ph.D. candidate in the Department of
Electrical and Computer Engineering, and a research
assistant in the Center for Supercomputing Research and
Development at the University of Illinois. At CSRD, he
participates in the Parafrase-2 and PROMIS parallelizing
compiler projects. His research interests include
parallelizing compilers, symbolic analysis, and
multithreaded code generation. His e-mail address is
stavrako@csrd.uiuc.edu.

Constantine D. Polychronopoulos is a Professor in the
Department of Electrical and Computer Engineering and
the Center for Supercomputing Research and
Development at the University of Illinois at Urbana-
Champaign. He received his Ph.D. from the University of
Illinois at Urbana-Champaign in 1986, his M.Sc. from
Vanderbilt University in 1982, and his B.Sc. from the
University of Athens in 1980.

His research interests are on compilers and architectures
for high-performance computer systems, multithreading,
and multiprocessor operating systems. He has published
extensively on  parallelizing compilers and scheduling,
and has been leading the Parafrase-2 and PROMIS
projects at CSRD. He was the recipient of a 1989 NSF
Presidential Young Investigator award, and is a Fulbright
Scholar.  Some of the results of his research team have
been implemented in several commercial systems by DEC,
Cray Research, Convex, Alliant, SGI and others. His
research work has been funded by NSF, DARPA, ONR,
and industry. His e-mail address is cdp@csrd.uiuc.edu.

Appendix: Examples for IML API
This appendix gives the examples for IML API functions.
The code segments presented in this paper are simplified
for explanatory purposes. Further details on the usage of
IML can be found in the IML Home Page [5].

Basic API Functions
In this section, the usage of basic API functions is
demonstrated using the original code shown in Fig. A-1.
In this example, all three loops (i, j, and k) are parallel,
and the two outermost loops (j and k) can be executed
simultaneously.

double A[M][N], B(N), c;
for(j=0;j<M;j++){
  for(i=0;i<N;i++){
    A[i][j] = i * j;
  }
}
for(k=0;k<N;k++){
  B[k] = k;
}
c = foo(A, B, N, M);

Figure A-1: Code Segment for Fig. A-2 to A-5.



Intel Technology Journal Q1’98

13

Converting the j- and k-loops to DOALL results in the
code shown in Fig. A-2. The k-loop is executed after the j-

loop is completed.

  double A[M][N], B(N), c;

  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params,
            A, N);
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
  c = foo(A, B, N, M);

void jloop(int *start,
           int *iters,
           double *A, int *N){
  for(j=*start;
      j<*start+*iters;j++){
    for(i=0;i<N;i++){
      A[i][j] = i * j;
    }
  }
}
void kloop(int *start,
           int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
      B[k] = k;
    }
  }
}

Figure A-2: Using iml_DOALL()  for Outer Loops

The i-loop can also be converted to DOALL as in Fig. A-
3. Unlike conventional libraries that would internally
execute the i-loop described in this fashion as a sequential
loop, IML can actually execute it in parallel.

  double A[M][N], B(N), c;

  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params, A, N);
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
  c = foo(A, B, N, M);

void jloop(int *start,  int *iters,
           double *A, int N){
  for(j=*start;
      j<*start+*iters;j++){
    iml_DOALL(&iloop, &N,
              &self_schedule, A, j);
  }
}
void kloop(int *start, int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
    B[k] = k;
  }
}
void iloop(int *start, int *iters,
           double *A, int j){
  for(i=*start;
      i<*start+*iters;i++){
    A[i][j] = i * j;
  }
}

Figure A-3: Using iml_DOALL()  for all loops

Furthermore, the j- and k-loops can be executed
simultaneously, using iml_COBEGIN()  (Fig. A-4) or
iml_EnQ()  (Fig. A-5).



Intel Technology Journal Q1’98

14

Extended API Functions
The usage of the extended API functions is demonstrated
using the original code shown in Fig. A-6. The reduction
operation can be performed in parallel, where each thread
reduces to its own variable, and global reduction across
the result of the thread-wise reduction is performed
afterwards (Fig A-7). If a sequential section of the
program persists for a period of time, the programmer or
the compiler can use iml_ReInitMultiThread()  to
reduce the number of active threads (Fig. A-8).

  double A[M][N], B(N), c;

  iml_COBEGIN(&tasks, &jloop_0,
              &kloop_0,
              &params, A, B, N, M);
  c = foo(A, B, N, M);

void jloop_0(double *A, double *B,
             int N, int M){
  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params, A, N);
}
void kloop_0(double *A, double *B,
             int N, int M){
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
}
void jloop(int *start, int *iters,
           double *A, int N){
  for(j=*start;
      j<*start+*iters;j++){
    iml_DOALL(&iloop, &N,
              &self-schedule, A, j);

  }
}
void kloop(int *start, int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
    B[k] = k;
  }
}
void iloop(int *start, int *iters,
           double *A, int j){
  for(i=*start;
      i<*start+*iters;i++){
    A[i][j] = i * j;
  }
}

Figure A-4: Using iml_COBEGIN()



Intel Technology Journal Q1’98

15

double a, B(N);
for(i=0;i<N;i++){
  a += B{i];
}

Figure A-6: Code Segment for Fig. A-7 and A-8

  double A[M][N], B(N), c;

  iml_EnQ(&jloop_0, A, B,
          N, M, &cnt, &c);
  iml_EnQ(&kloop_0, A, B,
          N, M, &cnt, &c);

void jloop_0(double *A, double *B,
             int N, int M,
             int *cnt, double *c){
  iml_DOALL(&jloop, &M,
            &static_schedule,
            &chunk, &params, A, N);
  if (iml_DecAndFetch(cnt)==0){
    iml_EnQ(&foo_0, A, B, N, M, c);
  }
}
void kloop_0(double *A, double *B,
             int N, int M,
             int *cnt, double *c){
  iml_DOALL(&kloop, &N,
            &simple_schedule,
            &chunk, &params, B);
  if (iml_DecAndFetch(cnt)==0){
    iml_enQ(&foo_0, A, B, N, M, c);
  }
}
void foo_0(double *A, double *B,
           int N, int M, double *c){
    *c = foo(A, B, N, M);
}
void jloop(int *start, int *iters,
           double *A, int N){
  for(j=*start;
      j<*start+*iters;j++){
    iml_DOALL(&iloop, &N,
              &self-schedule, A, j);

  }
}
void kloop(int *start, int *iters,
           double *B){
  for(k=*start;
      k<*start+*iters;k++){
    B[k] = k;
  }
}
void iloop(int *start, int *iters,
           double *A, int j){
  for(i=*start;
      i<*start+*iters;i++){
    A[i][j] = i * j;
  }
}

Figure A-5: Using iml_EnQ()

  double a, A(NCPU), B(N);

  iml_DOALL(&iloop, &N,
            &static_scheduling,
            &chunk, &params,
            A, B);
  for(i=0;i<NCPU;i++){
    a += A[i];
  }

void iloop(int *start, int *iters,
           double *A, double *B){
  ID = iml_GetThreadID();
  for(i=*start;
      i<*start+*iters;i++){
    A[ID] += B{i];
  }
}

Figure A-7: Using iml_GetThreadID() .

  double a, A(NCPU), B(N);

  iml_DOALL(&iloop, &N
            &static_scheduling,
            &chunk, &params,
            A, B);
  iml_ReInitMultiThread(1);
  // suspend all other threads
  for(i=0;i<NCPU;i++){
    a += A[i];
  }

void iloop(int *start, int *iters,
           double *A, double *B){
  ID = iml_GetThreadID();
  for(i=*start;
      i<*start+*iters;i++){
    A[ID] += B{i];
  }
}

Figure A-8: Using iml_ReInitMultiThread() .


	preface
	overview
	perf
	tos
	sps
	iml

